Science.gov

Sample records for rice brittle culm

  1. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    PubMed

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  2. Culm in rice straw as a new source for sugar recovery via enzymatic saccharification.

    PubMed

    Park, Jeung-yil; Arakane, Mitsuhiro; Shiroma, Riki; Ike, Masakazu; Tokuyasu, Ken

    2010-01-01

    Rice straw was manually dissected and two main fractions were recovered: a culm and a leaf sheath/blade fraction, in order to evaluate their potential as feedstocks for the recovery of fermentable sugars. In the case of cv. Koshihikari and Milkyqueen, most soft carbohydrates (SCs: glucose, fructose, sucrose, starch, and beta-1,3-1,4-glucan) were present in the culms, reaching 47.9% and 89.2% of total SCs in the two main fractions. The results also indicated that beta-glucans (cellulose and beta-1,3-1,4-glucan) and xylan in the culms were more susceptible to direct enzymatic attack than those in the leaf sheath/blades. Thus the culm has high potential as a new feedstock for the extraction of fermentable sugars in a concentrated form, as compared to whole rice straw and the leaf sheath/blade. In this study, a novel method of separating a culm from the whole rice straw by means of wind power was also evaluated.

  3. Starch Metabolism in the Leaf Sheaths and Culm of Rice 1

    PubMed Central

    Perez, Consuelo M.; Palmiano, Evelyn P.; Baun, Lyda C.; Juliano, Bienvenido O.

    1971-01-01

    The levels of starch and dextrin, free sugars, soluble protein, and enzymes involved in starch metabolism—α-amylase, β-amylase, phosphorylase, Q-enzyme, R-enzyme, and ADP-glucose starch synthetases—were assayed in the leaf sheaths and culm of the rice plant (Oryza sativa L., variety IR8) during growth. Starch accumulation in the leaf sheaths reached a maximum 10 to 11 weeks after transplanting, the time of development of the rice panicle. Maximal concentration of free sugars occurred earlier. Starch and sugars in the leaf sheaths and culm decreased rapidly during grain development. During starch accumulation, the starch granules of the leaf sheaths increased slightly in size and its gelatinization temperature decreased. The molecular size of amylose and amylopectin and amylose content of the starch were similar in both culm and leaf sheaths. Changes in the level of soluble protein paralleled changes in starch level in the leaf sheaths. Among the enzymes, only synthetase bound to the starch granule paralleled the level of starch in the leaf sheaths and in the culm. ADP-glucose, but not UDP-glucose, was utilized as a glucosyl donor by these starch synthetases. Zymograms of these extracts showed only one α-amylase band, one β-amylase band, two phosphorylase bands, and one Q-enzyme band. PMID:16657631

  4. The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5.

    PubMed

    Funabiki, Atsushi; Takano, Sho; Matsuda, Shuichi; Tokuji, Yoshihiko; Takamure, Itsuro; Kato, Kiyoaki

    2013-10-01

    Low temperature tolerance during vegetative growth is an important objective in rice (Oryza sativa L.) breeding programs. We isolated a novel reduced culm number mutant, designated reduced culm number11 (rcn11), by screening under low-temperature condition in a paddy fields. Since the shoot architecture of the rcn11 was very similar to that of the rcn1, we examined whether RCN11 is involved in RCN1/OsABCG5-associated vegetative growth control. The rcn11 mutant has no mutation in the RCN1/OsABCG5 gene and rcn11 has no effect on RCN1/OsABCG5 gene expression. In the rcn1 mutant, RCN1/OsABCG5 was upregulated showing that RCN1/OsABCG5 is controlled by negative feedback regulation. Absence of an effect of rcn11 on RCN1/OsABCG5 feedback regulation supported that RCN11 is not involved in the RCN1/OsABCG5-associated transport system. A genetic allelism test and molecular mapping study showed that rcn11 is independent of rcn1 on rice chromosome 3 and located on chromosome 8. The rcn1 rcn11 phenotype suggests that RCN11 acts on vegetative growth independent of RCN1/OsABCG5. A root development comparison between rcn1 and rcn11 in young seedlings represented that rcn11 reduced crown root number and elongation, whereas rcn1 reduced lateral root density and elongation. Thus, rcn11 will shed new light on vegetative growth control under low temperature.

  5. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  6. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    The author describes a fluidised-bed boiler that has been designed by FluiDyne Engineering Corp. for the combustion of anthracite culm, a material containing about 40% ash and consisting of coal particles embedded in mineral matter. There are some 900 million tons of anthracite culm in northeast Pennsylvania within easy reach of many large metropolitan areas. It is estimated that the material can be used economically within a distance of 200 miles.

  7. Transcriptome Sequencing and Analysis for Culm Elongation of the World’s Largest Bamboo (Dendrocalamus sinicus)

    PubMed Central

    Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan

    2016-01-01

    Dendrocalamus sinicus is the world’s largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna

  8. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus).

    PubMed

    Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan

    2016-01-01

    Dendrocalamus sinicus is the world's largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna

  9. 100 MW anthracite culm CFB small power producer

    SciTech Connect

    McKenzie, R. ); Wilhelm, B. . Power Systems Group)

    1988-01-01

    This paper discusses the development and design aspects of the St. Nicholas Cogeneration Project. The project is an anthracite culm-fired 80 MWe qualifying cogeneration facility. The project is privately financed, owned, and to be operated to produce process steam for commercial use along with cogenerating electricity for sale to the local utility. This paper highlights the details of the power sales agreement with Pennsylvania Power and Light Company, the development of the project for third-party financing, and the design considerations for fueling the facility with anthracite culm.

  10. Effect of Sesbania rostrata on Hirschmanniella oryzae in Flooded Rice

    PubMed Central

    Germani, G.; Reversat, G.; Luc, M.

    1983-01-01

    Microplot experiments on flooded soil infested with Hirschmanniella oryzae were conducted to investigate the influence of the legum Sesbania rostrata as a rotation crop with rice, Oryza sativa L. cv. Moroberekan. To avoid a green manure effect from S. rostrata, all aerial parts were removed at harvest. The dry weight of paddy, culms and leaves, and number of culms of rice following Sesbania were 214%, 158%, and 121% greater, respectively, than those following rice. Ripening of the paddy occurred earlier if rice followed Sesbania. The beneficial effect of Sesbania may have been due to the trap-crop action of Sesbania against H. oryzae. PMID:19295801

  11. 48. Northwest Side of Breaker, from Culm Bank, date unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Northwest Side of Breaker, from Culm Bank, date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre,PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  12. Understanding the importance wet, unimproved Culm grasslands have for the provision of multiple ecosystem services

    NASA Astrophysics Data System (ADS)

    Brazier, Richard; Elliot, Mark; Warren, Susan; Puttock, Alan

    2014-05-01

    It is increasingly recognised that catchments must be carefully managed for the provision of multiple, sometimes conflicting ecosystem services. This requires an increased interdisciplinary environmental understanding to inform management policy and practices by government, landowners and stakeholders. The Culm National Character Area (NCA) covers 3,500 square kilometres in South West England with Culm grasslands consisting of wet unimproved, species rich pastures, typically on poorly drained soils. Since the 1960's, policy changes have encouraged the drainage of large areas of land for agricultural improvement and consequently Culm grassland sites have become highly fragmented. There are currently 575 Culm grassland sites in the Culm NCA with a mean area of 7 ha. Traditionally, Culm grasslands have been managed by light grazing and scrub management. Since 2008, Devon Wildlife Trust's Working Wetlands project has been working with farmers and landowners to manage and restore and recreate Culm grasslands. It is part of South West Water's Upstream Thinking initiative and is now augmented by the Northern Devon Nature Improvement Area programme. However, from a hydrological perspective, Culm and similar unimproved grasslands remain poorly understood. In addition to their recognised conservation and biodiversity importance; unimproved grasslands such as Culm are thought to have a high water storage capacity, reducing runoff and therefore flooding during wet periods, whilst slowly releasing and filtering water to help maintain water quality, and base river flows during dry periods. Therefore, if properly understood and managed Culm soils have the potential to play an important role in the management of catchment water resources. Furthermore, Culm grassland soils are thought to have a high potential for the sequestration and storage of carbon, an increasingly valuable ecosystem service. This study aims to increase understanding of the influence Culm grasslands have upon

  13. Children with Brittle Bones.

    ERIC Educational Resources Information Center

    Alston, Jean

    1982-01-01

    Special help given to children with Osteogenesis Imperfecta (brittle bone disease) is described, including adapted equipment to allow for writing and use of a classroom assistant to aid participation in a regular classroom. (CL)

  14. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding

    PubMed Central

    Ordonio, Reynante L.; Ito, Yusuke; Hatakeyama, Asako; Ohmae-Shinohara, Kozue; Kasuga, Shigemitsu; Tokunaga, Tsuyoshi; Mizuno, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2014-01-01

    Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants— both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes. PMID:24924234

  15. [Cosmetology and brittle nails].

    PubMed

    Abimelec, P

    2000-12-15

    The knowledge of manicure techniques and nail cosmetics compositions are a prerequisite to the understanding of their potential side effects. The brittle nail syndrome is a common problem that roughly affect 20% of women. We will review the etiologic hypothesis, describe the various presentations, and suggest a treatment for this perplexing problem.

  16. Brittleness of ceramics

    NASA Technical Reports Server (NTRS)

    Kroupa, F.

    1984-01-01

    The main characteristics of mechanical properties of ceramics are summarized and the causes of their brittleness, especially the limited mobility of dislocations, are discussed. The possibility of improving the fracture toughness of ceramics and the basic research needs relating to technology, structure and mechanical properties of ceramics are stressed in connection with their possible applications in engineering at high temperature.

  17. Measuring bulrush culm relationships to estimate plant biomass within a southern California treatment wetland

    USGS Publications Warehouse

    Daniels, Joan S. (Thullen); Cade, Brian S.; Sartoris, James J.

    2010-01-01

    Assessment of emergent vegetation biomass can be time consuming and labor intensive. To establish a less onerous, yet accurate method, for determining emergent plant biomass than by direct measurements we collected vegetation data over a six-year period and modeled biomass using easily obtained variables: culm (stem) diameter, culm height and culm density. From 1998 through 2005, we collected emergent vegetation samples (Schoenoplectus californicus andSchoenoplectus acutus) at a constructed treatment wetland in San Jacinto, California during spring and fall. Various statistical models were run on the data to determine the strongest relationships. We found that the nonlinear relationship: CB=β0DHβ110ε, where CB was dry culm biomass (g m−2), DH was density of culms × average height of culms in a plot, and β0 and β1 were parameters to estimate, proved to be the best fit for predicting dried-live above-ground biomass of the two Schoenoplectus species. The random error distribution, ε, was either assumed to be normally distributed for mean regression estimates or assumed to be an unspecified continuous distribution for quantile regression estimates.

  18. Brittle diabetes: Psychopathology and personality.

    PubMed

    Pelizza, Lorenzo; Pupo, Simona

    The term "brittle" is used to describe an uncommon subgroup of patients with type I diabetes whose lives are disrupted by severe glycaemic instability with repeated and prolonged hospitalization. Psychosocial problems are the major perceived underlying causes of brittle diabetes. Aim of this study is a systematic psychopathological and personological assessment of patients with brittle diabetes in comparison with subjects without brittle diabetes, using specific parameters of general psychopathology and personality disorders following the multi-axial format of the current DSM-IV-TR (Diagnostic and Statistical manual of Mental Disorders - IV Edition - Text Revised) diagnostic criteria for mental disorders. Patients comprised 42 subjects with brittle diabetes and a case-control group of 42 subjects with stable diabetes, matched for age, gender, years of education, and diabetes duration. General psychopathology and the DSM-IV-TR personality disorders were assessed using the Symptom Checklist-90-Revised (SCL-90-R) and the Structured Clinical Interview for axis II personality Disorders (SCID-II). The comparison for SCL-90-R parameters revealed no differences in all primary symptom dimensions and in the three global distress indices between the two groups. However, patients with brittle diabetes showed higher percentages in borderline, histrionic, and narcissistic personality disorder. In this study, patients with brittle diabetes show no differences in terms of global severity of psychopathological distress and specific symptoms of axis I DSM-IV-TR psychiatric diagnoses in comparison with subjects without brittle diabetes. Differently, individuals with brittle diabetes are more frequently affected by specific DSM-IV-TR cluster B personality disorders.

  19. Mutation of Rice BC12/GDD1, Which Encodes a Kinesin-Like Protein That Binds to a GA Biosynthesis Gene Promoter, Leads to Dwarfism with Impaired Cell Elongation[W][OA

    PubMed Central

    Li, Juan; Jiang, Jiafu; Qian, Qian; Xu, Yunyuan; Zhang, Cui; Xiao, Jun; Du, Cheng; Luo, Wei; Zou, Guoxing; Chen, Mingluan; Huang, Yunqing; Feng, Yuqi; Cheng, Zhukuan; Yuan, Ming; Chong, Kang

    2011-01-01

    The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA3) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice. PMID:21325138

  20. Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis.

    PubMed

    Afreen, F; Zobayed, S M A; Armstrong, J; Armstrong, W

    2007-01-01

    Emergent aquatic macrophytes growing in waterlogged anaerobic sediments overlain by deep water require particularly efficient ventilating systems. In Phragmites australis (Cav.) Trin. ex Steud, pressurized gas flows, generated by humidity-induced diffusion of air into leaf sheaths, enhance oxygen transport to below-ground parts and aid in the removal of respiratory CO2 and sediment-generated CO2 and methane. Although modelling and flow measurements have pointed to the probable involvement of all leaf sheaths in the flow process and the development of pressure gradients along the whole lengths of living culm and leaf sheaths, direct measurements of pressure gradients have never been reported. The aim of this study was to search for pressure gradient development in Phragmites culms and leaf sheaths and to determine their magnitudes and distribution. In addition, dynamic (with gas flow) and static pressures (no flow condition) and their relationship to flows, leaf sheath areas, and living-to-dead culm ratios were further investigated. Dynamic pressures (DeltaPd) recorded in the pith cavities of intact (non-excised) leafy culms, pneumatically isolated from the below-ground parts and venting through an artificial bore-hole near the base, revealed a curvilinear gradient of pressure 'asymptoting' towards the tips of the culms. Similarly, DeltaPd in upper and lower parts of leaf sheaths increased with distance from the base of the culm, with values in the upper parts always being greater. Curvilinear gradients of pressure were also found along pneumatically isolated individual leaf sheaths, but radial channels linking the leaf sheath aerenchyma with the pith cavity of the culm appeared to offer little resistance to flow. In keeping with predictions, static pressure differentials (DeltaPs) achieved in intact and excised culms and single leaf sheaths on intact culms proved to be relatively independent of leaf sheath area, whereas the potential for developing convective flows

  1. A new tablet brittleness index.

    PubMed

    Gong, Xingchu; Sun, Changquan Calvin

    2015-06-01

    Brittleness is one of the important material properties that influences the success or failure of powder compaction. We have discovered that the reciprocal of diametrical elastic strain at fracture is the most suitable tablet brittleness indices (TBIs) for quantifying brittleness of pharmaceutical tablets. The new strain based TBI is supported by both theoretical considerations and a systematic statistical analysis of friability data. It is sufficiently sensitive to changes in both tablet compositions and compaction parameters. For all tested materials, it correctly shows that tablet brittleness increases with increasing tablet porosity for the same powder. In addition, TBI increases with increasing content of a brittle excipient, lactose monohydrate, in the mixtures with a plastic excipient, microcrystalline cellulose. A probability map for achieving less than 1% tablet friability at various combinations of tablet tensile strength and TBI was constructed. Data from marketed tablets validate this probability map and a TBI value of 150 is recommended as the upper limit for pharmaceutical tablets. This TBI can be calculated from the data routinely obtained during tablet diametrical breaking test, which is commonly performed for assessing tablet mechanical strength. Therefore, it is ready for adoption for quantifying tablet brittleness to guide tablet formulation development since it does not require additional experimental work.

  2. Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage.

    PubMed

    Yang, Shi-Jian; Zhang, Yong-Jiang; Goldstein, Guillermo; Sun, Mei; Ma, Ren-Yi; Cao, Kun-Fang

    2015-09-01

    To understand water-use strategies of woody bamboo species, sap flux density (Fd) in the culms of a woody bamboo (Bambusa vulgaris Schrader ex Wendland) was monitored using the thermal dissipation method. The daytime and night-time Fd were analyzed in the dry and rainy seasons. Additionally, diurnal changes in root pressure, culm circumference, and stomatal conductance (gs) were investigated to characterize the mechanisms used to maintain diurnal water balance of woody bamboos. Both in the dry and rainy seasons, daytime Fd responded to vapor pressure deficit (VPD) in an exponential fashion, with a fast initial increase in Fd when VPD increased from 0 to 1 kPa. The Fd and gs started to increase very fast as light intensity and VPD increased in the morning, but they decreased sharply once the maximum value was achieved. The Fd response of this woody bamboo to VPD was much faster than that of representative trees and palms growing in the same study site, suggesting its fast sap flow and stomatal responses to changes in ambient environmental factors. The Fd in the lower and higher culm positions started to increase at the same time in the morning, but the Fd in the higher culm position was higher than that of the lower culm in the afternoon. Consistently, distinct decreases in its culm circumference in the afternoon were detected. Therefore, unlike trees, water storage of bamboo culms was not used for its transpiration in the morning but in the afternoon. Nocturnal sap flow of this woody bamboo was also detected and related to root pressure. We conclude that this bamboo has fast sap flow/stomatal responses to irradiance and evaporative demands, and it uses substantial water storage for transpiration in the afternoon, while root pressure appears to be a mechanism resulting in culm water storage recharge during the night.

  3. Effects of high NH+4 on K+ uptake, culm mechanical strength and grain filling in wheat

    PubMed Central

    Kong, Lingan; Sun, Mingze; Wang, Fahong; Liu, Jia; Feng, Bo; Si, Jisheng; Zhang, Bin; Li, Shengdong; Li, Huawei

    2014-01-01

    It is well established that a high external NH+4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH+4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m−2) and high (30 g N m−2) supplies of NH+4 in the presence or absence of additional K+ (6 g K2O m−2) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH+4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH+4. The additional provision of K+ considerably alleviated these negative effects of high NH+4, resulting in a 19.41–26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH+4. This study indicates that the effects of high NH+4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat. PMID:25566278

  4. Identification of genes involved in color variation of bamboo culms by suppression subtractive hybridization.

    PubMed

    Xia, Xiangwan; Gui, Renyi; Yang, Haiyun; Fu, Ying; Wei, Fang; Zhou, Mingbing

    2015-12-01

    Phyllostachys vivax cv. aureocaulis is a widely planted ornamental bamboo with evergreen leaves. This plant's culm exhibits a golden-yellow background color marked randomly with narrow and broad green stripes but is occasionally light green with yellow stripes. In this study, we attempt to identify the molecular mechanism underlying the color variation in striped culms. We found that neither stroma nor grana lamellas were observed in plastids in yellow tissue cells, while complete chloroplasts were observed in green tissue. In addition, chlorophyll a and b were mainly distributed in ground tissue under the epiderm and in the cells surrounding the bundle sheath in the green portion of internodes. The amount of chlorophyll contained in cross-sections of the green portion of culms is significantly higher than in the yellow portion. However, carotenoid was nearly undetectable in both samples. In addition, we found that the expression levels of 7 ESTs, including PvESTs-F641 (JZ893845), PvESTs-F681 (JZ893885) and PvESTs-F798 (JZ894002), were significantly higher in green samples than that in yellow samples, while PvESTs-R200 (JZ894906), PvESTs-R541 (JZ895247), PvESTs-R333 (JZ895039) and PvESTs-R266 (JZ894972) were found at a higher level in yellow samples. These ESTs are thought to play a role in this color variation in plants. Our current results indicate that insufficient photosynthetic membrane proteins and lipids in yellow tissue could lead to chloroplast dysfunction and could result in the yellow appearance on certain P. vivax cv. aureocaulis culms.

  5. Dynamic failure in brittle solids

    SciTech Connect

    Grady, D.E.

    1994-04-01

    Failure of brittle solids within the extremes of the shock loading environment is not well understood. Recent shock-wave data on compression shear failure and tensile spall failure for selected high-strength ceramics are presented and used to examine the mechanisms of dynamic failure. Energy-based theories are used to bound the measured strength properties. A new concept of failure waves in brittle solids is explored in light of the kinetic processes of high-rate fracture. Classical failure criteria are compared with the present base of dynamic strength data on ceramics.

  6. Mechanical alloying of brittle materials

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; McDermott, B.; Koch, C. C.

    1988-12-01

    Mechanical alloying by high energy ball milling has been observed in systems with nominally brittle components. The phases formed by mechanical alloying of brittle components include solid solutions (Si + Ge → SiGe solid solution), intermetallic compounds (Mn + Bi → MnBi), and amorphous alloys (NiZr2 + Ni11Zr9 → amorphous Ni50Zr50). A key feature of possible mechanisms for mechanical alloying of brittle components is the temperature of the powders during milling. Experiments and a computer model of the kinetics of mechanical alloying were carried out in order to esti-mate the temperature effect. Temperature rises in typical powder alloys during milling in a SPEX mill were estimated to be ≤350 K using the kinetic parameters determined from the computer model. The tempering response of fresh martensite in an Fe-1.2 wt pct C alloy during milling was consistent with the maximum results of the computer model, yielding temperatures in the pow-ders of ≤575 K i.e., ΔT ≤ 300 K). Thermal activation was required for mechanical alloying of Si and Ge powder. No alloying occurred when the milling vial was cooled by liquid nitrogen. The pos-sible mechanisms responsible for material transfer during mechanical alloying of brittle components are considered.

  7. Soft matter: Brittle for breakfast

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas

    2015-10-01

    Crushing a brittle porous medium such as a box of cereal causes the grains to break up and rearrange themselves. A lattice spring model based on simple physical assumptions gives rise to behaviours that are complex enough to reproduce diverse compaction patterns.

  8. Ultrastructure of Fibre and Parenchyma Cell Walls During Early Stages of Culm Development in Dendrocalamus asper

    PubMed Central

    GRITSCH, CRISTINA SANCHIS; MURPHY, RICHARD J.

    2005-01-01

    • Background and Aims The anatomy of bamboo culms and the multilayered structure of fibre cell walls are known to be the main determinant factors for its physical and mechanical properties. Studies on the bamboo cell wall have focussed mainly on fully elongated and mature fibres. The main aim of this study was to describe the ultrastructure of primary and secondary cell walls in culm tissues of Dendrocalamus asper at different stages of development. • Methods The development of fibre and parenchyma tissues was classified into four stages based on light microscopy observations made in tissues from juvenile plants. The stages were used as a basis for transmission electron microscopy study on the ultrastructure of the cell wall during the process of primary and early secondary cell wall formation. Macerations and phloroglucinol–HCl staining were employed to investigate fibre cell elongation and fibre cell wall lignification, respectively. • Key Results The observations indicated that the primary wall is formed by the deposition of two distinct layers during the elongation of the internode and that secondary wall synthesis may begin before the complete cessation of internode and fibre elongation. Elongation was followed by a maturation phase characterized by the deposition of multiple secondary wall layers, which varied in number according to the cell type, location in the culm tissue and stage of shoot development. Lignification of fibre cell walls started at the period prior to the cessation of internode elongation. • Conclusions The structure of the primary cell wall was comprised of two layers. The fibre secondary cell wall began to be laid down while the cells were still undergoing some elongation, suggesting that it may act to cause the slow-down and eventual cessation of cell elongation. PMID:15665037

  9. Statistical models of brittle fragmentation

    NASA Astrophysics Data System (ADS)

    Åström, J. A.

    2006-06-01

    Recent developments in statistical models for fragmentation of brittle material are reviewed. The generic objective of these models is understanding the origin of the fragment size distributions (FSDs) that result from fracturing brittle material. Brittle fragmentation can be divided into two categories: (1) Instantaneous fragmentation for which breakup generations are not distinguishable and (2) continuous fragmentation for which generations of chronological fragment breakups can be identified. This categorization becomes obvious in mining industry applications where instantaneous fragmentation refers to blasting of rock and continuous fragmentation to the consequent crushing and grinding of the blasted rock fragments. A model of unstable cracks and crack-branch merging contains both of the FSDs usually related to instantaneous fragmentation: the scale invariant FSD with the power exponent (2-1/D) and the double exponential FSD which relates to Poisson process fragmentation. The FSDs commonly related to continuous fragmentation are: the lognormal FSD originating from uncorrelated breakup and the power-law FSD which can be modeled as a cascade of breakups. Various solutions to the generic rate equation of continuous fragmentation are briefly listed. Simulations of crushing experiments reveal that both cascade and uncorrelated fragmentations are possible, but that also a mechanism of maximizing packing density related to Apollonian packing may be relevant for slow compressive crushing.

  10. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.

    PubMed

    Xiong, Guangyan; Li, Rui; Qian, Qian; Song, Xueqin; Liu, Xiangling; Yu, Yanchun; Zeng, Dali; Wan, Jianmin; Li, Jiayang; Zhou, Yihua

    2010-10-01

    Membrane trafficking between the plasma membrane (PM) and intracellular compartments is an important process that regulates the deposition and metabolism of cell wall polysaccharides. Dynamin-related proteins (DRPs), which function in membrane tubulation and vesiculation are closely associated with cell wall biogenesis. However, the molecular mechanisms by which DRPs participate in cell wall formation are poorly understood. Here, we report the functional characterization of Brittle Culm3 (BC3), a gene encoding OsDRP2B. Consistent with the expression of BC3 in mechanical tissues, the bc3 mutation reduces mechanical strength, which results from decreased cellulose content and altered secondary wall structure. OsDRP2B, one of three members of the DRP2 subfamily in rice (Oryza sativa L.), was identified as an authentic membrane-associated dynamin via in vitro biochemical analyses. Subcellular localization of fluorescence-tagged OsDRP2B and several compartment markers in protoplast cells showed that this protein not only lies at the PM and the clathrin-mediated vesicles, but also is targeted to the trans-Golgi network (TGN). An FM4-64 uptake assay in transgenic plants that express green fluorescent protein-tagged OsDRP2B verified its involvement in an endocytic pathway. BC3 mutation and overexpression altered the abundance of cellulose synthase catalytic subunit 4 (OsCESA4) in the PM and in the endomembrane systems. All of these findings lead us to conclude that OsDRP2B participates in the endocytic pathway, probably as well as in post-Golgi membrane trafficking. Mutation of OsDRP2B disturbs the membrane trafficking that is essential for normal cellulose biosynthesis of the secondary cell wall, thereby leading to inferior mechanical properties in rice plants.

  11. Evaluation of the brittleness of the rocks using various brittleness indices

    NASA Astrophysics Data System (ADS)

    Cheon, Dae-Sung; Jung, Yong-Bok; Park, Chan; Park, Eui-Seob

    2015-04-01

    In general, the rock has the feature of drastically reduced bearing capacity during the small strain by the brittle characteristic. Because brittleness is considered as both of inherent property and behavior of materials, various brittleness indices have been proposed and based on these the brittleness degrees of the rock are determined. The brittleness indices are used for evaluating the stability of brittle failure in deep mines or underground excavations, drillability evaluation in the well drilling field, sawability evaluation in the building stone field and others. In recent years there has been utilized as a descriptor of the hydraulic fracturing in shale gas and enhanced geothermal system. In this paper, we estimated the brittleness index of different types of rocks using various brittleness indices proposed by previous researchers and investigated their relationship and applicability. The commonly used brittleness index in Rock Mechanics is the ratio between uniaxial compressive strength and tensile strength. In Reservior Geomechanics, the indices using dynamic elastic modulus and Poisson's ratio calculated from well logging data are generally used. In higher brittleness or brittleness index, the rock shows the following characteristics; low values of elongation of grains, fracture failure, formation of fines and debris, a higher ratio of compressive to tensile strength, higher resilience, higher internal friction angle, formation of cracks in indentation, easy to fracture etc.. The brittleness index showed relatively good relations with rock intrinsic properties such as uniaxial compressive strength, elastic modulus and fracture toughness in particular rock types. The correlation among brittleness index using geophysical logging data was shown. However, it was difficult to find a relationship of the brittleness indices between uses in traditional Rock Mechanics and Reservoir Geomechanics. Since some brittleness indices have no special meaning, a careful

  12. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner

    PubMed Central

    Wendt, Toni; Holme, Inger; Dockter, Christoph; Preuß, Aileen; Thomas, William; Waugh, Robbie; Braumann, Ilka

    2016-01-01

    Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv.) Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield. PMID:28005988

  13. Computational brittle fracture using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-10-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.

  14. Morphological Study of the Relationships between Weedy Rice Accessions (Oryza sativa Complex) and Commercial Rice Varieties in Pulau Pinang Rice Granary Area

    PubMed Central

    Hussain, Zainudin PMD; Man, Azmi; Othman, Ahmad Sofiman

    2010-01-01

    Weedy rice (WR) is found in many direct-seeded rice fields. WR possesses morphological characteristics that are similar to cultivated rice varieties in the early stage of growth, making them more difficult to control than other weeds. A comparative morphological study was conducted by collecting WR accessions from four sites within the Pulau Pinang rice growing areas. The objective of the study was to characterise WR accessions of the Pulau Pinang rice granary by comparing their morphological characteristics to those of commercially grown rice in the area. Their morphometric relations were established by comparing 17 morphological characteristics of the WR accessions and the commercial varieties. A total of 36 WR morphotypes were identified from these 4 sites based on 17 characteristics, which included grain shattering habit and germination rate. The Principal Component Analysis (PCA) showed that 45.88% of the variation observed among the WR accessions and commercial varieties were within the first 3 axes. PB6, PP2 and SGA5 WR accessions had a higher number of tillers and longer panicle lengths, culm heights and leaf lengths compared to the commercial rice. The grain sizes of the commercial varieties were slightly longer, and the chlorophyll contents at 60–70 days after sowing (DAS) were higher than those of the WR accessions. Results from this study are useful for predicting potential WR accession growth, which might improve WR management and agriculture practices that control WR in the future. PMID:24575197

  15. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  16. Fracturing and brittleness index analyses of shales

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable

  17. Structure and biomechanics of culms of Phragmites australis used for reeds of Japanese wind instrument "hichiriki".

    PubMed

    Kawasaki, Masahiro; Nobuchi, Tadashi; Nakafushi, Yuta; Nose, Masateru; Shiojiri, Makoto

    2015-04-01

    Hichiriki is a traditional Japanese double-reed wind instrument used in Japanese ancient imperial court music, gagaku, which has been performed since the 7th century. The best reeds for hichiriki have been made of culms or stems of Phragmites australis (P. australis) that are harvested from only a limited reed bed at Udono near Kyoto. The aim of this study is to elucidate why the stems from Udono are the best materials for hichiriki reeds. Plant anatomy was examined for choice stems of P. australis grown in different reed beds in Japan as well as morphology, and the local indentation hardness and Young's modulus of tissues on the cross-sections of some representatives of hichiriki reeds were measured. It is concluded that the good stems for hichiriki reeds have an outer diameter of about 11 mm, a wall thickness of about 1 mm and comparatively homogeneous structure where harder materials, such as epidermis, hypodermis, sclerenchymatous cells, and vascular bundle sheaths with hard walls, are orderly deployed with softer materials such as parenchyma cells and vascular bundles. This structure has smaller differences of hardness and Young's modulus between the hard and soft materials in the reed, providing the best music performance.

  18. Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels.

    PubMed

    Nguyen, Hong Phuong; Jeong, Ho Young; Jeon, Seung Ho; Kim, Donghyuk; Lee, Chanhui

    2017-01-01

    Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues.

  19. Brittle cornea, blue sclera, and red hair syndrome (the brittle cornea syndrome).

    PubMed Central

    Ticho, U; Ivry, M; Merin, S

    1980-01-01

    A syndrome of red hair, blue sclera, and brittle cornea with recurrent spontaneous perforations is presented in 2 siblings of a Tunisian Jewish family. The genetic transmission of this disorder is autosomal recessive. This is the second description of this syndrome, which should be called the 'brittle cornea syndrome'. This syndrome has so far been reported only in Tunisian Jewish families. Images PMID:7387950

  20. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  1. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  2. Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass

    SciTech Connect

    Wang, G.; Han, Y. N.; Han, B. S.; Wang, W. H.; Xu, X. H.; Ke, F. J.

    2008-05-01

    We report an unusual transition from a locally ductile to a pure brittle fracture in the dynamic fracture of brittle Mg{sub 65}Cu{sub 20}Gd{sub 10} bulk metallic glass. The fractographic evolution from a dimple structure to a periodic corrugation pattern and then to the mirror zone along the crack propagation direction during the dynamic fracture process is discussed within the framework of the meniscus instability of the fracture process zone. This work might provide an important clue in understanding of the energy dissipation mechanism for dynamic crack propagation in brittle glassy materials.

  3. Brittle Books Programs. SPEC Kit 152.

    ERIC Educational Resources Information Center

    Merrill-Oldham, Jan; Walker, Gay

    This document focuses on the evaluation, bibliographic searching, replacement, preservation photocopying, and microfilming of library materials that are too brittle to handle without risking damage. To assess these activities, a SPEC (Systems and Procedures Exchange Center) survey was sent to members of the Association of Research Libraries (ARL),…

  4. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  5. The gradient deformation criterion for brittle fracture

    NASA Astrophysics Data System (ADS)

    Kuliev, V. D.; Morozov, E. M.

    2016-10-01

    A new fracture criterion based on the assumption that brittle fracture occurs when the strain gradient reaches its limiting value is formulated. The presence of a strain gradient at the boundary of a body's temperature drop is shown analytically. The results of an experiment with specimens under an abrupt change in temperature are presented.

  6. Guadua zuloagae sp. nov., the First Petrified Bamboo Culm Record from the Ituzaingó Formation (Pliocene), Paraná Basin, Argentina

    PubMed Central

    Brea, Mariana; Zucol, Alejandro F.

    2007-01-01

    Background and Aims The anatomical characterization and morphology of Guadua zuloagae nov. sp. (Poaceae–Bambusoideae) culm was determined. This material was collected at the Toma Vieja fossil locality, Paraná basin, Argentina. This fossil culm is the first record of Bambusoideae in sediments of the Pliocene from the Ituzaingó Formation. The studied specimen was compared with the taxa of the Bambusoideae sub-family, especially with the American woody bamboos and others taxa that have woody culms, including Arundo, Thysalonaena and Gynerium. Methods The material was preserved by siliceous cellular permineralization, and it was prepared for microscopic examination by surface polishing and thin sections. The morphology and anatomy of this new species were described. The estimated height, critical buckling height and safety factor were calculated on the basis of the fossil bamboo diameter using the formula of Niklas. The relationship and comparison with the nearest living relatives (NLRs) are discussed. Key Results Well-preserved petrified culm with internodes and nodes from the Pliocene of Argentina provides the basis for the description of a new fossil bamboo, Guadua zuloagae. The results of the anatomical analysis of the fossil bamboo showed a great affinity with the extant species Guadua angustifolia and constitute the first evidence of petrified bamboo culm. Conclusions The new fossil bamboo culm constitutes the only fossil record, preserved as permineralized by silicification, in the world. This fossil record indicates that the genus Guadua was more widespread in the past than today. Discovery of G. zuloagae allows the presence of a Bambusoideae understorey in the mixed forests described for the Ituzaingó Formation to be inferred. The climatic conditions inferred from fossil bamboo and sedimentary deposits indicate a temperate-warm, humid climate. PMID:17728337

  7. Johanna and Tommy: Two Preschoolers in Sweden with Brittle Bones.

    ERIC Educational Resources Information Center

    Millde, Kristina; Brodin, Jane

    Information is presented for caregivers of Swedish children with osteogenesis imperfecta (brittle bones) and their families. Approximately five children with brittle bones are born in Sweden annually. Two main types of brittle bone disease have been identified: congenita and tarda. Typical symptoms include numerous and unexpected fractures, bluish…

  8. Fracture in compression of brittle solids

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The fracture of brittle solids in monotonic compression is reviewed from both the mechanistic and phenomenological points of view. The fundamental theoretical developments based on the extension of pre-existing cracks in general multiaxial stress fields are recognized as explaining extrinsic behavior where a single crack is responsible for the final failure. In contrast, shear faulting in compression is recognized to be the result of an evolutionary localization process involving en echelon action of cracks and is termed intrinsic.

  9. Micromechanics of brittle creep in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-08-01

    In the upper crust, the chemical influence of pore water promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses well below their short-term failure strength, and even at constant applied stress (“brittle creep”). Here we provide a micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990), and the crack length evolution is computed from Charles' law. The macroscopic strains and strain rates computed from the model are non linear, and compare well with experimental results obtained on granite, low porosity sandstone and basalt rock samples. Primary creep (decelerating strain) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as an inflexion between those two end-member phases. The minimum strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature, which provides an approximate creep law for the process. The creep law is used to infer the long term strain rate as a function of depth in the upper crust due to the action of the applied stresses: in this way, sub-critical cracking reduces the failure stress in a manner equivalent to a decrease in cohesion. We also investigate the competition with pressure solution in porous rocks, and show that the transition from sub

  10. Fabrication of brittle materials -- current status

    SciTech Connect

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  11. Optimization of regimes for the feed of highly concentrated culm-anthracite coal dust for burning in a TPP-210A boiler

    SciTech Connect

    L.V. Golyshev; G.A. Dovgoteles

    2007-05-15

    Results are presented for regime adjustment of feed systems for a TPP-210A boiler for the burning of highly concentrated culm-anthracite coal dust. As compared with nonoptimal regimes, optimal regimes of high-concentration-feed systems improve the economy of the boiler by 1.7% on average.

  12. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  13. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  14. Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Regnet, J. B.; Dimanov, A.; Guéguen, Y.

    2016-07-01

    Inelastic deformation can either occur with dilatancy or compaction, implying differences in porosity changes, failure and petrophysical properties. In this study, the roles of water as a pore fluid, and of temperature, on the deformation and failure of a micritic limestone (white Tavel limestone, porosity 14.7 per cent) were investigated under triaxial stresses. For each sample, a hydrostatic load was applied up to the desired confining pressure (from 0 up to 85 MPa) at either room temperature or at 70 °C. Two pore fluid conditions were investigated at room temperature: dry and water saturated. The samples were deformed up to failure at a constant strain rate of ˜10-5 s-1. The experiments were coupled with ultrasonic wave velocity surveys to monitor crack densities. The linear trend between the axial crack density and the relative volumetric strain beyond the onset of dilatancy suggests that cracks propagate at constant aspect ratio. The decrease of ultrasonic wave velocities beyond the onset of inelastic compaction in the semi-brittle regime indicates the ongoing interplay of shear-enhanced compaction and crack development. Water has a weakening effect on the onset of dilatancy in the brittle regime, but no measurable influence on the peak strength. Temperature lowers the confining pressure at which the brittle-semi-brittle transition is observed but does not change the stress states at the onset of inelastic compaction and at the post-yield onset of dilatancy.

  15. Brittle superconducting magnets: an equivilent strain model

    SciTech Connect

    Barzi, E.; Danuso, M.

    2010-08-01

    To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb{sub 3}Sn and Nb{sub 3}Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb{sub 3}Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.

  16. Phase field approximation of dynamic brittle fracture

    NASA Astrophysics Data System (ADS)

    Schlüter, Alexander; Willenbücher, Adrian; Kuhn, Charlotte; Müller, Ralf

    2014-11-01

    Numerical methods that are able to predict the failure of technical structures due to fracture are important in many engineering applications. One of these approaches, the so-called phase field method, represents cracks by means of an additional continuous field variable. This strategy avoids some of the main drawbacks of a sharp interface description of cracks. For example, it is not necessary to track or model crack faces explicitly, which allows a simple algorithmic treatment. The phase field model for brittle fracture presented in Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) assumes quasi-static loading conditions. However dynamic effects have a great impact on the crack growth in many practical applications. Therefore this investigation presents an extension of the quasi-static phase field model for fracture from Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) to the dynamic case. First of all Hamilton's principle is applied to derive a coupled set of Euler-Lagrange equations that govern the mechanical behaviour of the body as well as the crack growth. Subsequently the model is implemented in a finite element scheme which allows to solve several test problems numerically. The numerical examples illustrate the capabilities of the developed approach to dynamic fracture in brittle materials.

  17. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    DTIC Science & Technology

    2014-10-01

    A Geometrically Nonlinear Phase Field Theory of Brittle Fracture by JD Clayton and J Knap ARL-RP-0511 October 2014...21005-5069 ARL-RP-0511 October 2014 A Geometrically Nonlinear Phase Field Theory of Brittle Fracture JD Clayton and J Knap Weapons and...Nonlinear Phase Field Theory of Brittle Fracture 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) JD Clayton

  18. NONDESTRUCTIVE ANALYSIS OF THE BRITTLE FRACTURE BEHAVIOR OF CERAMIC MATERIALS

    DTIC Science & Technology

    CERAMIC MATERIALS , *NONDESTRUCTIVE TESTING, BRITTLENESS, DIELECTRIC PROPERTIES, DIFFUSION, ELASTIC PROPERTIES, FRACTURE (MECHANICS), IMPURITIES, MECHANICAL PROPERTIES, RESONANCE, STRESSES, THERMAL DIFFUSION, THERMAL STRESSES

  19. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice

    PubMed Central

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-01-01

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs. PMID:27465821

  20. Fluid-driven fractures in brittle hydrogels

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Niall; Linden, Paul

    2016-11-01

    Hydraulic fracturing is a process in which fluid is injected deep underground at high pressures that can overcome the strength of the surrounding matrix. This results in an increase of surface area connected to the well bore and thus allows extraction of natural gas previously trapped in a rock formation. We experimentally study the physical mechanisms of these fluid-driven fractures in low permeability reservoirs where the leak-off of fracturing fluid is considered negligible. This is done through the use of small scale experiments on transparent and brittle, heavily cross-linked hydrogels. The propagation of these fractures can be split into two distinct regimes depending on whether the dominant energy dissipation mechanism is viscous flow or material toughness. We will analyse crack growth rates, crack thickness and tip shape in both regimes. Moreover, PIV techniques allow us to explore the flow dynamics within the fracture, which is crucial in predicting transport of proppants designed to prevent localisation of cracks.

  1. Brittle to ductile transition in cleavage fracture

    SciTech Connect

    Argon, A.S.; Berg, Q.

    1992-09-30

    The problem of interpretation of fracture transition from brittle to ductile or vice versa is the subject of study. An instrumented tapered double cantilever beam (TDCB) has been developed as a definitive tool in the study of the intrinsic mechanism in single crystalline samples. In this experiment, the crack velocity is directly proportional to actuator velocity. In experiments performed on TDCB shaped Si single crystals, oriented for cleavage on either [l brace]111[r brace] or [l brace]110[r brace] planes, a number of troubling features of jerky carck extension were encountered. Evidence suggests that nucleation of dislocation loops from crack tip is easier than moving these dislocations away from crack tip. 14 refs, 1 fig.

  2. Isotropic MD simulations of dynamic brittle fracture

    SciTech Connect

    Espanol, P.; Rubio, M.A.; Zuniga, I.

    1996-12-01

    The authors present results obtained by molecular dynamics simulations on the propagation of fast cracks in triangular 2D lattices. Their aim is to simulate Mode 1 fracture of brittle isotropic materials. They propose a force law that respects the isotropy of the material. The code yields the correct imposed sound c{sub {parallel}}, shear c{sub {perpendicular}} and surface V{sub R} wave speeds. Different notch lengths are systematically studied. They observed that initially the cracks are linear and always branch at a particular critical velocity c* {approx} 0.8V{sub R} and that this occurs when the crack tip reaches the position of a front emitted from the initial crack tip and propagating at a speed c = 0.68V{sub R}.

