Sample records for rice expressing pha-e

  1. Safety testing of GM-rice expressing PHA-E lectin using a new animal test design.

    PubMed

    Poulsen, Morten; Schrøder, Malene; Wilcks, Andrea; Kroghsbo, Stine; Lindecrona, Rikke Hvid; Miller, Andreas; Frenzel, Thomas; Danier, Jürgen; Rychlik, Michael; Shu, Qingyao; Emami, Kaveh; Taylor, Mark; Gatehouse, Angharad; Engel, Karl-Heinz; Knudsen, Ib

    2007-03-01

    The 90-day animal study is the core study for the safety assessment of genetically modified foods in the SAFOTEST project. The model compound tested in the 90-day study was a rice variety expressing the kidney bean Phaseolus vulgaris lectin agglutinin E-form (PHA-E lectin). Female Wistar rats were given a nutritionally balanced purified diet with 60% parental rice, 60% PHA-E rice or 60% PHA-E rice spiked with 0.1% recombinant PHA-E lectin for 90 days. This corresponded to a mean daily PHA-E lectin intake of approximately 0, 30 and 100mg/kg body weight for each group, respectively. The spiking was used to increase the specificity and to demonstrate the sensitivity of the study. A range of biological, biochemical, microbiological and pathological parameters were examined and significant differences in weight of small intestine, stomach and pancreas and plasma biochemistry were seen between groups. Included in this paper are also data from the molecular characterisation and chemical analysis of the PHA-E rice, from the construction and production of the PHA-E lectin, and from the preceding 28-day in vivo study where the toxicity of the pure PHA-E lectin was determined. In conclusion, the combined use of information from the compositional analysis, the 28-day study and the characterisation of the PHA-E rice and the PHA-E lectin has improved the design of the 90-day study. The spiking procedure has facilitated the interpretation of the results of the study and transferred it into a valuable tool for the future safety testing of genetically modified foods.

  2. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

    PubMed

    Martinez, Raul E; Marquez, J Eduardo; Hòa, Hoàng Thị Bích; Gieré, Reto

    2013-11-01

    This study quantified Cd, Pb, and Cu content, and the soil-plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz-clay matrix of rice paddy soils at 20-30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146±0.004, 23.3±0.1, and 23.5±0.1 mg/kg which exceeded calculated background concentrations of 0.006±0.004, 1.9±0.5, and 2.4±1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2±0.1 to 140±3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60% with respect to a control sample was found for model plants, whereas a decrease of only 10% was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84±0.02 and 7.7±0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0.09±0.01 and 0.10±0.04 mg/kg respectively in the rice grain endosperm. The adaptation of native rice plants, combined with bioaccumulation ratios of 1±0.6 to 1.4±0.7 calculated for Cd transfer to the rice grain endosperm, and maximum Cd transfer factors of 4.3±2.1 to the plant roots, strongly suggest a continuous input of some toxic metals from coal-mining operations to agricultural lands in the region of Cam Pha. In addition, our results imply a sustained absorption of metals by native rice plant varieties, which may lead to metal accumulation (e.g., Cd) in human organs and in turn to severe disease.

  3. Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha.

    PubMed

    Ushimaru, Kazunori; Tsuge, Takeharu

    2016-05-01

    The binding preference of a polyhydroxyalkanoate (PHA) biosynthesis-related multifunctional protein from Ralstonia eutropha (PhaMRe) was characterized. In vitro activity assay showed that PHA synthase from R. eutropha (PhaCRe) was activated by the presence of PhaMRe but PHA synthase from Aeromonas caviae (PhaCAc) was not. Additionally, in vitro assays of protein-protein interactions demonstrated that PhaMRe interacted with PhaCRe directly, but did not interact with PhaCAc. These results suggest that the protein-protein interaction is important for the activation of PhaC by PhaMRe. Further analyses indicated that PhaMRe has little or no direct interaction with the PHA polymer chain. Subsequently, PHA biosynthesis genes (phaA Re, phaB Re, and phaC Re/phaC Ac) and the phaM Re gene were introduced into recombinant Escherichia coli and cultivated for PHA accumulation. Contrary to our expectations, the expression of PhaMRe decreased PHA accumulation and changed the morphology of PHA granules to be microscopically obscure shape in PhaCRe-expressing E. coli. No change in the amount of P(3HB) or the morphology of granules by PhaMRe expression was observed in PhaCAc-expressing E. coli. These observations suggest that PhaMRe affects cellular physiology through the PhaM-PhaC interaction.

