Science.gov

Sample records for rice brittle culm

  1. Rice BRITTLE CULM 5 (BRITTLE NODE) is Involved in Secondary Cell Wall Formation in the Sclerenchyma Tissue of Nodes

    PubMed Central

    Aohara, Tsutomu; Kotake, Toshihisa; Kaneko, Yasuko; Takatsuji, Hiroshi; Tsumuraya, Yoichi; Kawasaki, Shinji

    2009-01-01

    Several brittle culm (bc) mutants known in grasses are considered excellent materials to study the process of secondary cell wall formation. The brittle phenotype of the rice bc5 (brittle node) mutant appears exclusively in the developed nodes, which is distinct from other bc mutants (bc1, 2, 3, 4, 6 and 7) that show the brittle phenotype in culms and leaves. To address the defects of the rice bc5 mutant in node-specific cell wall formation, we analyzed tissue morphology and cell wall composition. The bc5 mutation was found to affect the cell wall deposition of node sclerenchyma tissues at 1 week after heading, the stage at which the cell wall sugar content is reduced, in the bc5 nodes, compared with wild-type nodes. Moreover, decreased accumulation of lignin and thickness of cell walls in the sclerenchyma tissues were also observed in the bc5 nodes. The amounts of cellulose and hemicellulose were reduced to 53 and 65% of those in the wild-type plants, respectively. Sugar composition and glycosidic linkage analyses of the hemicellulose showed that the accumulation of glucuronosyl arabinoxylan in bc5 nodes was perturbed by the mutation. The bc5 locus was narrowed to an approximately 3.1 Mb region of chromosome 2, where none of the other bc genes is located. The bc5 mutation appeared to reduce the expression levels of the OsCesA genes in the nodes after heading. The results indicate that the BC5 gene regulates the development of secondary cell walls of node sclerenchyma tissues. PMID:19812064

  2. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    PubMed

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  3. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    PubMed Central

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  4. Culm in rice straw as a new source for sugar recovery via enzymatic saccharification.

    PubMed

    Park, Jeung-yil; Arakane, Mitsuhiro; Shiroma, Riki; Ike, Masakazu; Tokuyasu, Ken

    2010-01-01

    Rice straw was manually dissected and two main fractions were recovered: a culm and a leaf sheath/blade fraction, in order to evaluate their potential as feedstocks for the recovery of fermentable sugars. In the case of cv. Koshihikari and Milkyqueen, most soft carbohydrates (SCs: glucose, fructose, sucrose, starch, and beta-1,3-1,4-glucan) were present in the culms, reaching 47.9% and 89.2% of total SCs in the two main fractions. The results also indicated that beta-glucans (cellulose and beta-1,3-1,4-glucan) and xylan in the culms were more susceptible to direct enzymatic attack than those in the leaf sheath/blades. Thus the culm has high potential as a new feedstock for the extraction of fermentable sugars in a concentrated form, as compared to whole rice straw and the leaf sheath/blade. In this study, a novel method of separating a culm from the whole rice straw by means of wind power was also evaluated.

  5. Starch Metabolism in the Leaf Sheaths and Culm of Rice 1

    PubMed Central

    Perez, Consuelo M.; Palmiano, Evelyn P.; Baun, Lyda C.; Juliano, Bienvenido O.

    1971-01-01

    The levels of starch and dextrin, free sugars, soluble protein, and enzymes involved in starch metabolism—α-amylase, β-amylase, phosphorylase, Q-enzyme, R-enzyme, and ADP-glucose starch synthetases—were assayed in the leaf sheaths and culm of the rice plant (Oryza sativa L., variety IR8) during growth. Starch accumulation in the leaf sheaths reached a maximum 10 to 11 weeks after transplanting, the time of development of the rice panicle. Maximal concentration of free sugars occurred earlier. Starch and sugars in the leaf sheaths and culm decreased rapidly during grain development. During starch accumulation, the starch granules of the leaf sheaths increased slightly in size and its gelatinization temperature decreased. The molecular size of amylose and amylopectin and amylose content of the starch were similar in both culm and leaf sheaths. Changes in the level of soluble protein paralleled changes in starch level in the leaf sheaths. Among the enzymes, only synthetase bound to the starch granule paralleled the level of starch in the leaf sheaths and in the culm. ADP-glucose, but not UDP-glucose, was utilized as a glucosyl donor by these starch synthetases. Zymograms of these extracts showed only one α-amylase band, one β-amylase band, two phosphorylase bands, and one Q-enzyme band. PMID:16657631

  6. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production

    PubMed Central

    Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi

    2014-01-01

    Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, ‘Leaf Star’, with superior lodging resistance and a gh phenotype similar to one of its parents, ‘Chugoku 117’. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209

  7. BRITTLE SHEATH1 encoding OsCYP96B4 is involved in secondary cell wall formation in rice.

    PubMed

    Wang, Xiaole; Cheng, Zhijun; Zhao, Zhichao; Gan, Lu; Qin, Ruizhen; Zhou, Kunneng; Ma, Weiwei; Zhang, Baocai; Wang, Jiulin; Zhai, Huqu; Wan, Jianmin

    2016-04-01

    Mutation of BSH1 leads to brittle sheath phenotype and reduction of very-long-chain fatty acids and their derivatives in wax. The cell wall plays an important role in plant mechanical strength. Several brittle culm mutants have been identified and characterized in rice. Here, we characterized an anther culture-derived rice brittle sheath mutant, named bsh1 and isolated BSH1 via map-based strategy. BSH1 encodes OsCYP96B4 protein, which was localized on ER membrane in the protoplast transient assay. BSH1 is mainly expressed in developing vascular tissues and the cells in which cell wall secondary thickening is occurring. Mutation in bsh1 causes changes in cell wall composition by affecting the expression of cell wall-related genes. Moreover, bsh1 shows reduced amounts of very-long-chain fatty acids and their derivatives in wax rather than the medium-chain fatty acids. In summary, BSH1 functions mainly in secondary cell wall formation, and probably in wax biosynthesis in an unidentified mechanism.

  8. The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5.

    PubMed

    Funabiki, Atsushi; Takano, Sho; Matsuda, Shuichi; Tokuji, Yoshihiko; Takamure, Itsuro; Kato, Kiyoaki

    2013-10-01

    Low temperature tolerance during vegetative growth is an important objective in rice (Oryza sativa L.) breeding programs. We isolated a novel reduced culm number mutant, designated reduced culm number11 (rcn11), by screening under low-temperature condition in a paddy fields. Since the shoot architecture of the rcn11 was very similar to that of the rcn1, we examined whether RCN11 is involved in RCN1/OsABCG5-associated vegetative growth control. The rcn11 mutant has no mutation in the RCN1/OsABCG5 gene and rcn11 has no effect on RCN1/OsABCG5 gene expression. In the rcn1 mutant, RCN1/OsABCG5 was upregulated showing that RCN1/OsABCG5 is controlled by negative feedback regulation. Absence of an effect of rcn11 on RCN1/OsABCG5 feedback regulation supported that RCN11 is not involved in the RCN1/OsABCG5-associated transport system. A genetic allelism test and molecular mapping study showed that rcn11 is independent of rcn1 on rice chromosome 3 and located on chromosome 8. The rcn1 rcn11 phenotype suggests that RCN11 acts on vegetative growth independent of RCN1/OsABCG5. A root development comparison between rcn1 and rcn11 in young seedlings represented that rcn11 reduced crown root number and elongation, whereas rcn1 reduced lateral root density and elongation. Thus, rcn11 will shed new light on vegetative growth control under low temperature.

  9. Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.).

    PubMed

    Onogi, Akio; Ideta, Osamu; Yoshioka, Takuma; Ebana, Kaworu; Yamasaki, Masanori; Iwata, Hiroyoshi

    2016-01-01

    Phenological traits of plants, such as flowering time, are linked to growth phase transition. Thus, phenological traits often influence other traits through the modification of the duration of growth period. This influence is a nuisance in plant breeding because it hampers genetic evaluation of the influenced traits. Genetic effects on the influenced traits have two components, one that directly affects the traits and one that indirectly affects the traits via the phenological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear regression models. Consequently, if a phenological trait is modified by introgression or editing of the responsible genes, the phenotypes of the influenced traits can change unexpectedly. To uncover the influence of the phenological trait and evaluate the direct genetic effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorporating a nonlinear influence of the phenological trait. We applied the NSE to real data for cultivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length (CL) as the influenced trait. This showed that CL of the cultivars that showed extremely early heading was shortened by the strong influence of DH. In a simulation study, it was shown that the NSE was able to infer the nonlinear influence and direct genetic effects with reasonable accuracy. However, the NSE failed to infer the linear influence in this study. When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the genetic effects more accurately. In such cases, however, by comparing the NSE and OLM using an information criterion, we could assess whether the nonlinear assumption of the NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the NSE in revealing the phenotypic influence of phenological traits.

  10. Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.)

    PubMed Central

    Onogi, Akio; Ideta, Osamu; Yoshioka, Takuma; Ebana, Kaworu; Yamasaki, Masanori; Iwata, Hiroyoshi

    2016-01-01

    Phenological traits of plants, such as flowering time, are linked to growth phase transition. Thus, phenological traits often influence other traits through the modification of the duration of growth period. This influence is a nuisance in plant breeding because it hampers genetic evaluation of the influenced traits. Genetic effects on the influenced traits have two components, one that directly affects the traits and one that indirectly affects the traits via the phenological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear regression models. Consequently, if a phenological trait is modified by introgression or editing of the responsible genes, the phenotypes of the influenced traits can change unexpectedly. To uncover the influence of the phenological trait and evaluate the direct genetic effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorporating a nonlinear influence of the phenological trait. We applied the NSE to real data for cultivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length (CL) as the influenced trait. This showed that CL of the cultivars that showed extremely early heading was shortened by the strong influence of DH. In a simulation study, it was shown that the NSE was able to infer the nonlinear influence and direct genetic effects with reasonable accuracy. However, the NSE failed to infer the linear influence in this study. When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the genetic effects more accurately. In such cases, however, by comparing the NSE and OLM using an information criterion, we could assess whether the nonlinear assumption of the NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the NSE in revealing the phenotypic influence of phenological traits. PMID:26859143

  11. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    The author describes a fluidised-bed boiler that has been designed by FluiDyne Engineering Corp. for the combustion of anthracite culm, a material containing about 40% ash and consisting of coal particles embedded in mineral matter. There are some 900 million tons of anthracite culm in northeast Pennsylvania within easy reach of many large metropolitan areas. It is estimated that the material can be used economically within a distance of 200 miles.

  12. Transcriptome Sequencing and Analysis for Culm Elongation of the World’s Largest Bamboo (Dendrocalamus sinicus)

    PubMed Central

    Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan

    2016-01-01

    Dendrocalamus sinicus is the world’s largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna

  13. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus).

    PubMed

    Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan

    2016-01-01

    Dendrocalamus sinicus is the world's largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna

  14. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Effect of Sesbania rostrata on Hirschmanniella oryzae in Flooded Rice

    PubMed Central

    Germani, G.; Reversat, G.; Luc, M.

    1983-01-01

    Microplot experiments on flooded soil infested with Hirschmanniella oryzae were conducted to investigate the influence of the legum Sesbania rostrata as a rotation crop with rice, Oryza sativa L. cv. Moroberekan. To avoid a green manure effect from S. rostrata, all aerial parts were removed at harvest. The dry weight of paddy, culms and leaves, and number of culms of rice following Sesbania were 214%, 158%, and 121% greater, respectively, than those following rice. Ripening of the paddy occurred earlier if rice followed Sesbania. The beneficial effect of Sesbania may have been due to the trap-crop action of Sesbania against H. oryzae. PMID:19295801

  16. 100 MW anthracite culm CFB small power producer

    SciTech Connect

    McKenzie, R. ); Wilhelm, B. . Power Systems Group)

    1988-01-01

    This paper discusses the development and design aspects of the St. Nicholas Cogeneration Project. The project is an anthracite culm-fired 80 MWe qualifying cogeneration facility. The project is privately financed, owned, and to be operated to produce process steam for commercial use along with cogenerating electricity for sale to the local utility. This paper highlights the details of the power sales agreement with Pennsylvania Power and Light Company, the development of the project for third-party financing, and the design considerations for fueling the facility with anthracite culm.

  17. Compartmentation of sucrose during radial transfer in mature sorghum culm

    PubMed Central

    Tarpley, Lee; Vietor, Donald M

    2007-01-01

    Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L.) Moench) and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice) than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening) culm tissue was probably less (about 3/4's) than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81%) recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis) and primarily through a path that includes an apoplasmic step. In

  18. 48. Northwest Side of Breaker, from Culm Bank, date unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Northwest Side of Breaker, from Culm Bank, date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre,PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  19. Children with Brittle Bones.

    ERIC Educational Resources Information Center

    Alston, Jean

    1982-01-01

    Special help given to children with Osteogenesis Imperfecta (brittle bone disease) is described, including adapted equipment to allow for writing and use of a classroom assistant to aid participation in a regular classroom. (CL)

  20. Children with Brittle Bones.

    ERIC Educational Resources Information Center

    Alston, Jean

    1982-01-01

    Special help given to children with Osteogenesis Imperfecta (brittle bone disease) is described, including adapted equipment to allow for writing and use of a classroom assistant to aid participation in a regular classroom. (CL)

  1. Understanding the importance wet, unimproved Culm grasslands have for the provision of multiple ecosystem services

    NASA Astrophysics Data System (ADS)

    Brazier, Richard; Elliot, Mark; Warren, Susan; Puttock, Alan

    2014-05-01

    It is increasingly recognised that catchments must be carefully managed for the provision of multiple, sometimes conflicting ecosystem services. This requires an increased interdisciplinary environmental understanding to inform management policy and practices by government, landowners and stakeholders. The Culm National Character Area (NCA) covers 3,500 square kilometres in South West England with Culm grasslands consisting of wet unimproved, species rich pastures, typically on poorly drained soils. Since the 1960's, policy changes have encouraged the drainage of large areas of land for agricultural improvement and consequently Culm grassland sites have become highly fragmented. There are currently 575 Culm grassland sites in the Culm NCA with a mean area of 7 ha. Traditionally, Culm grasslands have been managed by light grazing and scrub management. Since 2008, Devon Wildlife Trust's Working Wetlands project has been working with farmers and landowners to manage and restore and recreate Culm grasslands. It is part of South West Water's Upstream Thinking initiative and is now augmented by the Northern Devon Nature Improvement Area programme. However, from a hydrological perspective, Culm and similar unimproved grasslands remain poorly understood. In addition to their recognised conservation and biodiversity importance; unimproved grasslands such as Culm are thought to have a high water storage capacity, reducing runoff and therefore flooding during wet periods, whilst slowly releasing and filtering water to help maintain water quality, and base river flows during dry periods. Therefore, if properly understood and managed Culm soils have the potential to play an important role in the management of catchment water resources. Furthermore, Culm grassland soils are thought to have a high potential for the sequestration and storage of carbon, an increasingly valuable ecosystem service. This study aims to increase understanding of the influence Culm grasslands have upon

  2. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding.

    PubMed

    Ordonio, Reynante L; Ito, Yusuke; Hatakeyama, Asako; Ohmae-Shinohara, Kozue; Kasuga, Shigemitsu; Tokunaga, Tsuyoshi; Mizuno, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2014-06-13

    Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants--both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes.

  3. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding

    PubMed Central

    Ordonio, Reynante L.; Ito, Yusuke; Hatakeyama, Asako; Ohmae-Shinohara, Kozue; Kasuga, Shigemitsu; Tokunaga, Tsuyoshi; Mizuno, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2014-01-01

    Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants— both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes. PMID:24924234

  4. Kinetic model of sucrose accumulation in maturing sugarcane culm tissue.

    PubMed

    Uys, Lafras; Botha, Frederik C; Hofmeyr, Jan-Hendrik S; Rohwer, Johann M

    2007-01-01

    Biochemically, it is not completely understood why or how commercial varieties of sugarcane (Saccharum officinarum) are able to accumulate sucrose in high concentrations. Such concentrations are obtained despite the presence of sucrose synthesis/breakdown cycles (futile cycling) in the culm of the storage parenchyma. Given the complexity of the process, kinetic modelling may help to elucidate the factors governing sucrose accumulation or direct the design of experimental optimisation strategies. This paper describes the extension of an existing model of sucrose accumulation (Rohwer, J.M., Botha, F.C., 2001. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437-445) to account for isoforms of sucrose synthase and fructokinase, carbon partitioning towards fibre formation, and the glycolytic enzymes phosphofructokinase (PFK), pyrophosphate-dependent PFK and aldolase. Moreover, by including data on the maximal activity of the enzymes as measured in different internodes, a growth model was constructed that describes the metabolic behaviour as sugarcane parenchymal tissue matures from internodes 3-10. While there was some discrepancy between modelled and experimentally determined steady-state sucrose concentrations in the cytoplasm, steady-state fluxes showed a better fit. The model supports a hypothesis of vacuolar sucrose accumulation against a concentration gradient. A detailed metabolic control analysis of sucrose synthase showed that each isoform has a unique control profile. Fructose uptake by the cell and sucrose uptake by the vacuole had a negative control on the futile cycling of sucrose and a positive control on sucrose accumulation, while the control profile for neutral invertase was reversed. When the activities of these three enzymes were changed from their reference values, the effects on futile cycling and sucrose accumulation were amplified. The model can be run online at the JWS Online

  5. [Cosmetology and brittle nails].

    PubMed

    Abimelec, P

    2000-12-15

    The knowledge of manicure techniques and nail cosmetics compositions are a prerequisite to the understanding of their potential side effects. The brittle nail syndrome is a common problem that roughly affect 20% of women. We will review the etiologic hypothesis, describe the various presentations, and suggest a treatment for this perplexing problem.

  6. Brittleness of ceramics

    NASA Technical Reports Server (NTRS)

    Kroupa, F.

    1984-01-01

    The main characteristics of mechanical properties of ceramics are summarized and the causes of their brittleness, especially the limited mobility of dislocations, are discussed. The possibility of improving the fracture toughness of ceramics and the basic research needs relating to technology, structure and mechanical properties of ceramics are stressed in connection with their possible applications in engineering at high temperature.

  7. Molecular Mapping of QTLs Associated with Lodging Resistance in Dry Direct-Seeded Rice (Oryza sativa L.)

    PubMed Central

    Yadav, Shailesh; Singh, Uma M.; Naik, Shilpa M.; Venkateshwarlu, Challa; Ramayya, Perumalla J.; Raman, K. Anitha; Sandhu, Nitika; Kumar, Arvind

    2017-01-01

    Dry direct-seeded rice (DSR) is an alternative crop establishment method with less water and labor requirement through mechanization. It provides better opportunities for a second crop during the cropping season and therefore, a feasible alternative system to transplanted lowland rice. However, lodging is one of the major constraints in attaining high yield in DSR. Identification of QTLs for lodging resistance and their subsequent use in improving varieties under DSR will be an efficient breeding strategy to address the problem. In order to map the QTLs associated with lodging resistance, a set of 253 BC3F4 lines derived from a backcross between Swarna and Moroberekan were evaluated in two consecutive years. A total of 12 QTLs associated with lodging resistance traits [culm length (qCL), culm diameter (qCD), and culm strength (qCS)] were mapped on chromosomes 1, 2, 6, and 7 using 193 polymorphic SNP markers. Two major and consistent effect QTLs, namely qCD1.1 (with R2 of 10%) and qCS1.1 (with R2 of 14%) on chromosome 1 with id1003559 being the peak SNP marker (flanking markers; id1001973-id1006772) were identified as a common genomic region associated with important lodging resistance traits. In silico analysis revealed the presence of Gibberellic Acid 3 beta-hydroxylase along with 34 other putative candidate genes in the marker interval region of id1001973-id1006772. The positive alleles for culm length, culm diameter, and culm strength were contributed by the upland adaptive parent Moroberekan. Our results identified significant positive correlation between lodging related traits (culm length diameter and strength) and grain yield under DSR, indicating the role of lodging resistant traits in grain yield improvement under DSR. Deployment of the identified alleles influencing the culm strength and culm diameter in marker assisted introgression program may facilitate the lodging resistance under DSR. PMID:28871266

  8. Measuring bulrush culm relationships to estimate plant biomass within a southern California treatment wetland

    USGS Publications Warehouse

    Daniels, Joan S. (Thullen); Cade, Brian S.; Sartoris, James J.

    2010-01-01

    Assessment of emergent vegetation biomass can be time consuming and labor intensive. To establish a less onerous, yet accurate method, for determining emergent plant biomass than by direct measurements we collected vegetation data over a six-year period and modeled biomass using easily obtained variables: culm (stem) diameter, culm height and culm density. From 1998 through 2005, we collected emergent vegetation samples (Schoenoplectus californicus andSchoenoplectus acutus) at a constructed treatment wetland in San Jacinto, California during spring and fall. Various statistical models were run on the data to determine the strongest relationships. We found that the nonlinear relationship: CB=β0DHβ110ε, where CB was dry culm biomass (g m−2), DH was density of culms × average height of culms in a plot, and β0 and β1 were parameters to estimate, proved to be the best fit for predicting dried-live above-ground biomass of the two Schoenoplectus species. The random error distribution, ε, was either assumed to be normally distributed for mean regression estimates or assumed to be an unspecified continuous distribution for quantile regression estimates.

  9. Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height

    NASA Astrophysics Data System (ADS)

    Zając, Tomasz; Synowiec, Agnieszka; Oleksy, Andrzej; Macuda, Jan; Klimek-Kopyra, Agnieszka; Borowiec, Franciszek

    2017-04-01

    Cereal straw is an important biomass source in Europe. This work assessed: 1) the morphological and energetic characteristics of culms of spring and winter cereals, 2) the energy deposited in the different aboveground parts of cereals, 3) losses of energy due to different cutting heights. The straw of winter and spring cereals was collected from arable fields during the seasons 2009/10 and 2010/11 in southern Poland. Detailed biometric measurements of culms and internodes were performed. The losses of straw biomass and energy were assessed during simulation of cutting the culm at different heights, up to 50 cm. Longer and heavier culms were developed by winter wheat and triticale and oat. Cutting of straw up to 10 cm did not lead to significant losses in straw yield. The total amount of energy in the culms was as follows: triticale > winter wheat > oat > spring wheat > winter barley > spring barley. Cutting the culms above 20 cm led to significant differences in terms of biomass energy between cereal species. The smallest losses of energy were recorded for spring and winter barley. Oat and barley accumulated the highest energy in grains.

  10. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants.

    PubMed

    Song, Xue-Qin; Liu, Li-Feng; Jiang, Yi-Jun; Zhang, Bao-Cai; Gao, Ya-Ping; Liu, Xiang-Ling; Lin, Qing-Shan; Ling, Hong-Qing; Zhou, Yi-Hua

    2013-05-01

    Tricheary elements (TEs), wrapped by secondary cell wall, play essential roles in water, mineral, and nutrient transduction. Cadmium (Cd) is a toxic heavy metal that is absorbed by roots and transported to shoot, leaves, and grains through vascular systems in plants. As rice is a major source of Cd intake, many efforts have been made to establish 'low-Cd rice'. However, no links have been found between cellulose biosynthesis and cadmium accumulation. We report here a rice brittle culm13 mutant, resulting from a novel missense mutation (E101K) [corrected] in the N-terminus of cellulose synthase subunit 9 (CESA9). Except for the abnormal mechanical strength, the mutant plants are morphologically indistinguishable from the wild-type plants. Transmission electron microscopy (TEM) and chemical analyses showed a slight reduction in secondary wall thickness and 22% decrease in cellulose content in bc13 plants. Moreover, this mutation unexpectedly confers the mutant plants Cd tolerance due to less Cd accumulation in leaves. Expression analysis of the genes required for Cd uptake and transport revealed complicated alterations after applying Cd to wild-type and bc13. The mutants were further found to have altered vascular structure. More importantly, Cd concentration in the xylem saps from the bc13 plants was significantly lower than that from the wild-type. Combining the analyses of CESA9 gene expression and Cd content retention in the cell-wall residues, we conclude that CESA9(E101K) [corrected] mutation alters cell-wall properties in the conducting tissues, which consequently affects Cd translocation efficiency that largely contributes to the low Cd accumulation in the mutant plants.

  11. [Inheritance of bc1 gene in intersubspecific hybrids of rice (Oryza sativa L.)].

    PubMed

    Lü, Chuan-Gen; Zong, Shou-Yu; Zhao, Ling; Qi, Qing-Ming; Zou, Jiang-Shi; Ikehashi, Hiroshi

    2004-10-01

    Distorted segregation of the brittle culm-1 gene (bc1) on rice chromosome 3 was found with greatly increased or decreased frequency of bc1 bc1 genotype in inter-subspecific hybrids, although the gene normally transmitted to its offspring following the Mendelian Law in intra-subspecific hybrids. In a combination of Kamairazu//Ketan Nangka/Kamairazu,an increased frequency of bc1 bc1 in F1, normal segregation in F2, and increased and decreased frequency in a few F3 and F4 lines were observed. In a cross of IR36/Kamairazu, decreased frequency in F2, both normal and decreased segregations in F3 and F4, and a few lines of increased ratio in F4 were found. In F2 of Ketan Nangka/IR36//Kamairazu, increased and decreased and normal segregations were all observed. There was no significant correlation between the frequency of bc1 bc1 and pollen fertility. It implied that distorted segregation of bc1 was caused by selective fertilization of male gametes, which were governed by gametophyte genes of ga2, ga3 and ga14 on chromosome 3.

  12. Phenological changes in bamboo carbohydrates explain the preference for culm over leaves by giant pandas (Ailuropoda melanoleuca) during spring

    PubMed Central

    Knott, Katrina K.; Christian, Amelia L.; Falcone, Josephine F.; Vance, Carrie K.; Bauer, Laura L.; Fahey, George C.; Kouba, Andrew J.

    2017-01-01

    Seasonal changes in the foodscape force herbivores to select different plant species or plant parts to meet nutritional requirements. We examined whether the search for calorie-rich carbohydrates explained giant panda’s selection for bamboo culm over leaves during spring. Leaves and culms were collected from four Phyllostachys bamboos (P. aurea, P. aureosulcata, P. glauca, and P. nuda) once per month over 18–27 months. Monthly changes in annual plant part nutrients were examined, and compared to seasonal foraging behaviors of captive giant pandas. Although total fiber was greater (p<0.0001) in culm (85.6 ± 0.5%) than leaves (55.3 ± 0.4%) throughout the year, culm fiber was at its lowest in spring (79–85%) when culm selection by giant pandas exceeded 70% of their overall diet. Culm starch also was greatest (p = 0.044) during spring (5.5 ± 1.1%) and 2.5-fold the percentage of starch in leaves (2.2 ± 0.6%). The free sugars in spring culm consisted of a high proportion of glucose (35%) and fructose (47%), whereas sucrose made up 42% of the total free sugar content of spring leaves. Bound sugars in culm consisted of 60% glucose and 38% xylose likely representative of hemicellulose. The concentrations of bound sugars (hemicelluloses) in spring culms (543.7 ± 13.0 mg/g) was greater (p<0.001) than in leaves (373.0 ± 14.8 mg/g). These data help explain a long-standing question in giant panda foraging ecology: why consume the plant part with the lowest protein and fat during the energetically intensive spring breeding season? Giant pandas likely prefer spring culm that contains abundant mono- and polysaccharides made more bioavailable as a result of reduced fiber content. These data suggest that phenological changes in bamboo plant part nutrition drive foraging decisions by giant pandas. PMID:28614359

  13. Phenological changes in bamboo carbohydrates explain the preference for culm over leaves by giant pandas (Ailuropoda melanoleuca) during spring.

    PubMed

    Knott, Katrina K; Christian, Amelia L; Falcone, Josephine F; Vance, Carrie K; Bauer, Laura L; Fahey, George C; Kouba, Andrew J

    2017-01-01

    Seasonal changes in the foodscape force herbivores to select different plant species or plant parts to meet nutritional requirements. We examined whether the search for calorie-rich carbohydrates explained giant panda's selection for bamboo culm over leaves during spring. Leaves and culms were collected from four Phyllostachys bamboos (P. aurea, P. aureosulcata, P. glauca, and P. nuda) once per month over 18-27 months. Monthly changes in annual plant part nutrients were examined, and compared to seasonal foraging behaviors of captive giant pandas. Although total fiber was greater (p<0.0001) in culm (85.6 ± 0.5%) than leaves (55.3 ± 0.4%) throughout the year, culm fiber was at its lowest in spring (79-85%) when culm selection by giant pandas exceeded 70% of their overall diet. Culm starch also was greatest (p = 0.044) during spring (5.5 ± 1.1%) and 2.5-fold the percentage of starch in leaves (2.2 ± 0.6%). The free sugars in spring culm consisted of a high proportion of glucose (35%) and fructose (47%), whereas sucrose made up 42% of the total free sugar content of spring leaves. Bound sugars in culm consisted of 60% glucose and 38% xylose likely representative of hemicellulose. The concentrations of bound sugars (hemicelluloses) in spring culms (543.7 ± 13.0 mg/g) was greater (p<0.001) than in leaves (373.0 ± 14.8 mg/g). These data help explain a long-standing question in giant panda foraging ecology: why consume the plant part with the lowest protein and fat during the energetically intensive spring breeding season? Giant pandas likely prefer spring culm that contains abundant mono- and polysaccharides made more bioavailable as a result of reduced fiber content. These data suggest that phenological changes in bamboo plant part nutrition drive foraging decisions by giant pandas.

  14. Brittle diabetes: Psychopathology and personality.

    PubMed

    Pelizza, Lorenzo; Pupo, Simona

    The term "brittle" is used to describe an uncommon subgroup of patients with type I diabetes whose lives are disrupted by severe glycaemic instability with repeated and prolonged hospitalization. Psychosocial problems are the major perceived underlying causes of brittle diabetes. Aim of this study is a systematic psychopathological and personological assessment of patients with brittle diabetes in comparison with subjects without brittle diabetes, using specific parameters of general psychopathology and personality disorders following the multi-axial format of the current DSM-IV-TR (Diagnostic and Statistical manual of Mental Disorders - IV Edition - Text Revised) diagnostic criteria for mental disorders. Patients comprised 42 subjects with brittle diabetes and a case-control group of 42 subjects with stable diabetes, matched for age, gender, years of education, and diabetes duration. General psychopathology and the DSM-IV-TR personality disorders were assessed using the Symptom Checklist-90-Revised (SCL-90-R) and the Structured Clinical Interview for axis II personality Disorders (SCID-II). The comparison for SCL-90-R parameters revealed no differences in all primary symptom dimensions and in the three global distress indices between the two groups. However, patients with brittle diabetes showed higher percentages in borderline, histrionic, and narcissistic personality disorder. In this study, patients with brittle diabetes show no differences in terms of global severity of psychopathological distress and specific symptoms of axis I DSM-IV-TR psychiatric diagnoses in comparison with subjects without brittle diabetes. Differently, individuals with brittle diabetes are more frequently affected by specific DSM-IV-TR cluster B personality disorders.

  15. Mutation of Rice BC12/GDD1, Which Encodes a Kinesin-Like Protein That Binds to a GA Biosynthesis Gene Promoter, Leads to Dwarfism with Impaired Cell Elongation[W][OA

    PubMed Central

    Li, Juan; Jiang, Jiafu; Qian, Qian; Xu, Yunyuan; Zhang, Cui; Xiao, Jun; Du, Cheng; Luo, Wei; Zou, Guoxing; Chen, Mingluan; Huang, Yunqing; Feng, Yuqi; Cheng, Zhukuan; Yuan, Ming; Chong, Kang

    2011-01-01

    The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA3) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice. PMID:21325138

  16. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation.

    PubMed

    Li, Juan; Jiang, Jiafu; Qian, Qian; Xu, Yunyuan; Zhang, Cui; Xiao, Jun; Du, Cheng; Luo, Wei; Zou, Guoxing; Chen, Mingluan; Huang, Yunqing; Feng, Yuqi; Cheng, Zhukuan; Yuan, Ming; Chong, Kang

    2011-02-01

    The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA₃) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice.

  17. Young bamboo culm: Potential food as source of fiber and starch.

    PubMed

    Felisberto, Mária Herminia Ferrari; Miyake, Patricia Satie Endo; Beraldo, Antonio Ludovico; Clerici, Maria Teresa Pedrosa Silva

    2017-11-01

    With the objective of widening the use of bamboo in the food industry, the present work aimed to produce and characterize the young bamboo culm flours from varieties Dendrocalamus asper, Bambusa tuldoides and Bambusa vulgaris as potential sources of fiber and starch. The young culms were collected, cut in three sections (bottom, middle, top), processed into flour, and they were physically, chemically and technologically analyzed. The data were obtained in triplicate and evaluated by means of average differences, using analysis of variance (ANOVA) and Scott-Knott test (p<0.05). The young bamboo culms flours presented low values for moisture content (<10g/100g), protein, lipids and ash contents (<3g/100g). Regarding the carbohydrates profile, the flours were significantly different in their sugar, starch and total fiber contents. All flour samples presented a potential for fiber extraction (>60g/100g), and the varieties B. vulgaris and D. asper, presented an additional potential for starch extraction (16 and 10g/100g, respectively). Regarding technological characteristics, all flours presented bright yellow color, lightly acidic pH (>5.0), water solubility index (WSI) lower to 2.5%, excepting D. asper, which presented a WSI superior to 7.5%. In this way, the evaluated young bamboo culms present potential application in the food industry as flours and as source of fibers; in addition, the varieties D. asper and B. vulgaris can also be used for starch extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands

    PubMed Central

    HIRANO, Ko; ORDONIO, Reynante Lacsamana; MATSUOKA, Makoto

    2017-01-01

    Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the “center of gravity” of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, this may no longer be enough to sustain rice with even higher yields. This is because relying solely on the semi-dwarf trait is subject to certain limitations, making it necessary to use other important traits to reinforce it. In this review, we present an alternative approach to increase lodging resistance by improving the quality of the culm by identifying genes related to culm quality and introducing these genes into high-yielding rice cultivars through molecular breeding technique. PMID:28413198

  19. A new tablet brittleness index.

    PubMed

    Gong, Xingchu; Sun, Changquan Calvin

    2015-06-01

    Brittleness is one of the important material properties that influences the success or failure of powder compaction. We have discovered that the reciprocal of diametrical elastic strain at fracture is the most suitable tablet brittleness indices (TBIs) for quantifying brittleness of pharmaceutical tablets. The new strain based TBI is supported by both theoretical considerations and a systematic statistical analysis of friability data. It is sufficiently sensitive to changes in both tablet compositions and compaction parameters. For all tested materials, it correctly shows that tablet brittleness increases with increasing tablet porosity for the same powder. In addition, TBI increases with increasing content of a brittle excipient, lactose monohydrate, in the mixtures with a plastic excipient, microcrystalline cellulose. A probability map for achieving less than 1% tablet friability at various combinations of tablet tensile strength and TBI was constructed. Data from marketed tablets validate this probability map and a TBI value of 150 is recommended as the upper limit for pharmaceutical tablets. This TBI can be calculated from the data routinely obtained during tablet diametrical breaking test, which is commonly performed for assessing tablet mechanical strength. Therefore, it is ready for adoption for quantifying tablet brittleness to guide tablet formulation development since it does not require additional experimental work. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis.

    PubMed

    Afreen, F; Zobayed, S M A; Armstrong, J; Armstrong, W

    2007-01-01

    Emergent aquatic macrophytes growing in waterlogged anaerobic sediments overlain by deep water require particularly efficient ventilating systems. In Phragmites australis (Cav.) Trin. ex Steud, pressurized gas flows, generated by humidity-induced diffusion of air into leaf sheaths, enhance oxygen transport to below-ground parts and aid in the removal of respiratory CO2 and sediment-generated CO2 and methane. Although modelling and flow measurements have pointed to the probable involvement of all leaf sheaths in the flow process and the development of pressure gradients along the whole lengths of living culm and leaf sheaths, direct measurements of pressure gradients have never been reported. The aim of this study was to search for pressure gradient development in Phragmites culms and leaf sheaths and to determine their magnitudes and distribution. In addition, dynamic (with gas flow) and static pressures (no flow condition) and their relationship to flows, leaf sheath areas, and living-to-dead culm ratios were further investigated. Dynamic pressures (DeltaPd) recorded in the pith cavities of intact (non-excised) leafy culms, pneumatically isolated from the below-ground parts and venting through an artificial bore-hole near the base, revealed a curvilinear gradient of pressure 'asymptoting' towards the tips of the culms. Similarly, DeltaPd in upper and lower parts of leaf sheaths increased with distance from the base of the culm, with values in the upper parts always being greater. Curvilinear gradients of pressure were also found along pneumatically isolated individual leaf sheaths, but radial channels linking the leaf sheath aerenchyma with the pith cavity of the culm appeared to offer little resistance to flow. In keeping with predictions, static pressure differentials (DeltaPs) achieved in intact and excised culms and single leaf sheaths on intact culms proved to be relatively independent of leaf sheath area, whereas the potential for developing convective flows

  1. Rice Sucrose Partitioning Mediated by a Putative Pectin Methyltransferase and Homogalacturonan Methylesterification.

    PubMed

    Xu, Yonghan; Sechet, Julien; Wu, Yingbao; Fu, Yaping; Zhu, Longfei; Li, Jincai; Zhang, Yinping; Gineau, Emilie; Gaertner, Cyril; Zhou, Jian; Fan, Xiaorong; Liu, Yu; Zhou, Li; Mouille, Grégory; Lin, Xinchun

    2017-07-01

    Homogalacturonan (HG) is the main component of pectins. HG methylesterification has recently emerged as a key determinant controlling cell attachment, organ formation, and phyllotaxy. However, whether and how HG methylesterification affects intercellular metabolite transport has rarely been reported. Here, we identified and characterized knockout mutants of the rice (Oryza sativa) OsQUA2 gene encoding a putative pectin methyltransferase. Osqua2 mutants exhibit a remarkable decrease in the degree of methylesterification of HG in the culm-sieve element cell wall and a markedly reduced grain yield. The culm of Osqua2 mutant plants contains excessive sucrose (Suc), and a (13)CO2 feeding experiment showed that the Suc overaccumulation in the culm was caused by blocked Suc translocation. These and other findings demonstrate that OsQUA2 is essential for maintaining a high degree of methylesterification of HG in the rice culm-sieve element cell wall, which may be critical for efficient Suc partitioning and grain filling. In addition, our results suggest that the apoplastic pathway is involved in long-distance Suc transport in rice. The identification and characterization of the OsQUA2 gene and its functionality revealed a previously unknown contribution of HG methylesterification and provided insight into how modification of the cell wall regulates intercellular transport in plants. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage.

    PubMed

    Yang, Shi-Jian; Zhang, Yong-Jiang; Goldstein, Guillermo; Sun, Mei; Ma, Ren-Yi; Cao, Kun-Fang

    2015-09-01

    To understand water-use strategies of woody bamboo species, sap flux density (Fd) in the culms of a woody bamboo (Bambusa vulgaris Schrader ex Wendland) was monitored using the thermal dissipation method. The daytime and night-time Fd were analyzed in the dry and rainy seasons. Additionally, diurnal changes in root pressure, culm circumference, and stomatal conductance (gs) were investigated to characterize the mechanisms used to maintain diurnal water balance of woody bamboos. Both in the dry and rainy seasons, daytime Fd responded to vapor pressure deficit (VPD) in an exponential fashion, with a fast initial increase in Fd when VPD increased from 0 to 1 kPa. The Fd and gs started to increase very fast as light intensity and VPD increased in the morning, but they decreased sharply once the maximum value was achieved. The Fd response of this woody bamboo to VPD was much faster than that of representative trees and palms growing in the same study site, suggesting its fast sap flow and stomatal responses to changes in ambient environmental factors. The Fd in the lower and higher culm positions started to increase at the same time in the morning, but the Fd in the higher culm position was higher than that of the lower culm in the afternoon. Consistently, distinct decreases in its culm circumference in the afternoon were detected. Therefore, unlike trees, water storage of bamboo culms was not used for its transpiration in the morning but in the afternoon. Nocturnal sap flow of this woody bamboo was also detected and related to root pressure. We conclude that this bamboo has fast sap flow/stomatal responses to irradiance and evaporative demands, and it uses substantial water storage for transpiration in the afternoon, while root pressure appears to be a mechanism resulting in culm water storage recharge during the night.

  3. Dynamic failure in brittle solids

    SciTech Connect

    Grady, D.E.

    1994-04-01

    Failure of brittle solids within the extremes of the shock loading environment is not well understood. Recent shock-wave data on compression shear failure and tensile spall failure for selected high-strength ceramics are presented and used to examine the mechanisms of dynamic failure. Energy-based theories are used to bound the measured strength properties. A new concept of failure waves in brittle solids is explored in light of the kinetic processes of high-rate fracture. Classical failure criteria are compared with the present base of dynamic strength data on ceramics.

  4. Identification of genes involved in color variation of bamboo culms by suppression subtractive hybridization.

    PubMed

    Xia, Xiangwan; Gui, Renyi; Yang, Haiyun; Fu, Ying; Wei, Fang; Zhou, Mingbing

    2015-12-01

    Phyllostachys vivax cv. aureocaulis is a widely planted ornamental bamboo with evergreen leaves. This plant's culm exhibits a golden-yellow background color marked randomly with narrow and broad green stripes but is occasionally light green with yellow stripes. In this study, we attempt to identify the molecular mechanism underlying the color variation in striped culms. We found that neither stroma nor grana lamellas were observed in plastids in yellow tissue cells, while complete chloroplasts were observed in green tissue. In addition, chlorophyll a and b were mainly distributed in ground tissue under the epiderm and in the cells surrounding the bundle sheath in the green portion of internodes. The amount of chlorophyll contained in cross-sections of the green portion of culms is significantly higher than in the yellow portion. However, carotenoid was nearly undetectable in both samples. In addition, we found that the expression levels of 7 ESTs, including PvESTs-F641 (JZ893845), PvESTs-F681 (JZ893885) and PvESTs-F798 (JZ894002), were significantly higher in green samples than that in yellow samples, while PvESTs-R200 (JZ894906), PvESTs-R541 (JZ895247), PvESTs-R333 (JZ895039) and PvESTs-R266 (JZ894972) were found at a higher level in yellow samples. These ESTs are thought to play a role in this color variation in plants. Our current results indicate that insufficient photosynthetic membrane proteins and lipids in yellow tissue could lead to chloroplast dysfunction and could result in the yellow appearance on certain P. vivax cv. aureocaulis culms.

  5. Effects of high NH+4 on K+ uptake, culm mechanical strength and grain filling in wheat

    PubMed Central

    Kong, Lingan; Sun, Mingze; Wang, Fahong; Liu, Jia; Feng, Bo; Si, Jisheng; Zhang, Bin; Li, Shengdong; Li, Huawei

    2014-01-01

    It is well established that a high external NH+4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH+4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m−2) and high (30 g N m−2) supplies of NH+4 in the presence or absence of additional K+ (6 g K2O m−2) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH+4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH+4. The additional provision of K+ considerably alleviated these negative effects of high NH+4, resulting in a 19.41–26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH+4. This study indicates that the effects of high NH+4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat. PMID:25566278

  6. Soft matter: Brittle for breakfast

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas

    2015-10-01

    Crushing a brittle porous medium such as a box of cereal causes the grains to break up and rearrange themselves. A lattice spring model based on simple physical assumptions gives rise to behaviours that are complex enough to reproduce diverse compaction patterns.

  7. Mechanical alloying of brittle materials

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; McDermott, B.; Koch, C. C.

    1988-12-01

    Mechanical alloying by high energy ball milling has been observed in systems with nominally brittle components. The phases formed by mechanical alloying of brittle components include solid solutions (Si + Ge → SiGe solid solution), intermetallic compounds (Mn + Bi → MnBi), and amorphous alloys (NiZr2 + Ni11Zr9 → amorphous Ni50Zr50). A key feature of possible mechanisms for mechanical alloying of brittle components is the temperature of the powders during milling. Experiments and a computer model of the kinetics of mechanical alloying were carried out in order to esti-mate the temperature effect. Temperature rises in typical powder alloys during milling in a SPEX mill were estimated to be ≤350 K using the kinetic parameters determined from the computer model. The tempering response of fresh martensite in an Fe-1.2 wt pct C alloy during milling was consistent with the maximum results of the computer model, yielding temperatures in the pow-ders of ≤575 K i.e., ΔT ≤ 300 K). Thermal activation was required for mechanical alloying of Si and Ge powder. No alloying occurred when the milling vial was cooled by liquid nitrogen. The pos-sible mechanisms responsible for material transfer during mechanical alloying of brittle components are considered.

  8. Syndromes with congenital brittle bones.

    PubMed

    Plotkin, Horacio

    2004-08-31

    There is no clear definition of osteogenesis imperfecta (OI). The most widely used classification of OI divides the disease in four types, although it has been suggested that there may be at least 12 forms of OI. These forms have been named with numbers, eponyms or descriptive names. Some of these syndromes can actually be considered congenital forms of brittle bones resembling OI (SROI). A review of different syndromes with congenital brittle bones published in the literature is presented. Syndromes are classified in "OI" (those secondary to mutations in the type I pro-collagen genes), and "syndromes resembling OI" (those secondary to mutations other that the type I pro-collagen genes, identified or not). A definition for OI is proposed as a syndrome of congenital brittle bones secondary to mutations in the genes codifying for pro-collagen genes (COL1A1 and COL1A2). A debate about the definition of OI and a possible clinical and prognostic classification are warranted.

  9. Syndromes with congenital brittle bones

    PubMed Central

    Plotkin, Horacio

    2004-01-01

    Background There is no clear definition of osteogenesis imperfecta (OI). The most widely used classification of OI divides the disease in four types, although it has been suggested that there may be at least 12 forms of OI. These forms have been named with numbers, eponyms or descriptive names. Some of these syndromes can actually be considered congenital forms of brittle bones resembling OI (SROI). Discussion A review of different syndromes with congenital brittle bones published in the literature is presented. Syndromes are classified in "OI" (those secondary to mutations in the type I pro-collagen genes), and "syndromes resembling OI" (those secondary to mutations other that the type I pro-collagen genes, identified or not). A definition for OI is proposed as a syndrome of congenital brittle bones secondary to mutations in the genes codifying for pro-collagen genes (COL1A1 and COL1A2). Summary A debate about the definition of OI and a possible clinical and prognostic classification are warranted. PMID:15339338

  10. Statistical models of brittle fragmentation

    NASA Astrophysics Data System (ADS)

    Åström, J. A.

    2006-06-01

    Recent developments in statistical models for fragmentation of brittle material are reviewed. The generic objective of these models is understanding the origin of the fragment size distributions (FSDs) that result from fracturing brittle material. Brittle fragmentation can be divided into two categories: (1) Instantaneous fragmentation for which breakup generations are not distinguishable and (2) continuous fragmentation for which generations of chronological fragment breakups can be identified. This categorization becomes obvious in mining industry applications where instantaneous fragmentation refers to blasting of rock and continuous fragmentation to the consequent crushing and grinding of the blasted rock fragments. A model of unstable cracks and crack-branch merging contains both of the FSDs usually related to instantaneous fragmentation: the scale invariant FSD with the power exponent (2-1/D) and the double exponential FSD which relates to Poisson process fragmentation. The FSDs commonly related to continuous fragmentation are: the lognormal FSD originating from uncorrelated breakup and the power-law FSD which can be modeled as a cascade of breakups. Various solutions to the generic rate equation of continuous fragmentation are briefly listed. Simulations of crushing experiments reveal that both cascade and uncorrelated fragmentations are possible, but that also a mechanism of maximizing packing density related to Apollonian packing may be relevant for slow compressive crushing.

  11. Ultrastructure of Fibre and Parenchyma Cell Walls During Early Stages of Culm Development in Dendrocalamus asper

    PubMed Central

    GRITSCH, CRISTINA SANCHIS; MURPHY, RICHARD J.