  3. A probabilistic model of brittle crack formation

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Kunin, B.

    1987-01-01

    Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.

  4. Brittle dynamic damage due to earthquake rupture

    NASA Astrophysics Data System (ADS)

    Bhat, Harsha; Thomas, Marion

    2016-04-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over wide range of strain rates. We then implement this constitutive response to understand the role of dynamic brittle off-fault damage on earthquake ruptures. We show that off-fault damage plays an important role in asymmetry of rupture propagation and is a source of high-frequency ground motion in the near source region.

  5. Benchmarking numerical models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  6. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice.

    PubMed

    Wang, Dekai; Liu, Heqin; Li, Sujuan; Zhai, Guowei; Shao, Jianfeng; Tao, Yuezhi

    2015-09-01

    Serine hydroxymethyltransferase (SHMT) is important for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development, and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, OsSHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller, lethal phenotype under natural ambient CO2 concentrations, but could be restored to wild type with normal growth under elevated CO2 levels (0.5% CO2 ), showing a typical photorespiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to significant oxidative stress. Also, OsSHM1 was expressed in all organs tested (root, culm, leaf, and young panicle) but predominantly in leaves. OsSHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the OsSHM1 gene is conserved in rice and Arabidopsis.

  7. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  8. Theory of friction based on brittle fracture

    USGS Publications Warehouse

    Byerlee, J.D.

    1967-01-01

    A theory of friction is presented that may be more applicable to geologic materials than the classic Bowden and Tabor theory. In the model, surfaces touch at the peaks of asperities and sliding occurs when the asperities fail by brittle fracture. The coefficient of friction, ??, was calculated from the strength of asperities of certain ideal shapes; for cone-shaped asperities, ?? is about 0.1 and for wedge-shaped asperities, ?? is about 0.15. For actual situations which seem close to the ideal model, observed ?? was found to be very close to 0.1, even for materials such as quartz and calcite with widely differing strengths. If surface forces are present, the theory predicts that ?? should decrease with load and that it should be higher in a vacuum than in air. In the presence of a fluid film between sliding surfaces, ?? should depend on the area of the surfaces in contact. Both effects are observed. The character of wear particles produced during sliding and the way in which ?? depends on normal load, roughness, and environment lend further support to the model of friction presented here. ?? 1967 The American Institute of Physics.

  9. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  10. ON THE BRITTLENESS OF ENAMEL AND SELECTED DENTAL MATERIALS

    PubMed Central

    Park, S.; Quinn, J. B; Romberg, E.; Arola, D.

    2008-01-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of “brittleness” is currently not used in assessing the clinical merits of dental materials. Objective To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Methods Specimens of human enamel were prepared from the 3rd molars of “young” (18≤age≤25) and “old” (50≤age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and Micaceous Glass Ceramic (MGC) dental materials was estimated and compared with that of the enamel. Results The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 µm−1 at the DEJ to nearly 900 µm−1 at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to 4 times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. Significance The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel. PMID:18436299

  11. Benchmarking analogue models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  12. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data.

    PubMed Central

    Rohwer, J M; Botha, F C

    2001-01-01

    Sucrose accumulation in developing sugar cane (Saccharum officinarum) is accompanied by a continuous synthesis and cleavage of sucrose in the storage tissues. Despite numerous studies, the factors affecting sucrose accumulation are still poorly understood, and no consistent pattern has emerged which pinpoints certain enzyme activities as important controlling steps. Here, we develop an approach based on pathway analysis and kinetic modelling to assess the biochemical control of sucrose accumulation and futile cycling in sugar cane. By using the concept of elementary flux modes, all possible routes of futile cycling of sucrose were enumerated in the metabolic system. The available kinetic data for the pathway enzymes were then collected and assembled in a kinetic model of sucrose accumulation in sugar cane culm tissue. Although no data were fitted, the model agreed well with independent experimental results: in no case was the difference between calculated and measured fluxes and concentrations greater than 2-fold. The model thus validated was then used to assess different enhancement strategies for increasing sucrose accumulation. First, the control coefficient of each enzyme in the system on futile cycling of sucrose was calculated. Secondly, the activities of those enzymes with the numerically largest control coefficients were varied over a 5-fold range to determine the effect on the degree of futile cycling, the conversion efficiency from hexoses into sucrose, and the net sucrose accumulation rate. In view of the modelling results, overexpression of the fructose or glucose transporter or the vacuolar sucrose import protein, as well as reduction of cytosolic neutral invertase levels, appear to be the most promising targets for genetic manipulation. This offers a more directed improvement strategy than cumbersome gene-by-gene manipulation. The kinetic model can be viewed and interrogated on the World Wide Web at http://jjj.biochem.sun.ac.za. PMID:11513743

  13. Ultrasonic Apparatus for Pulverizing Brittle Material

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Bar-Cohen, Yoseph; Dolgin, Benjamin; Chang, Zensheu

    2004-01-01

    The figure depicts an apparatus that pulverizes brittle material by means of a combination of ultrasonic and sonic vibration, hammering, and abrasion. The basic design of the apparatus could be specialized to be a portable version for use by a geologist in collecting powdered rock samples for analysis in the field or in a laboratory. Alternatively, a larger benchtop version could be designed for milling and mixing of precursor powders for such purposes as synthesis of ceramic and other polycrystalline materials or preparing powder samples for x-ray diffraction or x-ray fluorescence measurements to determine crystalline structures and compositions. Among the most attractive characteristics of this apparatus are its light weight and the ability to function without need for a large preload or a large power supply: It has been estimated that a portable version could have a mass <0.5 kg, would consume less than 1 W h of energy in milling a 1-cm3 volume of rock, and could operate at a preload <10 N. The basic design and principle of operation of this apparatus are similar to those of other apparatuses described in a series of prior NASA Tech Briefs articles, the two most relevant being Ultrasonic/ Sonic Drill/Corers With Integrated Sensors (NPO-20856), Vol. 25, No. 1 (January 2001), page 38 and Ultrasonic/ Sonic Mechanisms for Deep Drilling and Coring (NPO-30291), Vol. 27, No. 9 (September 2003), page 65. As before, vibrations are excited by means of a piezoelectric actuator, an ultrasonic horn, and a mass that is free to move axially over a limited range. As before, the ultrasonic harmonic motion of the horn drives the free-mass in a combination of ultrasonic harmonic and lower-frequency hammering motion. In this case, the free-mass is confined within a hollow cylinder that serves as a crushing chamber, and the free-mass serves as a crushing or milling tool. The hammering of the free-mass against a material sample at the lower end of the chamber grinds the sample into

  14. Genome-wide identification and expression analysis of rice pectin methylesterases: Implication of functional roles of pectin modification in rice physiology.

    PubMed

    Jeong, Ho Young; Nguyen, Hong Phuong; Lee, Chanhui

    2015-07-01

    Pectin, which is enriched in primary cell walls and middle lamellae, is an essential polysaccharide in all higher plants. Homogalacturonans (HGA), a major form of pectin, are synthesized and methylesterified by enzymes localized in the Golgi apparatus and transported into the cell wall. Depending on cell type, the degree and pattern of pectin methylesterification are strictly regulated by cell wall-localized pectin methylesterases (PMEs). Despite its importance in plant development and growth, little is known about the physiological functions of pectin in rice, which contains 43 different types of PME. The presence of pectin in rice cell walls has been substantiated by uronic acid quantification and immunodetection of JIM7 monoclonal antibodies. We performed PME activity assays with cell wall proteins isolated from different rice tissues. In accordance with data from Arabidopsis, the highest activity was observed in germinating tissues, young culm, and spikelets, where cells are actively elongating. Transcriptional profiling of OsPMEs by real-time PCR and meta-analysis indicates that PMEs exhibit spatial- and stress-specific expression patterns during rice development. Based on in silico analysis, we identified subcellular compartments, isoelectric point, and cleavage sites of OsPMEs. Our findings provide an important tool for further studies seeking to unravel the functional importance of pectin modification during plant growth and abiotic and biotic responses of grass plants.

  15. Interview: commercial translation of cell-based therapies and regenerative medicine: learning by experience. Interview by Emily Culme-Seymour.

    PubMed

    Haseltine, William A

    2011-07-01

    Dr Haseltine speaks to Emily Culme-Seymour, Assistant Commissioning Editor William A Haseltine, PhD has an active career in both Science and Business. He was a professor at Harvard Medical School and Harvard School of Public Health (MA, USA) from 1976 to 1993, where he was Founder and Chair of two academic research departments. He is well known for his pioneering work on cancer, HIV/AIDS and genomics. He has authored more than 200 manuscripts in peer-reviewed journals and is the author of several books. He is the founder of Human Genome Sciences, Inc. and served as the Chairman and CEO of the company until 2004. He is also the founder of several other successful biotechnology companies. William Haseltine is currently Chairman and President of ACCESS Health International, Inc., which supports access to affordable, high-quality health services in low, middle and high income countries, and Chairman of the Haseltine Foundation for Science and the Arts, which fosters a dialog between sciences and the arts. He is an Adjunct Professor at the Scripps Institute for Medical Research and the Institute of Chemical Engineering, the University of Mumbai, India. He is a member of the Advisory Board of the IE University, Madrid, the President's Council of the Cold Spring Harbor Laboratory, the Advisory Council for the Koch Institute of MIT, a member of the University Council Committee on technology transfer, Yale University, and is a Lifetime Governor of the New York Academy of Science (NY, USA). He is an honorary member of the Board of Trustees of the Brookings Institution, a member of the Board of Trustees of the Center for Emerging Markets of the Indian School of Business, a member of the Council on Foreign Relations, a member of the Board of AID for AIDS International, and a member of the Chairman's Circle of the Asia Society. He is a member of the Advisory Board of the Metropolitan Opera (NY, USA), the Chairman's Council of the Metropolitan Museum (NY, USA), the International

  16. Brittle and semibrittle creep in a low porosity carbonate rock

    NASA Astrophysics Data System (ADS)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  17. Deconvoluting complex structural histories archived in brittle fault zones

    NASA Astrophysics Data System (ADS)

    Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.

    2016-11-01

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.

  18. Deconvoluting complex structural histories archived in brittle fault zones

    PubMed Central

    Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.

    2016-01-01

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks. PMID:27848957

  19. Deconvoluting complex structural histories archived in brittle fault zones.

    PubMed

    Viola, G; Scheiber, T; Fredin, O; Zwingmann, H; Margreth, A; Knies, J

    2016-11-16

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.

  20. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-peak Strength Parameters in Rock Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-12-01

    Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.

  1. Determination of fractionation of oxygen isotopes between rice grain and environmental water

    NASA Astrophysics Data System (ADS)

    Kaushal, R.; Ghosh, P.

    2013-12-01

    Oxygen isotopic composition (δ18O) of plant organic matter (POM) serves as a valuable proxy for paleoclimatic studies [1].The δ18O of POM emulates the isotopic composition of the source water [2]. Rice crop cultivation goes back to 12,000 years, when rice was first domesticated in China and the earliest cultivation of rice observed in India was during 3000- 2500 BC. Presently rice is cultivated in many countries around the world including India where the prerequisite of saturated soil water condition for optimum growth of rice crop is provided by the South west monsoons. Earlier studies on δ18O of rice have been limited to its geographic characterization [3]. However, detailed investigations to determine fractionation of oxygen isotopes in water, in different parts of a rice plant, with rice seed organic matter is the primary objective of this work. This is important for understanding the mechanism responsible for the transfer of source water signature to the seed organics and can facilitate understanding of past monsoonal regime using well preserved rice grain remains from archaeological sites. Water from the leaves and culms was extracted by means of heating and cryogenic distillation in a vacuum extraction system [4]. The source water and the water extracted from plant parts were analysed by CO2 equilibration method using Gas Bench peripheral. Rice seed powder, after removal of husk, is composed primarily of starch and were analysed using High Temperature Conversion-Elemental Analyser. Both these peripherals were coupled to an Isotope Ratio Mass spectrometer- MAT253 (Thermo Finnigan). Experimental results discussed here were based on greenhouse and field based studies of water and seed organic composition. The water fed to the plant in the green house showed an average δ18O value of -0.50‰ whereas the field water from irrigation covering the time of grain filling ranges between -1.03‰ and -3.08‰. Figure 1 displays the extent of enrichment recorded in

  2. Brittle and ductile friction and the physics of tectonic tremor

    USGS Publications Warehouse

    Daub, E.G.; Shelly, D.R.; Guyer, R.A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place. Copyright ?? 2011 by the American Geophysical Union.

  3. The nature of temper brittleness of high-chromium ferrite

    SciTech Connect

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V.

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  4. On fracture toughness evaluation for semi-brittle fracture

    NASA Technical Reports Server (NTRS)

    Eftis, J.; Liebowitz, H.

    1975-01-01

    The existing methods of assessing the fracture toughness of materials exhibiting semi-brittle fracture are critically reviewed. The methods concern the Crack Growth Resistance (R-curve), the Crack Opening Displacement (COD), and the J-integral. An analysis of the shortcomings of the methods described makes it possible to formulate a new definition of fracture toughness appropriate to semi-brittle fracture. An improved simple experimental method for measuring fracture toughness for semi-brittle fracture is proposed which takes into account both crack growth and plastic nonlinear effects at crack front. The proposed method is shown to be free of the theoretical and experimental discrepancies encountered in the R-curve, COD, and J-integral methods.

  5. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    NASA Astrophysics Data System (ADS)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  6. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    Necessary to the development and understanding of brittle fiber reinforced composites is a means to statistically describe fiber strength and strain-to-failure behavior. A statistical characterization for multicomponent brittle fibers is presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  7. Dimensional effects in dynamic fragmentation of brittle materials

    NASA Astrophysics Data System (ADS)

    Linna, R. P.; Åström, J. A.; Timonen, J.

    2005-07-01

    It has been shown previously that dynamic fragmentation of brittle D -dimensional objects in a D -dimensional space gives rise to a power-law contribution to the fragment-size distribution with a universal scaling exponent 2-1/D . We demonstrate that in fragmentation of two-dimensional brittle objects in three-dimensional space, an additional fragmentation mechanism appears, which causes scale-invariant secondary breaking of existing fragments. Due to this mechanism, the power law in the fragment-size distribution has now a scaling exponent of ˜1.17 .

  8. Finite element model for brittle fracture and fragmentation

    DOE PAGES

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  9. A technique for cutting brittle undisturbed lateritic soil block samples.

    PubMed

    Galvão, T Cássia de Brito; Drnevich, Vincent P; Schulze, Darrell G

    2003-05-01

    This note describes a technique for cutting undisturbed brittle block samples into smaller specimens for further geotechnical testing. This technique revealed very useful in dealing with collapsible soils, where the sampling is recommended to be done with block soil samples. A further use of this technique as an efficient way for sampling collapsible soils is proposed.

  10. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  11. Micromechanics of Brittle Creep Under Triaxial Loading Conditions

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Brantut, N.; Baud, P.; Heap, M. J.

    2011-12-01

    In the upper crust, the chemical influence of pore water promotes time-dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail (i) at stresses far below their short-term failure strength, and (ii) even at constant applied stress ("brittle creep"). Here we provide a micromechanical model and experimental results describing time-dependent brittle creep of water-saturated granite under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of microcracks in compression are derived from the sliding wing-crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' law. The macroscopic strain and strain rates are then computed from the change in energy potential due to microcrack growth. They are non-linear, and compare well with complementary experimental results obtained on granite samples. Primary creep (decelerating strain) corresponds to decreasing crack growth rate , due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as merely an inflexion between the two end-member phases.

  12. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo

    PubMed Central

    2013-01-01

    Background As one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; however, the molecular processes underlying this phenomenon remain unclear. Moso bamboo (Phyllostachys heterocycla cv. Pubescens) internodes from four different developmental stages and three different internodes within the same stage were used in our study to investigate the molecular processes at the transcriptome and post-transcriptome level. Results Our anatomical observations indicated the development of culms was dominated by cell division in the initial stages and by cell elongation in the middle and late stages. The four major endogenous hormones appeared to actively promote culm development. Using next-generation sequencing-based RNA-Seq, mRNA and microRNA expression profiling technology, we produced a transcriptome and post-transcriptome in possession of a large fraction of annotated Moso bamboo genes, and provided a molecular basis underlying the phenomenon of sequentially elongated internodes from the base to the top. Several key pathways such as environmental adaptation, signal transduction, translation, transport and many metabolisms were identified as involved in the rapid elongation of bamboo culms. Conclusions This is the first report on the temporal and spatial transcriptome and gene expression and microRNA profiling in a developing bamboo culms. In addition to gaining more insight into the unique growth characteristics of bamboo, we provide a good case study to analyze gene, microRNA expression and profiling of non-model plant species using high-throughput short-read sequencing. Also, we demonstrate that the integrated analysis of our multi-omics data, including transcriptome, post-transcriptome, proteome, yield more complete representations and additional biological insights, especially the complex dynamic processes occurring in Moso bamboo culms

  13. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  14. Brittle, flowing structures focused on subtle crustal heterogeneities

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Shipton, Z. K.; Lunn, R. J.; Pytharouli, S.; Kirkpatrick, J. D.

    2011-12-01

    Fundamental to the development of groundwater flow models are geological models that accurately account for the spatial distribution and geometrical attributes of fracture systems in three dimensions, at both seismic and sub-seismic resolution. Accurate characterization of fracture populations in crystalline rock is of particular importance, as these are the principal targets for nuclear waste repositories and enhanced geothermal systems. Fracture models are populated using average properties from site specific outcrop and borehole data, geophysical imaging and empirical scaling relationships such as the decrease of fracture density with distance from a fault surface However, host rock heterogeneity is likely to be of equal importance in influencing fracture attributes. Our study focuses on brittle structures associated with a regional NE-SW ductile shear zone in NE Brazil. Detailed field mapping shows two phases of brittle structure overprinting a ductile shear zone: 1) a brittle fault zone, which is largely "sealed" to flow, 2) a later set of open fractures. The earliest brittle fault is 1.4 - 2.6m wide zone of chaotic breccia bound by two sub-vertical fault walls. Extremely indurated breccias branching from the fault core have an orientation consistent with sinistral motion on the fault. The breccia is composed of centimeter to meter scale clasts in a fine-grained matrix. The host rock is intensely fractured by centimeter-scale fractures up to 60 m away from the fault. Veining is predominantly concentrated within 15 meters of the fault wall, and joints beyond this are unmineralised. The latest brittle deformation is represented by meter-scale open discrete fractures and fracture zones, up to 80 meters from the main fault. The fractures are unmineralised suggesting formation at relatively shallow depths. Fracture zones vary from decimeters long en echelon fractures to intensely fractured zones where the host rock is completely fragmented. This final phase of

  15. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  16. Rice ( Oryza) hemoglobins.

    PubMed

    Arredondo-Peter, Raúl; Moran, Jose F; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.

  17. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Rui; Huang, Jian-Ping; Li, Zhen-Chun; Yang, Qin-Yong; Sun, Qi-Xing; Cui, Wei

    2015-03-01

    Brittleness analysis becomes important when looking for sweet spots in tight-oil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.

  18. The Brittle-Ductile Transition - A Self-Consistent Approach.

    NASA Astrophysics Data System (ADS)

    Hobbs, B.; Regenauer-Lieb, K.; Ord, A.; Yuen, D. A.

    2006-12-01

    The brittle-ductile transition (BDT) in the Earth is commonly viewed as a switch between two different constitutive behaviors, plastic and viscous, and is represented in models by various formulations. We show that thermal-mechanical coupling leads to a self consistent view where the BDT emerges naturally within one constitutive framework once a critical temperature is attained. Viscous folding occurs above this temperature and brittle fracturing below. Seismic activity is maximised at the BDT. Orogenesis emerges as a thermal-mechanical decoupling near the BDT during flexing of the lithosphere with the development of "crocodile" -like structures, fold-nappe systems and far-travelled thrust sheets. For quartz- feldspar composite materials this transition lies in a critical range of 500 K to 580 K.

  19. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  20. A partial skeletal proteome of the brittle star Ophiocoma wendtii

    NASA Astrophysics Data System (ADS)

    Seaver, Ryan W.

    The formation of mineralized tissue was critical to the evolution and diversification of metazoans and remains functionally significant in most animal lineages. Of special importance is the protein found occluded within the mineral matrix, which facilitates the process of biomineralization and modulates the final mineral structure. These skeletal matrix proteins have well been described in several species, including the sea urchin Stronglyocentrotus purpuratus, an important model organism. Biomineralization research is limited in other echinoderm classes. This research encompasses the first description of mineral matrix proteins in a member of the echinoderm class Ophiuroidea. This work describes the skeletal matrix proteins of the brittle star Ophiocoma wendtii using bioinformatic and proteomic techniques. General characteristics of matrix protein are described and a number of candidate biomineralization related genes have been identified, cloned, and sequenced. The unique evolutionary and biochemical properties of brittle star skeletal matrix proteins are also described.

  1. Comparing the Bending Stiffness Measurements of Brittle Paper

    NASA Astrophysics Data System (ADS)

    Hall, Andrea; McGath, Molly; McGuiggan, Patricia

    It has been estimated that one third of the paper materials in libraries are too brittle to handle. A typical paper sheet is comprised of semi-rigid cellulose fibers that are more than ten times longer than the sheet thickness and can be considered a two dimensional random fiber network. The main pathways of degradation, acid-catalyzed hydrolysis and oxidation, cause depolymerization of the cellulose chains and breaking of the intrafiber bonds. Conventional mechanical measurements of aged paper are destructive and often too severe to understand the true extent of deterioration. By comparing the roll test, folding endurance tests, tensile tests and stiffness tests of naturally aged papers with varying amounts of brittleness, we intend to show the limits of each test and relate the state of the paper degradation to the mechanical test results. We thank the Andrew W. Mellon Foundation for funding this research.

  2. Reliability-based failure analysis of brittle materials

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Ghosn, Louis J.

    1989-01-01

    The reliability of brittle materials under a generalized state of stress is analyzed using the Batdorf model. The model is modified to include the reduction in shear due to the effect of the compressive stress on the microscopic crack faces. The combined effect of both surface and volume flaws is included. Due to the nature of fracture of brittle materials under compressive loading, the component is modeled as a series system in order to establish bounds on the probability of failure. A computer program was written to determine the probability of failure employing data from a finite element analysis. The analysis showed that for tensile loading a single crack will be the cause of total failure but under compressive loading a series of microscopic cracks must join together to form a dominant crack.

  3. Brittle-viscous deformation, slow slip, and tremor

    NASA Astrophysics Data System (ADS)

    Fagereng, Åke; Hillary, Graeme W. B.; Diener, Johann F. A.

    2014-06-01

    Geophysical observations have illuminated a spectrum of fault slip styles from continuous aseismic sliding to fast earthquake slip. We study exhumed intercalated lenses of oceanic crust and sedimentary rocks, deformed to high shear strains. Deformation was partitioned between fractured, rigid blocks, with lengths of tens to hundreds of meters, and surrounding metapelites characterized by interconnected phyllosilicate networks. Under inferred conditions of low effective stress at temperatures > 500°C, locally and transiently elevated shear strain rate in phyllosilicates deforming by dislocation creep can reach those needed for transient slow slip. Concurrently, increased matrix strain rate likely stimulates brittle failure in rigid lenses. The ubiquitous presence of quartz veins and microfractures within rigid material provides evidence for brittle deformation occurring coincident with viscous shearing flow. We suggest that geophysically observed tremor and slow slip may be a manifestation of strain partitioning, where deformation is accommodated viscously in a matrix enveloping rigid lenses.

  4. Elastic-plastic-brittle transitions and avalanches in disordered media.

    PubMed

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-01-31

    A spring lattice model with the ability to simulate elastic-plastic-brittle transitions in a disordered medium is presented. The model is based on bilinear constitutive law defined at the spring level and power-law-type disorder introduced in the yield and failure limits of the springs. The key parameters of the proposed model effectively control the disorder distribution, significantly affecting the stress-strain response, the damage accumulation process, and the fracture surfaces. The model demonstrates a plastic strain avalanche behavior for perfectly plastic as well as hardening materials with a power-law distribution, in agreement with the experiments and related models. The strength of the model is in its generality and ability to interpolate between elastic-plastic hardening and elastic-brittle transitions.

  5. An electronic criterion for assessing intrinsic brittleness of metallic glasses

    SciTech Connect

    Wang, X. F.; Jones, T. E.; Wu, Y.; Lu, Z. P.; Halas, S.; Durakiewicz, T.; Eberhart, M. E.

    2014-07-14

    Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG’s work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function – the surface dipole – and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs.

  6. An electronic criterion for assessing intrinsic brittleness of metallic glasses.

    PubMed

    Wang, X F; Jones, T E; Wu, Y; Lu, Z P; Halas, S; Durakiewicz, T; Eberhart, M E

    2014-07-14

    Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG's work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function - the surface dipole - and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs.

  7. Dynamic patterns of compaction in brittle porous media

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdes, Julio R.; Einav, Itai

    2015-10-01

    Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks, foams, cereal packs and snow. We have recently found moving compaction bands in cereal packs; similar bands have been detected in snow. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.

  8. Brittle Dyskinesia Following STN but not GPi Deep Brain Stimulation

    PubMed Central

    Sriram, Ashok; Foote, Kelly D.; Oyama, Genko; Kwak, Joshua; Zeilman, Pam R.; Okun, Michael S.

    2014-01-01

    Background The aim was to describe the prevalence and characteristics of difficult to manage dyskinesia associated with subthalamic nucleus (STN) deep brain stimulation (DBS). A small subset of STN DBS patients experience troublesome dyskinesia despite optimal programming and medication adjustments. This group of patients has been referred to by some practitioners as brittle STN DBS-induced dyskinesia, drawing on comparisons with brittle diabetics experiencing severe blood sugar regulation issues and on a single description by McLellan in 1982. We sought to describe, and also to investigate how often the “brittle” phenomenon occurs in a relatively large DBS practice. Methods An Institutional Review Board-approved patient database was reviewed, and all STN and globus pallidus internus (GPi) DBS patients who had surgery at the University of Florida from July 2002 to July 2012 were extracted for analysis. Results There were 179 total STN DBS patients and, of those, four STN DBS (2.2%) cases were identified as having dyskinesia that could not be managed without the induction of an “off state,” or by the precipitation of a severe dyskinesia despite vigorous stimulation and medication adjustments. Of 75 GPi DBS cases reviewed, none (0%) was identified as having brittle dyskinesia. One STN DBS patient was successfully rescued by bilateral GPi DBS. Discussion Understanding the potential risk factors for postoperative troublesome and brittle dyskinesia may have an impact on the initial surgical target selection (STN vs. GPI) in DBS therapy. Rescue GPi DBS therapy may be a viable treatment option, though more cases will be required to verify this observation. PMID:24932426

  9. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  10. Curacin E from the Brittle Star Ophiocoma scolopendrina.

    PubMed

    Ueoka, Reiko; Hitora, Yuki; Ito, Akihiro; Yoshida, Minoru; Okada, Shigeru; Takada, Kentaro; Matsunaga, Shigeki

    2016-10-28

    Bioassay-guided fractionation of the extract of the brittle star Ophiocoma scolopendrina afforded curacin E (1), a congener of curacin A (2). Curacin A (2) is an antimitotic agent of cyanobacterial origin. The structure of curacin E was studied by interpretation of NMR data and the ECD spectrum. Curacin E has an ethylcarbonyl terminus in its side chain and inhibits the proliferation of P388 cells.

  11. Rate-dependent deformation of rocks in the brittle regime

    NASA Astrophysics Data System (ADS)

    Baud, P.; Brantut, N.; Heap, M. J.; Meredith, P. G.

    2013-12-01

    Rate-dependent brittle deformation of rocks, a phenomenon relevant for long-term interseismic phases of deformation, is poorly understood quantitatively. Rate-dependence can arise from chemically-activated, subcritical crack growth, which is known to occur in the presence of aqueous fluids. Here we attempt to establish quantitative links between this small scale process and its macroscopic manifestations. We performed a series of brittle deformation experiments in porous sandstones, in creep (constant stress) and constant strain rate conditions, in order to investigate the relationship between their short- and long-term mechanical behaviors. Elastic wave velocities measurements indicate that the amount of microcracking follows the amount of inelastic strain in a trend which does not depend upon the timescale involved. The comparison of stress-strain curves between constant strain rate and creep tests allows us to define a stress difference between the two, which can be viewed as a difference in energy release rate. We empirically show that the creep strain rates are proportional to an exponential function of this stress difference. We then establish a general method to estimate empirical micromechanical functions relating the applied stresses to mode I stress intensity factors at microcrack tips, and we determine the relationship between creep strain rates and stress intensity factors in our sandstone creep experiments. We finally provide an estimate of the sub-critical crack growth law parameters, and find that they match -within the experimental errors and approximations of the method- the typical values observed in independent single crack tests. Our approach provides a comprehensive and unifying explanation for the origin and the macroscopic manifestation of time-dependent brittle deformation in brittle rocks.

  12. Three-dimensional brittle shear fracturing by tensile crack interaction.

    PubMed

    Healy, David; Jones, Richard R; Holdsworth, Robert E

    2006-01-05

    Faults in brittle rock are shear fractures formed through the interaction and coalescence of many tensile microcracks. The geometry of these microcracks and their surrounding elastic stress fields control the orientation of the final shear fracture surfaces. The classic Coulomb-Mohr failure criterion predicts the development of two conjugate (bimodal) shear planes that are inclined at an acute angle to the axis of maximum compressive stress. This criterion, however, is incapable of explaining the three-dimensional polymodal fault patterns that are widely observed in rocks. Here we show that the elastic stress around tensile microcracks in three dimensions promotes a mutual interaction that produces brittle shear planes oriented obliquely to the remote principal stresses, and can therefore account for observed polymodal fault patterns. Our microcrack interaction model is based on the three-dimensional solution of Eshelby, unlike previous models that employed two-dimensional approximations. Our model predicts that shear fractures formed by the coalescence of interacting mode I cracks will be inclined at a maximum of 26 degrees to the axes of remote maximum and intermediate compression. An improved understanding of brittle shear failure in three dimensions has important implications for earthquake seismology and rock-mass stability, as well as fluid migration in fractured rocks.

  13. Low speed fracture instabilities in a brittle crystal

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Kermode, James R.; Albaret, Tristan; Sherman, Dov; Gumbsch, Peter; Payne, Michael C.; Csányi, G. Ábor; de Vita, Alessandro

    2009-03-01

    Brittle materials under mechanical load fail by nucleation and propagation of cracks, and these cracks show well known instabilities at high crack speeds. In this work we show that new instabilities caused by the atomic structure of the crack tip can occur at low crack speeds as well [1]. Using state of the art computer simulations, we find atomic rearrangements at a silicon crack tip on the (111) cleavage plane that occur preferentially on one side of the crack, but only at low crack speeds. Experiments using a novel technique for applying low tensile loads show that real silicon cracks form distinctive features on one side of the exposed crack surface. A mesoscopic model explains how the microscopic atomic rearrangements lead to the observed macroscopic features. We present extensive results on silicon and preliminary results on other brittle materials including sapphire, diamond, and silicon carbide. We conclude that even very brittle single-crystal materials can have a complex crack tip atomic structure, and that atomic scale rearrangements can lead to macropscopic changes in crack morphology. [1] J. R. Kermode et al., Nature 455, 1224 (2008).

  14. Displacement-length scaling of brittle faults in ductile shear.

    PubMed

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  15. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  16. Patterns of brittle deformation under extension on Venus

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Zuber, M. T.

    1994-01-01

    The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.

  17. Guidelines for Design and Analysis of Large, Brittle Spacecraft Components

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1993-01-01

    There were two related parts to this work. The first, conducted at The Aerospace Corporation was to develop and define methods for integrating the statistical theory of brittle strength with conventional finite element stress analysis, and to carry out a limited laboratory test program to illustrate the methods. The second part, separately funded at Aerojet Electronic Systems Division, was to create the finite element postprocessing program for integrating the statistical strength analysis with the structural analysis. The second part was monitored by Capt. Jeff McCann of USAF/SMC, as Special Study No.11, which authorized Aerojet to support Aerospace on this work requested by NASA. This second part is documented in Appendix A. The activity at Aerojet was guided by the Aerospace methods developed in the first part of this work. This joint work of Aerospace and Aerojet stemmed from prior related work for the Defense Support Program (DSP) Program Office, to qualify the DSP sensor main mirror and corrector lens for flight as part of a shuttle payload. These large brittle components of the DSP sensor are provided by Aerojet. This document defines rational methods for addressing the structural integrity and safety of large, brittle, payload components, which have low and variable tensile strength and can suddenly break or shatter. The methods are applicable to the evaluation and validation of such components, which, because of size and configuration restrictions, cannot be validated by direct proof test.

  18. Interpreting finite element results for brittle materials in endodontic restorations

    PubMed Central

    2011-01-01

    Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test. PMID:21635759

  19. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae.

    PubMed

    Burns, Gavin; Thorndyke, Michael C; Peck, Lloyd S; Clark, Melody S

    2013-03-01

    Brittle stars are included within a whole range of species, which contribute to knowledge in the medically important area of tissue regeneration. All brittle stars regenerate lose limbs, but the rate at which this occurs is highly variable and species-specific. One of the slowest rates of arm regeneration reported so far is that of the Antarctic Ophionotus victoriae. Additionally, O. victoriae also has an unusual delay in the onset of regeneration of about 5months. Both processes are of interest for the areas of regeneration biology and adaptation to cold environments. One method of understanding the details of regeneration events in brittle stars is to characterise the genes involved. In the largest transcriptome study of any ophiuroid to date, we describe the results of mRNA pyrosequencing from pooled samples of regenerating arms of O. victoriae. The sequencing reads resulted in 18,000 assembled contiguous sequences of which 19% were putatively annotated by blast sequence similarity searching. We focus on the identification of major gene families and pathways with potential relevance to the regenerative processes including the Wnt/β-catenin pathway, Hox genes, the SOX gene family and the TGF beta signalling pathways. These data significantly increase the amount of ophiuroid sequences publicly available and provide candidate transcripts for the further investigation of the unusual regenerative process in this Antarctic ophiuroid.

  20. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars.

    PubMed

    Fujita, Daisuke; Trijatmiko, Kurniawan Rudi; Tagle, Analiza Grubanzo; Sapasap, Maria Veronica; Koide, Yohei; Sasaki, Kazuhiro; Tsakirpaloglou, Nikolaos; Gannaban, Ritchel Bueno; Nishimura, Takeshi; Yanagihara, Seiji; Fukuta, Yoshimichi; Koshiba, Tomokazu; Slamet-Loedin, Inez Hortense; Ishimaru, Tsutomu; Kobayashi, Nobuya

    2013-12-17

    Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13-36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia.

  1. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars

    PubMed Central

    Fujita, Daisuke; Trijatmiko, Kurniawan Rudi; Tagle, Analiza Grubanzo; Sapasap, Maria Veronica; Koide, Yohei; Sasaki, Kazuhiro; Tsakirpaloglou, Nikolaos; Gannaban, Ritchel Bueno; Nishimura, Takeshi; Yanagihara, Seiji; Fukuta, Yoshimichi; Koshiba, Tomokazu; Slamet-Loedin, Inez Hortense; Ishimaru, Tsutomu; Kobayashi, Nobuya

    2013-01-01

    Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13–36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia. PMID:24297875

  2. Using a set of TeQing-into-Lemont chromosome segment substitution lines for fine mapping QTL: Case studies on sheath blight resistance, spreading culm, and mesocotyl elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of backcross introgression lines containing portions of the TeQing genome now introgressed into a Lemont genetic background allows us to fine map rice QTL, and measure their breeding value within U.S. rice genetic and field environments....

  3. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice.

    PubMed

    Chu, Huangwei; Qian, Qian; Liang, Wanqi; Yin, Changsong; Tan, Hexin; Yao, Xuan; Yuan, Zheng; Yang, Jun; Huang, Hai; Luo, Da; Ma, Hong; Zhang, Dabing

    2006-11-01

    To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the inflorescence and floral meristems. Likely due to enlarged SAMs, fon4 mutants produced thick culms (stems) and increased numbers of both primary rachis branches and floral organs. We identified FON4 using a map-based cloning approach and found it encodes a small putatively secreted protein, which is the putative ortholog of the Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) gene. FON4 transcripts mainly accumulated in the small group of cells at the apex of the SAMs, whereas the rice ortholog of CLV1 (FON1) is expressed throughout the SAMs, suggesting that the putative FON4 ligand might be sequestered as a possible mechanism for rice meristem regulation. Exogenous application of the peptides FON4p and CLV3p corresponding to the CLV3/ESR-related (CLE) motifs of FON4 and CLV3, respectively, resulted in termination of SAMs in rice, and treatment with CLV3p caused consumption of both rice and Arabidopsis root meristems, suggesting that the CLV pathway in limiting meristem size is conserved in both rice and Arabidopsis. However, exogenous FON4p did not have an obvious effect on limiting both rice and Arabidopsis root meristems, suggesting that the CLE motifs of Arabidopsis CLV3 and FON4 are potentially functionally divergent.

  4. Results from expert tests of the TP-100A boiler at the Lugansk thermal power station during the combustion of lean coal and anthracite culm with addition of RA-GEN-F anaklarid

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. E.; Tupitsyn, S. P.; Sokolov, V. V.; Chebakova, G. F.; Malygin, V. I.; Yazykov, Yu. V.; Kharchenko, A. V.; Chetverikov, A. N.

    2012-08-01

    Results from expert tests of separated combustion of Grade T and Grade ASh anthracite culm in the TP-100A boiler No. 15 at the Lugansk thermal power station carried out with and without addition of RA-GEN-F anaklarid are presented. The possibility of extending the boiler load adjustment range and excluding the use of natural gas for supporting the flame at minimal loads is considered.

  5. Neogene transtensional brittle tectonics in the Lepontine D

    NASA Astrophysics Data System (ADS)

    Allanic, C.; Sue, C.; Champagnac, J.-D.

    2009-04-01

    The Lepontine Dome is investigated regarding faulting and paleostress, which allows to constrain the late brittle deformation of this gneissic core. Its tectonic evolution under brittle conditions was determined using fault mapping and paleostress inversions. Three brittle phases were reconstructed. The older phase is a NW-SE extension restricted to the eastern parts of the Dome. The second phase (major signal) is an upper Miocene transtension with stable orogen-parallel sigma3 axes (NE-SW), which is found from the Mont-Blanc to the Bergell massifs. The late phase is a N-S extension, expressed north of the Dome, and probably linked to the current collapse of the belt. The stress fields we determine for the Lepontine Dome are very similar to the stress fields determined by Champagnac et al (2006) westward in the South-Valais area, with a major signal in orogen-parallel extension and a minor signal in orogen-perpendicular extension. In the close vicinity of the Simplon fault, Grosjean et al (2004) only reported the orogen-parallel extensional stress field. Eastward, in the Bergell area, Ciancaleoni and Marquer (2008) also found a very regular NE-SW extensional paleostress field, using similar methods. Indeed, the main paleostress field determined in the Lepontine Dome is very homogeneous from a regional viewpoint. It is largely dominated by the NE-SW brittle extension, described in the whole northwestern Alps. The Lepontine Dome also bears witness of two minor extensional signals (N-S and WNW-ESE directions of extension). The absolute dating of this orogen-parallel extensional phase is based on the occurrence of pseudotachylytes locally injected in the related fault system. Pseudotachylyte development is directly linked to frictional heating due to earthquake and faulting. The Ar/Ar dating of three pseudotachylytes samples of the Lepontine Dome provided ages in the range of 9-11 Ma ±1 (Allanic, et al., 2006). Thus, one can attribute a global 10 Ma age for the orogen

  6. Does Mt Etna creep in a brittle manner?

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Heap, M. J.; Baud, P.; Vinciguerra, S.; Bell, A. F.; Main, I. G.

    2010-12-01

    Time-dependent brittle deformation is a fundamental and pervasive process operating in the Earth’s upper crust. Its characterization is a pre-requisite to understanding and unravelling the complexities of crustal evolution and dynamics. The preferential chemical interaction between pore fluids and strained atomic bonds at crack tips, a mechanism known as stress corrosion, allows rock to fail under a constant stress that is well below its short-term strength over an extended period of time; a process known as brittle creep. Here we present the first experimental measurements of brittle creep in a basic rock (basalt from Mt Etna volcano) under triaxial stress conditions. Results from conventional creep experiments demonstrate that creep strain rates are highly and non-linearly dependent on the level of applied stress; with a 20% increase in stress producing close to three orders of magnitude increase in creep strain rate. Results from stress-stepping creep experiments show that creep strain rates are also highly dependent on the effective confining pressure. Stress corrosion reactions are inhibited at higher effective confining pressures, and this is interpreted as being due to a reduction in crack aperture that restricts the transport of reactive species to crack tips. Overall, our results also suggest that a critical level of crack damage is required before the deformation starts to accelerate to failure, regardless of the level of applied stress and the time taken to reach this point. The experimental results are discussed in terms of microstructural observations and fits to a macroscopic creep law, and compared with the observed deformation history at Mt Etna volcano.

  7. Quantitative comparisons of numerical models of brittle deformation

    NASA Astrophysics Data System (ADS)

    Buiter, S.

    2009-04-01

    Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy

  8. Development of massproductive ultraprecision grinding technology for brittle material devices

    SciTech Connect

    Kanai, A.; Miyashita, M.; Daito, M.

    1996-12-31

    Experimental results from an ultaprecision, centerless grinding system are reported. The system is designed for ductile mode grinding of brittle material devices on a mass production scale. A postprocess work diameter measuring stand was used with the high stiffness grinding machine.Size error correction was shown to be practically applicable as a mass production ultraprecision ferrule grinding technology. The key items were determined to be: (1) force-operated positioning servo system of slide on plain bearing guideways, (2) measurement of relative motion between grinding and regulating wheels with differential linear encoder, (3) application of linear encoder stability, and (4) application of microtruing technology to wheels.

  9. Microcrack toughening in brittle materials containing weak and strong interfaces

    SciTech Connect

    Sigl, L.S.

    1996-09-01

    Microcracking in brittle materials combining weak and strong interfaces is analyzed. A model for the width of the process zone and the associated toughening in terms of interface toughness, elastic moduli, thermal expansion coefficients and microstructural geometry is presented. Considerable zone widths and toughening are predicted in composites with low interface toughness, high residual stresses and high volume fraction of microcracks. The model is verified using toughness data obtained from B{sub 4}C-TiB{sub 2} composites where elemental carbon segregated to B{sub 4}C-TiB{sub 2} phase boundaries supplies weak interfaces.