  4. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16.

    PubMed

    Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter

    2011-11-01

    A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1. © 2011 Blackwell Publishing Ltd.

  5. Identification and analysis of putative polyhydroxyalkanoate synthase (PhaC) in Pseudomonas fluorescens.

    PubMed

    Lim, Ju Hyoung; Rhie, Ho-Gun; Kim, Jeong Nam

    2018-05-11

    Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. PHA granules mainly consisted of poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate- co -3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas . In vivo expression of the putative PHA synthase gene ( phaC Pf ) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli ( phaC Pf + , pUMS) grown in medium containing glucose accumulated PHA granules mainly consisting of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from E. coli fadR mutant ( phaC Pf + ) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified PhaC Pf , suggesting that the putative PHA synthase of P. fluorescens mainly utilizes short-chain-length PHA precursors as a substrate.

  6. Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean.

    PubMed

    Voelker, T A; Staswick, P; Chrispeels, M J

    1986-12-01

    Phytohemagglutinin (PHA), the seed lectin of the common bean, Phaseolus vulgaris, is encoded by two highly homologous, tandemly linked genes, dlec1 and dlec2, which are coordinately expressed at high levels in developing cotyledons. Their respective transcripts translate into closely related polypeptides, PHA-E and PHA-L, constituents of the tetrameric lectin which accumulates at high levels in developing seeds. In the bean cultivar Pinto UI111, PHA-E is not detectable, and PHA-L accumulates at very reduced levels. To investigate the cause of the Pinto phenotype, we cloned and sequenced the two PHA genes of Pinto, called Pdlec1 and Pdlec2, and determined the abundance of their respective mRNAs in developing cotyledons. Both genes are more than 90% homologous to the normal PHA genes found in other cultivars. Pdlec1 carries a 1-bp frameshift mutation close to the 5' end of its coding sequence. Only very truncated polypeptides could be made from its mRNA. The gene Pdlec2 encodes a polypeptide, which resembles PHA-L and its predicted amino acid sequence agrees with the available Pinto PHA amino acid sequence data. Analysis of the mRNA of developing cotyledons revealed that the Pdlec1 message is reduced 600-fold, and Pdlec2 mRNA is reduced 20-fold with respect to mRNA levels in normal cultivars. A comparison of the sequences which are upstream from the coding sequence shows that Pdlec2 has a 100-bp deletion compared to the other genes (dlec1, dlec2 and Pdlec1). This deletion which contains a large tandem repeat may be responsible for the low level of expression of Pdlec2. The very low expression of Pdlec1 is as yet unexplained.

  7. Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts.

    PubMed

    Bhattacharyya, Anirban; Saha, Jayeeta; Haldar, Saubhik; Bhowmic, Asit; Mukhopadhyay, Ujjal Kumar; Mukherjee, Joydeep