    2005-01-01

    • Background and Aims The anatomy of bamboo culms and the multilayered structure of fibre cell walls are known to be the main determinant factors for its physical and mechanical properties. Studies on the bamboo cell wall have focussed mainly on fully elongated and mature fibres. The main aim of this study was to describe the ultrastructure of primary and secondary cell walls in culm tissues of Dendrocalamus asper at different stages of development. • Methods The development of fibre and parenchyma tissues was classified into four stages based on light microscopy observations made in tissues from juvenile plants. The stages were used as a basis for transmission electron microscopy study on the ultrastructure of the cell wall during the process of primary and early secondary cell wall formation. Macerations and phloroglucinol–HCl staining were employed to investigate fibre cell elongation and fibre cell wall lignification, respectively. • Key Results The observations indicated that the primary wall is formed by the deposition of two distinct layers during the elongation of the internode and that secondary wall synthesis may begin before the complete cessation of internode and fibre elongation. Elongation was followed by a maturation phase characterized by the deposition of multiple secondary wall layers, which varied in number according to the cell type, location in the culm tissue and stage of shoot development. Lignification of fibre cell walls started at the period prior to the cessation of internode elongation. • Conclusions The structure of the primary cell wall was comprised of two layers. The fibre secondary cell wall began to be laid down while the cells were still undergoing some elongation, suggesting that it may act to cause the slow-down and eventual cessation of cell elongation. PMID:15665037

  12. Improving barley culm robustness for secured crop yield in a changing climate.

    PubMed

    Dockter, Christoph; Hansson, Mats

    2015-06-01

    The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.

    PubMed

    Xiong, Guangyan; Li, Rui; Qian, Qian; Song, Xueqin; Liu, Xiangling; Yu, Yanchun; Zeng, Dali; Wan, Jianmin; Li, Jiayang; Zhou, Yihua

    2010-10-01

    Membrane trafficking between the plasma membrane (PM) and intracellular compartments is an important process that regulates the deposition and metabolism of cell wall polysaccharides. Dynamin-related proteins (DRPs), which function in membrane tubulation and vesiculation are closely associated with cell wall biogenesis. However, the molecular mechanisms by which DRPs participate in cell wall formation are poorly understood. Here, we report the functional characterization of Brittle Culm3 (BC3), a gene encoding OsDRP2B. Consistent with the expression of BC3 in mechanical tissues, the bc3 mutation reduces mechanical strength, which results from decreased cellulose content and altered secondary wall structure. OsDRP2B, one of three members of the DRP2 subfamily in rice (Oryza sativa L.), was identified as an authentic membrane-associated dynamin via in vitro biochemical analyses. Subcellular localization of fluorescence-tagged OsDRP2B and several compartment markers in protoplast cells showed that this protein not only lies at the PM and the clathrin-mediated vesicles, but also is targeted to the trans-Golgi network (TGN). An FM4-64 uptake assay in transgenic plants that express green fluorescent protein-tagged OsDRP2B verified its involvement in an endocytic pathway. BC3 mutation and overexpression altered the abundance of cellulose synthase catalytic subunit 4 (OsCESA4) in the PM and in the endomembrane systems. All of these findings lead us to conclude that OsDRP2B participates in the endocytic pathway, probably as well as in post-Golgi membrane trafficking. Mutation of OsDRP2B disturbs the membrane trafficking that is essential for normal cellulose biosynthesis of the secondary cell wall, thereby leading to inferior mechanical properties in rice plants.

  14. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice

    NASA Astrophysics Data System (ADS)

    Weng, Fei; Zhang, Wujun; Wu, Xiaoran; Xu, Xia; Ding, Yanfeng; Li, Ganghua; Liu, Zhenghui; Wang, Shaohua

    2017-04-01

    The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather during the reproductive growth stage. Field experiments were conducted using indica rice Yliangyou2 (lodging-resistance variety), IIyou084 (lodging-susceptible variety) and japonica rice Wuyunjing23 (lodging-resistance variety) and W3668 (lodging- susceptible variety) in 2013 (high temperature and strong radiation during the rice reproductive growth stage), 2012 and 2014 (low temperature and weak radiation during rice reproductive growth stage). The results showed that the length of the basal internodes and the height of the gravitational centres were greater in plants grown in 2014. Dry weight of basal culms, culm diameter, lignin content and total content of structural carbohydrates (lignin and cellulose) in basal internodes were reduced in these plants, causing a significant reduction in the bending stress and lodging resistance of the rice stems. Low-temperature, overcast and rainy weather had a greater effect on lodging resistance in indica rice compared with japonica rice. This was reflected in a greater reduction in the lignin content of the indica rice stems, which yielded a significantly lower breaking strength and bending stress.

  15. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice

    PubMed Central

    Weng, Fei; Zhang, Wujun; Wu, Xiaoran; Xu, Xia; Ding, Yanfeng; Li, Ganghua; Liu, Zhenghui; Wang, Shaohua

    2017-01-01

    The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather during the reproductive growth stage. Field experiments were conducted using indica rice Yliangyou2 (lodging-resistance variety), IIyou084 (lodging-susceptible variety) and japonica rice Wuyunjing23 (lodging-resistance variety) and W3668 (lodging- susceptible variety) in 2013 (high temperature and strong radiation during the rice reproductive growth stage), 2012 and 2014 (low temperature and weak radiation during rice reproductive growth stage). The results showed that the length of the basal internodes and the height of the gravitational centres were greater in plants grown in 2014. Dry weight of basal culms, culm diameter, lignin content and total content of structural carbohydrates (lignin and cellulose) in basal internodes were reduced in these plants, causing a significant reduction in the bending stress and lodging resistance of the rice stems. Low-temperature, overcast and rainy weather had a greater effect on lodging resistance in indica rice compared with japonica rice. This was reflected in a greater reduction in the lignin content of the indica rice stems, which yielded a significantly lower breaking strength and bending stress. PMID:28422161

  16. Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates.

    PubMed

    Zhang, Wujun; Wu, Longmei; Wu, Xiaoran; Ding, Yanfeng; Li, Ganghua; Li, Jingyong; Weng, Fei; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2016-12-01

    Lodging in rice production often limits grain yield and quality by breaking or bending stems. Excessive nitrogen (N) fertilizer rates are the cause of poor lodging resistance in rice, but little is known about the effect of top-dressing N application rates on the mechanical strength of japonica rice plants, especially how the anatomical structure in culms is affected by N. In this study, field experiments on two japonica rice varieties with three top-dressing N application rates, 0 kg N ha(-1) (LN), 135 kg N ha(-1) (MN), and 270 kg N ha(-1) (HN) as urea, were conducted. Wuyunjing23, a lodging-resistant japonica rice cultivar and W3668, a lodging-susceptible japonica rice cultivar were used. The lodging index, breaking strength, morphological and anatomical traits in culms were measured in this study. The visual lodging rate in japonica rice differed remarkably between genotypes and top-dressing N treatments. The higher lodging index of rice plants was primarily attributed to the weak breaking strength of the lower internodes. The longer elongated basal internodes were responsible for higher plant height and a higher lodging index. Correlation analysis showed that breaking strength was significantly and positively correlated with the thickness of the mechanical tissue but was significantly and negatively correlated with the inner diameter of the major axis (b2). With increasing top-dressing N rates, the sclerenchyma cells of the mechanical tissues and the vascular bundles of the Wuyunjing23 cultivar varied little. The plant height, inner diameter of the minor axis (a2) and b2 increased significantly, but the area of the large vascular bundle (ALVB) and the area of the small vascular bundle (ASVB) decreased significantly and resulted in lower stem strength and a higher lodging index under higher top-dressing N conditions. The culm diameter of the W3668 cultivar increased slightly with no significant difference, and the sclerenchyma cells in the mechanical

  17. Evaluation of the brittleness of the rocks using various brittleness indices

    NASA Astrophysics Data System (ADS)

    Cheon, Dae-Sung; Jung, Yong-Bok; Park, Chan; Park, Eui-Seob

    2015-04-01

    In general, the rock has the feature of drastically reduced bearing capacity during the small strain by the brittle characteristic. Because brittleness is considered as both of inherent property and behavior of materials, various brittleness indices have been proposed and based on these the brittleness degrees of the rock are determined. The brittleness indices are used for evaluating the stability of brittle failure in deep mines or underground excavations, drillability evaluation in the well drilling field, sawability evaluation in the building stone field and others. In recent years there has been utilized as a descriptor of the hydraulic fracturing in shale gas and enhanced geothermal system. In this paper, we estimated the brittleness index of different types of rocks using various brittleness indices proposed by previous researchers and investigated their relationship and applicability. The commonly used brittleness index in Rock Mechanics is the ratio between uniaxial compressive strength and tensile strength. In Reservior Geomechanics, the indices using dynamic elastic modulus and Poisson's ratio calculated from well logging data are generally used. In higher brittleness or brittleness index, the rock shows the following characteristics; low values of elongation of grains, fracture failure, formation of fines and debris, a higher ratio of compressive to tensile strength, higher resilience, higher internal friction angle, formation of cracks in indentation, easy to fracture etc.. The brittleness index showed relatively good relations with rock intrinsic properties such as uniaxial compressive strength, elastic modulus and fracture toughness in particular rock types. The correlation among brittleness index using geophysical logging data was shown. However, it was difficult to find a relationship of the brittleness indices between uses in traditional Rock Mechanics and Reservoir Geomechanics. Since some brittleness indices have no special meaning, a careful

  18. Non-invasive monitoring of sucrose mobilization from culm storage parenchyma by magnetic resonance spectroscopy.

    PubMed

    O'Neill, Brian P; Purnell, Matthew P; Kurniawan, Nyoman D; Cowin, Gary J; Galloway, Graham J; Nielsen, Lars K; Brumbley, Stevens M

    2013-01-01

    Because sucrose stored in mature stalks (in excess of 40% of stalk dry weight) can be wholly mobilized to supply carbon for the growth of heterotrophic tissues, we propose that sucrose mobilization requires a net sink-to-source transition that acts in toto within sett internode storage parenchyma. Based on our data we propose that mobilization of sucrose from culm storage parenchyma requires minimal investment of metabolic resources, and that the mechanism of sucrose mobilization is metabolically neutral. By magnetic resonance spectroscopy and phloem-specific tracer dyes, strong evidence was found that sucrose is mobilized from sett storage parenchyma via phloem to the growing shoot tissue. An analysis of the enzyme activities involved in sucrose metabolism and glycolysis suggested that sucrose synthase activity is downregulated due to the effects of sucrose mobilization. Overall, metabolism in storage parenchyma shifts from futile cycling to a more quiescent state during sucrose mobilization.

  19. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    PubMed

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR, and OsCAD2, and primary cell wall synthesis, OsCesA1, OsCesA3, and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and

  20. Morphological Study of the Relationships between Weedy Rice Accessions (Oryza sativa Complex) and Commercial Rice Varieties in Pulau Pinang Rice Granary Area

    PubMed Central

    Hussain, Zainudin PMD; Man, Azmi; Othman, Ahmad Sofiman

    2010-01-01

    Weedy rice (WR) is found in many direct-seeded rice fields. WR possesses morphological characteristics that are similar to cultivated rice varieties in the early stage of growth, making them more difficult to control than other weeds. A comparative morphological study was conducted by collecting WR accessions from four sites within the Pulau Pinang rice growing areas. The objective of the study was to characterise WR accessions of the Pulau Pinang rice granary by comparing their morphological characteristics to those of commercially grown rice in the area. Their morphometric relations were established by comparing 17 morphological characteristics of the WR accessions and the commercial varieties. A total of 36 WR morphotypes were identified from these 4 sites based on 17 characteristics, which included grain shattering habit and germination rate. The Principal Component Analysis (PCA) showed that 45.88% of the variation observed among the WR accessions and commercial varieties were within the first 3 axes. PB6, PP2 and SGA5 WR accessions had a higher number of tillers and longer panicle lengths, culm heights and leaf lengths compared to the commercial rice. The grain sizes of the commercial varieties were slightly longer, and the chlorophyll contents at 60–70 days after sowing (DAS) were higher than those of the WR accessions. Results from this study are useful for predicting potential WR accession growth, which might improve WR management and agriculture practices that control WR in the future. PMID:24575197

  1. Computational brittle fracture using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-10-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.

  2. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner

    PubMed Central

    Wendt, Toni; Holme, Inger; Dockter, Christoph; Preuß, Aileen; Thomas, William; Waugh, Robbie; Braumann, Ilka

    2016-01-01

    Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv.) Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield. PMID:28005988

  3. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  4. Prototype anthracite culm combustion boiler/heater unit. Quarterly technical report No. 4, July 1-September 30, 1979

    SciTech Connect

    Not Available

    1980-01-01

    There are currently about 910 million cubic yards of anthracite culm (mine refuse) contained in 800 separate banks in a 480 square mile area in the Wilkes-Barre (W-B) anthracite mining region. Although this material represents a significant fuel value, equivalent to approximately 1.25 billion barrels of fuel oil, the culm banks have accumulated because no satisfactory method of combusting this fuel was available until the relatively recent development of the atmospheric fluidized bed (AFB) steam generator. A program was initiated in October 1978 to design, construct and evaluate a 100,000 pph AFB steam generator burning anthracite culm with the addition of fresh anthracite, if required. The unit is to demonstrate the technical, economical and environmental feasibility of producing 150 psig saturated steam for district heating in downtown W-B. Phase I of the program consists of the design of the atmospheric fluidized bed (AFB) plant and a hot model test program. Phase II of the program consists of construction, operation, testing and evaluation of the boiler and boiler plant.

  5. Fracturing and brittleness index analyses of shales

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable

  6. Structure and biomechanics of culms of Phragmites australis used for reeds of Japanese wind instrument "hichiriki".

    PubMed

    Kawasaki, Masahiro; Nobuchi, Tadashi; Nakafushi, Yuta; Nose, Masateru; Shiojiri, Makoto

    2015-04-01

    Hichiriki is a traditional Japanese double-reed wind instrument used in Japanese ancient imperial court music, gagaku, which has been performed since the 7th century. The best reeds for hichiriki have been made of culms or stems of Phragmites australis (P. australis) that are harvested from only a limited reed bed at Udono near Kyoto. The aim of this study is to elucidate why the stems from Udono are the best materials for hichiriki reeds. Plant anatomy was examined for choice stems of P. australis grown in different reed beds in Japan as well as morphology, and the local indentation hardness and Young's modulus of tissues on the cross-sections of some representatives of hichiriki reeds were measured. It is concluded that the good stems for hichiriki reeds have an outer diameter of about 11 mm, a wall thickness of about 1 mm and comparatively homogeneous structure where harder materials, such as epidermis, hypodermis, sclerenchymatous cells, and vascular bundle sheaths with hard walls, are orderly deployed with softer materials such as parenchyma cells and vascular bundles. This structure has smaller differences of hardness and Young's modulus between the hard and soft materials in the reed, providing the best music performance. © 2015 Wiley Periodicals, Inc.

  7. Brittle cornea, blue sclera, and red hair syndrome (the brittle cornea syndrome).

    PubMed Central

    Ticho, U; Ivry, M; Merin, S

    1980-01-01

    A syndrome of red hair, blue sclera, and brittle cornea with recurrent spontaneous perforations is presented in 2 siblings of a Tunisian Jewish family. The genetic transmission of this disorder is autosomal recessive. This is the second description of this syndrome, which should be called the 'brittle cornea syndrome'. This syndrome has so far been reported only in Tunisian Jewish families. Images PMID:7387950

  8. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  9. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  10. Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass

    SciTech Connect

    Wang, G.; Han, Y. N.; Han, B. S.; Wang, W. H.; Xu, X. H.; Ke, F. J.

    2008-05-01

    We report an unusual transition from a locally ductile to a pure brittle fracture in the dynamic fracture of brittle Mg{sub 65}Cu{sub 20}Gd{sub 10} bulk metallic glass. The fractographic evolution from a dimple structure to a periodic corrugation pattern and then to the mirror zone along the crack propagation direction during the dynamic fracture process is discussed within the framework of the meniscus instability of the fracture process zone. This work might provide an important clue in understanding of the energy dissipation mechanism for dynamic crack propagation in brittle glassy materials.

  11. The gradient deformation criterion for brittle fracture

    NASA Astrophysics Data System (ADS)

    Kuliev, V. D.; Morozov, E. M.

    2016-10-01

    A new fracture criterion based on the assumption that brittle fracture occurs when the strain gradient reaches its limiting value is formulated. The presence of a strain gradient at the boundary of a body's temperature drop is shown analytically. The results of an experiment with specimens under an abrupt change in temperature are presented.

  12. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  13. Brittle Books Programs. SPEC Kit 152.

    ERIC Educational Resources Information Center

    Merrill-Oldham, Jan; Walker, Gay

    This document focuses on the evaluation, bibliographic searching, replacement, preservation photocopying, and microfilming of library materials that are too brittle to handle without risking damage. To assess these activities, a SPEC (Systems and Procedures Exchange Center) survey was sent to members of the Association of Research Libraries (ARL),…

  14. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa)

    SciTech Connect

    Bosse, U.; Frenzel, P.

    1997-04-01

    Methane is an important greenhouse gas, and its atmospheric concentration has been increasing for decades. Flooded rice fields are one of the major sources of methane emissions to the atmosphere. These emissions are the net result of methane production by methanogenic bacteria in anoxic environments and methane oxidation by methane oxidizing bacteria in oxic environments. This study describes both the activity and distribution of methane oxidizing bacteria in microcosms used as a model for flooded rice fields. Then the process was characterized and localized, and finally the distribution of these organisms on the roots and culm, the size of the rhizosphere and the changes associated with plant age were examined. 59 refs., 8 figs., 2 tabs.

  15. Guadua zuloagae sp. nov., the First Petrified Bamboo Culm Record from the Ituzaingó Formation (Pliocene), Paraná Basin, Argentina

    PubMed Central

    Brea, Mariana; Zucol, Alejandro F.

    2007-01-01

    Background and Aims The anatomical characterization and morphology of Guadua zuloagae nov. sp. (Poaceae–Bambusoideae) culm was determined. This material was collected at the Toma Vieja fossil locality, Paraná basin, Argentina. This fossil culm is the first record of Bambusoideae in sediments of the Pliocene from the Ituzaingó Formation. The studied specimen was compared with the taxa of the Bambusoideae sub-family, especially with the American woody bamboos and others taxa that have woody culms, including Arundo, Thysalonaena and Gynerium. Methods The material was preserved by siliceous cellular permineralization, and it was prepared for microscopic examination by surface polishing and thin sections. The morphology and anatomy of this new species were described. The estimated height, critical buckling height and safety factor were calculated on the basis of the fossil bamboo diameter using the formula of Niklas. The relationship and comparison with the nearest living relatives (NLRs) are discussed. Key Results Well-preserved petrified culm with internodes and nodes from the Pliocene of Argentina provides the basis for the description of a new fossil bamboo, Guadua zuloagae. The results of the anatomical analysis of the fossil bamboo showed a great affinity with the extant species Guadua angustifolia and constitute the first evidence of petrified bamboo culm. Conclusions The new fossil bamboo culm constitutes the only fossil record, preserved as permineralized by silicification, in the world. This fossil record indicates that the genus Guadua was more widespread in the past than today. Discovery of G. zuloagae allows the presence of a Bambusoideae understorey in the mixed forests described for the Ituzaingó Formation to be inferred. The climatic conditions inferred from fossil bamboo and sedimentary deposits indicate a temperate-warm, humid climate. PMID:17728337

  16. Johanna and Tommy: Two Preschoolers in Sweden with Brittle Bones.

    ERIC Educational Resources Information Center

    Millde, Kristina; Brodin, Jane

    Information is presented for caregivers of Swedish children with osteogenesis imperfecta (brittle bones) and their families. Approximately five children with brittle bones are born in Sweden annually. Two main types of brittle bone disease have been identified: congenita and tarda. Typical symptoms include numerous and unexpected fractures, bluish…

  17. Brittle crack propagation in silicon single crystals

    SciTech Connect

    Brede, M.; Hsia, K.J.; Argon, A.S. )

    1991-07-15

    Viewing the brittle-to-ductile transition of fracture in intrinsically brittle solids as a crack tip initiated critical event of either nucleation of dislocation loops from the crack tip or the motion away of such dislocations from the crack tip, experiments have been devised to measure the critical activation energy of such events by measuring the arrest temperature of cleavage cracks with different velocities in experiments that were conducted on large Si single crystals subjected to a steep temperature gradient. While such experiments can provide precise information that can be related directly to mechanisms of crack tip bifurcation behavior, they are hampered by nontrivial perturbations that must be controlled. Here in the first of a series of communications we discuss the nature of these perturbations in Si single crystals, cleaving either on the {l brace}111{r brace} or the {l brace}110{r brace} planes.

  18. Fracture in compression of brittle solids

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The fracture of brittle solids in monotonic compression is reviewed from both the mechanistic and phenomenological points of view. The fundamental theoretical developments based on the extension of pre-existing cracks in general multiaxial stress fields are recognized as explaining extrinsic behavior where a single crack is responsible for the final failure. In contrast, shear faulting in compression is recognized to be the result of an evolutionary localization process involving en echelon action of cracks and is termed intrinsic.

  19. Micromechanics of brittle creep in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-08-01

    In the upper crust, the chemical influence of pore water promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses well below their short-term failure strength, and even at constant applied stress (“brittle creep”). Here we provide a micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990), and the crack length evolution is computed from Charles' law. The macroscopic strains and strain rates computed from the model are non linear, and compare well with experimental results obtained on granite, low porosity sandstone and basalt rock samples. Primary creep (decelerating strain) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as an inflexion between those two end-member phases. The minimum strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature, which provides an approximate creep law for the process. The creep law is used to infer the long term strain rate as a function of depth in the upper crust due to the action of the applied stresses: in this way, sub-critical cracking reduces the failure stress in a manner equivalent to a decrease in cohesion. We also investigate the competition with pressure solution in porous rocks, and show that the transition from sub

  20. Intermediate Temperature Brittleness in Metallic Glasses.

    PubMed

    Wang, Chao; Cao, Qing Ping; Wang, Xiao Dong; Zhang, Dong Xian; Ramamurty, Upadrasta; Narayan, Ramasubramanian Lakshmi; Jiang, Jian-Zhong

    2017-04-01

    All metallic glasses (MGs), irrespective of their compositions, become brittle in the intermediate temperature range of 0.6-0.7 Tg However, most materials are expected to carry higher strains during deformation with increasing temperature. This behavior of MGs is explained by describing the competition between shear banding and diffusive relaxation processes, and is reminiscent of the "intermediate temperature ductility minimum" observed in polycrystalline metals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication of brittle materials -- current status

    SciTech Connect

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  2. Optimization of regimes for the feed of highly concentrated culm-anthracite coal dust for burning in a TPP-210A boiler

    SciTech Connect

    L.V. Golyshev; G.A. Dovgoteles

    2007-05-15

    Results are presented for regime adjustment of feed systems for a TPP-210A boiler for the burning of highly concentrated culm-anthracite coal dust. As compared with nonoptimal regimes, optimal regimes of high-concentration-feed systems improve the economy of the boiler by 1.7% on average.

  3. Aerogel: Tile Composites Toughen a Brittle Superinsulation

    NASA Technical Reports Server (NTRS)

    White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)

    1998-01-01

    Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices like those used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.

  4. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  5. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  6. A case of brittle bone disease.

    PubMed

    Khan, M K; Hossain, M B

    2004-07-01

    Brittle bone disease--synonym, osteogenesis imperfecta is a rare genetic disorder of collagen synthesis associated with broad spectrum of musculoskeletal problem, where bones break easily. Recently we got a case of OI, whose name is Babu, 3 days old, full term bay with uneventful home delivery. The baby had multiple fractures in all the extremities with deformities with blue sclera with bilateral inguinal hernia. Other systems were found normal. On 10th day of life he was operated for inguinal hernia with satisfactory postoperative recovery and subsequently he was referred to the orthopedic department for further management.

  7. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  8. Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Regnet, J. B.; Dimanov, A.; Guéguen, Y.

    2016-07-01

    Inelastic deformation can either occur with dilatancy or compaction, implying differences in porosity changes, failure and petrophysical properties. In this study, the roles of water as a pore fluid, and of temperature, on the deformation and failure of a micritic limestone (white Tavel limestone, porosity 14.7 per cent) were investigated under triaxial stresses. For each sample, a hydrostatic load was applied up to the desired confining pressure (from 0 up to 85 MPa) at either room temperature or at 70 °C. Two pore fluid conditions were investigated at room temperature: dry and water saturated. The samples were deformed up to failure at a constant strain rate of ˜10-5 s-1. The experiments were coupled with ultrasonic wave velocity surveys to monitor crack densities. The linear trend between the axial crack density and the relative volumetric strain beyond the onset of dilatancy suggests that cracks propagate at constant aspect ratio. The decrease of ultrasonic wave velocities beyond the onset of inelastic compaction in the semi-brittle regime indicates the ongoing interplay of shear-enhanced compaction and crack development. Water has a weakening effect on the onset of dilatancy in the brittle regime, but no measurable influence on the peak strength. Temperature lowers the confining pressure at which the brittle-semi-brittle transition is observed but does not change the stress states at the onset of inelastic compaction and at the post-yield onset of dilatancy.

  9. Phase field approximation of dynamic brittle fracture

    NASA Astrophysics Data System (ADS)

    Schlüter, Alexander; Willenbücher, Adrian; Kuhn, Charlotte; Müller, Ralf

    2014-11-01

    Numerical methods that are able to predict the failure of technical structures due to fracture are important in many engineering applications. One of these approaches, the so-called phase field method, represents cracks by means of an additional continuous field variable. This strategy avoids some of the main drawbacks of a sharp interface description of cracks. For example, it is not necessary to track or model crack faces explicitly, which allows a simple algorithmic treatment. The phase field model for brittle fracture presented in Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) assumes quasi-static loading conditions. However dynamic effects have a great impact on the crack growth in many practical applications. Therefore this investigation presents an extension of the quasi-static phase field model for fracture from Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) to the dynamic case. First of all Hamilton's principle is applied to derive a coupled set of Euler-Lagrange equations that govern the mechanical behaviour of the body as well as the crack growth. Subsequently the model is implemented in a finite element scheme which allows to solve several test problems numerically. The numerical examples illustrate the capabilities of the developed approach to dynamic fracture in brittle materials.

  10. Brittle Destruction of Carbon Based Materials

    NASA Astrophysics Data System (ADS)

    Koza, Y.; Amouroux, S.; Bazylev, B. N.; Berthe, E.; Kuehnlein, W.; Linke, J.; Penkalla, H. J.; Singheiser, L.

    Erosion mechanisms for different carbon based materials (graphite, carbon fiber composites (CFCs), Si-doped CFC) have been studied under brittle destruction under intense transient thermal loads (ELMs, plasma disruptions, VDEs) with respect to material erosion in different particle emission regimes, characterization of emitted particles, and behavior of preheated samples. Furthermore, the experimental data were compared with 3-D numerical simulation on the onset of brittle destruction. From a morphological point of view, the resulting erosion patterns on the test samples and ejected particles differ significantly for the three materials. The isotropic graphite shows a homogeneous erosion profile with flat craters, while the CFC forms no crater and only preferential erosion in localized spots in the PAN fiber area while the pitch fiber strands remain almost undamaged. The particles originating from graphite samples which have been collected on TEM grids are composed of nano sized amorphous carbon. CFCs have been the source for sub Î 1/4 m sized agglomerated fragments of crystalline carbon or silicon particles with âe 1/4 50 nm diameter. Preheating of the test samples to 500 or 800°C results in a remarkable increase of the erosion depth and weight loss compared to the samples loaded at room temperature and identical heat fluxes. In particular, melting phenomena in the Si-doped CFC materials became essential at elevated temperatures.

  11. Brittle superconducting magnets: an equivilent strain model

    SciTech Connect

    Barzi, E.; Danuso, M.

    2010-08-01

    To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb{sub 3}Sn and Nb{sub 3}Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb{sub 3}Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.

  12. An analysis of ductile brittle fracture transition in layered composites

    SciTech Connect

    Biner, S.B.

    1996-12-31

    In this study the failure of the ductile layers in laminated composite systems was studied numerically. The results indicate that similar maximum stress values develop in the ductile layers as in the fracture test of the same ductile material if the crack tip in the brittle layer is already at the interface. For nondebonding interfaces brittle behavior of the ductile layers is dependent upon the extent of the cracks and the fracture characteristic of the brittle layers.

  13. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    DTIC Science & Technology

    2014-10-01

    A Geometrically Nonlinear Phase Field Theory of Brittle Fracture by JD Clayton and J Knap ARL-RP-0511 October 2014...21005-5069 ARL-RP-0511 October 2014 A Geometrically Nonlinear Phase Field Theory of Brittle Fracture JD Clayton and J Knap Weapons and...Nonlinear Phase Field Theory of Brittle Fracture 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) JD Clayton

  14. NONDESTRUCTIVE ANALYSIS OF THE BRITTLE FRACTURE BEHAVIOR OF CERAMIC MATERIALS

    DTIC Science & Technology

    CERAMIC MATERIALS , *NONDESTRUCTIVE TESTING, BRITTLENESS, DIELECTRIC PROPERTIES, DIFFUSION, ELASTIC PROPERTIES, FRACTURE (MECHANICS), IMPURITIES, MECHANICAL PROPERTIES, RESONANCE, STRESSES, THERMAL DIFFUSION, THERMAL STRESSES

  15. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice

    PubMed Central

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-01-01

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs. PMID:27465821

  16. Isotropic MD simulations of dynamic brittle fracture

    SciTech Connect

    Espanol, P.; Rubio, M.A.; Zuniga, I.

    1996-12-01

    The authors present results obtained by molecular dynamics simulations on the propagation of fast cracks in triangular 2D lattices. Their aim is to simulate Mode 1 fracture of brittle isotropic materials. They propose a force law that respects the isotropy of the material. The code yields the correct imposed sound c{sub {parallel}}, shear c{sub {perpendicular}} and surface V{sub R} wave speeds. Different notch lengths are systematically studied. They observed that initially the cracks are linear and always branch at a particular critical velocity c* {approx} 0.8V{sub R} and that this occurs when the crack tip reaches the position of a front emitted from the initial crack tip and propagating at a speed c = 0.68V{sub R}.

  17. A probabilistic model of brittle crack formation

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Kunin, B.

    1987-01-01

    Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.

  18. Brittle dynamic damage due to earthquake rupture

    NASA Astrophysics Data System (ADS)

    Bhat, Harsha; Thomas, Marion

    2016-04-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over wide range of strain rates. We then implement this constitutive response to understand the role of dynamic brittle off-fault damage on earthquake ruptures. We show that off-fault damage plays an important role in asymmetry of rupture propagation and is a source of high-frequency ground motion in the near source region.

  19. Fluid-driven fractures in brittle hydrogels

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Niall; Linden, Paul

    2016-11-01

    Hydraulic fracturing is a process in which fluid is injected deep underground at high pressures that can overcome the strength of the surrounding matrix. This results in an increase of surface area connected to the well bore and thus allows extraction of natural gas previously trapped in a rock formation. We experimentally study the physical mechanisms of these fluid-driven fractures in low permeability reservoirs where the leak-off of fracturing fluid is considered negligible. This is done through the use of small scale experiments on transparent and brittle, heavily cross-linked hydrogels. The propagation of these fractures can be split into two distinct regimes depending on whether the dominant energy dissipation mechanism is viscous flow or material toughness. We will analyse crack growth rates, crack thickness and tip shape in both regimes. Moreover, PIV techniques allow us to explore the flow dynamics within the fracture, which is crucial in predicting transport of proppants designed to prevent localisation of cracks.

  20. Brittle to ductile transition in cleavage fracture

    SciTech Connect

    Argon, A.S.; Berg, Q.

    1992-09-30

    The problem of interpretation of fracture transition from brittle to ductile or vice versa is the subject of study. An instrumented tapered double cantilever beam (TDCB) has been developed as a definitive tool in the study of the intrinsic mechanism in single crystalline samples. In this experiment, the crack velocity is directly proportional to actuator velocity. In experiments performed on TDCB shaped Si single crystals, oriented for cleavage on either [l brace]111[r brace] or [l brace]110[r brace] planes, a number of troubling features of jerky carck extension were encountered. Evidence suggests that nucleation of dislocation loops from crack tip is easier than moving these dislocations away from crack tip. 14 refs, 1 fig.

  1. Benchmarking numerical models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  2. Kinetics of the crack-tip-governed brittle to ductile transitions in intrinsically brittle solids

    SciTech Connect

    Argon, A.S.; Xu, G.; Ortiz, M.

    1997-12-31

    Brittle-to-ductile transitions in the fracture of intrinsically brittle solids manifest themselves in two fundamentally different forms. In the first type of solids exemplified by the BCC transition metals and some alkali halides in which dislocation mobility against the lattice resistance is governed by double kink nucleation, the corresponding fracture transition appears to be controlled by formation of dislocation embryos at crack tips. In the second type of solids exemplified by Si, and possibly all other compounds, dislocation mobility is governed not only by double kink nucleation but by kink mobility as well. In these solids the B-D transitions are known to be controlled by dislocation mobility. Here the authors report first on recent simulations of dislocation embryo formation from Mode I cracks in {alpha} {minus} Fe as generic cases of BCC transition metals, and then on a new model of the mobility controlled transitions, typically in Si. Both models find good experimental confirmation.

  3. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms

    PubMed Central

    2011-01-01

    Background The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit. Results A sub-set of stress-related genes that are potentially associated with sucrose accumulation in sugarcane culms was identified through correlation analysis, and these included genes encoding enzymes involved in amino acid metabolism, a sugar transporter and a transcription factor. Subsequent analysis of the expression of these stress-response genes in sugarcane plants that were under water deficit stress revealed a different transcriptional profile to that which correlated with sucrose accumulation. For example, genes with homology to late embryogenesis abundant-related proteins and dehydrin were strongly induced under water deficit but this did not correlate with sucrose content. The expression of genes encoding proline biosynthesis was associated with both sucrose accumulation and water deficit, but amino acid analysis indicated that proline was negatively correlated with sucrose concentration, and whilst total amino acid concentrations increased about seven-fold under water deficit, the relatively low concentration of proline suggested that it had no osmoprotectant role in sugarcane culms. Conclusions The results show that while there was a change in stress-related gene

  4. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice.

    PubMed

    Wang, Dekai; Liu, Heqin; Li, Sujuan; Zhai, Guowei; Shao, Jianfeng; Tao, Yuezhi

    2015-09-01

    Serine hydroxymethyltransferase (SHMT) is important for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development, and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, OsSHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller, lethal phenotype under natural ambient CO2 concentrations, but could be restored to wild type with normal growth under elevated CO2 levels (0.5% CO2 ), showing a typical photorespiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to significant oxidative stress. Also, OsSHM1 was expressed in all organs tested (root, culm, leaf, and young panicle) but predominantly in leaves. OsSHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the OsSHM1 gene is conserved in rice and Arabidopsis.

  5. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  6. Theory of friction based on brittle fracture

    USGS Publications Warehouse

    Byerlee, J.D.

    1967-01-01

    A theory of friction is presented that may be more applicable to geologic materials than the classic Bowden and Tabor theory. In the model, surfaces touch at the peaks of asperities and sliding occurs when the asperities fail by brittle fracture. The coefficient of friction, ??, was calculated from the strength of asperities of certain ideal shapes; for cone-shaped asperities, ?? is about 0.1 and for wedge-shaped asperities, ?? is about 0.15. For actual situations which seem close to the ideal model, observed ?? was found to be very close to 0.1, even for materials such as quartz and calcite with widely differing strengths. If surface forces are present, the theory predicts that ?? should decrease with load and that it should be higher in a vacuum than in air. In the presence of a fluid film between sliding surfaces, ?? should depend on the area of the surfaces in contact. Both effects are observed. The character of wear particles produced during sliding and the way in which ?? depends on normal load, roughness, and environment lend further support to the model of friction presented here. ?? 1967 The American Institute of Physics.

  7. ON THE BRITTLENESS OF ENAMEL AND SELECTED DENTAL MATERIALS

    PubMed Central

    Park, S.; Quinn, J. B; Romberg, E.; Arola, D.

    2008-01-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of “brittleness” is currently not used in assessing the clinical merits of dental materials. Objective To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Methods Specimens of human enamel were prepared from the 3rd molars of “young” (18≤age≤25) and “old” (50≤age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and Micaceous Glass Ceramic (MGC) dental materials was estimated and compared with that of the enamel. Results The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 µm−1 at the DEJ to nearly 900 µm−1 at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to 4 times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. Significance The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel. PMID:18436299

  8. Effect of bamboo culm extract on oxidative stress and genetic expression: bamboo culm extract ameliorates cell adhesion molecule expression and NFkappaB activity through the suppression of the oxidative stress.

    PubMed

    Lee, Min-Ja; Park, Won-Hwan; Song, Young-Sun; Lee, Yong-Woo; Song, Yeong-Ok; Moon, Gap-Soon

    2008-10-01

    This study was designed to investigate whether bamboo culm extract (BCE) supplementation may ameliorate risk factors of cardiovascular diseases, such as hypercholesterolemia. Oxidative stress and inflammatory mediators in plasma, livers of C57BL/6 mice fed high-cholesterol diet and calf pulmonary artery endothelial (CPAE) cells. Briefly, C57BL/6 mice were fed the high-cholesterol diet which was supplemented with 1% (w/w), or 3% (w/w) of BCE for 16 weeks. The concentration of total cholesterol, LDL-cholesterol, HDL-cholesterol level and atherogenic index were measured. Plasma TEAC value, hepatic thiobarbituric acid reactive substances (TBARS), protein carbonyl values and hepatic antioxidant enzyme activities, such as Cu,Zn-superoxide dismutase (SOD), Mn-SOD, glutathione peroxidase (GSH-Px), GSH reductase and catalase were determined. In addition, hepatic nuclear factor kappa B activities were detected. In the calf pulmonary artery endothelial (CPAE) cells stimulated with lipopolysaccharide, the expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) were measured. Plasma cholesterol level was decreased, while HDL-cholesterol was increased, thus atherogenic index was lowered in BCE-supplemented animals. Plasma trolox equivalent and hepatic thiobarbituric acid reactive substances and protein carbonyl values were lowered significantly in BCE groups (p<0.05) in a dose-dependent manner. Hepatic antioxidative enzyme activities, such as Cu,Zn-superoxide dismutase (SOD), Mn-SOD, glutathione peroxidase (GSH-P), GSH reductase, and catalase were elevated in mice fed BCE-supplemented diets (p<0.05). Nuclear factor kappa B activities of livers and vascular cell adhesion molecule-1 and intracellular cell adhesion molecule-1 expressions in CPAE cells stimulated with lipopolysaccharide were significantly lowered in BCE groups (p<0.05). These results suggest that BCE supplementation may modulate lipoprotein composition and

  9. Benchmarking analogue models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  10. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data.

    PubMed Central

    Rohwer, J M; Botha, F C

    2001-01-01

    Sucrose accumulation in developing sugar cane (Saccharum officinarum) is accompanied by a continuous synthesis and cleavage of sucrose in the storage tissues. Despite numerous studies, the factors affecting sucrose accumulation are still poorly understood, and no consistent pattern has emerged which pinpoints certain enzyme activities as important controlling steps. Here, we develop an approach based on pathway analysis and kinetic modelling to assess the biochemical control of sucrose accumulation and futile cycling in sugar cane. By using the concept of elementary flux modes, all possible routes of futile cycling of sucrose were enumerated in the metabolic system. The available kinetic data for the pathway enzymes were then collected and assembled in a kinetic model of sucrose accumulation in sugar cane culm tissue. Although no data were fitted, the model agreed well with independent experimental results: in no case was the difference between calculated and measured fluxes and concentrations greater than 2-fold. The model thus validated was then used to assess different enhancement strategies for increasing sucrose accumulation. First, the control coefficient of each enzyme in the system on futile cycling of sucrose was calculated. Secondly, the activities of those enzymes with the numerically largest control coefficients were varied over a 5-fold range to determine the effect on the degree of futile cycling, the conversion efficiency from hexoses into sucrose, and the net sucrose accumulation rate. In view of the modelling results, overexpression of the fructose or glucose transporter or the vacuolar sucrose import protein, as well as reduction of cytosolic neutral invertase levels, appear to be the most promising targets for genetic manipulation. This offers a more directed improvement strategy than cumbersome gene-by-gene manipulation. The kinetic model can be viewed and interrogated on the World Wide Web at http://jjj.biochem.sun.ac.za. PMID:11513743

  11. Post-Variscan thermal history of the Moravo-Silesian lower Carboniferous Culm Basin (NE Czech Republic - SW Poland)

    NASA Astrophysics Data System (ADS)

    Botor, Dariusz; Dunkl, István; Anczkiewicz, Aneta; Mazur, Stanisław

    2017-08-01

    Apatite fission track analysis (AFT) and zircon (U-Th)/He thermochronology (ZHe) have been carried out for a lower Carboniferous greywacke succession of the Moravo-Silesian Culm Basin in the Nízký Jeseník Mountains. The range of apparent zircon helium ages is 303-233 Ma (late Carboniferous to Early Triassic) in the eastern part of the basin, whilst they are significantly younger in the western part, ranging from 194 to 163 Ma (Early-Middle Jurassic). Apatite fission track central ages range from 152 (Latest Jurassic) to 44 Ma (Eocene), with the majority being grouped between 114 (Aptian) and 57 Ma (Paleocene). All samples experienced substantial post-depositional thermal reset; both the AFT ages and the ZHe are considerably younger than the depositional ages. The mean track length varies in the range between 12.5 and 15.4 μm. The unimodal track length distribution, the relatively short mean track length (in most samples), and their rather low standard deviation values (1.2 to 2.1 μm) indicate that their thermal history was determined by Variscan and post-Variscan heating event(s) followed by a prolonged residence in the apatite partial annealing zone in the Mesozoic and finally by cooling in the Paleogene. Geological evidence combined with thermal modeling based on AFT and ZHe data indicate that the lower Carboniferous strata had already reached maximum palaeotemperatures in the late Carboniferous, however, they were presumably later re-heated during the Permian-Triassic. Post-Variscan extensional tectonics events were responsible for high heat flow that together with Carboniferous burial could account for the reset of both thermochronometers. A major phase of cooling occurred in the Late Cretaceous. Finally, exhumation was probably faster in the Paleogene, causing the present-day exposure of the studied rocks.

  12. Ultrasonic Apparatus for Pulverizing Brittle Material

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Bar-Cohen, Yoseph; Dolgin, Benjamin; Chang, Zensheu

    2004-01-01

    The figure depicts an apparatus that pulverizes brittle material by means of a combination of ultrasonic and sonic vibration, hammering, and abrasion. The basic design of the apparatus could be specialized to be a portable version for use by a geologist in collecting powdered rock samples for analysis in the field or in a laboratory. Alternatively, a larger benchtop version could be designed for milling and mixing of precursor powders for such purposes as synthesis of ceramic and other polycrystalline materials or preparing powder samples for x-ray diffraction or x-ray fluorescence measurements to determine crystalline structures and compositions. Among the most attractive characteristics of this apparatus are its light weight and the ability to function without need for a large preload or a large power supply: It has been estimated that a portable version could have a mass <0.5 kg, would consume less than 1 W h of energy in milling a 1-cm3 volume of rock, and could operate at a preload <10 N. The basic design and principle of operation of this apparatus are similar to those of other apparatuses described in a series of prior NASA Tech Briefs articles, the two most relevant being Ultrasonic/ Sonic Drill/Corers With Integrated Sensors (NPO-20856), Vol. 25, No. 1 (January 2001), page 38 and Ultrasonic/ Sonic Mechanisms for Deep Drilling and Coring (NPO-30291), Vol. 27, No. 9 (September 2003), page 65. As before, vibrations are excited by means of a piezoelectric actuator, an ultrasonic horn, and a mass that is free to move axially over a limited range. As before, the ultrasonic harmonic motion of the horn drives the free-mass in a combination of ultrasonic harmonic and lower-frequency hammering motion. In this case, the free-mass is confined within a hollow cylinder that serves as a crushing chamber, and the free-mass serves as a crushing or milling tool. The hammering of the free-mass against a material sample at the lower end of the chamber grinds the sample into

  13. Brittle and semibrittle creep in a low porosity carbonate rock

    NASA Astrophysics Data System (ADS)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  14. Deconvoluting complex structural histories archived in brittle fault zones.

    PubMed

    Viola, G; Scheiber, T; Fredin, O; Zwingmann, H; Margreth, A; Knies, J

    2016-11-16

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.

  15. Deconvoluting complex structural histories archived in brittle fault zones

    PubMed Central

    Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.

    2016-01-01

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks. PMID:27848957

  16. Deconvoluting complex structural histories archived in brittle fault zones

    NASA Astrophysics Data System (ADS)

    Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.

    2016-11-01

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.

  17. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-peak Strength Parameters in Rock Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-12-01

    Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.

  18. Interview: commercial translation of cell-based therapies and regenerative medicine: learning by experience. Interview by Emily Culme-Seymour.

    PubMed

    Haseltine, William A

    2011-07-01

    Dr Haseltine speaks to Emily Culme-Seymour, Assistant Commissioning Editor William A Haseltine, PhD has an active career in both Science and Business. He was a professor at Harvard Medical School and Harvard School of Public Health (MA, USA) from 1976 to 1993, where he was Founder and Chair of two academic research departments. He is well known for his pioneering work on cancer, HIV/AIDS and genomics. He has authored more than 200 manuscripts in peer-reviewed journals and is the author of several books. He is the founder of Human Genome Sciences, Inc. and served as the Chairman and CEO of the company until 2004. He is also the founder of several other successful biotechnology companies. William Haseltine is currently Chairman and President of ACCESS Health International, Inc., which supports access to affordable, high-quality health services in low, middle and high income countries, and Chairman of the Haseltine Foundation for Science and the Arts, which fosters a dialog between sciences and the arts. He is an Adjunct Professor at the Scripps Institute for Medical Research and the Institute of Chemical Engineering, the University of Mumbai, India. He is a member of the Advisory Board of the IE University, Madrid, the President's Council of the Cold Spring Harbor Laboratory, the Advisory Council for the Koch Institute of MIT, a member of the University Council Committee on technology transfer, Yale University, and is a Lifetime Governor of the New York Academy of Science (NY, USA). He is an honorary member of the Board of Trustees of the Brookings Institution, a member of the Board of Trustees of the Center for Emerging Markets of the Indian School of Business, a member of the Council on Foreign Relations, a member of the Board of AID for AIDS International, and a member of the Chairman's Circle of the Asia Society. He is a member of the Advisory Board of the Metropolitan Opera (NY, USA), the Chairman's Council of the Metropolitan Museum (NY, USA), the International

  19. Determination of fractionation of oxygen isotopes between rice grain and environmental water

    NASA Astrophysics Data System (ADS)

    Kaushal, R.; Ghosh, P.

    2013-12-01

    Oxygen isotopic composition (δ18O) of plant organic matter (POM) serves as a valuable proxy for paleoclimatic studies [1].The δ18O of POM emulates the isotopic composition of the source water [2]. Rice crop cultivation goes back to 12,000 years, when rice was first domesticated in China and the earliest cultivation of rice observed in India was during 3000- 2500 BC. Presently rice is cultivated in many countries around the world including India where the prerequisite of saturated soil water condition for optimum growth of rice crop is provided by the South west monsoons. Earlier studies on δ18O of rice have been limited to its geographic characterization [3]. However, detailed investigations to determine fractionation of oxygen isotopes in water, in different parts of a rice plant, with rice seed organic matter is the primary objective of this work. This is important for understanding the mechanism responsible for the transfer of source water signature to the seed organics and can facilitate understanding of past monsoonal regime using well preserved rice grain remains from archaeological sites. Water from the leaves and culms was extracted by means of heating and cryogenic distillation in a vacuum extraction system [4]. The source water and the water extracted from plant parts were analysed by CO2 equilibration method using Gas Bench peripheral. Rice seed powder, after removal of husk, is composed primarily of starch and were analysed using High Temperature Conversion-Elemental Analyser. Both these peripherals were coupled to an Isotope Ratio Mass spectrometer- MAT253 (Thermo Finnigan). Experimental results discussed here were based on greenhouse and field based studies of water and seed organic composition. The water fed to the plant in the green house showed an average δ18O value of -0.50‰ whereas the field water from irrigation covering the time of grain filling ranges between -1.03‰ and -3.08‰. Figure 1 displays the extent of enrichment recorded in

  20. Development and Validation of a TaqMan Real-Time PCR Assay for the Specific Detection and Quantification of Fusarium fujikuroi in Rice Plants and Seeds.