  10. What controls the strength and brittleness of shale rocks?

    NASA Astrophysics Data System (ADS)

    Rybacki, Erik; Reinicke, Andreas; Meier, Tobias; Makasi, Masline; Dresen, Georg

    2014-05-01

    With respect to the productivity of gas shales, in petroleum science the mechanical behavior of shales is often classified into rock types of high and low 'brittleness', sometimes also referred to as 'fraccability'. The term brittleness is not well defined and different definitions exist, associated with elastic properties (Poisson's ratio, Young's modulus), with strength parameters (compressive and tensile strength), frictional properties (cohesion, friction coefficient), hardness (indentation), or with the strain or energy budget (ratio of reversible to the total strain or energy, respectively). Shales containing a high amount of clay and organic matter are usually considered as less brittle. Similarly, the strength of shales is usually assumed to be low if they contain a high fraction of weak phases. We performed mechanical tests on a series of shales with different mineralogical compositions, varying porosity, and low to high maturity. Using cylindrical samples, we determined the uniaxial and triaxial compressive strength, static Young's modulus, the tensile strength, and Mode I fracture toughness. The results show that in general the uniaxial compressive strength (UCS) linearly increases with increasing Young's modulus (E) and both parameters increase with decreasing porosity. However, the strength and elastic modulus is not uniquely correlated with the mineral content. For shales with a relatively low quartz and high carbonate content, UCS and E increase with increasing quartz content, whereas for shales with a relatively low amount for carbonates, but high quartz content, both parameters increase with decreasing fraction of the weak phases (clays, kerogen). In contrast, the average tensile strength of all shale-types appears to increase with increasing quartz fraction. The internal friction coefficient of all investigated shales decreases with increasing pressure and may approach rather high values (up to ≡ 1). Therefore, the mechanical strength and

  11. Nonlocal effects on dynamic damage accumulation in brittle solids

    SciTech Connect

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  12. Application of activated carbon derived from 'waste' bamboo culms for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Wang, Lianggui

    2012-07-15

    The utilization of activated carbon derived from 'waste' bamboo culms (BAC) for the removal of Disperse Red 167 (DR167), an azo disperse dye, was investigated. Studies of the properties of the adsorbent, the effect of contact time, the initial pH of the solution, the initial concentration of the dye solution and temperature indicated that a low initial pH or concentration of dye solution favors the adsorption process; temperature exerts a greater effect on the removal of azo disperse red 167 dye from aqueous solution. Kinetic and isotherm data were fitted to five non-linear kinetic and nine non-linear isotherm equations. In addition, the fits were evaluated in terms of the non-linear coefficient, Chi-square test, Marquardt's percent standard deviation error function and small-sample-corrected Akaike Information Criterion (AICc) methodology. The results showed that the AICc analysis was the best statistical tool for analyzing the data, the intra-particle diffusion and the pseudo-first-order models played important roles in the controlling rate step, and the Temkin equation best described the BAC isotherm data. Furthermore, the thermodynamic analysis indicated that the adsorption was a spontaneous, endothermic, entropy-increasing and physical process. Two types of commercial activated carbon, Filtrasorb 400 and Filtrasorb (F400 and F300), were used as contrast adsorbents. The contrast experiments revealed that BAC exhibits similar properties to F400 and F300. The utilization of bamboo wastes as carbon precursors is feasible.

  13. Estimation Criteria for Rock Brittleness Based on Energy Analysis During the Rupturing Process

    NASA Astrophysics Data System (ADS)

    Ai, Chi; Zhang, Jun; Li, Yu-wei; Zeng, Jia; Yang, Xin-liang; Wang, Ji-gang

    2016-12-01

    Brittleness is one of the most important mechanical properties of rock: it plays a significant role in evaluating the risk of rock bursts and in analysis of borehole-wall stability during shale gas development. Brittleness is also a critical parameter in the design of hydraulic fracturing. However, there is still no widely accepted definition of the concept of brittleness in rock mechanics. Although many criteria have been proposed to characterize rock brittleness, their applicability and reliability have yet to be verified. In this paper, the brittleness of rock under compression is defined as the ability of a rock to accumulate elastic energy during the pre-peak stage and to self-sustain fracture propagation in the post-peak stage. This ability is related to three types of energy: fracture energy, post-peak released energy and pre-peak dissipation energy. New brittleness evaluation indices B 1 and B 2 are proposed based on the stress-strain curve from the viewpoint of energy. The new indices can describe the entire transition of rock from absolute plasticity to absolute brittleness. In addition, the brittle characteristics reflected by other brittleness indices can be described, and the calculation results of B 1 and B 2 are continuous and monotonic. Triaxial compression tests on different types of rock were carried out under different confining pressures. Based on B 1 and B 2, the brittleness of different rocks shows different trends with rising confining pressure. The brittleness of red sandstone decreases with increasing confining pressure, whereas for black shale it initially increases and then decreases in a certain range of confining pressure. Granite displays a constant increasing trend. The brittleness anisotropy of black shale is discussed. The smaller the angle between the loading direction and the bedding plane, the greater the brittleness. The calculation B 1 and B 2 requires experimental data, and the values of these two indices represent only

  14. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  15. Challenges in the Japan Beyond-Brittle Project (JBBP) for EGS development beyond the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.

    2013-12-01

    Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically

  16. Brittle-ductile transition under compression of glassy polymers

    NASA Astrophysics Data System (ADS)

    Liu, Jianning; Li, Xiaoxiao; Lin, Panpan; Cheng, Shiwang; Wang, Weiyu; Mays, Jimmy; Wang, Shi-Qing

    Polymeric glasses of high molecular weight are always ductile in compression. Even the most brittle (in tensile extension) polystyrene is ordinarily ductile in uniaxial compression. Thus, it seems that theoretical studies only need to develop a description of yielding and post-yield plastic deformation for polymer glasses. But can yielding take place in compression if the molecular weight is sufficiently reduced? In other words, can alpha processes be greatly accelerated during external deformation in absence of chain networking? Must a new paradigm account for the role of chain networking that only takes place in polymers of high molecular weight? To address these questions, we systematically explored the response over a range of temperature to uniaxial compression at different rates of polystyrene with various molecular weights and molecular weight distributions. Our preliminary results show that PS of low molecular weight is brittle in compression and chain networking is necessary (but not sufficient) to ensure a ductile response This work is supported, in part, by a NSF grant (DMR-EAGER-1444859).

  17. A generalized law for brittle deformation of Westerly granite

    USGS Publications Warehouse

    Lockner, D.A.

    1998-01-01

    A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.

  18. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  19. Meso-scopic Densification in Brittle Granular Materials

    NASA Astrophysics Data System (ADS)

    Neal, William; Appleby-Thomas, Gareth; Collins, Gareth

    2013-06-01

    Particulate materials are ideally suited to shock absorbing applications due to the large amounts of energy required to deform their inherently complex meso-structure. Significant effort is being made to improve macro-scale material models to represent these atypical materials. On the long road towards achieving this capability, an important milestone would be to understand how particle densification mechanisms are affected by loading rate. In brittle particulate materials, the majority of densification is caused by particle fracture. Macro-scale quasi-static and dynamic compaction curves have been measured that show good qualitative agreement. There are, however, some differences that appear to be dependent on the loading rate that require further investigation. This study aims to investigate the difference in grain-fracture behavior between the quasi-static and shock loading response of brittle glass microsphere beds using a combination of quasi-static and dynamic loading techniques. Results from pressure-density measurements, sample recovery, and meso-scale hydrocode models (iSALE, an in-house simulation package) are discussed to explain the differences in particle densification mechanisms between the two loading rate regimes. Gratefully funded by AWE.plc.

  20. Cyclic fatigue of intrinsically brittle ceramics in contact with spheres

    SciTech Connect

    Kim, D.K.; Jung, Y.G.; Peterson, I.M.; Lawn, B.R.

    1999-12-10

    Contact damage modes in cyclic loading with spheres are investigated in three nominally brittle ceramics, soda-lime glass, porcelain and fine-grain silicon nitride, in moist environments. Initial damage at small numbers of cycles and low loads consists of tensile-driven macroscopic cone cracks (brittle mode). Secondary damage at large numbers of cycles and high loads consists of shear-driven distributed microdamage (quasi-plastic mode), with attendant radial cracks and a new form of deeply penetrating subsidiary cone cracks. Strength tests on indented specimens are used to quantify the degree of damage. Both damage modes degrade the strength: the first, immediately after cone crack initiation, relatively slowly; the second, after development of radial cracks, much more rapidly. A fracture mechanics model describing the first mode, based on time-integration of slow growth of cone cracks, is presented. This model provides simple power-law relations for the remaining strength in terms of number of cycles and contact load for materials design. Extrapolations of these relations into the quasi-plastic region are shown to be non-conservative, highlighting the need for further understanding of the deleterious quasi-plastic mode in tougher ceramics. Comparison with static contact data indicates a strong mechanical (as opposed to chemical) component in the cyclic fatigue in the quasi-plastic region.

  1. How plasticizer makes a ductile polymer glass brittle?

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Li, Xiaoxiao; Wang, Shi-Qing

    During uniaxial extension, a polymer glass of high molecular weight is ductile at high temperatures (still below Tg) and turns brittle when the temperature is sufficiently lowered. Incorporation of small-molecular additives to polymer glasses can speed up segmental relaxation considerably. The effect of such plasticization should be to make the polymers more ductile. We examined the effect of blending a few weight percent of either triphenyl phosphate (TPP) or a mineral oil to a commercial-grade PS and PMMA. Our Instron tests show that the plasticized PS is less ductile. Specifically, at 70 oC, the original PS is ductile at an extensional rate of 0.02 s-1 whereas the PS with 4 wt. % TPP turns brittle. Mechanical spectroscopic measurements show that the alpha relaxation time is shortened by more than two orders of magnitude with 4 wt. % TPP. On the other hand, such anomalous behavior did not occur in PMMA. We need to go beyond the conventional description to rationalize these results This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859).

  2. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  3. Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain.

    PubMed

    Premarathna, Lakmalie; McLaughlin, Mike J; Kirby, Jason K; Hettiarachchi, Ganga M; Stacey, Samuel; Chittleborough, David J

    2012-06-13

    This study examined the effects of applied selenium (Se) species, time of application, method of application, and soil water management regimen on the accumulation of Se in rice plants. Plants were grown to maturity in a temperature- and humidity-controlled growth chamber using three water management methods: field capacity (FC), submerged until harvest, and submerged and drained 2 weeks before harvest. Two Se species, selenate (SeO4(2-)) and selenite (SeO3(2-)), were applied at a rate equivalent to 30 g ha(-1). Four application methods were employed as follows: (i) Se applied at soil preparation, (ii) Se-enriched urea granules applied to floodwater at heading; (iii) foliar Se applied at heading; and (iv) fluid fertilizer Se applied to soil or floodwater at heading. Total Se concentrations in rice grains, husks, leaves, culms, and roots were measured, as well as Se speciation in grains from the Se-enriched urea granule treatment. Highest Se concentrations in the grain occurred with SeO4(2-) and with fertilizer applied at heading stage; SeO4(2-)-enriched urea granules applied at heading increased grain Se concentrations 5-6-fold (by 450-600 μg kg(-1)) compared to the control (no fertilizer Se applied) in all water treatments. Under paddy conditions other Se fertilization strategies were much less effective. Drainage before harvesting caused Se to accumulate in/on rice roots, possibly through adsorption onto iron plaque on roots. Rice grains contained Se mainly in the organic form as selenomethionine (SeM), which comprised >90% of the total grain Se in treatments fertilized with SeO4(2-)-enriched urea granules. The results of this study clearly show that of the fertilizer strategies tested biofortification of Se in rice grains can best be achieved in lowland rice by broadcast application of SeO4(2-)-enriched urea granules to floodwater at heading stage.

  4. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  5. Dating brittle deformation in the Archean Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Thebaud, N.; Zwingmann, H.

    2012-12-01

    Major deformation throughout the Archean Yilgarn Craton has mostly been interpreted to be Neoarchean (Blewett and Czarnota, 2007). The timing of the deformation events of the brittle/ductile deformation generally relies on dating of cross-cutting intrusions or unconformities. Proterozoic overprinting and reactivation of Archean structures in the north-western part of the Yilgarn Craton has previously been dated from direct dating of the structures and fabrics from the Narryer Terrane(Spaggiari et al., 2008). However, the brittle deformation that postdates Neoarchean brittle-ductile structures in the Yilgarn Craton have received little attention to date. In the centre of the Yilgarn Craton, the Eastern Goldfields present a well developed network of E-W trending of normal brittle faults and fractures. Typically these structures are interpreted to have developed in result of a late Neoarchean tectonic relaxation following the main Yilgarn wide E-W contraction (Blewett and Czarnota, 2007). Poorly preserved and weathered faulted rocks in the subsurface environment preclude direct dating of fault gouge. However, exposure from the underground Agnew mine, in the Agnew Wiluna greenstone belt, recently provided access to fresh fault gouge material suitable for analysis. The clay gouge was characterized by SEM, TEM and XRD methods prior to age dating indicating an authigenic origin (Zwingmann et al., 2010). K-Ar illite age data of a whole rock sample split yielded an age of 1148 ± 23 Ma, which is within error close to the <2 micron clay fraction yielding an age of 1094 ± 22 Ma (Mesoproterozoic-Stenian). Our result is the first documentation of the age of the brittle deformation that affects the Yilgarn Craton. This age is within error of the Gilles event which is an extension event that affected the whole Australian continent and is responsible for the emplacement of the Warakurna Large Igneous Province and related dolerite dykes in the Yilgarn Craton (Evins et al., 2010

  6. Micromechanisms of intergranular brittle ftacture in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vitek, V.

    1991-06-01

    Grain boundaries in intermetallic compounds such as Ni3A1 are inherently brittle. The reason is usually sought in grain boundary cohesion but in metals even brittle fracture is accompanied by some local plasticity and thus not only cohesion but also dislocation mobility in the boundary region need to be studied. We first discuss here the role of an irreversible shear deformation at the crack tip during microcrack propagation assuming that these two processes are concomitant. It is shown that a pre-existing crack cannot propagate in a brittle manner once the dislocation emission occurs. However, if a microcrack nucleates during loading it can propagate concurrently with the development of the irreversible shear deformation at the crack tip. The latter is then the major energy dissipating process. In the second part of this paper we present results of atomistic studies of grain boundaries in Ni3A1 and CU3Au which suggest that substantial structural differences exist between strongly and weakly ordered L12 alloys. We discuss then the consequence of these differences for intergranular brittleness in the framework of the above model for microcrack propagation. On this basis we propose an explanation for the intrinsic intergranular brittleness in some L12 alloys and relate it directly to the strength of ordering. Les joints de grains dans les composés intermétalliques de type Ni3AI sont de nature fragile. L'origine de cette fragilité est habituellement dans la cohésion des joints de grains. Dans les métaux, cependant, même la rupture fragile est accompagnée d'une certaine déformation plastique locale, de telle sorte que non seulement la cohésion mais aussi la mobilité des dislocations près des joints doit être étudiée. Nous discutons d'abord le rôle d'une déformation en cisaillement irréversible en tête de fissure pendant la propagation de cette fissure, en supposant que les deux processus sont concomitants. Nous montrons qu'une fissure préexistante ne

  7. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  8. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  9. Research progress on ultra-precision machining technologies for soft-brittle crystal materials

    NASA Astrophysics Data System (ADS)

    Gao, Hang; Wang, Xu; Guo, Dongming; Chen, Yuchuan

    2016-12-01

    Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining difficulties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for softbrittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.

  10. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties.

  11. Characterization and gene cloning of the rice (Oryza sativa L.) dwarf and narrow-leaf mutant dnl3.

    PubMed

    Shi, L; Wei, X J; Adedze, Y M N; Sheng, Z H; Tang, S Q; Hu, P S; Wang, J L

    2016-09-16

    The dwarf and narrow-leaf rice (Oryza sativa L.) mutant dnl3 was isolated from the Japonica cultivar Zhonghua 11 (wild-type). dnl3 exhibited pleiotropic developmental defects. The narrow-leaf phenotype resulted from a marked reduction in the number of vascular bundles, while the dwarf stature was caused by the formation of foreshortened internodes and a reduced number of parenchyma cells. The suggestion that cell division is impaired in the mutant was consistent with the transcriptional behavior of various genes associated with cell division. The mutant was less responsive to exogenously supplied gibberellic acid than the wild-type, and profiling the transcription of genes involved in gibberellin synthesis and response revealed that a lesion in the mutant affected gibberellin signal transduction. The dnl3 phenotype was inherited as a single-dominant gene, mapping within a 19.1-kb region of chromosome 12, which was found to harbor three open reading frames. Resequencing the open reading frames revealed that the mutant carried an allele at one of the three genes that differed from the wild-type sequence by 2-bp deletions; this gene encoded a cellulose synthase-like D4 (CSLD4) protein. Therefore, OsCSLD4 is a candidate gene for DNL3. DNL3 was expressed in all of the rice organs tested at the heading stage, particularly in the leaves, roots, and culms. These results suggest that DNL3 plays important roles in rice leaf morphogenesis and vegetative development.

  12. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; Munz, D.

    1981-01-01

    Short bar, short rod, and four-point-bend chevron-notch specimens were used to determine the plane strain fracture toughness of hot-pressed silicon nitride and sintered aluminum oxide brittle ceramics. The unique advantages of this specimen type are: (1) the production of a sharp natural crack during the early stage of test loading, so that no precracking is required, and (2) the load passes through a maximum at a constant, material-independent crack length-to-width ratio for a specific geometry, so that no post-test crack measurement is required. The plane strain fracture toughness is proportional to the maximum test load and functions of the specimen geometry and elastic compliance. Although results obtained for silicon nitride are in good mutual agreement and relatively free of geometry and size effects, aluminum oxide results were affected in both these respects by the rising crack growth resistance curve of the material.

  13. Methods for assessing the structural reliability of brittle materials

    NASA Technical Reports Server (NTRS)

    Freiman, S. W. (Editor); Hudson, C. M. (Editor)

    1984-01-01

    Failure from contact-induced surface flaws is considered along with controlled indentation flaws for construction of toughness and fatigue master maps, fatigue properties of ceramics with natural and controlled flaws, and a statistical analysis of size and stress state effects on the strength of an alumina ceramic. Attention is also given to dynamic and static fatigue of a machinable glass ceramic, the effect of multiregion crack growth on proof testing, and a fracture mechanics analysis of defect sizes. Other topics explored are related to the effect of temperature and humidity on delayed failure of optical glass fibers, subthreshold indentation flaws in the study of fatigue properties of ultrahigh-strength glass, the lifetime prediction for hot-pressed silicon nitride at high temperatures, static fatigue in high-performance ceramics, and requirements for flexure testing of brittle materials.

  14. Time-dependent Brittle Deformation in Etna Basalt

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.

    2008-12-01

    Mt Etna is the largest and most active volcano in Europe. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). Pre-eruptive patterns of flank eruptions, closely monitored by means of ground deformation and seismicity, revealed the slow development of fracture systems at different altitudes, marked by repeated bursts of seismicity and accelerating/decelerating deformation patterns acting over the scale of months to days. The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as 'brittle creep'. Stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short- term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data demonstrate that the applied differential stress exerts a crucial influence on both time-to-failure and

  15. On Failure in Polycrystalline and Amorphous Brittle Materials

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.

    2009-12-01

    The performance of behaviour of brittle materials depends upon discrete deformation mechanisms operating during the loading process. The critical mechanisms determining the behaviour of armour ceramics have not been isolated using traditional ballistics. It has recently become possible to measure strength histories in materials under shock. The data gained for the failed strength of the armour are shown to relate directly to the penetration measured into tiles. Further the material can be loaded and recovered for post-mortem examination. Failure is by micro-fracture that is a function of the defects and then cracking activated by plasticity mechanisms within the grains and failure at grain boundaries in the amorphous intergranular phase. Thus it is the shock-induced plastic yielding of grains at the impact face that determines the later time penetration through the tile.

  16. Polystyrene glasses under compression: Ductile and brittle behavior

    SciTech Connect

    Liu, Jianning; Lin, Panpan; Cheng, Shiwang; Wang, Weiyu; Mays, Jimmy W.; Wang, Shi -Qing

    2015-09-09

    Polystyrene of different molecular weights and their binary mixtures are studied in terms of their various mechanical responses to uniaxial compression at different temperatures. PS of Mw = 25 kg/mol is completely brittle until it is above its glass transition temperature Tg. In contrast, upon incorporation of a high molecular weight component, PS mixtures turn from barely ductile a few degrees below its Tg to ductile over 40° below Tg. In the upper limit, a PS of Mw = 319 kg/mol yields and undergoes plastic flow, even at T = –70° C. Furthermore, the observed dependence of mechanical responses on molecular weight and molecular weight distribution can be adequately rationalized by the idea that yielding and plastic compression are caused by chain networking.

  17. Simulations of ductile flow in brittle material processing

    SciTech Connect

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  18. High Speed Strain Measurements Surrounding Hydraulic Fracture in Brittle Hydrogel

    NASA Astrophysics Data System (ADS)

    Steinhardt, Will; Rubinstein, Shmuel

    2015-11-01

    Hydraulic fractures of oil and gas shales occur miles underground, below complex, layered rocks, making measurements of their dynamics, extent, or structure difficult to impossible. Rocks are heterogeneous at a wide range of length scales, and investigating how these non-uniformities affect the propagation and extent of fractures is vital to improving both the safety and efficiency of hydraulic fracturing operations. To study these effects we have developed a model system using brittle, heavily cross-linked hydrogels that we can fracture with fluids and observe with a fast camera. By embedding tracer particles within the gel and using laser sheet microscopy, we obtain three dimensional stress and strain maps of the zone surrounding a hydraulic fracture tip. Gels can also be set in layers or interfaces with tunable strengths or with designed heterogeneities, allowing us to understand the fundamental science of hydraulic fractures and investigate the dynamics of controllably complex materials.

  19. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants

    SciTech Connect

    Nouchi, Isamu ); Mariko, Shigeru ); Aoki, Kazuyuki )

    1990-09-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths.

  20. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  1. Quantitative comparisons of numerical models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  2. Exponential and power-law mass distributions in brittle fragmentation

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Linna, R. P.; Timonen, J.; Møller, Peder Friis; Oddershede, Lene

    2004-08-01

    Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a process of propagating cracks that are unstable against side-branch formation. The initial cracks and side branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result of inherent damping. Generic arguments imply that close to the minimum strain (or impact energy) required for fragmentation, the number of fragments of size s scales as s-(2D-1)/Df1(-(2/λ)Ds)+f2(-s0-1(λ+s1/D)D) , where D is the Euclidean dimension of the space, λ is the penetration depth, and f1 and f2 can be approximated by exponential functions. Simulation results and experiments can both be described by this theoretical fragment-size distribution. The typical largest fragment size s0 was found to diverge at the minimum strain required for fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that scaling of s0 close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same time, the density of fragment surface vanishes as L-1 , L being the linear dimension of the brittle solid. The results obtained provide an explanation as to why the fragment-size distributions found in nature can have two components, an exponential as well as a power-law component, with varying relative weights.

  3. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoguang; Li, Qiang; Liu, Tao; Kang, Renke; Jin, Zhuji; Guo, Dongming

    2016-12-01

    Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.

  4. Determinants for grading Malaysian rice

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Yusoff, Nooraini; Ahmad, Norhayati

    2016-08-01

    Due to un-uniformity of rice grading practices in Malaysia, zones which actively producing rice in Malaysia are using their own way of grading rice. Rice grading is important in determining rice quality and its subsequent price in the market. It is an important process applied in the rice production industry with the purpose of ensuring that the rice produced for the market meets the quality requirements of consumer. Two important aspects that need to be considered in determining rice grades are grading technique and determinants to be used for grading (usually referred as rice attributes). This article proposes the list of determinants to be used in grading Malaysian rice. Determinants were explored through combination of extensive literature review and series of interview with the domain experts and practitioners. The proposed determinants are believed to be beneficial to BERNAS in improving the current Malaysian rice grading process.

  5. Relating raw rice color and composition to cooked rice color.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, the color of milled rice is economically important. The whiter the rice the more it is preferred by consumers and the more value it has in the market place. Little attention has been given to relating raw rice color to cooked milled rice color and, specifically, to determining the i...

  6. Brittle-tough transitions during crack growth in toughened adhesives

    NASA Astrophysics Data System (ADS)

    Thoules, Michael

    2008-03-01

    The use of structural adhesives in automotive applications relies on an effective understanding of their performance under crash conditions. In particular, there is considerable potential for mechanics-based modeling of the interaction between an adhesive layer and the adherends, to replace current empirical approaches to design. Since energy dissipation during a crash, mediated by plastic deformation of the structure, is a primary consideration for automotive applications, traditional approaches of fracture mechanics are not appropriate. Cohesive-zone models that use two fracture parameters - cohesive strength and toughness - have been shown to provide a method for quantitative mechanics analysis. Combined numerical and experimental techniques have been developed to deduce the toughness and strength parameters of adhesive layers, allowing qualitative modeling of the performance of adhesive joints. These techniques have been used to study the failure of joints, formed from a toughened adhesive and sheet metal, over a wide range of loading rates. Two fracture modes are observed: quasi-static crack growth and dynamic crack growth. The quasi-static crack growth is associated with a toughened mode of failure; the dynamic crack growth is associated with a more brittle mode of failure. The results of the experiments and analyses indicate that the fracture parameters for quasi-static crack growth in this toughened system are essentially rate independent, and that quasi-static crack growth can occur even at the highest crack velocities. Effects of rate appear to be limited to the ease with which a transition to dynamic fracture could be triggered. This transition appears to be stochastic in nature, and it does not appear to be associated with the attainment of any critical value for crack velocity or loading rate. Fracture-mechanics models exist in the literature for brittle-ductile transitions in rate-dependent polymers, which rely on rate dependent values of toughness

  7. Semi-brittle flow of granitoid fault rocks in experiments

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée.; Drury, Martyn

    2016-03-01

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have performed an experimental study on synthetic granitoid fault rocks exploring a broad parameter space (temperature, T = 300, 400, 500, and 600°C, confining pressure, Pc ≈ 300, 500, 1000, and 1500 MPa, shear strain rate, γṡ ≈ 10-3, 10-4, 10-5, and 10-6 s-1, to finite shear strains, γ = 0-5). The experiments have been carried out using a granular material with grain size smaller than 200 µm with a little H2O added (0.2 wt %). Only two experiments (performed at the fastest strain rates and lowest temperatures) have failed abruptly right after reaching peak strength (τ ~ 1400 MPa). All other samples reach high shear stresses (τ ~ 570-1600 MPa) then weaken slightly (by Δτ ~ 10-190 MPa) and continue to deform at a more or less steady state stress level. Clear temperature dependence and a weak strain rate dependence of the peak as well as steady state stress levels are observed. In order to express this relationship, the strain rate-stress sensitivity has been fit with a stress exponent, assuming γ˙ ∝ τn and yields high stress exponents (n ≈ 10-140), which decrease with increasing temperature. The microstructures show widespread comminution, strain partitioning, and localization into slip zones. The slip zones contain at first nanocrystalline and partly amorphous material. Later, during continued deformation, fully amorphous material develops in some of the slip zones. Despite the mechanical steady state conditions, the fabrics in the slip zones and outside continue to evolve and do not reach a steady state microstructure below γ = 5. Within the slip zones, the fault rock material progressively transforms from a crystalline solid to an amorphous material. We

  8. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  9. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  10. Making rice even healthier!

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a naturally healthy food, but what if it could be made even healthier? Would Americans eat more rice if it could be advertised to be a 'New and Improved' source of calcium to promote bone growth, or iron to prevent anemia? Grocery stores are full of foods that are vitamin enhanced to attract...

  11. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bursey, R. T.; Munz, D.; Pierce, W. S.

    1980-01-01

    The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail.

  12. Brittle cornea syndrome: recognition, molecular diagnosis and management

    PubMed Central

    2013-01-01

    Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders. PMID:23642083

  13. A Maxwell elasto-brittle rheology for sea ice modelling

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  14. Brittle cornea syndrome: recognition, molecular diagnosis and management.

    PubMed

    Burkitt Wright, Emma M M; Porter, Louise F; Spencer, Helen L; Clayton-Smith, Jill; Au, Leon; Munier, Francis L; Smithson, Sarah; Suri, Mohnish; Rohrbach, Marianne; Manson, Forbes D C; Black, Graeme C M

    2013-05-04

    Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders.

  15. Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique

    PubMed Central

    Bellucci, Andrea; Tondelli, Alessandro; Fangel, Jonatan U.; Torp, Anna Maria; Xu, Xin; Willats, William G. T.; Flavell, Andrew; Cattivelli, Luigi

    2017-01-01

    A collection of 112 winter barley varieties (Hordeum vulgare L.) was grown in the field for two years (2008/09 and 2009/10) in northern Italy and grain and straw yields recorded. In the first year of the trial, a severe attack of barley yellow mosaic virus (BaYMV) strongly influenced final performances with an average reduction of ~ 50% for grain and straw harvested in comparison to the second year. The genetic determination (GD) for grain yield was 0.49 and 0.70, for the two years respectively, and for straw yield GD was low in 2009 (0.09) and higher in 2010 (0.29). Cell wall polymers in culms were quantified by means of the monoclonal antibodies LM6, LM11, JIM13 and BS-400-3 and the carbohydrate-binding module CBM3a using the high-throughput CoMPP technique. Of these, LM6, which detects arabinan components, showed a relatively high GD in both years and a significantly negative correlation with grain yield (GYLD). Overall, heritability (H2) was calculated for GYLD, LM6 and JIM and resulted to be 0.42, 0.32 and 0.20, respectively. A total of 4,976 SNPs from the 9K iSelect array were used in the study for the analysis of population structure, linkage disequilibrium (LD) and genome-wide association study (GWAS). Marker-trait associations (MTA) were analyzed for grain yield and cell wall determination by LM6 and JIM13 as these were the traits showing significant correlations between the years. A single QTL for GYLD containing three MTAs was found on chromosome 3H located close to the Hv-eIF4E gene, which is known to regulate resistance to BaYMV. Subsequently the QTL was shown to be tightly linked to rym4, a locus for resistance to the virus. GWAs on arabinans quantified by LM6 resulted in the identification of major QTLs closely located on 3H and hypotheses regarding putative candidate genes were formulated through the study of gene expression levels based on bioinformatics tools. PMID:28301509

  16. True Triaxial Stresses and the Brittle Fracture of Rock

    NASA Astrophysics Data System (ADS)

    Haimson, Bezalel

    2006-06-01

    This paper reviews the efforts made in the last 100 years to characterize the effect of the intermediate principal stress σ 2 on brittle fracture of rocks, and on their strength criteria. The most common theories of failure in geomechanics, such as those of Coulomb, and Mohr, disregard σ 2 and are typically based on triaxial testing of cylindrical rock samples subjected to equal minimum and intermediate principal stresses (σ 3=σ 2). However, as early as 1915 Böker conducted conventional triaxial extension tests (σ 1=σ 2) on the same Carrara marble tested earlier in conventional triaxial compression by von Kármán that showed a different strength behavior. Efforts to incorporate the effect of σ 2 on rock strength continued in the second half of the last century through the work of Nadai, Drucker and Prager, Murrell, Handin, Wiebols and Cook, and others. In 1971 Mogi designed a high-capacity true triaxial testing machine, and was the first to obtain complete true triaxial strength criteria for several rocks based on experimental data. Following his pioneering work, several other laboratories developed equipment and conducted true triaxial tests revealing the extent of σ 2 effect on rock strength (e.g., Takahashi and Koide, Michelis, Smart, Wawersik). Testing equipment emulating Mogi's but considerably more compact was developed at the University of Wisconsin and used for true triaxial testing of some very strong crystalline rocks. Test results revealed three distinct compressive failure mechanisms, depending on loading mode and rock type: shear faulting resulting from extensile microcrack localization, multiple splitting along the σ 1 axis, and nondilatant shear failure. The true triaxial strength criterion for the KTB amphibolite derived from such tests was used in conjunction with logged breakout dimensions to estimate the maximum horizontal in situ stress in the KTB ultra deep scientific hole.

  17. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  18. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  19. Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel

    NASA Astrophysics Data System (ADS)

    Lucantonio, Alessandro; Noselli, Giovanni; Trepat, Xavier; Desimone, Antonio; Arroyo, Marino

    Brittle materials fracture under tensile or shear stress. When stress attains a critical threshold, crack propagation becomes unstable and proceeds dynamically. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are radically modified when the material susceptible to cracking is bonded to a poroelastic medium, such as a hydrogel, a common situation in biological tissues. In particular, we show that the brittle material can fracture in compression and can resist cracking in tension, thanks to the hydraulic coupling with the hydrogel. In the case of multiple cracks, we find that localized fracture occurs when the permeability of the hydrogel is high, whereas decreased permeability leads to toughening by promoting multiple cracking. Our results may contribute to the understanding of fracture in biological tissues and provide inspiration for the design of tough, biomimetic materials.

  20. Development of DEM formalism to modeling the dynamic response of brittle solids

    NASA Astrophysics Data System (ADS)

    Grigoriev, Aleksandr S.; Shilko, Eugeny V.; Psakhie, Sergey G.

    2016-11-01

    The paper presents a numerical model of the response for brittle materials to dynamic mechanical loading and implementation of the model within the discrete element method (DEM) by the example of the movable cellular automaton method (MCA). Verification of the model was carried out using the numerical modeling of the uniaxial compression tests of concrete and sandstone samples at various strain rates. It is shown that the developed model is correct and adequately describes the behavior of brittle materials under dynamic loading.

  1. Determination of the ductile-brittle transition temperature from the microplastic-strain rate

    NASA Astrophysics Data System (ADS)

    Andreev, A. K.; Solntsev, Yu. P.

    2008-04-01

    The possibility of the determination of the tendency of cast and deformed steels to brittle fracture using the temperature dependence of the small-plastic-strain rate is studied. The temperature corresponding to the maximum in this curve is found to indicate an abrupt decrease in the steel plasticity, which makes it possible to interpret it as the ductile-brittle transition temperature depending only on the structure of a material.

  2. Brittle Fracture Theory Predicts the Equation of Motion of Frictional Rupture Fronts

    NASA Astrophysics Data System (ADS)

    Svetlizky, Ilya; Kammer, David S.; Bayart, Elsa; Cohen, Gil; Fineberg, Jay

    2017-03-01

    We study rupture fronts propagating along the interface separating two bodies at the onset of frictional motion via high-temporal-resolution measurements of the real contact area and strain fields. The strain measurements provide the energy flux and dissipation at the rupture tips. We show that the classical equation of motion for brittle shear cracks, derived by balancing these quantities, well describes the velocity evolution of frictional ruptures. Our results demonstrate the extensive applicability of the dynamic brittle fracture theory to friction.

  3. Synthesis and single crystal structure refinement of the one-layer hydrate of sodium brittle mica

    SciTech Connect

    Kalo, Hussein; Milius, Wolfgang; Braeu, Michael; Breu, Josef

    2013-02-15

    A sodium brittle mica with the ideal composition [Na{sub 4}]{sup inter}[Mg{sub 6}]{sup oct}[Si{sub 4}Al{sub 4}]{sup tet}O{sub 20}F{sub 4} was synthesized via melt synthesis in a gas tight crucible. This mica is unusual inasmuch as the known mica structure holds only room for two interlayer cations per unit cell and inasmuch as it readily hydrates despite the high layer charge while ordinary micas and brittle micas are non-swelling. The crystal structure of one-layer hydrate sodium brittle mica was determined and refined from single crystal X-ray data. Interlayer cations reside at the center of the distorted hexagonal cavities and are coordinated by the three inner basal oxygen atoms. The coordination of the interlayer cation is completed by three interlayer water molecules residing at the center of the interlayer region. The relative position of adjacent 2:1-layers thus is fixed by these octahedrally coordinated interlayer cations. Pseudo-symmetry leads to extensive twinning. In total five twin operations generate the same environment for the interlayer species and are energetically degenerate. - Graphical abstract: The sodium brittle mica has been successfully synthesized by melt synthesis and the crystal structure of the one-layer hydrate of sodium brittle mica was determined from single crystal X-ray diffraction data. Highlights: Black-Right-Pointing-Pointer Melt synthesis yielded coarse grained sodium brittle mica which showed little disorder. Black-Right-Pointing-Pointer Sodium brittle mica hydrated completely to the state of one-layer hydrate. Black-Right-Pointing-Pointer Structure of one-layer hydrate of sodium brittle mica could therefore be determined and refined. Black-Right-Pointing-Pointer Arrangement of upper and lower tetrahedral sheet encompassing interlayer cation were clarified.

  4. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    DTIC Science & Technology

    2015-08-01

    exhibit many distinctive physical and mechanical properties, compared to metallic and polymeric materials, but the propensity toward brittle fracture ...their respective height and fractured micropillars are shown by cross mark (). (b) The measured ultimate (failure) strength and plasticity vs. the...micromechanism for the plastic deformation of ductile metals while the mechanical performance of high-strength ceramics is often dominated by brittle fracture at

  5. A Novel FC116/BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice

    PubMed Central

    Zhang, Mingliang; Wei, Feng; Guo, Kai; Hu, Zhen; Li, Yuyang; Xie, Guosheng; Wang, Yanting; Cai, Xiwen; Peng, Liangcai; Wang, Lingqiang

    2016-01-01

    We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif “R, RXG, RA.” The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice. PMID:27708650

  6. A new approach to rock brittleness and its usability at prediction of drillability

    NASA Astrophysics Data System (ADS)

    Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Yaralı, Olgay

    2016-07-01

    Rock brittleness is one of the most important issues in rock drilling and cutting. The relations between drillability and brittleness will assist engineers in excavation works. The demand for representative rock parameters related to planning of underground excavations is increasing, as these parameters constitute fundamental input for obtaining the most reliable cost and time estimates. In rock cutting mechanics, the effects of the rock and brittleness on the efficiency of drilling and excavation are examined by many researchers. In this study, 41 different rock types were tested in laboratory to investigate the relations between the drilling rate index and different brittleness values. Firstly, the relations defined in literature are tested. Strength tests are made according to International Society for Rock Mechanics standards. In addition Norwegian University of Science and Technology standards are used to determine drilling rate index. Then, a new brittleness index is proposed which is the arithmetic average of uniaxial compressive strength and tensile strength. Considering the regression analysis carried out, it was seen that the proposed formula showed good correlation for these samples handled in this study. As a result of this study, a high correlation is obtained between the proposed index and drilling rate index values (R:0.84). The results are found to be at least reliable as well as other brittleness equations given in literature.

  7. Brittle materials at high-loading rates: an open area of research

    PubMed Central

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  8. Metallurgical control of the ductile-brittle transition in high-strength structural steels

    SciTech Connect

    Morris, J.W. Jr. |

    1999-08-01

    The models that have been successfully used to control the ductile-brittle transition in high strength structural steels are qualitative in nature, and address the microstructural control of the mechanisms of brittle fracture. The basic idea is incorporated in the Yoffee diagram, which dates from the 1920`s and attributes the ductile-brittle transition to the competition between deformation and fracture; the more difficult brittle fracture becomes, the lower the temperature at which ductile processes dominate. There are two important brittle fracture modes: intergranular separation and transgranular cleavage. The intergranular mode is usually due to chemical contamination, and is addressed by eliminating or gettering the contaminating species. There are also examples of brittle fracture that is due to inherent grain boundary weakness. In this case the failure mode is overcome by adding beneficial species (glue) to the grain boundary. Transgranular cleavage is made more difficult by refining the effective grain size. In high strength steel this is done by refining the prior austenite grain size, by interspersing islands of metastable austenite that transform martensitically under plastic strain, or by disrupting the crystallographic alignment of ferrite grains or martensite laths. The latter mechanism offers intriguing possibilities for future steels with exceptional toughness.

  9. Brittle materials at high-loading rates: an open area of research

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  10. Brittle materials at high-loading rates: an open area of research.

    PubMed

    Forquin, Pascal

    2017-01-28

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  11. Spatial and temporal expression modes of MicroRNAs in an elite rice hybrid and its parental lines.

    PubMed

    Fang, Ruiqiu; Li, Luoye; Li, Jianxiong

    2013-08-01

    Heterosis is a commonly observed phenomenon in nature and refers to the superior performance of hybrids relative to both parents. The molecular mechanisms of heterosis are mostly unknown. Quantitative trait locus (QTL) mapping has been used to explain the genetic basis of heterosis, and large amounts of QTLs have been mapped for various agronomic traits, but the nature of QTL contributing to heterosis is still enigmatic. MicroRNAs (miRNAs) are master regulators in the processes of plant development and trait performance, and many miRNAs are predicted to reside in QTL intervals. We analyzed the expression modes of miRNAs, which were picked up from miRNA databases and chosen from those predicted from QTL intervals by bioinformatic approaches, in different organs at developmental stages of an elite rice hybrid and its parents. All possible modes of action for miRNA expression were detected, but most miRNAs showed nonadditive mode, and different stages and distinct organs displayed different patterns of miRNA expression. A large proportion of miRNAs were not detected for expression in leaves but expressed in the culms and roots of the hybrid at tillering stage. MiRNAs from grain-weight QTL intervals have multiple effects on grain development. Together, our results reveal that miRNAs, especially those from QTL intervals, play roles in heterotic performance in this elite rice hybrid, our results also shade new light on understanding the molecular mechanisms of heterosis.

  12. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  13. Analysis of the progressive failure of brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.

    1995-01-01

    This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded

  14. Brittle frictional mountain building: 2. Thermal structure and heat budget

    NASA Astrophysics Data System (ADS)

    Barr, Terence D.; Dahlen, F. A.

    1989-04-01

    This paper describes a simple thermal model of an actively deforming critically tapered fold-and-thrust belt. The model determines the steady state temperature distribution and heat flow, as well as the pressure-temperature-time histories of rocks that outcrop at the surface. The main parameters controlling the thermal structure are the accretion and erosion rates, the undisturbed geothermal gradient at the toe, and the amount of frictional heating. Both shear heating on the decollement fault and internal strain heating within the deforming brittle wedge are incorporated in a mechanically consistent manner, and they dominate the effect of radiogenic heating, except in fold-and-thrust belts with significantly overpressured pore fluids. The mean stresses, temperatures, and surface heat flow all increase with an increase in the basal and internal coefficients of friction, and this dependence is used to constrain the level of friction on the decollement fault beneath the steady state fold-and-thrust belt in Taiwan. Rocks outcropping in the core of the Central Mountain Range of Taiwan experience maximum theoretical temperatures in excess of 400° C and maximum mean pressures in excess of 500 MPa if the coefficient of basal friction is μb = 0.5. Qualitatively, these conditions are in good agreement with the observed high greenschist facies metamorphism. The theoretical surface heat flow, which increases from 95 mW/m2 at the front of the fold-and-thrust belt to 240 mW/m2 at the rear, is in excellent agreement with the results of a recent geothermal survey of Taiwan, and theoretical cooling histories are in good agreement with fission track and other geochronologic studies. Taken together, these results provide strong evidence that sliding on the basal decollement fault beneath Taiwan is governed by a coefficient of friction in the range of typical laboratory measurements, μb = 0.5 ± 0.2. Approximately 35% of the total surface heat flux of 3 GW is heat conducted into

  15. Experimental demonstration of a semi-brittle origin for crustal strain transients

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Lavier, L. L.; Hayman, N. W.

    2015-12-01

    Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.

  16. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-01-01

    Background: Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. Methods: The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results: Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). Conclusion: These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies. PMID:26989740

  17. Two brittle ductile transitions in subduction wedges, as revealed by topography

    NASA Astrophysics Data System (ADS)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  18. Shaping a better rice plant.

    PubMed

    Springer, Nathan

    2010-06-01

    Two studies describe how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield. These studies support the possibility of improving rice yield through changing plant architecture.

  19. Ultrastructure of the wild rice Oryza grandiglumis (Gramineae) in Costa Rica.

    PubMed

    Sánchez, Ethel; Quesada, Tania; Espinoza, Ana M

    2006-06-01

    Oryza grandiglumis is a wild species of rice endemic to tropical America. This species was first found in 1998 in the wetlands of Caño Negro, located in the northern part of Costa Rica. Twenty five plants of O. grandiglumis were processed for scanning electron microscope. An ultrastructural description of the leaf blade, ligule, auricles, spikelet and caryopsis, with an emphasis on structures of taxonomic value. The leaf blade has a characteristic cuticular wax pattern, composed of dense rod-like structures, and is surrounded by papillae, zipper-like silica cells, abundant bulky prickle trichomes, and hooked trichomes. The blade's edge has three rows of hooked prickle trichomes of various sizes. The auricles wrapped the culm, with long attenuated trichomes at the edges; the base was surrounded by oblong cells. The ligule is a blunt membrane covered by short prickle trichomes. Spikelet morphology is characteristic of the Poaceae family, but the sterile lemmas were nearly as long as the fertile lemmas, and they have an unique crown-like structure of lignified spines between the rachilla and the fertile lemmas. Comparison with Brazilian specimens of O. grandiglumis revealed little differences in the ultrastructural characteristics.