    2014-03-01

    Haloferax mediterranei holds promise for competitive industrial-scale production of polyhydroxyalkanoate (PHA) because cheap carbon sources can be used thus lowering production costs. Although high salt concentration in production medium permits a non-sterile, low-cost process, salt disposal after process completion is a problem as current environmental standards do not allow total dissolved solids (TDS) above 2000 mg/l in discharge water. As the first objective of this work, the waste product of rice-based ethanol industry, stillage, was used for the production of PHA by H. mediterranei in shake flasks. Utilization of raw stillage led to 71 ± 2% (of dry cell weight) PHA accumulation and 16.42 ± 0.02 g/l PHA production. The product yield coefficient was 0.35 while 0.17 g/l h volumetric productivity was attained. Simultaneous reduction of BOD5 and COD values of stillage by 83% was accomplished. The PHA was isolated by osmotic lysis of cells, purification by sodium dodecyl sulfate and organic solvents. The biopolymer was identified as poly-3-(hydroxybutyrate-co-15.4 mol%-hydroxyvalerate) (PHBV). This first report on utilization of rice-based ethanol stillage for PHBV production by H. mediterranei is currently the most cost effective. As the second objective, directional properties of decanoic acid together with temperature dependence of water solubility in decanoic acid were applied for two-stage desalination of the spent stillage medium. We report for the first time, recovery and re-use of 96% of the medium salts for PHA production thus removing the major bottleneck in the potential application of H. mediterranei for industrial production of PHBV. Final discharge water had TDS content of 670 mg/l.

  8. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of Poly(3-hydroxybutyrate) in Escherichia coli.

    PubMed

    Choi, J I; Lee, S Y; Han, K

    1998-12-01

    Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, beta-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.

  9. Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean

    PubMed Central

    Voelker, Toni A.; Staswick, Paul; Chrispeels, Maarten J.

    1986-01-01

    Phytohemagglutinin (PHA), the seed lectin of the common bean, Phaseolus vulgaris, is encoded by two highly homologous, tandemly linked genes, dlec1 and dlec2, which are coordinately expressed at high levels in developing cotyledons. Their respective transcripts translate into closely related polypeptides, PHA-E and PHA-L, constituents of the tetrameric lectin which accumulates at high levels in developing seeds. In the bean cultivar Pinto UI111, PHA-E is not detectable, and PHA-L accumulates at very reduced levels. To investigate the cause of the Pinto phenotype, we cloned and sequenced the two PHA genes of Pinto, called Pdlec1 and Pdlec2, and determined the abundance of their respective mRNAs in developing cotyledons. Both genes are more than 90% homologous to the normal PHA genes found in other cultivars. Pdlec1 carries a 1-bp frameshift mutation close to the 5' end of its coding sequence. Only very truncated polypeptides could be made from its mRNA. The gene Pdlec2 encodes a polypeptide, which resembles PHA-L and its predicted amino acid sequence agrees with the available Pinto PHA amino acid sequence data. Analysis of the mRNA of developing cotyledons revealed that the Pdlec1 message is reduced 600-fold, and Pdlec2 mRNA is reduced 20-fold with respect to mRNA levels in normal cultivars. A comparison of the sequences which are upstream from the coding sequence shows that Pdlec2 has a 100-bp deletion compared to the other genes (dlec1, dlec2 and Pdlec1). This deletion which contains a large tandem repeat may be responsible for the low level of expression of Pdlec2. The very low expression of Pdlec1 is as yet unexplained. ImagesFig. 5. PMID:16453730

  10. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway.

    PubMed

    Hoffmann, N; Steinbüchel, A; Rehm, B H

    2000-11-01

    Various pseudomonads are capable of the synthesis of polyhydroxyalkanoate (PHA), composed of medium chain length (MCL) 3-hydroxy fatty acids (C6-C14), when grown on simple carbon sources such as, for example, gluconate or acetate. In Pseudomonas putida, the fatty acid de novo synthesis and PHA synthesis are linked by the transacylase PhaG. Southern hybridization experiments with digoxigenin-labeled phaG(Pp) from P. putida and genomic DNA from various pseudomonads indicate that phaG homologues are present in various other pseudomonads. Although P. oleovorans does not accumulate PHA(MCL) from non-related carbon sources, its genomic DNA reveals a strong hybridization signal. We employed PCR to amplify this phaG homologue. The respective PCR product comprising the coding region of phaG(Po) was cloned into pBBR1MCS-2, resulting in plasmid pBHR84. DNA sequencing revealed that putative PhaG(Po) from P. oleovorans exhibited about 95% amino acid sequence identity to PhaG(Pp) from P. putida. Reverse transcriptase-PCR analysis demonstrated that phaG(Po) was not transcribed even tinder inducing conditions, i.e. in the presence of gluconate as carbon source, whereas induction of phaG(Pp) transcription was obtained in P. putida. When octanoate was used as sole carbon source, only low levels of phaG mRNA were detected in P. putida. Plasmid pBHR84 complemented the phaG-negative mutant PhaG(N)-21 from P. putida. Interestingly, reintroduction of phaG(Po) under lac promoter control into the natural host P. oleovorans established PHA(MCL) synthesis from non-related carbon sources in this bacterium. These data indicated that phaG(Po) in P. oleovorans is not functionally expressed and does not exert its original function.