    PubMed

    Carneiro, Greice Amaral; Matić, Slavica; Ortu, Giuseppe; Garibaldi, Angelo; Spadaro, Davide; Gullino, Maria Lodovica

    2017-07-01

    Bakanae disease, which is caused by the seedborne pathogen Fusarium fujikuroi, is found throughout the world on rice. A TaqMan real-time PCR has been developed on the TEF 1-α gene to detect F. fujikuroi in different rice tissues. Three primer/probe sets were tested. The selected set produced an amplicon of 84 bp and was specific for F. fujikuroi with respect to eight Fusarium species of rice and six other rice common pathogens. The assay was validated for specificity, selectivity, sensitivity, repeatability, and reproducibility. The detection limit was set at 27.5 fg of DNA, which is approximately equivalent to one haploid genome of F. fujikuroi. The developed TaqMan real-time assay was able to efficiently detect and quantify F. fujikuroi from rice culms, leaves, roots, and seeds. At 1 week post-germination (wpg), the pathogen was more diffused in the green tissues, while at 3 wpg it was uniformly spread also in the roots. The highest concentration of F. fujikuroi was measured in the M6 cultivar, which showed around 1,450 fungal cells/g. The assay was sufficiently sensitive to detect a few genomic equivalents in the rice seeds, corresponding to 9.89 F. fujikuroi cells/g. The assay permitted bakanae disease to be detected in asymptomatic tissues at the early rice development stages.

  1. The nature of temper brittleness of high-chromium ferrite

    SciTech Connect

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V.

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  2. Brittle and ductile friction and the physics of tectonic tremor

    USGS Publications Warehouse

    Daub, E.G.; Shelly, D.R.; Guyer, R.A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place. Copyright ?? 2011 by the American Geophysical Union.

  3. On fracture toughness evaluation for semi-brittle fracture

    NASA Technical Reports Server (NTRS)

    Eftis, J.; Liebowitz, H.

    1975-01-01

    The existing methods of assessing the fracture toughness of materials exhibiting semi-brittle fracture are critically reviewed. The methods concern the Crack Growth Resistance (R-curve), the Crack Opening Displacement (COD), and the J-integral. An analysis of the shortcomings of the methods described makes it possible to formulate a new definition of fracture toughness appropriate to semi-brittle fracture. An improved simple experimental method for measuring fracture toughness for semi-brittle fracture is proposed which takes into account both crack growth and plastic nonlinear effects at crack front. The proposed method is shown to be free of the theoretical and experimental discrepancies encountered in the R-curve, COD, and J-integral methods.

  4. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    NASA Astrophysics Data System (ADS)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  5. Dimensional effects in dynamic fragmentation of brittle materials

    NASA Astrophysics Data System (ADS)

    Linna, R. P.; Åström, J. A.; Timonen, J.

    2005-07-01

    It has been shown previously that dynamic fragmentation of brittle D -dimensional objects in a D -dimensional space gives rise to a power-law contribution to the fragment-size distribution with a universal scaling exponent 2-1/D . We demonstrate that in fragmentation of two-dimensional brittle objects in three-dimensional space, an additional fragmentation mechanism appears, which causes scale-invariant secondary breaking of existing fragments. Due to this mechanism, the power law in the fragment-size distribution has now a scaling exponent of ˜1.17 .

  6. Finite element model for brittle fracture and fragmentation

    DOE PAGES

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  7. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    Necessary to the development and understanding of brittle fiber reinforced composites is a means to statistically describe fiber strength and strain-to-failure behavior. A statistical characterization for multicomponent brittle fibers is presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  8. Finite element model for brittle fracture and fragmentation

    SciTech Connect

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; Samulyak, Roman; Lu, Cao

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  9. Maize Brittle stalk2 Encodes a COBRA-Like Protein Expressed in Early Organ Development But Required for Tissue Flexibility at Maturity1[C][OA

    PubMed Central

    Sindhu, Anoop; Langewisch, Tiffany; Olek, Anna; Multani, Dilbag S.; McCann, Maureen C.; Vermerris, Wilfred; Carpita, Nicholas C.; Johal, Gurmukh

    2007-01-01

    The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared

  10. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    PubMed

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  11. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  12. Brittle Fracture of 2D MoSe2

    DOE PAGES

    Yang, Yingchao; Li, Xing; Wen, Minru; ...

    2016-11-03

    An in situ quantitative tensile testing platform is developed in this paper to enable the uniform in-plane loading of a freestanding membrane of 2D materials inside a scanning electron microscope. The in situ tensile testing reveals the brittle fracture of large-area MoSe2 crystals and measures their fracture strength for the first time.

  13. Micromechanics of Brittle Creep Under Triaxial Loading Conditions

    NASA Astrophysics Data System (ADS)

    Meredith, P. G.; Brantut, N.; Baud, P.; Heap, M. J.

    2011-12-01

    In the upper crust, the chemical influence of pore water promotes time-dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail (i) at stresses far below their short-term failure strength, and (ii) even at constant applied stress ("brittle creep"). Here we provide a micromechanical model and experimental results describing time-dependent brittle creep of water-saturated granite under triaxial stress conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of microcracks in compression are derived from the sliding wing-crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' law. The macroscopic strain and strain rates are then computed from the change in energy potential due to microcrack growth. They are non-linear, and compare well with complementary experimental results obtained on granite samples. Primary creep (decelerating strain) corresponds to decreasing crack growth rate , due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep with apparently constant strain rate arises as merely an inflexion between the two end-member phases.

  14. A technique for cutting brittle undisturbed lateritic soil block samples.

    PubMed

    Galvão, T Cássia de Brito; Drnevich, Vincent P; Schulze, Darrell G

    2003-05-01

    This note describes a technique for cutting undisturbed brittle block samples into smaller specimens for further geotechnical testing. This technique revealed very useful in dealing with collapsible soils, where the sampling is recommended to be done with block soil samples. A further use of this technique as an efficient way for sampling collapsible soils is proposed.

  15. Mapping the ductile-brittle transition of magma

    NASA Astrophysics Data System (ADS)

    Kendrick, J. E.; Lavallee, Y.; Dingwell, D. B.

    2010-12-01

    During volcanic unrest, eruptive activity can switch rapidly from effusive to explosive. Explosive eruptions require the fragmentation of magma, in which, if deformation rate is too fast to be relaxed, magma undergoes a transition in deformation mechanism from viscous and/or ductile to brittle. Our knowledge of the deformation mechanisms of magma ascent and eruption remains, to date, poor. Many studies have constrained the glass transition (Tg) of the interstitial melt phase; yet the effect of crystals and bubbles are unresolved. During ascent, magma undergoes P-T changes which induce crystallization, thereby inducing a transition from viscous to ductile and, in some cases, to brittle deformation. Here, we explore the deformation mechanisms of magma involved in the dome-building eruptions and explosions that occurred at Volcán de Colima (Mexico) since 1998. For this purpose, we investigated the rheology of dome lavas, containing 10-45 vol.% rhyolitic interstitial melt, 55-90 vol.% crystals and 5-20 vol.% bubbles. The interstitial glass is characterized by electron microprobe and Tg is characterized using a differential scanning calorimeter and a dilatometer. The population of crystals (fraction, shape and size distribution) is described optically and quantified using ImageJ and AMOCADO. The rheological effects of crystals on the deformation of magmas are constrained via acoustic emission (AE) and uniaxial deformation experiments at temperature above Tg (900-980 °C) and at varied applied stresses (and strain rates: 10-6 to 10-2 s-1). The ratio of ductile to brittle deformation across the ductile-brittle transition is quantified using the output AE energy and optical and SEM analysis. We find that individual dome lava sample types have different mechanical responses, yielding a significant range of measured strain rates under a given temperature and applied stress. Optical analysis suggests that at low strain rates, ductile deformation is mainly controlled by the

  16. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  17. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo

    PubMed Central

    2013-01-01

    Background As one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; however, the molecular processes underlying this phenomenon remain unclear. Moso bamboo (Phyllostachys heterocycla cv. Pubescens) internodes from four different developmental stages and three different internodes within the same stage were used in our study to investigate the molecular processes at the transcriptome and post-transcriptome level. Results Our anatomical observations indicated the development of culms was dominated by cell division in the initial stages and by cell elongation in the middle and late stages. The four major endogenous hormones appeared to actively promote culm development. Using next-generation sequencing-based RNA-Seq, mRNA and microRNA expression profiling technology, we produced a transcriptome and post-transcriptome in possession of a large fraction of annotated Moso bamboo genes, and provided a molecular basis underlying the phenomenon of sequentially elongated internodes from the base to the top. Several key pathways such as environmental adaptation, signal transduction, translation, transport and many metabolisms were identified as involved in the rapid elongation of bamboo culms. Conclusions This is the first report on the temporal and spatial transcriptome and gene expression and microRNA profiling in a developing bamboo culms. In addition to gaining more insight into the unique growth characteristics of bamboo, we provide a good case study to analyze gene, microRNA expression and profiling of non-model plant species using high-throughput short-read sequencing. Also, we demonstrate that the integrated analysis of our multi-omics data, including transcriptome, post-transcriptome, proteome, yield more complete representations and additional biological insights, especially the complex dynamic processes occurring in Moso bamboo culms

  18. Brittle, flowing structures focused on subtle crustal heterogeneities

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Shipton, Z. K.; Lunn, R. J.; Pytharouli, S.; Kirkpatrick, J. D.

    2011-12-01

    Fundamental to the development of groundwater flow models are geological models that accurately account for the spatial distribution and geometrical attributes of fracture systems in three dimensions, at both seismic and sub-seismic resolution. Accurate characterization of fracture populations in crystalline rock is of particular importance, as these are the principal targets for nuclear waste repositories and enhanced geothermal systems. Fracture models are populated using average properties from site specific outcrop and borehole data, geophysical imaging and empirical scaling relationships such as the decrease of fracture density with distance from a fault surface However, host rock heterogeneity is likely to be of equal importance in influencing fracture attributes. Our study focuses on brittle structures associated with a regional NE-SW ductile shear zone in NE Brazil. Detailed field mapping shows two phases of brittle structure overprinting a ductile shear zone: 1) a brittle fault zone, which is largely "sealed" to flow, 2) a later set of open fractures. The earliest brittle fault is 1.4 - 2.6m wide zone of chaotic breccia bound by two sub-vertical fault walls. Extremely indurated breccias branching from the fault core have an orientation consistent with sinistral motion on the fault. The breccia is composed of centimeter to meter scale clasts in a fine-grained matrix. The host rock is intensely fractured by centimeter-scale fractures up to 60 m away from the fault. Veining is predominantly concentrated within 15 meters of the fault wall, and joints beyond this are unmineralised. The latest brittle deformation is represented by meter-scale open discrete fractures and fracture zones, up to 80 meters from the main fault. The fractures are unmineralised suggesting formation at relatively shallow depths. Fracture zones vary from decimeters long en echelon fractures to intensely fractured zones where the host rock is completely fragmented. This final phase of

  19. Design, construction, operation, and evaluation of a prototype culm-combustion boiler/heater unit. Quarterly technical progress report, October 1-December 31, 1980

    SciTech Connect

    Not Available

    1981-02-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis and Phase II - Prototype Plant Construction during the period October 1, 1980 through December 31, 1980. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. The final detail design effort was completed and the final design report submitted. Progress on procurement activity authorized by full Phase II release on March 20, 1980, is discussed. Following approval by DOE, a purchase order was placed with the Norflor Construction Corporation for the prototype plant construction which began in November. Construction of the access roadway installation of the electric power, sewer and water lines was completed during this reporting period. Boiler construction continued.

  20. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  1. Rice ( Oryza) hemoglobins.

    PubMed

    Arredondo-Peter, Raúl; Moran, Jose F; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.

  2. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Rui; Huang, Jian-Ping; Li, Zhen-Chun; Yang, Qin-Yong; Sun, Qi-Xing; Cui, Wei

    2015-03-01

    Brittleness analysis becomes important when looking for sweet spots in tight-oil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.

  3. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem.

    PubMed

    Hakata, Makoto; Kuroda, Masaharu; Ohsumi, Akihiro; Hirose, Tatsuro; Nakamura, Hidemitsu; Muramatsu, Masayuki; Ichikawa, Hiroaki; Yamakawa, Hiromoto

    2012-01-01

    Screening of rice full-length cDNA overexpressing (FOX) lines allowed the identification of a TIFY gene, TIFY11b, as a growth-promoting gene whose overexpression increased plant height and seed size. The grains of TIFY11b-overexpressing plants exceeded those of non-transformants in length, width and thickness, resulting in 9-21% increases in grain weight. The increase was achieved by overexpressing the gene in the whole plant body, but not by seed-restricted expression, indicating that seed enlargement is attributable to overexpression in vegetative organs such as the leaf. The whole-body overexpressing plants developed longer leaves along with higher levels of starch and sucrose in the leaf sheath and culm at the heading stage than the non-transformants. Although overexpression of TIFY11b did not alter the photosynthetic rate per leaf area before and after heading, it caused an accumulation of higher levels of the carbohydrate assimilate, probably due to increased photosynthesis per plant, suggesting that the increase in grain size and weight is attained by enhanced accumulation and translocation of the carbohydrate in the culms and leaf sheaths of the transgenic plants. Thus, TIFY11b is a novel grain-size increasing gene.

  4. Brittle-viscous deformation, slow slip, and tremor

    NASA Astrophysics Data System (ADS)

    Fagereng, Åke; Hillary, Graeme W. B.; Diener, Johann F. A.

    2014-06-01

    Geophysical observations have illuminated a spectrum of fault slip styles from continuous aseismic sliding to fast earthquake slip. We study exhumed intercalated lenses of oceanic crust and sedimentary rocks, deformed to high shear strains. Deformation was partitioned between fractured, rigid blocks, with lengths of tens to hundreds of meters, and surrounding metapelites characterized by interconnected phyllosilicate networks. Under inferred conditions of low effective stress at temperatures > 500°C, locally and transiently elevated shear strain rate in phyllosilicates deforming by dislocation creep can reach those needed for transient slow slip. Concurrently, increased matrix strain rate likely stimulates brittle failure in rigid lenses. The ubiquitous presence of quartz veins and microfractures within rigid material provides evidence for brittle deformation occurring coincident with viscous shearing flow. We suggest that geophysically observed tremor and slow slip may be a manifestation of strain partitioning, where deformation is accommodated viscously in a matrix enveloping rigid lenses.

  5. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  6. Comparing the Bending Stiffness Measurements of Brittle Paper

    NASA Astrophysics Data System (ADS)

    Hall, Andrea; McGath, Molly; McGuiggan, Patricia

    It has been estimated that one third of the paper materials in libraries are too brittle to handle. A typical paper sheet is comprised of semi-rigid cellulose fibers that are more than ten times longer than the sheet thickness and can be considered a two dimensional random fiber network. The main pathways of degradation, acid-catalyzed hydrolysis and oxidation, cause depolymerization of the cellulose chains and breaking of the intrafiber bonds. Conventional mechanical measurements of aged paper are destructive and often too severe to understand the true extent of deterioration. By comparing the roll test, folding endurance tests, tensile tests and stiffness tests of naturally aged papers with varying amounts of brittleness, we intend to show the limits of each test and relate the state of the paper degradation to the mechanical test results. We thank the Andrew W. Mellon Foundation for funding this research.

  7. Dynamic patterns of compaction in brittle porous media

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdes, Julio R.; Einav, Itai

    2015-10-01

    Brittle porous media exhibit a variety of irreversible patterns during densification, including stationary and moving compaction bands in rocks, foams, cereal packs and snow. We have recently found moving compaction bands in cereal packs; similar bands have been detected in snow. However, the question of generality remains: under what conditions can brittle porous media disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing repeated crushing events, we first predict the possible emergence of new types of dynamic compaction; we then discover and confirm these new patterns experimentally in compressed cereal packs. In total, we distinguish three observed compaction patterns: short-lived erratic compaction bands, multiple oscillatory propagating compaction bands reminiscent of critical phenomena near phase transitions, and diffused irreversible densification. The manifestation of these three different patterns is mapped in a phase diagram using two dimensionless groups that represent fabric collapse and external dissipation.

  8. Reliability-based failure analysis of brittle materials

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Ghosn, Louis J.

    1989-01-01

    The reliability of brittle materials under a generalized state of stress is analyzed using the Batdorf model. The model is modified to include the reduction in shear due to the effect of the compressive stress on the microscopic crack faces. The combined effect of both surface and volume flaws is included. Due to the nature of fracture of brittle materials under compressive loading, the component is modeled as a series system in order to establish bounds on the probability of failure. A computer program was written to determine the probability of failure employing data from a finite element analysis. The analysis showed that for tensile loading a single crack will be the cause of total failure but under compressive loading a series of microscopic cracks must join together to form a dominant crack.

  9. The Brittle-Ductile Transition - A Self-Consistent Approach.

    NASA Astrophysics Data System (ADS)

    Hobbs, B.; Regenauer-Lieb, K.; Ord, A.; Yuen, D. A.

    2006-12-01

    The brittle-ductile transition (BDT) in the Earth is commonly viewed as a switch between two different constitutive behaviors, plastic and viscous, and is represented in models by various formulations. We show that thermal-mechanical coupling leads to a self consistent view where the BDT emerges naturally within one constitutive framework once a critical temperature is attained. Viscous folding occurs above this temperature and brittle fracturing below. Seismic activity is maximised at the BDT. Orogenesis emerges as a thermal-mechanical decoupling near the BDT during flexing of the lithosphere with the development of "crocodile" -like structures, fold-nappe systems and far-travelled thrust sheets. For quartz- feldspar composite materials this transition lies in a critical range of 500 K to 580 K.

  10. A partial skeletal proteome of the brittle star Ophiocoma wendtii

    NASA Astrophysics Data System (ADS)

    Seaver, Ryan W.

    The formation of mineralized tissue was critical to the evolution and diversification of metazoans and remains functionally significant in most animal lineages. Of special importance is the protein found occluded within the mineral matrix, which facilitates the process of biomineralization and modulates the final mineral structure. These skeletal matrix proteins have well been described in several species, including the sea urchin Stronglyocentrotus purpuratus, an important model organism. Biomineralization research is limited in other echinoderm classes. This research encompasses the first description of mineral matrix proteins in a member of the echinoderm class Ophiuroidea. This work describes the skeletal matrix proteins of the brittle star Ophiocoma wendtii using bioinformatic and proteomic techniques. General characteristics of matrix protein are described and a number of candidate biomineralization related genes have been identified, cloned, and sequenced. The unique evolutionary and biochemical properties of brittle star skeletal matrix proteins are also described.

  11. Elastic-plastic-brittle transitions and avalanches in disordered media.

    PubMed

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-01-31

    A spring lattice model with the ability to simulate elastic-plastic-brittle transitions in a disordered medium is presented. The model is based on bilinear constitutive law defined at the spring level and power-law-type disorder introduced in the yield and failure limits of the springs. The key parameters of the proposed model effectively control the disorder distribution, significantly affecting the stress-strain response, the damage accumulation process, and the fracture surfaces. The model demonstrates a plastic strain avalanche behavior for perfectly plastic as well as hardening materials with a power-law distribution, in agreement with the experiments and related models. The strength of the model is in its generality and ability to interpolate between elastic-plastic hardening and elastic-brittle transitions.

  12. An electronic criterion for assessing intrinsic brittleness of metallic glasses

    SciTech Connect

    Wang, X. F.; Jones, T. E.; Wu, Y.; Lu, Z. P.; Halas, S.; Durakiewicz, T.; Eberhart, M. E.

    2014-07-14

    Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG’s work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function – the surface dipole – and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs.

  13. An electronic criterion for assessing intrinsic brittleness of metallic glasses.

    PubMed

    Wang, X F; Jones, T E; Wu, Y; Lu, Z P; Halas, S; Durakiewicz, T; Eberhart, M E

    2014-07-14

    Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG's work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function - the surface dipole - and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs.

  14. Curacin E from the Brittle Star Ophiocoma scolopendrina.

    PubMed

    Ueoka, Reiko; Hitora, Yuki; Ito, Akihiro; Yoshida, Minoru; Okada, Shigeru; Takada, Kentaro; Matsunaga, Shigeki

    2016-10-28

    Bioassay-guided fractionation of the extract of the brittle star Ophiocoma scolopendrina afforded curacin E (1), a congener of curacin A (2). Curacin A (2) is an antimitotic agent of cyanobacterial origin. The structure of curacin E was studied by interpretation of NMR data and the ECD spectrum. Curacin E has an ethylcarbonyl terminus in its side chain and inhibits the proliferation of P388 cells.

  15. Potential of carnuba wax in ameliorating brittle fracture during tableting.

    PubMed

    Uhumwangho, M U; Okor, R S; Adogah, J T

    2009-01-01

    Carnuba wax (as binder) forms hard tablets even at low compression load attributable to its high plasticity. The aim of the present study is to investigate its potential in ameliorating brittle fracture (i.e., lamination and capping) a problem often encountered during tableting. Granules of paracetamol (test drug) were made by triturating the drug powder with the melted wax or starch mucilage (20%w/v). Resulting granules were separated into different size fractions which were separately compressed into tablets with and without a centre hole (as in- built defect) using different compression loads. The tablets were evaluated for tensile strength and the data used to calculate the brittle fracture index (BFI), using the expression: BFI = 0.5(T/T(0)-1) where T0 and T are the tensile strength of tablets with and without a centre hole respectively. The BFI values were significantly lower (p<0.05) in tablets made with carnuba wax compared with tablets made with maize starch as binders. Increase in particle size of the granules or lowering of the compression load further ameliorated the brittle fracture tendency of the tablets. Using granules with the larger particle size (850microm) and applying the lowest unit of load (6 arbitrary unit on the load scale of the tableting machine) the BFI values were 0.03 (carnuba wax tablets) and 0.11 (maize starch tablets). When the conditions were reversed (i.e., a highest load, 8 units and the smallest particle size, 212microm) the BFI values now became 0.17 (carnuba wax tablets) and 0.26 (maize starch tablets). The indication is that the use of large granules and low compression loads to form tablets can further enhance the potential of carnuba wax in ameliorating brittle fracture tendency of tablets during their manufacture.

  16. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  17. Brittle Dyskinesia Following STN but not GPi Deep Brain Stimulation

    PubMed Central

    Sriram, Ashok; Foote, Kelly D.; Oyama, Genko; Kwak, Joshua; Zeilman, Pam R.; Okun, Michael S.

    2014-01-01

    Background The aim was to describe the prevalence and characteristics of difficult to manage dyskinesia associated with subthalamic nucleus (STN) deep brain stimulation (DBS). A small subset of STN DBS patients experience troublesome dyskinesia despite optimal programming and medication adjustments. This group of patients has been referred to by some practitioners as brittle STN DBS-induced dyskinesia, drawing on comparisons with brittle diabetics experiencing severe blood sugar regulation issues and on a single description by McLellan in 1982. We sought to describe, and also to investigate how often the “brittle” phenomenon occurs in a relatively large DBS practice. Methods An Institutional Review Board-approved patient database was reviewed, and all STN and globus pallidus internus (GPi) DBS patients who had surgery at the University of Florida from July 2002 to July 2012 were extracted for analysis. Results There were 179 total STN DBS patients and, of those, four STN DBS (2.2%) cases were identified as having dyskinesia that could not be managed without the induction of an “off state,” or by the precipitation of a severe dyskinesia despite vigorous stimulation and medication adjustments. Of 75 GPi DBS cases reviewed, none (0%) was identified as having brittle dyskinesia. One STN DBS patient was successfully rescued by bilateral GPi DBS. Discussion Understanding the potential risk factors for postoperative troublesome and brittle dyskinesia may have an impact on the initial surgical target selection (STN vs. GPI) in DBS therapy. Rescue GPi DBS therapy may be a viable treatment option, though more cases will be required to verify this observation. PMID:24932426

  18. Rate-dependent deformation of rocks in the brittle regime

    NASA Astrophysics Data System (ADS)

    Baud, P.; Brantut, N.; Heap, M. J.; Meredith, P. G.

    2013-12-01

    Rate-dependent brittle deformation of rocks, a phenomenon relevant for long-term interseismic phases of deformation, is poorly understood quantitatively. Rate-dependence can arise from chemically-activated, subcritical crack growth, which is known to occur in the presence of aqueous fluids. Here we attempt to establish quantitative links between this small scale process and its macroscopic manifestations. We performed a series of brittle deformation experiments in porous sandstones, in creep (constant stress) and constant strain rate conditions, in order to investigate the relationship between their short- and long-term mechanical behaviors. Elastic wave velocities measurements indicate that the amount of microcracking follows the amount of inelastic strain in a trend which does not depend upon the timescale involved. The comparison of stress-strain curves between constant strain rate and creep tests allows us to define a stress difference between the two, which can be viewed as a difference in energy release rate. We empirically show that the creep strain rates are proportional to an exponential function of this stress difference. We then establish a general method to estimate empirical micromechanical functions relating the applied stresses to mode I stress intensity factors at microcrack tips, and we determine the relationship between creep strain rates and stress intensity factors in our sandstone creep experiments. We finally provide an estimate of the sub-critical crack growth law parameters, and find that they match -within the experimental errors and approximations of the method- the typical values observed in independent single crack tests. Our approach provides a comprehensive and unifying explanation for the origin and the macroscopic manifestation of time-dependent brittle deformation in brittle rocks.

  19. Artificial selection for a green revolution gene during japonica rice domestication

    PubMed Central

    Asano, Kenji; Yamasaki, Masanori; Takuno, Shohei; Miura, Kotaro; Katagiri, Satoshi; Ito, Tomoko; Doi, Kazuyuki; Wu, Jianzhong; Ebana, Kaworu; Matsumoto, Takashi; Innan, Hideki; Kitano, Hidemi; Ashikari, Motoyuki; Matsuoka, Makoto

    2011-01-01

    The semidwarf phenotype has been extensively selected during modern crop breeding as an agronomically important trait. Introduction of the semidwarf gene, semi-dwarf1 (sd1), which encodes a gibberellin biosynthesis enzyme, made significant contributions to the “green revolution” in rice (Oryza sativa L.). Here we report that SD1 was involved not only in modern breeding including the green revolution, but also in early steps of rice domestication. We identified two SNPs in O. sativa subspecies (ssp.) japonica SD1 as functional nucleotide polymorphisms (FNPs) responsible for shorter culm length and low gibberellin biosynthetic activity. Genetic diversity analysis among O. sativa ssp. japonica and indica, along with their wild ancestor O. rufipogon Griff, revealed that these FNPs clearly differentiate the japonica landrace and O. rufipogon. We also found a dramatic reduction in nucleotide diversity around SD1 only in the japonica landrace, not in the indica landrace or O. rufipogon. These findings indicate that SD1 has been subjected to artificial selection in rice evolution and that the FNPs participated in japonica domestication, suggesting that ancient humans already used the green revolution gene. PMID:21646530

  20. Displacement-length scaling of brittle faults in ductile shear.

    PubMed

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  1. Guidelines for Design and Analysis of Large, Brittle Spacecraft Components

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1993-01-01

    There were two related parts to this work. The first, conducted at The Aerospace Corporation was to develop and define methods for integrating the statistical theory of brittle strength with conventional finite element stress analysis, and to carry out a limited laboratory test program to illustrate the methods. The second part, separately funded at Aerojet Electronic Systems Division, was to create the finite element postprocessing program for integrating the statistical strength analysis with the structural analysis. The second part was monitored by Capt. Jeff McCann of USAF/SMC, as Special Study No.11, which authorized Aerojet to support Aerospace on this work requested by NASA. This second part is documented in Appendix A. The activity at Aerojet was guided by the Aerospace methods developed in the first part of this work. This joint work of Aerospace and Aerojet stemmed from prior related work for the Defense Support Program (DSP) Program Office, to qualify the DSP sensor main mirror and corrector lens for flight as part of a shuttle payload. These large brittle components of the DSP sensor are provided by Aerojet. This document defines rational methods for addressing the structural integrity and safety of large, brittle, payload components, which have low and variable tensile strength and can suddenly break or shatter. The methods are applicable to the evaluation and validation of such components, which, because of size and configuration restrictions, cannot be validated by direct proof test.

  2. Patterns of brittle deformation under extension on Venus

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Zuber, M. T.

    1994-01-01

    The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.

  3. Interpreting finite element results for brittle materials in endodontic restorations

    PubMed Central

    2011-01-01

    Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test. PMID:21635759

  4. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  5. Interpreting finite element results for brittle materials in endodontic restorations.

    PubMed

    Pérez-González, Antonio; Iserte-Vilar, José L; González-Lluch, Carmen

    2011-06-02

    Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test.

  6. The effect of shockwave profile shape on dynamic brittle failure

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Escobedo, J. P.; Trujillo, C. P.; Gray, G. T.

    2012-08-01

    The role of shock wave loading profile is investigated for the failure processes in a brittle material. The dynamic damage response of ductile metals has been demonstrated to be critically dependent on the shockwave profile and the stress-state of the shock. Changing from a square to triangular (Taylor) profile with an identical peak compressive stress has been reported to increase the "spall strength" by over a factor of two and suppress damage mechanisms. The spall strength of tungsten heavy alloy (WHA) based on plate impact square-wave loading has been extensively reported in the literature. Here a triangular wave loading profile is achieved with a composite flyer plate of graded density in contrast to the square-wave loading. Counter to the strong dependence in wave profile in ductile metals, for WHA, both square and triangle wave profiles the failure is by brittle cleavage fracture with additional energy dissipation through crack branching in the more brittle tungsten particles, largely indistinguishable between wave profiles. The time for crack nucleation is negligible compared to the duration of the experiment and the crack propagation rate is limited to the sound speed as defined by the shock velocity.

  7. Low speed fracture instabilities in a brittle crystal

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Kermode, James R.; Albaret, Tristan; Sherman, Dov; Gumbsch, Peter; Payne, Michael C.; Csányi, G. Ábor; de Vita, Alessandro

    2009-03-01

    Brittle materials under mechanical load fail by nucleation and propagation of cracks, and these cracks show well known instabilities at high crack speeds. In this work we show that new instabilities caused by the atomic structure of the crack tip can occur at low crack speeds as well [1]. Using state of the art computer simulations, we find atomic rearrangements at a silicon crack tip on the (111) cleavage plane that occur preferentially on one side of the crack, but only at low crack speeds. Experiments using a novel technique for applying low tensile loads show that real silicon cracks form distinctive features on one side of the exposed crack surface. A mesoscopic model explains how the microscopic atomic rearrangements lead to the observed macroscopic features. We present extensive results on silicon and preliminary results on other brittle materials including sapphire, diamond, and silicon carbide. We conclude that even very brittle single-crystal materials can have a complex crack tip atomic structure, and that atomic scale rearrangements can lead to macropscopic changes in crack morphology. [1] J. R. Kermode et al., Nature 455, 1224 (2008).

  8. Modeling multiscale evolution of numerous voids in shocked brittle material.

    PubMed

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  9. Three-dimensional brittle shear fracturing by tensile crack interaction.

    PubMed

    Healy, David; Jones, Richard R; Holdsworth, Robert E

    2006-01-05

    Faults in brittle rock are shear fractures formed through the interaction and coalescence of many tensile microcracks. The geometry of these microcracks and their surrounding elastic stress fields control the orientation of the final shear fracture surfaces. The classic Coulomb-Mohr failure criterion predicts the development of two conjugate (bimodal) shear planes that are inclined at an acute angle to the axis of maximum compressive stress. This criterion, however, is incapable of explaining the three-dimensional polymodal fault patterns that are widely observed in rocks. Here we show that the elastic stress around tensile microcracks in three dimensions promotes a mutual interaction that produces brittle shear planes oriented obliquely to the remote principal stresses, and can therefore account for observed polymodal fault patterns. Our microcrack interaction model is based on the three-dimensional solution of Eshelby, unlike previous models that employed two-dimensional approximations. Our model predicts that shear fractures formed by the coalescence of interacting mode I cracks will be inclined at a maximum of 26 degrees to the axes of remote maximum and intermediate compression. An improved understanding of brittle shear failure in three dimensions has important implications for earthquake seismology and rock-mass stability, as well as fluid migration in fractured rocks.

  10. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae.

    PubMed

    Burns, Gavin; Thorndyke, Michael C; Peck, Lloyd S; Clark, Melody S

    2013-03-01

    Brittle stars are included within a whole range of species, which contribute to knowledge in the medically important area of tissue regeneration. All brittle stars regenerate lose limbs, but the rate at which this occurs is highly variable and species-specific. One of the slowest rates of arm regeneration reported so far is that of the Antarctic Ophionotus victoriae. Additionally, O. victoriae also has an unusual delay in the onset of regeneration of about 5months. Both processes are of interest for the areas of regeneration biology and adaptation to cold environments. One method of understanding the details of regeneration events in brittle stars is to characterise the genes involved. In the largest transcriptome study of any ophiuroid to date, we describe the results of mRNA pyrosequencing from pooled samples of regenerating arms of O. victoriae. The sequencing reads resulted in 18,000 assembled contiguous sequences of which 19% were putatively annotated by blast sequence similarity searching. We focus on the identification of major gene families and pathways with potential relevance to the regenerative processes including the Wnt/β-catenin pathway, Hox genes, the SOX gene family and the TGF beta signalling pathways. These data significantly increase the amount of ophiuroid sequences publicly available and provide candidate transcripts for the further investigation of the unusual regenerative process in this Antarctic ophiuroid.

  11. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice.

    PubMed

    Chu, Huangwei; Qian, Qian; Liang, Wanqi; Yin, Changsong; Tan, Hexin; Yao, Xuan; Yuan, Zheng; Yang, Jun; Huang, Hai; Luo, Da; Ma, Hong; Zhang, Dabing

    2006-11-01

    To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the inflorescence and floral meristems. Likely due to enlarged SAMs, fon4 mutants produced thick culms (stems) and increased numbers of both primary rachis branches and floral organs. We identified FON4 using a map-based cloning approach and found it encodes a small putatively secreted protein, which is the putative ortholog of the Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) gene. FON4 transcripts mainly accumulated in the small group of cells at the apex of the SAMs, whereas the rice ortholog of CLV1 (FON1) is expressed throughout the SAMs, suggesting that the putative FON4 ligand might be sequestered as a possible mechanism for rice meristem regulation. Exogenous application of the peptides FON4p and CLV3p corresponding to the CLV3/ESR-related (CLE) motifs of FON4 and CLV3, respectively, resulted in termination of SAMs in rice, and treatment with CLV3p caused consumption of both rice and Arabidopsis root meristems, suggesting that the CLV pathway in limiting meristem size is conserved in both rice and Arabidopsis. However, exogenous FON4p did not have an obvious effect on limiting both rice and Arabidopsis root meristems, suggesting that the CLE motifs of Arabidopsis CLV3 and FON4 are potentially functionally divergent.

  12. Using a set of TeQing-into-Lemont chromosome segment substitution lines for fine mapping QTL: Case studies on sheath blight resistance, spreading culm, and mesocotyl elongation

    USDA-ARS?s Scientific Manuscript database

    A set of backcross introgression lines containing portions of the TeQing genome now introgressed into a Lemont genetic background allows us to fine map rice QTL, and measure their breeding value within U.S. rice genetic and field environments....

  13. Rice Production and Marketing.

    ERIC Educational Resources Information Center

    Briers, Gary; Lee, Jasper S.

    This guide contains lesson plans for use in secondary programs of agricultural education in geographical areas in which rice is produced. Six units and 13 problem areas are organized into teaching plans that cover the broad nature of rice production. The six units are: (1) determining the importance and history of rice production; (2) determining…

  14. Results from expert tests of the TP-100A boiler at the Lugansk thermal power station during the combustion of lean coal and anthracite culm with addition of RA-GEN-F anaklarid

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. E.; Tupitsyn, S. P.; Sokolov, V. V.; Chebakova, G. F.; Malygin, V. I.; Yazykov, Yu. V.; Kharchenko, A. V.; Chetverikov, A. N.

    2012-08-01

    Results from expert tests of separated combustion of Grade T and Grade ASh anthracite culm in the TP-100A boiler No. 15 at the Lugansk thermal power station carried out with and without addition of RA-GEN-F anaklarid are presented. The possibility of extending the boiler load adjustment range and excluding the use of natural gas for supporting the flame at minimal loads is considered.

  15. Mapping the brittle-ductile transition in shales

    NASA Astrophysics Data System (ADS)

    Scuderi, M.; Carpenter, B. M.; Marone, C.; Elsworth, D.; Saffer, D. M.

    2010-12-01

    The Marcellus shale is the lowest unit of Devonian age in the Hamilton Group. It is an organic-rich shale located in the Appalachian Basin and contains an estimated ~1.4 trillion cubic meters of natural gas. The majority of gas is held in matrix pore space, with vertical fractures providing additional storage and acting as primary flow pathways. However, commercial production of the gas requires the use of directional drilling and hydraulic fracturing to generate additional permeable pathways. Understanding the response of the Marcellus to stresses created by horizontal drilling and more importantly by hydraulic fracturing is critical for wide-scale commercialization of the resource. We investigated the mechanical behavior of shales from the Marcellus formation, with an emphasis on understanding controls on its rheology and brittle-ductile behavior. Although black shale is the dominant lithology of the Marcellus, interbeds of low-density organic-rich shale and limestone are also present. We conducted experiments on three lithologies: 1) true “paper shale” (fissile, finely layered) with density ρ≈2.5 g/cm3 and porosity φ=6.3%, 2) a low density (ρ≈1.45 g/cm3) organic rich shale with porosity φ=39.2% (organic subunit 1), and 3) a lower density (ρ≈1.05 g/cm3) organic rich lithology with porosity φ=50.8% (organic subunit 2). We performed experiments on cylindrical samples 25-mm in diameter and 50-mm in length in a triaxial configuration (σ1≠σ2=σ3). Samples were deformed using both gas and water as pore fluid, using a displacement rate boundary condition (velocity of 0.1 to 10 μm/s corresponding to axial strain rates of 2.07e-4 s-1 to 1.63e-2 s-1), and under confining pressures ranging from 0 to 50 MPa. Additionally, we conducted permeability experiments with water (flow through) and helium gas (pulse) at an effective confining pressure of 10 MPa. Our experiments show brittle behavior for the fissile shale unit, including a peak in differential

  16. Neogene transtensional brittle tectonics in the Lepontine D

    NASA Astrophysics Data System (ADS)

    Allanic, C.; Sue, C.; Champagnac, J.-D.

    2009-04-01

    The Lepontine Dome is investigated regarding faulting and paleostress, which allows to constrain the late brittle deformation of this gneissic core. Its tectonic evolution under brittle conditions was determined using fault mapping and paleostress inversions. Three brittle phases were reconstructed. The older phase is a NW-SE extension restricted to the eastern parts of the Dome. The second phase (major signal) is an upper Miocene transtension with stable orogen-parallel sigma3 axes (NE-SW), which is found from the Mont-Blanc to the Bergell massifs. The late phase is a N-S extension, expressed north of the Dome, and probably linked to the current collapse of the belt. The stress fields we determine for the Lepontine Dome are very similar to the stress fields determined by Champagnac et al (2006) westward in the South-Valais area, with a major signal in orogen-parallel extension and a minor signal in orogen-perpendicular extension. In the close vicinity of the Simplon fault, Grosjean et al (2004) only reported the orogen-parallel extensional stress field. Eastward, in the Bergell area, Ciancaleoni and Marquer (2008) also found a very regular NE-SW extensional paleostress field, using similar methods. Indeed, the main paleostress field determined in the Lepontine Dome is very homogeneous from a regional viewpoint. It is largely dominated by the NE-SW brittle extension, described in the whole northwestern Alps. The Lepontine Dome also bears witness of two minor extensional signals (N-S and WNW-ESE directions of extension). The absolute dating of this orogen-parallel extensional phase is based on the occurrence of pseudotachylytes locally injected in the related fault system. Pseudotachylyte development is directly linked to frictional heating due to earthquake and faulting. The Ar/Ar dating of three pseudotachylytes samples of the Lepontine Dome provided ages in the range of 9-11 Ma ±1 (Allanic, et al., 2006). Thus, one can attribute a global 10 Ma age for the orogen

  17. Quantitative comparisons of numerical models of brittle deformation

    NASA Astrophysics Data System (ADS)

    Buiter, S.

    2009-04-01

    Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy

  18. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    PubMed Central

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  19. On the brittle nature of rare earth pnictides

    SciTech Connect

    Shriya, S.; Sapkale, R.; Varshney, Dinesh E-mail: sapkale.raju@rediffmail.com; Singh, N.; Varshney, M.

    2016-05-23

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties in ReY; (Re = La, Sc, Pr; Y = N, P, As, Sb, Bi) pnictides have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from NaCl to CsCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, second order Cauchy discrepancy, anisotropy, hardness and brittle/ductile nature of rare earth pnictides are computed.

  20. Microcrack toughening in brittle materials containing weak and strong interfaces

    SciTech Connect

    Sigl, L.S.

    1996-09-01

    Microcracking in brittle materials combining weak and strong interfaces is analyzed. A model for the width of the process zone and the associated toughening in terms of interface toughness, elastic moduli, thermal expansion coefficients and microstructural geometry is presented. Considerable zone widths and toughening are predicted in composites with low interface toughness, high residual stresses and high volume fraction of microcracks. The model is verified using toughness data obtained from B{sub 4}C-TiB{sub 2} composites where elemental carbon segregated to B{sub 4}C-TiB{sub 2} phase boundaries supplies weak interfaces.

  1. The challenges of numerically simulating analogue brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Ellis, Susan

    2017-04-01

    Fold-and-thrust belts and accretionary wedges form when sedimentary and crustal rocks are compressed into thrusts and folds in the foreland of an orogen or at a subduction trench. For over a century, analogue models have been used to investigate the deformation characteristics of such brittle wedges. These models predict wedge shapes that agree with analytical critical taper theory and internal deformation structures that well resemble natural observations. In a series of comparison experiments for thrust wedges, called the GeoMod2004 (1,2) and GeoMod2008 (3,4) experiments, it was shown that different numerical solution methods successfully reproduce sandbox thrust wedges. However, the GeoMod2008 benchmark also pointed to the difficulties of representing frictional boundary conditions and sharp velocity discontinuities with continuum numerical methods, in addition to the well-known challenges of numerical plasticity. Here we show how details in the numerical implementation of boundary conditions can substantially impact numerical wedge deformation. We consider experiment 1 of the GeoMod2008 brittle thrust wedge benchmarks. This experiment examines a triangular thrust wedge in the stable field of critical taper theory that should remain stable, that is, without internal deformation, when sliding over a basal frictional surface. The thrust wedge is translated by lateral displacement of a rigid mobile wall. The corner between the mobile wall and the subsurface is a velocity discontinuity. Using our finite-element code SULEC, we show how different approaches to implementing boundary friction (boundary layer or contact elements) and the velocity discontinuity (various smoothing schemes) can cause the wedge to indeed translate in a stable manner or to undergo internal deformation (which is a fail). We recommend that numerical studies of sandbox setups not only report the details of their implementation of boundary conditions, but also document the modelling attempts that

  2. What controls the strength and brittleness of shale rocks?

    NASA Astrophysics Data System (ADS)

    Rybacki, Erik; Reinicke, Andreas; Meier, Tobias; Makasi, Masline; Dresen, Georg

    2014-05-01

    With respect to the productivity of gas shales, in petroleum science the mechanical behavior of shales is often classified into rock types of high and low 'brittleness', sometimes also referred to as 'fraccability'. The term brittleness is not well defined and different definitions exist, associated with elastic properties (Poisson's ratio, Young's modulus), with strength parameters (compressive and tensile strength), frictional properties (cohesion, friction coefficient), hardness (indentation), or with the strain or energy budget (ratio of reversible to the total strain or energy, respectively). Shales containing a high amount of clay and organic matter are usually considered as less brittle. Similarly, the strength of shales is usually assumed to be low if they contain a high fraction of weak phases. We performed mechanical tests on a series of shales with different mineralogical compositions, varying porosity, and low to high maturity. Using cylindrical samples, we determined the uniaxial and triaxial compressive strength, static Young's modulus, the tensile strength, and Mode I fracture toughness. The results show that in general the uniaxial compressive strength (UCS) linearly increases with increasing Young's modulus (E) and both parameters increase with decreasing porosity. However, the strength and elastic modulus is not uniquely correlated with the mineral content. For shales with a relatively low quartz and high carbonate content, UCS and E increase with increasing quartz content, whereas for shales with a relatively low amount for carbonates, but high quartz content, both parameters increase with decreasing fraction of the weak phases (clays, kerogen). In contrast, the average tensile strength of all shale-types appears to increase with increasing quartz fraction. The internal friction coefficient of all investigated shales decreases with increasing pressure and may approach rather high values (up to ≡ 1). Therefore, the mechanical strength and

  3. Nonlocal effects on dynamic damage accumulation in brittle solids

    SciTech Connect

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  4. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  5. Estimation Criteria for Rock Brittleness Based on Energy Analysis During the Rupturing Process

    NASA Astrophysics Data System (ADS)

    Ai, Chi; Zhang, Jun; Li, Yu-wei; Zeng, Jia; Yang, Xin-liang; Wang, Ji-gang

    2016-12-01

    Brittleness is one of the most important mechanical properties of rock: it plays a significant role in evaluating the risk of rock bursts and in analysis of borehole-wall stability during shale gas development. Brittleness is also a critical parameter in the design of hydraulic fracturing. However, there is still no widely accepted definition of the concept of brittleness in rock mechanics. Although many criteria have been proposed to characterize rock brittleness, their applicability and reliability have yet to be verified. In this paper, the brittleness of rock under compression is defined as the ability of a rock to accumulate elastic energy during the pre-peak stage and to self-sustain fracture propagation in the post-peak stage. This ability is related to three types of energy: fracture energy, post-peak released energy and pre-peak dissipation energy. New brittleness evaluation indices B 1 and B 2 are proposed based on the stress-strain curve from the viewpoint of energy. The new indices can describe the entire transition of rock from absolute plasticity to absolute brittleness. In addition, the brittle characteristics reflected by other brittleness indices can be described, and the calculation results of B 1 and B 2 are continuous and monotonic. Triaxial compression tests on different types of rock were carried out under different confining pressures. Based on B 1 and B 2, the brittleness of different rocks shows different trends with rising confining pressure. The brittleness of red sandstone decreases with increasing confining pressure, whereas for black shale it initially increases and then decreases in a certain range of confining pressure. Granite displays a constant increasing trend. The brittleness anisotropy of black shale is discussed. The smaller the angle between the loading direction and the bedding plane, the greater the brittleness. The calculation B 1 and B 2 requires experimental data, and the values of these two indices represent only

  6. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  7. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography.

    PubMed

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  8. Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain.

    PubMed

    Premarathna, Lakmalie; McLaughlin, Mike J; Kirby, Jason K; Hettiarachchi, Ganga M; Stacey, Samuel; Chittleborough, David J

    2012-06-13

    This study examined the effects of applied selenium (Se) species, time of application, method of application, and soil water management regimen on the accumulation of Se in rice plants. Plants were grown to maturity in a temperature- and humidity-controlled growth chamber using three water management methods: field capacity (FC), submerged until harvest, and submerged and drained 2 weeks before harvest. Two Se species, selenate (SeO4(2-)) and selenite (SeO3(2-)), were applied at a rate equivalent to 30 g ha(-1). Four application methods were employed as follows: (i) Se applied at soil preparation, (ii) Se-enriched urea granules applied to floodwater at heading; (iii) foliar Se applied at heading; and (iv) fluid fertilizer Se applied to soil or floodwater at heading. Total Se concentrations in rice grains, husks, leaves, culms, and roots were measured, as well as Se speciation in grains from the Se-enriched urea granule treatment. Highest Se concentrations in the grain occurred with SeO4(2-) and with fertilizer applied at heading stage; SeO4(2-)-enriched urea granules applied at heading increased grain Se concentrations 5-6-fold (by 450-600 μg kg(-1)) compared to the control (no fertilizer Se applied) in all water treatments. Under paddy conditions other Se fertilization strategies were much less effective. Drainage before harvesting caused Se to accumulate in/on rice roots, possibly through adsorption onto iron plaque on roots. Rice grains contained Se mainly in the organic form as selenomethionine (SeM), which comprised >90% of the total grain Se in treatments fertilized with SeO4(2-)-enriched urea granules. The results of this study clearly show that of the fertilizer strategies tested biofortification of Se in rice grains can best be achieved in lowland rice by broadcast application of SeO4(2-)-enriched urea granules to floodwater at heading stage.