  20. Quantitative comparisons of analogue models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  1. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.

  2. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  3. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process.

    PubMed

    Contreras, L M; Schelle, H; Sebrango, C R; Pereda, I

    2012-01-01

    Agricultural solid residues are a potential renewable energy source. Rice harvesting and production in Sancti Spíritus province, Cuba, currently generates residues without an environmentally sustainable disposal route. Rice residues (rice straw, rice husk and rice residues from the drying process) are potentially an important carbon source for anaerobic digestion. For this paper, rice residues were placed for 36 days retention time in anaerobic batch reactor environments at both mesophilic (37 °C) and thermophilic (55 °C) conditions. Biogas and methane yield were determined as well as biogas composition. The results showed that rice straw as well as rice residues from the drying process had the highest biogas and methane yield. Temperature played an important role in determining both biogas yield and kinetics. In all cases, rice straw produced the highest yields; under mesophilic conditions the biogas yield was 0.43 m(3) kg(VS)(-1), under thermophilic conditions biogas yield reached 0.52 m(3) kg(VS)(-1). In the case of the rice husk, the biodegradability was very low. Methane content in all batches was kept above 55% vol. All digested material had a high carbon:nitrogen (C:N) ratio, even though significant biodegradation was recorded with the exception of rice husk. A first-order model can be used to describe the rice crop residues fermentation effectively.

  4. Effect of rice variety and nutrient management on rice productivity in organic rice system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for organic rice has been increasing for decades. However, the information on sustainable organic rice production systems is still lacking. The objective of this study was to investigate the effects of soil amendment products, nitrogen rate, and variety on rice grain yield, yield components, ...

  5. An influence of normal stress and pore pressure on the conditions and dynamics of shear crack propagation in brittle solids

    NASA Astrophysics Data System (ADS)

    Shilko, Evgeny V.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-11-01

    The paper is devoted to the study of the influence of crack-normal stress on the shear strength of the brittle material with initial crack and the geometrical condition of acceleration of dynamically growing crack towards the longitudinal wave speed. We considered elastic-brittle permeable materials with nanoscale pore size. We have shown that pore fluid in nanoporous brittle materials influences mainly the condition of shear crack propagation transition from conventional sub-Rayleigh regime to supershear one. The results of the study make it possible to assess the ability of initial cracks in brittle materials to develop in supershear regime under the condition of confined longitudinal shear.

  6. Analytical model of brittle destruction based on hypothesis of scale similarity

    SciTech Connect

    Arakcheev, A. S. Lotov, K. V.

    2012-08-15

    The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refine the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.

  7. Unusual case of globe perforation: the brittle cornea without systemic manifestations.

    PubMed

    Joshi, Shilpa Ajit; Uppapalli, Shalomith; More, Pranav; Deshpande, Madan

    2016-10-07

    Brittle cornea syndrome is a rare generalised connective tissue disorder with ocular features like keratoglobus or keratoconus, severe corneal thinning and a high risk of perforation. Various authors in different case reports and case series have brought out the fact that brittle cornea is a disorder with characteristic systemic manifestations such as deafness, joint hypermobility, hyperelasticity of skin, kyphoscoliosis and dental abnormalities alongwith ophthalmic features. We report a case of globe perforation following trivial trauma, in an individual with brittle cornea without any extraocular manifestations, posing a challenge in the diagnosis and dilemma in surgical repair of cornea, restoration of globe integrity and visual rehabilitation. The absence of systemic manifestations decreased the index of suspicion and led to a surprise in the theatre-a point this case emphasised.

  8. Study on electroplating technology of diamond tools for machining hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue

    2016-10-01

    With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.

  9. Sometimes two arms are enough--an unusual life-stage in brittle stars (Echinodermata: Ophiuroidea).

    PubMed

    Stöhr, Sabine; Alme, Øydis

    2015-08-03

    Off West Africa (Angola-Morocco), benthos samples were collected in the years 2005-2012. These contained 124 specimens of brittle stars with two long arms and three extremely short or absent arms and an elongated, narrow disc. These unusual brittle stars, as well as 33 specimens with five fully developed arms, were identified as Amphiura ungulata. The specimens with unequal arms were juvenile stages, whereas adults had five equal arms. The large number of specimens with unequal arms suggests that this condition is not the result of damage and regeneration, but a normal growth pattern in this species. This study documents the morphology by SEM, amends the species description, and discusses possible explanations for the evolution of this condition. Although brittle star species with unequal arm growth have been reported, this is an extreme case that was unknown before this study.

  10. ADOLESCENT ROMANCE AND DELINQUENCY: A FURTHER EXPLORATION OF HIRSCHI'S "COLD AND BRITTLE" RELATIONSHIPS HYPOTHESIS.

    PubMed

    Giordano, Peggy C; Lonardo, Robert A; Manning, Wendy D; Longmore, Monica A

    2010-11-28

    Hirschi argued that delinquent youth tend to form relatively "cold and brittle" relationships with peers, depicting these youths as deficient in their attachments to others. The current analysis explores connections between delinquency and the character of adolescent romantic ties, drawing primarily on the first wave of the Toledo Adolescent Relationships Study, and focusing on 957 teens with dating experience. We examine multiple relationship qualities/dynamics in order to explore both the "cold" and "brittle" dimensions of Hirschi's hypothesis. Regarding the "cold" assumption, results suggest that delinquency is not related to perceived importance of the romantic relationship, level of intimate self-disclosure or feelings of romantic love, and more delinquent youth actually report more frequent contact with their romantic partners. Analyses focused on two dimensions tapping the "brittle" description indicate that while durations of a focal relationship do not differ according to level of respondent delinquency, more delinquent youths report higher levels of verbal conflict.

  11. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

    NASA Astrophysics Data System (ADS)

    Li, Jie; Huang, Houxu; Wang, Mingyang

    2017-01-01

    In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha (p-α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

  12. Variation of depth to the brittle-ductile transition due to cooling of a midcrustal intrusion.

    USGS Publications Warehouse

    Gettings, M.E.

    1988-01-01

    The depth to the brittle-ductile transition in the crust is often defined by the intersection of a shear resistance relation in the brittle upper crust that increases linearly with depth and a power law relation for ductile flow in the lower crust that depends strongly on T. Transient variation of this depth caused by a magmatic intrusion at a depth near the regional transition can be modelled by a heat conduction model for a rectangular parallelepiped superimposed on a linear geothermal gradient. When parameters appropriate for the southeastern US are used, a moderate-sized intrusion is found to decrease the transition depth by as much as 7 km; significant variations last approx 10 m.y. Since the base of the seismogenic zone is identified with the brittle-ductile transition, these results imply that intrusions of late Tertiary age or younger could be important sources of clustered seismicity. -A.W.H.

  13. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway

    PubMed Central

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Background: Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. Methods: To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. Results: The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Conclusion: Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment. PMID:26605009

  14. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  15. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    NASA Astrophysics Data System (ADS)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  16. How melt stretching affect the brittle-ductile transition temperature of polymer glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Wang, Shi-Qing

    2013-03-01

    Upon increasing temperature a brittle polymer glass can turn ductile. PMMA is a good example. For a while this brittle-ductile transition (BDT) was thought to be determined by the emergence of a secondary relaxation....1-3 On the other hand, it has been known for a long time...4-6 that predeformation in the melt state (e.g., melt stretching) can also make brittle glasses behave in a ductile manner. This transformation has recently received a satisfactory explanation based on a picture of structural hybrid for polymer glasses....7 It appears that BDT is dictated by the relative mechanical characteristics of the primary structure (due to the van der Waals bonds) and the chain network. The present work, based on conventional Instron tensile extension tests and DMA tests, shows that melt stretching does not alter the secondary relaxation behavior of PMMA and PC yet can turn them the brittle PMMA ductile and the ductile PC brittle. Moreover, sufficient melt stretching makes the brittle PS ductile although it does not produce any secondary relaxation process..1. Monnerie, L.; Laupretre, F.; Halary, J. L. Adv. Polym. Sci2005, 187, 35-213. 2. Monnerie, L.; Halary, J. L.; Kausch, H. Adv. Polym. Sci2005, 187, 215-364. 3. Wu, S. J. Appl. Polym. Sci.1992, 46, (4), 619-624. 4. Vincent, P. I. Polymer1960, 1, (0), 425-444. 5. Harris, J. S.; Ward, I. M. J. Mater. Sci.1970, 5, (7), 573-579. 6. Ender, D. H.; Andrews, R. D. J. Appl. Phys.1965, 36, (10), 3057-3062. 7. Zartman, G. D.; Cheng, S.; Li, X.; Lin, F.; Becker, M. L.; Wang, S.-Q. Macromolecules2012, 45, (16), 6719-6732.

  17. Micromechanics-Based Permeability Evolution in Brittle Materials at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Perol, Thibaut; Bhat, Harsha S.

    2016-08-01

    We develop a micromechanics-based permeability evolution model for brittle materials at high strain rates (≥ 100 s^{-1}). Extending for undrained deformation the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, we now relate the damage-induced strains to micro-crack aperture. We then use an existing permeability model to evaluate the permeability evolution. This model predicts both the percolative and connected regime of permeability evolution of Westerly Granite during triaxial loading at high strain rate. This model can simulate pore pressure history during earthquake coseismic dynamic ruptures under undrained conditions.

  18. The width of fault zones in a brittle-viscous lithosphere: Strike-slip faults

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1991-01-01

    A fault zone in an ideal brittle material overlying a very weak substrate could, in principle, consist of a single slip surface. Real fault zones have a finite width consisting of a number of nearly parallel slip surfaces on which deformation is distributed. The hypothesis that the finite width of fault zones reflects stresses due to quasistatic flow in the ductile substrate of a brittle surface layer is explored. Because of the simplicity of theory and observations, strike-slip faults are examined first, but the analysis can be extended to normal and thrust faulting.

  19. Nuclear and Chloroplast DNA Variation Provides Insights into Population Structure and Multiple Origin of Native Aromatic Rices of Odisha, India

    PubMed Central

    Roy, Pritesh Sundar; Rao, Gundimeda Jwala Narasimha; Patnaik, Ashok; Patnaik, Sasank Sekhar Chyau; Jambhulkar, Nitiprasad Namdeorao; Sharma, Srigopal; Mohapatra, Trilochan

    2016-01-01

    A large number of short grain aromatic rice suited to the agro-climatic conditions and local preferences are grown in niche areas of different parts of India and their diversity is evolved over centuries as a result of selection by traditional farmers. Systematic characterization of these specialty rices has not been attempted. An effort was made to characterize 126 aromatic short grain rice landraces, collected from 19 different districts in the State of Odisha, from eastern India. High level of variation for grain quality and agronomic traits among these aromatic rices was observed and genotypes having desirable phenotypic traits like erect flag leaf, thick culm, compact and dense panicles, short plant stature, early duration, superior yield and grain quality traits were identified. A total of 24 SSR markers corresponding to the hyper variable regions of rice chromosomes were used to understand the genetic diversity and to establish the genetic relationship among the aromatic short grain rice landraces at nuclear genome level. SSR analysis of 126 genotypes from Odisha and 10 genotypes from other states revealed 110 alleles with an average of 4.583 and the Nei’s genetic diversity value (He) was in the range of 0.034–0.880 revealing two sub-populations SP 1 (membership percentage-27.1%) and SP 2 (72.9%). At the organelle genomic level for the C/A repeats in PS1D sequence of chloroplasts, eight different plastid sub types and 33 haplotypes were detected. The japonica (Nipponbare) subtype (6C7A) was detected in 100 genotypes followed by O. rufipogon (KF428978) subtype (6C6A) in 13 genotypes while indica (93–11) sub type (8C8A) was seen in 14 genotypes. The tree constructed based on haplotypes suggests that short grain aromatic landraces might have independent origin of these plastid subtypes. Notably a wide range of diversity was observed among these landraces cultivated in different parts confined to the State of Odisha. PMID:27598392

  20. Organic Rice Production: Challenges and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has grown steadily with the majority of the acreage now being located in Texas and California. A wide range of organic products are marketed including conventional long and medium grain rice, aromatic or scented rice, rice with colored bran, and rice f...

  1. Rice: chemistry and technology.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice has taken center stage this last decade, not only as an important provider of nourishment for the world’s population, but as a grain now recognized as having many unique nutritional and functional attributes with potential to be captured in a multitude of value-added food and non-food applicati...

  2. Rice bran phytonutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bran layer of the whole grain rice contains potential health-beneficial compounds. These include vitamin E homologs (tocopherols, tocotrienols), oryzanol fractions, simple phenolics and poly-phenolics. These are antioxidants that are believed to provide protection against diseases such as cancer...

  3. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  4. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  5. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  6. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  7. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  8. Rice Glycosyltransferase (GT) Phylogenomic Database

    DOE Data Explorer

    Ronald, Pamela

    The Ronald Laboratory staff at the University of California-Davis has a primary research focus on the genes of the rice plant. They study the role that genetics plays in the way rice plants respond to their environment. They created the Rice GT Database in order to integrate functional genomic information for putative rice Glycosyltransferases (GTs). This database contains information on nearly 800 putative rice GTs (gene models) identified by sequence similarity searches based on the Carbohydrate Active enZymes (CAZy) database. The Rice GT Database provides a platform to display user-selected functional genomic data on a phylogenetic tree. This includes sequence information, mutant line information, expression data, etc. An interactive chromosomal map shows the position of all rice GTs, and links to rice annotation databases are included. The format is intended to "facilitate the comparison of closely related GTs within different families, as well as perform global comparisons between sets of related families." [From http://ricephylogenomics.ucdavis.edu/cellwalls/gt/genInfo.shtml] See also the primary paper discussing this work: Peijian Cao, Laura E. Bartley, Ki-Hong Jung and Pamela C. Ronalda. Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases. Molecular Plant, 2008, 1(5): 858-877.

  9. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.

    PubMed

    Wang, Huadun; Sun, Rui; Cao, Yue; Pei, Wenxia; Sun, Yafei; Zhou, Hongmin; Wu, Xueneng; Zhang, Fang; Luo, Le; Shen, Qirong; Xu, Guohua; Sun, Shubin

    2015-12-01

    SIZ1-mediated SUMOylation regulates hormone signaling as well as abiotic and biotic stress responses in plants. Here, we investigated the expression profile of OsSIZ1 in rice using quantitative reverse transcription-PCR (qRT-PCR) and pOsSIZ1-GUS transgenic plants, and the function of OsSIZ1 in the responses to phosphate and nitrogen using a reverse genetics approach. OsSIZ1 is constitutively expressed throughout the vegetative and reproductive growth of rice, with stronger promoter activities in vascular bundles of culms. ossiz1 mutants had shorter primary roots and adventitious roots than wild-type plants, suggesting that OsSIZ1 is associated with the regulation of root system architecture. Total phosphorus (P) and phosphate (Pi) concentrations in both roots and shoots of ossiz1 mutants were significantly increased irrespective of Pi supply conditions compared with the wild type. Pi concentration in the xylem sap of ossiz1 mutants was significantly higher than that of the wild type under a Pi-sufficient growth regime. Total nitrogen (N) concentrations in the most detected tissues of ossiz1 mutants were significantly increased compared with the wild type. Analysis of mineral contents in ossiz1 mutants indicated that OsSIZ1 functions specifically in Pi and N responses, not those of other nutrients examined, in rice. Further, qRT-PCR analyses revealed that the expression of multiple genes involved in Pi starvation signaling and N transport and assimilation were altered in ossiz1 mutants. Together, these results suggested that OsSIZ1 may act as a regulator of the Pi (N)-dependent responses in rice.

  10. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    SciTech Connect

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was {minus}5{degree}F and, with the addition of a 30{degree}F safety factor, the minimum safe operating temperature was determined to be 25{degree}F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50{degree}F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

  11. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    SciTech Connect

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was [minus]5[degree]F and, with the addition of a 30[degree]F safety factor, the minimum safe operating temperature was determined to be 25[degree]F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50[degree]F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

  12. Posterior tunica vasculosa lentis and "brittle star" of persistent fetal vasculature.

    PubMed

    Pellegrini, Marco; Shields, Carol L; Arepalli, Sruthi; Shields, Jerry A

    2014-11-19

    A 17-month-old girl referred for a suspected ciliary body medulloepithelioma was found to have persistent fetal vasculature. Fluorescein angiography showed perfused hyaloid artery posterior tunica vasculosa lentis with brittle star appearance and nonperfused anterior pupillary membrane. Ultrasound biomicroscopy confirmed absence of iris or ciliary body solid tumor.

  13. Development of material model for assessment of brittle cracking behavior of plexiglas

    NASA Astrophysics Data System (ADS)

    Khan, A. J.; Iqbal, N.; Saeed, H. A.; Tarar, W. A.

    2016-08-01

    The objective of this study is to investigate the brittle cracking behavior of Plexiglas material when subjected to indentation loading. Indentation tests were conducted on Modified Vickers testing machine to acquire the experimental data in the form of load-displacement curve. Several mechanical properties such as hardness, yielding stress and fracture toughness have been ascertained from the analysis of the experimental data. The experimental data then used to create a mathematical model of Plexiglas for its brittle cracking behavior with indentation loading. Furthermore, a numerical simulation based study was carried out to simulate the brittle cracking in Plexiglas plate when subjected to indentation loading. The simulations were performed in the FE solver Abaqus. The brittle cracking model in Abaqus/Explicit is used which determines the required force and displacement to produce crack in Plexiglas. Finally a comparison of simulation results was made to the experimental data to validate the FEA procedures and accuracy of predictions. The numerical predictions of load-displacement curve found remarkably consistent with experimental results.

  14. The effect of crack instability/stability on fracture toughness of brittle materials

    SciTech Connect

    Baratta, F.I.

    1997-12-31

    This paper summarizes three recent experimental works coauthored by the present author regarding the effect of crack instability/stability on fracture toughness, and also includes the necessary formulae for predicting stability. Two recent works have shown that unstable crack extension resulted in apparent increases in fracture toughness compared to that determined during stable crack growth. In the first investigation a quasi-brittle polymer, polymethylmethacrylate, was examined. In the second, a more brittle metallic material, tungsten, was tested. In both cases the transition from unstable to stable behavior was predicted based on stability analyses. The third investigation was conducted on a truly brittle ceramic material, hot pressed silicon nitride. These three papers showed that fracture toughness test results conducted on brittle materials vary according to whether the material fractures in an unstable or stable manner. Suggestions for achieving this important yet difficult phenomenon of stable crack growth, which is necessary when determining the fracture toughness variation occurring during unstable/stable crack advance, are presented, as well as recommendations for further research.

  15. Children with Brittle Bones: An Examination of Their Educational Needs and Progress.

    ERIC Educational Resources Information Center

    Alston, Jean

    1983-01-01

    A study of the educational achievements of 40 children (5-16 years old) with osteogenesis imperfecta, brittle bone disease, revealed no differences between Ss and control Ss without the condition in terms of nonverbal intelligence. Differences were found, however, in writing speed. Inteviews with children, teachers, and parents revealed…

  16. A statistical, micromechanical theory of the compressive strength of brittle materials

    NASA Technical Reports Server (NTRS)

    Adams, M.; Sines, G.

    1978-01-01

    A general theory of the compressive strength of brittle materials is presented. This theory proposes that failure is brought about by structural weakening from accumulated crack damage which increases with the stress level. The statistics of the flaw distribution and the mechanism of crack initiation and extension are important. A sample calculation using the theory is given to demonstrate its application

  17. Brittle fracture phase-field modeling of a short-rod specimen

    SciTech Connect

    Escobar, Ivana; Tupek, Michael R.; Bishop, Joseph E.

    2015-09-01

    Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.

  18. Mutation of the Rice Narrow leaf1 Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport1[OA

    PubMed Central

    Qi, Jing; Qian, Qian; Bu, Qingyun; Li, Shuyu; Chen, Qian; Sun, Jiaqiang; Liang, Wenxing; Zhou, Yihua; Chu, Chengcai; Li, Xugang; Ren, Fugang; Palme, Klaus; Zhao, Bingran; Chen, Jinfeng; Chen, Mingsheng; Li, Chuanyou

    2008-01-01

    The size and shape of the plant leaf is an important agronomic trait. To understand the molecular mechanism governing plant leaf shape, we characterized a classic rice (Oryza sativa) dwarf mutant named narrow leaf1 (nal1), which exhibits a characteristic phenotype of narrow leaves. In accordance with reduced leaf blade width, leaves of nal1 contain a decreased number of longitudinal veins. Anatomical investigations revealed that the culms of nal1 also show a defective vascular system, in which the number and distribution pattern of vascular bundles are altered. Map-based cloning and genetic complementation analyses demonstrated that Nal1 encodes a plant-specific protein with unknown biochemical function. We provide evidence showing that Nal1 is richly expressed in vascular tissues and that mutation of this gene leads to significantly reduced polar auxin transport capacity. These results indicate that Nal1 affects polar auxin transport as well as the vascular patterns of rice plants and plays an important role in the control of lateral leaf growth. PMID:18562767

  19. Accelerated Solvent Extraction of Insecticides from Rice Hulls, Rice Bran, and Polished Rice Grains.

    PubMed

    Teló, Gustavo Mack; Senseman, Scott Allen; Marchesan, Enio; Camargo, Edinalvo Rabaioli; Carson, Katherine

    2017-03-01

    Analysis of pesticide residues in irrigated rice grains is important for food security. In this study, we analyzed accelerated solvent extraction (ASE) conditions for the extraction of thiamethoxam and chlorantraniliprole insecticides from rice hulls, rice bran, and polished rice grains. Several variables, including extraction solvent, extraction temperature, extraction pressure, cell size, static extraction time, and sample concentration, were investigated. The average recoveries of the three matrixes were between 89.7 and 109.7% at the fortification level of 0.75 mg/kg. The optimum ASE operating conditions were acetonitrile (100%) as extraction solvent, extraction temperature of 75°C for rice hulls and 100°C for rice bran and polished rice grains, extraction cell pressure of 10.3 MPa, 22 mL cell size, and two extraction cycles. The total extraction time was approximately 25 min. The extracted volume was evaporated to dryness and the residues were redissolved in 2 mL acetonitrile after 1 min of vortex-shaking. Thiamethoxam and chlorantraniliprole were analyzed by ultra-HPLC with tandem MS. In conclusion, ASE in rice hulls, rice bran, and polished rice grains offers the possibility of a fast and simple method for obtaining a quantitative extraction of the studied pesticides.

  20. Role of fluid overpressures in crustal strength and the form of the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Suppe, J.

    2014-12-01

    The classic crustal strength-depth model of Brace and Kolhstedt (1980) (see figure) based on experimental rock mechanics depends in the brittle regime on the critical assumption of linearly increasing hydrostatic pore-fluid pressures. This leads to a predicted linearly increasing brittle strength that is well established based on deep borehole stress measurements in crystalline crust. In contrast, fluid overpressures are widely documented in orogenic belts based on borehole data, seismic velocity analysis and analysis of veins, in some cases showing complex fault-valve pressure fluctuations between lithostatic and hydrostatic. Typical observed overpressure-depth relationships predict a brittle crustal strength that is approximately constant with depth in contrast with the classic model. This constant-strength behavior below the fluid-retention depth (ZFRD in figure) has been confirmed using deep borehole stress and fluid-pressure measurements (Suppe, 2014). Recent ductile-plastic modeling of disequilibrium compaction suggests that pressure solution promotes further increases in overpressure and weakening, promoting a very prolonged low-strength brittle-ductile transition. Overpressured conditions can be inferred to exist over a substantial fraction of crustal thickness, spanning the brittle-ductile transition, in several tectonic environments, most straightforwardly in shale-rich clastic sedimentary basins built to sea level on oceanic or highly thinned continental crust such as the US Gulf Coast and Niger Delta. These thick accumulations commonly deform into shale-rich plate boundary mountain belts (e.g. Bangladesh/Miyanmar, Makran, Trinidad/Barbados, Gulf of Alaska, southern Taiwan and New Zealand). There is deep geophysical evidence for near lithostatic pore-fluid pressures existing to depths of 20-30km based on Vp, Vs, Vp/Vs and Q observations. We present active examples from Taiwan and New Zealand, combining borehole data and seismic tomography.

  1. Predicting brittle zones in the Bakken Formation using well logs and seismic data

    NASA Astrophysics Data System (ADS)

    Beecher, Michael E.

    The oil-in-place estimate for the Bakken Formation has varied from 10 billion barrels in 1974 to 503 billion barrels in 1999. However, only a small fraction of this estimate is recoverable due to the formation having very low porosity and permeability. Implementation of hydraulic fracture stages along horizontal wells in the Bakken has been productive. Recently, identification of zones where the formation is brittle has been used to improve hydraulic fracture stimulation efficiency in an effort to improve production. The first goal for this thesis is to identify a correlation between brittleness and production data by using elastic moduli and normalized production values. The hypothesis for this study is that rock with a low Poisson's ratio and high Young's modulus will be more brittle and will ultimately produce a higher amount of oil than more ductile rock. The next goal was to create and test a method to identify brittle zones with high normalized production in a 3D seismic data set without well control using producing wells from outside the survey with dipole sonic logs from the Bakken Formation. Correlations between normalized production values and elastic moduli were subsequently identified. Cumulative first-four-months' production was found to have the best correlation to the elastic moduli. Correlations of normalized production values and Poisson's ratio showed that sections of the middle Bakken with low Poisson's ratio yield higher normalized production values. Correlations of Young's modulus and normalized production showed that middle Bakken zones with low Young's modulus have higher normalized production values. However, when using additional wells that were not used for well-to-3D seismic correlations, the correlation shows that higher Young's modulus yield higher normalized production. The correlation with additional wells best represented the data and agrees with the initial hypothesis. Brittle zones were mapped in a 3D seismic data set by

  2. Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Huang, Yan-Hua; Ranjith, P. G.; Jiao, Yu-Yong; Ji, Jian

    2015-12-01

    Based on experimental results of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC^{2D}). Then, the validation of the simulated models were cross checked with the experimental results of brittle sandstone containing three parallel fissures under uniaxial compression. The simulated results agreed very well with the experimental results, including the peak strength, peak axial strain, and ultimate failure mode. Using the same micro-parameters, the numerical models containing a new geometry of three fissures are constructed to investigate the fissure angle on the fracture mechanical behavior of brittle sandstone under uniaxial compression. The strength and deformation parameters of brittle sandstone containing new three fissures are dependent to the fissure angle. With the increase of the fissure angle, the elastic modulus, the crack damage threshold, and the peak strength of brittle sandstone containing three fissures firstly increase and secondly decrease. But the peak axial strain is nonlinearly related to the fissure angle. In the entire process of deformation, the crack initiation and propagation behavior of brittle sandstone containing three fissures under uniaxial compression are investigated with respect to the fissure angle. Six different crack coalescence modes are identified for brittle sandstone containing three fissures under uniaxial compression. The influence of the fissure angle on the length of crack propagation and crack coalescence stress is evaluated. These investigated conclusions are very important for ensuring the stability and safety of rock engineering with intermittent structures.

  3. Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice.

    PubMed

    Wang, Nan; Xing, Yadi; Lou, Qijin; Feng, Ping; Liu, Song; Zhu, Meidan; Yin, Wuzhong; Fang, Shunran; Lin, Yan; Zhang, Tianquan; Sang, Xianchun; He, Guanghua

    2017-02-01

    Plant hormones coordinate a plant's responses to environmental stimuli and the endogenous developmental programs for cell division and elongation. Brassinosteroids are among the most important of these hormones in plant development. Recently, the ubiquitin-26S-proteasome system was identified to play a key role in hormone biology. In this study, we analyzed the function of a rice (Oryza sativa) gene, DSG1, which encodes a U-box E3 ubiquitin ligase. In the dsg1 mutant (an allelic mutant of tud1), the lengths of the roots, internodes, panicles, and seeds were shorter than that in the wild-type, which was due to defects in cell division and elongation. In addition, the leaves of the dsg1 mutant were wider and curled. The DSG1 protein is nuclear- and cytoplasm-localized and does not show tissue specificity in terms of its expression, which occurs in roots, culms, leaves, sheaths, and spikelets. The dsg1 mutant is less sensitive to brassinosteroid treatment than the wild-type, and DSG1 expression is negatively regulated by brassinosteroids, ethylene, auxin, and salicylic acid. These results demonstrate that DSG1 positively regulates cell division and elongation and may be involved in multiple hormone pathways.

  4. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  5. Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Baud, Patrick; Vinciguerra, Sergio; Wong, Teng-Fong

    2011-06-01

    An understanding of how tuff deforms and fails is of importance in the mechanics of volcanic eruption as well as geotechnical and seismic applications related to the integrity of tuff structures and repositories. Previous rock mechanics studies have focused on the brittle strength. We conducted mechanical tests on nominally dry and water-saturated tuff samples retrieved from the Colli Albani drilling project, in conjunction with systematic microstructural observations on the deformed samples so as to elucidate the micromechanics of brittle failure and inelastic compaction. The phenomenological behavior was observed to be qualitatively similar to that in a porous sedimentary rock. Synthesizing published data, we observe a systematic trend for both uniaxial compressive strength and pore collapse pressure of nonwelded tuff to decrease with increasing porosity. To interpret the compaction behavior in tuff, we extended the cataclastic pore collapse model originally formulated for a porous carbonate rock to a dual porosity medium made up of macropores and micropores or microcracks.

  6. Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff

    NASA Astrophysics Data System (ADS)

    Baud, P.; Zhu, W.; Vinciguerra, S.; Wong, T.

    2010-12-01

    An understanding of how tuff deforms and fails is of importance in the mechanics of volcanic eruption, as well as geotechnical and seismic applications related to the integrity of tuff structures and repositories. Previous rock mechanics studies have focused on the brittle strength. We conducted mechanical tests on nominally dry and water-saturated tuff samples retrieved from the Colli Albani drilling project, in conjunction with systematic microstructural observations on the deformed samples so as to elucidate the micromechanics of brittle failure and inelastic compaction. The phenomenological behavior was observed to be qualitatively similar to that in a porous sedimentary rock. Synthesizing published data, we observe a systematic trend for both uniaxial compressive strength and pore collapse pressure of nonwelded tuff to decrease with increasing porosity. To interpret the compaction behavior in tuff, we extended the cataclastic pore collapse model originally formulated for a porous carbonate rock to a dual porosity medium made up of macropores and micropores or microcracks.

  7. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    NASA Astrophysics Data System (ADS)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  8. Overcoming the brittleness of glass through bio-inspiration and micro-architecture.

    PubMed

    Mirkhalaf, M; Dastjerdi, A Khayer; Barthelat, F

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  9. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    PubMed

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  10. Semi-brittle rheology and ice dynamics in DynEarthSol3D

    NASA Astrophysics Data System (ADS)

    Logan, Liz C.; Lavier, Luc L.; Choi, Eunseo; Tan, Eh; Catania, Ginny A.

    2017-01-01

    We present a semi-brittle rheology and explore its potential for simulating glacier and ice sheet deformation using a numerical model, DynEarthSol3D (DES), in simple, idealized experiments. DES is a finite-element solver for the dynamic and quasi-static simulation of continuous media. The experiments within demonstrate the potential for DES to simulate ice failure and deformation in dynamic regions of glaciers, especially at quickly changing boundaries like glacier termini in contact with the ocean. We explore the effect that different rheological assumptions have on the pattern of flow and failure. We find that the use of a semi-brittle constitutive law is a sufficient material condition to form the characteristic pattern of basal crevasse-aided pinch-and-swell geometry, which is observed globally in floating portions of ice and can often aid in eroding the ice sheet margins in direct contact with oceans.

  11. Linking Nanoscales and Dislocation Shielding to the Ductile-Brittle Transition of Silicon

    NASA Astrophysics Data System (ADS)

    Hintsala, Eric; Teresi, Claire; Gerberich, William W.

    2016-12-01

    The ductile-brittle transition of nano/microscale silicon is explored at low-temperature, high stress conditions. A pathway to eventual mechanism maps describing this ductile-brittle transition behavior using sample size, strain rate, and temperature is outlined. First, a discussion of variables controlling the BDT in silicon is given and discussed in the context of development of eventual modeling that could simultaneously incorporate all their effects. For description of energy dissipation by dislocation nucleation from a crack tip, three critical input parameters are identified: the effective stress, activation volume, and activation energy for dislocation motion. These are discussed individually relating to the controlling variables for the BDT. Lastly, possibilities for measuring these parameters experimentally are also described.

  12. Micromechanics based permeability evolution in brittle materials at high strain rates

    NASA Astrophysics Data System (ADS)

    Perol, T.; Bhat, H.

    2013-12-01

    We develop a micro-mechanics based permeability evolution model for brittle materials that are strain rate sensitive. Extending the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, developed by Bhat et al. (2012) we now relate the damage related strains (plastic strains) to calculate the evolution of micro-crack aperture. We then use the permeability model developed by Gueguen and Dienes (1989) and Simpson et al. (2001) to evaluate the permeability evolution. Permeability evolution computed using this model is shown to be in very good agreement with experimental results. Pore pressure evolution in a damaged medium, due to waste water injection for example, is then computed and we show that spatially variable permeability plays a major role in determining the pore pressure excess in the surrounding medium.

  13. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    NASA Astrophysics Data System (ADS)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  14. Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals

    SciTech Connect

    Sinha, Tanushree; Kulkarni, Yashashree

    2014-11-14

    Nanotwinned metals have opened exciting avenues for the design of high strength and high ductility materials. In this work, we investigate crack propagation along coherent twin boundaries in nanotwinned metals using molecular dynamics. Our simulations reveal that alternating twin boundaries exhibit intrinsic brittleness and ductility owing to the opposite crystallographic orientations of the adjoining twins. This is a startling consequence of the directional anisotropy of an atomically sharp crack along a twin boundary that favors cleavage in one direction and dislocation emission from the crack tip in the opposite direction. We further find that a blunt crack exhibits ductility in all cases albeit with very distinct deformation mechanisms and yield strength associated with intrinsically brittle and ductile coherent twin boundaries.

  15. Forming of Brittle Materials—A New and Valuable Application of Diode Lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Bammer, F.; Schumi, T.; Holzinger, B.

    2010-10-01

    Laser assisted bending is a new and versatile method to allow simple bending of brittle materials. Laser technology is used to illuminate and heat the forming zone. Only a laser allows directing the power on a narrow area. Further there is no unnecessary heating of other parts of the bending equipment, no wear of the tool and, if properly done, no damage of the surface of the metal. We describe now the integration of 200 W-diode-laser-bars on micro-channel coolers that where installed into the lower tool of the bending press. The solution allows any required bending length by a combination of several bending tools with integrated lasers. The optical power of 16 kW per meter bending length allows achieving the temperature necessary to bend brittle sheet metals within seconds.

  16. Crack Arrest in Brittle Ceramics Subjected to Thermal Shock and Ablation

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Wei; Yu, He-Long; Tang, Hong-Xiang; Feng, Xue

    2014-09-01

    Ceramics are suitable for high temperature applications, especially for aerospace materials. When serving in high temperature environments, ceramics usually have to deal with the challenge of both thermal shock and ablation. We report the crack arrest in brittle ceramics during thermal shock and ablation. In our experiment, the specimens of Al2O3 are subjected to oxygen-propane flame heating until the temperature arises up to 1046°C and then are cooled down in air. The crack occurs, however, it does not propagate when arrested by the microstructures (e.g., micro-bridges) of the crack tip. Such micro-bridge enhances the toughness of the brittle ceramics and prevents the crack propagation, which provides a hint for design of materials against the thermal shock.

  17. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-08-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ~4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals--dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices.

  18. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  19. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale

    NASA Astrophysics Data System (ADS)

    Perez Altimar, Roderick

    Brittleness is a key characteristic for effective reservoir stimulation and is mainly controlled by mineralogy in unconventional reservoirs. Unfortunately, there is no universally accepted means of predicting brittleness from measures made in wells or from surface seismic data. Brittleness indices (BI) are based on mineralogy, while brittleness average estimations are based on Young's modulus and Poisson's ratio. I evaluate two of the more popular brittleness estimation techniques and apply them to a Barnett Shale seismic survey in order to estimate its geomechanical properties. Using specialized logging tools such as elemental capture tool, density, and P- and S wave sonic logs calibrated to previous core descriptions and laboratory measurements, I create a survey-specific BI template in Young's modulus versus Poisson's ratio or alternatively lambdarho versus murho space. I use this template to predict BI from elastic parameters computed from surface seismic data, providing a continuous estimate of BI estimate in the Barnett Shale survey. Extracting lambdarho-murho values from microseismic event locations, I compute brittleness index from the template and find that most microsemic events occur in the more brittle part of the reservoir. My template is validated through a suite of microseismic experiments that shows most events occurring in brittle zones, fewer events in the ductile shale, and fewer events still in the limestone fracture barriers. Estimated ultimate recovery (EUR) is an estimate of the expected total production of oil and/or gas for the economic life of a well and is widely used in the evaluation of resource play reserves. In the literature it is possible to find several approaches for forecasting purposes and economic analyses. However, the extension to newer infill wells is somewhat challenging because production forecasts in unconventional reservoirs are a function of both completion effectiveness and reservoir quality. For shale gas reservoirs

  20. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    SciTech Connect

    Wang, Haoran; Chew, Huck Beng; Wang, Xueju; Xia, Shuman

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  1. Brittle-fault deformation history in the NW Himalaya (Himachal Pradesh, India)

    NASA Astrophysics Data System (ADS)

    Hintersberger, E.; Decker, K.; Thiede, R.; Strecker, M.

    2009-04-01

    The Himalayan mountain belt and the Tibetan Plateau are the manifestations of intense crustal shortening and uplift along the southern margin of Eurasia associated with the India-Eurasia collision. While crustal shortening has been focused at lower elevations until the present day along the southern boundary of the Lesser Himalaya and the Siwalik ranges, several generations of both, orogen-parallel and orogen-perpendicular extensional structures have developed. These structures characterize the higher-elevation regions within the Higher and Tethyan Himalaya, suggesting syntectonic extension. In the NW Himalaya (India), extending from the deeply cut gorges of the Sutlej and Spiti rivers to the Garhwal Himalaya, closely spaced young normal faults, focal mechanisms of earthquakes with magnitudes between 5.2 and 6.8, and regional GPS measurements reveal ongoing E-W extension. Surprisingly, and in contrast to other extensional features observed in the Himalaya, this direction is neither parallel nor perpendicular to the NE-SW regional shortening direction. Here, we present new data obtained from structural geological mapping, fault kinematic analysis of hundreds of brittle faults, and remote sensing spanning the area between the Tso Morari Lake in the Tibetan Himalaya in the north and the mountain front in the Garhwal Himalaya in the south (30°-33°N/77°-79°E). In addition, we integrated published data on extensional phenomena in this region of the Himalaya. In the Garhwal Himalaya and the Sutlej-Spiti region, we collected and analyzed outcrop-scale brittle fault-planes with displacements of up to several cm. To analyze fault kinematic data (strike and dip of the fault, slip direction and sense of slip) for these micro-faults, we calculated strain axes for approx. 100 outcrop locations using the TectonicsFP program. This data set, as well as field observations on crosscutting relationships, mineralization of fault planes, and correlations with deformation structures

  2. On the brittle-ductile behavior of iron meteorites - New experimental constraints

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Schultz, P. H.

    1984-01-01

    Impact trials were performed at the NASA vertical gun range to study low-temperature brittle-ductile transitions in meteoritic, steel and iron targets. The trials were performed to enhance the data base underlying the concept of formation of planetesimals in collisional coagulation. Impact velocities of 1.6-5.5 km/sec were used, as were temperatures from 100-300 K. Spallation was observed in the tests with meteorite samples, even at room temperature, and brittleness was enhanced at temperature below 200 C. Net mass losses were induced at the higher impact velocities. It is suggested that iron meteorite agglomerations could form in the inner solar region during nebular condensation, but would not form in farther-out regions such as the asteroid belt. The protoplanets could have an iron core, with metallicity decreasing with radius from the core, which may have happened with the earth.

  3. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  4. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  5. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  6. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  7. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  8. Determination of the Ductile to Brittle Transition Temperature of Platinum-Aluminide Gas Turbine Blade Coatings

    DTIC Science & Technology

    1985-09-01

    to brittle transition temperature (DBTT) of five basic platinum- aluminide gas turbine blade coatings on a nickel-base superalloy (IN738). The results...gas turbine blade coatings on a nickel-base superalloy (IN738). The results of these tests were compared to similarly formed nickel- aluminide coatings ... aluminide coating became more widely used, it -°j.established itself as an excellent life extender for most superalloy blade materials. However, as

  9. Contact mechanics at nanometric scale using nanoindentation technique for brittle and ductile materials.

    PubMed

    Roa, J J; Rayon, E; Morales, M; Segarra, M

    2012-06-01

    In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.

  10. Controlling factors for the brittle-to-ductile transition in tungsten single crystals

    PubMed

    Gumbsch; Riedle; Hartmaier; Fischmeister

    1998-11-13

    Materials performance in structural applications is often restricted by a transition from ductile response to brittle fracture with decreasing temperature. This transition is currently viewed as being controlled either by dislocation mobility or by the nucleation of dislocations. Fracture experiments on tungsten single crystals reported here provide evidence for the importance of dislocation nucleation for the fracture toughness in the semibrittle regime. However, it is shown that the transition itself, in general, is controlled by dislocation mobility rather than by nucleation.

  11. Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report

    SciTech Connect

    Gerberich, W.W.

    1997-01-01

    The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin film fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.

  12. Permeability and mechanical behavior of carbonates during semi-brittle flow

    NASA Astrophysics Data System (ADS)

    Slim, Mirna; Evans, Brian

    2010-05-01

    Permeability and mechanical behavior of carbonates during semi-brittle flow Mirna Slim and Brian Evans, Department of Earth, Atmospheric, and Planetary Sciences, Mass. Inst. Tech., Cambridge, MA 02139, USA In both natural and engineering conditions, carbonate rocks exhibit deformation modes ranging from localized brittle fracture to non-localized plastic flow, depending on overburden pressure, deviatoric stress, temperature, strain-rate, pore geometry, and the pressure and chemistry of the pore-fluid. At relatively low temperatures and confinement, the strength of low porosity carbonates is relatively rate-insensitive, even the deformation mechanism include a mixture of twinning, slip, and local cataclasis, and brittle fracture is generally accompanied by dilatancy and permeability enhancement. But, in rocks with even modest porosity, non-localized flow can induce transitions from brittle fracture to compactive flow, and thus, permeability may either decrease with further straining. As temperature is elevated, variations in temperature, strain rate, and pore fluid chemistry also affect the yield stress, the strain to failure, and the ultimate failure strength. For example in Solnhofen limestone, the stress required for the inception of dilatancy and localization decreases considerably when samples are saturated with water. Even when temperature, pressure and strain rate are such that deformation is accommodated by an increasingly large proportion of crystal plastic processes, carbonates with small amounts of porosity still exhibit a double-surface yield cap. When subjected to triaxial deformation at elevated temperatures, calcite-quartz aggregates with porosity of 20% or less exhibit shear-enhanced compaction. Interestingly and somewhat counter to intuition, the permeability of these rocks deforming under triaxial loads was not as sensitive to porosity changes as that for the same material during isostatic compaction. In addition, the percolation threshold for the

  13. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  14. Brittle-to-quasibrittle transition in bundles of nonlinear elastic fibers

    NASA Astrophysics Data System (ADS)

    Roy, Chandreyee; Manna, S. S.