  11. Localization of Poly(3-Hydroxybutyrate) (PHB) Granule-Associated Proteins during PHB Granule Formation and Identification of Two New Phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16

    PubMed Central

    Pfeiffer, Daniel

    2012-01-01

    Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with “phasin 2 motifs.” To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules. PMID:22923598

  12. Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16.

    PubMed

    Pfeiffer, Daniel; Jendrossek, Dieter

    2012-11-01

    Poly(3-hydroxybutyrate) (PHB) granules are covered by a surface layer consisting of mainly phasins and other PHB granule-associated proteins (PGAPs). Phasins are small amphiphilic proteins that determine the number and size of accumulated PHB granules. Five phasin proteins (PhaP1 to PhaP5) are known for Ralstonia eutropha. In this study, we identified three additional potential phasin genes (H16_B1988, H16_B2296, and H16_B2326) by inspection of the R. eutropha genome for sequences with "phasin 2 motifs." To determine whether the corresponding proteins represent true PGAPs, fusions with eYFP (enhanced yellow fluorescent protein) were constructed. Similar fusions of eYFP with PhaP1 to PhaP5 as well as fusions with PHB synthase (PhaC1), an inactive PhaC1 variant (PhaC1-C319A), and PhaC2 were also made. All fusions were investigated in wild-type and PHB-negative backgrounds. Colocalization with PHB granules was found for all PhaC variants and for PhaP1 to PhaP5. Additionally, eYFP fusions with H16_B1988 and H16_B2326 colocalized with PHB. Fusions of H16_B2296 with eYFP, however, did not colocalize with PHB granules but did colocalize with the nucleoid region. Notably, all fusions (except H16_B2296) were soluble in a ΔphaC1 strain. These data confirm that H16_B1988 and H16_B2326 but not H16_B2296 encode true PGAPs, for which we propose the designation PhaP6 (H16_B1988) and PhaP7 (H16_B2326). When localization of phasins was investigated at different stages of PHB accumulation, fusions of PhaP6 and PhaP7 were soluble in the first 3 h under PHB-permissive conditions, although PHB granules appeared after 10 min. At later time points, the fusions colocalized with PHB. Remarkably, PHB granules of strains expressing eYFP fusions with PhaP5, PhaP6, or PhaP7 localized predominantly near the cell poles or in the area of future septum formation. This phenomenon was not observed for the other PGAPs (PhaP1 to PhaP4, PhaC1, PhaC1-C319A, and PhaC2) and indicated that some phasins can have additional functions. A chromosomal deletion of phaP6 or phaP7 had no visible effect on formation of PHB granules.

  13. Phasin Proteins Activate Aeromonas caviae Polyhydroxyalkanoate (PHA) Synthase but Not Ralstonia eutropha PHA Synthase

    PubMed Central

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji

    2014-01-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc. PMID:24584238

  14. Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates by Employing butyryl-CoA Transferases in Metabolically Engineered Escherichia coli.

    PubMed

    David, Yokimiko; Joo, Jeong Chan; Yang, Jung Eun; Oh, Young Hoon; Lee, Sang Yup; Park, Si Jae

    2017-11-01

    The authors previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, the authors examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase is cultured in chemically defined MR medium containing 20 g L -1 of glucose, 2 g L -1 of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA are produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase is cultured in MR medium containing 20 g L -1 of glucose and 2 g L -1 of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) is produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes is expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative ‘Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids

    PubMed Central

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V.; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David. B.