  9. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  10. Challenges in the Japan Beyond-Brittle Project (JBBP) for EGS development beyond the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.

    2013-12-01

    Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically

  11. The maize brittle 1 gene encodes amyloplast membrane polypeptides.

    PubMed

    Sullivan, T D; Kaneko, Y

    1995-01-01

    A chimeric protein, formed of 56 amino acids from the carboxy terminus of the maize (Zea mays L.) wild-type Brittle1 (Bt1) protein fused to the glutathione-S-transferase gene, was synthesized in Escherichia coli, and used to raise antibodies. Following affinity purification, the antibodies recognized a set of 38- to 42-kDa proteins in endosperm from wild-type Bt1 plants, as well as from brittle2, shrunken2 and sugary1 plants, but not in mutant bt1 endosperm. Bt1 proteins were not detected with the preimmune antibodies. A low level of Bt1-specific proteins was detected at 10 d after pollination (DAP) and increased to a plateau at 16 DAP. At the same time, the ratio of slow- to fast-migrating forms of the protein decreased. During endosperm fractionation by differential centrifugation and membrane sedimentation in sucrose gradients, the Bt1 proteins co-purified with the carotenoid-containing plastid membranes. They were localized to amyloplasts by electron-microscopic immunocytochemistry; most of the signal was detected at the plastid periphery. These results are consistent with predictions made from the deduced amino-acid sequence and previous in-vitro experiments that the bt1 locus encodes amyloplast membrane proteins.

  12. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  13. Meso-scopic Densification in Brittle Granular Materials

    NASA Astrophysics Data System (ADS)

    Neal, William; Appleby-Thomas, Gareth; Collins, Gareth

    2013-06-01

    Particulate materials are ideally suited to shock absorbing applications due to the large amounts of energy required to deform their inherently complex meso-structure. Significant effort is being made to improve macro-scale material models to represent these atypical materials. On the long road towards achieving this capability, an important milestone would be to understand how particle densification mechanisms are affected by loading rate. In brittle particulate materials, the majority of densification is caused by particle fracture. Macro-scale quasi-static and dynamic compaction curves have been measured that show good qualitative agreement. There are, however, some differences that appear to be dependent on the loading rate that require further investigation. This study aims to investigate the difference in grain-fracture behavior between the quasi-static and shock loading response of brittle glass microsphere beds using a combination of quasi-static and dynamic loading techniques. Results from pressure-density measurements, sample recovery, and meso-scale hydrocode models (iSALE, an in-house simulation package) are discussed to explain the differences in particle densification mechanisms between the two loading rate regimes. Gratefully funded by AWE.plc.

  14. Mechanics and seismic signature of brittle deformation of serpentinites

    NASA Astrophysics Data System (ADS)

    David, Emmanuel C.; Brantut, Nicolas; Hansen, Lars N.; Mitchell, Thomas M.

    2017-04-01

    It is well recognised that serpentinites play a major role in subduction zone processes, such as tectonic evolution of the oceanic lithosphere, earthquake nucleation, or recycling of water in the upper mantle. However, it is not yet clearly known how and by which micromechanical process serpentinites deform, and what is their signature on seismic properties. Deformation experiments were conducted on 90%-rich antigorite polycrystalline serpentinite in the brittle field, under varying conditions of confining pressure, with simultaneous measurements of axial and radial strains, and P and S-wave velocities at various directions with respect to the applied stress. Failure, controlled-failure, and cyclic-loading tests were performed to investigate the strength, dissipation of mechanical energy, seismic signature and resulting microstructures of a suite of antigorite specimens. The brittle deformation of antigorite is mostly non-dilatant and accommodated by shear microcracks localised over a very narrow zone near the failure plane - as confirmed by microstructural observations. Antigorite serpentinites display a failure strength as high as for crystalline rocks, and a yield point occurring close to failure. Another untypical feature observed during deformation of the antigorite specimens is the spectacular absence of any wave velocity evolution, and any stress-induced anisotropy, during axial compression. Such results may have strong implications for the understanding of subduction zone dynamics, which remain to be complemented by mechanical tests conducted in the ductile regime.

  15. A generalized law for brittle deformation of Westerly granite

    USGS Publications Warehouse

    Lockner, D.A.

    1998-01-01

    A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.

  16. Cyclic fatigue of intrinsically brittle ceramics in contact with spheres

    SciTech Connect

    Kim, D.K.; Jung, Y.G.; Peterson, I.M.; Lawn, B.R.

    1999-12-10

    Contact damage modes in cyclic loading with spheres are investigated in three nominally brittle ceramics, soda-lime glass, porcelain and fine-grain silicon nitride, in moist environments. Initial damage at small numbers of cycles and low loads consists of tensile-driven macroscopic cone cracks (brittle mode). Secondary damage at large numbers of cycles and high loads consists of shear-driven distributed microdamage (quasi-plastic mode), with attendant radial cracks and a new form of deeply penetrating subsidiary cone cracks. Strength tests on indented specimens are used to quantify the degree of damage. Both damage modes degrade the strength: the first, immediately after cone crack initiation, relatively slowly; the second, after development of radial cracks, much more rapidly. A fracture mechanics model describing the first mode, based on time-integration of slow growth of cone cracks, is presented. This model provides simple power-law relations for the remaining strength in terms of number of cycles and contact load for materials design. Extrapolations of these relations into the quasi-plastic region are shown to be non-conservative, highlighting the need for further understanding of the deleterious quasi-plastic mode in tougher ceramics. Comparison with static contact data indicates a strong mechanical (as opposed to chemical) component in the cyclic fatigue in the quasi-plastic region.

  17. How plasticizer makes a ductile polymer glass brittle?

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Li, Xiaoxiao; Wang, Shi-Qing

    During uniaxial extension, a polymer glass of high molecular weight is ductile at high temperatures (still below Tg) and turns brittle when the temperature is sufficiently lowered. Incorporation of small-molecular additives to polymer glasses can speed up segmental relaxation considerably. The effect of such plasticization should be to make the polymers more ductile. We examined the effect of blending a few weight percent of either triphenyl phosphate (TPP) or a mineral oil to a commercial-grade PS and PMMA. Our Instron tests show that the plasticized PS is less ductile. Specifically, at 70 oC, the original PS is ductile at an extensional rate of 0.02 s-1 whereas the PS with 4 wt. % TPP turns brittle. Mechanical spectroscopic measurements show that the alpha relaxation time is shortened by more than two orders of magnitude with 4 wt. % TPP. On the other hand, such anomalous behavior did not occur in PMMA. We need to go beyond the conventional description to rationalize these results This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859).

  18. Application of activated carbon derived from 'waste' bamboo culms for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Wang, Lianggui

    2012-07-15

    The utilization of activated carbon derived from 'waste' bamboo culms (BAC) for the removal of Disperse Red 167 (DR167), an azo disperse dye, was investigated. Studies of the properties of the adsorbent, the effect of contact time, the initial pH of the solution, the initial concentration of the dye solution and temperature indicated that a low initial pH or concentration of dye solution favors the adsorption process; temperature exerts a greater effect on the removal of azo disperse red 167 dye from aqueous solution. Kinetic and isotherm data were fitted to five non-linear kinetic and nine non-linear isotherm equations. In addition, the fits were evaluated in terms of the non-linear coefficient, Chi-square test, Marquardt's percent standard deviation error function and small-sample-corrected Akaike Information Criterion (AICc) methodology. The results showed that the AICc analysis was the best statistical tool for analyzing the data, the intra-particle diffusion and the pseudo-first-order models played important roles in the controlling rate step, and the Temkin equation best described the BAC isotherm data. Furthermore, the thermodynamic analysis indicated that the adsorption was a spontaneous, endothermic, entropy-increasing and physical process. Two types of commercial activated carbon, Filtrasorb 400 and Filtrasorb (F400 and F300), were used as contrast adsorbents. The contrast experiments revealed that BAC exhibits similar properties to F400 and F300. The utilization of bamboo wastes as carbon precursors is feasible.

  19. Dating brittle deformation in the Archean Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Thebaud, N.; Zwingmann, H.

    2012-12-01

    Major deformation throughout the Archean Yilgarn Craton has mostly been interpreted to be Neoarchean (Blewett and Czarnota, 2007). The timing of the deformation events of the brittle/ductile deformation generally relies on dating of cross-cutting intrusions or unconformities. Proterozoic overprinting and reactivation of Archean structures in the north-western part of the Yilgarn Craton has previously been dated from direct dating of the structures and fabrics from the Narryer Terrane(Spaggiari et al., 2008). However, the brittle deformation that postdates Neoarchean brittle-ductile structures in the Yilgarn Craton have received little attention to date. In the centre of the Yilgarn Craton, the Eastern Goldfields present a well developed network of E-W trending of normal brittle faults and fractures. Typically these structures are interpreted to have developed in result of a late Neoarchean tectonic relaxation following the main Yilgarn wide E-W contraction (Blewett and Czarnota, 2007). Poorly preserved and weathered faulted rocks in the subsurface environment preclude direct dating of fault gouge. However, exposure from the underground Agnew mine, in the Agnew Wiluna greenstone belt, recently provided access to fresh fault gouge material suitable for analysis. The clay gouge was characterized by SEM, TEM and XRD methods prior to age dating indicating an authigenic origin (Zwingmann et al., 2010). K-Ar illite age data of a whole rock sample split yielded an age of 1148 ± 23 Ma, which is within error close to the <2 micron clay fraction yielding an age of 1094 ± 22 Ma (Mesoproterozoic-Stenian). Our result is the first documentation of the age of the brittle deformation that affects the Yilgarn Craton. This age is within error of the Gilles event which is an extension event that affected the whole Australian continent and is responsible for the emplacement of the Warakurna Large Igneous Province and related dolerite dykes in the Yilgarn Craton (Evins et al., 2010

  20. Brittle Creep of Tournemire Shale: Orientation, Temperature and Pressure Dependences

    NASA Astrophysics Data System (ADS)

    Geng, Zhi; Bonnelye, Audrey; Dick, Pierre; David, Christian; Chen, Mian; Schubnel, Alexandre

    2017-04-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. Here, we conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France. Conventional tri-axial experiments were carried under two different temperatures (26˚ C, 75˚ C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1 along, perpendicular and 45˚ to bedding). Following the methodology developed by Heap et al. [2008], differential stress was first increased to ˜ 60% of the short term peak strength (10-7/s, Bonnelye et al. 2016), and then in steps of 5 to 10 MPa every 24 hours until brittle failure was achieved. In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1˜15 minutes, enabling us to monitor the evolution of elastic wave speed anisotropy. Temporal evolution of anisotropy was illustrated by inverting acoustic velocities to Thomsen parameters. Finally, samples were investigated post-mortem using scanning electron microscopy. Our results seem to contradict our traditional understanding of loading rate dependent brittle failure. Indeed, the brittle creep failure stress of our Tournemire shale samples was systematically observed ˜50% higher than its short-term peak strength, with larger final axial strain accumulated. At higher temperatures, the creep failure strength of our samples was slightly reduced and deformation was characterized with faster 'steady-state' creep axial strain rates at each steps, and larger final axial strain

  1. Micromechanisms of intergranular brittle ftacture in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vitek, V.

    1991-06-01

    Grain boundaries in intermetallic compounds such as Ni3A1 are inherently brittle. The reason is usually sought in grain boundary cohesion but in metals even brittle fracture is accompanied by some local plasticity and thus not only cohesion but also dislocation mobility in the boundary region need to be studied. We first discuss here the role of an irreversible shear deformation at the crack tip during microcrack propagation assuming that these two processes are concomitant. It is shown that a pre-existing crack cannot propagate in a brittle manner once the dislocation emission occurs. However, if a microcrack nucleates during loading it can propagate concurrently with the development of the irreversible shear deformation at the crack tip. The latter is then the major energy dissipating process. In the second part of this paper we present results of atomistic studies of grain boundaries in Ni3A1 and CU3Au which suggest that substantial structural differences exist between strongly and weakly ordered L12 alloys. We discuss then the consequence of these differences for intergranular brittleness in the framework of the above model for microcrack propagation. On this basis we propose an explanation for the intrinsic intergranular brittleness in some L12 alloys and relate it directly to the strength of ordering. Les joints de grains dans les composés intermétalliques de type Ni3AI sont de nature fragile. L'origine de cette fragilité est habituellement dans la cohésion des joints de grains. Dans les métaux, cependant, même la rupture fragile est accompagnée d'une certaine déformation plastique locale, de telle sorte que non seulement la cohésion mais aussi la mobilité des dislocations près des joints doit être étudiée. Nous discutons d'abord le rôle d'une déformation en cisaillement irréversible en tête de fissure pendant la propagation de cette fissure, en supposant que les deux processus sont concomitants. Nous montrons qu'une fissure préexistante ne

  2. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  3. Research progress on ultra-precision machining technologies for soft-brittle crystal materials

    NASA Astrophysics Data System (ADS)

    Gao, Hang; Wang, Xu; Guo, Dongming; Chen, Yuchuan

    2017-03-01

    Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining difficulties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for softbrittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.

  4. Research progress on ultra-precision machining technologies for soft-brittle crystal materials

    NASA Astrophysics Data System (ADS)

    Gao, Hang; Wang, Xu; Guo, Dongming; Chen, Yuchuan

    2016-12-01

    Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining difficulties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for softbrittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.

  5. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties.

  6. Characterization and gene cloning of the rice (Oryza sativa L.) dwarf and narrow-leaf mutant dnl3.

    PubMed

    Shi, L; Wei, X J; Adedze, Y M N; Sheng, Z H; Tang, S Q; Hu, P S; Wang, J L

    2016-09-16

    The dwarf and narrow-leaf rice (Oryza sativa L.) mutant dnl3 was isolated from the Japonica cultivar Zhonghua 11 (wild-type). dnl3 exhibited pleiotropic developmental defects. The narrow-leaf phenotype resulted from a marked reduction in the number of vascular bundles, while the dwarf stature was caused by the formation of foreshortened internodes and a reduced number of parenchyma cells. The suggestion that cell division is impaired in the mutant was consistent with the transcriptional behavior of various genes associated with cell division. The mutant was less responsive to exogenously supplied gibberellic acid than the wild-type, and profiling the transcription of genes involved in gibberellin synthesis and response revealed that a lesion in the mutant affected gibberellin signal transduction. The dnl3 phenotype was inherited as a single-dominant gene, mapping within a 19.1-kb region of chromosome 12, which was found to harbor three open reading frames. Resequencing the open reading frames revealed that the mutant carried an allele at one of the three genes that differed from the wild-type sequence by 2-bp deletions; this gene encoded a cellulose synthase-like D4 (CSLD4) protein. Therefore, OsCSLD4 is a candidate gene for DNL3. DNL3 was expressed in all of the rice organs tested at the heading stage, particularly in the leaves, roots, and culms. These results suggest that DNL3 plays important roles in rice leaf morphogenesis and vegetative development.

  7. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

    PubMed

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai

    2015-09-01

    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  8. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants

    SciTech Connect

    Nouchi, Isamu ); Mariko, Shigeru ); Aoki, Kazuyuki )

    1990-09-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths.

  9. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; Munz, D.

    1981-01-01

    Short bar, short rod, and four-point-bend chevron-notch specimens were used to determine the plane strain fracture toughness of hot-pressed silicon nitride and sintered aluminum oxide brittle ceramics. The unique advantages of this specimen type are: (1) the production of a sharp natural crack during the early stage of test loading, so that no precracking is required, and (2) the load passes through a maximum at a constant, material-independent crack length-to-width ratio for a specific geometry, so that no post-test crack measurement is required. The plane strain fracture toughness is proportional to the maximum test load and functions of the specimen geometry and elastic compliance. Although results obtained for silicon nitride are in good mutual agreement and relatively free of geometry and size effects, aluminum oxide results were affected in both these respects by the rising crack growth resistance curve of the material.

  10. High Speed Strain Measurements Surrounding Hydraulic Fracture in Brittle Hydrogel

    NASA Astrophysics Data System (ADS)

    Steinhardt, Will; Rubinstein, Shmuel

    2015-11-01

    Hydraulic fractures of oil and gas shales occur miles underground, below complex, layered rocks, making measurements of their dynamics, extent, or structure difficult to impossible. Rocks are heterogeneous at a wide range of length scales, and investigating how these non-uniformities affect the propagation and extent of fractures is vital to improving both the safety and efficiency of hydraulic fracturing operations. To study these effects we have developed a model system using brittle, heavily cross-linked hydrogels that we can fracture with fluids and observe with a fast camera. By embedding tracer particles within the gel and using laser sheet microscopy, we obtain three dimensional stress and strain maps of the zone surrounding a hydraulic fracture tip. Gels can also be set in layers or interfaces with tunable strengths or with designed heterogeneities, allowing us to understand the fundamental science of hydraulic fractures and investigate the dynamics of controllably complex materials.

  11. On Failure in Polycrystalline and Amorphous Brittle Materials

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.

    2009-12-01

    The performance of behaviour of brittle materials depends upon discrete deformation mechanisms operating during the loading process. The critical mechanisms determining the behaviour of armour ceramics have not been isolated using traditional ballistics. It has recently become possible to measure strength histories in materials under shock. The data gained for the failed strength of the armour are shown to relate directly to the penetration measured into tiles. Further the material can be loaded and recovered for post-mortem examination. Failure is by micro-fracture that is a function of the defects and then cracking activated by plasticity mechanisms within the grains and failure at grain boundaries in the amorphous intergranular phase. Thus it is the shock-induced plastic yielding of grains at the impact face that determines the later time penetration through the tile.

  12. Composition Effect on Intrinsic Plasticity or Brittleness in Metallic Glasses

    PubMed Central

    Zhao, Yuan-Yun; Inoue, Akihisa; Chang, Chuntao; Liu, Jian; Shen, Baolong; Wang, Xinmin; Li, Run-Wei

    2014-01-01

    The high plasticity of metallic glasses is highly desirable for a wide range of novel engineering applications. However, the physical origin of the ductile/brittle behaviour of metallic glasses with various compositions and thermal histories has not been fully clarified. Here we have found that metallic glasses with compositions at or near intermetallic compounds, in contrast to the ones at or near eutectics, are extremely ductile and also insensitive to annealing-induced embrittlement. We have also proposed a close correlation between the element distribution features and the plasticity of metallic glasses by tracing the evolutions of the element distribution rearrangement and the corresponding potential energy change within the sliding shear band. These novel results provide useful and universal guidelines to search for new ductile metallic glasses at or near the intermetallic compound compositions in a number of glass-forming alloy systems. PMID:25043428

  13. Methods for assessing the structural reliability of brittle materials

    NASA Technical Reports Server (NTRS)

    Freiman, S. W. (Editor); Hudson, C. M. (Editor)

    1984-01-01

    Failure from contact-induced surface flaws is considered along with controlled indentation flaws for construction of toughness and fatigue master maps, fatigue properties of ceramics with natural and controlled flaws, and a statistical analysis of size and stress state effects on the strength of an alumina ceramic. Attention is also given to dynamic and static fatigue of a machinable glass ceramic, the effect of multiregion crack growth on proof testing, and a fracture mechanics analysis of defect sizes. Other topics explored are related to the effect of temperature and humidity on delayed failure of optical glass fibers, subthreshold indentation flaws in the study of fatigue properties of ultrahigh-strength glass, the lifetime prediction for hot-pressed silicon nitride at high temperatures, static fatigue in high-performance ceramics, and requirements for flexure testing of brittle materials.

  14. Micromechanical modelling of quasi-brittle materials behavior

    SciTech Connect

    Li, V.C.

    1992-12-01

    This special issues on Micromechanical modelling of quasi-brittle materials behavior represents an outgrowth of presentations given at a symposium of the same title held at the 1991 ASME Applied Mechanics and Biomechanics Summer Conference at the Ohio State University. The symposium was organized to promote communication between researchers in three materials groups: rock, cementitious materials, ceramics and related composites. The enthusiastic response of both speakers and attendants at the ASME symposium convinced the organizer that it would be useful to put together a coherent volume which can reach a larger audience. It was decided that the papers individually and as a volume ought to provide a broader view, so that as much as possible, the work contained in each paper would be accessible to readers working in any of the three materials groups. Applied Mechanics Reviews presents an appropriate platform for achieving these objectives.

  15. Brittle onset of monodispersed magmatic suspensions: from spheres to spheroid

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Kaus, B.; Manga, M.; Caricchi, L.; Pistone, M.; Castro, J.; Hess, K.-U.; Gottschaller, S.; Dingwell, D. B.; Burlini, L.

    2012-04-01

    This abstract describes one of the last projects engaged by Dr. Luigi Burlini. It highlights his wish to make a close link between experimental and numerical studies, and push even further our understanding of rock mechanics. His students, engaged in this study, wish to credit these results to the legacy left by him owing to his constant involvement in Science and in educating the next generation of rheologists. While he could not see this project to fruition, his constant support and help during the conception of the project made it possible. The brittle-ductile transition remains a central question of modern geology as rock failure is the main parameter in mitigating geological risks, such as, for volcanic eruptions, the transitions from effusive to explosive eruptive style. Although numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. We first recall some experimental results obtained under torsion and uni-axial compression on both pure melts and crystal-bearing magmas. Torsion experiments were performed at high temperature (600 to 900 degC) and high pressure (200 to 300 MPa) using a Paterson-type rock deformation apparatus (ETH Zurich). We characterized the brittle onset of two phases magmas from 0 to 65 vol% crystals. The strain-rates span 5 orders of magnitude, with a change in the behavior of the material from viscous to brittle (10^-5- 100 s^-1). The materials tested are a standard borosilicate glass (NIST717), a natural crystal bearing rhyolitic melt (Mt Unzen volcano) and a suspension of haplogranitic synthetic sample with corundum particles. To characterize the physical processes leading to failure in the experiments, we performed 2D and 3D numerical simulations on monodispersed rigid spheroids with eccentricities ranging from 10^-2 to 10^2. The model is numerically solved with Finite Elements Methods. The pre-processing, processing and

  16. Dynamic brittle material response based on a continuum damage model

    SciTech Connect

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  17. Polystyrene glasses under compression: Ductile and brittle behavior

    SciTech Connect

    Liu, Jianning; Lin, Panpan; Cheng, Shiwang; Wang, Weiyu; Mays, Jimmy W.; Wang, Shi -Qing

    2015-09-09

    Polystyrene of different molecular weights and their binary mixtures are studied in terms of their various mechanical responses to uniaxial compression at different temperatures. PS of Mw = 25 kg/mol is completely brittle until it is above its glass transition temperature Tg. In contrast, upon incorporation of a high molecular weight component, PS mixtures turn from barely ductile a few degrees below its Tg to ductile over 40° below Tg. In the upper limit, a PS of Mw = 319 kg/mol yields and undergoes plastic flow, even at T = –70° C. Furthermore, the observed dependence of mechanical responses on molecular weight and molecular weight distribution can be adequately rationalized by the idea that yielding and plastic compression are caused by chain networking.

  18. New probability distribution for the strength of brittle fibers

    SciTech Connect

    Black, C.M.; Durham, S.D.; Lynch, J.D.; Padgett, W.J.

    1989-11-01

    Brittle fibers, used in modern fibrous composite materials, are found in many structures such as ships, airplanes, swimming pools, etc.These fibers are commonly made from materials such as boron, glass, and carbon. There can be substantial benefits in using fiber composites rather than the traditional materials such as metal and wood, including lighter weight and added stiffness. For example, seventy-five to eighty percent of a projected Grumman aircraft will be constructed from carbon fiber composites. This will reduce the weight of the structure by an estimated 26 percent (Gordon, 1988). However, the intrinsic tensile strength per unit volume of most fibers is less than that of most metals. Their strength is a function of their microstructure, the fiber length, and the number and types of flaws in the fiber. (JS)

  19. Simulations of ductile flow in brittle material processing

    SciTech Connect

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  20. The FLORAL ORGAN NUMBER4 Gene Encoding a Putative Ortholog of Arabidopsis CLAVATA3 Regulates Apical Meristem Size in Rice1[W

    PubMed Central

    Chu, Huangwei; Qian, Qian; Liang, Wanqi; Yin, Changsong; Tan, Hexin; Yao, Xuan; Yuan, Zheng; Yang, Jun; Huang, Hai; Luo, Da; Ma, Hong; Zhang, Dabing

    2006-01-01

    To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the inflorescence and floral meristems. Likely due to enlarged SAMs, fon4 mutants produced thick culms (stems) and increased numbers of both primary rachis branches and floral organs. We identified FON4 using a map-based cloning approach and found it encodes a small putatively secreted protein, which is the putative ortholog of the Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) gene. FON4 transcripts mainly accumulated in the small group of cells at the apex of the SAMs, whereas the rice ortholog of CLV1 (FON1) is expressed throughout the SAMs, suggesting that the putative FON4 ligand might be sequestered as a possible mechanism for rice meristem regulation. Exogenous application of the peptides FON4p and CLV3p corresponding to the CLV3/ESR-related (CLE) motifs of FON4 and CLV3, respectively, resulted in termination of SAMs in rice, and treatment with CLV3p caused consumption of both rice and Arabidopsis root meristems, suggesting that the CLV pathway in limiting meristem size is conserved in both rice and Arabidopsis. However, exogenous FON4p did not have an obvious effect on limiting both rice and Arabidopsis root meristems, suggesting that the CLE motifs of Arabidopsis CLV3 and FON4 are potentially functionally divergent. PMID:17012407

  1. Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile.

    PubMed

    Liu, Ning; Hong, Jiawang; Zeng, Xiaowei; Pidaparti, Ramana; Wang, Xianqiao

    2017-05-24

    The outstanding mechanical performance of nacre has stimulated numerous studies on the design of artificial nacres. Phosphorene, a new two-dimensional (2D) material, has a crystalline in-plane structure and non-bonded interaction between adjacent flakes. Therefore, multi-layer phosphorene assemblies (MLPs), in which phosphorene flakes are piled up in a staggered manner, may exhibit outstanding mechanical performance, especially exceptional toughness. Therefore, molecular dynamics simulations are performed to study the dependence of the mechanical properties on the overlap distance between adjacent phosphorene layers and the number of phosphorene flakes per layer. The results indicate that when the flake number is equal to 1, a transition of fracture patterns is observed by increasing the overlap distance, from a ductile failure controlled by interfacial friction to a brittle failure dominated by the breakage of covalent bonds inside phosphorene flakes. Moreover, the failure pattern can be tuned by changing the number of flakes in each phosphorene layer. The results imply that the ultimate strength follows a power law with the exponent -0.5 in terms of the flake number, which is in good agreement with our analytical model. Furthermore, the flake number in each phosphorene layer is optimized as 2 when the temperature is 1 K in order to potentially achieve both high toughness and strength. Moreover, our results regarding the relations between mechanical performance and overlap distance can be explained well using a shear-lag model. However, it should be pointed out that increasing the temperature of MLPs could cause the transition of fracture patterns from ductile to brittle. Therefore, the optimal flake number depends heavily on temperature to achieve both its outstanding strength and toughness. Overall, our findings unveil the fundamental mechanism at the nanoscale for MLPs as well as provide a method to design phosphorene-based structures with targeted properties

  2. Exponential and power-law mass distributions in brittle fragmentation

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Linna, R. P.; Timonen, J.; Møller, Peder Friis; Oddershede, Lene

    2004-08-01

    Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a process of propagating cracks that are unstable against side-branch formation. The initial cracks and side branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result of inherent damping. Generic arguments imply that close to the minimum strain (or impact energy) required for fragmentation, the number of fragments of size s scales as s-(2D-1)/Df1(-(2/λ)Ds)+f2(-s0-1(λ+s1/D)D) , where D is the Euclidean dimension of the space, λ is the penetration depth, and f1 and f2 can be approximated by exponential functions. Simulation results and experiments can both be described by this theoretical fragment-size distribution. The typical largest fragment size s0 was found to diverge at the minimum strain required for fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that scaling of s0 close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same time, the density of fragment surface vanishes as L-1 , L being the linear dimension of the brittle solid. The results obtained provide an explanation as to why the fragment-size distributions found in nature can have two components, an exponential as well as a power-law component, with varying relative weights.

  3. Using Brittle Fragmentation Theory to represent Aerosol Mineral Composition

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.

    2014-12-01

    Improved estimates of dust aerosol effects upon climate require the characterization of dust mineral and chemical composition. Regional variations in soil mineral composition lead to variations in dust aerosol composition. Yet, deriving aerosol mineral content also requires knowledge of the parent soil size distribution along with the fragmentation of soil particles and aggregates during the emission process. These processes modify the size distribution and mineral abundance of the emitted aerosols compared to the parent soil. An additional challenge for modeling is that global atlases of soil texture and composition are based on wet sieving, a technique that breaks the aggregates, particularly phyllosilicates, that are encountered in natural soils, drastically altering the original size distribution of the soil that is subject to wind erosion. We propose both a semi-empirical and theoretical method to constrain the size-resolved mineral composition of emitted dust aerosols based on global atlases of soil texture and composition. Our semi-empirical method re-aggregates clay phyllosilicate minerals into larger soil particle sizes and constrains the size distribution of each emitted mineral based on observed mineral distributions at the source. Our theoretical method extends Kok's brittle fragmentation theory to individual minerals. To this end we reconstruct the undisturbed size distribution for each mineral as a function of soil texture and soil type and calculate the emitted size distribution applying brittle fragmentation and assuming homogeneous fragmentation properties among the mineral aggregates. These approaches were tested within the NASA GISS Earth System ModelE. We discuss the improvements achieved and suggest future developments.

  4. Time-dependent brittle creep in Darley Dale sandstone

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Baud, P.; Meredith, P. G.; Bell, A. F.; Main, I. G.

    2009-07-01

    The characterization of time-dependent brittle rock deformation is fundamental to understanding the long-term evolution and dynamics of the Earth's crust. The chemical influence of pore water promotes time-dependent deformation through stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Here, we report results from a study of time-dependent brittle creep in water-saturated samples of Darley Dale sandstone (initial porosity, 13%) under triaxial stress conditions. Results from conventional creep experiments show that axial strain rate is heavily dependent on the applied differential stress. A reduction of only 10% in differential stress results in a decrease in strain rate of more than two orders of magnitude. However, natural sample variability means that multiple experiments must be performed to yield consistent results. Hence we also demonstrate that the use of stress-stepping creep experiments can successfully overcome this issue. We have used the stress-stepping technique to investigate the influence of confining pressure at effective confining pressures of 10, 30, and 50 MPa (while maintaining a constant 20 MPa pore fluid pressure). Our results demonstrate that the stress corrosion process appears to be significantly inhibited at higher effective pressures, with the creep strain rate reduced by multiple orders of magnitude. The influence of doubling the pore fluid pressure, however, while maintaining a constant effective confining pressure, is shown to influence the rate of stress corrosion within the range expected from sample variability. We discuss these results in the context of microstructural analysis, acoustic emission hypocenter locations, and fits to proposed macroscopic creep laws.

  5. Dynamic brittle material response based on a continuum damage model

    SciTech Connect

    Chen, E.P.

    1995-12-31

    Because of its potential utilization in energy exploration and defense applications, the phenomenon of brittle fracture in solids under dynamic loads has been an ongoing topic of interest. A continuum damage model was developed to simulate rock fragmentation induced by explosive blasts for in situ oil shale retorting. The model was based on the premise that the inelastic brittle response exhibited by rock under dynamic loads is due principally to the stress-induced sub-scale cracks. Locally, the growth and interaction of these sub-scale cracks relieve portions of the material volume and reduce its capability to carry load. Globally, this effect is reflected in the degradation of the material stiffness. In this manner, the dynamic fracture process was modeled as a continuous accrual of damage, where damage is considered to be the degree of reduction of the material stiffness. Reasonable correlations between calculated and measured data were obtained by this model. Although the model has achieved some degree of success, some deficiencies have been identified over the years. For example, the adequacy of representing the compressive response by perfect plasticity was questioned. Because of the damage formulation, strain-softening and localization are natural by-products of the model. Thus, a question on mesh-size dependency has also been raised. This investigation is concerned with the improvement of the damage model in by including the Drucker-Prager model to represent compressional response and nonlocal treatment to tensile damage. The inclusion of the Drucker-Prager model allows pressure-dependent yield strength representation. Although the rate-dependent nature of the model may alleviate the mesh-size dependence problem, a nonlocal formulation was also investigated to insure mesh-size independency. This treatment is based on the nonlocal representation with local strain.

  6. Quantitative comparisons of numerical models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  7. A combined analytical-experimental tensile test technique for brittle materials

    NASA Technical Reports Server (NTRS)

    Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1992-01-01

    A semiconventional tensile test technique is developed for impact ices and other brittle materials. Accurate results have been obtained on ultimate strength and modulus of elasticity in a refrigerated ice test. It is noted that the technique can be used to determine the physical properties of impact ices accreted inside icing wind tunnels or other brittle materials.

  8. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoguang; Li, Qiang; Liu, Tao; Kang, Renke; Jin, Zhuji; Guo, Dongming

    2016-12-01

    Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.

  9. Determinants for grading Malaysian rice

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Yusoff, Nooraini; Ahmad, Norhayati

    2016-08-01

    Due to un-uniformity of rice grading practices in Malaysia, zones which actively producing rice in Malaysia are using their own way of grading rice. Rice grading is important in determining rice quality and its subsequent price in the market. It is an important process applied in the rice production industry with the purpose of ensuring that the rice produced for the market meets the quality requirements of consumer. Two important aspects that need to be considered in determining rice grades are grading technique and determinants to be used for grading (usually referred as rice attributes). This article proposes the list of determinants to be used in grading Malaysian rice. Determinants were explored through combination of extensive literature review and series of interview with the domain experts and practitioners. The proposed determinants are believed to be beneficial to BERNAS in improving the current Malaysian rice grading process.

  10. Relating raw rice color and composition to cooked rice color.

    USDA-ARS?s Scientific Manuscript database

    Traditionally, the color of milled rice is economically important. The whiter the rice the more it is preferred by consumers and the more value it has in the market place. Little attention has been given to relating raw rice color to cooked milled rice color and, specifically, to determining the i...

  11. Modeling of brittle-viscous flow using discrete particles

    NASA Astrophysics Data System (ADS)

    Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.

    2017-04-01

    Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the

  12. Rice (Oryza) hemoglobins

    USDA-ARS?s Scientific Manuscript database

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  13. Making rice even healthier!

    USDA-ARS?s Scientific Manuscript database

    Rice is a naturally healthy food, but what if it could be made even healthier? Would Americans eat more rice if it could be advertised to be a 'New and Improved' source of calcium to promote bone growth, or iron to prevent anemia? Grocery stores are full of foods that are vitamin enhanced to attract...

  14. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  15. Semi-brittle flow of granitoid fault rocks in experiments

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée.; Drury, Martyn

    2016-03-01

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have performed an experimental study on synthetic granitoid fault rocks exploring a broad parameter space (temperature, T = 300, 400, 500, and 600°C, confining pressure, Pc ≈ 300, 500, 1000, and 1500 MPa, shear strain rate, γṡ ≈ 10-3, 10-4, 10-5, and 10-6 s-1, to finite shear strains, γ = 0-5). The experiments have been carried out using a granular material with grain size smaller than 200 µm with a little H2O added (0.2 wt %). Only two experiments (performed at the fastest strain rates and lowest temperatures) have failed abruptly right after reaching peak strength (τ ~ 1400 MPa). All other samples reach high shear stresses (τ ~ 570-1600 MPa) then weaken slightly (by Δτ ~ 10-190 MPa) and continue to deform at a more or less steady state stress level. Clear temperature dependence and a weak strain rate dependence of the peak as well as steady state stress levels are observed. In order to express this relationship, the strain rate-stress sensitivity has been fit with a stress exponent, assuming γ˙ ∝ τn and yields high stress exponents (n ≈ 10-140), which decrease with increasing temperature. The microstructures show widespread comminution, strain partitioning, and localization into slip zones. The slip zones contain at first nanocrystalline and partly amorphous material. Later, during continued deformation, fully amorphous material develops in some of the slip zones. Despite the mechanical steady state conditions, the fabrics in the slip zones and outside continue to evolve and do not reach a steady state microstructure below γ = 5. Within the slip zones, the fault rock material progressively transforms from a crystalline solid to an amorphous material. We

  16. Brittle-tough transitions during crack growth in toughened adhesives

    NASA Astrophysics Data System (ADS)

    Thoules, Michael

    2008-03-01

    The use of structural adhesives in automotive applications relies on an effective understanding of their performance under crash conditions. In particular, there is considerable potential for mechanics-based modeling of the interaction between an adhesive layer and the adherends, to replace current empirical approaches to design. Since energy dissipation during a crash, mediated by plastic deformation of the structure, is a primary consideration for automotive applications, traditional approaches of fracture mechanics are not appropriate. Cohesive-zone models that use two fracture parameters - cohesive strength and toughness - have been shown to provide a method for quantitative mechanics analysis. Combined numerical and experimental techniques have been developed to deduce the toughness and strength parameters of adhesive layers, allowing qualitative modeling of the performance of adhesive joints. These techniques have been used to study the failure of joints, formed from a toughened adhesive and sheet metal, over a wide range of loading rates. Two fracture modes are observed: quasi-static crack growth and dynamic crack growth. The quasi-static crack growth is associated with a toughened mode of failure; the dynamic crack growth is associated with a more brittle mode of failure. The results of the experiments and analyses indicate that the fracture parameters for quasi-static crack growth in this toughened system are essentially rate independent, and that quasi-static crack growth can occur even at the highest crack velocities. Effects of rate appear to be limited to the ease with which a transition to dynamic fracture could be triggered. This transition appears to be stochastic in nature, and it does not appear to be associated with the attainment of any critical value for crack velocity or loading rate. Fracture-mechanics models exist in the literature for brittle-ductile transitions in rate-dependent polymers, which rely on rate dependent values of toughness

  17. Experimental formation of brittle structural assemblages in oblique divergence

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Durney, D. W.

    1992-12-01

    A series of experiments is reported in which brittle minor structures are initiated in narrow deformation zones in clay under conditions of kinematically controlled oblique divergent displacement. Nineteen settings of boundary displacement angle were used from pure wrench to pure divergence under conditions favouring either faults (dry experiments) or extension fractures (wet experiments). Pure wrench produced the well known assemblage of Riedel strike-slip faults whereas experiments in pure divergence produced conjugate arrays of normal faults and extension fractures with a dihedral angle of 30° bisected by the direction of the zone, as has been described in rift zones. Experiments with boundary displacements at intermediate settings show a continuum of structural orientations and dihedral angles between these two extremes. A boundary between assemblages dominated by strike-slip faults and extensional faults was found at a displacement angle of 45° from the deformation zone. These results are interpreted kinematically in terms of: (1) principal axes of infinitesimal incremental strain; (2) material dilatancy control on shear structure dihedral angles; and (3) whether the vertical strain in divergent wrench settings is a thickening (strike-slip assemblage) or a thinning (normal fault assemblage).

  18. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bursey, R. T.; Munz, D.; Pierce, W. S.

    1980-01-01

    The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail.

  19. Brittle fracture in a periodic structure with internal potential energy

    PubMed Central

    Mishuris, Gennady S.; Slepyan, Leonid I.

    2014-01-01

    We consider a brittle fracture taking account of self-equilibrated distributed stresses existing at microlevel in the absence of external forces. To determine how the latter can affect the crack equilibrium and growth, a model of a structured linearly elastic body is introduced, consisting of two equal symmetrically arranged layers (or half-planes) connected by an interface as a prospective crack path. The interface comprises a discrete set of elastic bonds. In the initial state, the bonds are assumed to be stressed in such a way that tensile and compressive forces of the same value alternate. In the general considerations, the layers are assumed to be of an unspecified periodic structure, where such self-equilibrated stresses may also exist. A two-line chain and a lattice are examined as the specified structure. We consider the states of the body-with-a-crack under such microlevel stresses (MS) and under a combined action of the remote forces and MS. Analytical solutions to the considered problems are presented based on the introduction of a selective discrete transform. We demonstrate that MS can increase as well as decrease the crack resistance depending on the internal energy level. We also discuss different scenarios of the crack growth. PMID:24808756

  20. Brittle cornea syndrome: recognition, molecular diagnosis and management

    PubMed Central

    2013-01-01

    Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders. PMID:23642083

  1. Thermal stress fracture in elastic-brittle materials

    NASA Technical Reports Server (NTRS)

    Emery, A. F.

    1980-01-01

    The reported investigation shows that the assessment of the possibility of the thermal fracture of brittle materials depends upon an accurate evaluation of the thermal stresses and the determination of the resulting stress intensity factors. The stress intensity factors can be calculated in a variety of ways ranging from the very precise to approximate, but only for a limited number of geometries. The main difficulty is related to the determination of the thermal stress field because of its unusual character and its dependence upon boundary conditions at points far from the region of thermal activity. Examination of a number of examples suggests that the best visualization of the thermal stresses and any associated fracture can be made by considering the problem to be the combination of thermal and isothermal problems or by considering that the prime effect of the temperature is in the generation of thermal strains and that the thermal stresses are simply the result of the region trying to accommodate these strains.

  2. A Maxwell elasto-brittle rheology for sea ice modelling

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  3. Brittle cornea syndrome: recognition, molecular diagnosis and management.

    PubMed

    Burkitt Wright, Emma M M; Porter, Louise F; Spencer, Helen L; Clayton-Smith, Jill; Au, Leon; Munier, Francis L; Smithson, Sarah; Suri, Mohnish; Rohrbach, Marianne; Manson, Forbes D C; Black, Graeme C M

    2013-05-04

    Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders.

  4. Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique

    PubMed Central

    Bellucci, Andrea; Tondelli, Alessandro; Fangel, Jonatan U.; Torp, Anna Maria; Xu, Xin; Willats, William G. T.; Flavell, Andrew; Cattivelli, Luigi

    2017-01-01

    A collection of 112 winter barley varieties (Hordeum vulgare L.) was grown in the field for two years (2008/09 and 2009/10) in northern Italy and grain and straw yields recorded. In the first year of the trial, a severe attack of barley yellow mosaic virus (BaYMV) strongly influenced final performances with an average reduction of ~ 50% for grain and straw harvested in comparison to the second year. The genetic determination (GD) for grain yield was 0.49 and 0.70, for the two years respectively, and for straw yield GD was low in 2009 (0.09) and higher in 2010 (0.29). Cell wall polymers in culms were quantified by means of the monoclonal antibodies LM6, LM11, JIM13 and BS-400-3 and the carbohydrate-binding module CBM3a using the high-throughput CoMPP technique. Of these, LM6, which detects arabinan components, showed a relatively high GD in both years and a significantly negative correlation with grain yield (GYLD). Overall, heritability (H2) was calculated for GYLD, LM6 and JIM and resulted to be 0.42, 0.32 and 0.20, respectively. A total of 4,976 SNPs from the 9K iSelect array were used in the study for the analysis of population structure, linkage disequilibrium (LD) and genome-wide association study (GWAS). Marker-trait associations (MTA) were analyzed for grain yield and cell wall determination by LM6 and JIM13 as these were the traits showing significant correlations between the years. A single QTL for GYLD containing three MTAs was found on chromosome 3H located close to the Hv-eIF4E gene, which is known to regulate resistance to BaYMV. Subsequently the QTL was shown to be tightly linked to rym4, a locus for resistance to the virus. GWAs on arabinans quantified by LM6 resulted in the identification of major QTLs closely located on 3H and hypotheses regarding putative candidate genes were formulated through the study of gene expression levels based on bioinformatics tools. PMID:28301509

  5. Iron absorption from brown rice/brown rice-based meal and milled rice/milled rice-based meal.

    PubMed

    Trinidad, Trinidad P; Mallillin, Aida C; Sagum, Rosario S; Briones, Dave P; Encabo, Rosario R; Juliano, Bienvenido O

    2009-12-01

    Milled rice is the staple food among Filipinos and is mostly consumed three times a day. Rice as a source of iron could therefore have an important role in the existing 37% prevalence of iron-deficiency anemia in the country. Previous iron absorption studies in Filipinos from rice and rice-based meals were carried out on milled rice but no research was done on brown rice of the same variety. This leads to the hypothesis that brown rice may be better than milled rice in terms of iron content. To determine iron absorption from brown rice and brown rice-based meal, and from milled rice and milled rice-based meal of the same variety. The rice variety used in the study was F(2) seeds of PSB Rc72H. Iron absorption from brown/milled rice and brown/milled rice-based meals was determined in 12 healthy human subjects from the incorporation of radioisotopes of iron into erythrocytes 14 days after administration of the labeled rice/rice-based meals. The above samples were also analyzed for nutrient content, including dietary fiber, and iron. The iron content of brown rice was significantly higher (1.1 +/- 0.1 mg/100 g) than that of milled rice (0.6 +/- 0.1 mg/100 g). Brown rice has significantly greater amounts of total dietary fiber (5.4 +/- 0.4%) than milled rice (1.7 +/- 0.2%; P < 0.05). Both tannic acid and phytic acid contents in brown rice (56.9 +/- 3.2 mg/100 g and 290.1 +/- 18.0 mg/100 g, respectively) were significantly higher than those of milled rice (21.3 +/- 2.3 mg/100 g and 84.0 +/- 12.4 mg/100 g, respectively; P<0.05). The amount of iron absorbed from brown rice (0.13 +/- 0.02 mg) did not differ significantly from that from milled rice (0.14 +/- 0.02 mg). However, the amount from brown rice-based meal (0.36 +/- 0.04 mg) differed significantly from that from brown rice (P<0.05) as well as that from milled rice-based meal (0.35 +/- 0.03 mg) from that from milled rice (P<0.05). Moreover, brown rice-based meal did not differ significantly from milled rice-based meal

  6. Kinetic Energy associated with Dynamic Fragmentation in Brittle Solids

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.

    2016-12-01

    The formation of fragments during dynamic processes associated with impulsive loads has been the subject of numerous studies ranging from shaped-charge jet break up and rock blasting to bolide impacts, and, more recently, earthquake rupture. In the latter case pulverized rocks found millimeters to tens of meters from the principal slip zone have been associated with fast, and even supershear, rupture. It has been conjectured that the transition from intact or discretely fractured host rock to pulverization is controlled by initial micro-defects and the driven impulse signal characteristics. Here we report a series of experiments where we characterize the 3D terminal velocity vectors of particles in a range of fragmented to pulverized Novaculite and Westerly Granite rock samples using a Split Hopkinson Pressure Bar Apparatus. We accomplish this by controlling the rate of the stress ramp (a characteristic of the source time function) applied to the rock specimen and recording the impact pattern of rock fragments using a steel ring lined with a pressure-calibrated thin film surrounding the specimen. Using elastic Hertzian contact theory in conjunction with the resulting pressure distributions, we calculate the velocity of ejected particles for each experiment, allowing us to calculate approximate the normal components of kinematic energy of flying fragments. In combination with the laser particle size analysis (PSD), we show a relationship between the rate of the stress ramp and average particle size, and we refine the estimation of fracture energy during the experiments. Coupled with recently obtained data constraining the mechanical energy invested in creating new fracture surfaces, this work brings us closer to defining a complete energy budget for the brittle fragmentation process during earthquake rupture.