    2016-09-01

    Properties of the fiber bundle model have been studied using equal load-sharing dynamics where each fiber obeys a nonlinear stress (s )-strain (x ) characteristic function s =G (x ) till its breaking threshold. In particular, four different functional forms have been studied: G (x ) =eα x , 1 +xα , xα, and x eα x where α is a continuously tunable parameter of the model in all cases. Analytical studies, supported by extensive numerical calculations of this model, exhibit a brittle to quasibrittle phase transition at a critical value of αc only in the first two cases. This transition is characterized by the weak power law modulated logarithmic (brittle) and logarithmic (quasibrittle) dependence of the relaxation time on the two sides of the critical point. Moreover, the critical load σc(α ) for the global failure of the bundle depends explicitly on α in all cases. In addition, four more cases have also been studied, where either the nonlinear functional form or the probability distribution of breaking thresholds has been suitably modified. In all these cases similar brittle to quasibrittle transitions have been observed.

  15. A study of fracture in brittle laminar composites that contain weak interlayers

    NASA Astrophysics Data System (ADS)

    Scott, Colin Stuart

    Ceramics have material properties that make them useful for many industrial applications. They are strong, hard, and chemically inert. Their refractoriness gives them an advantage over metals and polymers for use at high temperature. Unfortunately, the inherent brittleness of ceramics limits their use in structural applications. One way to improve the toughness of ceramics is to combine them with other materials to make composites. The correct combination of materials can lead to synergism, and a significant improvement in properties. In this work, brittle laminates that contain weak interlayers are considered. The weak interlayers lead to crack deflection, and can result in non-catastrophic failure of the material. The requirements for consistent crack deflection and non-catastrophic failure are not fully understood. This work is an attempt to explain the observed fracture behaviour in brittle laminar composites that contain weak interlayers. A combination of experimental work, fracture mechanics modeling and finite element modeling has been used to predict the requirements necessary for non-catastrophic failure. The work shows the size of flaws in the surface of the composite, in the weak interlayer, and in subsequent strong layers in the material, all play an important role in the fracture behaviour. Control and understanding of the effect of the various flaw sizes can be used to achieve non-catastrophic failure and increased work of fracture in these composites.

  16. Brittleness index calculation and evaluation for CBM reservoirs based on AVO simultaneous inversion

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Dong, Shouhua; Huang, Yaping; Wang, Haolong; Chen, Guiwu

    2016-11-01

    In this paper, a new approach is proposed for coalbed methane (CBM) reservoir brittleness index (BI) calculations. The BI, as a guide for fracture area selection, is calculated by dynamic elastic parameters (dynamic Young's modulus Ed and dynamic Poisson's ratio υd) obtained from an amplitude versus offset (AVO) simultaneous inversion. Among the three different classes of CBM reservoirs distinguished on the basis of brittleness in the theoretical part of this study, class I reservoirs with high BI values are identified as preferential target areas for fracturing. Therefore, we derive the AVO approximation equation expressed by Ed and υd first. This allows the direct inversion of the dynamic elastic parameters through the pre-stack AVO simultaneous inversion, which is based on Bayes' theorem. Thereafter, a test model with Gaussian white noise and a through-well seismic profile inversion is used to demonstrate the high reliability of the inversion parameters. Accordingly, the BI of a CBM reservoir section from the Qinshui Basin is calculated using the proposed method and a class I reservoir section detected through brittleness evaluation. From the outcome of this study, we believe the adoption of this new approach could act as a guide and reference for BI calculations and evaluations of CBM reservoirs.

  17. [Psychosocial predictors of metabolic instability in brittle diabetes--a multivariate time series analysis].

    PubMed

    Brosig, B; Leweke, F; Milch, W; Eckhard, M; Reimer, C

    2001-06-01

    The term "brittle diabetes" denotes the unstable course of an insulin-dependent diabetes characterised by frequent hypo- or hyperglycaemic crises. The aim of this study is to demonstrate empirically how psychosocial parameters interact with metabolic instability in a paradigmatic case of juvenile brittle diabetes. By means of a structured diary study, blood sugar values, moods (SAM), body symptoms (GBB), the daily hustle and hassle, helping therapeutic alliance (HAQ) and the aspects of setting were registered. Resulting time series (112 days each) were ARIMA-analysed by a multivariate approach. It could be shown that the mean variance of daily blood sugar values as an indicator of brittleness was predicted by moods, body complaints and by a family session as setting factor (p < 0.05, for corresponding predictors). Feelings of dominance preceded an increase of blood sugar variance, whereas depressive moods, anger and body symptoms were associated with metabolic instability. A family therapy session also resulted in an increase of the mean blood sugar variance. The model accounted for almost 30% of the total variance of the dependent variable (R-square-adjusted, p < 0.0001). The potential of multivariate time-series as a means to demonstrate psychosomatic interrelations is discussed. We believe that the results may also contribute to an empirically rooted understanding of psychodynamic processes in psychosomatoses.

  18. Fracture-mode map of brittle coatings: Theoretical development and experimental verification

    NASA Astrophysics Data System (ADS)

    He, Chong; Xie, Zhaoqian; Guo, Zhenbin; Yao, Haimin

    2015-10-01

    Brittle coatings, upon sufficiently high indentation load, tend to fracture through either ring cracking or radial cracking. In this paper, we systematically study the factors determining the fracture modes of bilayer material under indentation. By analyzing the stress field developed in a coating/substrate bilayer under indentation in combination with the application of the maximum-tensile-stress fracture criterion, we show that the fracture mode of brittle coatings due to indentation is determined synergistically by two dimensionless parameters being functions of the mechanical properties of coating and substrate, coating thickness and indenter tip radius. Such dependence can be graphically depicted by a diagram called 'fracture-mode map', whereby the fracture modes can be directly predicated based on these two dimensionless parameters. Experimental verification of the fracture-mode map is carried out by examining the fracture modes of fused quartz/cement bilayer materials under indentation. The experimental observation exhibits good agreement with the prediction by the fracture-mode map. Our finding in this paper may not only shed light on the mechanics accounting for the fracture modes of brittle coatings in bilayer structures but also pave a new avenue to combating catastrophic damage through fracture mode control.

  19. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    SciTech Connect

    Chen, Z.; Schreyer, H.L.

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  20. 3D modelling of salt tectonics with a brittle overburden in an extensional regime

    NASA Astrophysics Data System (ADS)

    Eichheimer, Philipp; Reuber, Georg; Kaus, Boris

    2016-04-01

    Most previous numerical models of salt tectonics only considered 2D cases or did not taken a brittle sedimentary overburden into account, both of which are likely to be important in nature. To get insights into the dynamics of diapiric rise of salt we here present time-dependent high resolution 3D models of salt tectonics in the presence of a brittle overburden and sedimentation. We focus on the internal deformation of an embedded anhydrite layer within a nonlinear viscous salt layer. As salt in nature tends to rise upwards to the surface along fault zones, the salt layer is overlain by a brittle overburden to simulate faulting. The resulting complex folding of the anhydrite layer obtained in our models is consistent with natural observations, e.g. Gorleben [1]. Regarding field examples we vary the shape of the anhydrite layer to understand different modes of deformation [2]. We test the effect of overburden rheology, extension and sedimentation rates on the 3D salt dome patterns and on its internal deformation. [1] O. Bornemann. Zur Geologie des Salzstocks Gorleben nach den Bohrergebnissen. Bundesamt für Strahlenschutz (1991). [2] Z. Chemia, H. Koyi, and H. Schmeling. Numerical modelling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International 172.2 (2008): 798-816.

  1. Reliable Support Design for Excavations in Brittle Rock Using a Global Response Surface Method

    NASA Astrophysics Data System (ADS)

    Langford, J. Connor; Diederichs, Mark S.

    2015-03-01

    Spalling damage can pose significant risks during the construction of underground excavations in brittle rock. While deterministic analyses have traditionally been used in the design of these structures, reliability-based design (RBD) methods provide a more rational approach to quantify spalling risk by directly incorporating input uncertainty into the design process and quantifying variable ground response. This paper presents a new RBD approach to evaluate the excavation response and support performance for a tunnel in brittle ground. Guidance for the selection of appropriate parameters for variable brittle materials is provided using a combination of the damage initiation and spalling limit method and theories of microcrack initiation. System performance is then evaluated using a proposed global response surface method (GRSM) coupled with the first-order reliability method, random sampling and finite element analysis. The proposed GRSM provides a computationally efficient way to evaluate the probability of failure for various limit states, allowing for the selection of appropriate design parameters such as minimum bolt length and required bolt capacity during early stages of design. To demonstrate the usefulness of this approach, a preliminary design option for a proposed deep geologic repository located in Canada was assessed. Numerical analyses were completed using finite element modeling to determine the depth of spalling around the excavation and support loads over the range of possible rock mass and in situ stress conditions. The results of these analyses were then used to assess support performance and make support recommendations.

  2. A multi-step transmission electron microscopy sample preparation technique for cracked, heavily damaged, brittle materials.

    PubMed

    Weiss Brennan, Claire V; Walck, Scott D; Swab, Jeffrey J

    2014-12-01

    A new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.

  3. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase.

    PubMed

    Itoh, Hironori; Tatsumi, Tomoko; Sakamoto, Tomoaki; Otomo, Kazuko; Toyomasu, Tomonobu; Kitano, Hidemi; Ashikari, Motoyuki; Ichihara, Shigeyuki; Matsuoka, Makoto

    2004-03-01

    A rice (Oryza sativa L.) semi-dwarf cultivar, Tan-Ginbozu (d35Tan-Ginbozu), contributed to the increase in crop productivity in Japan in the 1950s. Previous studies suggested that the semi-dwarf stature of d35Tan-Ginbozu is caused by a defective early step of gibberellin biosynthesis, which is catalyzed by ent-kaurene oxidase (KO). To study the molecular characteristics of d35Tan-Ginbozu, we isolated 5 KO-like (KOL) genes from the rice genome, which encoded proteins highly homologous to Arabidopsis and pumpkin KOs. The genes (OsKOL1 to 5) were arranged as tandem repeats in the same direction within a 120 kb sequence. Expression analysis revealed that OsKOL2 and OsKOL4 were actively transcribed in various organs, while OsKOL1 and OsKOL5 were expressed only at low levels; OsKOL3 may be a pseudogene. Sequence analysis and complementation experiments demonstrated that OsKOL2 corresponds to D35. Homozygote with null alleles of D35 showed a severe dwarf phenotype; therefore, d35Tan-Ginbozu is a weak allele of D35. Introduction of OsKOL4 into d35Tan-Ginbozu did not rescue its dwarf phenotype, indicating that OsKOL4 is not involved in GA biosynthesis. OsKOL4 and OsKOL5 are likely to take part in phytoalexin biosynthesis, because their expression was promoted by UV irradiation and/or elicitor treatment. Comparing d35Tan-Ginbozu with other high yielding cultivars, we discuss strategies to produce culm architectures suitable for high crop yield by decreasing GA levels.

  4. Microstructures relevant to brittle fracture initiation at the heat-affected zone of weldment of a low carbon steel

    SciTech Connect

    Ohya, K.; Kim, J.; Yokoyama, K.; Nagumo, M.

    1996-09-01

    Charpy toughness of the heat-affected zone (HAZ) of weldment of a low carbon steel has been investigated by means of an instrumented Charpy test and fractographic analysis. Microstructures were varied with thermal cycles simulating double-pass welding. The ductile-brittle transition temperature is the most deteriorated at an intermediate second-cycle heating temperature. The origin of the difference in the transition temperatures has been analyzed to exist in the brittle fracture initiation stage. Fractographic examination correlating with microstructural features has revealed that the brittle fracture initiation site is associated with the intersection of bainitic ferrite areas with different orientations rather than the martensite-austenite constituents. The role of the constraint of plastic deformation on the brittle fracture initiation is discussed.

  5. Micromechanics of brittle creep and implications for the strength of the upper crust

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-04-01

    In the upper crust, the chemical influence of pore water or other aqueous solutions promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses far below their short-term failure strength, and even at constant applied stress ("brittle creep"). Here we present a new micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modelled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' power law description of stress corrosion crack growth. The macroscopic strains and strain rates computed from the model are non-linear and compare well with experimental results obtained on granite, low porosity sandstone and basalt samples. Primary creep (decelerating strain rate) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain rate as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep, with apparently constant strain rate, arises as merely an inflexion between these two end-member phases. The strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature conditions, which provides an approximate creep law for the process. The creep law is used to infer the long term differential stress as a function of depth in the upper crust for tectonic loading rates: sub-critical cracking induces an offset of the rock strength, which is equivalent to a decrease in cohesion. For porous rocks, the competition between sub

  6. Rheology of Pure Glasses and Crystal Bearing Melts: from the Newtonian Field to the Brittle Onset

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Caricchi, L.; Pistone, M.; Castro, J. M.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The brittle-ductile transition remains a central question of modern geology. If rocks can be perceived as a granular flow on geological time-scale, their behavior is brittle in dynamic areas. Understanding rock failure conditions is the main parameter in mitigating geological risks, more specifically the eruptive style transitions from effusive to explosive. If numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. here we present results obtained under torsion and uni-axial compression on both pure glasses and crystal bearing melts. We characterized the brittle onset of two phases magmas from 0 to 65% crystals. The strain-rates span a 5 orders magnitude range, from the Newtonian flow to the Brittle field (10-5 - 100 s-1). We particularly emphasize the time dependency of the measured rheology. The materials tested are a borosilicate glass from the National Bureau of Standards, a natural sample from Mt Unzen volcano and a synthetic sample. The lattest is an HPG8 melt with 7% sodium mole excess. The particles are quasi-isometric corundum crystalschosen for their shape and integrity under the stress range investigated. The crystal fraction ranges from 0 to 0.65. Concerning pure magmas, we recently demonstrated that the material passes from a Newtonian to a non-Nemtonian behavior with increasing strain-rate. This onset can mostly be explained by viscous-heating effects. However, for even greater strain-rates, the material cracks and finally fail. The brittle onset is here explained with the visco-elastic theory and corresponds to a Deborah number greater than 10-2. Concerning crystal bearing melts the departure from the Newtonian state is characterized by two effects: a shear-thinning and a time weakening effect. The first one is instantaneous and loading-unloading cyclic tests suggest an elastic contribution of the crystal network. The second one

  7. Deciphering the brittle evolution of SW Norway through a combined structural, mineralogical and geochronological approach

    NASA Astrophysics Data System (ADS)

    Scheiber, Thomas; Viola, Giulio; Fredin, Ola; Zwingmann, Horst; Wilkinson, Camilla Maya; Ganerød, Morgan

    2016-04-01

    SW Norway has experienced a complex brittle history after cessation of the Caledonian orogeny, and the recent discoveries of major hydrocarbon reserves in heavily fractured and weathered basement offshore SW Norway has triggered a renewed interest in understanding this complex tectonic evolution. In this contribution we present results from a multidisciplinary study combining lineament analysis, field work, paleo-stress inversion, mineralogical characterization and radiometric dating in the Bømlo area of SW Norway in order to develop a tectonic model for the brittle evolution of this important region. The study area mainly consists of the Rolvsnes granodiorite (U-Pb zircon age of ca. 466 Ma), which is devoid of penetrative ductile deformation features. The first identified brittle faults are muscovite-bearing top-to-the-NNW thrusts and E-W striking dextral strike-slip faults decorated with stretched biotite. These are mechanically compatible and are assigned to the same NNW-SSE transpressional regime. Ar-Ar muscovite and biotite dates of ca. 450 Ma (Late Ordovician) indicate fault activity in the course of a Taconian-equivalent orogenic event. During the subsequent Silurian Laurentia-Baltica collision variably oriented, lower-grade chlorite and epidote-coated faults formed in response to a ENE-WSW compressional stress regime. A large number of mainly N-S striking normal faults consist of variably thick fault gouge cores with illite, quartz, kaolinite, calcite and epidote mineralizations, accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges and zones of altered granodiorite constrain deformation ranging from the Permian to the Late Jurassic, indicating a long history of crustal extension where faults were repeatedly activated. In addition, a set of ca. SW-NE striking faults associated with alteration zones give Cretaceous dates, either representing a young phase of NW-SE extension or reactivation of previously formed

  8. Microstructural Features Controlling Ductile-to-Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals

    DTIC Science & Technology

    1990-10-01

    Development Report Microstructural Features Controlling Ductile-to- Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals C 0by...Martensitic Steel Weld Metals PERSONAL AUTHOR(S) .J. DeLoach, Jr. .TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT I...if necessary and identify by block number) FIELD GROUP SUB-GROUP High strength steel , Ductile-brittle transition Martensitic Mechanical proper ties

  9. Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.

    2016-08-01

    Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.

  10. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.

    PubMed

    Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred

    2016-01-01

    Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization.

  11. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain.

    PubMed

    Seyfferth, Angelia L; Morris, Andrew H; Gill, Rattandeep; Kearns, Kelli A; Mann, Jessica N; Paukett, Michelle; Leskanic, Corey

    2016-05-18

    Arsenic decreases rice yield, and inorganic grain As threatens human health; thus, strategies to decrease rice As are critically needed. Increased plant-available silica (Si) can decrease rice As, yet the source of Si matters. Rice husk, an underutilized and Si-rich byproduct of rice production that contains less labile C and an order of magnitude less As than rice straw, may be an economically viable Si resource to decrease rice As, yet the impact of rice husk incorporation on As in the rice-soil nexus has not been reported. This proof-of-concept study shows that rice husk incorporation to soil (1% w/w) decreases inorganic grain As by 25-50% without negatively affecting grain Cd, yield, or dissolved CH4 levels. Rice husk is a critical yet perhaps overlooked resource to improve soil quality through enhanced nutrient availability and attenuate human health risks through consumption of As-laden grain.

  12. Rice scene radiation research plan

    NASA Technical Reports Server (NTRS)

    Heilman, J.

    1982-01-01

    Data requirements, tasks to be accomplished, and the technical approaches to be used in identifying the characteristics of rice for crop inventories are listed as well as methods for estimating crop development and assessing its conditions.

  13. Rice in an interdependent world.

    PubMed

    Falck, V T

    1991-01-01

    The purpose of this paper is to examine the outcome of the increasing need and dependence on rice as an essential food, and the potential hazards of this trajectory in an interdependent world, and to propose the need for a supranational system to guide decisions made in areas of mutual dependency among nations. All rice producing countries of the world should be responsible for assuring sufficient quantities and qualities of rice for the world's population. However, there are hazards related to emphasis on rice yields associated with the neglect of overall nutritional needs and also the potential for environmental impact given the need for sustainable development. Scientific measurement and data analyses of interdependent supranational variables are needed to guide policies and practices to insure conditions for life will be favorable for people everywhere.

  14. Differentiation of weedy traits in ALS-resistant red rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a weedy form of cultivated rice (Oryza sativa) that competes aggressively with rice in the southern U.S., reduces yields and contaminates rice grains. The introduction of ClearfieldTM rice, a nontransgenic, herbicide-resistant rice cultivar a decade ago has led to increased use of imazet...

  15. Brittle deformation and exhumation mechanisms in the core of the Eastern Alps, The Tauern Window

    NASA Astrophysics Data System (ADS)

    Bertrand, Audrey; Garcia, Sebastian; Rosenberg, Claudio

    2010-05-01

    The Tauern Window (TW) is a Tertiary structural and thermal dome located in the core of the Eastern Alpine orogen and in front of the Dolomite indenter. The Penninic basement and cover units within the TW attained their thermal peak about 30 Myr ago (e.g., Selverstone et al., 1992) followed by cooling and exhumation from Early Oligocene to late Miocene time (e.g., Grundmann and Morteani, 1985). Most exhumation was partly accommodated by two normal faults at the western and eastern ends of the TW (Brenner and Katschberg faults, respectively). Although these normal faults are well described in the literature, their roles in the exhumation of the TW are still under debate: Exhumation accommodated primarily by folding and erosion (e.g., Rosenberg et al., 2004) versus exhumation mainly accommodated by Brenner and Katschberg normal faulting (e.g., Selverstone, 1988; Ratschbacher et al., 1989). New fault-slip data from the TW allow us to reconstruct paleostress axes by inversion and to constrain the relative roles of the folding and orogen-parallel extension during the late deformation history of the TW, in the brittle-field. Our results show little evidence of compression and a clear zoning of the paleostress field in the TW. In the central part of the TW, the σ1 direction is sub-horizontal N-S to NE-SW (strike-slip), whereas it is steep in the footwall of the Brenner and the Katschberg normal faults. Local variability of the σ3 direction are observed; indeed, the σ3 direction varies from E-W to WNW-ESE along the Brenner fault, to NW-SE along the Jaufen fault, the inferred southern continuation of the Brenner fault (Schneider et al., this session). Along the Katschberg fault, the σ3 direction is mainly NNW-SSE oriented, which is consistent with extension in front of a triangular dead zone shape induced by the WSW-striking Dolomites indenter. Nearly no evidence of a stress field compatible with upright folding (D2 phase of deformation) was found in the brittle domain

  16. Numerical simulation of the fracture process in cutting heterogeneous brittle material

    NASA Astrophysics Data System (ADS)

    Liu, H. Y.; Kou, S. Q.; Lindqvist, P.-A.

    2002-11-01

    The process of cutting homogeneous soft material has been investigated extensively. However, there are not so many studies on cutting heterogeneous brittle material. In this paper, R-T2D (Rock and Tool interaction), based on the rock failure process analysis model, is developed to simulate the fracture process in cutting heterogeneous brittle material. The simulated results reproduce the process involved in the fragmentation of rock or rock-like material under mechanical tools: the build-up of the stress field, the formation of the crushed zone, surface chipping, and the formation of the crater and subsurface cracks. Due to the inclusion of heterogeneity in the model, some new features in cutting brittle material are revealed. Firstly, macroscopic cracks sprout at the two edges of the cutter in a tensile mode. Then with the tensile cracks releasing the confining pressure, the rock in the initially high confining pressure zone is compressed into failure and the crushed zone gradually comes into being. The cracked zone near the crushed zone is always available, which makes the boundary of the crushed zone vague. Some cracks propagate to form chipping cracks and some dip into the rock to form subsurface cracks. The chipping cracks are mainly driven to propagate in a tensile mode or a mixed tensile and shear mode, following curvilinear paths, and finally intersect with the free surface to form chips. According to the simulated results, some qualitative and quantitative analyses are performed. It is found that the back rake angle of the cutter has an important effect on the cutting efficiency. Although the quantitative analysis needs more research work, it is not difficult to see the promise that the numerical method holds. It can be utilized to improve our understanding of tool-rock interaction and rock failure mechanisms under the action of mechanical tools, which, in turn, will be useful in assisting the design of fragmentation equipment and fragmentation operations.

  17. Deformation of brittle-ductile thrust wedges in experiments and nature

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Brun, J. P.; Sokoutis, D.

    2003-10-01

    Even though the rheology of thrust wedges is mostly frictional, a basal ductile decollement is often involved. By comparison with purely frictional wedges, such brittle-ductile wedges generally display anomalous structures such as backward vergence, widely spaced thrust units, and nonfrontward sequences of thrust development. Laboratory experiments are used here to study the deformation of brittle-ductile thrust wedges. Results are compared with natural systems in the Jura Mountains and the northern Pakistan Salt Range and Potwar Plateau. Two series of three models are used to illustrate the effects of varying the basal wedge angle (β) and shortening rate (V). These two parameters directly control variations in relative strength between brittle and ductile layers (BD coupling). Wedges with strong BD coupling (low β and high V) give almost regular frontward sequences with closely spaced thrust units and, as such, are not significantly different from purely frictional wedges. Weak BD coupling (high β and low V) gives dominantly backward thrusting sequences. Intermediate BD coupling produces frontward-backward oscillating sequences. The spacing of thrust units increases as coupling decreases. Back thrusts develop in parts of a wedge where BD coupling is weak, regardless of the thrust sequence. Wedges with weak BD coupling need large amounts of bulk shortening (more than 30%) to attain a state of equilibrium, at which stable sliding along the base occurs. On this basis, we argue that a state of equilibrium has not yet been attained in at least some parts of the Jura Mountains and eastern Salt Range and Potwar Plateau thrust systems.

  18. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a

  19. Evolution of permeability across the transition from brittle failure to cataclastic flow in porous siltstone

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco M.; Kitajima, Hiroko; Carpenter, Brett M.; Saffer, Demian M.; Marone, Chris

    2015-09-01

    Porous sedimentary rocks fail in a variety of modes ranging from localized, brittle deformation to pervasive, cataclastic flow. To improve our understanding of this transition and its affect on fluid flow and permeability, we investigated the mechanical behavior of a siltstone unit within the Marcellus Formation, PA USA, characterized by an initial porosity ranging from 41 to 45%. We explored both hydrostatic loading paths (σ1 = σ2 = σ3) and triaxial loading paths (σ1 > σ2 = σ3) while maintaining constant effective pressure (Pe = Pc - Pp). Samples were deformed with an axial displacement rate of 0.1 μm/s (strain rate of 2 × 10-6 s-1). Changes in pore water volume were monitored (drained conditions) to measure the evolution of porosity. Permeability was measured at several stages of each experiment. Under hydrostatic loading, we find the onset of macroscropic grain crushing (P*) at 39 MPa. Triaxial loading experiments show a transition from brittle behavior with shear localization and compaction to cataclastic-flow as confining pressure increases. When samples fail by shear localization, permeability decreases abruptly without significant changes in porosity. Conversely, for cataclastic deformation, permeability reduction is associated with significant porosity reduction. Postexperiment observation of brittle samples show localized shear zones characterized by grain comminution. Our data show how zones of shear localization can act as barriers to fluid flow and thus modify the hydrological and mechanical properties of the surrounding rocks. Our results have important implications for deformation behavior and permeability evolution in sedimentary systems, and in particular where the stress field is influenced by injection or pumping.

  20. Brittle seismic damage before and after eruptions, worldwide statistical analyses: implications for prediction.

    NASA Astrophysics Data System (ADS)

    Schmid, Agathe; Grasso, Jean-Robert

    2010-05-01

    Recent studies suggested that the seismic events prior and after an eruption follow an Omori's law similar to the one observed for earthquakes with possible different exponent values (e.g., Lemarchand and Grasso, 2007). Given these similarities, we are interested in going further into the analogy between damage triggered by earthquake failure and eruption onset, by studying the damage of the upper crust contemporary to eruptions. First, using worldwide earthquakes and eruptions databases, we quantified the spatial scale involved in crust damage around eruptions, as a function of the size of volcanic events, i.e. as measured by VEI. Using the distribution of seismic events around the time of eruption onsets, we found that larger volumes are involved in the brittle crust damage for the largest eruption sizes. Second, we analyzed the analogy between eruptions and earthquakes regarding crust loading and discharge, thanks to patterns of seismicity around event times. For eruptions on a given volcano, evidences for crust loading have been highlighted thanks to seismicity up to ten days prior eruption time (e.g.,Voight, 1988; Kilburn, 2003; Chastin and Main, 2003; Collombet and Grasso, 2003). For worldwide eruptions, average seismicity around eruption time, shows direct and inverse Omori's law, the same way earthquakes do but with different values of exponents (Lemarchand and Grasso, 2007). Contrarily to earthquakes Omori's law, our preliminary analysis suggests the values of these exponents to possibly vary with the eruption sizes. Given that eruption processes generally show longer failure times than earthquake rupture propagation, we are interested in the mechanical responses of the brittle crust damages as a function of the forcing rate. It possibly argues for the eruption process to impact the brittle crust the same way than a slow earthquake, with a larger number of foreshocks than the regular earthquake. Implications for prediction of eruptions, regarding the size

  1. Detection algorithm for multiple rice seeds images

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Ying, Y. B.

    2006-10-01

    The objective of this research is to develop a digital image analysis algorithm for detection of multiple rice seeds images. The rice seeds used for this study involved a hybrid rice seed variety. Images of multiple rice seeds were acquired with a machine vision system for quality inspection of bulk rice seeds, which is designed to inspect rice seeds on a rotating disk with a CCD camera. Combining morphological operations and parallel processing gave improvements in accuracy, and a reduction in computation time. Using image features selected based on classification ability; a highly acceptable defects classification was achieved when the algorithm was implemented for all the samples to test the adaptability.

  2. Increasing rice plant growth by Trichoderma sp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  3. Semiempirical formulae for elastic moduli and brittleness of diamondlike and zinc-blende covalent crystals

    SciTech Connect

    Kamran, Sami; Chen, Liang; Chen, Kuiying

    2008-03-01

    In the present work, semiempirical formulae for both bulk B and shear G moduli of diamondlike and zinc-blende covalent crystals are elaborated in terms of bond length and ionicity fraction of the bonding. The resulting expressions can be applied to a broad selection of covalent materials and their modulus predictions are in good agreement with the experimental data and those from ab initio calculations. Furthermore, the correlation between the ratio G/B and the aforementioned bonding parameters was investigated. The analysis of this relationship demonstrates that compared to the ionicity fraction, the bond length is the predominant parameter responsible for the brittle features of covalent materials.

  4. Relationships between brittle deformation, weathering and landscape development during the Mesozoic in Scandinavia

    NASA Astrophysics Data System (ADS)

    Viola, Giulio; Fredin, Ola; Scheiber, Thomas; Brönner, Marco; Zwingmann, Horst; Knies, Jochen

    2015-04-01

    Pre-Quaternary weathering is generally considered responsible for the formation of rather common, yet poorly constrained, saprolite remnants onshore Scandinavia. Understanding the genesis of these weathering products and placing them into an adequate tectonic and climatic framework is currently of great interest for two reasons. First, the origin of the landscape in Scandinavia, where deep weathering is thought to have played a fundamental role, is the subject of a lively debate hinged around the number and age of episodes of regional uplift and denudation. Second, there have been recent discoveries of major hydrocarbon reserves within weathered basement highs in the North Sea immediately offshore Norway. Invariably, these basement highs are also severely fractured and faulted and a genetic relationship between brittle deformation, weathering and landscape development is suggested by a number of observations. Within the recently launched BASE project, we aim to establish a temporal and conceptual framework for brittle tectonics, weathering patterns and landscape evolution by constraining the age and rate of weathering and by isotopically dating selected faults intimately linked to weathered basement blocks. Initial efforts have focused on fractured and weathered granitoid rocks of Caledonian age exposed in western Norway. There, saprolites are found as small pockets within a joint valley landscape, which was likely stripped by Quaternary glaciations. Saprolite distribution is mostly structurally controlled as deep weathering and alteration occur predominantly in association with fractures and along faulted corridors. Structural analysis has allowed the geometric and kinematic interpretation of the exposed fracture and fault patterns and we could assign them to a number of distinct brittle deformation episodes characterised by robust paleostress tensors. The K-Ar dating of illites separated from structurally constrained faults indicates a long strain localization

  5. From Brittle to Pliant Viscoelastic Materials with Solid State Linear Polyphosphonium - Carboxylate Assemblies

    PubMed Central

    Godeau, Guilhem; Navailles, Laurence; Nallet, Frédéric; Lin, Xinrong; McIntosh, Thomas J.; Grinstaff, Mark W.

    2013-01-01

    A polystyrenylphosphonium polymer was synthesized and complexed with various carboxylic acid derivatives to form new solid-state polyelectrolyte-surfactant assemblies. The properties of these ionic materials were highly dependent on the nature of the anion and included a brittle material, a rubbery ball that bounces, or a sticky fiber. The values for the equilibrium modulus, storage modulus, and loss modulus were dependent on the composition of the carboxylic acid and the number of electrostatic interactions. Small-angle X-ray scattering studies on the supramolecular assemblies confirmed a bilayer structure for two of the assemblies. PMID:24511156

  6. Process diagnostics for precision grinding brittle materials in a production environment

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    Precision grinding processes are steadily migrating from research laboratory environments into manufacturing production lines as precision machines and processes become increasingly more commonplace throughout industry. Low-roughness, low-damage precision grinding is gaining widespread commercial acceptance for a host of brittle materials including advanced structural ceramics. The development of these processes is often problematic and requires diagnostic information and analysis to harden the processes for manufacturing. This paper presents a series of practical precision grinding tests developed and practiced at Lawrence Livermore National Laboratory that yield important information to help move a new process idea into production.

  7. Brittle versus ductile deformation as the main control of the deep fluid circulation in continental crust

    NASA Astrophysics Data System (ADS)

    Violay, Marie; Madonna, Claudio; Burg, Jean-Pierre

    2016-04-01

    The Japan Beyond-Brittle Project (JBBP) and the Taupo Volcanic Zone-Deep geothermal drilling project in New Zealand (TVZ-DGDP) proposed a new concept of engineered geothermal development where reservoirs are created in ductile rocks. This system has several advantages including (1) a simpler design and control of the reservoir due to homogeneous rock properties and stress states in the ductile domain ,(2) possible extraction of supercritical fluids (3) less probability for induced earthquakes. However, it is at present unknwon what and how porosity and permeability can be engineered in such environments. It has been proposed that the magmatic chamber is surrounded by a hot and ductile carapace through which heat transfer is conductive because the plastic behaviour of the rock will close possible fluid pathways. Further outward, as temperature declines, the rock will encounter the brittle-ductile transition with a concomitant increase in porosity and permeability. The thickness of the conduction-dominated, ductile boundary zone between the magmatic chamber and the convecting geothermal fluid directly determines the rate of heat transfer. To examine the brittle to ductile transition in the context of the Japanese crust, we conducted deformation experiments on very-fine-grain granite in conventional servocontrolled, gas-medium triaxial apparatus (from Paterson instrument). Temperature ranged from 600° C to 1100° C and effective confining pressure from 100 to 150 MPa. Dilatancy was measured during deformation. The method consisted in monitoring the volume of pore fluid that flows into or out of the sample at constant pore pressure. Permeability was measured under static conditions by transient pressure pulse method. Mechanical and micro-structural observations at experimental constant strain rate of 10-5 s-1 indicated that the granite was brittle and dilatant up to 900 ° C. At higher temperatures the deformation mode becomes macroscopically ductile, i

  8. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  9. Deformation and Fracture of Porous Brittle Materials Under Different Loading Schemes

    NASA Astrophysics Data System (ADS)

    Savchenko, N. L.; Sablina, T. Yu.; Sevostyanova, I. N.; Buyakova, S. P.; Kulkov, S. N.

    2016-03-01

    The behavior of alumina and zirconia compression- and shear-test specimens with porosity ranging from 10 to 70% is investigated. Analysis of the stress-strain curves for the materials under study has revealed a transition from a characteristically brittle fracture of fairly dense Al2O3 and ZrO2 specimens to pseudo-plastic fracture for a high porosity level. The ultimate compression strength, effective elastic and shear moduli, and Poisson's ratio are found to decrease with increase in the pore space volume of the ceramic specimens, which is shown to correlate with development of strain-induced multiple cracking of the materials.

  10. Static stress drop associated with brittle slip events on exhumed faults

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; di Toro, G.; Pennacchioni, G.; Pollard, D. D.; Nielsen, S.

    2009-02-01

    We estimate the static stress drop on small exhumed strike-slip faults in the Lake Edison granodiorite of the central Sierra Nevada (California). The subvertical strike-slip faults were exhumed from 4 to 15 km depth and were chosen because they are exposed in outcrop along their entire tip-to-tip lengths of 8-12 m. Slip nucleated on joints and accumulated by crystal-plastic shearing (forming quartz mylonites from early quartz vein filling in joints) and successive brittle faulting (forming epidote-bearing cataclasites). The occurrence of thin, ≤300 μm wide, pseudotachylytes along some small faults throughout the study area suggests that some, if not all, of the brittle slip on the study area faults may have been seismic. We suggest that the contribution of brittle, cataclastic slip to the total slip along the studied cataclasite-bearing small faults may be estimated by the length of epidote-filled, rhombohedral dilatational jogs (rhombochasms) distributed quasi-periodically along the length of the faults. The interpretation that slip recorded by rhombochasms occurred in single events is based on evidence that (1) epidote crystals are randomly oriented and undeformed within the rhombochasm; (2) cataclasite in principal slip zones does not include clasts of previous cataclasite, and (3) rhombochasm lengths vary systematically along the length of the faults with slip maximum occurring near the fault center, tapering to the fault tips. We thereby constrain both the rupture length and slip. On the basis of these measurements, we calculate stress drops ranging over 90-250 MPa, i.e., one to two orders of magnitude larger than typical seismological estimates for earthquakes, but similar in magnitude to seismological estimates of small (brittle faults

  11. Brittle-viscous deformation cycles in the dry lower continental crust

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio

    2015-04-01

    Many rheological models of the lithosphere (based on "strength envelopes") predict a weak aseismic lower crust below the strong brittle upper crust. An alternative view, based on the distribution of crustal seismicity, is that the lower crust could also be strong and seismic. It has been suggested that a strong, seismogenic lower crust results from the dry conditions of granulite facies rocks, which inhibit crystal plastic flow. This study investigates exhumed networks of shear zones from Nusfjord (Lofoten, northern Norway) to understand initiation and localization of viscous shearing in the dry lower crust. In the study area, different sets of ultramylonitic shear zones are hosted in the massive coarse-grained anorthosite. Metamorphic conditions of 720 °C, 0.9 GPa have been estimated for ductile deformation using amphibole-plagioclase geothermobarometry. Field evidence indicates that ductile shearing exploited pseudotachylyte veins and the associated damage zone of extensive fracturing. Undeformed pseudotachylyte veins locally overprint mylonitic pseudotachylytes suggesting that frictional melting occurred at the same metamorphic conditions of mylonitization. The deep crustal origin of the pseudotachylytes is also indicated by (1) the presence of microlites of labradoritic plagioclase and clinopyroxene, and of dendritic garnet, and (2) the recrystallization of clinopyroxene in the damage zone flanking the pseudotachylyte veins. Therefore the association of pseudotachylytes and mylonites records brittle-viscous deformation cycles under lower crustal conditions. The ultramylonites show phase mixing, fine grain size (5-20 μm) and equant shape of all minerals. Nucleation of amphibole in triple junctions and dilatant sites is common. EBSD analysis indicates that the minerals in the matrix are internally strain free and do not show a crystallographic preferred orientation. Taken together, these observations suggest that diffusion creep and grain boundary sliding were

  12. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to be gained, and new rights to be won, and they must be won and used for the progress of all people. ...Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his writ around this globe of ours. ...There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountian? Why - 35 years ago - why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we intend to win, and the others too.'

  13. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to begained, and new rights to be won, and they must be won and used for the progress of all people. Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his wirt around this globe of ours. There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountain? Why 35 years ago why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we attend to win, and the others , too.'

  14. Pullulanase from rice endosperm.

    PubMed

    Yamasaki, Yoshiki; Nakashima, Susumu; Konno, Haruyoshi

    2008-01-01

    Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.

  15. Genetic analysis of atypical U.S. red rice phenotypes: indications of prior gene flow in rice fields?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a troublesome weed problem in rice fields of the southern U.S. Outcrossing between rice and red rice occurs at low rates, resulting in a broad array of plant types. SSR markers were used to evaluate the genetic backgrounds of atypical red rice types obtained from rice farms in comparis...

  16. Outcrossing potential between U.S. red rice (Oryza sativa) and Chinese indica rice (Oryza sativa) lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice in southern U.S. rice fields remains a widespread, economically challenging problem despite nearly a decade of rice production systems that include true-breeding rice cultivars and indica-derived hybrid rice with resistance to imazethapyr. Both of these herbicide-resistant rice systems hav...

  17. Red rice (Oryza sativa L.) emergence characteristics and influence on rice (O. sativa) yield at different planting dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice yield losses due to red rice infestation vary by cultivar, red rice density, and duration of interference. The competition effects of red rice could be influenced further by emergence characteristics, red rice biotype, and planting time of cultivated rice. We aimed to characterize th...

  18. Processing Conditions, Rice Properties, Health and Environment

    PubMed Central

    Roy, Poritosh; Orikasa, Takahiro; Okadome, Hiroshi; Nakamura, Nobutaka; Shiina, Takeo

    2011-01-01

    Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR), germinated brown rice (GBR) and partially-milled rice (PMR) contains more health beneficial food components compared to the well milled rice (WMR). Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR) seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled), and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society. PMID:21776212

  19. Diversity of global rice markets and the science required for consumer-targeted rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of different quality traits that make up the rice grain and obtain a full picture of rice quality demographics. Rice ...

  20. Volatiles induction in rice stink bug host grasses and rice plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice stink bug (RSB), Oebalus pugnax F., is an important pest of heading rice in the United States. Little is known about plant volatiles production following herbivory by the rice stink bug. RSB feeding induced volatiles production in different RSB host grasses and rice varieties, and may help expl...

  1. Utilization of weedy rice for development of japonica hybrid rice (Oryza sativa L.).

    PubMed

    Tang, Liang; Ma, Dian Rong; Xu, Zheng Jin; Deng, Hua Feng; Chen, Wen Fu; Yuan, Long Ping

    2011-05-01

    Two representative weedy rice lines, three typical japonica varieties and three typical indica varieties were used for 6 pairs of reciprocal crosses. The morphological traits of twelve F(1) hybrid lines, their parents and four elite cultivars were investigated for heterosis over mid-parent (HM), over parent (HP) and competitive heterosis (CH) analysis. Traits detected in weedy rice lines seemed larger than those in cultivars and excellent heterosis was produced in weedy rice crossing with japonica rice. Although weedy rice kept closer relationships with japonica rice compared to indica rice. But the heterosis of reciprocal crosses between weedy rice and japonica was closed to those of crosses between indica rice and japonica rice. In six of one hundred and eighteen weedy rice lines, the fertility restore gene for BT type cytoplasmic male sterility (BT-CMS) were detected. Weedy rice was very valuable germplasm resources with the abundant polymorphism. Meanwhile, the disadvantage, lodging, shattering and incompact plant type, should be modified by hybridization, backcross and multiple cross with japonica rice. Although it is difficult to use weedy rice directly, weedy rice may be available to breed both male sterile line and restorer line through improvement, developing japonica hybrid rice.

  2. The impact of planting date on management of the rice water weevil in Louisiana rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice water weevil, Lissorhoptrus oryzophilus, is the most destructive insect pest of rice in the United States. Early planting of rice to avoid damaging infestations of the rice water weevil has long been suggested as a management tactic. A five-year study was conducted to characterize the influ...

  3. Genetic diversity for rice grain mineral concentrations observed among genetically and geographically giverse rice accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With about half of the world’s people dependent on rice as their main food source, improving the nutritional value of rice could have major impact on human health. While rice in the USA is often artificially fortified, natural enhancement of the rice grain’s nutritional value, i.e. from genetic impr...

  4. Elemental composition of Malawian rice.

    PubMed

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2016-07-20

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg(-1), dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg(-1), and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg(-1), dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could

  5. Breaking new ground in the mind: an initial study of mental brittle transformation and mental rigid rotation in science experts.

    PubMed

    Resnick, Ilyse; Shipley, Thomas F

    2013-05-01

    The current study examines the spatial skills employed in different spatial reasoning tasks, by asking how science experts who are practiced in different types of visualizations perform on different spatial tasks. Specifically, the current study examines the varieties of mental transformations. We hypothesize that there may be two broad classes of mental transformations: rigid body mental transformations and non-rigid mental transformations. We focus on the disciplines of geology and organic chemistry because different types of transformations are central to the two disciplines: While geologists and organic chemists may both confront rotation in the practice of their profession, only geologists confront brittle transformations. A new instrument was developed to measure mental brittle transformation (visualizing breaking). Geologists and organic chemists performed similarly on a measure of mental rotation, while geologists outperformed organic chemists on the mental brittle transformation test. The differential pattern of skill on the two tests for the two groups of experts suggests that mental brittle transformation and mental rotation are different spatial skills. The roles of domain general cognitive resources (attentional control, spatial working memory, and perceptual filling in) and strategy in completing mental brittle transformation are discussed. The current study illustrates how ecological and interdisciplinary approaches complement traditional cognitive science to offer a comprehensive approach to understanding the nature of spatial thinking.