    2015-01-01

    Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. ‘Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the ‘Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the monomer composition of mcl-PHA polymers. Understanding the relationships between genome content, gene and gene product expression, and how these factors influence polymer synthesis, will aid in optimization of mcl-PHA production by P. putida LS46 using biodiesel waste streams. PMID:26544181

  16. Analysis of Gene Expression Changes in PHA-M Stimulated Lymphocytes - Unraveling PHA Activity as Prerequisite for Dicentric Chromosome Analysis.

    PubMed

    Beinke, C; Port, M; Ullmann, R; Gilbertz, K; Majewski, M; Abend, M

    2018-06-01

    Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose assessment. However, DCA is limited by the time-consuming phytohemagglutinin (PHA)-mediated lymphocyte activation. In this study using human peripheral blood lymphocytes, we investigated PHA-associated whole genome gene expression changes to elucidate this process and sought to identify suitable gene targets as a means of meeting our long-term objective of accelerating cell cycle kinetics to reduce DCA culture time. Human peripheral whole blood from three healthy donors was separately cultured in RPMI/FCS/antibiotics with BrdU and PHA-M. Diluted whole blood samples were transferred into PAXgene tubes at 0, 12, 24 and 36 h culture time. RNA was isolated and aliquots were used for whole genome gene expression screening. Microarray results were validated using qRT-PCR and differentially expressed genes [significantly (FDR corrected) twofold different from the 0 h value reference] were analyzed using several bioinformatic tools. The cell cycle positions and DNA-synthetic activities of lymphocytes were determined by analyzing the correlated total DNA content and incorporated BrdU level with flow cytometry after continued BrdU incubation. From 42,545 transcripts of the whole genome microarray 47.6%, on average, appeared expressed. The number of differentially expressed genes increased linearly from 855 to 2,858 and 4,607 at 12, 24 and 36 h after PHA addition, respectively. Approximately 2-3 times more up- than downregulated genes were observed with several hundred genes differentially expressed at each time point. Earliest enrichment was observed for gene sets related to the nucleus (12 h) followed by genes assigned to intracellular structures such as organelles (24 h) and finally genes related to the membrane and the extracellular matrix were enriched (36 h). Early gene expression changes at 12 h, in particular, were associated with protein classes such as chemokines/cytokines (e.g., CXCL1, CXCL2) and chaperones. Genes coding for biological processes involved in cell cycle control (e.g., MYBL2, RBL1, CCNA, CCNE) and DNA replication (e.g., POLA, POLE, MCM) appeared enriched at 24 h and later, but many more biological processes (42 altogether) showed enrichment as well. Flow cytometry data fit together with gene expression and bioinformatic analyses as cell cycle transition into S phase was observed with interindividual differences from 12 h onward, whereas progression into G 2 as well as into the second G 1 occurred from 36 h onward after activation. Gene set enrichment analysis over time identifies, in particular, two molecular categories of PHA-responsive gene targets (cytokine and cell cycle control genes). Based on that analysis target genes for cell cycle acceleration in lymphocytes have been identified ( CDKN1A/B/C, RBL-1/RBL-2, E2F2, Deaf-1), and it remains undetermined whether the time expenditure for DCA can be reduced by influencing gene expression involved in the regulatory circuits controlling PHA-associated cell cycle entry and/or progression at a specific early cell cycle phase.

  17. Effects of PHA-665752 and vemurafenib combination treatment on in vitro and murine xenograft growth of human colorectal cancer cells with BRAFV600E mutations.