  7. True Triaxial Stresses and the Brittle Fracture of Rock

    NASA Astrophysics Data System (ADS)

    Haimson, Bezalel

    2006-06-01

    This paper reviews the efforts made in the last 100 years to characterize the effect of the intermediate principal stress σ 2 on brittle fracture of rocks, and on their strength criteria. The most common theories of failure in geomechanics, such as those of Coulomb, and Mohr, disregard σ 2 and are typically based on triaxial testing of cylindrical rock samples subjected to equal minimum and intermediate principal stresses (σ 3=σ 2). However, as early as 1915 Böker conducted conventional triaxial extension tests (σ 1=σ 2) on the same Carrara marble tested earlier in conventional triaxial compression by von Kármán that showed a different strength behavior. Efforts to incorporate the effect of σ 2 on rock strength continued in the second half of the last century through the work of Nadai, Drucker and Prager, Murrell, Handin, Wiebols and Cook, and others. In 1971 Mogi designed a high-capacity true triaxial testing machine, and was the first to obtain complete true triaxial strength criteria for several rocks based on experimental data. Following his pioneering work, several other laboratories developed equipment and conducted true triaxial tests revealing the extent of σ 2 effect on rock strength (e.g., Takahashi and Koide, Michelis, Smart, Wawersik). Testing equipment emulating Mogi's but considerably more compact was developed at the University of Wisconsin and used for true triaxial testing of some very strong crystalline rocks. Test results revealed three distinct compressive failure mechanisms, depending on loading mode and rock type: shear faulting resulting from extensile microcrack localization, multiple splitting along the σ 1 axis, and nondilatant shear failure. The true triaxial strength criterion for the KTB amphibolite derived from such tests was used in conjunction with logged breakout dimensions to estimate the maximum horizontal in situ stress in the KTB ultra deep scientific hole.

  8. Behavior of the brittle crust in wide plate boundary zones

    NASA Astrophysics Data System (ADS)

    Lamb, Simon H.

    1994-03-01

    In wide and active continental plate boundary zones, ductile flow in the deeper and strong parts of the lithosphere may control crustal deformation. This is likely if average resistive shear stresses on faults in the brittle crust are much less than 108 Pa and the underlying bulk effective viscosity is much greater than 1021 Pa s. In this case, a simple model of distributed deformation, referred to as the floating block model, may be useful. This treats the crust as an array of rotating and translating rigid blocks, which are floating on an underlying continuous flow with a constant rheology. The model is analyzed in detail in this paper because it has the potential to link detailed observations of crustal deformation with the large-scale flow. Crustal blocks are defined by at least two sets of faults. The kinematics of crustal deformation can be described in terms of the motions of these blocks. Both the relative motion on block boundaries (faults) and block tilting about a horizontal axis can be described in terms of the underlying flow and block rotation about a vertical axis. However, rotations about a vertical axis, which are an important component of the crustal deformation, will depend not only on the underlying flow but also on the shape, orientation and arrangement of the crustal blocks. The average rotation rate about a vertical axis, over finite rotations, will be significantly different from that predicted at any instant. Also, the rotation history is considerably complicated if, as is likely, the underlying flow field, or block shape, has changed with time. These aspects of crustal deformation are discussed with reference to real zones of active deformation in New Zealand, Greece and western North America.

  9. Forecasting the brittle failure of heterogeneous, porous geomaterials

    NASA Astrophysics Data System (ADS)

    Vasseur, Jérémie; Wadsworth, Fabian; Heap, Michael; Main, Ian; Lavallée, Yan; Dingwell, Donald

    2017-04-01

    forecasting the failure of porous brittle solids that build the Earth's crust.

  10. Method for preparing surfaces of metal composites having a brittle phase for plating

    SciTech Connect

    Coates, C.W.; Wilson, T.J.

    1984-03-20

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  11. Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel

    NASA Astrophysics Data System (ADS)

    Lucantonio, Alessandro; Noselli, Giovanni; Trepat, Xavier; Desimone, Antonio; Arroyo, Marino

    Brittle materials fracture under tensile or shear stress. When stress attains a critical threshold, crack propagation becomes unstable and proceeds dynamically. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are radically modified when the material susceptible to cracking is bonded to a poroelastic medium, such as a hydrogel, a common situation in biological tissues. In particular, we show that the brittle material can fracture in compression and can resist cracking in tension, thanks to the hydraulic coupling with the hydrogel. In the case of multiple cracks, we find that localized fracture occurs when the permeability of the hydrogel is high, whereas decreased permeability leads to toughening by promoting multiple cracking. Our results may contribute to the understanding of fracture in biological tissues and provide inspiration for the design of tough, biomimetic materials.

  12. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  13. The effect of shock-wave profile on dynamic brittle failure

    NASA Astrophysics Data System (ADS)

    Escobedo, J. P.; Brown, E. N.; Trujillo, C. P.; Cerreta, E. K.; Gray, G. T.

    2013-03-01

    The influence of shock-wave-loading profile on the failure processes in a brittle material has been investigated. Tungsten heavy alloy (WHA) specimens have been subjected to two shock-wave loading profiles with a similar peak stress of 15.4 GPa but different pulse durations. Contrary to the strong dependence of strength on wave profile observed in ductile metals, for WHA, specimens subjected to different loading profiles exhibited similar spall strength and damage evolution morphology. Post-mortem examination of recovered samples revealed that dynamic failure for both loading profiles is dominated by brittle cleavage fracture, with additional energy dissipation through crack branching in the more brittle tungsten particles. Overall, in this brittle material, all relevant damage kinetics and the spall strength are shown to be dominated by the shock peak stress, independent of pulse duration.

  14. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  15. A Novel FC116/BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice

    PubMed Central

    Zhang, Mingliang; Wei, Feng; Guo, Kai; Hu, Zhen; Li, Yuyang; Xie, Guosheng; Wang, Yanting; Cai, Xiwen; Peng, Liangcai; Wang, Lingqiang

    2016-01-01

    We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif “R, RXG, RA.” The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice. PMID:27708650

  16. Development of DEM formalism to modeling the dynamic response of brittle solids

    NASA Astrophysics Data System (ADS)

    Grigoriev, Aleksandr S.; Shilko, Eugeny V.; Psakhie, Sergey G.

    2016-11-01

    The paper presents a numerical model of the response for brittle materials to dynamic mechanical loading and implementation of the model within the discrete element method (DEM) by the example of the movable cellular automaton method (MCA). Verification of the model was carried out using the numerical modeling of the uniaxial compression tests of concrete and sandstone samples at various strain rates. It is shown that the developed model is correct and adequately describes the behavior of brittle materials under dynamic loading.

  17. Time-dependent cracking and brittle creep in crustal rocks: A review

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Heap, M. J.; Meredith, P. G.; Baud, P.

    2013-07-01

    Rock fracture under upper crustal conditions is driven not only by applied stresses, but also by time-dependent, chemically activated subcritical cracking processes. These subcritical processes are of great importance for the understanding of the mechanical behaviour of rocks over geological timescales. A macroscopic manifestation of time-dependency in the brittle field is the observation that rocks can deform and fail at constant applied stresses, a phenomenon known as brittle creep. Here, we review the available experimental evidence for brittle creep in crustal rocks, and the various models developed to explain the observations. Laboratory experiments have shown that brittle creep occurs in all major rock types, and that creep strain rates are extremely sensitive to the environmental conditions: differential stress, confining pressure, temperature and pore fluid composition. Even small changes in any of these parameters produce order of magnitude changes in creep strain rates (and times-to-failure). Three main classes of brittle creep model have been proposed to explain these observations: phenomenological, statistical, and micromechanical. Statistical and micromechanical models explain qualitatively how the increasing influence of microcrack interactions and/or the increasing accumulated damage produces the observed evolution of macroscopic deformation during brittle creep. However, no current model can predict quantitatively all of the observed features of brittle creep. Experimental data are limited by the timescale over which experiments are realistically feasible. Clearly, an extension of the range of available laboratory data to lower strain rates, and the development of new modelling approaches are needed to further improve our current understanding of time-dependent brittle deformation in rocks.

  18. Brittle Fracture Theory Predicts the Equation of Motion of Frictional Rupture Fronts

    NASA Astrophysics Data System (ADS)

    Svetlizky, Ilya; Kammer, David S.; Bayart, Elsa; Cohen, Gil; Fineberg, Jay

    2017-03-01

    We study rupture fronts propagating along the interface separating two bodies at the onset of frictional motion via high-temporal-resolution measurements of the real contact area and strain fields. The strain measurements provide the energy flux and dissipation at the rupture tips. We show that the classical equation of motion for brittle shear cracks, derived by balancing these quantities, well describes the velocity evolution of frictional ruptures. Our results demonstrate the extensive applicability of the dynamic brittle fracture theory to friction.

  19. Determination of the ductile-brittle transition temperature from the microplastic-strain rate

    NASA Astrophysics Data System (ADS)

    Andreev, A. K.; Solntsev, Yu. P.

    2008-04-01

    The possibility of the determination of the tendency of cast and deformed steels to brittle fracture using the temperature dependence of the small-plastic-strain rate is studied. The temperature corresponding to the maximum in this curve is found to indicate an abrupt decrease in the steel plasticity, which makes it possible to interpret it as the ductile-brittle transition temperature depending only on the structure of a material.

  20. Synthesis and single crystal structure refinement of the one-layer hydrate of sodium brittle mica

    SciTech Connect

    Kalo, Hussein; Milius, Wolfgang; Braeu, Michael; Breu, Josef

    2013-02-15

    A sodium brittle mica with the ideal composition [Na{sub 4}]{sup inter}[Mg{sub 6}]{sup oct}[Si{sub 4}Al{sub 4}]{sup tet}O{sub 20}F{sub 4} was synthesized via melt synthesis in a gas tight crucible. This mica is unusual inasmuch as the known mica structure holds only room for two interlayer cations per unit cell and inasmuch as it readily hydrates despite the high layer charge while ordinary micas and brittle micas are non-swelling. The crystal structure of one-layer hydrate sodium brittle mica was determined and refined from single crystal X-ray data. Interlayer cations reside at the center of the distorted hexagonal cavities and are coordinated by the three inner basal oxygen atoms. The coordination of the interlayer cation is completed by three interlayer water molecules residing at the center of the interlayer region. The relative position of adjacent 2:1-layers thus is fixed by these octahedrally coordinated interlayer cations. Pseudo-symmetry leads to extensive twinning. In total five twin operations generate the same environment for the interlayer species and are energetically degenerate. - Graphical abstract: The sodium brittle mica has been successfully synthesized by melt synthesis and the crystal structure of the one-layer hydrate of sodium brittle mica was determined from single crystal X-ray diffraction data. Highlights: Black-Right-Pointing-Pointer Melt synthesis yielded coarse grained sodium brittle mica which showed little disorder. Black-Right-Pointing-Pointer Sodium brittle mica hydrated completely to the state of one-layer hydrate. Black-Right-Pointing-Pointer Structure of one-layer hydrate of sodium brittle mica could therefore be determined and refined. Black-Right-Pointing-Pointer Arrangement of upper and lower tetrahedral sheet encompassing interlayer cation were clarified.

  1. Spatial and temporal expression modes of MicroRNAs in an elite rice hybrid and its parental lines.

    PubMed

    Fang, Ruiqiu; Li, Luoye; Li, Jianxiong

    2013-08-01

    Heterosis is a commonly observed phenomenon in nature and refers to the superior performance of hybrids relative to both parents. The molecular mechanisms of heterosis are mostly unknown. Quantitative trait locus (QTL) mapping has been used to explain the genetic basis of heterosis, and large amounts of QTLs have been mapped for various agronomic traits, but the nature of QTL contributing to heterosis is still enigmatic. MicroRNAs (miRNAs) are master regulators in the processes of plant development and trait performance, and many miRNAs are predicted to reside in QTL intervals. We analyzed the expression modes of miRNAs, which were picked up from miRNA databases and chosen from those predicted from QTL intervals by bioinformatic approaches, in different organs at developmental stages of an elite rice hybrid and its parents. All possible modes of action for miRNA expression were detected, but most miRNAs showed nonadditive mode, and different stages and distinct organs displayed different patterns of miRNA expression. A large proportion of miRNAs were not detected for expression in leaves but expressed in the culms and roots of the hybrid at tillering stage. MiRNAs from grain-weight QTL intervals have multiple effects on grain development. Together, our results reveal that miRNAs, especially those from QTL intervals, play roles in heterotic performance in this elite rice hybrid, our results also shade new light on understanding the molecular mechanisms of heterosis.

  2. Innate immunity in rice

    PubMed Central

    Chen, Xuewei; Ronald, Pamela C.

    2011-01-01

    Advances in studies of rice innate immunity have led to the identification and characterization of host sensors encoding receptor kinases that perceive conserved microbial signatures. The non-RD domain, a newly recognized hallmark of these receptor kinases is highly expanded in rice (Oryza sativa) compared with Arabidopsis (Arabidopsis thaliana). Researchers have also identified a diverse array of microbial effectors from bacterial and fungal pathogens that triggers immune responses upon perception. These include both, effectors that indirectly target host Nucleotide binding site/Leucine rice repeat (NBS-LRR) proteins and transcription activator-like (TAL) effectors that directly bind promoters of host genes. Here we review the recognition and signaling events that govern rice innate immunity. PMID:21602092

  3. Brittle materials at high-loading rates: an open area of research

    PubMed Central

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  4. Brittle materials at high-loading rates: an open area of research.

    PubMed

    Forquin, Pascal

    2017-01-28

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  5. Brittleness modelling of shale gas reservoir: Case study of Pematang formation, Central Sumatera basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Iskandarsyah, Riyanto, A.

    2017-07-01

    The Pematang formation, which is located at Central Sumatera basin become the prospective shale gas reservoir in the Kisaran area. It is shown by a large potential amount of gas and oil in place. However, there is still a lack of information about the shale properties in this field so it becomes a big challenge for developing the shale gas exploration. Based on the core and petrophysical analysis, it is shown that the formation is dominated by shale and some part is laminated by sand layers. There is a significantly large deposit of shale underneath sand layer. This paper aims to perform the brittleness modeling, which is based on the integration of geophysical and geomechanical data. In the application, the brittleness distribution map is used to delineate the brittle zone of the shale reservoir that has potential to be fractured by using an artificial hydraulic fracturing. The brittleness modeling is performed by using Statistic Linear Gaussian Simulation (SLGS) approach based on the 3D seismic data and the well log data. The brittleness map shows that the potential shale reservoir to be fractured, which is indicated by brittleness index greater than 0.5, is distributed in the eastern part and the north-eastern part of the study area at the depth range of 6308 feet to 7432 feet.

  6. Brittle materials at high-loading rates: an open area of research

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  7. A new approach to rock brittleness and its usability at prediction of drillability

    NASA Astrophysics Data System (ADS)

    Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Yaralı, Olgay

    2016-07-01

    Rock brittleness is one of the most important issues in rock drilling and cutting. The relations between drillability and brittleness will assist engineers in excavation works. The demand for representative rock parameters related to planning of underground excavations is increasing, as these parameters constitute fundamental input for obtaining the most reliable cost and time estimates. In rock cutting mechanics, the effects of the rock and brittleness on the efficiency of drilling and excavation are examined by many researchers. In this study, 41 different rock types were tested in laboratory to investigate the relations between the drilling rate index and different brittleness values. Firstly, the relations defined in literature are tested. Strength tests are made according to International Society for Rock Mechanics standards. In addition Norwegian University of Science and Technology standards are used to determine drilling rate index. Then, a new brittleness index is proposed which is the arithmetic average of uniaxial compressive strength and tensile strength. Considering the regression analysis carried out, it was seen that the proposed formula showed good correlation for these samples handled in this study. As a result of this study, a high correlation is obtained between the proposed index and drilling rate index values (R:0.84). The results are found to be at least reliable as well as other brittleness equations given in literature.

  8. Influence of the brittle behavior of work materials on polishing characteristics

    NASA Astrophysics Data System (ADS)

    Sakamoto, Satoshi; Gemma, Masaya; Hayashi, Keitoku; Kondo, Yasuo; Yamaguchi, Kenji; Yakou, Takao; Arakawa, Susumu

    2017-09-01

    Diamond electrodeposited wire tools are frequently used to cut thin wafers from hard and brittle materials. However, microcracks sometimes appear during the slicing process. The appearance of microcracks adversely affects slicing efficiency and slicing accuracy. In this study, we examine the influence of brittle behavior on the polishing characteristics such as polishing depth and tool wear. This is the first step toward investigating the influence of the brittle behavior of work materials on slicing characteristics. Ceramics such as alumina, silicon carbide, and zirconia are used as work materials. Even with the same degree of hardness, we found that the polishing depth values were greater for materials exhibiting brittle behavior. In the polishing of high-hardness materials, abrasive grains were badly damaged during the initial stages of polishing. Damage to the abrasive paper was less in wet polishing as compared with dry polishing. Moreover, wet polishing had a greater polishing depth than dry polishing. The polishing characteristics of the brittle materials were similar to the grooving characteristics produced using wire tools; however, both these characteristics depend on the brittle behavior of the work materials. Therefore, by performing simple polishing tests, estimating the state of grooving or slicing using wire tools is possible.

  9. Metallurgical control of the ductile-brittle transition in high-strength structural steels

    SciTech Connect

    Morris, J.W. Jr. |

    1999-08-01

    The models that have been successfully used to control the ductile-brittle transition in high strength structural steels are qualitative in nature, and address the microstructural control of the mechanisms of brittle fracture. The basic idea is incorporated in the Yoffee diagram, which dates from the 1920`s and attributes the ductile-brittle transition to the competition between deformation and fracture; the more difficult brittle fracture becomes, the lower the temperature at which ductile processes dominate. There are two important brittle fracture modes: intergranular separation and transgranular cleavage. The intergranular mode is usually due to chemical contamination, and is addressed by eliminating or gettering the contaminating species. There are also examples of brittle fracture that is due to inherent grain boundary weakness. In this case the failure mode is overcome by adding beneficial species (glue) to the grain boundary. Transgranular cleavage is made more difficult by refining the effective grain size. In high strength steel this is done by refining the prior austenite grain size, by interspersing islands of metastable austenite that transform martensitically under plastic strain, or by disrupting the crystallographic alignment of ferrite grains or martensite laths. The latter mechanism offers intriguing possibilities for future steels with exceptional toughness.

  10. Dynamic fragmentation of brittle materials: analytical mechanics-based models

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    2001-06-01

    Two analytical mechanics-based models of dynamic fragmentation in brittle materials are proposed and solved to predict fragment size and time to fragmentation onset in terms of fundamental material properties and the applied strain rate. Previous widely adopted analytical models of dynamic fragmentation are based on relatively simple energy balance arguments, and assume that the fragmentation event occurs instantaneously. The present models account for the actual time-varying dynamic deformation that occurs prior to fragmentation onset. One of the models treats the fragmenting material as initially flaw-free, and determines the minimum fragment size predicted by a dynamic instability analysis. The second model accounts for initial flaw spacing (which may correlate physically with, for example, grain size), and a dynamic instability analysis is employed to determine which flaws become critical. The fragment size predictions of the present models and two previous energy-based models are found to agree at extremely high strain rates (≈5×10 7/s for dense alumina), but the present, more realistic analysis indicates that the regime of validity of the energy-based models is rather restricted. The predictions of the present models are also shown to agree with those of a recent numerical finite element simulation of dynamic fragmentation which applies to a lower strain rate regime. Comparisons of the two new models show that if a material contains initial flaws whose spacing is smaller than the predicted fragment size of an equivalent "unflawed" material, the fragment size of the preflawed material will be smaller in general, but usually not as small as the initial flaw spacing. The analysis also permits determination of the evolution of the strain rate distribution in a prospective fragment before and after fragmentation initiation; results are presented for some example cases. Finally, closed-form analytical results are derived for minimum fragment size and time to

  11. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  12. The mechanics of brittle fracture and faulting on Venus

    NASA Astrophysics Data System (ADS)

    Koenig, Elissa I.

    The surface of Venus exhibits all types of brittle fracture and faulting at all scales. The fractures often exhibit characteristic patterns indicative of the mechanical processes responsible for their formation. In this dissertation I investigate two types of fracture patterns: (1) radial fracture systems related to the emplacement of subsurface dikes, and (2) secondary fractures associated with strike-slip faulting. This work combines detailed structural mapping based on Magellan data with two- and three-dimensional boundary element models of fracture processes to explain the observed deformation and place it in the framework of global tectonics on Venus. I describe two radial fracture systems and compare their geometry to analytical models of dike emplacement from a central magma chamber to constrain the stress fields acting at the time of their formation. Two-dimensional numerical models were implemented to consider the effects of dike initiation, propagation, and interaction. I propose that the stress perturbation around a dike can control the spacing between dikes, and the magnitude of this perturbation is related to the three-dimensional dike shape. Using three-dimensional boundary element models of the stress field around a tabular dike, I determine the relationship between dike aspect ratio (height/length) and spacing. Dike spacing increases as the aspect ratio increases; this relationship is used to infer the height of subsurface dikes. For the analysis of secondary fractures associated with strike-slip faulting, I investigate the spatial and temporal relationships between a ridge belt and an extensive fracture system along the belt boundary in Lavinia Planitia, Venus. I propose that the fractures formed as the result of right-lateral shear localized along the ridge belt, which acted as a pre-existing weak zone hundreds of kilometers long. First-order models of the ridge belt as a crack-like fault plane indicate that the localization and orientation of the

  13. Analysis of the progressive failure of brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.

    1995-01-01

    This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded

  14. Brittle frictional mountain building: 2. Thermal structure and heat budget

    NASA Astrophysics Data System (ADS)

    Barr, Terence D.; Dahlen, F. A.

    1989-04-01

    This paper describes a simple thermal model of an actively deforming critically tapered fold-and-thrust belt. The model determines the steady state temperature distribution and heat flow, as well as the pressure-temperature-time histories of rocks that outcrop at the surface. The main parameters controlling the thermal structure are the accretion and erosion rates, the undisturbed geothermal gradient at the toe, and the amount of frictional heating. Both shear heating on the decollement fault and internal strain heating within the deforming brittle wedge are incorporated in a mechanically consistent manner, and they dominate the effect of radiogenic heating, except in fold-and-thrust belts with significantly overpressured pore fluids. The mean stresses, temperatures, and surface heat flow all increase with an increase in the basal and internal coefficients of friction, and this dependence is used to constrain the level of friction on the decollement fault beneath the steady state fold-and-thrust belt in Taiwan. Rocks outcropping in the core of the Central Mountain Range of Taiwan experience maximum theoretical temperatures in excess of 400° C and maximum mean pressures in excess of 500 MPa if the coefficient of basal friction is μb = 0.5. Qualitatively, these conditions are in good agreement with the observed high greenschist facies metamorphism. The theoretical surface heat flow, which increases from 95 mW/m2 at the front of the fold-and-thrust belt to 240 mW/m2 at the rear, is in excellent agreement with the results of a recent geothermal survey of Taiwan, and theoretical cooling histories are in good agreement with fission track and other geochronologic studies. Taken together, these results provide strong evidence that sliding on the basal decollement fault beneath Taiwan is governed by a coefficient of friction in the range of typical laboratory measurements, μb = 0.5 ± 0.2. Approximately 35% of the total surface heat flux of 3 GW is heat conducted into

  15. Red Yeast Rice: An Introduction

    MedlinePlus

    ... help lower blood levels of cholesterol and related lipids. Red yeast rice products may not be safe; ... to lower blood levels of cholesterol and related lipids. Some red yeast rice products contain substances called ...

  16. Shaping a better rice plant.

    PubMed

    Springer, Nathan

    2010-06-01

    Two studies describe how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield. These studies support the possibility of improving rice yield through changing plant architecture.

  17. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  18. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  19. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  20. Rheological properties of rice-blackgram batter while replacing white rice with brown rice.

    PubMed

    Manickavasagan, Annamalai; Al-Marhubi, Insaaf Mohd; Dev, Satyanarayan

    2014-06-01

    Rice-blackgram batter is a raw material for many traditional convenience foods in Asia. Reformulation of traditional convenience food by replacing white rice with whole rice (brown rice) is a novel method to reduce the consumption of refined grain and increase the intake of whole grain in our diet. In this study, rheological properties of rice-blackgram batter was investigated while replacing white rice with brown rice at five levels (T1--0% replacement (control), T2--25% replacement, T3--50% replacement, T4--75% replacement, and T5--100% replacement). The shear stress versus shear rate plot indicates that the rice-blackgram batter exhibited non-Newtonian fluid behavior (shear thinning property) even after 100% replacement of white rice with brown rice. The rheological characteristics of rice-blackgram batters fitted reasonably well in Cassan (r2 = 0.8521-0.9856) and power law (r2 = 0.8042-0.9823) models. Brown rice replacement at all levels did not affect the flow behavior index, yield stress, consistency coefficient, and apparent viscosity of batter at 25 degrees C. However, at higher temperature, the viscosity was greater for T4 and T5 (no difference between them) than T1, T2, and T3 (no difference between them) batters. Further research is required to determine the sensory attributes and acceptability of the cooked products with brown rice-blended batter.

  1. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    PubMed

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  2. Two brittle ductile transitions in subduction wedges, as revealed by topography

    NASA Astrophysics Data System (ADS)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  3. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-01-01

    Background: Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. Methods: The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results: Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). Conclusion: These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies. PMID:26989740

  4. Experimental demonstration of a semi-brittle origin for crustal strain transients

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Lavier, L. L.; Hayman, N. W.

    2015-12-01

    Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.

  5. Ultrastructure of the wild rice Oryza grandiglumis (Gramineae) in Costa Rica.

    PubMed

    Sánchez, Ethel; Quesada, Tania; Espinoza, Ana M

    2006-06-01

    Oryza grandiglumis is a wild species of rice endemic to tropical America. This species was first found in 1998 in the wetlands of Caño Negro, located in the northern part of Costa Rica. Twenty five plants of O. grandiglumis were processed for scanning electron microscope. An ultrastructural description of the leaf blade, ligule, auricles, spikelet and caryopsis, with an emphasis on structures of taxonomic value. The leaf blade has a characteristic cuticular wax pattern, composed of dense rod-like structures, and is surrounded by papillae, zipper-like silica cells, abundant bulky prickle trichomes, and hooked trichomes. The blade's edge has three rows of hooked prickle trichomes of various sizes. The auricles wrapped the culm, with long attenuated trichomes at the edges; the base was surrounded by oblong cells. The ligule is a blunt membrane covered by short prickle trichomes. Spikelet morphology is characteristic of the Poaceae family, but the sterile lemmas were nearly as long as the fertile lemmas, and they have an unique crown-like structure of lignified spines between the rachilla and the fertile lemmas. Comparison with Brazilian specimens of O. grandiglumis revealed little differences in the ultrastructural characteristics.

  6. The viscous to brittle transition in eruptions of clay suspensions

    NASA Astrophysics Data System (ADS)

    Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben; Jolly, Art; Dingwell, Donald B.

    2017-04-01

    solid-like behaviour is a viscous to brittle transition and occurs between a kaolin mass fraction of 0.48 and 0.65, which is consistent with previous observations of the liquid and plastic rheological limits, respectively. We find that a Stokes' number balances the timescale of flow with the timescale of particle motion opposing flow. We suggest that the transition from regime 1 to regime 2 occurs when the relative velocity between the ejected material and the gas phase increases and the Stokes' number exceeds 1, leading to decoupling and shear-stresses at the ejected fluid interfaces. A capillary number characterizes the transition from elongated liquid structures (regime 2) to individual droplets (regime 3) in the liquid-dominated system when the relative velocity drops to a value at which surface tension can restore the droplets to spherical. Our results emphasize that the different rheology of muddy material exhibit different characteristic eruption styles and offers a way to classify them.

  7. Quantitative comparisons of analogue models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  8. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.

  9. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  10. Effect of rice variety and nutrient management on rice productivity in organic rice system

    USDA-ARS?s Scientific Manuscript database

    Demand for organic rice has been increasing for decades. However, the information on sustainable organic rice production systems is still lacking. The objective of this study was to investigate the effects of soil amendment products, nitrogen rate, and variety on rice grain yield, yield components, ...

  11. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process.

    PubMed

    Contreras, L M; Schelle, H; Sebrango, C R; Pereda, I

    2012-01-01

    Agricultural solid residues are a potential renewable energy source. Rice harvesting and production in Sancti Spíritus province, Cuba, currently generates residues without an environmentally sustainable disposal route. Rice residues (rice straw, rice husk and rice residues from the drying process) are potentially an important carbon source for anaerobic digestion. For this paper, rice residues were placed for 36 days retention time in anaerobic batch reactor environments at both mesophilic (37 °C) and thermophilic (55 °C) conditions. Biogas and methane yield were determined as well as biogas composition. The results showed that rice straw as well as rice residues from the drying process had the highest biogas and methane yield. Temperature played an important role in determining both biogas yield and kinetics. In all cases, rice straw produced the highest yields; under mesophilic conditions the biogas yield was 0.43 m(3) kg(VS)(-1), under thermophilic conditions biogas yield reached 0.52 m(3) kg(VS)(-1). In the case of the rice husk, the biodegradability was very low. Methane content in all batches was kept above 55% vol. All digested material had a high carbon:nitrogen (C:N) ratio, even though significant biodegradation was recorded with the exception of rice husk. A first-order model can be used to describe the rice crop residues fermentation effectively.

  12. An influence of normal stress and pore pressure on the conditions and dynamics of shear crack propagation in brittle solids

    NASA Astrophysics Data System (ADS)

    Shilko, Evgeny V.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-11-01

    The paper is devoted to the study of the influence of crack-normal stress on the shear strength of the brittle material with initial crack and the geometrical condition of acceleration of dynamically growing crack towards the longitudinal wave speed. We considered elastic-brittle permeable materials with nanoscale pore size. We have shown that pore fluid in nanoporous brittle materials influences mainly the condition of shear crack propagation transition from conventional sub-Rayleigh regime to supershear one. The results of the study make it possible to assess the ability of initial cracks in brittle materials to develop in supershear regime under the condition of confined longitudinal shear.

  13. Analytical model of brittle destruction based on hypothesis of scale similarity

    SciTech Connect

    Arakcheev, A. S. Lotov, K. V.

    2012-08-15

    The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refine the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.

  14. Sometimes two arms are enough--an unusual life-stage in brittle stars (Echinodermata: Ophiuroidea).

    PubMed

    Stöhr, Sabine; Alme, Øydis

    2015-08-03

    Off West Africa (Angola-Morocco), benthos samples were collected in the years 2005-2012. These contained 124 specimens of brittle stars with two long arms and three extremely short or absent arms and an elongated, narrow disc. These unusual brittle stars, as well as 33 specimens with five fully developed arms, were identified as Amphiura ungulata. The specimens with unequal arms were juvenile stages, whereas adults had five equal arms. The large number of specimens with unequal arms suggests that this condition is not the result of damage and regeneration, but a normal growth pattern in this species. This study documents the morphology by SEM, amends the species description, and discusses possible explanations for the evolution of this condition. Although brittle star species with unequal arm growth have been reported, this is an extreme case that was unknown before this study.

  15. Simulation study on the avalanche process of the mixed brittle-plastic fiber bundle model

    NASA Astrophysics Data System (ADS)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2016-01-01

    The mixed brittle-plastic fiber bundle model is an extension model based on the classical fiber bundle model to describe the nonbrittle failure process of some hierarchical structure materials such as spider silk. In order to explore the breaking dynamic properties of the hierarchical structure materials in short-range correlation, the mixed brittle-plastic fiber bundle model in local load sharing condition is detailed and numerically studied. The impacts of the proportion of plastic fibers and the plastic strength of a single plastic fiber on the macroscopic constitutive behavior, the avalanche size distribution and the step number of the external load increasing are investigated, respectively. The numerical results show that the insert of plastic fibers will hinder the brittle fracture process; as a result, both the macroscopic mechanical natures and the statistical properties of fracture are significantly influenced.

  16. Unusual case of globe perforation: the brittle cornea without systemic manifestations.

    PubMed

    Joshi, Shilpa Ajit; Uppapalli, Shalomith; More, Pranav; Deshpande, Madan

    2016-10-07

    Brittle cornea syndrome is a rare generalised connective tissue disorder with ocular features like keratoglobus or keratoconus, severe corneal thinning and a high risk of perforation. Various authors in different case reports and case series have brought out the fact that brittle cornea is a disorder with characteristic systemic manifestations such as deafness, joint hypermobility, hyperelasticity of skin, kyphoscoliosis and dental abnormalities alongwith ophthalmic features. We report a case of globe perforation following trivial trauma, in an individual with brittle cornea without any extraocular manifestations, posing a challenge in the diagnosis and dilemma in surgical repair of cornea, restoration of globe integrity and visual rehabilitation. The absence of systemic manifestations decreased the index of suspicion and led to a surprise in the theatre-a point this case emphasised.

  17. Study on electroplating technology of diamond tools for machining hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue

    2016-10-01

    With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.

  18. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

    NASA Astrophysics Data System (ADS)

    Li, Jie; Huang, Houxu; Wang, Mingyang

    2017-01-01

    In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha (p-α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

  19. ADOLESCENT ROMANCE AND DELINQUENCY: A FURTHER EXPLORATION OF HIRSCHI'S "COLD AND BRITTLE" RELATIONSHIPS HYPOTHESIS.

    PubMed

    Giordano, Peggy C; Lonardo, Robert A; Manning, Wendy D; Longmore, Monica A

    2010-11-28

    Hirschi argued that delinquent youth tend to form relatively "cold and brittle" relationships with peers, depicting these youths as deficient in their attachments to others. The current analysis explores connections between delinquency and the character of adolescent romantic ties, drawing primarily on the first wave of the Toledo Adolescent Relationships Study, and focusing on 957 teens with dating experience. We examine multiple relationship qualities/dynamics in order to explore both the "cold" and "brittle" dimensions of Hirschi's hypothesis. Regarding the "cold" assumption, results suggest that delinquency is not related to perceived importance of the romantic relationship, level of intimate self-disclosure or feelings of romantic love, and more delinquent youth actually report more frequent contact with their romantic partners. Analyses focused on two dimensions tapping the "brittle" description indicate that while durations of a focal relationship do not differ according to level of respondent delinquency, more delinquent youths report higher levels of verbal conflict.

  20. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

    NASA Astrophysics Data System (ADS)

    Li, Jie; Huang, Houxu; Wang, Mingyang

    2017-03-01

    In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha ( p- α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

  1. Variation of depth to the brittle-ductile transition due to cooling of a midcrustal intrusion.

    USGS Publications Warehouse

    Gettings, M.E.

    1988-01-01

    The depth to the brittle-ductile transition in the crust is often defined by the intersection of a shear resistance relation in the brittle upper crust that increases linearly with depth and a power law relation for ductile flow in the lower crust that depends strongly on T. Transient variation of this depth caused by a magmatic intrusion at a depth near the regional transition can be modelled by a heat conduction model for a rectangular parallelepiped superimposed on a linear geothermal gradient. When parameters appropriate for the southeastern US are used, a moderate-sized intrusion is found to decrease the transition depth by as much as 7 km; significant variations last approx 10 m.y. Since the base of the seismogenic zone is identified with the brittle-ductile transition, these results imply that intrusions of late Tertiary age or younger could be important sources of clustered seismicity. -A.W.H.

  2. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    NASA Astrophysics Data System (ADS)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  3. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway.

    PubMed

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment.

  4. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway

    PubMed Central

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Background: Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. Methods: To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. Results: The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Conclusion: Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment. PMID:26605009

  5. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  6. How melt stretching affect the brittle-ductile transition temperature of polymer glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Wang, Shi-Qing

    2013-03-01

    Upon increasing temperature a brittle polymer glass can turn ductile. PMMA is a good example. For a while this brittle-ductile transition (BDT) was thought to be determined by the emergence of a secondary relaxation....1-3 On the other hand, it has been known for a long time...4-6 that predeformation in the melt state (e.g., melt stretching) can also make brittle glasses behave in a ductile manner. This transformation has recently received a satisfactory explanation based on a picture of structural hybrid for polymer glasses....7 It appears that BDT is dictated by the relative mechanical characteristics of the primary structure (due to the van der Waals bonds) and the chain network. The present work, based on conventional Instron tensile extension tests and DMA tests, shows that melt stretching does not alter the secondary relaxation behavior of PMMA and PC yet can turn them the brittle PMMA ductile and the ductile PC brittle. Moreover, sufficient melt stretching makes the brittle PS ductile although it does not produce any secondary relaxation process..1. Monnerie, L.; Laupretre, F.; Halary, J. L. Adv. Polym. Sci2005, 187, 35-213. 2. Monnerie, L.; Halary, J. L.; Kausch, H. Adv. Polym. Sci2005, 187, 215-364. 3. Wu, S. J. Appl. Polym. Sci.1992, 46, (4), 619-624. 4. Vincent, P. I. Polymer1960, 1, (0), 425-444. 5. Harris, J. S.; Ward, I. M. J. Mater. Sci.1970, 5, (7), 573-579. 6. Ender, D. H.; Andrews, R. D. J. Appl. Phys.1965, 36, (10), 3057-3062. 7. Zartman, G. D.; Cheng, S.; Li, X.; Lin, F.; Becker, M. L.; Wang, S.-Q. Macromolecules2012, 45, (16), 6719-6732.

  7. Nuclear and Chloroplast DNA Variation Provides Insights into Population Structure and Multiple Origin of Native Aromatic Rices of Odisha, India

    PubMed Central

    Roy, Pritesh Sundar; Rao, Gundimeda Jwala Narasimha; Patnaik, Ashok; Patnaik, Sasank Sekhar Chyau; Jambhulkar, Nitiprasad Namdeorao; Sharma, Srigopal; Mohapatra, Trilochan

    2016-01-01

    A large number of short grain aromatic rice suited to the agro-climatic conditions and local preferences are grown in niche areas of different parts of India and their diversity is evolved over centuries as a result of selection by traditional farmers. Systematic characterization of these specialty rices has not been attempted. An effort was made to characterize 126 aromatic short grain rice landraces, collected from 19 different districts in the State of Odisha, from eastern India. High level of variation for grain quality and agronomic traits among these aromatic rices was observed and genotypes having desirable phenotypic traits like erect flag leaf, thick culm, compact and dense panicles, short plant stature, early duration, superior yield and grain quality traits were identified. A total of 24 SSR markers corresponding to the hyper variable regions of rice chromosomes were used to understand the genetic diversity and to establish the genetic relationship among the aromatic short grain rice landraces at nuclear genome level. SSR analysis of 126 genotypes from Odisha and 10 genotypes from other states revealed 110 alleles with an average of 4.583 and the Nei’s genetic diversity value (He) was in the range of 0.034–0.880 revealing two sub-populations SP 1 (membership percentage-27.1%) and SP 2 (72.9%). At the organelle genomic level for the C/A repeats in PS1D sequence of chloroplasts, eight different plastid sub types and 33 haplotypes were detected. The japonica (Nipponbare) subtype (6C7A) was detected in 100 genotypes followed by O. rufipogon (KF428978) subtype (6C6A) in 13 genotypes while indica (93–11) sub type (8C8A) was seen in 14 genotypes. The tree constructed based on haplotypes suggests that short grain aromatic landraces might have independent origin of these plastid subtypes. Notably a wide range of diversity was observed among these landraces cultivated in different parts confined to the State of Odisha. PMID:27598392

  8. Rice disease management under organic production

    USDA-ARS?s Scientific Manuscript database

    Interest in organic rice production has increased because of the increased market demand for organic rice. Texas organic rice acreage has constantly increased over the last decade, reaching 32,000 acres in 2012. Texas is now the leading state in organic rice production in the U.S. Organic rice is p...

  9. Organic Rice Production: Challenges and Opportunities

    USDA-ARS?s Scientific Manuscript database

    The market demand for organically produced rice has grown steadily with the majority of the acreage now being located in Texas and California. A wide range of organic products are marketed including conventional long and medium grain rice, aromatic or scented rice, rice with colored bran, and rice f...

  10. Micromechanical constitutive model for low-temperature constant strain rate deformation of limestones in the brittle and semi-brittle regime

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Guéguen, Y.

    2017-10-01

    Deformation and failure of rocks are important for a better understanding of many crustal geological phenomena such as faulting and compaction. In carbonate rocks among others, low-temperature deformation can either occur with dilatancy or compaction, having implications for porosity changes, failure and petrophysical properties. Hence, a thorough understanding of all the micromechanisms responsible for deformation is of great interest. In this study, a constitutive model for the low-temperature deformation of low-porosity (<20 per cent) carbonate rocks is derived from the micromechanisms identified in previous studies. The micromechanical model is based on (1) brittle crack propagation, (2) a plasticity law (interpreted in terms of dislocation glide without possibility to climb) for porous media with hardening and (3) crack nucleation due to dislocation pile-ups. The model predicts stress-strain relations and the evolution of damage during deformation. The model adequately predicts brittle behaviour at low confining pressures, which switches to a semi-brittle behaviour characterized by inelastic compaction followed by dilatancy at higher confining pressures. Model predictions are compared to experimental results from previous studies and are found to be in close agreement with experimental results. This suggests that microphysical phenomena responsible for the deformation are sufficiently well captured by the model although twinning, recovery and cataclasis are not considered. The porosity range of applicability and limits of the model are discussed.

  11. Mechanical behavior of limestone undergoing brittle-ductile transition: experiments and model

    NASA Astrophysics Data System (ADS)

    Nicolas, Aurélien; Fortin, Jérôme; Verberne, Berend; Regnet, Jean-Baptiste; Plümper, Oliver; Dimanov, Alexandre; Spiers, Christopher; Guéguen, Yves

    2017-04-01

    With increasing confining pressure, carbonate rocks can undergo the brittle-ductile transition at room temperature. In order to examine the brittle-ductile transition, we performed constant strain rate triaxial deformation and stress-stepping creep experiments on Tavel limestone (porosity 14.7%) under various conditions. The evolution of elastic wave velocities were recorded during each experiment and inverted to crack densities. The constant strain rate triaxial experiments were performed for varying confining pressure from 5 to 90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. The latter is characterized by dilatancy due to crack propagation, leading to a stress drop at failure. For Pc≥70 MPa, the behavior is semi-brittle with elastic compaction followed by inelastic compaction, then leading to dilatancy and eventual failure. The semi-brittle behavior is characterized by diffuse deformation. Inelastic compaction is due to intra-crystalline plasticity (dislocation motions and twinning) and micro-cracking. Constant strain rates experiments were modelled taking into account (1) crack propagation from pre-existing flaws, (2) plastic pore collapse and (3) crack nucleation from dislocation pile-ups. The obtained model predictions are in good agreement with our experimental data. Stress stepping (creep) experiments were performed in a range of confining pressures crossing the brittle-ductile transition (from 20 to 85 MPa). In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack nucleation and/or propagation. In the semi-brittle regime, the first steps are inelastic compactant due to plastic pore collapse. All following stress steps are dilatant as a result of crack nucleation and/or propagation. In general, our results show that the axial strain rate is always controlled by plastic phenomena, until the last step, during which the axial strain

  12. Micromechanics-Based Permeability Evolution in Brittle Materials at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Perol, Thibaut; Bhat, Harsha S.

    2016-08-01

    We develop a micromechanics-based permeability evolution model for brittle materials at high strain rates (≥ 100 s^{-1}). Extending for undrained deformation the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, we now relate the damage-induced strains to micro-crack aperture. We then use an existing permeability model to evaluate the permeability evolution. This model predicts both the percolative and connected regime of permeability evolution of Westerly Granite during triaxial loading at high strain rate. This model can simulate pore pressure history during earthquake coseismic dynamic ruptures under undrained conditions.

  13. The width of fault zones in a brittle-viscous lithosphere: Strike-slip faults

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1991-01-01

    A fault zone in an ideal brittle material overlying a very weak substrate could, in principle, consist of a single slip surface. Real fault zones have a finite width consisting of a number of nearly parallel slip surfaces on which deformation is distributed. The hypothesis that the finite width of fault zones reflects stresses due to quasistatic flow in the ductile substrate of a brittle surface layer is explored. Because of the simplicity of theory and observations, strike-slip faults are examined first, but the analysis can be extended to normal and thrust faulting.

  14. Branching in rice.

    PubMed

    Wang, Yonghong; Li, Jiayang

    2011-02-01

    Rice branching, including the formation of tillers and panicle branches, has been well investigated over the past several years because of its agronomic importance. A major breakthrough in elucidating rice tillering in the recent years was the discovery of strigolactones, a specific group of terpenoid lactones that can inhibit axillary bud outgrowth. Since that discovery, new tillering mutants, that is, dwarf 27 (d27) or dwarf14 (d14, also reported as d88 or htd2), have been identified with reduced strigolactone levels or strigolactone response. DWARF27 (D27) and DWARF14 (D14) probably act on strigolactone biosynthesis and signal transduction, respectively. Additionally, several genes controlling panicle branches have been identified recently. DEP1 and IPA1/WFP are essential dominant/semidominant regulators that determine rice panicle branches and thus affect the grain yields. More importantly, dep1 and ipa1 alleles have been shown to be applicable for the improvement of rice grain yields in molecular breeding. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Rice: chemistry and technology.

    USDA-ARS?s Scientific Manuscript database

    Rice has taken center stage this last decade, not only as an important provider of nourishment for the world’s population, but as a grain now recognized as having many unique nutritional and functional attributes with potential to be captured in a multitude of value-added food and non-food applicati...

  16. Exploring Japan through Rice.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    1998-01-01

    Explores the role of rice in Japanese culture by presenting historical background and teaching activities in a variety of categories, such as language, sociology, history, and contemporary politics. Suggests teachers create cross-cultural comparisons; for example, the role of corn in the United States. Provides a list of teacher resources. (CMK)

  17. Rice bran phytonutrients

    USDA-ARS?s Scientific Manuscript database

    The bran layer of the whole grain rice contains potential health-beneficial compounds. These include vitamin E homologs (tocopherols, tocotrienols), oryzanol fractions, simple phenolics and poly-phenolics. These are antioxidants that are believed to provide protection against diseases such as cancer...

  18. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice..., but any device or method which gives equivalent results may be used. 4 These limits do not apply to...

  19. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice..., but any device or method which gives equivalent results may be used. 4 These limits do not apply to...

  20. Rice Glycosyltransferase (GT) Phylogenomic Database

    DOE Data Explorer

    Ronald, Pamela

    The Ronald Laboratory staff at the University of California-Davis has a primary research focus on the genes of the rice plant. They study the role that genetics plays in the way rice plants respond to their environment. They created the Rice GT Database in order to integrate functional genomic information for putative rice Glycosyltransferases (GTs). This database contains information on nearly 800 putative rice GTs (gene models) identified by sequence similarity searches based on the Carbohydrate Active enZymes (CAZy) database. The Rice GT Database provides a platform to display user-selected functional genomic data on a phylogenetic tree. This includes sequence information, mutant line information, expression data, etc. An interactive chromosomal map shows the position of all rice GTs, and links to rice annotation databases are included. The format is intended to "facilitate the comparison of closely related GTs within different families, as well as perform global comparisons between sets of related families." [From http://ricephylogenomics.ucdavis.edu/cellwalls/gt/genInfo.shtml] See also the primary paper discussing this work: Peijian Cao, Laura E. Bartley, Ki-Hong Jung and Pamela C. Ronalda. Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases. Molecular Plant, 2008, 1(5): 858-877.

  1. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.

    PubMed

    Wang, Huadun; Sun, Rui; Cao, Yue; Pei, Wenxia; Sun, Yafei; Zhou, Hongmin; Wu, Xueneng; Zhang, Fang; Luo, Le; Shen, Qirong; Xu, Guohua; Sun, Shubin

    2015-12-01

    SIZ1-mediated SUMOylation regulates hormone signaling as well as abiotic and biotic stress responses in plants. Here, we investigated the expression profile of OsSIZ1 in rice using quantitative reverse transcription-PCR (qRT-PCR) and pOsSIZ1-GUS transgenic plants, and the function of OsSIZ1 in the responses to phosphate and nitrogen using a reverse genetics approach. OsSIZ1 is constitutively expressed throughout the vegetative and reproductive growth of rice, with stronger promoter activities in vascular bundles of culms. ossiz1 mutants had shorter primary roots and adventitious roots than wild-type plants, suggesting that OsSIZ1 is associated with the regulation of root system architecture. Total phosphorus (P) and phosphate (Pi) concentrations in both roots and shoots of ossiz1 mutants were significantly increased irrespective of Pi supply conditions compared with the wild type. Pi concentration in the xylem sap of ossiz1 mutants was significantly higher than that of the wild type under a Pi-sufficient growth regime. Total nitrogen (N) concentrations in the most detected tissues of ossiz1 mutants were significantly increased compared with the wild type. Analysis of mineral contents in ossiz1 mutants indicated that OsSIZ1 functions specifically in Pi and N responses, not those of other nutrients examined, in rice. Further, qRT-PCR analyses revealed that the expression of multiple genes involved in Pi starvation signaling and N transport and assimilation were altered in ossiz1 mutants. Together, these results suggested that OsSIZ1 may act as a regulator of the Pi (N)-dependent responses in rice.