  6. Rice protein-induced enterocolitis syndrome with transient specific IgE to boiled rice but not to retort-processed rice.

    PubMed

    Yasutomi, Motoko; Kosaka, Takuya; Kawakita, Akiko; Hayashi, Hisako; Okazaki, Shintaro; Murai, Hiroki; Miyagawa, Kazuhiko; Mayumi, Mitsufumi; Ohshima, Yusei

    2014-02-01

    Described herein is the case of an 8-month-old girl with atypical food protein-induced enterocolitis syndrome due to rice. She presented with vomiting and poor general activity 2 h after ingestion of boiled rice. Oral food challenge test using high-pressure retort-processed rice was negative, but re-exposure to boiled rice elicited gastrointestinal symptoms. On western blot analysis the patient's serum was found to contain IgE bound to crude protein extracts from rice seed or boiled rice, but not from retort-processed rice. The major protein bands were not detected in the electrophoresed gel of retort-processed rice extracts, suggesting decomposition by high-temperature and high-pressure processing. Oral food challenge for diagnosing rice allergy should be performed with boiled rice to avoid a false negative. Additionally, some patients with rice allergy might be able to ingest retort-processed rice as a substitute for boiled rice.

  7. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  8. Migrating swarms of brittle-failure earthquakes in the lower crust beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Shelly, D.R.; Hill, D.P.

    2011-01-01

    Brittle-failure earthquakes in the lower crust, where high pressures and temperatures would typically promote ductile deformation, are relatively rare but occasionally observed beneath active volcanic centers. Where they occur, these earthquakes provide a rare opportunity to observe volcanic processes in the lower crust, such as fluid injection and migration, which may induce brittle faulting under these conditions. Here, we examine recent short-duration earthquake swarms deep beneath the southwestern margin of Long Valley Caldera, near Mammoth Mountain. We focus in particular on a swarm that occurred September 29-30, 2009. To maximally illuminate the spatial-temporal progression, we supplement catalog events by detecting additional small events with similar waveforms in the continuous data, achieving up to a 10-fold increase in the number of locatable events. We then relocate all events, using cross-correlation and a double-difference algorithm. We find that the 2009 swarm exhibits systematically decelerating upward migration, with hypocenters shallowing from 21 to 19 km depth over approximately 12 hours. This relatively high migration rate, combined with a modest maximum magnitude of 1.4 in this swarm, suggests the trigger might be ascending CO2 released from underlying magma.

  9. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    PubMed Central

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-01-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ∼4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals—dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices. PMID:27515779

  10. Influence of surface cracks on laser-induced damage resistance of brittle KH₂PO₄ crystal.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Wang, Jinghe; Xiao, Yong; Li, Mingquan

    2014-11-17

    Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH(2)PO(4) crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355 nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm(2) to 2.33J/cm(2) (355 nm, 6.4 ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths.

  11. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  12. Pressure induced stiffening, thermal softening of bulk modulus and brittle nature of mercury chalcogenides

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Shriya, Swarna; Sapkale, Raju; Varshney, Meenu; Ameri, M.

    2015-07-01

    The pressure and temperature dependent elastic properties of mercury chalcogenides (HgX; X = S, Se and Te) with pressure induced structural transition from ZnS-type (B3) to NaCl-type (B1) structure have been analyzed within the framework of a model interionic interaction potential with long-range Coulomb and charge transfer interactions, short-range overlap repulsion and van der Waals (vdW) interactions as well as zero point energy effects. Emphasis is on the evaluation of the Bulk modulus with pressure and temperature dependency to yield the Poisson's ratio ν, the Pugh ratio ϕ, anisotropy parameter, Shear and Young's modulus, Lamé's constant, Klein man parameter, elastic wave velocity and Debye temperature. The Poisson's ratio behavior infers that HgX are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations.

  13. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Luo, S. N.

    2008-12-01

    We propose and validate an indirect tensile testing method to measure the dynamic tensile strength of rocks and other brittle solids: semicircular bend (SCB) testing with a modified split Hopkinson pressure bar (SHPB) system. A strain gauge is mounted near the failure spot on the specimen to determine the rupture time. The momentum trap technique is utilized to ensure single pulse loading for postmortem examination. Tests without and with pulse shaping are conducted on rock specimens. The evolution of tensile stress at the failure spot is determined via dynamic and quasistatic finite element analyses with the dynamic loads measured from SHPB as inputs. Given properly shaped incident pulse, far-field dynamic force balance is achieved and the peak of the loading matches in time with the rupture onset of the specimen. In addition, the dynamic tensile stress history at the failure spot obtained from the full dynamic finite element analysis agrees with the quasistatic analysis. The opposite occurs for the test without pulse shaping. These results demonstrate that when the far-field dynamic force balance is satisfied, the inertial effects associated with stress wave loading are minimized and thus one can apply the simple quasistatic analysis to obtain the tensile strength in the SCB-SHPB testing. This method provides a useful and cost effective way to measure indirectly the dynamic tensile strength of rocks and other brittle materials.

  14. A micromechanical constitutive model for the dynamic response of brittle materials "Dynamic response of marble"

    NASA Astrophysics Data System (ADS)

    Haberman, Keith

    2001-07-01

    A micromechanically based constitutive model for the dynamic inelastic behavior of brittle materials, specifically "Dionysus-Pentelicon marble" with distributed microcracking is presented. Dionysus-Pentelicon marble was used in the construction of the Parthenon, in Athens, Greece. The constitutive model is a key component in the ability to simulate this historic explosion and the preceding bombardment form cannon fire that occurred at the Parthenon in 1678. Experiments were performed by Rosakis (1999) that characterized the static and dynamic response of this unique material. A micromechanical constitutive model that was previously successfully used to model the dynamic response of granular brittle materials is presented. The constitutive model was fitted to the experimental data for marble and reproduced the experimentally observed basic uniaxial dynamic behavior quite well. This micromechanical constitutive model was then implemented into the three dimensional nonlinear lagrangain finite element code Dyna3d(1998). Implementing this methodology into the three dimensional nonlinear dynamic finite element code allowed the model to be exercised on several preliminary impact experiments. During future simulations, the model is to be used in conjunction with other numerical techniques to simulate projectile impact and blast loading on the Dionysus-Pentelicon marble and on the structure of the Parthenon.

  15. Micromechanics of brittle faulting and cataclastic flow in Mount Etna basalt

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Baud, Patrick; Vinciguerra, Sergio; Wong, Teng-fong

    2016-06-01

    Understanding how the strength of volcanic rocks varies with stress state, pressure, and microstructural attributes is fundamental to understanding the dynamics and tectonics of a volcanic system and also very important in applications such as geothermics or reservoir management in volcanic environments. In this study we investigated the micromechanics of deformation and failure in basalt, focusing on samples from Mount Etna. We performed 65 uniaxial and triaxial compression experiments on nominally dry and water-saturated samples covering a porosity range between 5 and 16%, at effective pressures up to 200 MPa. Dilatancy and brittle faulting were observed in all samples with porosity of 5%. Water-saturated samples were found to be significantly weaker than comparable dry samples. Shear-enhanced compaction was observed at effective pressures as low as 80 MPa in samples of 8% porosity. Microstructural data revealed the complex interplay of microcracks, pores, and phenocrysts on dilatant failure and inelastic compaction in basalt. The micromechanics of brittle failure is controlled by wing crack propagation under triaxial compression and by pore-emanated cracking under uniaxial compression especially in the more porous samples. The mechanism of inelastic compaction in basalt is cataclastic pore-collapse in agreement with a recent dual-porosity model.

  16. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle

    PubMed Central

    Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-01-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055

  17. An approach to scaling size effect on strength of quasi-brittle biomedical materials.

    PubMed

    Lei, Wei-Sheng; Su, Peng

    2016-09-01

    Two-parameter Weibull statistics is commonly used for characterizing and modeling strength distribution of biomedical materials and its size dependence. The calibrated scale parameter and shape factor are usually sensitive to specimen size. Since Weibull statistics is subject to the weakest link postulate, this work proposed to directly resort to the weakest-link formulation for the cumulative failure probability to characterize size effect on strength distribution of quasi-brittle biomedical materials. As a preliminary examination, the approach was assessed by two sets of published strength data. It shows that the resultant expression for the cumulative probability follows either Weibull distribution or other type of distributions. The calibrated model parameters are independent of specimen size, so they can be used to transfer strength distribution from one set of specimens to another set of specimens with geometrical similarity under same loading mode. These initial results motivate a more comprehensive validation of the proposed approach to proceed via a larger set of case studies covering different quasi-brittle biomedical materials over a wider range of size variation.

  18. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading

    NASA Astrophysics Data System (ADS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  19. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-06-01

    This paper analyzes the mechanical behavior of the unstable Mt. Toc slope before the 1963 catastrophic collapse, considering both the measured data (surface displacements and microseismicity) and the updated geological model of the prehistoric rockslide. From February 1960 up to 9 October 1963, the unstable mass behaved as a brittle-ductile `mechanical system,' characterized by remarkable microseismicity as well as by considerable surface displacements (up to 4-5 m). Recorded microshocks were the result of progressive rock fracturing of distinct resisting stiff parts made up of intact rock (indentations, undulations, and rock bridges). The main resisting stiff part was a large rock indentation located at the NE extremity of the unstable mass that acted as a mechanical constraint during the whole 1960-1963 period, inducing a progressive rototranslation toward the NE. This large constraint failed in autumn 1960, when an overall slope failure took place, as emphasized by the occurrence of the large perimetrical crack in the upper slope. In this circumstance, the collapse was inhibited by a reblocking phenomenon of the unstable mass that had been previously destabilized by the first reservoir filling. Progressive failure of localized intact rock parts progressively propagated westwards as a consequence of the two further filling-drawdown cycles of the reservoir (1962 and 1963). The characteristic brittle-ductile behavior of the Vajont landslide was made possible by the presence of a very thick (40-50 m) and highly deformable shear zone underlying the upper rigid rock mass (100-120 m thick).

  20. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks

    PubMed Central

    Sen, Dipanjan; Buehler, Markus J.

    2011-01-01

    Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects. PMID:22355554

  1. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks.

    PubMed

    Sen, Dipanjan; Buehler, Markus J

    2011-01-01

    Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects.

  2. Generalized Reliability Methodology Applied to Brittle Anisotropic Single Crystals. Degree awarded by Washington Univ., 1999

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2002-01-01

    A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.

  3. Analytical and numerical analysis of frictional damage in quasi brittle materials

    NASA Astrophysics Data System (ADS)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  4. Dominant time scale for brittle fragmentation of vesicular magma by decompression

    NASA Astrophysics Data System (ADS)

    Kameda, Masaharu; Kuribara, Hideaki; Ichihara, Mie

    2008-07-01

    Brittle fragmentation was examined in a vesicular material analogous to magma, in this case, maltose syrup with bubbles. All the key time scales for magma fragmentation are controlled in the experiment using a rapid decompression facility. It was found that the onset of fragmentation can be well characterized using the Maxwell relaxation time τ r and the decompression time Δt dec, in the case where sufficiently large stress is generated in the material. As the ratio Δt dec/τ r increases from less than unity to over fifty, the response of the specimen changes from brittle fragmentation to ductile expansion without fragmentation. During the transition, the specimen exhibits small ductile deformation before the onset of fragmentation. The transition occurs even though the stress at the bubble wall is the same. The results suggest that Δt dec/τ r is the controlling parameter not only for the onset of, but also for the variation of magma fragmentation by decompression.

  5. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    PubMed

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  6. Thermal characteristics of ohmically heated rice starch and rice flours.

    PubMed

    An, H J; King, J M

    2007-01-01

    Thermal properties of conventionally and ohmically heated rice starch and rice flours at various frequencies and voltages were studied. There was an increase in gelatinization temperature for conventionally heated rice starches since they were pregelatinized and became more rigid due to starch-chain interactions. In addition, there was a decrease in enthalpy (energy needed) for conventionally and ohmically heated starches during gelatinization; thus, the samples required less energy for gelatinization during DSC analysis. Ohmically heated commercial starch showed the greatest decrease in enthalpy probably because of the greatest extent of pregelatinization through ohmic heating. Brown rice flour showed the greatest gelatinization temperature resulting from the delay of starch granule swelling by lipid and protein. Enthalpy of ohmically heated starches at 20 V/cm was the lowest, which was most likely due to the lower voltage resulting in a more complete pregelatinization from a longer heating time required to reach 100 degrees C. Ohmic treatment at 70 V/cm decreased onset gelatinization temperature of white flour; therefore, it produced rice flour that swelled faster, whereas the conventionally heated sample showed a better thermal resistance.

  7. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    NASA Astrophysics Data System (ADS)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  8. Simulation of seismic waves in the brittle-ductile transition (BDT) using a Burgers model

    NASA Astrophysics Data System (ADS)

    Poletto, Flavio; Farina, Biancamaria; Carcione, José Maria

    2014-05-01

    The seismic characterization of the brittle-ductile transition (BDT) in the Earth's crust is of great importance for the study of high-enthalpy geothermal fields in the proximity of magmatic zones. It is well known that the BDT can be viewed as the transition between zones with viscoelastic and plastic behavior, i.e., the transition between the upper, cooler, brittle crustal zone, and the deeper ductile zone. Depending on stress and temperature conditions, the BDT behavior is basically determined by the viscosity of the crustal rocks, which acts as a key factor. In situ shear stress and temperature are related to shear viscosity and steady-state creep flow through the Arrhenius equation, and deviatory stress by octahedral stress criterion. We present a numerical approach to simulate the propagation of P-S and SH seismic waves in a 2D model of the heterogeneous Earth's crust. The full-waveform simulation code is based on a Burgers mechanical model (Carcione, 2007), which enables us to describe both the seismic attenuation effects and the steady-state creep flow (Carcione and Poletto, 2013; Carcione et al. 2013). The differential equations of motion are calculated for the Burgers model, and recast in the velocity-stress formulation. Equations are solved in the time domain using memory variables. The approach uses a direct method based on the Runge-Kutta technique, and the Fourier pseudo-spectral methods, for time integration and for spatial derivation, respectively. In this simulation we assume isotropic models. To test the code, the signals generated by the full-waveform simulation algorithm are compared with success to analytic solutions obtained with different shear viscosities. Moreover, synthetic results are calculated to simulate surface and VSP seismograms in a realistic rheological model with a dramatic temperature change, to study the observability of BDT by seismic reflection methods. The medium corresponds to a selected rheology of the Iceland scenario

  9. New market opportunities for rice grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  10. Rice aroma and flavor: a literature review.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aroma and flavor of cooked rice are major criteria for preference among consumers. Small variations in these sensory properties can make rice highly desired or unacceptable to consumers. Human sensory analyses have identified over a dozen different aromas and flavors in rice. Instrumental ana...

  11. Understanding rice heterosis using deep sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis is a complex biological phenomenon where the offspring show better performance compared to the inbred parents. Although rice breeders have used heterosis in hybrid rice production for nearly 40 years, the genetic and molecular mechanism underlying the heterosis in rice is still poorly und...

  12. Is ALL Rice Bran Created Equal?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of whole grain rice is increasing in the U.S. This increase is likely due to increased consumer awareness of the importance of whole grains in the diet. Whole grain rice is superior nutritionally compared to milled rice because, except for carbohyrates, it contains more phytochemicals an...

  13. Mixed brittle-plastic deformation behaviour in a slate belt. Examples from the High-Ardenne slate belt (Belgium, Germany)

    NASA Astrophysics Data System (ADS)

    Sintubin, Manuel; van Baelen, Hervé; van Noten, Koen; Muchez, Philippe

    2010-05-01

    In the High-Ardenne slate belt, part of the Rhenohercynian external fold-and-thrust belt at the northern extremity of the Late Palaeozoic Variscan orogen (Belgium, Germany, France), particular quartz vein occurrences can be observed in predominantly fine-grained siliciclastic metasediments. Detailed structural, petrographical and geochemical studies has revealed that these vein occurrences can be related to a mixed brittle-plastic deformation behaviour in a low-grade metamorphic mid-crustal environment. The first type of quartz veins are bedding-perpendicular, lens-shaped extension veins that are confined to the sandstone layers within the multilayer sequence. Fluid inclusion studies demonstrate high fluid pressures suggesting that the individual sandstone bodies acted as isolated high-pressure compartments in an overpressured basin. Hydraulic fracturing occurred during the tectonic inversion (from extension to compression) in the earliest stages of the Variscan orogeny. The vein fill shows a blocky character indicating crystal growth in open cavities. Both the typical lens shape of the veins and the subsequent cuspate-lobate folding of the bed interfaces in between the quartz veins suggest plastic deformation of cohesionless fluid-filled fissures. Metamorphic grade of the host rock and fluid temperature and pressure clearly indicates mid-crustal conditions below the brittle-plastic transition. This first type of quartz veins exemplifies mixed brittle-plastic deformation behaviour, possibly related to a transient deepening of the brittle-plastic transition. This is in contrast with contemporaneous bedding-perpendicular crack-seal veins observed in higher - upper-crustal - structural levels in the slate belt, reflecting pure brittle deformation behaviour. The second type are discordant quartz veins confined to extensional low-angle detachment shear zones. These very irregular veins transect a pre-existing pervasive cleavage fabric. They show no matching walls and

  14. Brittle Cornea Syndrome: Case Report with Novel Mutation in the PRDM5 Gene and Review of the Literature

    PubMed Central

    Avgitidou, Georgia; Siebelmann, Sebastian; Bachmann, Bjoern; Kohlhase, Juergen; Heindl, Ludwig M.; Cursiefen, Claus

    2015-01-01

    A 3-year-old boy presented with acute corneal hydrops on the left eye and spontaneous corneal rupture on the right eye. A diagnosis of brittle cornea syndrome was confirmed by molecular analysis. A novel mutation, the homozygous variant c.17T>G, p.V6G, was found in the gene for PR-domain-containing protein 5 (PRDM5) in exon 1. Brittle cornea syndrome is a rare connective tissue disease with typical ocular, auditory, musculoskeletal, and cutaneous disorders. Almost all patients suffer from declined vision due to corneal scarring, thinning, and rupture. The most common ophthalmologic findings include keratoconus, progressive central corneal thinning, high myopia, irregular astigmatism, retinal detachment, and high risk for spontaneous corneal or scleral rupture. In addition to describing the case with a novel mutation here we review the current literature on brittle cornea syndrome pathogenesis, clinical findings, and therapy. PMID:26221552

  15. Origin and evolution of extensional faults within the ductile-to-brittle transition, Badwater Turtleback, Death Valley, CA

    SciTech Connect

    Miller, M.G. . Geological Sciences)

    1992-01-01

    Field relations in the footwall of the Badwater Turtleback suggest a model for two geometrically distinct sets of brittle faults. The model shows how extensional brittle faults may (1) initiate within mylonite zones as a result of strain incompatibilities, and (2) become inactive as a function of decreased dip angles. Cross-cutting relations indicate that, as the footwall cooled, late stages of ductile strain concentrated in calcite marble shear zones while brittle faults formed within the other rocks. These faults fall into two groups: decollement-style faults (DSF) and high angle faults (HAF). They must have formed concurrently with calcite mylonitization because they locally terminate at the calcite shear zones. DSF are subparallel to mylonitic foliation and locally re-occupy calcite shear zones. They are moderately nonplanar, discontinuous at scales of 10--100m, and show limited evidence for transport parallel to stretching lineations in adjacent mylonites. HAF cut foliation at high angles. These faults either (1) end downwards into unfractured calcite mylonite, (2) cut calcite mylonite and join underlying DSF, or (3) cut calcite mylonite and DSF. Where they join DSF, HAF are strongly listric and maintain integrity as distinct slip surfaces within the DSF zone (see inset). DSF formed at rheological boundaries and at places where actively deforming calcite marble pinched out into brittle rocks. HAF formed in brittle upper plates of calcite marble shear zones to accommodate differences in strain between brittle and nonbrittle rock. With continued strain and consequent cooling and eastward tilting of the footwall, calcite shear zones stopped deforming ductility, became occupied by DSF, and gradually rotated to lower angles.

  16. Red Yeast Rice

    PubMed Central

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  17. Amorphous layer coating induced brittle to ductile transition in single crystalline SiC nanowires: an atomistic simulation

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Li, Zhijie; Gao, Fei

    2008-08-07

    Molecular dynamics simulations with Tersoff potentials were used to study the response of SiC nanowires with and without amorphous coating to a tensile strain along the axial direction. The uncoated nanowires show brittle properties and fail through bond breaking. Although the amorphous coating leads to the decrease of Young’s modulus of nanowires, yet it also leads the appearance of plastic deformation under axial strain. These results provide an effective way to modify the brittle properties of some other semiconductor nanowires.

  18. Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam

    SciTech Connect

    Wang, Yue-cun; Xie, De-gang; Ning, Xiao-hui; Shan, Zhi-wei

    2015-02-23

    Si pillars fabricated by focused ion beam (FIB) had been reported to have a critical size of 310–400 nm, below which their deformation behavior would experience a brittle-to-ductile transition at room temperature. Here, we demonstrated that the size-dependent transition was actually stemmed from the amorphous Si (a-Si) shell introduced during the FIB fabrication process. Once the a-Si shell was crystallized, Si pillars would behave brittle again with their modulus comparable to their bulk counterpart. The analytical model we developed has been proved to be valid in deriving the moduli of crystalline Si core and a-Si shell.

  19. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    SciTech Connect

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO2 and comparing the predictions with experiments.

  20. Slip transfer across fault discontinuities within granitic rock at the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Nevitt, J. M.; Pollard, D. D.; Warren, J. M.

    2011-12-01

    Fault mechanics are strongly influenced by discontinuities in fault geometry and constitutive differences between the brittle and ductile regions of the lithosphere. This project uses field observations, laboratory analysis and numerical modeling to investigate deformational processes within a contractional step at the brittle-ductile transition, and in particular, how slip is transferred between faults via ductile deformation across the step. The Bear Creek field area (central Sierra Nevada, CA) is comprised of late Cretaceous biotite-hornblende granodiorite and experienced a period of faulting at the brittle-ductile transition. Abundant echelon faults in Bear Creek, some of which were seismically active, provide many textbook examples of contractional steps, which are characterized by well-developed ductile fabrics. The occurrence of hydrothermal alteration halos and hydrothermal minerals in fracture fill documents the presence of water, which we suggest played a weakening role in the constitutive behavior of the granodiorite. Furthermore, the mechanism that accomplishes slip transfer in contractional steps appears to be related to water-enhanced ductile deformation. We focus our investigation on Outcrop SG10, which features a 10cm thick aplite dike that is offset 0.45m through a contractional step between two sub-parallel left-lateral faults. Within the step, the aplite undergoes dramatic thinning (stretch ~1/10) and the granodiorite is characterized by a well-developed mylonitic foliation, in which quartz and biotite plastically flow around larger grains of feldspars, hornblende and opaque minerals. Electron backscatter diffraction (EBSD) analysis gives a more quantitative depiction of the active micromechanics and reveals how slip is accommodated at the crystal scale throughout the step. We use Abaqus, a commercial finite element software, to test several constitutive laws that may account for the deformation observed both macro- and microscopically throughout

  1. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  2. Are magma chamber boundaries brittle or ductile? Rheological insights from thermal stressing experiments

    NASA Astrophysics Data System (ADS)

    Browning, John; Meredith, Philip G.; Gudmundsson, Agust; Lavallée, Yan; Drymoni, Kyriaki

    2015-04-01

    Rheological conditions at magma chamber boundaries remain poorly understood. Many field observations of deeply-eroded and well-exposed plutons, for example Slaufrudalur and Geitafell in SE Iceland, exhibit a sharp transition between what may have been a partially or fully molten magma chamber and its surrounding brittle host rock. Some studies have suggested a more gradual change in the rheological properties of chamber boundaries, marked by a ductile halo, which is likely to exert a significant impact on their rheological response. Understanding the state and rheological conditions of magma-rock interface and interaction is essential for constraining chamber-boundary failure conditions leading to dyke propagation, onset of volcanic eruption as well as caldera fault formation. We present results from a series of thermal stressing experiments in which we attempt to recreate the likely conditions at magma-chamber boundaries. Cores of volcanic material (25 mm diameter x 65 mm long) were heated to magmatic temperatures under controlled conditions in a horizontal tube furnace (at atmospheric pressure) and then held at those temperatures over variable dwell times. At the maximum temperatures reached, the inner part of the samples undergoes partial melting whilst the outer part remains solid. After cooling the brittle shells commonly exhibit axial, fissure-like fractures with protruded blobs of solidified melt. This phenomenon is interpreted as being the result of volume expansion during partial melting. The internal melt overpressure generates fluid-driven fractures analogous to filter-pressing textures or on a large scale, dykes. We complement our observations with acoustic emission and seismic velocity data obtained from measurements throughout the experiments. These complementary data are used to infer the style and timescale of fracture formation. Our results pinpoint the temperature ranges over which brittle fractures form as a result of internal melt overpressure

  3. Analytical and Experimental Nanomechanical Approaches to Understanding the Ductile-to-Brittle Transition

    NASA Astrophysics Data System (ADS)

    Hintsala, Eric Daniel

    This dissertation presents progress towards understanding the ductile-to-brittle transition (DBT) using a mixture of nanomechanical experiments and an analytical model. The key concept is dislocation shielding of crack tips, which is occurs due to a dislocation back stress. In order to properly evaluate the role of these interactions, in-situ experiments are ideal by reducing the number of interacting dislocations and allowing direct observation of cracking behavior and the dislocations themselves. First, in-situ transmission electron microscope (TEM) compression experiments of plasma-synthesized silicon nanocubes (NCs) are presented which shows plastic strains greater than 50% in a semi-brittle material. The mechanical properties are discussed and plasticity mechanisms are identified using post-mortem imaging with a combination of dark field and high-resolution imaging. This observations help to develop a back stress model which is used to fit the hardening regime. This represents the first study of its kind where back stresses are used in a discrete manner to match hardening rates. However, the important measurable quantities for evaluating the DBT include fracture toughness values and energetic activation parameters for cracking and plasticity. In order to do this, a new method for doing in-situ fracture experiments is explored. This method is pre-notched three point bending experiments, which were fabricated by focused ion beam (FIB) milling. Two different materials are evaluated: a model ductile material, Nitronic 50, an austenitic steel alloy, and a model brittle material, silicon. These experiments are performed in-situ scanning electron microscope (SEM) and TEM and explore different aspects including electron backscatter diffraction (EBSD) to track deformation in SEM scale experiments, pre-notching using a converged TEM beam to produce sharper notches better replicating natural cracks, etching procedures to reduce residual FIB damage and elevated

  4. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  5. Friction experiments of halite in brittle-ductile transition with high pore pressure

    NASA Astrophysics Data System (ADS)

    Noda, H.; Takahashi, M.; Katayama, I.

    2015-12-01

    Flow stress of rock (τ) approximately linearly depends on normal stress on a shear zone (σn) minus pore pressure (p) in a brittle regime, and insensitive to σn in a fully plastic regime where pores are isolated and filled with fluid of high pressure comparable to the mean stress, like oil drops in water. How p affects τ in the transitional regime is not fully understood, although it is a key to understanding many important geological problems such as role of fluids in deformation mechanism, stress and strength profile of the crust, seismogenic depth range, and so on. The effective normal stress σe is often given by σe = σn - α p (α: a constant around 1 in the brittle regime), and frictional resistance, by τ = f σe (f: friction coefficient). Recently, Hirth and Beeler [2015] proposed a model of the effective stress law in the transitional regime. Because of increasing ratio of real area of contact to nominal area of frictional interface, α may decrease to zero towards fully plastic regime, causing a sharper peak in the strength profile than a conventional Brace-Goetze strength profile which is sometimes referred to as "Christmas tree". We investigated this idea by means of friction experiments at high temperature and pore pressure. We used halite as an analogue material which undergoes a transition from brittle to fully plastic regime under convenient conditions [Shimamoto, 1986]. We conducted friction experiments of a pre-cut sliding interface filled with halite gouge with gas-medium triaxial apparatus in Hiroshima University, at 150 MPa confining pressure, from room temperature to 210 °C, and from atmospheric pressure to more than 100 MPa fluid (argon gas) pressure in a reservoir. Our preliminary result shows that the sharp peak in the flow stress is probably absent. A phenomenological smooth connection proposed by Shimamoto and Noda [2014] based on friction experiments without a jacket (i.e. atmospheric pore pressure) may work in explaining the

  6. Acoustic emissions accompanying the compressive ductile-brittle transition in highly- crystalline lavas.

    NASA Astrophysics Data System (ADS)

    Lavallee, Y.; Meredith, P.; Hess, K.; Cordonnier, B.; Dingwell, D. B.

    2007-12-01

    Understanding of the ductile-brittle transition in dome lavas may well contain the key to an adequate description of dome growth and stability. To elucidate this transition in dome lavas, a series of experiments were performed to characterize microcracking during compressive deformation of crystal-rich lavas. Multiphase lavas behave as visco-elastic fluids with a strain-rate dependence of viscosity across the ductile-brittle field. In order to map out the onset of brittle failure across the transition, we have deformed large volume samples (80 mm long by 40 mm diameter) in a high-load, high-temperature uniaxial press equipped with acoustic emission (AE) monitoring sensors. Our apparatus has been calibrated using an NBS717a standard glass. The absence of cracking and associated AE during deformation of this standard, which behaves as a homogeneous viscous melt under our experimental conditions, allows us to calibrate and filter out extraneous background noise. Samples from each of the five volcanoes chosen for this study (Colima, Unzen, Bezimianny, Krakatau, and Tungurahua) were deformed at two temperatures (940 and 980°C) and at stresses from 1 to 50 MPa. At low stresses (1-10 MPa), only a few AE events were detected and the AE rate decreased with increasing strain. Occasional high-energy events were recorded, and attributed to cracking of single crystals. Increasing the stress to 20-30 MPa resulted in an increased AE rate that stayed essentially constant with increasing strain. Occasional high-energy events persisted. At 40 and 50 MPa, the AE rate was higher still, and increased with increasing strain (overwhelming the few high energy events that continued to occur). Preliminary evaluation of the seismic b-value shows a decreasing trend from >3.0 at low stress to <1.5 at high stress, suggesting a shift from distributed small-scale cracking to more localized larger-scale cracking as stress is increased. These results will be discussed in terms of the deformation

  7. Spraying of the brittle ceramic zirconium diboride by a wire explosion technique

    NASA Astrophysics Data System (ADS)

    Tamura, Hideki; Ogura, Takahiko; Nagahama, Mutsuhisa; Tanabe, Yasuhiro; Sawaoka, Akira B.

    1994-02-01

    A wire explosion technique was employed for the spraying of zirconium diboride, a high-melting-point, brittle ceramic. To study its spraying mechanism and the feasibility of high-density coating, the explosion of a ZrB2 ceramic wire was examined with time-resolved measurements of the apparent resistance of an exploding wire, expansion of a discharge channel, wire fragmentation, and gas flow around the wire. The explosion under argon gas of 0.1 MPa in base pressure was started with heating up to the melting point of ZrB2, and with sequential gas breakdown around the wire. The breakdown was followed by the formation of a cylindrical shock wave and an electrical discharge channel, and by their expansion. Wire breaks were found at a later period of the electrical discharge, and resulted in the fragmentation of the wire of less than 1 mm in size, and in the transformation of almost the whole wire into fine-molten particles. On the other hand, at the explosion under air of 13.3 Pa in base pressure no shock wave was found, but larger fragments of the wire and the transformation of about 50% of the wire volume into fine particles were observed. ZrB2 coated substrates were analyzed with x-ray diffraction and scanning electron microscopy. The spraying under the high-base-pressure condition provided a much denser coating than that under the low base pressure. However, a small number of cracks was found on the sprayed film surface, and it was assumed that their formation was induced due to the brittleness of ZrB2. These measurements have revealed the close relation of the wire explosion to the base pressure of surrounding gas, and, in particular, the result that the high-base-pressure explosion associated with a cylindrical shock wave could provide a high-density coating. In consideration of the existence of high-base-pressure gas and the structure of a shock wave and an associated discharge channel, it is suggested that adequate heating and high-temperature holding of the

  8. The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Xu, Tao; Chen, Chong-feng

    2014-09-01

    Volcanic rocks and magma display a wide range of porosity and vesicle size, a result of their complex genesis. While the role of porosity is known to exert a fundamental control on strength in the brittle field, less is known as to the influence of vesicle size. To help resolve this issue, here, we lean on a combination of micromechanical (Sammis and Ashby's pore-emanating crack model) and stochastic (rock failure and process analysis code) modelling. The models show, for a homogenous vesicle size, that an increase in porosity (in the form of circular vesicles, from 0 to 40 %) and/or vesicle diameter (from 0.1 to 2.0 mm) results in a dramatic reduction in strength. For example, uniaxial compressive strength can be reduced by about a factor of 5 as porosity is increased from 0 to 40 %. The presence of vesicles locally amplifies the stress within the groundmass and promotes the nucleation of vesicle-emanating microcracks that grow in the direction of the applied macroscopic stress. As strain increases, these microcracks continue to grow and eventually coalesce leading to macroscopic failure. Vesicle clustering, which promotes the overlap and interaction of the tensile stress lobes at the north and south poles of neighbouring vesicles, and the increased ease of microcrack interaction, is encouraged at higher porosity and reduces sample strength. Once a microcrack nucleates at the vesicle wall, larger vesicles impart higher stress intensities at the crack tips, allowing microcracks to propagate at a lower applied macroscopic stress. Larger vesicles also permit a shorter route through the groundmass for the macroscopic shear fracture. This explains the reduction in strength at higher vesicle diameters (at a constant porosity). The modelling highlights that the reduction in strength as porosity or vesicle size increases is nonlinear; the largest reductions are observed at low porosity and small vesicle diameters. In detail, we find that vesicle diameter can play an

  9. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception

    PubMed Central

    Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  10. Rice, indica (Oryza sativa L.).

    PubMed

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2015-01-01

    Indica varieties, which are generally recalcitrant to tissue culture and transformation, occupy 80 % of rice cultivation area in the world. Therefore, transformation method for indica rice must be improved greatly so that global rice production would take full advantage of cutting-edge biotechnology. An efficient protocol for indica transformation mediated by Agrobacterium tumefaciens is hereby described. Immature embryos collected from plants in a greenhouse are cocultivated with A. tumefaciens after pretreatment with heat and centrifuging. The protocol was successfully tested in many elite indica cultivars such as IR8, IR24, IR58025B, IR64, IR72, Suweon 258, and Nanjing 11, yielding between 5 and 15 of independent transgenic plants per immature embryo. The use of immature embryos is recommended because gene transfer to them could be much more efficient and much less genotype dependent than gene transfer to callus.

  11. Rice epigenomics and epigenetics: challenges and opportunities.

    PubMed

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice.

  12. Tillering and panicle branching genes in rice.

    PubMed

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing

    2014-03-01

    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks.

  13. Iron biofortification of myanmar rice.

    PubMed

    Aung, May Sann; Masuda, Hiroshi; Kobayashi, Takanori; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K

    2013-01-01

    Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high-yields or high-qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high-Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II)-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs.

  14. Objective evaluation of whiteness of cooked rice and rice cakes using a portable spectrophotometer.

    PubMed

    Goto, Hajime; Asanome, Noriyuki; Suzuki, Keitaro; Sano, Tomoyoshi; Saito, Hiroshi; Abe, Yohei; Chuba, Masaru; Nishio, Takeshi

    2014-03-01

    The whiteness of cooked rice and rice cakes was evaluated using a portable spectrophotometer with a whiteness index (WI). Also, by using boiled rice for measurement of Mido values by Mido Meter, it was possible to infer the whiteness of cooked rice without rice cooking. In the analysis of varietal differences of cooked rice, 'Tsuyahime', 'Koshihikari' and 'Koshinokaori' showed high whiteness, while 'Satonoyuki' had inferior whiteness. The whiteness of rice cakes made from 'Koyukimochi' and 'Dewanomochi' was higher than the whiteness of those made from 'Himenomochi' and 'Koganemochi'. While there was a significant correlation (r = 0.84) between WI values and whiteness scores of cooked rice by the sensory test, no correlation was detected between the whiteness scores and Mido values, indicating that the values obtained by a spectrophotometer differ from those obtained by a Mido Meter. Thus, a spectrophotometer may be a novel device for measurement of rice eating quality.

  15. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values.

    PubMed

    Kaur, Bhupinder; Ranawana, Viren; Henry, Jeyakumar

    2016-01-01

    Rice is the principle staple and energy source for nearly half the world's population and therefore has significant nutrition and health implications. Rice is generally considered a high glycemic index (GI) food, however, this depends on varietal, compositional, processing, and accompaniment factors. Being a major contributor to the glycemic load in rice eating populations, there is increasing concern that the rising prevalence of insulin resistance is as a result of the consumption of large amounts of rice. Devising ways and means of reducing the glycemic impact of rice is therefore imperative. This review gathers studies examining the GI of rice and rice products and provides a critical overview of the current state of the art. A table collating published GI values for rice and rice products is also included.

  16. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.

    PubMed

    Zhu, Huike; Zhong, Huan; Wu, Jialu

    2016-06-01

    Paddy fields are characterized by frequent organic input (e.g., fertilization and rice residue amendment), which may affect mercury biogeochemistry and bioaccumulation. To explore potential effects of rice residue amendment on methylmercury (MMHg) accumulation in rice, a mercury-contaminated paddy soil was amended with rice root (RR), rice straw (RS) or composted rice straw (CS), and planted with rice. Incorporating RS or CS increased grain MMHg concentration by 14% or 11%. The observed increases could be attributed to the elevated porewater MMHg levels and thus enhanced MMHg uptake by plants, as well as increased MMHg translocation to grain within plants. Our results indicated for the first time that rice residue amendment could significantly affect MMHg accumulation in rice grain, which should be considered in risk assessment of MMHg in contaminated areas.

  17. Impacts of seeding rate on interactions between rice and rice water weevils.

    PubMed

    Stout, M J; Harrell, D; Tindall, K V; Bond, J

    2009-10-01

    The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the most widely distributed and destructive early season insect pest of rice, Oryza sativa L., in the United States. Economic losses result primarily from feeding by the larval stage of this insect on the roots of flooded rice plants. Prior studies suggest that infestations of rice water weevil larvae are more severe at low plant densities. Moreover, because feeding by the rice water weevil reduces rice plant tillering, a process particularly important to yield at low seeding rates, infestations by weevil larvae may have a greater impact on rice yields when rice is seeded at low rates. In total, six experiments were conducted over a 3-yr period in Louisiana and Missouri to investigate the impacts of rice seeding rate on levels of infestations by, and yield losses from, the rice water weevil. An inverse relationship between seeding rate and densities of rice water weevil larvae and pupae on a per area basis was found in two of the six experiments. Furthermore, in two of the three experiments conducted with 'Bengal' (a susceptible cultivar) in Louisiana, percentages of yield loss were significantly higher at lower seeding rates than at higher seeding rates. Overall, these results indicate that rice sown at low rates is more vulnerable to infestation by rice water weevils and more susceptible to yield losses from weevil injury. The significance of these findings in light of recent trends toward the use of lower seeding rates in drill-seeded rice is discussed.

  18. Morphological study of elastic-plastic-brittle transitions in disordered media

    NASA Astrophysics Data System (ADS)

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-10-01

    We use a spring lattice model with springs following a bilinear elastoplastic-brittle constitutive behavior with spatial disorder in the yield and failure thresholds to study patterns of plasticity and damage evolution. The elastic-perfectly plastic transition is observed to follow percolation scaling with the correlation length critical exponent ν ≈1.59 , implying the universality class corresponding to the long-range correlated percolation. A quantitative analysis of the plastic strain accumulation reveals a dipolar anisotropy (for antiplane loading) which vanishes with increasing hardening modulus. A parametric study with hardening modulus and ductility controlled through the spring level constitutive response demonstrates a wide spectrum of behaviors with varying degree of coupling between plasticity and damage evolution.

  19. Morphological study of elastic-plastic-brittle transitions in disordered media.

    PubMed

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-10-01

    We use a spring lattice model with springs following a bilinear elastoplastic-brittle constitutive behavior with spatial disorder in the yield and failure thresholds to study patterns of plasticity and damage evolution. The elastic-perfectly plastic transition is observed to follow percolation scaling with the correlation length critical exponent ν≈1.59, implying the universality class corresponding to the long-range correlated percolation. A quantitative analysis of the plastic strain accumulation reveals a dipolar anisotropy (for antiplane loading) which vanishes with increasing hardening modulus. A parametric study with hardening modulus and ductility controlled through the spring level constitutive response demonstrates a wide spectrum of behaviors with varying degree of coupling between plasticity and damage evolution.

  20. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  1. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex.

    PubMed

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-06-24

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively.

  2. Mafic rocks at the brittle-viscous transition - interplay between fracturing, reaction and viscous deformation

    NASA Astrophysics Data System (ADS)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée

    2015-04-01

    Deformation experiments have been performed on crushed Maryland Dibase (~ 55% Plg(An60-70), 42% Px, 3% accessories, 0.2 w.t.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at constant displacement rate of 1e-8 m/s (resulting shear strain rate ~ 1e-5 /s) are conducted at T=600 to 800°C and confining pressures of Pc = 1.0 and 1.5 GPa. Below 700°C, the microstructure is dominated by brittle deformation processes. At 700°C, the steady state strength approaches the Goetze criterion. The microstructure shows less evidence of brittle deformation and the onset of mineral reactions and diffusive mass transport are observed. Samples deformed at 800°C sustain significantly lower stresses than the Goetze criterion and reaction products are far more abundant. For both, 700°C and 800°C experiments, the main reaction products are Amph, Plg(An45-50) and zoisite (Zo, at Pc=1.5). Deformation localizes in all experiments. At 700°C, displacement takes place either along shear fractures or in shear bands formed by fine grained Plg and fibrous Amph. Reaction products such as Amph and Plg occur almost restricted along such zones of localized deformation. Strain energy introduced by early fracturing seems to be an important factor enhancing reaction kinetics. At 800°C, strain localizes into broader shear bands formed by a mixture of Plg + Amph (+ Zo). Phases in shear bands are extremely fine grained with equivalent diameters between 0.1 - 0.4 µm for Plg. Px grains rarely show signs of deformation and mostly form porphyroclasts overgrown by Amph. Fracturing is largely absent. The spatial distribution of Amph within the shear bands indicates material transport and precipitation of Amph between Plg-Plg boundaries. Thermodynamic modeling suggests that phases such as Grt + Cpx should grow abundantly but grow only in minor amounts (< 1 vol.-%). Amph and

  3. Brittle to ductile transition in cleavage fracture. Final techical report, April 1, 1987--June 30, 1991

    SciTech Connect

    Argon, A.S.; Berg, Q.

    1992-09-30

    The problem of interpretation of fracture transition from brittle to ductile or vice versa is the subject of study. An instrumented tapered double cantilever beam (TDCB) has been developed as a definitive tool in the study of the intrinsic mechanism in single crystalline samples. In this experiment, the crack velocity is directly proportional to actuator velocity. In experiments performed on TDCB shaped Si single crystals, oriented for cleavage on either {l_brace}111{r_brace} or {l_brace}110{r_brace} planes, a number of troubling features of jerky carck extension were encountered. Evidence suggests that nucleation of dislocation loops from crack tip is easier than moving these dislocations away from crack tip. 14 refs, 1 fig.

  4. Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication.