    PubMed

    Zhi, Jie; Li, Zhongxin; Lv, Jian; Feng, Bo; Yang, Donghai; Xue, Liang; Zhao, Zhaolong; Zhang, Yanni; Wu, Jianhua; Jv, Yingchao; Jia, Yitao

    2018-03-01

    It remains unknown whether blockade of B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E signaling and MET proto-oncogene, receptor tyrosine kinase (c-Met) signaling is effective in suppressing the growth of human colorectal cancer (CRC) cells. The present study investigated the effects of the vemurafenib alone and in combination with c-Met inhibitor PHA-665752 on the growth of human CRC cells in vitro and in mouse xenografts. HT-29 and RKO CRC cell lines with BRAF V600E mutations and mice bearing HT-29 xenografts were treated with vemurafenib in the absence or presence of PHA-665752. Cell viability and cycle phase were respectively examined by using the MTT and flow cytometry assay. Immunohistochemistry was conducted to detect the protein expression levels of hepatocyte growth factor (HGF), phosphorylated (p)-c-Met, p-AKT serine/threonine kinase (AKT) and p-extracellular signal-regulated kinase (p-ERK). The MTT assay demonstrated that the growth of RKO and HT-29 cells was inhibited by PHA-665752 in a time- and dose-dependent manner (P<0.05), however no significant suppressive effects were observed with vemurafenib. Relative to the PHA-665752 or vemurafenib stand-alone treatment groups, the combination of PHA-665752 and vemurafenib had a significant inhibitory effect on the proliferation of CRC cell lines (P<0.05). The mean tumor volume in mice treated with vemurafenib in combination with PHA-665752 was significantly smaller compared with those treated with only vemurafenib or PHA-665752 (P<0.05). Flow cytometry assay revealed that the G0/G1 phase frequency was significantly increased in the combination group compared with any other treatment groups (P<0.05). Immunohistochemistry demonstrated that vemurafenib in combination with PHA-665752 effectively induced the expression of p-c-Met, p-AKT and p-ERK, however had no effect on HGF.

  18. Bacillus cereus-type polyhydroxyalkanoate biosynthetic gene cluster contains R-specific enoyl-CoA hydratase gene.

    PubMed

    Kihara, Takahiro; Hiroe, Ayaka; Ishii-Hyakutake, Manami; Mizuno, Kouhei; Tsuge, Takeharu

    2017-08-01

    Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJ YB4 ) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJ YB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJ YB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJ YB4 , which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJ YB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.

  19. Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly(3-hydroxybutyrate) (PHB) production.

    PubMed

    Lin, Ji-Hong; Lee, Ming-Chieh; Sue, You-Sheng; Liu, Yung-Chuan; Li, Si-Yu

    2017-08-01

    PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD 600 , gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.

  20. Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine.

    PubMed

    Lee, Jason W; Parlane, Natalie A; Rehm, Bernd H A; Buddle, Bryce M; Heiser, Axel

    2017-03-01

    Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads that were produced in both Escherichia coli and Lactococcus lactis and displayed mycobacterial antigens were found to induce significant cell-mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities, which we hypothesized to have the potential to induce immunity. In this study, we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads [MBB]) and test their potential as a TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely, β-ketothiolase (PhaA), acetoacetyl-coenzyme A reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli - Mycobacterium shuttle plasmids and expressed in trans Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens. E-MBB, and an M. smegmatis vector control (MVC) were used in a mouse immunology trial, with comparison to phosphate-buffered saline (PBS)-vaccinated and Mycobacterium bovis BCG-vaccinated groups. We successfully produced MBB and A:E-MBB and used them as vaccines to induce a cellular immune response to mycobacterial antigens. IMPORTANCE Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. In this study, we produced polyhydroxyalkanoate (PHA) biobeads in mycobacteria and used them as vaccines to induce a cellular immune response to mycobacterial antigens. Copyright © 2017 Lee et al.

  1. Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine

    PubMed Central

    Lee, Jason W.; Parlane, Natalie A.; Rehm, Bernd H. A.; Buddle, Bryce M.