  2. Occupational noise in rice mills.

    PubMed

    Prasanna Kumar, G V; Dewangan, K N; Sarkar, Amaresh; Kumari, Amrita; Kar, Banani

    2008-01-01

    A major occupational hazard for the workers in rice mills is the noise during the operation of various machines. A noise survey was conducted in the workrooms of eight renowned rice mills of the north-eastern region of India established during the period between 1980 and 1985. The rice mills were selected on the basis of the outcome of a walk-through noise survey involving several rice mills of the region. A noise survey map of each rice mill was drawn to identify the predominant noise sources and the causes of high noise in the workrooms of the rice mill. The sound-pressure level (SPL) in the workrooms of the rice mill varied from 78 to 92 dBA. The paddy cleaner, rubber roll sheller, compartment separator, rice cleaner, auxiliary sieve shaker and an electric motor without enclosure were found to be the predominant noise sources in the workrooms of the mill. The causes of high noise in the rice mills may be attributed to the use of a long flat belt drive, crank-and-pitman mechanism, absence of an electric motor enclosure, poor machine maintenance and inadequate acoustic design of the workroom of the rice mill. About 26% of the total labourers were found to be exposed to higher levels of noise than 85 dBA. Subjective response indicated that about 26% of the total labourers felt noise interferes in their work and about 49% labourers were of opinion that noise interferes with their conversation. Noise from machines in the rice mills was found to be the major occupational hazard for the rice mill workers. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level. To identify the predominant noise sources and their distributions in rice mills, to study the causes of high levels of noise in rice mills and to examine the response of the workers towards noise. A noise survey was conducted in eight renowned rice mills of the north-eastern region of India. The mills were

  3. Mutation of the Rice Narrow leaf1 Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport1[OA

    PubMed Central

    Qi, Jing; Qian, Qian; Bu, Qingyun; Li, Shuyu; Chen, Qian; Sun, Jiaqiang; Liang, Wenxing; Zhou, Yihua; Chu, Chengcai; Li, Xugang; Ren, Fugang; Palme, Klaus; Zhao, Bingran; Chen, Jinfeng; Chen, Mingsheng; Li, Chuanyou

    2008-01-01

    The size and shape of the plant leaf is an important agronomic trait. To understand the molecular mechanism governing plant leaf shape, we characterized a classic rice (Oryza sativa) dwarf mutant named narrow leaf1 (nal1), which exhibits a characteristic phenotype of narrow leaves. In accordance with reduced leaf blade width, leaves of nal1 contain a decreased number of longitudinal veins. Anatomical investigations revealed that the culms of nal1 also show a defective vascular system, in which the number and distribution pattern of vascular bundles are altered. Map-based cloning and genetic complementation analyses demonstrated that Nal1 encodes a plant-specific protein with unknown biochemical function. We provide evidence showing that Nal1 is richly expressed in vascular tissues and that mutation of this gene leads to significantly reduced polar auxin transport capacity. These results indicate that Nal1 affects polar auxin transport as well as the vascular patterns of rice plants and plays an important role in the control of lateral leaf growth. PMID:18562767

  4. Post-yield Strength and Dilatancy Evolution Across the Brittle-Ductile Transition in Indiana Limestone

    NASA Astrophysics Data System (ADS)

    Walton, G.; Hedayat, A.; Kim, E.; Labrie, D.

    2017-07-01

    An extensive uniaxial and triaxial compression testing programme was performed on Indiana Limestone to assess its behaviour across the brittle-ductile transition. Particular attention has been paid to the post-yield evolution of strength and dilatancy. Specimens tested at σ 3 = 30 MPa displayed a fully ductile failure mechanism, whereas specimens tested at σ 3 = 15 MPa and σ 3 = 20 MPa displayed transitional mechanisms, which were neither fully brittle nor fully ductile. Based on an examination of failure localization and dilatancy characteristics, the stress at which crack volumetric strain begins to increase was found to be an indicator of individual specimen ductility. In contrast to less porous rocks, the reversal of total volumetric strain did not coincide with the onset of axial strain nonlinearity under unconfined conditions. With respect to post-yield strength, a major change in the rate of friction mobilization relative to plastic shear strain was observed across the brittle-ductile transition. The dilatancy of the specimens was also found to undergo a major change, with the plastic shear strains to mobilization of peak dilatancy in the ductile regime being approximately one order of magnitude higher than in the brittle regime.

  5. The effect of crack instability/stability on fracture toughness of brittle materials

    SciTech Connect

    Baratta, F.I.

    1997-12-31

    This paper summarizes three recent experimental works coauthored by the present author regarding the effect of crack instability/stability on fracture toughness, and also includes the necessary formulae for predicting stability. Two recent works have shown that unstable crack extension resulted in apparent increases in fracture toughness compared to that determined during stable crack growth. In the first investigation a quasi-brittle polymer, polymethylmethacrylate, was examined. In the second, a more brittle metallic material, tungsten, was tested. In both cases the transition from unstable to stable behavior was predicted based on stability analyses. The third investigation was conducted on a truly brittle ceramic material, hot pressed silicon nitride. These three papers showed that fracture toughness test results conducted on brittle materials vary according to whether the material fractures in an unstable or stable manner. Suggestions for achieving this important yet difficult phenomenon of stable crack growth, which is necessary when determining the fracture toughness variation occurring during unstable/stable crack advance, are presented, as well as recommendations for further research.

  6. Brittle fracture phase-field modeling of a short-rod specimen

    SciTech Connect

    Escobar, Ivana; Tupek, Michael R.; Bishop, Joseph E.

    2015-09-01

    Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.

  7. Brittle Fracture of 2D MoSe2

    SciTech Connect

    Yang, Yingchao; Li, Xing; Wen, Minru; Hacopian, Emily; Chen, Weibing; Gong, Yongji; Zhang, Jing; Li, Bo; Zhou, Wu; Ajayan, Pulickel M.; Chen, Qing; Zhu, Ting; Lou, Jun

    2016-11-03

    An in situ quantitative tensile testing platform is developed in this paper to enable the uniform in-plane loading of a freestanding membrane of 2D materials inside a scanning electron microscope. The in situ tensile testing reveals the brittle fracture of large-area MoSe2 crystals and measures their fracture strength for the first time.

  8. A statistical, micromechanical theory of the compressive strength of brittle materials

    NASA Technical Reports Server (NTRS)

    Adams, M.; Sines, G.

    1978-01-01

    A general theory of the compressive strength of brittle materials is presented. This theory proposes that failure is brought about by structural weakening from accumulated crack damage which increases with the stress level. The statistics of the flaw distribution and the mechanism of crack initiation and extension are important. A sample calculation using the theory is given to demonstrate its application

  9. A study of mechanical processing damage in brittle materials. Progress report

    SciTech Connect

    Khuri-Yakub, B.T.

    1994-11-01

    During the last year, the authors have continued work on the ultrasonic characterization of machining-induced cracks and residual stresses in brittle materials. Techniques for the analysis of cracks and surface residual stress are being developed simultaneously. Finally, an acoustic microscope is being developed for the study of porosity and velocity variations in green ceramics.

  10. Development of material model for assessment of brittle cracking behavior of plexiglas

    NASA Astrophysics Data System (ADS)

    Khan, A. J.; Iqbal, N.; Saeed, H. A.; Tarar, W. A.

    2016-08-01

    The objective of this study is to investigate the brittle cracking behavior of Plexiglas material when subjected to indentation loading. Indentation tests were conducted on Modified Vickers testing machine to acquire the experimental data in the form of load-displacement curve. Several mechanical properties such as hardness, yielding stress and fracture toughness have been ascertained from the analysis of the experimental data. The experimental data then used to create a mathematical model of Plexiglas for its brittle cracking behavior with indentation loading. Furthermore, a numerical simulation based study was carried out to simulate the brittle cracking in Plexiglas plate when subjected to indentation loading. The simulations were performed in the FE solver Abaqus. The brittle cracking model in Abaqus/Explicit is used which determines the required force and displacement to produce crack in Plexiglas. Finally a comparison of simulation results was made to the experimental data to validate the FEA procedures and accuracy of predictions. The numerical predictions of load-displacement curve found remarkably consistent with experimental results.

  11. A statistical, micromechanical theory of the compressive strength of brittle materials

    NASA Technical Reports Server (NTRS)

    Adams, M.; Sines, G.

    1978-01-01

    A general theory of the compressive strength of brittle materials is presented. This theory proposes that failure is brought about by structural weakening from accumulated crack damage which increases with the stress level. The statistics of the flaw distribution and the mechanism of crack initiation and extension are important. A sample calculation using the theory is given to demonstrate its application

  12. Children with Brittle Bones: An Examination of Their Educational Needs and Progress.

    ERIC Educational Resources Information Center

    Alston, Jean

    1983-01-01

    A study of the educational achievements of 40 children (5-16 years old) with osteogenesis imperfecta, brittle bone disease, revealed no differences between Ss and control Ss without the condition in terms of nonverbal intelligence. Differences were found, however, in writing speed. Inteviews with children, teachers, and parents revealed…

  13. Posterior tunica vasculosa lentis and "brittle star" of persistent fetal vasculature.

    PubMed

    Pellegrini, Marco; Shields, Carol L; Arepalli, Sruthi; Shields, Jerry A

    2014-11-19

    A 17-month-old girl referred for a suspected ciliary body medulloepithelioma was found to have persistent fetal vasculature. Fluorescein angiography showed perfused hyaloid artery posterior tunica vasculosa lentis with brittle star appearance and nonperfused anterior pupillary membrane. Ultrasound biomicroscopy confirmed absence of iris or ciliary body solid tumor.

  14. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    SciTech Connect

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was {minus}5{degree}F and, with the addition of a 30{degree}F safety factor, the minimum safe operating temperature was determined to be 25{degree}F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50{degree}F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

  15. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    SciTech Connect

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was [minus]5[degree]F and, with the addition of a 30[degree]F safety factor, the minimum safe operating temperature was determined to be 25[degree]F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50[degree]F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack.

  16. Children with Brittle Bones: An Examination of Their Educational Needs and Progress.

    ERIC Educational Resources Information Center

    Alston, Jean

    1983-01-01

    A study of the educational achievements of 40 children (5-16 years old) with osteogenesis imperfecta, brittle bone disease, revealed no differences between Ss and control Ss without the condition in terms of nonverbal intelligence. Differences were found, however, in writing speed. Inteviews with children, teachers, and parents revealed…

  17. Accelerated Solvent Extraction of Insecticides from Rice Hulls, Rice Bran, and Polished Rice Grains.

    PubMed

    Teló, Gustavo Mack; Senseman, Scott Allen; Marchesan, Enio; Camargo, Edinalvo Rabaioli; Carson, Katherine

    2017-03-01

    Analysis of pesticide residues in irrigated rice grains is important for food security. In this study, we analyzed accelerated solvent extraction (ASE) conditions for the extraction of thiamethoxam and chlorantraniliprole insecticides from rice hulls, rice bran, and polished rice grains. Several variables, including extraction solvent, extraction temperature, extraction pressure, cell size, static extraction time, and sample concentration, were investigated. The average recoveries of the three matrixes were between 89.7 and 109.7% at the fortification level of 0.75 mg/kg. The optimum ASE operating conditions were acetonitrile (100%) as extraction solvent, extraction temperature of 75°C for rice hulls and 100°C for rice bran and polished rice grains, extraction cell pressure of 10.3 MPa, 22 mL cell size, and two extraction cycles. The total extraction time was approximately 25 min. The extracted volume was evaporated to dryness and the residues were redissolved in 2 mL acetonitrile after 1 min of vortex-shaking. Thiamethoxam and chlorantraniliprole were analyzed by ultra-HPLC with tandem MS. In conclusion, ASE in rice hulls, rice bran, and polished rice grains offers the possibility of a fast and simple method for obtaining a quantitative extraction of the studied pesticides.

  18. Frying of rice flour dough strands containing gum Arabic: texture, sensory attributes and microstructure of products.

    PubMed

    Shanthilal, J; Bhattacharya, Suvendu

    2017-04-01

    The effects of rice flour (50-56%, w/w) and gum Arabic (0-5%, w/w) on the physical, sensory and structural features of the fried dough strands were investigated. Up to 25.8% reduction in oil was possible by the incorporation of gum Arabic. The wide variations in failure force (13.8-25.3 N) and failure strain (11.0-28.6%) indicated the formation of snacks varying in texture from a soft-to-bite brittle product to a hard-to-eat less brittle sample. The snacks possessed a porous microstructure with air cells, pores and vacuoles; the cell walls were more than 100 μm in thickness. The textural parameters like failure force, failure energy and failure stress behaved in a similar manner in the principal component analysis biplot. High moisture content in the dough decreased the sensory acceptance of the fried snacks. The high desirability index of 0.9 could be achieved with a high level of rice flour (56%, w/w) while gum Arabic content was between 3.50 and 3.75% (w/w).

  19. Three-dimensional failure envelopes and the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    SchöPfer, Martin P. J.; Childs, Conrad; Manzocchi, Tom

    2013-04-01

    Rocks deformed at low confining pressure are brittle, meaning that after peak stress the strength decreases to a residual value determined by frictional sliding. The difference between the peak and residual value is the stress drop. At high confining pressure, however, no stress drop occurs. The transition pressure at which no loss in strength occurs is a possible definition of the brittle-ductile transition. Here, we show, using numerical rock deformation, how this type of brittle-ductile transition emerges from a simple model in which rock is idealized as an assemblage of cemented spherical unbreakable grains. Three-dimensional failure and residual strength envelopes determined for this model material illustrate that the brittle-ductile transition is a smoothly varying, mean stress-dependent function in principal stress space. Neither the Mohr-Coulomb nor the Drucker-Prager failure criterion, which are the most commonly used empirical laws in rock and soil mechanics, respectively, adequately describes the dependence of peak strength and the brittle-ductile transition on the intermediate stress (or Lode angle). A semi-quantitative comparison between the modeled peak strength envelope with a selection of existing polyaxial rock data shows that the emergent intermediate stress dependence of strength in bonded particle models is comparable to that observed in rock. Deformation of particle models in which bond shear failure is inhibited illustrates that the non-linear pressure dependence of strength (concave failure envelopes) is, at high mean stress, the result of microscopic shear failure, a result consistent with earlier two-dimensional numerical multiple-crack simulations.

  20. How does tooth cusp radius of curvature affect brittle food item processing?

    PubMed Central

    Berthaume, Michael A.; Dumont, Elizabeth R.; Godfrey, Laurie R.; Grosse, Ian R.

    2013-01-01

    Tooth cusp sharpness, measured by radius of curvature (RoC), has been predicted to play a significant role in brittle/hard food item fracture. Here, we set out to test three existing hypotheses about this relationship: namely, the Blunt and Strong Cusp hypotheses, which predict that dull cusps will be most efficient at brittle food item fracture, and the Pointed Cusp hypothesis, which predicts that sharp cusps will be most efficient at brittle food item fracture using a four cusp bunodont molar. We also put forth and test the newly constructed Complex Cusp hypothesis, which predicts that a mixture of dull and sharp cusps will be most efficient at brittle food item fracture. We tested the four hypotheses using finite-element models of four cusped, bunodont molars. When testing the three existing hypotheses, we assumed all cusps had the same level of sharpness (RoC), and gained partial support for the Blunt Cusp hypotheses. We found no support for the Pointed Cusp or Strong Cusp hypotheses. We used the Taguchi sampling method to test the Complex Cusps hypothesis with a morphospace created by independently varying the radii of curvature of the four cusps in the buccolingual and mesiodistal directions. The optimal occlusal morphology for fracturing brittle food items consists of a combination of sharp and dull cusps, which creates high stress concentrations in the food item while stabilizing the food item and keeping the stress concentrations in the enamel low. This model performed better than the Blunt Cusp hypothesis, suggesting a role for optimality in the evolution of cusp form. PMID:23635495

  1. Role of fluid overpressures in crustal strength and the form of the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Suppe, J.

    2014-12-01

    The classic crustal strength-depth model of Brace and Kolhstedt (1980) (see figure) based on experimental rock mechanics depends in the brittle regime on the critical assumption of linearly increasing hydrostatic pore-fluid pressures. This leads to a predicted linearly increasing brittle strength that is well established based on deep borehole stress measurements in crystalline crust. In contrast, fluid overpressures are widely documented in orogenic belts based on borehole data, seismic velocity analysis and analysis of veins, in some cases showing complex fault-valve pressure fluctuations between lithostatic and hydrostatic. Typical observed overpressure-depth relationships predict a brittle crustal strength that is approximately constant with depth in contrast with the classic model. This constant-strength behavior below the fluid-retention depth (ZFRD in figure) has been confirmed using deep borehole stress and fluid-pressure measurements (Suppe, 2014). Recent ductile-plastic modeling of disequilibrium compaction suggests that pressure solution promotes further increases in overpressure and weakening, promoting a very prolonged low-strength brittle-ductile transition. Overpressured conditions can be inferred to exist over a substantial fraction of crustal thickness, spanning the brittle-ductile transition, in several tectonic environments, most straightforwardly in shale-rich clastic sedimentary basins built to sea level on oceanic or highly thinned continental crust such as the US Gulf Coast and Niger Delta. These thick accumulations commonly deform into shale-rich plate boundary mountain belts (e.g. Bangladesh/Miyanmar, Makran, Trinidad/Barbados, Gulf of Alaska, southern Taiwan and New Zealand). There is deep geophysical evidence for near lithostatic pore-fluid pressures existing to depths of 20-30km based on Vp, Vs, Vp/Vs and Q observations. We present active examples from Taiwan and New Zealand, combining borehole data and seismic tomography.

  2. Amended final report on the safety assessment of Oryza Sativa (rice) Bran Oil, Oryza Sativa (rice) Germ Oil, Rice Bran Acid,Oryza Sativa (rice) Bran Wax, Hydrogenated Rice Bran Wax, Oryza Sativa (rice)Bran Extract, Oryza Sativa (rice) Extract, Oryza Sativa (rice) Germ Powder, Oryza Sativa (rice) Starch, Oryza Sativa (rice) Bran, Hydrolyzed Rice Bran Extract, Hydrolyzed Rice Bran Protein, Hydrolyzed Rice Extract, and Hydrolyzed Rice Protein.

    PubMed

    2006-01-01

    This report addresses the safety of cosmetic ingredients derived from rice, Oryza sativa. Oils, Fatty Acids, and Waxes: Rice Bran Oil functions in cosmetics as a conditioning agent--occlusive in 39 formulations across a wide range of product types. Rice Germ Oil is a skin-conditioning agent--occlusive in six formulations in only four product categories. Rice Bran Acid is described as a surfactant-cleansing agent, but was not in current use. Rice Bran Wax is a skin-conditioning agent--occlusive in eight formulations in five product categories. Industry did not directly report any use of Rice Bran Wax. Hydrogenated Rice Bran Wax is a binder, skin-conditioning agent--occlusive, and viscosity-increasing agent--nonaqueous in 11 formulations in six product categories. Rice Bran Oil had an oral LD50 of > 5 g/kg in white rats and Rice Wax had an oral LD50 of > 24 g/kg in male mice. A three-generation oral dosing study reported no toxic or teratologic effects in albino rats fed 10% Rice Bran Oil compared to a control group fed Peanut Oil. Undiluted Rice Bran Oil, Rice Germ Oil, and Hydrogenated Rice Bran Wax were not irritants in animal skin tests. Rice Bran Oil was not a sensitizer. Rice Bran Oil, Rice Germ Oil, Rice Wax, and Hydrogenated Rice Bran Wax were negative in ocular toxicity assays. A mixture of Rice Bran Oil and Rice Germ Oil had a ultraviolet (UV) absorption maximum at 315 nm, but was not phototoxic in a dermal exposure assay. Rice Bran Oil was negative in an Ames assay, and a component, gamma-oryzanol, was negative in bacterial and mammalian mutagenicity assays. Rice oils, fatty acids, and waxes were, at most, mildly irritating in clinical studies. Extracts: Rice Bran Extract is used in six formulations in four product categories. Rice Extract is a hair-conditioning agent, but was not in current use. Hydrolyzed Rice Extract is used in four formulations and current concentration of use data were provided for other uses. Hydrolyzed Rice Bran Extract, described

  3. Effect of gluten, egg and soy proteins on the rheological and thermo-mechanical properties of wholegrain rice flour.

    PubMed

    Pătraşcu, Livia; Banu, Iuliana; Vasilean, Ina; Aprodu, Iuliana

    2017-03-01

    The effect of protein addition on the rheological, thermo-mechanical and baking properties of wholegrain rice flour was investigated. Gluten, powdered eggs and soy protein concentrate were first analyzed in terms of rheological properties, alone and in admixture with rice flour. The temperature ramp tests showed clear differences in the rheological behavior of the batters supplemented with different proteins. The highest thermal stability was observed in case of soy protein samples. Frequency sweep tests indicated significant improvements of the rheological properties of rice flour supplemented with 15% gluten or soy proteins. The thermo-mechanical tests showed that, due to the high fat contents and low level of free water, the dough samples containing powdered eggs exhibited the highest stability. Addition of gluten resulted in a significant decrease of the dough development time, whereas samples with powdered eggs and soy proteins were more difficult to hydrate. The incorporation of proteins into the rice flour-based dough formulations significantly affected starch behavior by decreasing the peak consistency values. Concerning the quality of the rice flour-based breads, soy protein addition resulted in lighter crumb color and increased texture attributes, samples with gluten had better resilience and adhesiveness, whereas breads with egg protein were less brittle.

  4. Linking large-scale bean-rice rotation with increased rice yield in remote sensing experiment

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    In this study, the two different treatments are continuous rice and rice in rotation with bean, and the response is the normalized difference vegetation index (NDVI) of rice or the rice yield. This study is to determine whether the rice in rotation with bean results in a significant effect—increasing the rice yield. In this completely randomized experiment, we randomly assigned 40 samples to the continuous rice and 40 samples to the rice in rotation with bean. Then the rice NDVIs of all 80 samples were computed. Because the statistical significance of the rice NDVI of the rotation treatment was observed in the experiment, we can be confident in the conclusion that it was the difference in treatments that resulted in the difference in the rice yield. That is, we can be confident that a cause-and-effect relationship between the rice in rotation with bean and the rice yield increase has been found.

  5. Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice.

    PubMed

    Wang, Nan; Xing, Yadi; Lou, Qijin; Feng, Ping; Liu, Song; Zhu, Meidan; Yin, Wuzhong; Fang, Shunran; Lin, Yan; Zhang, Tianquan; Sang, Xianchun; He, Guanghua

    2017-02-01

    Plant hormones coordinate a plant's responses to environmental stimuli and the endogenous developmental programs for cell division and elongation. Brassinosteroids are among the most important of these hormones in plant development. Recently, the ubiquitin-26S-proteasome system was identified to play a key role in hormone biology. In this study, we analyzed the function of a rice (Oryza sativa) gene, DSG1, which encodes a U-box E3 ubiquitin ligase. In the dsg1 mutant (an allelic mutant of tud1), the lengths of the roots, internodes, panicles, and seeds were shorter than that in the wild-type, which was due to defects in cell division and elongation. In addition, the leaves of the dsg1 mutant were wider and curled. The DSG1 protein is nuclear- and cytoplasm-localized and does not show tissue specificity in terms of its expression, which occurs in roots, culms, leaves, sheaths, and spikelets. The dsg1 mutant is less sensitive to brassinosteroid treatment than the wild-type, and DSG1 expression is negatively regulated by brassinosteroids, ethylene, auxin, and salicylic acid. These results demonstrate that DSG1 positively regulates cell division and elongation and may be involved in multiple hormone pathways.

  6. Predicting brittle zones in the Bakken Formation using well logs and seismic data

    NASA Astrophysics Data System (ADS)

    Beecher, Michael E.

    The oil-in-place estimate for the Bakken Formation has varied from 10 billion barrels in 1974 to 503 billion barrels in 1999. However, only a small fraction of this estimate is recoverable due to the formation having very low porosity and permeability. Implementation of hydraulic fracture stages along horizontal wells in the Bakken has been productive. Recently, identification of zones where the formation is brittle has been used to improve hydraulic fracture stimulation efficiency in an effort to improve production. The first goal for this thesis is to identify a correlation between brittleness and production data by using elastic moduli and normalized production values. The hypothesis for this study is that rock with a low Poisson's ratio and high Young's modulus will be more brittle and will ultimately produce a higher amount of oil than more ductile rock. The next goal was to create and test a method to identify brittle zones with high normalized production in a 3D seismic data set without well control using producing wells from outside the survey with dipole sonic logs from the Bakken Formation. Correlations between normalized production values and elastic moduli were subsequently identified. Cumulative first-four-months' production was found to have the best correlation to the elastic moduli. Correlations of normalized production values and Poisson's ratio showed that sections of the middle Bakken with low Poisson's ratio yield higher normalized production values. Correlations of Young's modulus and normalized production showed that middle Bakken zones with low Young's modulus have higher normalized production values. However, when using additional wells that were not used for well-to-3D seismic correlations, the correlation shows that higher Young's modulus yield higher normalized production. The correlation with additional wells best represented the data and agrees with the initial hypothesis. Brittle zones were mapped in a 3D seismic data set by

  7. Brittle to semibrittle transition in quartz sandstone: Energetics and crack interaction

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Hirth, G.

    2016-12-01

    Using quantitative microscopy, we estimated the energy partitioning of different deformation mechanisms in the brittle faulting and semibrittle faulting regimes in quartz sandstone deformed at Pe to 175 MPa and T to 900°C. (1) Our results show that the energy input is fully accounted by a sum of fracture surface energy (US) and frictional energy along shear bands at all PT tested. This indicates that, for both regimes, the deformation away from the macroscopic fault is accommodated primarily by grain-scale brittle mechanisms with little contribution from dislocation mechanisms, supporting the findings from previous studies. (2) Our analysis shows that US is much greater in the semibrittle regime than estimated in the brittle regime; however, the relative importance of different mechanisms (intragranular tensile fracture, intergranular shear band, and grain crushing) remains similar between the two regimes. This relationship, together with the temperature dependence of yield strength observed, indicates that the increase in US with increasing PT results from the operation of subcritical microcracking over a longer experiment time (strain) in these mechanisms. These results suggest that the growth of brittle damage (Us) is influenced by the timescale over which thermally-activated cataclastic mechanisms occur. (3) Our results suggest that shear band is the primary process governing the shape of stress-strain curves through frictionally dissipating 95% of plastic energy. Our findings illuminate an important role of shear bands on the constitutive behavior of granular rocks, in addition to influencing fluid transport properties. On the basis of mapping microfractures over a range of length scales and comparing with models of crack interaction, we determined a critical geometry (the ratio of fracture spacing to length) for crack interaction leading to shear localization. Our results suggest that the interaction of mm-scale shear fractures is responsible for the

  8. Role of Brittle Behaviour of Soft Calcarenites Under Low Confinement: Laboratory Observations and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Andriani, Gioacchino Francesco

    2017-07-01

    The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly

  9. A unified phase-field theory for the mechanics of damage and quasi-brittle failure

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Ying

    2017-06-01

    Being one of the most promising candidates for the modeling of localized failure in solids, so far the phase-field method has been applied only to brittle fracture with very few exceptions. In this work, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics. Specifically, the crack phase-field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context. The energy dissipation functional due to crack evolution and the stored energy functional of the bulk are characterized by a crack geometric function of polynomial type and an energetic degradation function of rational type, respectively. Standard arguments of thermodynamics then yield the macroscopic balance equation coupled with an extra evolution law of gradient type for the crack phase-field, governed by the aforesaid constitutive functions. The classical phase-field models for brittle fracture are recovered as particular examples. More importantly, the constitutive functions optimal for quasi-brittle failure are determined such that the proposed phase-field theory converges to a cohesive zone model for a vanishing length scale. Those general softening laws frequently adopted for quasi-brittle failure, e.g., linear, exponential, hyperbolic and Cornelissen et al. (1986) ones, etc., can be reproduced or fit with high precision. Except for the internal length scale, all the other model parameters can be determined from standard material properties (i.e., Young's modulus, failure strength, fracture energy and the target softening law). Some representative numerical examples are presented for the validation. It is found that both the internal length scale and the mesh size have little influences on the overall global responses, so long as the former can be well resolved by sufficiently fine mesh. In particular, for the benchmark tests of concrete the numerical results of load versus displacement

  10. Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Huang, Yan-Hua; Ranjith, P. G.; Jiao, Yu-Yong; Ji, Jian

    2015-12-01

    Based on experimental results of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC^{2D}). Then, the validation of the simulated models were cross checked with the experimental results of brittle sandstone containing three parallel fissures under uniaxial compression. The simulated results agreed very well with the experimental results, including the peak strength, peak axial strain, and ultimate failure mode. Using the same micro-parameters, the numerical models containing a new geometry of three fissures are constructed to investigate the fissure angle on the fracture mechanical behavior of brittle sandstone under uniaxial compression. The strength and deformation parameters of brittle sandstone containing new three fissures are dependent to the fissure angle. With the increase of the fissure angle, the elastic modulus, the crack damage threshold, and the peak strength of brittle sandstone containing three fissures firstly increase and secondly decrease. But the peak axial strain is nonlinearly related to the fissure angle. In the entire process of deformation, the crack initiation and propagation behavior of brittle sandstone containing three fissures under uniaxial compression are investigated with respect to the fissure angle. Six different crack coalescence modes are identified for brittle sandstone containing three fissures under uniaxial compression. The influence of the fissure angle on the length of crack propagation and crack coalescence stress is evaluated. These investigated conclusions are very important for ensuring the stability and safety of rock engineering with intermittent structures.

  11. Maximum outcrossing rate and genetic compatibility between red rice (Oryza sativa) biotypes and Clearfield™ rice

    USDA-ARS?s Scientific Manuscript database

    Although red rice can be selectively controlled with imazethapyr in ClearfieldTM (CL) rice, the transfer of the imazethapyr-resistant gene from CL rice to red rice is an ecological risk. Previous experiments indicated that flowering synchronization and genetic compatibility between cultivated rice a...

  12. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    USDA-ARS?s Scientific Manuscript database

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  13. Arsenic uptake in organic rice production systems

    USDA-ARS?s Scientific Manuscript database

    Arsenic in rice is known to be a problem in some rice-producing countries that have high levels of inorganic arsenic naturally occurring in water resources. However, it was never considered an issue for USA produced rice until international market surveys were published, indicating some USA rice sam...

  14. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    NASA Astrophysics Data System (ADS)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to

  15. Material brittle fracture owing to thermoelastic effect of high energy nuclear particle

    SciTech Connect

    Kalinichenko, A.I.

    1996-12-31

    Rapid arising of the overheated domain near very heavy ion path (near fast neutron collision point) in solid results in generation of cylinder (spherical) thermoelastic stress wave. The latter can exceed the material strength and cause brittle fracture at going out on the free body interface. Size and shape of an erosion zone as well as erosion rate for both sorts of primary nuclear particles are found. The role of wave attenuation is discussed. The products of erosion are of macroscopic scaly particles having the typical thickness (1 {divided_by} 5) {center_dot} 10{sup -7} cm and mass 10{sup -18} {divided_by} 10{sup -17} g. Such ion (neutron)-stimulated thermoacoustic grinding can take place in radioactive materials with fissionable addenda. The consideration of the brittle destruction under cosmic ray bombardment may be essential for equipment of deep space missions.

  16. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    SciTech Connect

    Wang, Haoran; Chew, Huck Beng; Wang, Xueju; Xia, Shuman

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  17. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale

    NASA Astrophysics Data System (ADS)

    Perez Altimar, Roderick

    Brittleness is a key characteristic for effective reservoir stimulation and is mainly controlled by mineralogy in unconventional reservoirs. Unfortunately, there is no universally accepted means of predicting brittleness from measures made in wells or from surface seismic data. Brittleness indices (BI) are based on mineralogy, while brittleness average estimations are based on Young's modulus and Poisson's ratio. I evaluate two of the more popular brittleness estimation techniques and apply them to a Barnett Shale seismic survey in order to estimate its geomechanical properties. Using specialized logging tools such as elemental capture tool, density, and P- and S wave sonic logs calibrated to previous core descriptions and laboratory measurements, I create a survey-specific BI template in Young's modulus versus Poisson's ratio or alternatively lambdarho versus murho space. I use this template to predict BI from elastic parameters computed from surface seismic data, providing a continuous estimate of BI estimate in the Barnett Shale survey. Extracting lambdarho-murho values from microseismic event locations, I compute brittleness index from the template and find that most microsemic events occur in the more brittle part of the reservoir. My template is validated through a suite of microseismic experiments that shows most events occurring in brittle zones, fewer events in the ductile shale, and fewer events still in the limestone fracture barriers. Estimated ultimate recovery (EUR) is an estimate of the expected total production of oil and/or gas for the economic life of a well and is widely used in the evaluation of resource play reserves. In the literature it is possible to find several approaches for forecasting purposes and economic analyses. However, the extension to newer infill wells is somewhat challenging because production forecasts in unconventional reservoirs are a function of both completion effectiveness and reservoir quality. For shale gas reservoirs

  18. Forming of Brittle Materials—A New and Valuable Application of Diode Lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Bammer, F.; Schumi, T.; Holzinger, B.

    2010-10-01

    Laser assisted bending is a new and versatile method to allow simple bending of brittle materials. Laser technology is used to illuminate and heat the forming zone. Only a laser allows directing the power on a narrow area. Further there is no unnecessary heating of other parts of the bending equipment, no wear of the tool and, if properly done, no damage of the surface of the metal. We describe now the integration of 200 W-diode-laser-bars on micro-channel coolers that where installed into the lower tool of the bending press. The solution allows any required bending length by a combination of several bending tools with integrated lasers. The optical power of 16 kW per meter bending length allows achieving the temperature necessary to bend brittle sheet metals within seconds.

  19. Micromechanics based permeability evolution in brittle materials at high strain rates

    NASA Astrophysics Data System (ADS)

    Perol, T.; Bhat, H.

    2013-12-01

    We develop a micro-mechanics based permeability evolution model for brittle materials that are strain rate sensitive. Extending the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, developed by Bhat et al. (2012) we now relate the damage related strains (plastic strains) to calculate the evolution of micro-crack aperture. We then use the permeability model developed by Gueguen and Dienes (1989) and Simpson et al. (2001) to evaluate the permeability evolution. Permeability evolution computed using this model is shown to be in very good agreement with experimental results. Pore pressure evolution in a damaged medium, due to waste water injection for example, is then computed and we show that spatially variable permeability plays a major role in determining the pore pressure excess in the surrounding medium.

  20. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    NASA Astrophysics Data System (ADS)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  1. Crack Arrest in Brittle Ceramics Subjected to Thermal Shock and Ablation

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Wei; Yu, He-Long; Tang, Hong-Xiang; Feng, Xue

    2014-09-01

    Ceramics are suitable for high temperature applications, especially for aerospace materials. When serving in high temperature environments, ceramics usually have to deal with the challenge of both thermal shock and ablation. We report the crack arrest in brittle ceramics during thermal shock and ablation. In our experiment, the specimens of Al2O3 are subjected to oxygen-propane flame heating until the temperature arises up to 1046°C and then are cooled down in air. The crack occurs, however, it does not propagate when arrested by the microstructures (e.g., micro-bridges) of the crack tip. Such micro-bridge enhances the toughness of the brittle ceramics and prevents the crack propagation, which provides a hint for design of materials against the thermal shock.

  2. Linking Nanoscales and Dislocation Shielding to the Ductile-Brittle Transition of Silicon

    NASA Astrophysics Data System (ADS)

    Hintsala, Eric; Teresi, Claire; Gerberich, William W.

    2016-12-01

    The ductile-brittle transition of nano/microscale silicon is explored at low-temperature, high stress conditions. A pathway to eventual mechanism maps describing this ductile-brittle transition behavior using sample size, strain rate, and temperature is outlined. First, a discussion of variables controlling the BDT in silicon is given and discussed in the context of development of eventual modeling that could simultaneously incorporate all their effects. For description of energy dissipation by dislocation nucleation from a crack tip, three critical input parameters are identified: the effective stress, activation volume, and activation energy for dislocation motion. These are discussed individually relating to the controlling variables for the BDT. Lastly, possibilities for measuring these parameters experimentally are also described.

  3. Brittle and semibrittle creep of Tavel limestone deformed at room temperature

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Regnet, J. B.; Verberne, B. A.; Plümper, O.; Dimanov, A.; Spiers, C. J.; Guéguen, Y.

    2017-06-01

    Deformation and failure mode of carbonate rocks depend on the confining pressure. In this study, the mechanical behavior of a limestone with an initial porosity of 14.7% is investigated at constant stress. At confining pressures below 55 MPa, dilatancy associated with microfracturing occurs during constant stress steps, ultimately leading to failure, similar to creep in other brittle media. At confining pressures higher than 55 MPa, depending on applied differential stress, inelastic compaction occurs, accommodated by crystal plasticity and characterized by constant ultrasonic wave velocities, or dilatancy resulting from nucleation and propagation of cracks due to local stress concentrations associated with dislocation pileups, ultimately causing failure. Strain rates during secondary creep preceding dilative brittle failure are sensitive to stress, while rates during compactive creep exhibit an insensitivity to stress indicative of the operation of crystal plasticity, in agreement with elastic wave velocity evolution and microstructural observations.

  4. Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals

    SciTech Connect

    Sinha, Tanushree; Kulkarni, Yashashree

    2014-11-14

    Nanotwinned metals have opened exciting avenues for the design of high strength and high ductility materials. In this work, we investigate crack propagation along coherent twin boundaries in nanotwinned metals using molecular dynamics. Our simulations reveal that alternating twin boundaries exhibit intrinsic brittleness and ductility owing to the opposite crystallographic orientations of the adjoining twins. This is a startling consequence of the directional anisotropy of an atomically sharp crack along a twin boundary that favors cleavage in one direction and dislocation emission from the crack tip in the opposite direction. We further find that a blunt crack exhibits ductility in all cases albeit with very distinct deformation mechanisms and yield strength associated with intrinsically brittle and ductile coherent twin boundaries.

  5. Prediction of material strength and fracture of brittle materials using the SPHINX smooth particle hydrodynamics code

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Stellingwwerf, R.F.

    1995-12-31

    The design of many devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics that are used in armor packages; glass that is used in windshields; and rock and concrete that are used in oil wells. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, they did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.

  6. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  7. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    PubMed

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  8. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    NASA Astrophysics Data System (ADS)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  9. Overcoming the brittleness of glass through bio-inspiration and micro-architecture.

    PubMed

    Mirkhalaf, M; Dastjerdi, A Khayer; Barthelat, F

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  10. Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Baud, Patrick; Vinciguerra, Sergio; Wong, Teng-Fong

    2011-06-01

    An understanding of how tuff deforms and fails is of importance in the mechanics of volcanic eruption as well as geotechnical and seismic applications related to the integrity of tuff structures and repositories. Previous rock mechanics studies have focused on the brittle strength. We conducted mechanical tests on nominally dry and water-saturated tuff samples retrieved from the Colli Albani drilling project, in conjunction with systematic microstructural observations on the deformed samples so as to elucidate the micromechanics of brittle failure and inelastic compaction. The phenomenological behavior was observed to be qualitatively similar to that in a porous sedimentary rock. Synthesizing published data, we observe a systematic trend for both uniaxial compressive strength and pore collapse pressure of nonwelded tuff to decrease with increasing porosity. To interpret the compaction behavior in tuff, we extended the cataclastic pore collapse model originally formulated for a porous carbonate rock to a dual porosity medium made up of macropores and micropores or microcracks.

  11. Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff

    NASA Astrophysics Data System (ADS)

    Baud, P.; Zhu, W.; Vinciguerra, S.; Wong, T.

    2010-12-01

    An understanding of how tuff deforms and fails is of importance in the mechanics of volcanic eruption, as well as geotechnical and seismic applications related to the integrity of tuff structures and repositories. Previous rock mechanics studies have focused on the brittle strength. We conducted mechanical tests on nominally dry and water-saturated tuff samples retrieved from the Colli Albani drilling project, in conjunction with systematic microstructural observations on the deformed samples so as to elucidate the micromechanics of brittle failure and inelastic compaction. The phenomenological behavior was observed to be qualitatively similar to that in a porous sedimentary rock. Synthesizing published data, we observe a systematic trend for both uniaxial compressive strength and pore collapse pressure of nonwelded tuff to decrease with increasing porosity. To interpret the compaction behavior in tuff, we extended the cataclastic pore collapse model originally formulated for a porous carbonate rock to a dual porosity medium made up of macropores and micropores or microcracks.

  12. Semi-brittle rheology and ice dynamics in DynEarthSol3D

    NASA Astrophysics Data System (ADS)

    Logan, Liz C.; Lavier, Luc L.; Choi, Eunseo; Tan, Eh; Catania, Ginny A.

    2017-01-01

    We present a semi-brittle rheology and explore its potential for simulating glacier and ice sheet deformation using a numerical model, DynEarthSol3D (DES), in simple, idealized experiments. DES is a finite-element solver for the dynamic and quasi-static simulation of continuous media. The experiments within demonstrate the potential for DES to simulate ice failure and deformation in dynamic regions of glaciers, especially at quickly changing boundaries like glacier termini in contact with the ocean. We explore the effect that different rheological assumptions have on the pattern of flow and failure. We find that the use of a semi-brittle constitutive law is a sufficient material condition to form the characteristic pattern of basal crevasse-aided pinch-and-swell geometry, which is observed globally in floating portions of ice and can often aid in eroding the ice sheet margins in direct contact with oceans.

  13. On the brittle-ductile behavior of iron meteorites - New experimental constraints

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Schultz, P. H.

    1984-01-01

    Impact trials were performed at the NASA vertical gun range to study low-temperature brittle-ductile transitions in meteoritic, steel and iron targets. The trials were performed to enhance the data base underlying the concept of formation of planetesimals in collisional coagulation. Impact velocities of 1.6-5.5 km/sec were used, as were temperatures from 100-300 K. Spallation was observed in the tests with meteorite samples, even at room temperature, and brittleness was enhanced at temperature below 200 C. Net mass losses were induced at the higher impact velocities. It is suggested that iron meteorite agglomerations could form in the inner solar region during nebular condensation, but would not form in farther-out regions such as the asteroid belt. The protoplanets could have an iron core, with metallicity decreasing with radius from the core, which may have happened with the earth.

  14. Brittle-fault deformation history in the NW Himalaya (Himachal Pradesh, India)

    NASA Astrophysics Data System (ADS)

    Hintersberger, E.; Decker, K.; Thiede, R.; Strecker, M.

    2009-04-01

    The Himalayan mountain belt and the Tibetan Plateau are the manifestations of intense crustal shortening and uplift along the southern margin of Eurasia associated with the India-Eurasia collision. While crustal shortening has been focused at lower elevations until the present day along the southern boundary of the Lesser Himalaya and the Siwalik ranges, several generations of both, orogen-parallel and orogen-perpendicular extensional structures have developed. These structures characterize the higher-elevation regions within the Higher and Tethyan Himalaya, suggesting syntectonic extension. In the NW Himalaya (India), extending from the deeply cut gorges of the Sutlej and Spiti rivers to the Garhwal Himalaya, closely spaced young normal faults, focal mechanisms of earthquakes with magnitudes between 5.2 and 6.8, and regional GPS measurements reveal ongoing E-W extension. Surprisingly, and in contrast to other extensional features observed in the Himalaya, this direction is neither parallel nor perpendicular to the NE-SW regional shortening direction. Here, we present new data obtained from structural geological mapping, fault kinematic analysis of hundreds of brittle faults, and remote sensing spanning the area between the Tso Morari Lake in the Tibetan Himalaya in the north and the mountain front in the Garhwal Himalaya in the south (30°-33°N/77°-79°E). In addition, we integrated published data on extensional phenomena in this region of the Himalaya. In the Garhwal Himalaya and the Sutlej-Spiti region, we collected and analyzed outcrop-scale brittle fault-planes with displacements of up to several cm. To analyze fault kinematic data (strike and dip of the fault, slip direction and sense of slip) for these micro-faults, we calculated strain axes for approx. 100 outcrop locations using the TectonicsFP program. This data set, as well as field observations on crosscutting relationships, mineralization of fault planes, and correlations with deformation structures

  15. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-08-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ~4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals--dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices.

  16. Determination of the Ductile to Brittle Transition Temperature of Platinum-Aluminide Gas Turbine Blade Coatings

    DTIC Science & Technology

    1985-09-01

    to brittle transition temperature (DBTT) of five basic platinum- aluminide gas turbine blade coatings on a nickel-base superalloy (IN738). The results...gas turbine blade coatings on a nickel-base superalloy (IN738). The results of these tests were compared to similarly formed nickel- aluminide coatings ... aluminide coating became more widely used, it -°j.established itself as an excellent life extender for most superalloy blade materials. However, as

  17. Permeability and mechanical behavior of carbonates during semi-brittle flow

    NASA Astrophysics Data System (ADS)

    Slim, Mirna; Evans, Brian

    2010-05-01

    Permeability and mechanical behavior of carbonates during semi-brittle flow Mirna Slim and Brian Evans, Department of Earth, Atmospheric, and Planetary Sciences, Mass. Inst. Tech., Cambridge, MA 02139, USA In both natural and engineering conditions, carbonate rocks exhibit deformation modes ranging from localized brittle fracture to non-localized plastic flow, depending on overburden pressure, deviatoric stress, temperature, strain-rate, pore geometry, and the pressure and chemistry of the pore-fluid. At relatively low temperatures and confinement, the strength of low porosity carbonates is relatively rate-insensitive, even the deformation mechanism include a mixture of twinning, slip, and local cataclasis, and brittle fracture is generally accompanied by dilatancy and permeability enhancement. But, in rocks with even modest porosity, non-localized flow can induce transitions from brittle fracture to compactive flow, and thus, permeability may either decrease with further straining. As temperature is elevated, variations in temperature, strain rate, and pore fluid chemistry also affect the yield stress, the strain to failure, and the ultimate failure strength. For example in Solnhofen limestone, the stress required for the inception of dilatancy and localization decreases considerably when samples are saturated with water. Even when temperature, pressure and strain rate are such that deformation is accommodated by an increasingly large proportion of crystal plastic processes, carbonates with small amounts of porosity still exhibit a double-surface yield cap. When subjected to triaxial deformation at elevated temperatures, calcite-quartz aggregates with porosity of 20% or less exhibit shear-enhanced compaction. Interestingly and somewhat counter to intuition, the permeability of these rocks deforming under triaxial loads was not as sensitive to porosity changes as that for the same material during isostatic compaction. In addition, the percolation threshold for the

  18. Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report

    SciTech Connect

    Gerberich, W.W.

    1997-01-01

    The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin film fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.

  19. Controlling factors for the brittle-to-ductile transition in tungsten single crystals

    PubMed

    Gumbsch; Riedle; Hartmaier; Fischmeister

    1998-11-13

    Materials performance in structural applications is often restricted by a transition from ductile response to brittle fracture with decreasing temperature. This transition is currently viewed as being controlled either by dislocation mobility or by the nucleation of dislocations. Fracture experiments on tungsten single crystals reported here provide evidence for the importance of dislocation nucleation for the fracture toughness in the semibrittle regime. However, it is shown that the transition itself, in general, is controlled by dislocation mobility rather than by nucleation.

  20. Contact mechanics at nanometric scale using nanoindentation technique for brittle and ductile materials.

    PubMed

    Roa, J J; Rayon, E; Morales, M; Segarra, M

    2012-06-01

    In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.

  1. From boron carbide to glass: Absorption of an elongated high-speed projectile in brittle materials

    NASA Astrophysics Data System (ADS)

    Rumyantsev, B. V.

    2016-09-01

    Penetration into boron carbide of an elongated high-speed projectile in the form of a copper jet produced by an explosion of a cumulative charge is studied. The efficiency of absorption of a copper jet in different brittle materials for evaluating their protective ability is compared. Conditions for the absence of the influence of the lateral unloading wave on the penetration zone, which provide the minimum penetration depth, are determined.