    PubMed

    Park, Jeong Woo; Lee, Chae Moon; Choi, Soo Chang; Kim, Yong Woo; Lee, Deug Woo

    2008-02-27

    This paper demonstrates a micro/nanoscale surface patterning technology for brittle material using mechanical and chemical processes. Fused silica was scratched with a Berkovich tip under various normal loads from several mN to several tens of mN with various tip rotations. The scratched substrate was then chemically etched in hydrofluoric solution to evaluate the chemical properties of the different deformed layers produced under various mechanical scratching conditions. Our results showed that either protruding or depressed patterns could be generated on the scratched surface after chemical etching by controlling the tip rotation, the normal load and the etching condition. In addition, the mask effect of amorphous material after mechanical scratching was controlled by conventional mechanical machining conditions such as contact area, chip formation, plastic flow and material removal.

  5. Origin of compression-induced failure in brittle solids under shock loading

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Li, Y.; Liu, Q. C.; Zhou, X. M.; Liu, L. W.; Liu, C. L.; Zhu, M. H.; Luo, S. N.

    2015-10-01

    The origin of compression-induced failure in brittle solids has been a subject of debate. Using in situ, high-speed, strain field mapping of a representative material, polymethylmethacrylate, we reveal that shock loading leads to heterogeneity in a compressive strain field, which in turn gives rise to localized lateral tension and shear through Poisson's effects, and, subsequently, localized microdamage. A failure wave nucleates from the impact surface and its propagation into the microdamage zone is self-sustained, triggering interior failure. Its velocity increases with increasing shock strength and eventually approaches the shock velocity. The seemingly puzzling phenomena observed in previous experiments, including incubation time, failure wave velocity variations, and surface roughness effects, can all be explained consistently with the nucleation and growth of the microdamage, and the effects of loading strength and preexisting defects.

  6. Model of brittle matrix composite toughening based on discrete fiber reinforcement

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1992-01-01

    An analytical approach for the analysis of the effectiveness of fiber reinforcement in brittle matrix composites is presented. The analytical method allows consideration of discrete fiber distribution and examination of the development of crack growth parameters on microscale. The problem associated with the bridging zone development is addressed here; therefore, the bridging zone is considered to be smaller than the main preexisting crack, and the small scale approach is used. The mechanics of the reinforcement is accurately accounted for in the process zone of a growing crack. Closed form solutions characterizing the initial failure process are presented for linear and nonlinear force - fiber pullout displacement relationships. The implicit exact solution for the extended bridging zone is presented as well.

  7. An elastic failure model of indentation damage. [of brittle structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1984-01-01

    A mechanistically consistent model for indentation damage based on elastic failure at tensile or shear overloads, is proposed. The model accommodates arbitrary crack orientation, stress relaxation, reduction and recovery of stiffness due to crack opening and closure, and interfacial friction due to backward sliding of closed cracks. This elastic failure model was implemented by an axisymmetric finite element program which was used to simulate progressive damage in a silicon nitride plate indented by a tungsten carbide sphere. The predicted damage patterns and the permanent impression matched those observed experimentally. The validation of this elastic failure model shows that the plastic deformation postulated by others is not necessary to replicate the indentation damage of brittle structural ceramics.

  8. Tensile cracking of a brittle conformal coating on a rough substrate

    DOE PAGES

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less

  9. A Unified Cohesive Zone Approach to Model Ductile Brittle Transition in Reactor Pressure Vessel Steels

    SciTech Connect

    Pritam Chakraborty; S. Bulent Biner

    2014-08-01

    In this study, a unified cohesive zone model has been proposed to predict, Ductile to Brittle Transition, DBT, in Reactor Pressure Vessel, RPV, steels. A general procedure is described to obtain the Cohesive Zone Model, CZM, parameters for the different temperatures and fracture probabilities. In order to establish the full master-curve, the procedure requires three calibration points with one at the upper-shelf for ductile fracture and two for the fracture probabilities, Pf, of 5% and 95% at the lower-shelf. In the current study, these calibrations were carried out by utilizing the experimental fracture toughness values and flow curves. After the calibration procedure, the simulations of fracture behavior (ranging from completely unstable to stable crack extension behavior) in one inch thick compact tension specimens at different temperatures yielded values that were comparable to the experimental fracture toughness values, indicating the viability of such unified modeling approach.

  10. Tensile cracking of a brittle conformal coating on a rough substrate

    SciTech Connect

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has a relatively modest effect on the film stress needed to propagate a channel crack.

  11. Metamorphic core complexes: Expression of crustal extension by ductile-brittle shearing of the geologic column

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1985-01-01

    Metamorphic core complexes and detachment fault terranes in the American Southwest are products of stretching of continental crust in the Tertiary. The physical and geometric properties of the structures, fault rocks, and contact relationships that developed as a consequence of the extension are especially well displayed in southeastern Arizona. The structures and fault rocks, as a system, reflect a ductile-through-brittle continuum of deformation, with individual structures and faults rocks showing remarkably coordinated strain and displacement patterns. Careful mapping and analysis of the structural system has led to the realization that strain and displacement were partitioned across a host of structures, through a spectrum of scales, in rocks of progressively changing rheology. By integrating observations made in different parts of the extensional system, especially at different inferred depth levels, it has been possible to construct a descriptive/kinematic model of the progressive deformation that achieved continental crustal extension in general, and the development of metamorphic core complexes in particular.

  12. Stability and roughness of crack paths in 2D heterogeneous brittle materials

    NASA Astrophysics Data System (ADS)

    Katzav, Eytan; Adda-Bedia, Mokhtar; Derrida, Bernard

    2007-03-01

    We present a recent study on the stability of propagating cracks in heterogeneous two-dimensional brittle materials and on the roughness of the surfaces created by this irreversible process. We introduce a stochastic model describing the propagation of the crack tip based on an elastostatic description of crack growth in the framework of linear elastic fracture mechanics. The model recovers the stability of straight cracks and allows for the study of the roughening of fracture surfaces. We show that in a certain limit, the problem becomes exactly solvable and yields analytic predictions for the power spectrum of the paths. This result suggests a surprising alternative to the conventional power law analysis often used in the analysis of experimental data and thus calls for a revised interpretation of the experimental results.

  13. Measurement of Three Dimensional Strains Surrounding Hydraulic Fracture in Brittle Hydrogel

    NASA Astrophysics Data System (ADS)

    Steinhardt, W.; Rubinstein, S.

    2015-12-01

    Hydraulic fractures of oil and gas shales occur miles underground, below complex, layered rocks, making measurements of their dynamics, extent, or structure difficult to impossible. Rocks are heterogeneous at a wide range of length scales, and investigating how these non-uniformities affect the propagation and extent of fractures is vital to improving both the safety and efficiency of hydraulic fracturing operations. To study these effects we have developed a model system using brittle, heavily cross-linked hydrogels that we can fracture with fluids and observe with a fast camera (Livne et al. 2004). By embedding tracer particles within the gel and using laser sheet microscopy, we obtain three dimensional stress and strain maps of the zone surrounding a hydraulic fracture tip. Gels can also be set in layers or interfaces with tunable strengths or with designed heterogeneities, allowing us to understand the fundamental science of hydraulic fractures and investigate the dynamics of controllably complex materials.

  14. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials.

    PubMed

    Tatone, Bryan S A; Grasselli, Giovanni

    2009-12-01

    Conventionally, the evaluation of fracture surface roughness in brittle geomaterials, such as concrete and rock, has been based on the measurement and analysis of two-dimensional profiles rather than three-dimensional (3D) surfaces. The primary reason for doing so was the lack of tools capable of making 3D measurements. However, in recent years, several optical and mechanical measurement tools have become available, which are capable of quickly and accurately producing high resolution point clouds defining 3D surfaces. This paper provides a methodology for evaluating the surface roughness and roughness anisotropy using these 3D surface measurements. The methodology is presented step-by-step to allow others to easily adopt and implement the process to analyze their own surface measurement data. The methodology is demonstrated by digitizing a series of concrete fracture surfaces and comparing the estimated 3D roughness parameters with qualitative observations and estimates of the well-known roughness coefficient, R(s).

  15. Stress-induced permeability evolution in a quasi-brittle geomaterial

    NASA Astrophysics Data System (ADS)

    Massart, T. J.; Selvadurai, A. P. S.

    2012-07-01

    This paper presents the application of a computational homogenization technique to examine the stress-induced permeability evolution in a quasi-brittle material susceptible to damage. The concepts involved in the constitutive modeling and the computational procedures are summarized. The developments are applied to investigate the response of the model in simulating experimental investigations of permeability evolution in a granitic rock. The influence of both the isotropic and the deviatoric stress states on the evolution of the spatially averaged permeability is derived from the computational simulations and is compared with experimental observations. It is shown that with the provision of supplemental material parameters the computational approach is able to satisfactorily match the experimental results.

  16. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-06-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab.

  17. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  18. Energy transport processes in a brittle ductile intrusive model of the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Weir, Graham J.

    1998-08-01

    The implications of the findings of recent GPS and micro-seismic studies in the Taupo Volcanic Zone (TVZ), New Zealand, on models of processes transporting mass, heat and chemicals are discussed. It is argued that in addition to the well established process of groundwater convection extracting heat and chemicals by interacting with magmatic intrusives under the TVZ, that two other processes may be important. Firstly, the existence of a ductile layer with very low permeability between about 8 to 15 km depth will produce a region of `enhanced conduction' in which very high conductive fluxes of energy arise from a temperature distribution which varies exponentially with depth. Secondly, water may transport up through the ductile layer, as a result of extensional processes in the ductile region. If extension is occurring at about 8 mm/yr, then geothermal heat transfer in the TVZ of about 4200 MW is made up from about 1200 MW from the cooling of intrusives in the brittle region in the upper 8 km; of about an additional 1900 MW of conducted heat entering the brittle region from the ductile region; and about an additional 1100 MW from water transport through the ductile region. Provided this water flow has a chloride concentration similar to that emitted from nearby volcanoes, then the total chloride transport from the TVZ is about 3.5 kg/s, as suggested by average enthalpy to chloride ratios in the TVZ of about 1.2 MJ/g. The present high heat and mass transport processes in the TVZ are assumed to result from the passive filling of volume created from extensional processes under the TVZ, plus conductive and/or convective heating processes below 15 km depth.

  19. High-definition micropatterning method for hard, stiff and brittle polymers.

    PubMed

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers.

  20. Intraplate brittle deformation and states of paleostress constrained by fault kinematics in the central German platform

    NASA Astrophysics Data System (ADS)

    Navabpour, Payman; Malz, Alexander; Kley, Jonas; Siegburg, Melanie; Kasch, Norbert; Ustaszewski, Kamil

    2017-01-01

    The structural evolution of Central Europe reflects contrasting tectonic regimes after the Variscan orogeny during Mesozoic - Cenozoic time. The brittle deformation related to each tectonic regime is localized mainly along major fault zones, creating complex fracture patterns and kinematics through time with diverging interpretations on the number and succession of the causing events. By contrast, fracture patterns in less deformed domains often provide a pristine structural inventory. We investigate the brittle deformation of a relatively stable, wide area of the central German platform using fault-slip data to identify the regional stress fields required to satisfy the data. In a non-classical approach, and in order to avoid local stress variations and misinterpretations, the fault-slip data are scaled up throughout the study area into subsets of consistent kinematics and chronology for sedimentary cover and crystalline basement rocks. Direct stress tensor inversion was performed through an iterative refining process, and the computed stress tensors were verified using field-based observations. Criteria on relative tilt geometry and indicators of kinematic change suggest a succession of events, which begins with a post-Triassic normal faulting regime with σ3 axis trending NE-SW. The deformation then follows by strike-slip and thrust faulting regimes with a change of σ1 axis from N-S to NE-SW, supposedly in the Late Cretaceous. Two younger events are characterized by Cenozoic normal and oblique thrust faulting regimes with NW-SE-trending σ3 and σ1 axes, respectively. The fracture patterns of both the cover and basement rocks appear to record the same states of stress.

  1. A damage mechanics approach for quantifying stress changes due to brittle failure of porous rocks

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena

    2016-04-01

    Natural fault zones or man-made injection or production of fluid impact the regional stress distribution in Earth's crust and can be responsible for localized stress discontinuities. Understanding the processes controlling fracturing of the porous rocks and mechanical behaviour of fault zones is therefore of interest for several applications including geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes controlling the deformation of porous rocks during and after brittle failure. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To illustrate the model, simulation of a compaction experiment of a sandstone leading to shear failure will be presented which allows to quantify the stress drop accompanying the failure. Finally, we will demonstrate that this approach can also be used at the field scale to simulate hydraulic fracturing and assess the resulting changes in the stress field.

  2. Mechanical behavior and brittle-ductile transition of high-chromium martensitic steel

    NASA Astrophysics Data System (ADS)

    Odnobokova, M. V.; Kipelova, A. Yu.; Belyakov, A. N.; Kaibyshev, R. O.

    2016-04-01

    The article presents data on the static tensile tests and dynamic impact-toughness tests of a highchromium martensitic 10Kh9V1M1FBR steel (0.12 wt % C, 9.8 wt % Cr, 0.93 wt % W, 1.01 wt % Mo, 0.2 wt % V, 0.05 wt % Nb, 0.05 wt % N, 0.003 wt % B, 0.36 wt % Mn, 0.2 wt % Ni, 0.06 wt % Si, 0.01 wt % P, 0.008 wt % S, 0.02 wt % Cu, 0.1 wt % Co, 0.015 wt % Al, and the remainder is Fe) in the temperature range from 20 to-196°C. In the case of static loading, a reduction in the temperature leads to an increase in the strength characteristics; upon a drop in the temperature from 20 to-100°C, the plasticity also increases. This is connected with the fact that the ductile fracture remains the basic mechanism down to cryogenic temperatures. The brittle-ductile transition related to the transition from ductile intragranular fracture to quasibrittle one is observed at-45°C. The steel exhibits high impact toughness to the temperature of-60°C ( KCV -60 = 95 J/cm2), at which the fraction of the ductile component in fracture is equal to 20%. At 80°C, the impact toughness decreases down to critical values (30 J/cm2), which correlates with the decrease in the fraction of the ductile component on the fracture surface down to 1%. The further decrease in the impact toughness down to 10 J/cm2 at-196°C is related to the transition from intragranular to intergranular brittle fracture.

  3. Fabric controls on the brittle failure of folded gneiss and schist

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.

    2014-12-01

    We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.

  4. Weedy (red) rice: An emerging constraint to global rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ongoing increases in the human population necessitate that rice will continue to be an essential aspect of food security for the 21st century. While production must increase in the coming decades to meet demand, such increases will be accompanied by diminished natural resources and rising productio...

  5. Insights into molecular mechanism of blast resistance in weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a serious pest in direct-seeded rice fields in the U.S. and worldwide. Under suitable conditions, weedy rice can reduce crop yields up to 70%. However, weedy rice may carry novel disease resistance genes. Rice blast disease caused by the fungus Magnaporthe oryzae is a major disease wo...

  6. Ductile, Brittle Failure Characteristics as Determined by the State of the Material and the Imposed State of Stress

    SciTech Connect

    Christensen, R M

    2004-02-05

    A method is developed for determining whether a particular mode of failure is expected to be of ductile type or brittle type depending upon both the state of the material and the particular state of stressing the isotropic material to failure. The state of the material is determined by two specific failure properties and a newly formulated failure theory. The ductile versus brittle criterion then involves the state of the material specification and the mean normal stress part of the imposed stress state. Several examples are given for different stress states and a spectrum of materials types. Closely related to the failure mode types are the orientations of the associated failure surfaces. The resulting failure surface angle predictions are compared with those from the Coulomb-Mohr failure criterion. In uniaxial tension, only the present method correctly predicts the octahedral failure angle at the ductile limit, and also shows a distinct failure mode transition from ductile type to brittle type as the state of the material changes. The explicit D-B criterion and the related failure surface orientation methodology are intended to provide a refinement and generalization of the ductile-brittle transition viewed only as a state property to also include a dependence upon the type of stress state taken to failure.

  7. Brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Okubo, Chris H.

    2014-01-01

    The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.

  8. Ductile-brittle transition behavior of V-4Cr-4Ti irradiated in the dynamic helium charging experiment

    SciTech Connect

    Chung, H.M.; Nowicki, L.J.; Busch, D.E.

    1995-04-01

    The objective of this work is to determine the effect of simultaneous displacement damage and dynamically charged helium on the ductile-brittle transition behavior of V-4Cr-4Ti specimens irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE).

  9. Agriculture Education. Soybeans and Rice.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary students enrolled in one or two semester-long courses in agricultural education. The guide presents units of study in the following areas: (1) soybeans, (2) rice, and (3) orientation. Each of the 17 units of instruction follows a typical format: terminal objective, specific…

  10. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  11. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  12. Rice domestication: histories and mysteries.

    PubMed

    Gross, Briana L

    2012-09-01

    Domesticated rice (Oryza sativa) is one of the world's most important food crops, culturally, nutritionally and economically (Khush 1997). Thus, it is no surprise that there is intense curiosity about its genetic and geographical origins, its response to selection under domestication, and the genetic structure of its wild relative, Oryza rufipogon. Studies of Oryza attempting to answer these questions have accompanied each stage of the development of molecular markers, starting with allozymes and continuing to genome sequencing. While many of these studies have been restricted to small sample sizes, in terms of either the number of markers used or the number and distribution of the accessions, costs are now low enough that researchers are including large numbers of molecular markers and accessions. How will these studies relate to previous findings and long-held assumptions about rice domestication and evolution? If the paper in this issue of Molecular Ecology (Huang et al. 2012) is any indication, there will be some considerable surprises in store. In this study, a geographically and genomically thorough sampling of O. rufipogon and O. sativa revealed two genetically distinct groups of wild rice and also indicated that only one of these groups appears to be related to domesticated rice. While this fits well with previous studies indicating that there are genetic subdivisions within O. rufipogon, it stands in contrast to previous findings that the two major varieties of O. sativa (indica and japonica) were domesticated from two (or more) subpopulations of wild rice.

  13. Isoflavone content and profile comparisons of cooked soybean-rice mixtures: electric rice cooker versus electric pressure rice cooker.

    PubMed

    Chung, Ill-Min; Yu, Bo-Ra; Park, Inmyoung; Kim, Seung-Hyun

    2014-12-10

    This study examined the effects of heat and pressure on the isoflavone content and profiles of soybeans and rice cooked together using an electric rice cooker (ERC) and an electric pressure rice cooker (EPRC). The total isoflavone content of the soybean-rice mixture after ERC and EPRC cooking relative to that before cooking was ∼90% in soybeans and 14-15% in rice. Malonylglucosides decreased by an additional ∼20% in EPRC-cooked soybeans compared to those cooked using the ERC, whereas glucosides increased by an additional ∼15% in EPRC-cooked soybeans compared to those in ERC-cooked soybeans. In particular, malonylgenistin was highly susceptible to isoflavone conversion during soybean-rice cooking. Total genistein and total glycitein contents decreased in soybeans after ERC and EPRC cooking, whereas total daidzein content increased in EPRC-cooked soybeans (p < 0.05). These results may be useful for improving the content of nutraceuticals, such as isoflavones, in soybeans.

  14. Tier I Rice Model - Version 1.0 - Guidance for Estimating Pesticide Concentrations in Rice Paddies

    EPA Pesticide Factsheets

    Describes a Tier I Rice Model (Version 1.0) for estimating surface water exposure from the use of pesticides in rice paddies. The concentration calculated can be used for aquatic ecological risk and drinking water exposure assessments.

  15. The 3,000 rice genomes project: new opportunities and challenges for future rice research.

    PubMed

    Li, Jia-Yang; Wang, Jun; Zeigler, Robert S

    2014-01-01

    Rice is the world's most important staple grown by millions of small-holder farmers. Sustaining rice production relies on the intelligent use of rice diversity. The 3,000 Rice Genomes Project is a giga-dataset of publically available genome sequences (averaging 14× depth of coverage) derived from 3,000 accessions of rice with global representation of genetic and functional diversity. The seed of these accessions is available from the International Rice Genebank Collection. Together, they are an unprecedented resource for advancing rice science and breeding technology. Our immediate challenge now is to comprehensively and systematically mine this dataset to link genotypic variation to functional variation with the ultimate goal of creating new and sustainable rice varieties that can support a future world population that will approach 9.6 billion by 2050.

  16. Brittle ductile transition in experimentally deformed basalt under oceanic crust conditions

    NASA Astrophysics Data System (ADS)

    Violay, M.; Gibert, B.; Mainprice, D.; Evans, B.; Pezard, P. A.; Flovenz, O.

    2009-04-01

    The mid-ocean ridge system is the largest continuous volcanic feature on Earth, with significant interactions between tectonic activity, volcanism and sea-water circulation. Iceland is the biggest landmass straddling a mid-ocean ridge. The associated tectonic and volcanic settings resulting from the active rifting provide in this geodynamic context a major heat source for the geothermal exploitation. High-pressure, high-temperature, conventional triaxial compression experiments have been conducted in a Paterson Press to explore the brittle-ductile transition of oceanic crustal rocks under in situ conditions at depth (3-10 Km). The study provides some insights into the prospect of producing geothermal fluids from deep wells drilled into a reservoir at temperatures and pressures of supercritical water (T>400°C). We present a series of 20 axial compression deformation experiments performed on jacketed basalt cores of 10 mm diameter and 20 mm long. The experiments were performed at 100 and 300 MPa, with temperatures ranging from 400°C to 900°C, and pore pressures ranging from 0 to 100 MPa, a constant strain rate of 1 × 10- 5 s- 1 and up to strains of 15%. Two different types of basalts were selected for their simple compositions, low alteration degree and very low porosity (3%). The two samples differed in their percentage of glass, being zero in one case and 15% in the other. For the vitreous sample at a confining pressure of 100 and 300 MPa, our experiments show that deformation takes place by three deformation modes; (1) brittle fracture at 400°C with a maximal strength of 900 MPa, corresponding to failure by localized rupture, (2) strain-hardening at small strains and followed by slipping on a localized fracture plane at a constant strength around 250 MPa at higher strains, for temperatures ranging from 500°C to 700°C, (3) distributed ductile flow at differential stresses from 50 to 100 MPa and temperature from 800 to 900°C. For the non glassy sample, the

  17. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-01

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value fcp during tensile extension; (b) the limiting value of fcp, extrapolated to far below the glass transition temperature Tg, is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature

  18. Elastic geobarometry and the role of brittle failure on pressure release

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Mattia Luca; Angel, Ross John; Rustioni, Greta; Milani, Sula; Nimis, Paolo; Chiara Domeneghetti, Maria; Marone, Federica; Harris, Jeff W.; Nestola, Fabrizio; Alvaro, Matteo

    2016-04-01

    Mineral inclusions trapped in their hosts can provide fundamental information about geological processes. Recent developments in elastic geobarometry, for example, allow the retrieval of encapsulation pressures for host-inclusion pairs. In principle this method can be applied to any mineral-mineral pair so long as both the residual pressure on an inclusion (Pinc), and the equations of state for both host and inclusion are either known or determined (Angel et al., 2015). However, Angel et al. (2014) outlined some boundary conditions, one of which was that deformation in the host-inclusion pair has to be purely elastic. Thus this caveat would exclude from analysis all the inclusions that are surrounded by cracks, indicative of brittle deformation, which may result in partial or complete release of the Pinc. If however the effects of cracks surrounding trapped mineral inclusions could be quantitatively modelled, then the applicability of "elastic" geobarometry might be extended to a much larger number of inclusion-host pairs. We report the results of a pilot experiment in which the stress states (i.e. the residual pressure) have been determined for 10 olivine inclusions still entrapped in 5 diamonds. Inclusion pressures were determined from the unit-cell volumes of the olivines measured in-situ in the diamonds by X-ray diffraction. The olivine equations of state were determined from the olivine compositions by in-situ X-ray structure refinement. Values of Pinc range from 0.19 to 0.53 GPa. In order to quantify the degree of brittle failure surrounding the inclusions, the same set of samples were also investigated by synchrotron X-ray micro-tomography (SRXTM at TOMCAT, Swiss LightSource). Preliminary results showed that at the spatial resolution of our experiments (pixel size of 0.34μm), 90% of the inclusions trapped in our set of diamonds were surrounded by cracks. The volume of the cracks has been determined from 3D reconstruction with an accuracy of about 4%. Our

  19. Experimental Determination of the Fracture Toughness and Brittleness of the Mancos Shale, Utah.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Meredith, Phil; Crawford, Brian

    2013-04-01

    non-linearity. This produces hysteresis during cyclic loading, allowing for the calculation of a brittleness coefficient using the residual displacement after successive loading cycles. This can then be used to define a brittleness corrected Fracture Toughness, KIcc. We report anisotropic KIcc values and a variety of supporting measurements made on the Mancos Shale in the three principle Mode-I crack orientations (Arrester, Divider and Short-Transverse) using a modified Short-Rod sample geometry. The Mancos is an Upper Cretaceous shale from western Colorado and eastern Utah with a relatively high siliclastic content for a gas target formation. The Short-Rod methodology involves the propagation of a crack through a triangular ligament in a chevron-notched cylindrical sample [3]. A very substantial anisotropy is observed in the loading curves and KIcc values for the three crack orientations, with the Divider orientation having KIcc values 25% higher than the other orientations. The measured brittleness for these Mancos shales is in the range 1.5-2.1; higher than for any other rocks we have found in the literature. This implies that the material is extremely non-linear. Increases in KIcc with increasing confining pressure are also investigated, as Shale Gas reservoirs occur at depths where confining pressure may be as high as 35MPa and temperature as high as 100oC. References [1] C.A. Green, P. Styles & B.J. Baptie, "Preese Hall Shale Gas Fracturing", Review & Recommendations for Induced Seismic Mitigation, 2012. [2] N.R. Warpinski & M.B. Smith, "Rock Mechanics and Fracture Geometry", Recent advances in Hydraulic Fracturing, SPE Monograms, Vol. 12, pp. 57-80, 1990. [3] F. Ouchterlony, "International Society for Rock Mechanics Commision on Testing Methods: Suggested Methods for Determining the Fracture Toughness of Rock", International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 25, 1988.

  20. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.

    PubMed

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-07

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room

  1. Brittle-to-viscous behaviour of quartz gouge in shear experiments

    NASA Astrophysics Data System (ADS)

    Richter, Bettina; Stunitz, Holger; Heilbronner, Renée

    2016-04-01

    In order to study the microstructure development across the brittle-viscous transition and to derive the corresponding flow laws, we performed shear experiments on quartz gouge in a Griggs-type deformation apparatus. The starting material is a crushed quartz single crystal (sieved grain size <100 μm) with 0.2 wt% water added. The experiments were conducted at temperatures between 500 ° C and 1000 ° C at confining pressures of 0.5 GPa, 1.0 GPa or 1.5 GPa. Four strain-rate-stepping experiments were conducted at strain rates between ˜2.5 x 10-6 s-1 and ˜2.5 x 10-4 s-1. Other experiments were conducted at constant strain rates of ˜2.5 x 10-6 s-1, ˜2.5 x 10-5 s-1, ˜2.5 x 10-4 s-1 and ˜2.5 x 10-3 s-1. At high confining pressure, the strength of the samples decreases with increasing temperature for all strain rates. The largest decrease occurred between 650 ° C and 700 ° C at shear strain rates of ˜2.5 x 10-5 s-1. At the same time, the pressure dependence of strength is positive for T ≤ 650 ° C while an inverse pressure dependence is observed at T > 650 ° C. For T < 700 ° C, the friction coefficient decreases slightly with increasing temperature, from 700-1000 ° C it shows a strong temperature dependence. Between 650 ° C and 700 ° C at shear strain rates of ˜2.5 x 10-5 s-1 a change in the deformation process occurs from one dominated by cataclastic flow to one dominated by crystal plasticity. The microstructure reveals a less abrupt transition in terms of operating processes, because brittle and viscous processes are equally active around 650 ° C. With increasing temperature the volume fraction of recrystallised grains increases, and at 900 ° C - 1000 ° C recrystallisation is nearly complete at strains of γ ˜ 3. The crystallographic preferred orientation of the c-axis evolves from a random distribution at low temperatures towards two peripheral maxima at intermediate temperatures. At high temperatures the c-axis show a single Y-maximum. At high

  2. Failure processes in soft and quasi-brittle materials with nonhomogeneous microstructures

    NASA Astrophysics Data System (ADS)

    Spring, Daniel W.

    Material failure pervades the fields of materials science and engineering; it occurs at various scales and in various contexts. Understanding the mechanisms by which a material fails can lead to advancements in the way we design and build the world around us. For example, in structural engineering, understanding the fracture of concrete and steel can lead to improved structural systems and safer designs; in geological engineering, understanding the fracture of rock can lead to increased efficiency in oil and gas extraction; and in biological engineering, understanding the fracture of bone can lead to improvements in the design of bio-composites and medical implants. In this thesis, we numerically investigate a wide spectrum of failure behavior; in soft and quasi-brittle materials with nonhomogeneous microstructures considering a statistical distribution of material properties. The first topic we investigate considers the influence of interfacial interactions on the macroscopic constitutive response of particle reinforced elastomers. When a particle is embedded into an elastomer, the polymer chains in the elastomer tend to adsorb (or anchor) onto the surface of the particle; creating a region in the vicinity of each particle (often referred to as an interphase) with distinct properties from those in the bulk elastomer. This interphasial region has been known to exist for many decades, but is primarily omitted in computational investigations of such composites. In this thesis, we present an investigation into the influence of interphases on the macroscopic constitutive response of particle filled elastomers undergoing large deformations. In addition, at large deformations, a localized region of failure tends to accumulate around inclusions. To capture this localized region of failure (often referred to as interfacial debonding), we use cohesive zone elements which follow the Park-Paulino-Roesler traction-separation relation. To account for friction, we present a new

  3. Detection and quantification of trace elements in rice and rice products using x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Foran, Kelly A.; Fleming, David E. B.

    2015-12-01

    We used X-ray fluorescence (XRF) to examine the presence of arsenic (As) and other trace elements (manganese, iron, nickel, copper, and zinc) in rice and rice products. A portable XRF analyzer was used to test samples, and amplitudes for the analyzed elements were identified in the resulting data. The detection limit of the system was sufficiently low to detect As in some rice and rice product samples.

  4. The role of momilactones in rice allelopathy.

    PubMed

    Kato-Noguchi, Hisashi; Peters, Reuben J

    2013-02-01

    Large field screening programs and laboratory experiments in many countries have indicated that rice is allelopathic and releases allelochemical(s) into its environment. A number of compounds, such as phenolic acids, fatty acids, phenylalkanoic acids, hydroxamic acids, terpenes, and indoles, have been identified as potential rice allelochemicals. However, the studies reviewed here demonstrate that the labdane-related diterpenoid momilactones are the most important, with momilactone B playing a particularly critical role. Rice plants secrete momilactone B from their roots into the neighboring environments over their entire life cycle at phytotoxic levels, and momilactone B seems to account for the majority of the observed rice allelopathy. In addition, genetic studies have shown that selective removal of the momilactones only from the complex mixture found in rice root exudates significantly reduces allelopathy, demonstrating that these serve as allelochemicals, the importance of which is reflected in the presence of a dedicated momilactone biosynthetic gene cluster in the rice genome.

  5. Oscillating Transcriptome during Rice-Magnaporthe Interaction.

    PubMed

    Sharma, T R; Das, Alok; Thakur, Shallu; Devanna, B N; Singh, Pankaj Kumar; Jain, Priyanka; Vijayan, Joshitha; Kumar, Shrawan

    2016-01-01

    Rice blast disease caused by the fungus, Magnaporthe oryzae, is one of the most devastating diseases of rice. Deciphering molecular mechanism of host-pathogen interactions is of great importance in devising disease management strategies. Transcription being the first step for gene regulation in eukaryotes, basic understanding of the transcriptome is sine qua non for devising effective management strategy. The availability of genome sequences of rice and M. oryzae has facilitated the process to a large extent. The current review summarizes recent understanding of rice-blast pathosystem, application of transcriptomics approaches to understand the interactions employing different platforms, major determinants in the interaction and possibility of using certain candidate for conditioning enhanced disease resistance (Effector Triggered Immunity and PAMP Triggered Immunity) and downstream signalling in rice. A better understanding of the interaction elements and effective strategies hold potential to reduce yield losses in rice caused by M. oryzae.

  6. Novel transgenic rice-based vaccines.

    PubMed

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  7. Brittle Solvers: Lessons and insights into effective solvers for visco-plasticity in geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; May, D.; Wilson, C. R.

    2014-12-01

    Plasticity/Fracture and rock failure are essential ingredients in geodynamic models as terrestrial rocks do not possess an infinite yield strength. Numerous physical mechanisms have been proposed to limit the strength of rocks, including low temperature plasticity and brittle fracture. While ductile and creep behavior of rocks at depth is largely accepted, the constitutive relations associated with brittle failure, or shear localisation, are more controversial. Nevertheless, there are really only a few macroscopic constitutive laws for visco-plasticity that are regularly used in geodynamics models. Independent of derivation, all of these can be cast as simple effective viscosities which act as stress limiters with different choices for yield surfaces; the most common being a von Mises (constant yield stress) or Drucker-Prager (pressure dependent yield-stress) criterion. The choice of plasticity model, however, can have significant consequences for the degree of non-linearity in a problem and the choice and efficiency of non-linear solvers. Here we describe a series of simplified 2 and 3-D model problems to elucidate several issues associated with obtaining accurate description and solution of visco-plastic problems. We demonstrate that1) Picard/Successive substitution schemes for solution of the non-linear problems can often stall at large values of the non-linear residual, thus producing spurious solutions2) Combined Picard/Newton schemes can be effective for a range of plasticity models, however, they can produce serious convergence problems for strongly pressure dependent plasticity models such as Drucker-Prager.3) Nevertheless, full Drucker-Prager may not be the plasticity model of choice for strong materials as the dynamic pressures produced in these layers can develop pathological behavior with Drucker-Prager, leading to stress strengthening rather than stress weakening behavior.4) In general, for any incompressible Stoke's problem, it is highly advisable to

  8. Time-dependent Brittle Creep in Rock: The Influence of Confining Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Heap, M. J.; Baud, P.; Bell, A. F.; Main, I. G.

    2009-12-01

    The characterization of time-dependent brittle creep deformation is fundamental to understanding the long-term evolution and dynamics of the Earth’s crust. The presence of water promotes environment-dependent stress corrosion cracking that allows rock to deform at a constant stress below its short-term failure stress over extended periods of time. Here we report illustrative results from an experimental study of the influence of an elevated temperature on time-dependent brittle creep in water-saturated samples of Bentheim sandstone (initial porosity, Φ = 23%), Darley Dale sandstone (Φ = 13%) and Crab Orchard sandstones (Φ = 4%). We present data obtained from both conventional, constant stress creep experiments and from stress-stepping creep experiments performed under effective confining pressures in the range 10 MPa to 50 MPa and at temperatures from 20° to 75°C. Deformation was monitored throughout each experiment by measuring simultaneously three proxies for evolving crack damage: (1) axial strain, (2) porosity change and (3) the output of acoustic emission (AE) energy, all as functions of time. Results from conventional creep experiments demonstrate that the primary control on creep strain rate and time-to-failure is the applied differential stress. They also suggest the existence of a critical level of crack damage beyond which deformation accelerates and ultimately leads to sample failure on a localized fault. The influence of effective confining pressure was investigated in stress-stepping experiments. In addition to the expected mechanical influence of elevated effective pressure, our results also demonstrate that stress corrosion cracking is inhibited at higher effective confining pressures, with creep strain rates reduced by about 3 orders of magnitude as effective confining pressure is increased from 10 to 50MPa. We have used the same technique to investigate the influence of an elevated temperature. Our results show that, for the same applied

  9. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transformation temperature

    NASA Technical Reports Server (NTRS)

    Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl

    1992-01-01

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though

  10. Dependence of the Brittle Ductile Transition on Strain-Rate-Dependent Critical Homologous Temperature

    NASA Astrophysics Data System (ADS)

    Davis, Paul M.

    2017-02-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to 1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders

  11. Oblique impact cratering experiments in brittle targets: Implications for elliptical craters on the Moon

    NASA Astrophysics Data System (ADS)

    Michikami, Tatsuhiro; Hagermann, Axel; Morota, Tomokatsu; Haruyama, Junichi; Hasegawa, Sunao

    2017-01-01

    Most impact craters observed on planetary bodies are the results of oblique impacts of meteoroids. To date, however, there have only been very few laboratory oblique impact experiments for analogue targets relevant to the surfaces of extraterrestrial bodies. In particular, there is a lack of laboratory oblique impact experiments into brittle targets with a material strength on the order of 1 MPa, with the exception of ice. A strength on the order of 1 MPa is considered to be the corresponding material strength for the formation of craters in the 100 m size range on the Moon. Impact craters are elliptical if the meteoroid's trajectory is below a certain threshold angle of incidence, and it is known that the threshold angle depends largely on the material strength. Therefore, we examined the threshold angle required to produce elliptical craters in laboratory impact experiments into brittle targets. This work aims to constrain current interpretations of lunar elliptical craters and pit craters with sizes below a hundred meters. We produced mortar targets with compressive strength of 3.2 MPa. A spherical nylon projectile (diameter 7.14 mm) was shot into the target surface at a nominal velocity of 2.3 km/s, with an impact angle of 5°-90° from horizontal. The threshold angle of this experiment ranges from 15° to 20°. We confirmed that our experimental data agree with previous empirical equations in terms of the cratering efficiency and the threshold impact angle. In addition, in order to simulate the relatively large lunar pit craters related to underground cavities, we conducted a second series of experiments under similar impact conditions using targets with an underground rectangular cavity. Size and outline of craters that created a hole are similar to those of craters without a hole. Moreover, when observed from an oblique angle, a crater with a hole has a topography that resembles the lunar pit craters. The relation between the impact velocity of meteoroids on

  12. Ribosomal RNA genes and deuterostome phylogeny revisited: more cyclostomes, elasmobranchs, reptiles, and a brittle star.

    PubMed

    Mallatt, Jon; Winchell, Christopher J

    2007-06-01

    This is an expanded study of the relationships among the deuterostome animals based on combined, nearly complete 28S and 18S rRNA genes (>3925 nt.). It adds sequences from 20 more taxa to the approximately 45 sequences used in past studies. Seven of the new taxa were sequenced here (brittle star Ophiomyxa, lizard Anolis, turtle Chrysemys, sixgill shark Hexanchus, electric ray Narcine, Southern Hemisphere lamprey Geotria, and Atlantic hagfish Myxine for 28S), and the other 13 were from GenBank and the literature (from a chicken, dog, rat, human, three lungfishes, and several ray-finned fishes, or Actinopterygii). As before, our alignments were based on secondary structure but did not account for base pairing in the stems of rRNA. The new findings, derived from likelihood-based tree-reconstruction methods and by testing hypotheses with parametric bootstrapping, include: (1) brittle star joins with sea star in the echinoderm clade, Asterozoa; (2) with two hagfishes and two lampreys now available, the cyclostome (jawless) fishes remain monophyletic; (3) Hexanchiform sharks are monophyletic, as Hexanchus groups with the frilled shark, Chlamydoselachus; (4) turtle is the sister taxon of all other amniotes; (5) bird is closer to the lizard than to the mammals; (6) the bichir Polypterus is in a monophyletic Actinopterygii; (7) Zebrafish Danio is the sister taxon of the other two teleosts we examined (trout and perch); (8) the South American and African lungfishes group together to the exclusion of the Australian lungfish. Other findings either upheld those of the previous rRNA-based studies (e.g., echinoderms and hemichordates group as Ambulacraria; orbitostylic sharks; batoids are not derived from any living lineage of sharks) or were obvious (monophyly of mammals, gnathostomes, vertebrates, echinoderms, etc.). Despite all these findings, the rRNA data still fail to resolve the relations among the major groups of deuterostomes (tunicates, Ambulacraria, cephalochordates

  13. Characterizing irrigation water requirements for rice production from the Arkansas Rice Research Verification Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated rice irrigation water use in the University of Arkansas Rice Research Verification Program between the years of 2003 and 2011. Irrigation water use averaged 747 mm (29.4 inches) over the nine years. A significant 40% water savings was reported for rice grown under a zero gr...

  14. Effects of rice harvest moisture on kernel damage and milled rice surface free fatty acid levels.

    PubMed

    Parker, Amanda M; Proctor, Andrew; Eason, Robert L; Jain, Vishal

    2007-01-01

    Surface free fatty acid (FFA) on milled rice is a key factor in determining rice quality and acceptability to the brewing industry. Rice FFA oxidizes, causing off-flavors and odors to develop, compromising the brewing quality of milled rice. The effect of harvest moisture (13%, 16%, and 20%), harvester type (1688 Case and 9500 John Deere), and rice variety (Cocodrie and Bengal) on harvest damaged rough rice and milled rice surface FFA after drying to 12% moisture and 6 mo rough rice storage was examined. The Case harvester produced more damaged kernels than the John Deere harvester, but this was not reflected in surface FFA development. There were no significant FFA differences in variety or harvester type. Rice harvested at a higher moisture content (20%) produced significantly greater FFA values, with a peak near 0.1%, than rice harvested at lower moisture contents (13% and 16%), which had FFA values near 0.08%. Retention of bran by damaged kernels at high harvest moisture probably was responsible for promoting surface FFA development, but if bran was lost at lower harvest moistures, surface FFA, development was limited. Harvest moisture affected milled rice FFA, although rough rice was dried to 12% immediately after harvesting.

  15. Global Gene Expression of Rice after Infections with Rice Blast and Sheath blight Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa) production worldwide has been challenged by increased new virulent pathogens. Over the years, genetic diversity needed for fighting diseases has been decreasing in cultivated rice around the globe. This presents a real challenge for rice crop protection. In an effort to develo...

  16. Effect of volunteer rice infestation on grain quality and yield of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volunteer rice (Oryza sativa L.) plants arise from shattered seeds of the previous crop, which could reduce the yield of cultivated rice and the commercial value of harvested grain. Volunteer rice plants from a cultivar other than the current crop produce grains that may differ in physico-chemical t...

  17. Relative competitive ability of rice with strawhull and blackhull red rice biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed interference depends largely upon the species composition of the weed community and an ability to compete with the cultured crop. Weedy red rice is a major weed pest of rice in the southern U.S. The focus of this study was to evaluate the competitive ability of rice against common, genetically ...

  18. Introgression of Clearfield(TM) rice crop traits into weedy red rice outcrosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to determine the impact of introgression of crop alleles into weedy rice populations. Seeds of 89 weedy rice accessions collected from Arkansas fields in 11 counties, with a history of Clearfield(TM) rice production, were planted in 2011 and treated with two applications of im...

  19. Total and inorganic arsenic in Iranian rice.

    PubMed

    Cano-Lamadrid, Marina; Munera-Picazo, Sandra; Burló, Francisco; Hojjati, Mohammad; Carbonell-Barrachina, Ángel A

    2015-05-01

    It is well known that arsenic (As) exposure, particularly to inorganic species (i-As), has adverse effects on humans. Nowadays, the European Union (EU) has still not regulated the maximum residue limit of As in commercial samples of rice and rice-based products, although it is actively working on the topic. The European Food Safety Authority (EFSA) is collecting data on total arsenic (t-As) and i-As from different rice-producing regions not only from EU countries but also from other parts of the world to finally set up this maximum threshold. As Iran is a rice-producing country, the aim of this work was to evaluate the contents of t-As and i-As in 15 samples of Iranian white, nonorganic, and aromatic rice collected from the most important rice-producing regions of the country. The means of t-As and i-As were 120 and 82 μg/kg, respectively. The experimental i-As mean in Iranian rice was below the Chinese standard for the i-As in rice, 150 μg/kg, and the Food and Agriculture Organization of the United Nations (FAO) limit, 200 μg/kg. Therefore, Iranian rice seems to have reasonable low i-As content and it is safe to be marketed in any market, including China and the EU.