    2017-01-01

    ABSTRACT Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads that were produced in both Escherichia coli and Lactococcus lactis and displayed mycobacterial antigens were found to induce significant cell-mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities, which we hypothesized to have the potential to induce immunity. In this study, we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads [MBB]) and test their potential as a TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely, β-ketothiolase (PhaA), acetoacetyl-coenzyme A reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli-Mycobacterium shuttle plasmids and expressed in trans. Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens. MBB, A:E-MBB, and an M. smegmatis vector control (MVC) were used in a mouse immunology trial, with comparison to phosphate-buffered saline (PBS)-vaccinated and Mycobacterium bovis BCG-vaccinated groups. We successfully produced MBB and A:E-MBB and used them as vaccines to induce a cellular immune response to mycobacterial antigens. IMPORTANCE Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. In this study, we produced polyhydroxyalkanoate (PHA) biobeads in mycobacteria and used them as vaccines to induce a cellular immune response to mycobacterial antigens. PMID:28087528

  2. Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis.

    PubMed

    Bhattacharyya, Anirban; Jana, Kuntal; Haldar, Saubhik; Bhowmic, Asit; Mukhopadhyay, Ujjal Kumar; De, Sudipta; Mukherjee, Joydeep

    2015-05-01

    Haloferax mediterranei has potential for economical industrial-scale production of polyhydroxyalkanoate (PHA) as it can utilize cheap carbon sources, has capacity for nonsterile cultivation and allows simple product recovery. Molasses-based Indian distilleries are converting themselves to cereal-based distilleries. Waste stillage (14 l) of rice-based ethanol industry was used for the production of PHA by H. mediterranei in the simple plug-flow reactor configuration of the activated sludge process. Cells utilized stillage and accumulated 63 ± 3 % PHA of dry cell weight and produced 13.12 ± 0.05 g PHA/l. The product yield coefficient was 0.27 while 0.14 g/l h volumetric productivity was reached. Simultaneous lowering of 5-day biochemical oxygen demand and chemical oxygen demand values of stillage by 82 % was attained. The biopolymer was characterized as poly-3-(hydroxybutyrate-co-17.9 mol%-hydroxyvalerate) (PHBV). Directional properties of decanoic acid jointly with temperature-dependent water solubility in decanoic acid were employed for two-step desalination of the spent stillage medium in a cylindrical baffled-tank with an immersed heater and a stirrer holding axial and radial impellers. 99.3 % of the medium salts were recovered and re-used for PHA production. The cost of PHBV was estimated as US$2.05/kg when the annual production was simulated as 1890 tons. Desalination contributed maximally to the overall cost. Technology and cost-analysis demonstrate that PHA production integrated with ethanol manufacture is feasible in India. This study could be the basis for construction of a pilot plant.

  3. Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation

    PubMed Central

    Alves, Luis P. S.; Teixeira, Cícero S.; Tirapelle, Evandro F.; Donatti, Lucélia; Tadra-Sfeir, Michelle Z.; Steffens, Maria B. R.; de Souza, Emanuel M.; de Oliveira Pedrosa, Fabio; Chubatsu, Leda S.; Müller-Santos, Marcelo

    2016-01-01

    Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria. PMID:27242754

  4. Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation.

    PubMed

    Alves, Luis P S; Teixeira, Cícero S; Tirapelle, Evandro F; Donatti, Lucélia; Tadra-Sfeir, Michelle Z; Steffens, Maria B R; de Souza, Emanuel M; de Oliveira Pedrosa, Fabio; Chubatsu, Leda S; Müller-Santos, Marcelo

    2016-01-01

    Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.

  5. Site-directed saturation mutagenesis of polyhydroxylalkanoate synthase for efficient microbial production of poly[(R)-2-hydroxybutyrate].

    PubMed

    Hori, Chiaki; Oishi, Kenta; Matsumoto, Ken'ichiro; Taguchi, Seiichi; Ooi, Toshihiko