  2. The conserved genetic background for pluteus arm development in brittle stars and sea urchin.

    PubMed

    Morino, Yoshiaki; Koga, Hiroyuki; Wada, Hiroshi

    2016-01-01

    Echinoderm pluteus larvae are considered a classical example of convergent evolution that occurred in sea urchins and brittle stars. Several genes are known to be involved in the development of pluteus arms in sea urchins, including fgfA, pax2/5/8, pea3, otp, wnt5, and tet. To determine whether the convergent evolution of larval arms also involves these genes in brittle stars, their expression patterns were determined in brittle star. We found that all genes showed similar expression in the arms of ophiopluteus to that seen in echinopluteus, suggesting that convergent evolution of pluteus arms occurred by recruitment of a similar set of genes. This may be explained by our observation that some of these genes are also expressed in the spine rudiment of direct-type development sea urchins. We propose an evolutionary scenario wherein the pluteus arms of both echinopluteus and ophiopluteus were acquired by independent co-options of the genetic module responsible for the projection of the adult skeleton. © 2016 Wiley Periodicals, Inc.

  3. Atomistic simulations on ductile-brittle transition in ⟨111⟩ BCC Fe nanowires

    NASA Astrophysics Data System (ADS)

    Sainath, G.; Choudhary, B. K.

    2017-09-01

    Molecular dynamics simulations have been performed to understand the influence of temperature on the tensile deformation and fracture behavior of ⟨111⟩ BCC Fe nanowires. The simulations have been carried out at different temperatures in the range 10-1000 K employing a constant strain rate of 1 × 108 s-1. The results indicate that at low temperatures (10-375 K), the nanowires yield through the nucleation of a sharp crack and fails in brittle manner. On the other hand, nucleation of multiple 1/2⟨111⟩ dislocations at yielding followed by significant plastic deformation leading to ductile failure has been observed at high temperatures in the range 450-1000 K. At 400 K, the nanowire yields through nucleation of crack associated with many mobile 1/2⟨111⟩ and immobile ⟨100⟩ dislocations at the crack tip and fails in ductile manner. The ductile-brittle transition observed in ⟨111⟩ BCC Fe nanowires is appropriately reflected in the stress-strain behavior and plastic strain at failure. The ductile-brittle transition increases with increasing nanowire size. The change in fracture behavior has been discussed in terms of the relative variations in yield and fracture stresses and change in slip behavior with respect to temperature. Further, the dislocation multiplication mechanism assisted by the kink nucleation from the nanowire surface observed at high temperatures has been presented.

  4. Cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Xu, Nuwen; Zhao, Tao

    2017-08-01

    We propose a cyclic flattened Brazilian disc (FBD) testing method to measure the tensile fatigue properties of brittle rocks. Our method has obvious merits in its specimen preparation and experimental operation. Two parallel flattens are introduced in the disc specimen, which facilitate easily and uniformly loading the specimen without special loading devices required. Moreover, the contact regions between two flattens and loading planes barely change during the entire loading and unloading process, ensuring a consistent contact condition. With certain appropriate loading angles, this method guarantees that the very first breakage of the specimen occurs at the center of the disc, which is the prerequisite of the Brazilian-type indirect tensile tests. To demonstrate our new method, nine cyclic FBD tensile tests are conducted. The fatigue load-deformation characteristics of FBD specimens are revealed. The tensile fatigue lives of tested specimens are observed to increase with the increase in cyclic loading frequency. Our proposed method provides a convenient and reliable approach to indirectly measure the fatigue tensile properties of brittle rocks and other brittle solids subjected to cyclic tensile loadings.

  5. Development of branching brittle and ductile shear zones: A numerical study

    NASA Astrophysics Data System (ADS)

    Meyer, Sven Erik; Kaus, Boris J. P.; Passchier, Cees

    2017-06-01

    Continental collision zones are usually associated with large-scale strike-slip shear zones. In most cases, these shear zones are complex and consist of multiple strands, varying in width, length, and total displacement. Here we present 2-D numerical models to simulate the formation of such shear zones at different depth levels within the crust, under either brittle (frictional/plastic) or ductile conditions. Localization of shear zones is initiated by a material contrast (heterogeneity) of the material parameters. We systematically test the rate of strain weakening in brittle and in ductile regimes to understand its influence on the development of shear zone networks. Our simulations suggest that the development of antithetic faults in a brittle shear zone system is closely linked to a decrease in the angle of friction during deformation. In general, variation of the strain weakening also has a significant influence on ductile shear zones. Numerical results show that the geometry and thickness of the localized high strain zone are especially affected by weakening mechanisms during deformation. Furthermore, the interconnection and interaction of the shear strands lead to a more complex kinematic pattern, which lead to a local change in the maximum principal stress axis. These interaction of shear strands may explain the occurrence of shear-related structures (e.g., folds) or differing characteristics of shear zones, such as the thickness of shear zones or the orientation of the faults to the stress field, which are consistent with field observations.

  6. Growth and production of the brittle stars Ophiura sarsii and Ophiocten sericeum (Echinodermata: Ophiuroidea)

    NASA Astrophysics Data System (ADS)

    Ravelo, Alexandra M.; Konar, Brenda; Bluhm, Bodil; Iken, Katrin

    2017-05-01

    Dense brittle star assemblages dominate vast areas of the Arctic marine shelves, making them key components of Arctic ecosystem. This study is the first to determine the population dynamics of the dominant shelf brittle star species, Ophiura sarsii and Ophiocten sericeum, through age determination, individual production and total turnover rate (P:B). In the summer of 2013, O. sarsii were collected in the northeastern Chukchi Sea (depth 35-65 m), while O. sericeum were collected in the central Beaufort Sea (depth 37-200 m). Maximum age was higher for O. sarsii than for O. sericeum (27 and 20 years, respectively); however, both species live longer than temperate region congeners. Growth curves for both species had similar initial fast growth, with an inflection period followed by a second phase of fast growth. Predation avoidance in addition to changes in the allocation of energy may be the mechanisms responsible for the observed age dependent growth rates. Individual production was higher for O. sarsii than for O. sericeum by nearly an order of magnitude throughout the size spectra. The distinct distribution pattern of the two species in the Alaskan Arctic may be determined by environmental characteristics such as system productivity. Both species had equally low turnover rates (0.2 and 0.1, respectively), similar to Antarctic species, but lower than temperate species. Such characteristics suggest that the dense brittle star assemblages that characterize the Arctic shelf system could have a recovery time from disturbance on the order of decades.

  7. Fracture-mode map of brittle coatings: Theoretical development and experimental verification

    NASA Astrophysics Data System (ADS)

    He, Chong; Xie, Zhaoqian; Guo, Zhenbin; Yao, Haimin

    2015-10-01

    Brittle coatings, upon sufficiently high indentation load, tend to fracture through either ring cracking or radial cracking. In this paper, we systematically study the factors determining the fracture modes of bilayer material under indentation. By analyzing the stress field developed in a coating/substrate bilayer under indentation in combination with the application of the maximum-tensile-stress fracture criterion, we show that the fracture mode of brittle coatings due to indentation is determined synergistically by two dimensionless parameters being functions of the mechanical properties of coating and substrate, coating thickness and indenter tip radius. Such dependence can be graphically depicted by a diagram called 'fracture-mode map', whereby the fracture modes can be directly predicated based on these two dimensionless parameters. Experimental verification of the fracture-mode map is carried out by examining the fracture modes of fused quartz/cement bilayer materials under indentation. The experimental observation exhibits good agreement with the prediction by the fracture-mode map. Our finding in this paper may not only shed light on the mechanics accounting for the fracture modes of brittle coatings in bilayer structures but also pave a new avenue to combating catastrophic damage through fracture mode control.

  8. [Psychosocial predictors of metabolic instability in brittle diabetes--a multivariate time series analysis].

    PubMed

    Brosig, B; Leweke, F; Milch, W; Eckhard, M; Reimer, C

    2001-06-01

    The term "brittle diabetes" denotes the unstable course of an insulin-dependent diabetes characterised by frequent hypo- or hyperglycaemic crises. The aim of this study is to demonstrate empirically how psychosocial parameters interact with metabolic instability in a paradigmatic case of juvenile brittle diabetes. By means of a structured diary study, blood sugar values, moods (SAM), body symptoms (GBB), the daily hustle and hassle, helping therapeutic alliance (HAQ) and the aspects of setting were registered. Resulting time series (112 days each) were ARIMA-analysed by a multivariate approach. It could be shown that the mean variance of daily blood sugar values as an indicator of brittleness was predicted by moods, body complaints and by a family session as setting factor (p < 0.05, for corresponding predictors). Feelings of dominance preceded an increase of blood sugar variance, whereas depressive moods, anger and body symptoms were associated with metabolic instability. A family therapy session also resulted in an increase of the mean blood sugar variance. The model accounted for almost 30% of the total variance of the dependent variable (R-square-adjusted, p < 0.0001). The potential of multivariate time-series as a means to demonstrate psychosomatic interrelations is discussed. We believe that the results may also contribute to an empirically rooted understanding of psychodynamic processes in psychosomatoses.

  9. The diagenetic role of brittle deformation in compaction and pressure solution, Etjo Sanstone, Namibia

    SciTech Connect

    Dickinson, W.W.; Milliken, K.L.

    1995-05-01

    Scanned-cathodoluminescence (CL) imaging of the quartz-rich, porous Etjo Sandstone from northern Namibia shows that brittle deformation has played a major role in developing arcuate and interpenetrated grain contacts. Such contacts, previously interpreted to result from pressure solution, are seen in scanned-CL images to arise primarily from rearrangement of fragments formed by brittle deformation. Brittle deformation dominates compaction and produces extensive microfractures that heal with authigenic quartz cement. The volume of intragranular authigenic cement is significant and represents a previously unrecognized sink for silica in sandstones. True pressure solution is minor in the Etjo and is generally limited to contacts between brecciated fragments and unfractured, detrital grains. In addition to this pressure solution, silica may also be mobilized from the dissolution of comminuted fragments near grain contacts. However, the amount of silica imported into grains is substantially larger than that which appears to come from dissolution sites. Grain overlap can no longer be considered to arise from simple pressure solution, and the volume of authigenic quartz measured in sandstones must include intragranular fracture-filling cement as well as overgrowths and pore-filling cement. 33 refs., 5 figs.

  10. 3D modelling of salt tectonics with a brittle overburden in an extensional regime

    NASA Astrophysics Data System (ADS)

    Eichheimer, Philipp; Reuber, Georg; Kaus, Boris

    2016-04-01

    Most previous numerical models of salt tectonics only considered 2D cases or did not taken a brittle sedimentary overburden into account, both of which are likely to be important in nature. To get insights into the dynamics of diapiric rise of salt we here present time-dependent high resolution 3D models of salt tectonics in the presence of a brittle overburden and sedimentation. We focus on the internal deformation of an embedded anhydrite layer within a nonlinear viscous salt layer. As salt in nature tends to rise upwards to the surface along fault zones, the salt layer is overlain by a brittle overburden to simulate faulting. The resulting complex folding of the anhydrite layer obtained in our models is consistent with natural observations, e.g. Gorleben [1]. Regarding field examples we vary the shape of the anhydrite layer to understand different modes of deformation [2]. We test the effect of overburden rheology, extension and sedimentation rates on the 3D salt dome patterns and on its internal deformation. [1] O. Bornemann. Zur Geologie des Salzstocks Gorleben nach den Bohrergebnissen. Bundesamt für Strahlenschutz (1991). [2] Z. Chemia, H. Koyi, and H. Schmeling. Numerical modelling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International 172.2 (2008): 798-816.

  11. A study of fracture in brittle laminar composites that contain weak interlayers

    NASA Astrophysics Data System (ADS)

    Scott, Colin Stuart

    Ceramics have material properties that make them useful for many industrial applications. They are strong, hard, and chemically inert. Their refractoriness gives them an advantage over metals and polymers for use at high temperature. Unfortunately, the inherent brittleness of ceramics limits their use in structural applications. One way to improve the toughness of ceramics is to combine them with other materials to make composites. The correct combination of materials can lead to synergism, and a significant improvement in properties. In this work, brittle laminates that contain weak interlayers are considered. The weak interlayers lead to crack deflection, and can result in non-catastrophic failure of the material. The requirements for consistent crack deflection and non-catastrophic failure are not fully understood. This work is an attempt to explain the observed fracture behaviour in brittle laminar composites that contain weak interlayers. A combination of experimental work, fracture mechanics modeling and finite element modeling has been used to predict the requirements necessary for non-catastrophic failure. The work shows the size of flaws in the surface of the composite, in the weak interlayer, and in subsequent strong layers in the material, all play an important role in the fracture behaviour. Control and understanding of the effect of the various flaw sizes can be used to achieve non-catastrophic failure and increased work of fracture in these composites.

  12. Brittleness index calculation and evaluation for CBM reservoirs based on AVO simultaneous inversion

    NASA Astrophysics Data System (ADS)

    Wu, Haibo; Dong, Shouhua; Huang, Yaping; Wang, Haolong; Chen, Guiwu

    2016-11-01

    In this paper, a new approach is proposed for coalbed methane (CBM) reservoir brittleness index (BI) calculations. The BI, as a guide for fracture area selection, is calculated by dynamic elastic parameters (dynamic Young's modulus Ed and dynamic Poisson's ratio υd) obtained from an amplitude versus offset (AVO) simultaneous inversion. Among the three different classes of CBM reservoirs distinguished on the basis of brittleness in the theoretical part of this study, class I reservoirs with high BI values are identified as preferential target areas for fracturing. Therefore, we derive the AVO approximation equation expressed by Ed and υd first. This allows the direct inversion of the dynamic elastic parameters through the pre-stack AVO simultaneous inversion, which is based on Bayes' theorem. Thereafter, a test model with Gaussian white noise and a through-well seismic profile inversion is used to demonstrate the high reliability of the inversion parameters. Accordingly, the BI of a CBM reservoir section from the Qinshui Basin is calculated using the proposed method and a class I reservoir section detected through brittleness evaluation. From the outcome of this study, we believe the adoption of this new approach could act as a guide and reference for BI calculations and evaluations of CBM reservoirs.

  13. Brittle-to-quasibrittle transition in bundles of nonlinear elastic fibers

    NASA Astrophysics Data System (ADS)

    Roy, Chandreyee; Manna, S. S.

    2016-09-01

    Properties of the fiber bundle model have been studied using equal load-sharing dynamics where each fiber obeys a nonlinear stress (s )-strain (x ) characteristic function s =G (x ) till its breaking threshold. In particular, four different functional forms have been studied: G (x ) =eα x , 1 +xα , xα, and x eα x where α is a continuously tunable parameter of the model in all cases. Analytical studies, supported by extensive numerical calculations of this model, exhibit a brittle to quasibrittle phase transition at a critical value of αc only in the first two cases. This transition is characterized by the weak power law modulated logarithmic (brittle) and logarithmic (quasibrittle) dependence of the relaxation time on the two sides of the critical point. Moreover, the critical load σc(α ) for the global failure of the bundle depends explicitly on α in all cases. In addition, four more cases have also been studied, where either the nonlinear functional form or the probability distribution of breaking thresholds has been suitably modified. In all these cases similar brittle to quasibrittle transitions have been observed.

  14. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  15. Reliable Support Design for Excavations in Brittle Rock Using a Global Response Surface Method

    NASA Astrophysics Data System (ADS)

    Langford, J. Connor; Diederichs, Mark S.

    2015-03-01

    Spalling damage can pose significant risks during the construction of underground excavations in brittle rock. While deterministic analyses have traditionally been used in the design of these structures, reliability-based design (RBD) methods provide a more rational approach to quantify spalling risk by directly incorporating input uncertainty into the design process and quantifying variable ground response. This paper presents a new RBD approach to evaluate the excavation response and support performance for a tunnel in brittle ground. Guidance for the selection of appropriate parameters for variable brittle materials is provided using a combination of the damage initiation and spalling limit method and theories of microcrack initiation. System performance is then evaluated using a proposed global response surface method (GRSM) coupled with the first-order reliability method, random sampling and finite element analysis. The proposed GRSM provides a computationally efficient way to evaluate the probability of failure for various limit states, allowing for the selection of appropriate design parameters such as minimum bolt length and required bolt capacity during early stages of design. To demonstrate the usefulness of this approach, a preliminary design option for a proposed deep geologic repository located in Canada was assessed. Numerical analyses were completed using finite element modeling to determine the depth of spalling around the excavation and support loads over the range of possible rock mass and in situ stress conditions. The results of these analyses were then used to assess support performance and make support recommendations.

  16. Cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks.

    PubMed

    Liu, Yi; Dai, Feng; Xu, Nuwen; Zhao, Tao

    2017-08-01

    We propose a cyclic flattened Brazilian disc (FBD) testing method to measure the tensile fatigue properties of brittle rocks. Our method has obvious merits in its specimen preparation and experimental operation. Two parallel flattens are introduced in the disc specimen, which facilitate easily and uniformly loading the specimen without special loading devices required. Moreover, the contact regions between two flattens and loading planes barely change during the entire loading and unloading process, ensuring a consistent contact condition. With certain appropriate loading angles, this method guarantees that the very first breakage of the specimen occurs at the center of the disc, which is the prerequisite of the Brazilian-type indirect tensile tests. To demonstrate our new method, nine cyclic FBD tensile tests are conducted. The fatigue load-deformation characteristics of FBD specimens are revealed. The tensile fatigue lives of tested specimens are observed to increase with the increase in cyclic loading frequency. Our proposed method provides a convenient and reliable approach to indirectly measure the fatigue tensile properties of brittle rocks and other brittle solids subjected to cyclic tensile loadings.

  17. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    SciTech Connect

    Chen, Z.; Schreyer, H.L.

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  18. A multi-step transmission electron microscopy sample preparation technique for cracked, heavily damaged, brittle materials.

    PubMed

    Weiss Brennan, Claire V; Walck, Scott D; Swab, Jeffrey J

    2014-12-01

    A new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.

  19. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport.

    PubMed

    Xia, Xiudong; Fan, Xiaorong; Wei, Jia; Feng, Huimin; Qu, Hongye; Xie, Dan; Miller, Anthony J; Xu, Guohua

    2015-01-01

    Plant proteins belonging to the NPF (formerly NRT1/PTR) family are well represented in every genome and function in transporting a wide variety of substrates. In this study, we showed that rice OsNPF2.4 is located in the plasma membrane and is expressed mainly in the epidermis, xylem parenchyma, and phloem companion cells. Functional analysis in oocytes showed that OsNPF2.4 is a pH-dependent, low-affinity NO₃⁻ transporter. Short-term (¹⁵NO₃⁻) influx rate, long-term NO₃⁻ acquisition by root, and upward transfer from root to shoot were decreased by disruption of OsNPF2.4 and increased by OsNPF2.4 overexpression under high NO₃⁻ supply. Moreover, the redistribution of NO₃⁻ in the mutants in comparison with the wild type from the oldest leaf to other organs, particularly to N-starved roots, was dramatically changed. Knockout of OsNPF2.4 decreased rice growth and potassium (K) concentration in xylem sap, root, culm, and sheath, but increased the shoot:root ratio of tissue K under higher NO₃⁻. We conclude that OsNPF2.4 functions in acquisition and long-distance transport of NO₃⁻ , and that altering its expression has an indirect effect on K recycling between the root and shoot. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  1. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase.

    PubMed

    Itoh, Hironori; Tatsumi, Tomoko; Sakamoto, Tomoaki; Otomo, Kazuko; Toyomasu, Tomonobu; Kitano, Hidemi; Ashikari, Motoyuki; Ichihara, Shigeyuki; Matsuoka, Makoto

    2004-03-01

    A rice (Oryza sativa L.) semi-dwarf cultivar, Tan-Ginbozu (d35Tan-Ginbozu), contributed to the increase in crop productivity in Japan in the 1950s. Previous studies suggested that the semi-dwarf stature of d35Tan-Ginbozu is caused by a defective early step of gibberellin biosynthesis, which is catalyzed by ent-kaurene oxidase (KO). To study the molecular characteristics of d35Tan-Ginbozu, we isolated 5 KO-like (KOL) genes from the rice genome, which encoded proteins highly homologous to Arabidopsis and pumpkin KOs. The genes (OsKOL1 to 5) were arranged as tandem repeats in the same direction within a 120 kb sequence. Expression analysis revealed that OsKOL2 and OsKOL4 were actively transcribed in various organs, while OsKOL1 and OsKOL5 were expressed only at low levels; OsKOL3 may be a pseudogene. Sequence analysis and complementation experiments demonstrated that OsKOL2 corresponds to D35. Homozygote with null alleles of D35 showed a severe dwarf phenotype; therefore, d35Tan-Ginbozu is a weak allele of D35. Introduction of OsKOL4 into d35Tan-Ginbozu did not rescue its dwarf phenotype, indicating that OsKOL4 is not involved in GA biosynthesis. OsKOL4 and OsKOL5 are likely to take part in phytoalexin biosynthesis, because their expression was promoted by UV irradiation and/or elicitor treatment. Comparing d35Tan-Ginbozu with other high yielding cultivars, we discuss strategies to produce culm architectures suitable for high crop yield by decreasing GA levels.

  2. Rice-Map: a new-generation rice genome browser

    PubMed Central

    2011-01-01

    Background The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. Description More than one hundred annotation tracks (81 for japonica and 82 for indica) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Conclusions Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading. PMID:21450055

  3. Microstructures relevant to brittle fracture initiation at the heat-affected zone of weldment of a low carbon steel

    SciTech Connect

    Ohya, K.; Kim, J.; Yokoyama, K.; Nagumo, M.

    1996-09-01

    Charpy toughness of the heat-affected zone (HAZ) of weldment of a low carbon steel has been investigated by means of an instrumented Charpy test and fractographic analysis. Microstructures were varied with thermal cycles simulating double-pass welding. The ductile-brittle transition temperature is the most deteriorated at an intermediate second-cycle heating temperature. The origin of the difference in the transition temperatures has been analyzed to exist in the brittle fracture initiation stage. Fractographic examination correlating with microstructural features has revealed that the brittle fracture initiation site is associated with the intersection of bainitic ferrite areas with different orientations rather than the martensite-austenite constituents. The role of the constraint of plastic deformation on the brittle fracture initiation is discussed.

  4. Deciphering the brittle evolution of SW Norway through a combined structural, mineralogical and geochronological approach

    NASA Astrophysics Data System (ADS)

    Scheiber, Thomas; Viola, Giulio; Fredin, Ola; Zwingmann, Horst; Wilkinson, Camilla Maya; Ganerød, Morgan

    2016-04-01

    SW Norway has experienced a complex brittle history after cessation of the Caledonian orogeny, and the recent discoveries of major hydrocarbon reserves in heavily fractured and weathered basement offshore SW Norway has triggered a renewed interest in understanding this complex tectonic evolution. In this contribution we present results from a multidisciplinary study combining lineament analysis, field work, paleo-stress inversion, mineralogical characterization and radiometric dating in the Bømlo area of SW Norway in order to develop a tectonic model for the brittle evolution of this important region. The study area mainly consists of the Rolvsnes granodiorite (U-Pb zircon age of ca. 466 Ma), which is devoid of penetrative ductile deformation features. The first identified brittle faults are muscovite-bearing top-to-the-NNW thrusts and E-W striking dextral strike-slip faults decorated with stretched biotite. These are mechanically compatible and are assigned to the same NNW-SSE transpressional regime. Ar-Ar muscovite and biotite dates of ca. 450 Ma (Late Ordovician) indicate fault activity in the course of a Taconian-equivalent orogenic event. During the subsequent Silurian Laurentia-Baltica collision variably oriented, lower-grade chlorite and epidote-coated faults formed in response to a ENE-WSW compressional stress regime. A large number of mainly N-S striking normal faults consist of variably thick fault gouge cores with illite, quartz, kaolinite, calcite and epidote mineralizations, accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges and zones of altered granodiorite constrain deformation ranging from the Permian to the Late Jurassic, indicating a long history of crustal extension where faults were repeatedly activated. In addition, a set of ca. SW-NE striking faults associated with alteration zones give Cretaceous dates, either representing a young phase of NW-SE extension or reactivation of previously formed

  5. Micromechanics of brittle creep and implications for the strength of the upper crust

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Baud, P.; Heap, M. J.; Meredith, P. G.

    2012-04-01

    In the upper crust, the chemical influence of pore water or other aqueous solutions promotes time dependent brittle deformation through sub-critical crack growth. Sub-critical crack growth allows rocks to deform and fail at stresses far below their short-term failure strength, and even at constant applied stress ("brittle creep"). Here we present a new micromechanical model describing time dependent brittle creep of water-saturated rocks under triaxial stress conditions. Macroscopic brittle creep is modelled on the basis of microcrack extension under compressive stresses due to sub-critical crack growth. The incremental strains due to the growth of cracks in compression are derived from the sliding wing crack model of Ashby and Sammis (1990). Crack length evolution is computed from Charles' power law description of stress corrosion crack growth. The macroscopic strains and strain rates computed from the model are non-linear and compare well with experimental results obtained on granite, low porosity sandstone and basalt samples. Primary creep (decelerating strain rate) corresponds to decelerating crack growth, due to an initial decrease in stress intensity factor with increasing crack length in compression. Tertiary creep (accelerating strain rate as failure is approached) corresponds to an increase in crack growth rate due to crack interactions. Secondary creep, with apparently constant strain rate, arises as merely an inflexion between these two end-member phases. The strain rate at the inflexion point can be estimated analytically as a function of model parameters, effective confining pressure and temperature conditions, which provides an approximate creep law for the process. The creep law is used to infer the long term differential stress as a function of depth in the upper crust for tectonic loading rates: sub-critical cracking induces an offset of the rock strength, which is equivalent to a decrease in cohesion. For porous rocks, the competition between sub

  6. Rheology of Pure Glasses and Crystal Bearing Melts: from the Newtonian Field to the Brittle Onset

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Caricchi, L.; Pistone, M.; Castro, J. M.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The brittle-ductile transition remains a central question of modern geology. If rocks can be perceived as a granular flow on geological time-scale, their behavior is brittle in dynamic areas. Understanding rock failure conditions is the main parameter in mitigating geological risks, more specifically the eruptive style transitions from effusive to explosive. If numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. here we present results obtained under torsion and uni-axial compression on both pure glasses and crystal bearing melts. We characterized the brittle onset of two phases magmas from 0 to 65% crystals. The strain-rates span a 5 orders magnitude range, from the Newtonian flow to the Brittle field (10-5 - 100 s-1). We particularly emphasize the time dependency of the measured rheology. The materials tested are a borosilicate glass from the National Bureau of Standards, a natural sample from Mt Unzen volcano and a synthetic sample. The lattest is an HPG8 melt with 7% sodium mole excess. The particles are quasi-isometric corundum crystalschosen for their shape and integrity under the stress range investigated. The crystal fraction ranges from 0 to 0.65. Concerning pure magmas, we recently demonstrated that the material passes from a Newtonian to a non-Nemtonian behavior with increasing strain-rate. This onset can mostly be explained by viscous-heating effects. However, for even greater strain-rates, the material cracks and finally fail. The brittle onset is here explained with the visco-elastic theory and corresponds to a Deborah number greater than 10-2. Concerning crystal bearing melts the departure from the Newtonian state is characterized by two effects: a shear-thinning and a time weakening effect. The first one is instantaneous and loading-unloading cyclic tests suggest an elastic contribution of the crystal network. The second one

  7. Microstructural Features Controlling Ductile-to-Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals

    DTIC Science & Technology

    1990-10-01

    Development Report Microstructural Features Controlling Ductile-to- Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals C 0by...Martensitic Steel Weld Metals PERSONAL AUTHOR(S) .J. DeLoach, Jr. .TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT I...if necessary and identify by block number) FIELD GROUP SUB-GROUP High strength steel , Ductile-brittle transition Martensitic Mechanical proper ties

  8. Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.

    2016-08-01

    Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.

  9. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.

    PubMed

    Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred

    2016-01-01

    Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization.

  10. Ultrastructural morphologic description of the wild rice species Oryza latifolia (Poaceae) in Costa Rica.

    PubMed

    Sánchez, Ethel; Montiel, Mayra; Espinoza, Ana M

    2003-06-01

    The wild rice species Oryza latifolia is endemic to Tropical America, allotetraploid and has a CCDD genome type. It belongs to the officinalis group of the genus Oryza. This species is widely distributed throughout the lowlands of Costa Rica and it is found on different life zones, having great morphologic diversity. The purpose of this research is to perform a morphologic description of O. latifolia samples of three Costa Rican localities (Carara, Liberia and Cañas) and to see if the phenotypic diversity of the species is reflected at the ultra-structure level. Structures such as the leaf blade, ligule, auricles and spikelet were analyzed. Leaf blade morphology of the specimens from the three localities is characterized by the presence of diamond-shaped stomata with papillae, zipper-like rows of silica cells; a variety of evenly distributed epicuticular wax papillae and bulky prickle trichomes. The central vein of the leaf blade from the Cañas populations is glabrous, while those from Carara and Liberia have abundant papillae. There are also differences among the borders of the leaf blade between these locations. Cañas and Liberia present alternating large and small prickle trichomes ca. 81 and 150 microns, while Carara exhibits even sized prickle trichomes of ca. 93 microns. Auricles from Cañas are rectangular and present long trichomes along the surface ca. 1.5 mm, while those of Liberia and Carara wrap the culm and exhibit trichomes only in the borders. The ligule from the plants of Carara has an acute distal tip, while that of Cañas and Liberia is blunt. The Liberia spikelet has large lignified spines while Cañas and Carara show flexible trichomes.

  11. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain.

    PubMed

    Seyfferth, Angelia L; Morris, Andrew H; Gill, Rattandeep; Kearns, Kelli A; Mann, Jessica N; Paukett, Michelle; Leskanic, Corey

    2016-05-18

    Arsenic decreases rice yield, and inorganic grain As threatens human health; thus, strategies to decrease rice As are critically needed. Increased plant-available silica (Si) can decrease rice As, yet the source of Si matters. Rice husk, an underutilized and Si-rich byproduct of rice production that contains less labile C and an order of magnitude less As than rice straw, may be an economically viable Si resource to decrease rice As, yet the impact of rice husk incorporation on As in the rice-soil nexus has not been reported. This proof-of-concept study shows that rice husk incorporation to soil (1% w/w) decreases inorganic grain As by 25-50% without negatively affecting grain Cd, yield, or dissolved CH4 levels. Rice husk is a critical yet perhaps overlooked resource to improve soil quality through enhanced nutrient availability and attenuate human health risks through consumption of As-laden grain.

  12. Rice in an interdependent world.

    PubMed

    Falck, V T

    1991-01-01

    The purpose of this paper is to examine the outcome of the increasing need and dependence on rice as an essential food, and the potential hazards of this trajectory in an interdependent world, and to propose the need for a supranational system to guide decisions made in areas of mutual dependency among nations. All rice producing countries of the world should be responsible for assuring sufficient quantities and qualities of rice for the world's population. However, there are hazards related to emphasis on rice yields associated with the neglect of overall nutritional needs and also the potential for environmental impact given the need for sustainable development. Scientific measurement and data analyses of interdependent supranational variables are needed to guide policies and practices to insure conditions for life will be favorable for people everywhere.

  13. Interactions among rice ORC subunits.

    PubMed

    Tan, Deyong; Lv, Qundan; Chen, Xinai; Shi, Jianghua; Ren, Meiyan; Wu, Ping; Mao, Chuanzao

    2013-08-01

    The origin recognition complex (ORC) is composed of six subunits and plays an important role in DNA replication in all eukaryotes. The ORC subunits OsORC6 as well as the other five ORC subunits in rice were experimentally isolated and sequenced. It indicated that there also exist six ORC subunits in rice. Results of RT-PCR indicated that expression of all the rice ORC genes are no significant difference under 26°C and 34°C. Yeast two hybridization indicated that OsORC2, -3, -5 interact with each other. OsORC5 can then bind OsORC4 to form the OsORC2, -3,-4,-5 core complex. It suggested that the basic interactions have been conserved through evolution. No binding of OsORC1 and OsORC6 with the other subunits were observed. A model of ORC complex in rice is proposed.

  14. Rice scene radiation research plan

    NASA Technical Reports Server (NTRS)

    Heilman, J.

    1982-01-01

    Data requirements, tasks to be accomplished, and the technical approaches to be used in identifying the characteristics of rice for crop inventories are listed as well as methods for estimating crop development and assessing its conditions.

  15. Storage stability of flour-blasted brown rice

    USDA-ARS?s Scientific Manuscript database

    Brown rice was blasted with rice flour rather than sand in a sand blaster to make microscopic nicks and cuts so that water can easily penetrate into the brown rice endosperm and cook the rice in a shorter time. The flour-blasted American Basmati brown rice, long grain brown rice, and parboiled long...

  16. Differentiation of weedy traits in ALS-resistant red rice

    USDA-ARS?s Scientific Manuscript database

    Red rice is a weedy form of cultivated rice (Oryza sativa) that competes aggressively with rice in the southern U.S., reduces yields and contaminates rice grains. The introduction of ClearfieldTM rice, a nontransgenic, herbicide-resistant rice cultivar a decade ago has led to increased use of imazet...

  17. Increasing rice plant growth by Trichoderma sp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  18. Detection algorithm for multiple rice seeds images

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Ying, Y. B.

    2006-10-01

    The objective of this research is to develop a digital image analysis algorithm for detection of multiple rice seeds images. The rice seeds used for this study involved a hybrid rice seed variety. Images of multiple rice seeds were acquired with a machine vision system for quality inspection of bulk rice seeds, which is designed to inspect rice seeds on a rotating disk with a CCD camera. Combining morphological operations and parallel processing gave improvements in accuracy, and a reduction in computation time. Using image features selected based on classification ability; a highly acceptable defects classification was achieved when the algorithm was implemented for all the samples to test the adaptability.

  19. [Rice allelopathy to barnyardgrass].

    PubMed

    Xu, Zhenghao; Yu, Liuqing; Zhao, Ming

    2003-05-01

    138 rice (Oryza sativa) germplasms were identified to study the allelopathy to barnyardgrass (Echinochloa crusgalli), using the relay seeding technique. The results showed that Qingkun 2 from Jiangxi Province, Xiayitiao from Jiangsu Province, Jizaoxian from Anhui Province, Ganzaoxian 37 from Jiangxi Province, Shangnuo 1, IR68465-2-3-2 from IRRI, and Shuiyuan 2 from Korea had a strongly excellent inhibition effect on barnyardgrass. Results from pot culture showed that Gumei 2 and Zhong 156 had a greater inhibitory effect than control, and allelopathic material TN1 had no significantly inhibition effect, compared to non-allelopathic material Xiushui 63. The effect of Zhong 156 was related to its plant height, and significant different from that of Xiushui 63. Gumei 2 had a stronger inhibition effect on barnyardgrass, due to its own allelopathic trait.

  20. Brittle deformation and exhumation mechanisms in the core of the Eastern Alps, The Tauern Window

    NASA Astrophysics Data System (ADS)

    Bertrand, Audrey; Garcia, Sebastian; Rosenberg, Claudio

    2010-05-01

    The Tauern Window (TW) is a Tertiary structural and thermal dome located in the core of the Eastern Alpine orogen and in front of the Dolomite indenter. The Penninic basement and cover units within the TW attained their thermal peak about 30 Myr ago (e.g., Selverstone et al., 1992) followed by cooling and exhumation from Early Oligocene to late Miocene time (e.g., Grundmann and Morteani, 1985). Most exhumation was partly accommodated by two normal faults at the western and eastern ends of the TW (Brenner and Katschberg faults, respectively). Although these normal faults are well described in the literature, their roles in the exhumation of the TW are still under debate: Exhumation accommodated primarily by folding and erosion (e.g., Rosenberg et al., 2004) versus exhumation mainly accommodated by Brenner and Katschberg normal faulting (e.g., Selverstone, 1988; Ratschbacher et al., 1989). New fault-slip data from the TW allow us to reconstruct paleostress axes by inversion and to constrain the relative roles of the folding and orogen-parallel extension during the late deformation history of the TW, in the brittle-field. Our results show little evidence of compression and a clear zoning of the paleostress field in the TW. In the central part of the TW, the σ1 direction is sub-horizontal N-S to NE-SW (strike-slip), whereas it is steep in the footwall of the Brenner and the Katschberg normal faults. Local variability of the σ3 direction are observed; indeed, the σ3 direction varies from E-W to WNW-ESE along the Brenner fault, to NW-SE along the Jaufen fault, the inferred southern continuation of the Brenner fault (Schneider et al., this session). Along the Katschberg fault, the σ3 direction is mainly NNW-SSE oriented, which is consistent with extension in front of a triangular dead zone shape induced by the WSW-striking Dolomites indenter. Nearly no evidence of a stress field compatible with upright folding (D2 phase of deformation) was found in the brittle domain

  1. Expansins in deepwater rice internodes.

    PubMed

    Cho, H T; Kende, H

    1997-04-01

    Cell walls of deepwater rice (Oryza sativa L.) internodes undergo long-term extension (creep) when placed under tension in acidic buffers. This is indicative of the action of the cell wall-loosening protein expansin. Wall extension had a pH optimum of around 4.0 and was abolished by boiling. Acid-induced extension of boiled cell walls could be reconstituted by addition of salt-extracted rice or cucumber cell wall proteins. Cucumber expansin antibody recognized a single protein band of 24.5-kD apparent molecular mass on immunoblots of rice cell wall proteins. Expansins were partially purified by concanavalin A affinity chromatography and sulfopropyl (SP) cation-exchange chromatography. The latter yielded two peaks with extension activity (SP20 and SP29), and immunoblot analysis showed that both of these active fractions contained expansin of 24.5-kD molecular mass. The N-terminal amino acid sequence of SP20 expansin is identical to that deduced from the rice expansin cDNA Os-EXP1. The N-terminal amino acid sequence of SP29 expansin matches that deduced from the rice expansin cDNA Os-EXP2 in six of eight amino acids. Our results show that two expansins occur in the cell walls of rice internodes and that they may mediate acid-induced wall extension.

  2. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to begained, and new rights to be won, and they must be won and used for the progress of all people. Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his wirt around this globe of ours. There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountain? Why 35 years ago why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we attend to win, and the others , too.'

  3. Pullulanase from rice endosperm.

    PubMed

    Yamasaki, Yoshiki; Nakashima, Susumu; Konno, Haruyoshi

    2008-01-01

    Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.

  4. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to be gained, and new rights to be won, and they must be won and used for the progress of all people. ...Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his writ around this globe of ours. ...There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountian? Why - 35 years ago - why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we intend to win, and the others too.'

  5. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a

  6. Evolution of permeability across the transition from brittle failure to cataclastic flow in porous siltstone

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco M.; Kitajima, Hiroko; Carpenter, Brett M.; Saffer, Demian M.; Marone, Chris

    2015-09-01

    Porous sedimentary rocks fail in a variety of modes ranging from localized, brittle deformation to pervasive, cataclastic flow. To improve our understanding of this transition and its affect on fluid flow and permeability, we investigated the mechanical behavior of a siltstone unit within the Marcellus Formation, PA USA, characterized by an initial porosity ranging from 41 to 45%. We explored both hydrostatic loading paths (σ1 = σ2 = σ3) and triaxial loading paths (σ1 > σ2 = σ3) while maintaining constant effective pressure (Pe = Pc - Pp). Samples were deformed with an axial displacement rate of 0.1 μm/s (strain rate of 2 × 10-6 s-1). Changes in pore water volume were monitored (drained conditions) to measure the evolution of porosity. Permeability was measured at several stages of each experiment. Under hydrostatic loading, we find the onset of macroscropic grain crushing (P*) at 39 MPa. Triaxial loading experiments show a transition from brittle behavior with shear localization and compaction to cataclastic-flow as confining pressure increases. When samples fail by shear localization, permeability decreases abruptly without significant changes in porosity. Conversely, for cataclastic deformation, permeability reduction is associated with significant porosity reduction. Postexperiment observation of brittle samples show localized shear zones characterized by grain comminution. Our data show how zones of shear localization can act as barriers to fluid flow and thus modify the hydrological and mechanical properties of the surrounding rocks. Our results have important implications for deformation behavior and permeability evolution in sedimentary systems, and in particular where the stress field is influenced by injection or pumping.

  7. An elasto-plastic solution for channel cracking of brittle coating on polymer substrate

    DOE PAGES

    Zhang, Chao; Chen, Fangliang; Gray, Matthew H.; ...

    2017-04-25

    In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO2) coating on a poly (ethylenemore » terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less

  8. Numerical simulation of the fracture process in cutting heterogeneous brittle material

    NASA Astrophysics Data System (ADS)

    Liu, H. Y.; Kou, S. Q.; Lindqvist, P.-A.

    2002-11-01

    The process of cutting homogeneous soft material has been investigated extensively. However, there are not so many studies on cutting heterogeneous brittle material. In this paper, R-T2D (Rock and Tool interaction), based on the rock failure process analysis model, is developed to simulate the fracture process in cutting heterogeneous brittle material. The simulated results reproduce the process involved in the fragmentation of rock or rock-like material under mechanical tools: the build-up of the stress field, the formation of the crushed zone, surface chipping, and the formation of the crater and subsurface cracks. Due to the inclusion of heterogeneity in the model, some new features in cutting brittle material are revealed. Firstly, macroscopic cracks sprout at the two edges of the cutter in a tensile mode. Then with the tensile cracks releasing the confining pressure, the rock in the initially high confining pressure zone is compressed into failure and the crushed zone gradually comes into being. The cracked zone near the crushed zone is always available, which makes the boundary of the crushed zone vague. Some cracks propagate to form chipping cracks and some dip into the rock to form subsurface cracks. The chipping cracks are mainly driven to propagate in a tensile mode or a mixed tensile and shear mode, following curvilinear paths, and finally intersect with the free surface to form chips. According to the simulated results, some qualitative and quantitative analyses are performed. It is found that the back rake angle of the cutter has an important effect on the cutting efficiency. Although the quantitative analysis needs more research work, it is not difficult to see the promise that the numerical method holds. It can be utilized to improve our understanding of tool-rock interaction and rock failure mechanisms under the action of mechanical tools, which, in turn, will be useful in assisting the design of fragmentation equipment and fragmentation operations.

  9. Deformation of brittle-ductile thrust wedges in experiments and nature

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Brun, J. P.; Sokoutis, D.

    2003-10-01

    Even though the rheology of thrust wedges is mostly frictional, a basal ductile decollement is often involved. By comparison with purely frictional wedges, such brittle-ductile wedges generally display anomalous structures such as backward vergence, widely spaced thrust units, and nonfrontward sequences of thrust development. Laboratory experiments are used here to study the deformation of brittle-ductile thrust wedges. Results are compared with natural systems in the Jura Mountains and the northern Pakistan Salt Range and Potwar Plateau. Two series of three models are used to illustrate the effects of varying the basal wedge angle (β) and shortening rate (V). These two parameters directly control variations in relative strength between brittle and ductile layers (BD coupling). Wedges with strong BD coupling (low β and high V) give almost regular frontward sequences with closely spaced thrust units and, as such, are not significantly different from purely frictional wedges. Weak BD coupling (high β and low V) gives dominantly backward thrusting sequences. Intermediate BD coupling produces frontward-backward oscillating sequences. The spacing of thrust units increases as coupling decreases. Back thrusts develop in parts of a wedge where BD coupling is weak, regardless of the thrust sequence. Wedges with weak BD coupling need large amounts of bulk shortening (more than 30%) to attain a state of equilibrium, at which stable sliding along the base occurs. On this basis, we argue that a state of equilibrium has not yet been attained in at least some parts of the Jura Mountains and eastern Salt Range and Potwar Plateau thrust systems.

  10. The climatology of the Alaska Beaufort Sea shelf told by brittle star population dynamics

    NASA Astrophysics Data System (ADS)

    Ravelo, A.; Konar, B.; Bluhm, B.; Iken, K.

    2016-02-01

    Brittle stars are a key component of Arctic benthic shelf systems due to their high standing stock, dominance in abundance over all other epibenthic organisms, and as prey for higher trophic organisms. On the Alaskan Arctic shelves, the circumboreal species Ophiura sarsii and Ophiocten sericeum are the dominant brittle stars with densities of up to 260 ind. m-2 and 20 ind. m-2, respectively. Although present across all Alaska Arctic shelves these specie have a segregated distribution; O. sarsii dominates the more productive Chukchi and western Beaufort Sea shelves and O. sericeum dominates the more river influenced Beaufort Sea shelf east of 150°W. Despite the pervasiveness of these species, little is known of their population parameters, the stability of their respective distribution patterns over time, or the factors that contribute to their geographic distribution. The objective of this study was to analyze the population size structure, growth, productivity, and distribution of the two species. Our results indicate that O. sarsii grows faster and lives longer than O. sericeum, and at equal body size, O. sarsii has significantly higher organic mass compared to O. sericeum. Compared to early records, we observed a shift in the distribution of the two species on the Alaska Beaufort Sea shelf over the past 40 years. Changes in intensity and frequency of easterly wind events over the western Beaufort Sea may be a key factor driving the distribution expansion of O. sericeum and the retreat of O. sarsii towards the west in this region. Considering the significant difference in these species' growth rate and organic mass content, the consequences of this distribution shift for brittle star predators and benthic community remineralization may be substantial.

  11. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  12. Brittle seismic damage before and after eruptions, worldwide statistical analyses: implications for prediction.

    NASA Astrophysics Data System (ADS)

    Schmid, Agathe; Grasso, Jean-Robert

    2010-05-01

    Recent studies suggested that the seismic events prior and after an eruption follow an Omori's law similar to the one observed for earthquakes with possible different exponent values (e.g., Lemarchand and Grasso, 2007). Given these similarities, we are interested in going further into the analogy between damage triggered by earthquake failure and eruption onset, by studying the damage of the upper crust contemporary to eruptions. First, using worldwide earthquakes and eruptions databases, we quantified the spatial scale involved in crust damage around eruptions, as a function of the size of volcanic events, i.e. as measured by VEI. Using the distribution of seismic events around the time of eruption onsets, we found that larger volumes are involved in the brittle crust damage for the largest eruption sizes. Second, we analyzed the analogy between eruptions and earthquakes regarding crust loading and discharge, thanks to patterns of seismicity around event times. For eruptions on a given volcano, evidences for crust loading have been highlighted thanks to seismicity up to ten days prior eruption time (e.g.,Voight, 1988; Kilburn, 2003; Chastin and Main, 2003; Collombet and Grasso, 2003). For worldwide eruptions, average seismicity around eruption time, shows direct and inverse Omori's law, the same way earthquakes do but with different values of exponents (Lemarchand and Grasso, 2007). Contrarily to earthquakes Omori's law, our preliminary analysis suggests the values of these exponents to possibly vary with the eruption sizes. Given that eruption processes generally show longer failure times than earthquake rupture propagation, we are interested in the mechanical responses of the brittle crust damages as a function of the forcing rate. It possibly argues for the eruption process to impact the brittle crust the same way than a slow earthquake, with a larger number of foreshocks than the regular earthquake. Implications for prediction of eruptions, regarding the size

  13. Red rice (Oryza sativa L.) emergence characteristics and influence on rice (O. sativa) yield at different planting dates

    USDA-ARS?s Scientific Manuscript database

    Cultivated rice yield losses due to red rice infestation vary by cultivar, red rice density, and duration of interference. The competition effects of red rice could be influenced further by emergence characteristics, red rice biotype, and planting time of cultivated rice. We aimed to characterize th...

  14. 7 CFR 319.55a - Administrative instructions relating to entry of rice straw and rice hulls into Guam.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... straw and rice hulls into Guam. 319.55a Section 319.55a Agriculture Regulations of the Department of... QUARANTINE NOTICES Rice Quarantine § 319.55a Administrative instructions relating to entry of rice straw and rice hulls into Guam. Rice straw and rice hulls may be imported into Guam without further permit, other...

  15. 7 CFR 319.55a - Administrative instructions relating to entry of rice straw and rice hulls into Guam.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... straw and rice hulls into Guam. 319.55a Section 319.55a Agriculture Regulations of the Department of... QUARANTINE NOTICES Rice Quarantine § 319.55a Administrative instructions relating to entry of rice straw and rice hulls into Guam. Rice straw and rice hulls may be imported into Guam without further permit, other...