  20. Arsenic in rice: a cause for concern.

    PubMed

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri; Campoy, Cristina; Colomb, Virginie; Decsi, Tamas; Domellöf, Magnus; Fewtrell, Mary; Mis, Nataša Fidler; Mihatsch, Walter; Molgaard, Christian; van Goudoever, Johannes

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure, we recommend avoidance of rice drinks for infants and young children. For all of the rice products, strict regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. Although rice protein-based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content should be declared and the potential risks should be considered when using these products.

  1. Wheat products as acceptable substitutes for rice.

    PubMed

    Yu, B H; Kies, C

    1993-07-01

    The objective of the study was to compare the acceptability to semi-trained US American and Asian palatability panelist, of four wheat products processed to be possible replacers of rice in human diets. Products evaluated using rice as the control standard of excellence were steamed whole wheat, couscous (steamed, extracted wheat flour semolina), rosamarina (rice shaped, extracted wheat flour pasta), and bulgar (steamed, pre-cooked partly debranned, cracked wheat). Using a ten point hedonic rating scale, both groups of panelists gave rosamarina closely followed by couscous, most favorable ratings although these ratings were somewhat lower than that of the positive control, steamed polished rice. Bulgar wheat was given the lowest evaluation and was, in general, found to be an unacceptable replacement for rice by both American and Asian judges because of its dark, 'greasy' color and distinctive flavor. In their personal dietaries, judges included rice from 0.25 to 18 times per week with the Asian judges consuming rice significantly more times per week than did the American judges (10.8 +/- 4.71 vs 1.75 +/- 1.65, p < 0.01). However, rice consumption patterns, nationality, race, or sex of the judges was not demonstrated to affect scoring of the wheat products as rice replacers.

  2. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    NASA Astrophysics Data System (ADS)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  3. Specimen size effects on ductile?brittle transition temperature in Charpy impact testing

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Yamamoto, T.; Narui, M.; Suwarno, H.; Yoshitake, T.; Yano, Y.; Yamazaki, M.; Matsui, H.

    2004-08-01

    One key issue for small specimen test techniques is to clarify specimen size effects on test results. In consideration of size effects on determining the ductile-to-brittle transition temperature (DBTT) in Charpy impact testing, a method to evaluate the plastic constraint loss for differently sized Charpy V-notch (CVN) specimens is proposed and applied to a ferritic-martensitic steel, 2WFK, developed by JNC. In the method, a constraint factor, α, that is an index of the plastic constraint is defined as α=σ ∗/σ y∗. Here, σ ∗ is the critical cleavage fracture stress which is a material constant and σ y∗ is the uniaxial yield stress at the DBTT at the strain rate generated in the Charpy impact test. The procedures for evaluating each of σ ∗ and σ y∗ are described and a result of σ ∗ and σ y∗, thus the value of α, is presented for different types of miniaturized and full-sized CVN specimens of 2WFK.

  4. The Vickers indentation technique used to evaluate thermal shock resistance of brittle materials

    SciTech Connect

    Tancret, F.; Osterstock, F.

    1997-08-15

    The establishment of transient thermal stresses during quenching brittle materials involves a number of parameters, such as Young`s modulus E, Poisson`s ratio v, coefficient of thermal expansion {alpha}, thermal conductivity of the material k, the size and shape of the sample, the quenching temperature difference {Delta}T, and the coefficient of heat transfer in the quenching medium h. The damage resulting from a critical thermal shock is governed by the toughness, the statistical distribution of initial surface flaws and thus by the rupture stress. It is shown here that, additionally to the preliminary determination of the material`s toughness and the quantification of the maximum value of the thermal transient stress, the combination of toughness and these thermal stresses yields descriptions of a new thermal shock resistance parameter for temperature differences {Delta}T lower than the critical one {Delta}{Tc}. The derivations will be verified on various microstructures of high-temperature superconducting ceramics, YBaCuO, and on alumina.

  5. Brittle failure of β- and τ-boron: Amorphization under high pressure

    NASA Astrophysics Data System (ADS)

    An, Qi; Morozov, Sergey I.

    2017-02-01

    Element boron tends to form an icosahedral motif involving 26 electrons, leading to intriguing bonding conditions which complicate understating the structural variations under high pressure. Here we used density function theory (DFT) to examine the mechanical response of β- and recent discovered τ-boron to shear along the most plausible slip system. We found that the failure mechanism of β -B106 is fracturing a B28 triply fused icosahedral cluster without destroying a regular B12 icosahedron, while the failure of τ -B106 arises from the disintegration of a B28 cluster and one nearby icosahedron. The failure of β -B106 leads to a B12-embedded amorphous structure which transforms to the second amorphous phase with a fully deconstructed icosahedra at 81 GPa. The second amorphous phase retains the deconstructed icosahedra at ambient conditions which is different from the normal amorphous boron containing regular icosahedra which are bonded randomly to each other. The second amorphous phase is more stable than β -B106 above 90 GPa, which explains the previous experiments on pressure-induced amorphization. In addition, forming the second highest density amorphous phase likely causes the brittle failure of β-B and related materials.

  6. How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††

    PubMed Central

    Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.

    2015-01-01

    The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672

  7. New Methods in Exploring Old Topics: Case Studying Brittle Diabetes in the Family Context

    PubMed Central

    Günther, Moritz Philipp; Winker, Peter; Wudy, Stefan A.; Brosig, Burkhard

    2016-01-01

    Background. In questing for a more refined quantitative research approach, we revisited vector autoregressive (VAR) modeling for the analysis of time series data in the context of the so far poorly explored concept of family dynamics surrounding instable diabetes type 1 (or brittle diabetes). Method. We adopted a new approach to VAR analysis from econometrics referred to as the optimized multivariate lag selection process and applied it to a set of raw data previously analyzed through standard approaches. Results. We illustrated recurring psychosomatic circles of cause and effect relationships between emotional and somatic parameters surrounding glycemic control of the child's diabetes and the affective states of all family members. Conclusion. The optimized multivariate lag selection process allowed for more specific, dynamic, and statistically reliable results (increasing R2 tenfold in explaining glycemic variability), which were derived from a larger window of past explanatory variables (lags). Such highly quantitative versus historic more qualitative approaches to case study analysis of psychosomatics surrounding diabetes in adolescents were reflected critically. PMID:26634215

  8. Characterizing and Modeling Brittle Bi-material Interfaces Subjected to Shear

    NASA Astrophysics Data System (ADS)

    Anyfantis, Konstantinos N.; Berggreen, Christian

    2014-12-01

    This work is based on the investigation, both experimentally and numerically, of the Mode II fracture process and bond strength of bondlines formed in co-cured composite/metal joints. To this end, GFRP-to-steel double strap joints were tested in tension, so that the bi-material interface was subjected to shear with debonding occurring under Mode II conditions. The study of the debonding process and thus failure of the joints was based both on stress and energy considerations. Analytical formulas were utilized for the derivation of the respective shear strength and fracture toughness measures which characterize the bi-material interface, by considering the joint's failure load, geometry and involved materials. The derived stress and toughness magnitudes were further utilized as the parameters of an extrinsic cohesive law, applied in connection with the modeling the bi-material interface in a finite element simulation environment. It was concluded that interfacial fracture in the considered joints was driven by the fracture toughness and not by strength considerations, and that LEFM is well suited to analyze the failure of the joint. Additionally, the double strap joint geometry was identified and utilized as a characterization test for measuring the Mode II fracture toughness of brittle bi-material interfaces.

  9. Thrust-wrench fault interference in a brittle medium: new insights from analogue modelling experiments

    NASA Astrophysics Data System (ADS)

    Rosas, Filipe; Duarte, Joao; Schellart, Wouter; Tomas, Ricardo; Grigorova, Vili; Terrinha, Pedro

    2015-04-01

    We present analogue modelling experimental results concerning thrust-wrench fault interference in a brittle medium, to try to evaluate the influence exerted by different prescribed interference angles in the formation of morpho-structural interference fault patterns. All the experiments were conceived to simulate simultaneous reactivation of confining strike-slip and thrust faults defining a (corner) zone of interference, contrasting with previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. Different interference angles of 60°, 90° and 120° were experimentally investigated by comparing the specific structural configurations obtained in each case. Results show that a deltoid-shaped morpho-structural pattern is consistently formed in the fault interference (corner) zone, exhibiting a specific geometry that is fundamentally determined by the different prescribed fault interference angle. Such angle determines the orientation of the displacement vector shear component along the main frontal thrust direction, determining different fault confinement conditions in each case, and imposing a complying geometry and kinematics of the interference deltoid structure. Model comparison with natural examples worldwide shows good geometric and kinematic similarity, pointing to the existence of matching underlying dynamic process. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.

  10. A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    NASA Astrophysics Data System (ADS)

    Castro, Jorge; Cicero, Sergio; Sagaseta, César

    2016-01-01

    This paper presents a new analytical criterion for brittle failure of rocks and heavily over-consolidated soils. Griffith's model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith's criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as half of the critical distance. This fracture criterion is known as the point method, and is part of the theory of critical distances, which is utilised in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, σ 0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/ L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, σ c and σ t. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils ( σ c/ σ t = 3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low-confining stresses.

  11. A micromechanical basis for partitioning the evolution of grainbridging in brittle materials

    SciTech Connect

    Foulk III, J.W.; Cannon, R.M.; Johnson, G.C.; Klein, P.A.; Ritchie, R.O.

    2006-10-09

    A micromechanical model is developed for grain bridging inmonolithic ceramics. Specifically, bridge formation of a single,non-equiaxed grain spanning adjacent grains is addressed. A cohesive zoneframework enables crack initiation and propagation along grainboundaries. The evolution of the bridge is investigated through avariance in both grain angle and aspect ratio. We propose that thebridging process can be partitioned into five distinct regimes ofresistance: propagate, kink, arrest, stall, and bridge. Although crackpropagation and kinking are well understood, crack arrest and subsequent"stall" have been largely overlooked. Resistance during the stall regimeexposes large volumes of microstructure to stresses well in excess of thegrain boundary strength. Bridging can occur through continued propagationor reinitiation ahead of the stalled crack tip. The driving forcerequired to reinitiate is substantially greater than the driving forcerequired to kink. In addition, the critical driving force to reinitiateis sensitive to grain aspect ratio but relatively insensitive to grainangle. The marked increase in crack resistance occurs prior to bridgeformation and provides an interpretation for the rapidly risingresistance curves which govern the strength of many brittle materials atrealistically small flaw sizes.

  12. Reliability Analysis of Brittle Material Structures - Including MEMS(?) - With the CARES/Life Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2002-01-01

    Brittle materials are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts. thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The CARES/Life code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. For this presentation an interview of the CARES/Life program will be provided. Emphasis will be placed on describing the latest enhancements to the code for reliability analysis with time varying loads and temperatures (fully transient reliability analysis). Also, early efforts in investigating the validity of using Weibull statistics, the basis of the CARES/Life program, to characterize the strength of MEMS structures will be described as as well as the version of CARES/Life for MEMS (CARES/MEMS) being prepared which incorporates single crystal and edge flaw reliability analysis capability. It is hoped this talk will open a dialog for potential collaboration in the area of MEMS testing and life prediction.

  13. Difference between fracture of thin brittle sheets and two-dimensional fracture.

    PubMed

    Aström, J A

    2009-10-01

    Recently there has been some suggestions that fragmentation of thin brittle sheets is qualitatively different from pure two-dimensional fragmentation. The obvious reason for such a discrepancy is the possibility of the sheet to deform out of plane. There is a generic crack-branching mechanism that creates power-law fragment size distribution in the small fragment range for two-dimensional (2D) and three-dimensional bulk fragmentation with the power exponent (2D-1)/D. For thin sheets, the power exponent seems to be close to 1.2 which differs from the D=2 exponent 1.5. In order to make a distinct separation between sheet and 2D fragmentation, high-resolution fragment size distributions are required for fragmentation models with minimal differencies other than dimensionality. Here a very efficient numerical model which can be switched from 2D fragmentation to out-of-plane sheet fragmentation with minimal changes is used to produce high-resolution fragment size distribution for the two cases. The model results cast some doubt on the existence of separate universality classes for sheet and 2D fragmentation.

  14. Difference between fracture of thin brittle sheets and two-dimensional fracture

    NASA Astrophysics Data System (ADS)

    Åström, J. A.

    2009-10-01

    Recently there has been some suggestions that fragmentation of thin brittle sheets is qualitatively different from pure two-dimensional fragmentation. The obvious reason for such a discrepancy is the possibility of the sheet to deform out of plane. There is a generic crack-branching mechanism that creates power-law fragment size distribution in the small fragment range for two-dimensional (2D) and three-dimensional bulk fragmentation with the power exponent (2D-1)/D . For thin sheets, the power exponent seems to be close to 1.2 which differs from the D=2 exponent 1.5. In order to make a distinct separation between sheet and 2D fragmentation, high-resolution fragment size distributions are required for fragmentation models with minimal differencies other than dimensionality. Here a very efficient numerical model which can be switched from 2D fragmentation to out-of-plane sheet fragmentation with minimal changes is used to produce high-resolution fragment size distribution for the two cases. The model results cast some doubt on the existence of separate universality classes for sheet and 2D fragmentation.

  15. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus.

    PubMed

    Lechner, Judith; Porter, Louise F; Rice, Aine; Vitart, Veronique; Armstrong, David J; Schorderet, Daniel F; Munier, Francis L; Wright, Alan F; Inglehearn, Chris F; Black, Graeme C; Simpson, David A; Manson, Forbes; Willoughby, Colin E

    2014-10-15

    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date.

  16. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence.

    PubMed

    Delroisse, Jérôme; Ullrich-Lüter, Esther; Blaue, Stefanie; Ortega-Martinez, Olga; Eeckhaut, Igor; Flammang, Patrick; Mallefet, Jérôme

    2017-04-01

    Bioluminescence relies on the oxidation of a luciferin substrate catalysed by a luciferase enzyme. Luciferins and luciferases are generic terms used to describe a large variety of substrates and enzymes. Whereas luciferins can be shared by phylogenetically distant organisms which feed on organisms producing them, luciferases have been thought to be lineage-specific enzymes. Numerous light emission systems would then have co-emerged independently along the tree of life resulting in a plethora of non-homologous luciferases. Here, we identify for the first time a candidate luciferase of a luminous echinoderm, the ophiuroid Amphiura filiformis Phylogenomic analyses identified the brittle star predicted luciferase as homologous to the luciferase of the sea pansy Renilla (Cnidaria), contradicting with the traditional viewpoint according to which luciferases would generally be of convergent origins. The similarity between the Renilla and Amphiura luciferases allowed us to detect the latter using anti-Renilla luciferase antibodies. Luciferase expression was specifically localized in the spines which were demonstrated to be the bioluminescent organs in vivo However, enzymes homologous to the Renilla luciferase but unable to trigger light emission were also identified in non-luminous echinoderms and metazoans. Our findings strongly indicate that those enzymes, belonging to the haloalkane dehalogenase family, might then have been convergently co-opted into luciferases in cnidarians and echinoderms. In these two benthic suspension-feeding species, similar ecological pressures would constitute strong selective forces for the functional shift of these enzymes and the emergence of bioluminescence.

  17. Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage

    NASA Astrophysics Data System (ADS)

    Hütter, Geralf; Mühlich, Uwe; Kuna, Meinhard

    2015-11-01

    Today it is well known that the classical Cauchy continuum theory is insufficient to describe the deformation behavior of solids if gradients occur over distances which are comparable to the microstructure of the material. This becomes crucial e.g., for small specimens or during localization of deformation induced by material degradation (damage). Higher-order continuum approaches like micromorphic theories are established to address such problems. However, such theories require the formulation of respective constitutive laws, which account for the microstructural interactions. Especially in damage mechanics such laws are mostly formulated in a purely heuristic way, which leads to physical and numerical problems. In the present contribution, the fully micromorphic constitutive law for a porous medium is obtained in closed form by homogenization based on the minimal boundary conditions concept. It is shown that this model describes size effects of porous media like foams adequately. The model is extended toward quasi-brittle damage overcoming the physical and numerical limitations of purely heuristic approaches.

  18. Fracture spacing in tensile brittle layers adhering to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Lazarus, Véronique

    2017-01-01

    A natural question arising when observing crack networks in brittle layers such as, e.g., paints, muds, skins, pottery glazes, coatings, ceramics, is what determines the distance between cracks. This apparently simple question received a wealth of more or less complex and appropriate answers, but no consensus has emerged. Here, we show that the cracks interact mutually as soon as the spacing between them is smaller than ten times the thickness of the layer. Then, a simple Griffith-type balance between the elastic deformation energy and the fracture bulk and debonding costs captures a broad number of observations, going from the square-root or linear increase of the spacing with the thickness, to its decrease with loading until saturation. The adhesion strength is identified as playing a key role in these behaviour changes. As illustration, we show how the model can be applied to study the influence of the layer thickness on crack patterns. We believe that the versatility of the approach should permit wide applicability, from geosciences to engineering.

  19. Fracture Modes in Curved Brittle Layers Subject to Concentrated Cyclic Loading in Liquid Environments.

    PubMed

    Kim, Jae-Won; Thompson, Van P; Rekow, E Dianne; Jung, Yeon-Gil; Zhang, Yu

    2009-03-01

    Damage response of brittle curved structures subject to cyclic Hertzian indentation was investigated. Specimens were fabricated by bisecting cylindrical quartz glass hollow tubes. The resulting hemi-cylindrical glass shells were bonded internally and at the edges to polymeric supporting structures and loaded axially in water on the outer circumference with a spherical tungsten carbide indenter. Critical loads and number of cycles to initiate and propagate near-contact cone cracks and far-field flexure radial cracks to failure were recorded. Flat quartz glass plates on polymer substrates were tested as a control group. Our findings showed that cone cracks form at lower loads, and can propagate through the quartz layer to the quartz/polymer interface at lower number of cycles, in the curved specimens relative to their flat counterparts. Flexural radial cracks require a higher load to initiate in the curved specimens relative to flat structures. These radial cracks can propagate rapidly to the margins, the flat edges of the bisecting plane, under cyclic loading at relatively low loads, owing to mechanical fatigue and a greater spatial range of tensile stresses in curved structures.

  20. Role of indenter material and size in veneer failure of brittle layer structures.

    PubMed

    Bhowmick, Sanjit; Meléndez-Martínez, Juan José; Hermann, Ilja; Zhang, Yu; Lawn, Brian R

    2007-07-01

    The roles of indenter material and size in the failure of brittle veneer layers in all-ceramic crown-like structures are studied. Glass veneer layers 1 mm thick bonded to alumina layers 0.5 mm thick on polycarbonate bases (representative of porcelain/ceramic-core/dentin) are subject to cyclic contact loading with spherical indenters in water (representative of occlusal biting environment). Two indenter materials-glass and tungsten carbide-and three indenter radii-1.6, 5.0, and 12.5 mm-are investigated in the tests. A video camera is used to follow the near-contact initiation and subsequent downward propagation of cone cracks through the veneer layer to the core interface, at which point the specimen is considered to have failed. Both indenter material and indenter radius have some effect on the critical loads to initiate cracks within the local Hertzian contact field, but the influence of modulus is weaker. The critical loads to take the veneer to failure are relatively insensitive to either of these indenter variables, since the bulk of the cone crack propagation takes place in the contact far field. Clinical implications of the results are considered, including the issue of single-cycle overload versus low-load cyclic fatigue and changes in fracture mode with loading conditions.

  1. Large-scale 3D modeling of projectile impact damage in brittle plates

    NASA Astrophysics Data System (ADS)

    Seagraves, A.; Radovitzky, R.

    2015-10-01

    The damage and failure of brittle plates subjected to projectile impact is investigated through large-scale three-dimensional simulation using the DG/CZM approach introduced by Radovitzky et al. [Comput. Methods Appl. Mech. Eng. 2011; 200(1-4), 326-344]. Two standard experimental setups are considered: first, we simulate edge-on impact experiments on Al2O3 tiles by Strassburger and Senf [Technical Report ARL-CR-214, Army Research Laboratory, 1995]. Qualitative and quantitative validation of the simulation results is pursued by direct comparison of simulations with experiments at different loading rates and good agreement is obtained. In the second example considered, we investigate the fracture patterns in normal impact of spheres on thin, unconfined ceramic plates over a wide range of loading rates. For both the edge-on and normal impact configurations, the full field description provided by the simulations is used to interpret the mechanisms underlying the crack propagation patterns and their strong dependence on loading rate.

  2. Deleterious Mutations in the Zinc-Finger 469 Gene Cause Brittle Cornea Syndrome

    PubMed Central

    Abu, Almogit; Frydman, Moshe; Marek, Dina; Pras, Eran; Nir, Uri; Reznik-Wolf, Haike; Pras, Elon

    2008-01-01

    Brittle cornea syndrome (BCS) is an autosomal-recessive disorder characterized by a thin cornea that tends to perforate, causing progressive visual loss and blindness. Additional systemic symptoms such as joint hypermotility, hyperlaxity of the skin, and kyphoscoliosis place BCS among the connective-tissue disorders. Previously, we assigned the disease gene to a 4.7 Mb interval on chromosome 16q24. In order to clone the BCS gene, we first narrowed the disease locus to a 2.8 Mb interval and systematically sequenced genes expressed in connective tissue in this chromosomal segment. We have identified two frameshift mutations in the Zinc-Finger 469 gene (ZNF469). In five unrelated patients of Tunisian Jewish ancestry, we found a 1 bp deletion at position 5943 (5943 delA), and in an inbred Palestinian family we detected a single-nucleotide deletion at position 9527 (9527 delG). The function of ZNF469 is unknown. However, a 30% homology to a number of collagens suggests that it could act as a transcription factor involved in the synthesis and/or organization of collagen fibers. PMID:18452888

  3. Micro-scale observations of semi-brittle failure in Carrara marble

    NASA Astrophysics Data System (ADS)

    Tal, Y.; Evans, J. B.

    2014-12-01

    We studied the generation and extension of micro cracks during semi-brittle failure of rectangular prisms (12 mm x 6 mm x 6 mm) of Carrara marble under uniaxial compression (i.e., with no confining pressure) at temperatures ranging from 25 to 184 °C and compared these observations to existing damage models. Using a long distance microscope, we generated a series of sequential images of micro-scale grid made of square markers with sides about 7.5 mm long and spacing of 12.6 mm. The grid covered a region of 1 mm x 0.8 mm near the center of one free surface. By measuring the relative displacements of the grid markers, we generated 2 - D finite strain distribution maps at each stage of the experiment. Deformation was concentrated along cracks. To study and quantify their evolution additional filtering stage was applied. At 105 °C and 184 °C, the number and length of micro cracks increased with increasing load, and near the peak stress, they intersected and coalesced. By measuring the number and vertical dimension of the cracks intersecting the surface, we calculated a damage parameter as defined by Ashby and Sammis [1990]. In the two experiments mentioned above, the damage sustained by the samples near the peak stress was much larger than that calculated from the model. In a third experiment at room temperature, failure was very abrupt and no micro cracks were observed within the region analyzed.

  4. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials.

    PubMed

    Montemayor, L C; Wong, W H; Zhang, Y-W; Greer, J R

    2016-02-03

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) < 0.3 for the same (a/l); bending begins to play a significant role in failure as (a/w) increases. This experimental and computational work demonstrates that the discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  5. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    PubMed Central

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-01-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) < 0.3 for the same (a/l); bending begins to play a significant role in failure as (a/w) increases. This experimental and computational work demonstrates that the discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials. PMID:26837581

  6. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Cullers, Cheryl L.; Antolovich, Stephen D.

    1993-01-01

    The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.

  7. An ESPI experimental study on the phenomenon of fracture in glass. Is it brittle or plastic?

    NASA Astrophysics Data System (ADS)

    Ferretti, Daniele; Rossi, Marco; Royer-Carfagni, Gianni

    2011-07-01

    The crack opening displacement (COD) in annealed soda-lime (float) glass has been measured with an electronic speckle pattern interferometry (ESPI) apparatus using coherent laser light. Specimens, naturally pre-cracked with a particular technique, were loaded under strain-driven bending until crack propagated; at regular intervals loading was paused to let the crack reach subcritical equilibrium and the COD measured. By using a post-processing algorithm comparing four images lighted with phase-shifted laser beams, surface displacements could be measured at a resolution of 0.01 μm. Glass transparency has allowed to see through that the propagating crack front is not sharp but curved, jagged and merged in an opaque neighborhood. Numerical simulations show that the measured CODs cannot be reproduced if cohesive surface forces à la Barenblatt-Dugdale bridge the crack lips; instead a plastic-like region must form in a bulk neighborhood of the tip, where inelastic strains are associated with volume increase rather than deviatoric distortion. For this, a Gurson-Tvergaard model of porous plasticity, accounting for the formation of microvoids/microcracks, has been found more efficient than classical von Mises plasticity. This study confirms the formation at the crack tip of a process zone, whose occurrence in brittle materials like glass is still a subject of controversy.

  8. Fracture Property of Y-Shaped Cracks of Brittle Materials under Compression

    PubMed Central

    Zhang, Xiaoyan; Zhu, Zheming; Liu, Hongjie

    2014-01-01

    In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF KI of the branch crack increases from negative to positive and the absolute value KII of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results. PMID:25013846

  9. Fracture property of Y-shaped cracks of brittle materials under compression.

    PubMed

    Zhang, Xiaoyan; Zhu, Zheming; Liu, Hongjie

    2014-01-01

    In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF K I of the branch crack increases from negative to positive and the absolute value K II of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results.

  10. Isogeometric phase-field modeling of brittle and ductile fracture in shell structures

    NASA Astrophysics Data System (ADS)

    Ambati, Marreddy; Kiendl, Josef; De Lorenzis, Laura

    2016-08-01

    Phase-field modeling of brittle and ductile fracture is a modern promising approach that enables a unified description of complicated failure processes (including crack initiation, propagation, branching, merging), as well as its efficient numerical treatment [1-4]. In the present work, we apply this approach to model fracture in shell structures, considering both thin and thick shells. For thin shells, we use an isogeometric Kirchhoff-Love shell formulation [5-6], which exploits the high continuity of the isogeometric shape functions in order to avoid rotational degrees of freedom, i.e., the shell geometry is modeled as a surface and its deformation is fully described by the displacements of this surface. For thick shells, we use an isogeometric assumed natural strain (ANS) solid shell formulation [7], i.e., a 3D solid formulation enhanced with the ANS method in order to alleviate geometrical locking effects. According to the discretization of the structural formulations, an isogeometric basis is also used for the phase-field. While the phase-field fracture formulation for solid shells is basically the same as for standard solids, some reformulation is necessary for thin shells, accounting for the interaction of stresses devoted to membrane and bending deformation. We test both formulations on several numerical examples and perform comparisons of the results obtained by the two methods to each other as well as to reference solutions, which confirm the validity and applicability of the presented methods.

  11. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus

    PubMed Central

    Lechner, Judith; Porter, Louise F.; Rice, Aine; Vitart, Veronique; Armstrong, David J.; Schorderet, Daniel F.; Munier, Francis L.; Wright, Alan F.; Inglehearn, Chris F.; Black, Graeme C.; Simpson, David A.; Manson, Forbes; Willoughby, Colin E.

    2014-01-01

    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date. PMID:24895405

  12. From brittle to ductile: a structure dependent ductility of diamond nanothread.

    PubMed

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B C; Cheng, Yuan; Bell, John M; Zhang, Yong-Wei; Gu, Yuantong

    2016-06-07

    As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp(3) bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the "grain size". On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.

  13. Changes in CH4 emission from rice fields from 1960 to 1990s: 1. Impacts of modern rice technology

    NASA Astrophysics Data System (ADS)

    Gon, Hugo Denier

    2000-03-01

    Four countries (Indonesia, Philippines, Thailand, and Nepal) were taken as an example to assess the impact of changes in rice cultivation on methane emissions from rice fields since the 1960s. The change of rice area by type of culture from 1960-1990s is estimated, and its relative contribution to national harvested rice area is calculated and multiplied with an emission factor, to derive the relative methane emission per unit rice land. Relative methane emission per ha rice land has increased since 1960 for all four countries, largely due to an increase in irrigated rice area and partly due to a decrease in upland rice area. Patterns of rice area changes and related emission changes differ considerably among countries. On the basis of the rice area increases between 1960 and the 1990s, significant increases in methane emissions from rice fields due to increases in total rice cultivated area are not to be expected in the future. The impact of modern rice variety adoption is assessed by relating methane emissions to rice production. The organic matter returned to the paddy soil is largely determined by rice biomass production which, given a certain yield, is different for traditional and modern rice varieties. By calculating total organic matter returned to rice paddy soils and assuming a constant fraction to be emitted as methane, rice production and methane emission can be related. The analysis indicates that (1) up to now, rice yield increases in countries with high modern rice variety adoption have not resulted in increased methane emissions per unit of harvested area and, (2) global annual emission from rice fields may be considerably lower than generally assumed. The introduction of modern rice varieties can be regarded as a historical methane emission mitigation strategy because higher rice yields resulted in lower or equal methane emissions.

  14. Changes in CH4 emission from rice fields from 1960 to 1990s. 1. Impacts of modern rice technology

    NASA Astrophysics Data System (ADS)

    van der Gon, Hugo Denier

    2000-03-01

    Four countries (Indonesia, Philippines, Thailand, and Nepal) were taken as an example to assess the impact of changes in rice cultivation on methane emissions from rice fields since the 1960s. The change of rice area by type of culture from 1960-1990s is estimated, and its relative contribution to national harvested rice area is calculated and multiplied with an emission factor, to derive the relative methane emission per unit rice land. Relative methane emission per ha rice land has increased since 1960 for all four countries, largely due to an increase in irrigated rice area and partly due to a decrease in upland rice area. Patterns of rice area changes and related emission changes differ considerably among countries. On the basis of the rice area increases between 1960 and the 1990s, significant increases in methane emissions from rice fields due to increases in total rice cultivated area are not to be expected in the future. The impact of modern rice variety adoption is assessed by relating methane emissions to rice production. The organic matter returned to the paddy soil is largely determined by rice biomass production which, given a certain yield, is different for traditional and modern rice varieties. By calculating total organic matter returned to rice paddy soils and assuming a constant fraction to be emitted as methane, rice production and methane emission can be related. The analysis indicates that (1) up to now, rice yield increases in countries with high modern rice variety adoption have not resulted in increased methane emissions per unit of harvested area and, (2) global annual emission from rice fields may be considerably lower than generally assumed. The introduction of modern rice varieties can be regarded as a historical methane emission mitigation strategy because higher rice yields resulted in lower or equal methane emissions.

  15. Calcium Binding Restores Gel Formation of Succinylated Gelatin and Reduces Brittleness with Preservation of the Elastically Stored Energy.

    PubMed

    Baigts Allende, Diana; de Jongh, Harmen H J

    2015-08-12

    To better tailor gelatins for textural characteristics in (food) gels, their interactions are destabilized by introduction of electrostatic repulsions and creation of affinity sites for calcium to "lock" intermolecular interactions. For that purpose gelatins with various degrees of succinylation are obtained. Extensive succinylation hampers helix formation and gel strength is slightly reduced. At high degrees of succinylation the helix propensity, gelling/melting temperatures, concomitant transition enthalpy, and gel strength become calcium-sensitive, and relatively low calcium concentrations largely restore these properties. Although succinylation has a major impact on the brittleness of the gels formed and the addition of calcium makes the material less brittle compared to nonmodified gelatin, the modification has no impact on the energy balance in the gel, where all energy applied is elastically stored in the material. This is explained by the unaffected stress relaxation by the network and high water-holding capacity related to the small mesh sizes in the gels.

  16. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO2 and comparing themore » predictions with experiments.« less

  17. Slow Crack Growth Analysis of Brittle Materials with Finite Thickness Subjected to Constant Stress-Rate Flexural Loading

    NASA Technical Reports Server (NTRS)

    Chio, S. R.; Gyekenyesi, J. P.

    1999-01-01

    A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.

  18. Origin, dispersal, cultivation and variation of rice.

    PubMed

    Khush, G S

    1997-09-01

    There are two cultivated and twenty-one wild species of genus Oryza. O. sativa, the Asian cultivated rice is grown all over the world. The African cultivated rice, O. glaberrima is grown on a small scale in West Africa. The genus Oryza probably originated about 130 million years ago in Gondwanaland and different species got distributed into different continents with the breakup of Gondwanaland. The cultivated species originated from a common ancestor with AA genome. Perennial and annual ancestors of O. sativa are O. rufipogon and O. nivara and those of O. glaberrima are O. longistaminata, O. breviligulata and O. glaberrima probably domesticated in Niger river delta. Varieties of O. sativa are classified into six groups on the basis of genetic affinity. Widely known indica rices correspond to group I and japonicas to group VI. The so called javanica rices also belong to group VI and are designated as tropical japonicas in contrast to temperate japonicas grown in temperate climate. Indica and japonica rices had a polyphyletic origin. Indicas were probably domesticated in the foothills of Himalayas in Eastern India and japonicas somewhere in South China. The indica rices dispersed throughout the tropics and subtropics from India. The japonica rices moved northward from South China and became the temperate ecotype. They also moved southward to Southeast Asia and from there to West Africa and Brazil and became tropical ecotype. Rice is now grown between 55 degrees N and 36 degrees S latitudes. It is grown under diverse growing conditions such as irrigated, rainfed lowland, rainfed upland and floodprone ecosystems. Human selection and adaptation to diverse environments has resulted in numerous cultivars. It is estimated that about 120,000 varieties of rice exist in the world. After the establishment of International Rice Research Institute in 1960, rice varietal improvement was intensified and high yielding varieties were developed. These varieties are now planted to 70

  19. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field.

    PubMed

    Busconi, M; Baldi, G; Lorenzoni, C; Fogher, C

    2014-01-01

    In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time.

  20. Ethanol sensitivity of rice and oat coleoptiles.

    PubMed

    Kato-Noguchi, Hisashi

    2002-05-01

    The ability to avoid the ethanol-induced injury was evaluated in rice (Oryza sativa L.) and oat (Avena sativa L.) coleoptiles. The growth of the rice and oat coleoptiles was inhibited by ethanol exogenously applied at concentrations greater than 200 and 30 mM, respectively. At 300 mM ethanol, oat coleoptiles were brown and flaccid but rice coleoptiles did not show any visible symptoms of toxicity. The acetaldehyde level in rice and oat coleoptiles was increased by exogenously applied ethanol and the increases were greater in oat than in rice coleoptiles under aerobic and anaerobic conditions. At 300 mM ethanol, the acetaldehyde concentrations in the rice and oat coleoptiles were 46 and 87 nmol g-1 FW under aerobic conditions, respectively, and 52 and 124 nmol g-1 FW under anaerobic conditions, respectively. The activity of alcohol dehydrogenase (ADH; EC 1.1.1.1) in the direction of ethanol to acetaldehyde was greater in oat than in rice coleoptiles and ADH protein in oat coleoptiles was more induced by exogenously applied ethanol than that in rice coleoptiles. These results suggest that in vivo conversion rate of ethanol to acetaldehyde by ADH is lower in rice than oat coleoptiles, which may be one of the reasons that ethanol sensitivity of rice is much lower than that of oat coleoptiles. The great ability of rice to avoid the ethanol-induced injuries may contribute its anoxia tolerance when glycolysis and ethanolic fermentation replace the Krebs cycle as the main source of energy under anaerobic conditions.

  1. Irradiation-induced impurity segregation and ductile-to-brittle transition temperature shift in high chromium ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Faulkner, R. G.; Flewitt, P. E. J.

    2007-08-01

    A model is presented to predict irradiation-induced impurity segregation and its contribution to the ductile-to-brittle transition temperature (DBTT) shift in high chromium ferritic steels. The hardening contribution (dislocation loops, voids and precipitates) is also considered in this study. The predicted results are compared with the experimental DBTT shifts data for irradiated 9Cr1MoVNb and 12Cr1MoVW steels with different grain sizes.

  2. Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials Part I

    SciTech Connect

    Fan, Xiaofeng; Case, Eldon D; Ren, Fei; Shu, Yutian; Baumann, Melissa

    2012-01-01

    Porous brittle materials are used as filters, catalyst supports, solid oxide fuel cells and biomedical materials. However the literature on the Weibull modulus, m, versus volume fraction porosity, P, is extremely limited despite the importance of m as a gauge of mechanical reliability. In Part I of this study, m is determined for 441 sintered hydroxyapatite (HA) specimens fractured in biaxial flexure for 0.08 P 0.62. In this study, we analyze a combined data set collected from the literature that represents work from a total of 17 different research groups (including the present authors), eight different materials and more than 1560 oxide and non-oxide specimens, the m versus P plot is Ushaped with a wide band of m values for P < 0.1 (Region I) and P > 0.55 (Region III), and a narrower band of m values in the intermediate porosity region of 0.1 < P < 0.55 (Region II). The limited range of m ( 4 < m < 11) in Region II has important implications since Region II includes the P range for the majority of the applications of porous brittle materials. Part II of this study focuses on the P dependence of the mean fracture strength,< f >, and the Young s modulus E for the HA specimens tested in Part I along with literature data for other brittle materials. Both < f > and E are power law functions of the degree of densification, , where = 1 P/PG and PG is the green (unfired) porosity.

  3. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale

    NASA Astrophysics Data System (ADS)

    Guo, Zhiqi; Li, Xiang-Yang; Liu, Cai; Feng, Xuan; Shen, Ye

    2013-04-01

    We construct a rock physics workflow to link the elastic properties of shales to complex constituents and specific microstructure attributes. The key feature in our rock physics model is the degrees of preferred orientation of clay and kerogen particles defined by the proportions of such particles in their total content. The self-consistent approximation method and Backus averaging method are used to consider the isotropic distribution and preferred orientation of compositions and pores in shales. Using the core and well log data from the Barnett Shale, we demonstrate the application of the constructed templates for the evaluation of porosity, lithology and brittleness index. Then, we investigate the brittleness index defined in terms of mineralogy and geomechanical properties. The results show that as clay content increases, Poisson's ratio tends to increase and Young's modulus tends to decrease. Moreover, we find that Poisson's ratio is more sensitive to the variation in the texture of shales resulting from the preferred orientation of clay particles. Finally, based on the constructed rock physics model, we calculate AVO responses from the top and bottom of the Barnett Shale, and the results indicate predictable trends for the variations in porosity, lithology and brittleness index in shales.

  4. Dissecting the genetic diversity in African rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    African cultivated rice, Oryza glaberrima, and its progenitor, O. barthii are excellent sources of important genes for rice improvement because they exhibit tolerance to several abiotic and biotic stresses. Development of advance backcross (ABC) populations between an unadapted donor parent and ada...

  5. Ricecraft: Rice Is for More Than Eating.

    ERIC Educational Resources Information Center

    Rice Council of America, Houston, TX.

    Rice can be the basis for mosaics, flower arrangements, games, toys, and many things children would like to make. It can add new dimensions to making candles, coasters, and jewelry. Working with rice can aid in the development of appreciation of texture, symmetry, coordination, imagination and, at the same time, result in hand-made gifts for…

  6. Low oil-uptake rice batters.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice starch and flour are popular for use in foods, because they are known to be nutritious, gluten-free, and hypoallergenic – properties which make them particularly desirable for use in infant foods, and in products for people with celiac disease (gluten intolerance). One application for rice sta...

  7. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  8. Connecting with Rice: Carolina Lowcountry and Africa

    ERIC Educational Resources Information Center

    Mitchell, Jerry T.; Collins, Larianne; Wise, Susan S.; Caughman, Monti

    2012-01-01

    Though lasting less than 200 years, large-scale rice production in South Carolina and Georgia "probably represented the most significant utilization of the tidewater zone for crop agriculture ever attained in the United States." Rice is a specialty crop where successful cultivation relied heavily upon "adaptation" to nature via…

  9. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  10. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  11. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  12. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  13. Simulating rice response to climate change

    SciTech Connect

    Singh, U.; Padilla, J.L. |

    1995-12-31

    The response of rice (Oryza sativa L.) to elevated CO{sub 2} concentration and temperature increase was simulated using the CERES-rice model. CERES-rice belongs to the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) family of crop and nutrient dynamics models. Long-term historical data from the International Rice Research Institute (IRRI) wetland site was used to quantify the climatic change effects. The model simulated such beneficial effects of CO{sub 2} enrichment as increased grain yields, reduced transpiration, increased water use efficiency, improved use of intercepted radiation, reduced N losses, and higher N use efficiency. The trends were reversed for all of the above parameters with increase in temperature. CERES-rice simulated these negative trends in low input rice production as well. Based on the model`s prediction, some of the negative effects of temperature increase in warmer regions of the world could be offset by use of rice varieties that are tolerant to high temperature-induced spikelet sterility, and planting varieties with longer growth duration, particularly, longer grain filling duration. With improved varieties and good management future impact of climate change could be capitalized to have positive effects on rice production. Although the model has been extensively tested, it is critical to validate it with field data from extreme temperature and CO{sub 2} level studies. 33 refs., 13 figs., 3 tabs.

  14. Novel gene expression tools for rice biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  15. Rice aroma and flavor: a literature review.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Descriptive sensory analysis has identified over a dozen different aromas and flavors in rice. Instrumental analyses have found over 200 volatile compounds present in rice. However, after over 30 years of research, little is known about the relationships between the numerous volatile compounds and a...

  16. Important sensory properties differentiating premium rice cultivars.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rice-consuming countries worldwide, specific cultivars are recognized as premium, “gold standard” cultivars, while others are recognized as being superior, but not the best. It has been difficult to ascertain whether preferences for premium rice cultivars are driven by discernable differences in...

  17. Influence of intermittent irrigation, red rice biotype, and rice grain type on outcrossing between red rice and imidazolinone-resistant rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether outcrossing rates between red rice and imazethapyr resistant rice are affected as a function of irrigation management is unclear. Potentially, differences between conventionally-flooded (CNV) and intermittently flooded (INT) systems could affect plant water deficits, as well as vegetative a...

  18. Grain Unloading Of Arsenic Species In Rice

    EPA Science Inventory

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dim...

  19. Benchmarking the Sandbox: Quantitative Comparisons of Numerical and Analogue Models of Brittle Wedge Dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Buiter, S.; Schreurs, G.; Geomod2008 Team

    2010-12-01

    When numerical and analogue models are used to investigate the evolution of deformation processes in crust and lithosphere, they face specific challenges related to, among others, large contrasts in material properties, the heterogeneous character of continental lithosphere, the presence of a free surface, the occurrence of large deformations including viscous flow and offset on shear zones, and the observation that several deformation mechanisms may be active simultaneously. These pose specific demands on numerical software and laboratory models. By combining the two techniques, we can utilize the strengths of each individual method and test the model-independence of our results. We can perhaps even consider our findings to be more robust if we find similar-to-same results irrespective of the modeling method that was used. To assess the role of modeling method and to quantify the variability among models with identical setups, we have performed a direct comparison of results of 11 numerical codes and 15 analogue experiments. We present three experiments that describe shortening of brittle wedges and that resemble setups frequently used by especially analogue modelers. Our first experiment translates a non-accreting wedge with a stable surface slope. In agreement with critical wedge theory, all models maintain their surface slope and do not show internal deformation. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. All models show similar cross-sectional evolutions that demonstrate reproducibility to first order. However

  20. From brittle to ductile: a structure dependent ductility of diamond nanothread

    NASA Astrophysics Data System (ADS)

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B. C.; Cheng, Yuan; Bell, John M.; Zhang, Yong-Wei; Gu, Yuantong

    2016-05-01

    As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp3 bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the ``grain size''. On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp3 bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different