  16. Genetic analysis of atypical U.S. red rice phenotypes: indications of prior gene flow in rice fields?

    USDA-ARS?s Scientific Manuscript database

    Red rice is a troublesome weed problem in rice fields of the southern U.S. Outcrossing between rice and red rice occurs at low rates, resulting in a broad array of plant types. SSR markers were used to evaluate the genetic backgrounds of atypical red rice types obtained from rice farms in comparis...

  17. Outcrossing potential between U.S. red rice (Oryza sativa) and Chinese indica rice (Oryza sativa) lines

    USDA-ARS?s Scientific Manuscript database

    Red rice in southern U.S. rice fields remains a widespread, economically challenging problem despite nearly a decade of rice production systems that include true-breeding rice cultivars and indica-derived hybrid rice with resistance to imazethapyr. Both of these herbicide-resistant rice systems hav...

  18. Deformation and Fracture of Porous Brittle Materials Under Different Loading Schemes

    NASA Astrophysics Data System (ADS)

    Savchenko, N. L.; Sablina, T. Yu.; Sevostyanova, I. N.; Buyakova, S. P.; Kulkov, S. N.

    2016-03-01

    The behavior of alumina and zirconia compression- and shear-test specimens with porosity ranging from 10 to 70% is investigated. Analysis of the stress-strain curves for the materials under study has revealed a transition from a characteristically brittle fracture of fairly dense Al2O3 and ZrO2 specimens to pseudo-plastic fracture for a high porosity level. The ultimate compression strength, effective elastic and shear moduli, and Poisson's ratio are found to decrease with increase in the pore space volume of the ceramic specimens, which is shown to correlate with development of strain-induced multiple cracking of the materials.

  19. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  20. A reliable approach to prepare brittle semiconducting materials for cross-sectional transmission electron microscopy.

    PubMed

    Dycus, J H; Lebeau, J M

    2017-07-07

    Here, we present a sample preparation approach that simplifies the thinning of very brittle wide bandgap semiconducting materials in cross-section geometry for (scanning) transmission electron microscopy. Using AlN thin films grown on sapphire and AlN substrates as case studies, we demonstrate that high-quality samples can be routinely prepared while greatly reducing the preparation time and consumables cost. The approach removes the sample preparation barrier to studying a wide variety of materials by electron microscopy. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Static stress drop associated with brittle slip events on exhumed faults

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; di Toro, G.; Pennacchioni, G.; Pollard, D. D.; Nielsen, S.

    2009-02-01

    We estimate the static stress drop on small exhumed strike-slip faults in the Lake Edison granodiorite of the central Sierra Nevada (California). The subvertical strike-slip faults were exhumed from 4 to 15 km depth and were chosen because they are exposed in outcrop along their entire tip-to-tip lengths of 8-12 m. Slip nucleated on joints and accumulated by crystal-plastic shearing (forming quartz mylonites from early quartz vein filling in joints) and successive brittle faulting (forming epidote-bearing cataclasites). The occurrence of thin, ≤300 μm wide, pseudotachylytes along some small faults throughout the study area suggests that some, if not all, of the brittle slip on the study area faults may have been seismic. We suggest that the contribution of brittle, cataclastic slip to the total slip along the studied cataclasite-bearing small faults may be estimated by the length of epidote-filled, rhombohedral dilatational jogs (rhombochasms) distributed quasi-periodically along the length of the faults. The interpretation that slip recorded by rhombochasms occurred in single events is based on evidence that (1) epidote crystals are randomly oriented and undeformed within the rhombochasm; (2) cataclasite in principal slip zones does not include clasts of previous cataclasite, and (3) rhombochasm lengths vary systematically along the length of the faults with slip maximum occurring near the fault center, tapering to the fault tips. We thereby constrain both the rupture length and slip. On the basis of these measurements, we calculate stress drops ranging over 90-250 MPa, i.e., one to two orders of magnitude larger than typical seismological estimates for earthquakes, but similar in magnitude to seismological estimates of small (brittle faults

  2. Self-organized criticality in a block lattice model of the brittle crust

    NASA Astrophysics Data System (ADS)

    Lu, Chunsheng; Takayasu, Hideki; Tretyakov, Alex Yu; Takayasu, Misako; Yumoto, Shinji

    1998-06-01

    An earthquake model is introduced, in which the brittle crust is treated as a two-dimensional system of many blocks divided by faults, and the mechanical behavior of the faults is described by the Burridge-Knopoff stick-slip model. The coherent system naturally evolves into a self-organized critical state. Some universal scaling laws of seismicity, such as the Gutenberg-Richter law with the b value in agreement with the observational result and the fractal feature of fault patterns, are reproduced. Some ambiguity in simple cellular automata models is also solved.

  3. Semiempirical formulae for elastic moduli and brittleness of diamondlike and zinc-blende covalent crystals

    SciTech Connect

    Kamran, Sami; Chen, Liang; Chen, Kuiying

    2008-03-01

    In the present work, semiempirical formulae for both bulk B and shear G moduli of diamondlike and zinc-blende covalent crystals are elaborated in terms of bond length and ionicity fraction of the bonding. The resulting expressions can be applied to a broad selection of covalent materials and their modulus predictions are in good agreement with the experimental data and those from ab initio calculations. Furthermore, the correlation between the ratio G/B and the aforementioned bonding parameters was investigated. The analysis of this relationship demonstrates that compared to the ionicity fraction, the bond length is the predominant parameter responsible for the brittle features of covalent materials.

  4. Excess vibrational density of states and the brittle to ductile transition in crystalline and amorphous solids.

    PubMed

    Babu, Jeetu S; Mondal, Chandana; Sengupta, Surajit; Karmakar, Smarajit

    2016-01-28

    The conditions which determine whether a material behaves in a brittle or ductile fashion on mechanical loading are still elusive and comprise a topic of active research among materials physicists and engineers. In this study, we present the results of in silico mechanical deformation experiments from two very different model solids in two and three dimensions. The first consists of particles interacting with isotropic potentials and the other has strongly direction dependent interactions. We show that in both cases, the excess vibrational density of states is one of the fundamental quantities which characterizes the ductility of the material. Our results can be checked using careful experiments on colloidal solids.

  5. Brittle versus ductile deformation as the main control of the deep fluid circulation in continental crust

    NASA Astrophysics Data System (ADS)

    Violay, Marie; Madonna, Claudio; Burg, Jean-Pierre

    2016-04-01

    The Japan Beyond-Brittle Project (JBBP) and the Taupo Volcanic Zone-Deep geothermal drilling project in New Zealand (TVZ-DGDP) proposed a new concept of engineered geothermal development where reservoirs are created in ductile rocks. This system has several advantages including (1) a simpler design and control of the reservoir due to homogeneous rock properties and stress states in the ductile domain ,(2) possible extraction of supercritical fluids (3) less probability for induced earthquakes. However, it is at present unknwon what and how porosity and permeability can be engineered in such environments. It has been proposed that the magmatic chamber is surrounded by a hot and ductile carapace through which heat transfer is conductive because the plastic behaviour of the rock will close possible fluid pathways. Further outward, as temperature declines, the rock will encounter the brittle-ductile transition with a concomitant increase in porosity and permeability. The thickness of the conduction-dominated, ductile boundary zone between the magmatic chamber and the convecting geothermal fluid directly determines the rate of heat transfer. To examine the brittle to ductile transition in the context of the Japanese crust, we conducted deformation experiments on very-fine-grain granite in conventional servocontrolled, gas-medium triaxial apparatus (from Paterson instrument). Temperature ranged from 600° C to 1100° C and effective confining pressure from 100 to 150 MPa. Dilatancy was measured during deformation. The method consisted in monitoring the volume of pore fluid that flows into or out of the sample at constant pore pressure. Permeability was measured under static conditions by transient pressure pulse method. Mechanical and micro-structural observations at experimental constant strain rate of 10-5 s-1 indicated that the granite was brittle and dilatant up to 900 ° C. At higher temperatures the deformation mode becomes macroscopically ductile, i

  6. Process diagnostics for precision grinding brittle materials in a production environment

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    Precision grinding processes are steadily migrating from research laboratory environments into manufacturing production lines as precision machines and processes become increasingly more commonplace throughout industry. Low-roughness, low-damage precision grinding is gaining widespread commercial acceptance for a host of brittle materials including advanced structural ceramics. The development of these processes is often problematic and requires diagnostic information and analysis to harden the processes for manufacturing. This paper presents a series of practical precision grinding tests developed and practiced at Lawrence Livermore National Laboratory that yield important information to help move a new process idea into production.

  7. From Brittle to Pliant Viscoelastic Materials with Solid State Linear Polyphosphonium - Carboxylate Assemblies

    PubMed Central

    Godeau, Guilhem; Navailles, Laurence; Nallet, Frédéric; Lin, Xinrong; McIntosh, Thomas J.; Grinstaff, Mark W.

    2013-01-01

    A polystyrenylphosphonium polymer was synthesized and complexed with various carboxylic acid derivatives to form new solid-state polyelectrolyte-surfactant assemblies. The properties of these ionic materials were highly dependent on the nature of the anion and included a brittle material, a rubbery ball that bounces, or a sticky fiber. The values for the equilibrium modulus, storage modulus, and loss modulus were dependent on the composition of the carboxylic acid and the number of electrostatic interactions. Small-angle X-ray scattering studies on the supramolecular assemblies confirmed a bilayer structure for two of the assemblies. PMID:24511156

  8. Relationships between brittle deformation, weathering and landscape development during the Mesozoic in Scandinavia

    NASA Astrophysics Data System (ADS)

    Viola, Giulio; Fredin, Ola; Scheiber, Thomas; Brönner, Marco; Zwingmann, Horst; Knies, Jochen

    2015-04-01

    Pre-Quaternary weathering is generally considered responsible for the formation of rather common, yet poorly constrained, saprolite remnants onshore Scandinavia. Understanding the genesis of these weathering products and placing them into an adequate tectonic and climatic framework is currently of great interest for two reasons. First, the origin of the landscape in Scandinavia, where deep weathering is thought to have played a fundamental role, is the subject of a lively debate hinged around the number and age of episodes of regional uplift and denudation. Second, there have been recent discoveries of major hydrocarbon reserves within weathered basement highs in the North Sea immediately offshore Norway. Invariably, these basement highs are also severely fractured and faulted and a genetic relationship between brittle deformation, weathering and landscape development is suggested by a number of observations. Within the recently launched BASE project, we aim to establish a temporal and conceptual framework for brittle tectonics, weathering patterns and landscape evolution by constraining the age and rate of weathering and by isotopically dating selected faults intimately linked to weathered basement blocks. Initial efforts have focused on fractured and weathered granitoid rocks of Caledonian age exposed in western Norway. There, saprolites are found as small pockets within a joint valley landscape, which was likely stripped by Quaternary glaciations. Saprolite distribution is mostly structurally controlled as deep weathering and alteration occur predominantly in association with fractures and along faulted corridors. Structural analysis has allowed the geometric and kinematic interpretation of the exposed fracture and fault patterns and we could assign them to a number of distinct brittle deformation episodes characterised by robust paleostress tensors. The K-Ar dating of illites separated from structurally constrained faults indicates a long strain localization

  9. Brittle-viscous deformation cycles in the dry lower continental crust

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio

    2015-04-01

    Many rheological models of the lithosphere (based on "strength envelopes") predict a weak aseismic lower crust below the strong brittle upper crust. An alternative view, based on the distribution of crustal seismicity, is that the lower crust could also be strong and seismic. It has been suggested that a strong, seismogenic lower crust results from the dry conditions of granulite facies rocks, which inhibit crystal plastic flow. This study investigates exhumed networks of shear zones from Nusfjord (Lofoten, northern Norway) to understand initiation and localization of viscous shearing in the dry lower crust. In the study area, different sets of ultramylonitic shear zones are hosted in the massive coarse-grained anorthosite. Metamorphic conditions of 720 °C, 0.9 GPa have been estimated for ductile deformation using amphibole-plagioclase geothermobarometry. Field evidence indicates that ductile shearing exploited pseudotachylyte veins and the associated damage zone of extensive fracturing. Undeformed pseudotachylyte veins locally overprint mylonitic pseudotachylytes suggesting that frictional melting occurred at the same metamorphic conditions of mylonitization. The deep crustal origin of the pseudotachylytes is also indicated by (1) the presence of microlites of labradoritic plagioclase and clinopyroxene, and of dendritic garnet, and (2) the recrystallization of clinopyroxene in the damage zone flanking the pseudotachylyte veins. Therefore the association of pseudotachylytes and mylonites records brittle-viscous deformation cycles under lower crustal conditions. The ultramylonites show phase mixing, fine grain size (5-20 μm) and equant shape of all minerals. Nucleation of amphibole in triple junctions and dilatant sites is common. EBSD analysis indicates that the minerals in the matrix are internally strain free and do not show a crystallographic preferred orientation. Taken together, these observations suggest that diffusion creep and grain boundary sliding were

  10. Natural rice rhizospheric microbes suppress rice blast infections

    PubMed Central

    2014-01-01

    Background The natural interactions between plant roots and their rhizospheric microbiome are vital to plant fitness, modulating both growth promotion and disease suppression. In rice (Oryza sativa), a globally important food crop, as much as 30% of yields are lost due to blast disease caused by fungal pathogen Magnaporthe oryzae. Capitalizing on the abilities of naturally occurring rice soil bacteria to reduce M. oryzae infections could provide a sustainable solution to reduce the amount of crops lost to blast disease. Results Naturally occurring root-associated rhizospheric bacteria were isolated from California field grown rice plants (M-104), eleven of which were taxonomically identified by16S rRNA gene sequencing and fatty acid methyl ester (FAME) analysis. Bacterial isolates were tested for biocontrol activity against the devastating foliar rice fungal pathogen, M. oryzae pathovar 70–15. In vitro, a Pseudomonas isolate, EA105, displayed antibiosis through reducing appressoria formation by nearly 90% as well as directly inhibiting fungal growth by 76%. Although hydrogen cyanide (HCN) is a volatile commonly produced by biocontrol pseudomonads, the activity of EA105 seems to be independent of its HCN production. During in planta experiments, EA105 reduced the number of blast lesions formed by 33% and Pantoea agglomerans isolate, EA106 by 46%. Our data also show both EA105 and EA106 trigger jasmonic acid (JA) and ethylene (ET) dependent induced systemic resistance (ISR) response in rice. Conclusions Out of 11 bacteria isolated from rice soil, pseudomonad EA105 most effectively inhibited the growth and appressoria formation of M. oryzae through a mechanism that is independent of cyanide production. In addition to direct antagonism, EA105 also appears to trigger ISR in rice plants through a mechanism that is dependent on JA and ET signaling, ultimately resulting in fewer blast lesions. The application of native bacteria as biocontrol agents in combination with

  11. Processing Conditions, Rice Properties, Health and Environment

    PubMed Central

    Roy, Poritosh; Orikasa, Takahiro; Okadome, Hiroshi; Nakamura, Nobutaka; Shiina, Takeo

    2011-01-01

    Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR), germinated brown rice (GBR) and partially-milled rice (PMR) contains more health beneficial food components compared to the well milled rice (WMR). Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR) seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled), and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society. PMID:21776212

  12. The impact of planting date on management of the rice water weevil in Louisiana rice

    USDA-ARS?s Scientific Manuscript database

    The rice water weevil, Lissorhoptrus oryzophilus, is the most destructive insect pest of rice in the United States. Early planting of rice to avoid damaging infestations of the rice water weevil has long been suggested as a management tactic. A five-year study was conducted to characterize the influ...

  13. Genetic diversity for rice grain mineral concentrations observed among genetically and geographically giverse rice accessions

    USDA-ARS?s Scientific Manuscript database

    With about half of the world’s people dependent on rice as their main food source, improving the nutritional value of rice could have major impact on human health. While rice in the USA is often artificially fortified, natural enhancement of the rice grain’s nutritional value, i.e. from genetic impr...

  14. Volatiles induction in rice stink bug host grasses and rice plants

    USDA-ARS?s Scientific Manuscript database

    Rice stink bug (RSB), Oebalus pugnax F., is an important pest of heading rice in the United States. Little is known about plant volatiles production following herbivory by the rice stink bug. RSB feeding induced volatiles production in different RSB host grasses and rice varieties, and may help expl...

  15. Diversity of global rice markets and the science required for consumer-targeted rice breeding

    USDA-ARS?s Scientific Manuscript database

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of different quality traits that make up the rice grain and obtain a full picture of rice quality demographics. Rice ...

  16. Utilization of weedy rice for development of japonica hybrid rice (Oryza sativa L.).

    PubMed

    Tang, Liang; Ma, Dian Rong; Xu, Zheng Jin; Deng, Hua Feng; Chen, Wen Fu; Yuan, Long Ping

    2011-05-01

    Two representative weedy rice lines, three typical japonica varieties and three typical indica varieties were used for 6 pairs of reciprocal crosses. The morphological traits of twelve F(1) hybrid lines, their parents and four elite cultivars were investigated for heterosis over mid-parent (HM), over parent (HP) and competitive heterosis (CH) analysis. Traits detected in weedy rice lines seemed larger than those in cultivars and excellent heterosis was produced in weedy rice crossing with japonica rice. Although weedy rice kept closer relationships with japonica rice compared to indica rice. But the heterosis of reciprocal crosses between weedy rice and japonica was closed to those of crosses between indica rice and japonica rice. In six of one hundred and eighteen weedy rice lines, the fertility restore gene for BT type cytoplasmic male sterility (BT-CMS) were detected. Weedy rice was very valuable germplasm resources with the abundant polymorphism. Meanwhile, the disadvantage, lodging, shattering and incompact plant type, should be modified by hybridization, backcross and multiple cross with japonica rice. Although it is difficult to use weedy rice directly, weedy rice may be available to breed both male sterile line and restorer line through improvement, developing japonica hybrid rice.

  17. Elemental composition of Malawian rice.

    PubMed

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2017-08-01

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg(-1), dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg(-1), and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg(-1), dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could

  18. Thermal characteristics of ohmically heated rice starch and rice flours.

    PubMed

    An, H J; King, J M

    2007-01-01

    Thermal properties of conventionally and ohmically heated rice starch and rice flours at various frequencies and voltages were studied. There was an increase in gelatinization temperature for conventionally heated rice starches since they were pregelatinized and became more rigid due to starch-chain interactions. In addition, there was a decrease in enthalpy (energy needed) for conventionally and ohmically heated starches during gelatinization; thus, the samples required less energy for gelatinization during DSC analysis. Ohmically heated commercial starch showed the greatest decrease in enthalpy probably because of the greatest extent of pregelatinization through ohmic heating. Brown rice flour showed the greatest gelatinization temperature resulting from the delay of starch granule swelling by lipid and protein. Enthalpy of ohmically heated starches at 20 V/cm was the lowest, which was most likely due to the lower voltage resulting in a more complete pregelatinization from a longer heating time required to reach 100 degrees C. Ohmic treatment at 70 V/cm decreased onset gelatinization temperature of white flour; therefore, it produced rice flour that swelled faster, whereas the conventionally heated sample showed a better thermal resistance.

  19. A New Method to Evaluate Rock Mass Brittleness Based on Stress-Strain Curves of Class I

    NASA Astrophysics Data System (ADS)

    Xia, Y. J.; Li, L. C.; Tang, C. A.; Li, X. Y.; Ma, S.; Li, M.

    2017-05-01

    Brittleness is a key controlling parameter for rock engineering projects such as hydrocarbon production and other applications. In this paper, commonly used methods based on stress-strain curves of Class I for the calculation of rock brittleness are reviewed. In order to describe the rock brittleness more reasonable, the new index B i was proposed based on the stress drop rate obtained from post-peak stress-strain curve and the ratio of elastic energy released during failure to the total energy stored before the peak strength. Then the validity of B i is verified with experimental tests conducted on rock specimens drilled from the interlayer and oil layer through a well of Shengli Oilfield. Moreover, numerical simulation is performed to analyze the effects of primary mechanical parameters on the brittleness of rock masses. Based on experimental tests and numerical simulation results, the acoustic emission modes influenced by brittleness index B i are summarized. At last, correlation between acoustic emission mechanism and index B i is verified by comparing the acoustic emission modes of limestone under different levels of confining pressure and various types of coal.

  20. Breaking new ground in the mind: an initial study of mental brittle transformation and mental rigid rotation in science experts.

    PubMed

    Resnick, Ilyse; Shipley, Thomas F

    2013-05-01

    The current study examines the spatial skills employed in different spatial reasoning tasks, by asking how science experts who are practiced in different types of visualizations perform on different spatial tasks. Specifically, the current study examines the varieties of mental transformations. We hypothesize that there may be two broad classes of mental transformations: rigid body mental transformations and non-rigid mental transformations. We focus on the disciplines of geology and organic chemistry because different types of transformations are central to the two disciplines: While geologists and organic chemists may both confront rotation in the practice of their profession, only geologists confront brittle transformations. A new instrument was developed to measure mental brittle transformation (visualizing breaking). Geologists and organic chemists performed similarly on a measure of mental rotation, while geologists outperformed organic chemists on the mental brittle transformation test. The differential pattern of skill on the two tests for the two groups of experts suggests that mental brittle transformation and mental rotation are different spatial skills. The roles of domain general cognitive resources (attentional control, spatial working memory, and perceptual filling in) and strategy in completing mental brittle transformation are discussed. The current study illustrates how ecological and interdisciplinary approaches complement traditional cognitive science to offer a comprehensive approach to understanding the nature of spatial thinking.

  1. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.

    PubMed

    Violay, M; Heap, M J; Acosta, M; Madonna, C

    2017-08-09

    Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

  2. Sensory and physical properties of peanut brittle prepared in different types of cookware and with different levels of sodium bicarbonate.

    PubMed

    McKee, L H; Christopher, J; Remmenga, M

    2003-01-01

    Two studies to evaluate peanut brittle containing either raw or roasted peanuts were conducted. In the first study, brittles were prepared in iron, aluminum, stainless steel and nonstick stainless steel pans. In the second study, brittles containing 0, 2 or 4 g of sodium bicarbonate prepared in either stainless steel or nonstick stainless steel pans were evaluated. All brittles were evaluated for color, shear strength and sensory properties at 0, 30 and 60 days. Products prepared in a nonstick stainless steel pan and those with added sodium bicarbonate were lighter, more yellow and slightly greener than other products. Pan type did not affect shear force but increasing sodium bicarbonate was associated with decreasing force needed to shear brittles. Peanut and caramel aromas were not affected by pan type or sodium bicarbonate level but were greater (p < 0.05) in products containing roasted peanuts. Burned flavors were more prevalent in products prepared in iron or stainless steel pans with roasted peanuts. More intense sweet and buttery flavors were detected as level of sodium bicarbonate increased.

  3. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  4. Migrating swarms of brittle-failure earthquakes in the lower crust beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Shelly, D.R.; Hill, D.P.

    2011-01-01

    Brittle-failure earthquakes in the lower crust, where high pressures and temperatures would typically promote ductile deformation, are relatively rare but occasionally observed beneath active volcanic centers. Where they occur, these earthquakes provide a rare opportunity to observe volcanic processes in the lower crust, such as fluid injection and migration, which may induce brittle faulting under these conditions. Here, we examine recent short-duration earthquake swarms deep beneath the southwestern margin of Long Valley Caldera, near Mammoth Mountain. We focus in particular on a swarm that occurred September 29-30, 2009. To maximally illuminate the spatial-temporal progression, we supplement catalog events by detecting additional small events with similar waveforms in the continuous data, achieving up to a 10-fold increase in the number of locatable events. We then relocate all events, using cross-correlation and a double-difference algorithm. We find that the 2009 swarm exhibits systematically decelerating upward migration, with hypocenters shallowing from 21 to 19 km depth over approximately 12 hours. This relatively high migration rate, combined with a modest maximum magnitude of 1.4 in this swarm, suggests the trigger might be ascending CO2 released from underlying magma.

  5. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    PubMed Central

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-01-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ∼4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals—dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices. PMID:27515779

  6. Modeling and analysis of ductility of brittle materials using indentation method

    NASA Astrophysics Data System (ADS)

    Sun, Guoyan; Lu, Zhe; Bai, Jianming; Yu, Fangsu

    2014-08-01

    Nowadays, many optical elements are fabricated by means of glass molding using hard and brittle inserts such as Silicon Carbide (SiC) and Silicon Nitride (Si3N4). However, for those hard-to-machine materials, the most feasible solution is still with ultra-precision grinding and following polishing. Hence, it is necessary and meaningful to study their plastic properties for the development of optical fabrication and ultra-precision manufacturing process. However, the conventional methods including compression test and indentation fracture mechanics are not sufficient to obtain the accurate parameters and still lack of reliable supporting of the machining process. To solve this problem, this paper presents a novel way to correlate the plastic properties to the indentation data using dimensional analysis for the two sorts of hard and brittle materials of SiC and Si3N4. Through integrating the data obtained by the indentation tests and the modeling method presented in this paper, stress-strain behavior, yield stress σy, yield strain epsilony and strain hardening exponent n could be determined. The processing performance of these two materials reflected by the above parameters are consistent with the conclusions drawing from the indentation crack development under varying loads during the indentation test, which verifies the effectiveness and feasibility of the presented modeling method.

  7. Constraining timing and fluid sources of brittle fault gouge formation within the Naxos detachment, Greece

    NASA Astrophysics Data System (ADS)

    Mancktelow, N. S.; Zwingmann, H.; Mulch, A.

    2016-12-01

    Neotectonic brittle faults are associated with near-surface deformation. Displacement on the fault planes often forms fault gouge composed of rock fragments and authigenic illite due to fluid flow and water rock interaction. Numerous recent studies have demonstrated the potential to determine the absolute timing of brittle fault history and its fluid sources using isotopic dating techniques and hydrogen stable isotope signatures of authigenic clay minerals. To obtain reliable isotopic data accurate size separation using high-speed centrifuges combined with mineral characterization (SEM, TEM, XRD etc.) of the separates is required prior to isotopic analyses. We report K-Ar illite age data obtained from a clay fault gouge within the Naxos detachment. Eight clay-size fractions from the detachment document a narrow age range between 10.3 to 9.0 Ma, with an average of 9.7 ± 0.5 Ma (± 1σ). These results are well aligned with published regional and local age constraints. Argon diffusion modeling indicates that authigenic gouge clay minerals remain closed after initial formation and align well within the cooling history. Authigenic clay hydrogen δD values yield values ranging from -89 to -95 ‰, indicating interaction with meteoric water. Clay gouge formed in a limited time, temperature and depth range window suggesting it could have acted as a lubricant promoting movement on the Naxos detachment, with correspondingly rapid exhumation and cooling of the underlying footwall.

  8. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  9. Rise and emplacement of magma during horizontal shortening of the brittle crust: Insights from experimental modeling

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Cobbold, Peter R.; de Bremond D'Ars, Jean; Hallot, Erwan

    2007-06-01

    Magmatic activity tends to concentrate at plate margins. At divergent margins, extensional tectonics provide steep conduits for magma to reach the surface. At rapidly convergent margins, such as the Andes, one might imagine that horizontal compression prevents the rise of magma. Nevertheless, volcanoes are also common. In order to study the mechanisms by which magma rises in a compressional context, we resorted to laboratory experiments, in which a brittle crust was shortened, while magma was intruding. Our model materials were (1) cohesive fine-grained silica powder, representing brittle crust, and (2) molten low-viscosity vegetable oil, representing magma. In general, horizontal shortening and injection were coeval but independent processes. Thrust faults accommodated the shortening, while overpressured oil formed hydraulic fractures. In those experiments where there was no shortening, injection resulted in a saucer-shaped intrusive body. In the other experiments, where there was shortening, oil formed a basal sill, before rising along thrust faults. Once in place, the sill lubricated the base of the model, so that arcuate thrusts formed at the leading edge of a plateau. Uplift of the plateau promoted further intrusion of oil at depth. In general, the pattern of deformation and intrusion depended on the kinematic ratio R between rates of shortening and injection. The lengths of the basal sill and plateau increased with decreasing R. On the basis of these results, we have reexamined two natural examples of magmatic complexes, which were emplaced in compressional tectonic settings, Tromen volcano in Argentina and the Boulder Batholith of Montana.

  10. A micromechanical constitutive model for the dynamic response of brittle materials "Dynamic response of marble"

    NASA Astrophysics Data System (ADS)

    Haberman, Keith

    2001-07-01

    A micromechanically based constitutive model for the dynamic inelastic behavior of brittle materials, specifically "Dionysus-Pentelicon marble" with distributed microcracking is presented. Dionysus-Pentelicon marble was used in the construction of the Parthenon, in Athens, Greece. The constitutive model is a key component in the ability to simulate this historic explosion and the preceding bombardment form cannon fire that occurred at the Parthenon in 1678. Experiments were performed by Rosakis (1999) that characterized the static and dynamic response of this unique material. A micromechanical constitutive model that was previously successfully used to model the dynamic response of granular brittle materials is presented. The constitutive model was fitted to the experimental data for marble and reproduced the experimentally observed basic uniaxial dynamic behavior quite well. This micromechanical constitutive model was then implemented into the three dimensional nonlinear lagrangain finite element code Dyna3d(1998). Implementing this methodology into the three dimensional nonlinear dynamic finite element code allowed the model to be exercised on several preliminary impact experiments. During future simulations, the model is to be used in conjunction with other numerical techniques to simulate projectile impact and blast loading on the Dionysus-Pentelicon marble and on the structure of the Parthenon.

  11. Mechanics of Matrix Cracking in Brittle-Matrix Fibre-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    McCartney, L. N.

    1987-02-01

    Energy-balance calculations for a continuum model of cracking in a uniaxially fibre-reinforced composite having a brittle matrix are presented. It is assumed that the fibres are strong enough to remain intact when the matrix cracks across the entire cross section of the composite. By equating the energy availability for the cracking of continuum and discrete fibre models it is shown how the crack boundary condition relating fibre stress to crack opening must be selected. It is confirmed that the Griffith fracture criterion is valid for matrix cracking in composites. By considering the energy balance of long cracks it is shown that the limiting value of the stress intensity factor is independent of crack length and that it predicts a matrix-cracking strain that is consistent with the known result. An improved numerical method is described for solving a crack problem arising from the study of the cracking of brittle-matrix composites. Numerical results of high accuracy are obtained, which show how the cracking stress is related to the size of a pre-existing defect. Of special significance is the prediction of the correct threshold stress (i.e. matrix-cracking stress) below which matrix cracking is impossible no matter how large the pre-existing defect.

  12. Micromechanics of brittle faulting and cataclastic flow in Mount Etna basalt

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Baud, Patrick; Vinciguerra, Sergio; Wong, Teng-fong

    2016-06-01

    Understanding how the strength of volcanic rocks varies with stress state, pressure, and microstructural attributes is fundamental to understanding the dynamics and tectonics of a volcanic system and also very important in applications such as geothermics or reservoir management in volcanic environments. In this study we investigated the micromechanics of deformation and failure in basalt, focusing on samples from Mount Etna. We performed 65 uniaxial and triaxial compression experiments on nominally dry and water-saturated samples covering a porosity range between 5 and 16%, at effective pressures up to 200 MPa. Dilatancy and brittle faulting were observed in all samples with porosity of 5%. Water-saturated samples were found to be significantly weaker than comparable dry samples. Shear-enhanced compaction was observed at effective pressures as low as 80 MPa in samples of 8% porosity. Microstructural data revealed the complex interplay of microcracks, pores, and phenocrysts on dilatant failure and inelastic compaction in basalt. The micromechanics of brittle failure is controlled by wing crack propagation under triaxial compression and by pore-emanated cracking under uniaxial compression especially in the more porous samples. The mechanism of inelastic compaction in basalt is cataclastic pore-collapse in agreement with a recent dual-porosity model.

  13. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading

    NASA Astrophysics Data System (ADS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  14. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks

    PubMed Central

    Sen, Dipanjan; Buehler, Markus J.

    2011-01-01

    Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects. PMID:22355554

  15. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks.

    PubMed

    Sen, Dipanjan; Buehler, Markus J

    2011-01-01

    Mineralized biological materials such as bone, sea sponges or diatoms provide load-bearing and armor functions and universally feature structural hierarchies from nano to macro. Here we report a systematic investigation of the effect of hierarchical structures on toughness and defect-tolerance based on a single and mechanically inferior brittle base material, silica, using a bottom-up approach rooted in atomistic modeling. Our analysis reveals drastic changes in the material crack-propagation resistance (R-curve) solely due to the introduction of hierarchical structures that also result in a vastly increased toughness and defect-tolerance, enabling stable crack propagation over an extensive range of crack sizes. Over a range of up to four hierarchy levels, we find an exponential increase in the defect-tolerance approaching hundred micrometers without introducing additional mechanisms or materials. This presents a significant departure from the defect-tolerance of the base material, silica, which is brittle and highly sensitive even to extremely small nanometer-scale defects.

  16. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle

    PubMed Central

    Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-01-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055

  17. An approach to scaling size effect on strength of quasi-brittle biomedical materials.

    PubMed

    Lei, Wei-Sheng; Su, Peng

    2016-09-01

    Two-parameter Weibull statistics is commonly used for characterizing and modeling strength distribution of biomedical materials and its size dependence. The calibrated scale parameter and shape factor are usually sensitive to specimen size. Since Weibull statistics is subject to the weakest link postulate, this work proposed to directly resort to the weakest-link formulation for the cumulative failure probability to characterize size effect on strength distribution of quasi-brittle biomedical materials. As a preliminary examination, the approach was assessed by two sets of published strength data. It shows that the resultant expression for the cumulative probability follows either Weibull distribution or other type of distributions. The calibrated model parameters are independent of specimen size, so they can be used to transfer strength distribution from one set of specimens to another set of specimens with geometrical similarity under same loading mode. These initial results motivate a more comprehensive validation of the proposed approach to proceed via a larger set of case studies covering different quasi-brittle biomedical materials over a wider range of size variation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pressure induced stiffening, thermal softening of bulk modulus and brittle nature of mercury chalcogenides

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Shriya, Swarna; Sapkale, Raju; Varshney, Meenu; Ameri, M.

    2015-07-01

    The pressure and temperature dependent elastic properties of mercury chalcogenides (HgX; X = S, Se and Te) with pressure induced structural transition from ZnS-type (B3) to NaCl-type (B1) structure have been analyzed within the framework of a model interionic interaction potential with long-range Coulomb and charge transfer interactions, short-range overlap repulsion and van der Waals (vdW) interactions as well as zero point energy effects. Emphasis is on the evaluation of the Bulk modulus with pressure and temperature dependency to yield the Poisson's ratio ν, the Pugh ratio ϕ, anisotropy parameter, Shear and Young's modulus, Lamé's constant, Klein man parameter, elastic wave velocity and Debye temperature. The Poisson's ratio behavior infers that HgX are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations.

  19. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae.

    PubMed

    Delroisse, Jérôme; Ortega-Martinez, Olga; Dupont, Sam; Mallefet, Jérôme; Flammang, Patrick

    2015-10-01

    In non-classical model species, Next Generation Sequencing increases the ability to analyze the expression of transcripts/genes. In this study, paired-end Illumina HiSeq sequencing technology has been employed to describe a larval transcriptome generated from 64 h post-fertilization pluteus larvae of the brittle star Amphiura filiformis. We focused our analysis on the detection of actors involved in the opsin based light perception, respectively the opsins and the phototransduction actors. In this research, about 47 million high quality reads were generated and 86,572 total unigenes were predicted after de novo assembly. Of all the larval unigenes, 18% show significant matches with reference online databases. 46% of annotated larval unigenes were significantly similar to transcripts from the purple sea urchin. COG, GO and KEGG analyses were performed on predicted unigenes. Regarding the opsin-based photoreception process, even if possible actors of ciliary and rhabdomeric phototransduction cascades were detected, no ciliary or rhabdomeric opsin was identified in these larvae. Additionally, partial non-visual RGR (retinal G protein coupled receptor) opsin mRNAs were identified,possibly indicating the presence of visual cycle reaction in early pluteus larvae. The eye morphogene Pax 6 was also identified in the pluteus transcriptome. Contrary to sea-urchin larvae, brittle star larvae appear to be characterized by an absence of visual-like opsins. These RNA-seq data also provide a useful resource for the echinoderm research community and researchers with an interest in larval biology.

  20. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Luo, S. N.

    2008-12-01

    We propose and validate an indirect tensile testing method to measure the dynamic tensile strength of rocks and other brittle solids: semicircular bend (SCB) testing with a modified split Hopkinson pressure bar (SHPB) system. A strain gauge is mounted near the failure spot on the specimen to determine the rupture time. The momentum trap technique is utilized to ensure single pulse loading for postmortem examination. Tests without and with pulse shaping are conducted on rock specimens. The evolution of tensile stress at the failure spot is determined via dynamic and quasistatic finite element analyses with the dynamic loads measured from SHPB as inputs. Given properly shaped incident pulse, far-field dynamic force balance is achieved and the peak of the loading matches in time with the rupture onset of the specimen. In addition, the dynamic tensile stress history at the failure spot obtained from the full dynamic finite element analysis agrees with the quasistatic analysis. The opposite occurs for the test without pulse shaping. These results demonstrate that when the far-field dynamic force balance is satisfied, the inertial effects associated with stress wave loading are minimized and thus one can apply the simple quasistatic analysis to obtain the tensile strength in the SCB-SHPB testing. This method provides a useful and cost effective way to measure indirectly the dynamic tensile strength of rocks and other brittle materials.

  1. Fracture initiation by local brittle zones in weldments of quenched and tempered structural alloy steel plate

    SciTech Connect

    Kenney, K.L.; Reuter, W.G.; Reemsnyder, H.S.; Matlock, D.K.

    1997-12-31

    The heat-affected zone (HAZ) embrittlement of an API 2Y Grade 50T quenched and tempered offshore structural steel plate, welded by the submerged-arc process at a heat input of 4.5 kJ/mm, was investigated from the viewpoint of identifying the local brittle zone (LBZ) microstructure and the metallurgical factors associated with its formation. Microstructural and fractographic analysis showed the LBZ microstructure to be dual phase martensite-austenite (M-A) constituent. The formation of M-A constituent was found to be related to microstructural banding of the hot-rolled base plate. When the banded base plate was welded, M-A constituent formed only within the band microstructure which penetrated the intercritically-reheated coarse-grain HAZ (IRCGHAZ). The chemistry of the band microstructure in conjunction with the thermal cycle of the IRCGHAZ provided the critical conditions for the formation of M-A constituent in the API 2Y Grade 50T steel investigated. The influence of local brittle zones (i.e., M-A constituent) on the HAZ fracture toughness was evaluated by means of Crack-Tip Opening Displacement (CTOD) tests. These tests showed the steel to suffer embrittlement when the fatigue precrack sampled an intercritically-reheated coarse-grain HAZ which contained M-A constituent, confirming that M-A constituent is the major microstructural factor controlling the HAZ toughness of this particular steel.

  2. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-06-01

    This paper analyzes the mechanical behavior of the unstable Mt. Toc slope before the 1963 catastrophic collapse, considering both the measured data (surface displacements and microseismicity) and the updated geological model of the prehistoric rockslide. From February 1960 up to 9 October 1963, the unstable mass behaved as a brittle-ductile `mechanical system,' characterized by remarkable microseismicity as well as by considerable surface displacements (up to 4-5 m). Recorded microshocks were the result of progressive rock fracturing of distinct resisting stiff parts made up of intact rock (indentations, undulations, and rock bridges). The main resisting stiff part was a large rock indentation located at the NE extremity of the unstable mass that acted as a mechanical constraint during the whole 1960-1963 period, inducing a progressive rototranslation toward the NE. This large constraint failed in autumn 1960, when an overall slope failure took place, as emphasized by the occurrence of the large perimetrical crack in the upper slope. In this circumstance, the collapse was inhibited by a reblocking phenomenon of the unstable mass that had been previously destabilized by the first reservoir filling. Progressive failure of localized intact rock parts progressively propagated westwards as a consequence of the two further filling-drawdown cycles of the reservoir (1962 and 1963). The characteristic brittle-ductile behavior of the Vajont landslide was made possible by the presence of a very thick (40-50 m) and highly deformable shear zone underlying the upper rigid rock mass (100-120 m thick).

  3. Influence of surface cracks on laser-induced damage resistance of brittle KH₂PO₄ crystal.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Wang, Jinghe; Xiao, Yong; Li, Mingquan

    2014-11-17

    Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH(2)PO(4) crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355 nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm(2) to 2.33J/cm(2) (355 nm, 6.4 ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths.

  4. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    PubMed

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  5. Dominant time scale for brittle fragmentation of vesicular magma by decompression

    NASA Astrophysics Data System (ADS)

    Kameda, Masaharu; Kuribara, Hideaki; Ichihara, Mie

    2008-07-01

    Brittle fragmentation was examined in a vesicular material analogous to magma, in this case, maltose syrup with bubbles. All the key time scales for magma fragmentation are controlled in the experiment using a rapid decompression facility. It was found that the onset of fragmentation can be well characterized using the Maxwell relaxation time τ r and the decompression time Δt dec, in the case where sufficiently large stress is generated in the material. As the ratio Δt dec/τ r increases from less than unity to over fifty, the response of the specimen changes from brittle fragmentation to ductile expansion without fragmentation. During the transition, the specimen exhibits small ductile deformation before the onset of fragmentation. The transition occurs even though the stress at the bubble wall is the same. The results suggest that Δt dec/τ r is the controlling parameter not only for the onset of, but also for the variation of magma fragmentation by decompression.

  6. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  7. Analytical and numerical analysis of frictional damage in quasi brittle materials

    NASA Astrophysics Data System (ADS)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  8. Generalized Reliability Methodology Applied to Brittle Anisotropic Single Crystals. Degree awarded by Washington Univ., 1999

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2002-01-01

    A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.

  9. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    NASA Astrophysics Data System (ADS)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  10. Simulation of seismic waves in the brittle-ductile transition (BDT) using a Burgers model

    NASA Astrophysics Data System (ADS)

    Poletto, Flavio; Farina, Biancamaria; Carcione, José Maria

    2014-05-01

    The seismic characterization of the brittle-ductile transition (BDT) in the Earth's crust is of great importance for the study of high-enthalpy geothermal fields in the proximity of magmatic zones. It is well known that the BDT can be viewed as the transition between zones with viscoelastic and plastic behavior, i.e., the transition between the upper, cooler, brittle crustal zone, and the deeper ductile zone. Depending on stress and temperature conditions, the BDT behavior is basically determined by the viscosity of the crustal rocks, which acts as a key factor. In situ shear stress and temperature are related to shear viscosity and steady-state creep flow through the Arrhenius equation, and deviatory stress by octahedral stress criterion. We present a numerical approach to simulate the propagation of P-S and SH seismic waves in a 2D model of the heterogeneous Earth's crust. The full-waveform simulation code is based on a Burgers mechanical model (Carcione, 2007), which enables us to describe both the seismic attenuation effects and the steady-state creep flow (Carcione and Poletto, 2013; Carcione et al. 2013). The differential equations of motion are calculated for the Burgers model, and recast in the velocity-stress formulation. Equations are solved in the time domain using memory variables. The approach uses a direct method based on the Runge-Kutta technique, and the Fourier pseudo-spectral methods, for time integration and for spatial derivation, respectively. In this simulation we assume isotropic models. To test the code, the signals generated by the full-waveform simulation algorithm are compared with success to analytic solutions obtained with different shear viscosities. Moreover, synthetic results are calculated to simulate surface and VSP seismograms in a realistic rheological model with a dramatic temperature change, to study the observability of BDT by seismic reflection methods. The medium corresponds to a selected rheology of the Iceland scenario

  11. Rice aroma and flavor: a literature review.

    USDA-ARS?s Scientific Manuscript database

    The aroma and flavor of cooked rice are major criteria for preference among consumers. Small variations in these sensory properties can make rice highly desired or unacceptable to consumers. Human sensory analyses have identified over a dozen different aromas and flavors in rice. Instrumental ana...

  12. Is ALL Rice Bran Created Equal?

    USDA-ARS?s Scientific Manuscript database

    Consumption of whole grain rice is increasing in the U.S. This increase is likely due to increased consumer awareness of the importance of whole grains in the diet. Whole grain rice is superior nutritionally compared to milled rice because, except for carbohyrates, it contains more phytochemicals an...

  13. Rice bran stabilization using alternative techniques (abstract)

    USDA-ARS?s Scientific Manuscript database

    Utilization of rice bran, a by-product of rice milling characterized with a high economic value, is severely restricted by the activity of endogenous enzymes which typically deteriorate the bran quality. There is a great need to develop alternative techniques for stabilizing rice bran and at the sam...

  14. Unraveling the secrets of rice wild species

    USDA-ARS?s Scientific Manuscript database

    The rice wild species (Oryza spp.) genepool is a relatively untapped source of novel alleles for crop improvement. Several different accessions of rice wild species have been crossed as donor parents with several different Asian rice (O. sativa) cultivars, as the recurrent parent to develop mappi...

  15. Archeological evidence for utilizaton of wild rice.

    PubMed

    Johnson, E

    1969-01-17

    The use of wild rice during the late prehistoric period is suggested by charred wild rice grains associated with fire hearths and threshing pits in historically known, specialized harvesting sites. Similar wild rice grains imbedded in the clay lining of specialized threshing pits called "jig pots" confirms the prehistoric use.

  16. New market opportunities for rice grains

    USDA-ARS?s Scientific Manuscript database

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  17. Organic rice diseases and their management

    USDA-ARS?s Scientific Manuscript database

    Management of diseases is a challenge to organic rice producers. No synthetic chemicals, including fungicides and fertilizers, are allowed for use on organic rice. Instead, organic rice production relies on cultivars, animal and green manures, tillage, water, and other biological measures to maintai...

  18. Understanding rice heterosis using deep sequencing

    USDA-ARS?s Scientific Manuscript database

    Heterosis is a complex biological phenomenon where the offspring show better performance compared to the inbred parents. Although rice breeders have used heterosis in hybrid rice production for nearly 40 years, the genetic and molecular mechanism underlying the heterosis in rice is still poorly und...

  19. Red Yeast Rice

    PubMed Central

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  20. Mixed brittle-plastic deformation behaviour in a slate belt. Examples from the High-Ardenne slate belt (Belgium, Germany)

    NASA Astrophysics Data System (ADS)

    Sintubin, Manuel; van Baelen, Hervé; van Noten, Koen; Muchez, Philippe

    2010-05-01

    In the High-Ardenne slate belt, part of the Rhenohercynian external fold-and-thrust belt at the northern extremity of the Late Palaeozoic Variscan orogen (Belgium, Germany, France), particular quartz vein occurrences can be observed in predominantly fine-grained siliciclastic metasediments. Detailed structural, petrographical and geochemical studies has revealed that these vein occurrences can be related to a mixed brittle-plastic deformation behaviour in a low-grade metamorphic mid-crustal environment. The first type of quartz veins are bedding-perpendicular, lens-shaped extension veins that are confined to the sandstone layers within the multilayer sequence. Fluid inclusion studies demonstrate high fluid pressures suggesting that the individual sandstone bodies acted as isolated high-pressure compartments in an overpressured basin. Hydraulic fracturing occurred during the tectonic inversion (from extension to compression) in the earliest stages of the Variscan orogeny. The vein fill shows a blocky character indicating crystal growth in open cavities. Both the typical lens shape of the veins and the subsequent cuspate-lobate folding of the bed interfaces in between the quartz veins suggest plastic deformation of cohesionless fluid-filled fissures. Metamorphic grade of the host rock and fluid temperature and pressure clearly indicates mid-crustal conditions below the brittle-plastic transition. This first type of quartz veins exemplifies mixed brittle-plastic deformation behaviour, possibly related to a transient deepening of the brittle-plastic transition. This is in contrast with contemporaneous bedding-perpendicular crack-seal veins observed in higher - upper-crustal - structural levels in the slate belt, reflecting pure brittle deformation behaviour. The second type are discordant quartz veins confined to extensional low-angle detachment shear zones. These very irregular veins transect a pre-existing pervasive cleavage fabric. They show no matching walls and