    2018-06-01

    In our previous study, artificial polyhydroxyalkanoate (PHA) poly[(R)-2-hydroxybutyrate] [P(2HB)] was successfully biosynthesized from racemic 2HB in recombinant Escherichia coli using an engineered PHA synthase, PhaC1 Ps (S325T/Q481K). Although P(2HB) has promising material properties, the low level of polymer production was a drawback. In this study, we performed directed evolution of PhaC1 Ps towards enhanced P(2HB) accumulation in E. coli by site-directed dual saturation mutagenesis at the positions 477 and 481, which was known for their potential in enhancing natural PHA accumulation. By using a screening on agar plates with Nile red, eight colonies were isolated which produced a greater amount of P(2HB) compared to a colony expressing the parent enzyme PhaC1 Ps (S325T/Q481K). Among them, the cells expressing PhaC1 Ps (S325T/S477R/Q481G) [ST/SR/QG] accumulated polymer at the highest level (up to 2.9-fold). As seen in PhaC1 Ps (ST/SR/QG), glycine and basic amino acid residues (K or R) were frequently found at the two positions of the select mutated enzymes. The enzymatic activity of PhaC1 Ps (ST/SR/QG) toward 2HB-CoA was approximately 3-fold higher than that of the parent enzyme. Additionally, expression levels of the select mutated enzymes were lower than the parent. These results indicated that PhaC1 Ps mutagenesis at the positions 477 and 481 increased specific activity toward 2HB-CoA and it could result in the enhanced production of P(2HB). Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. To Be or Not To Be a Poly(3-Hydroxybutyrate) (PHB) Depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, Highly Active PHB Depolymerases with No Detectable Role in Mobilization of Accumulated PHB

    PubMed Central

    Sznajder, Anna

    2014-01-01

    The putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, of Ralstonia eutropha H16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granules in vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1 or ΔphaP1-phaP5 mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditions in vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion of phaZd1, phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules nor lacZ fusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The true in vivo functions of PhaZd1 and PhaZd2 remain obscure. PMID:24907326

  7. To be or not to be a poly(3-hydroxybutyrate) (PHB) depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, highly active PHB depolymerases with no detectable role in mobilization of accumulated PHB.

    PubMed

    Sznajder, Anna; Jendrossek, Dieter

    2014-08-01

    The putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, of Ralstonia eutropha H16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granules in vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1 or ΔphaP1-phaP5 mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditions in vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion of phaZd1, phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules nor lacZ fusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The true in vivo functions of PhaZd1 and PhaZd2 remain obscure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes

    PubMed Central

    Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.

    2014-01-01

    Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088

  9. A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli.

    PubMed

    Mezzina, Mariela P; Álvarez, Daniela S; Egoburo, Diego E; Díaz Peña, Rocío; Nikel, Pablo I; Pettinari, M Julia

    2017-07-15

    The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals. IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources. Copyright © 2017 American Society for Microbiology.

  10. Alcoholytic Cleavage of Polyhydroxyalkanoate Chains by Class IV Synthases Induced by Endogenous and Exogenous Ethanol

    PubMed Central

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki

    2014-01-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature. PMID:24334666

  11. Co-Expression of ORFCma with PHB Depolymerase (PhaZCma ) in Escherichia coli Induces Efficient Whole-Cell Biodegradation of Polyesters.

    PubMed

    Lee, Ming-Chieh; Liu, En-Jung; Yang, Cheng-Han; Hsiao, Li-Jung; Wu, Tzong-Ming; Li, Si-Yu

    2018-04-01

    Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZ Cma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORF Cma (a putative periplasmic substrate binding protein that is within the same operon of phaZ Cma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZ Cma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORF Cma can potentially be a universal element for enhancing the secretion of recombinant protein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. GPR48 Increases Mineralocorticoid Receptor Gene Expression

    PubMed Central

    Wang, Jiqiu; Li, Xiaoying; Ke, Yingying; Lu, Yan; Wang, Feng; Fan, Nengguang; Sun, Haiyan; Zhang, Huijie; Liu, Ruixin; Yang, Jun; Ye, Lei; Liu, Mingyao

    2012-01-01

    Aldosterone and the mineralocorticoid receptor (MR) are critical to the maintenance of electrolyte and BP homeostasis. Mutations in the MR cause aldosterone resistance known as pseudohypoaldosteronism type 1 (PHA1); however, some cases consistent with PHA1 do not exhibit known gene mutations, suggesting the possibility of alternative genetic variants. We observed that G protein–coupled receptor 48 (Gpr48/Lgr4) hypomorphic mutant (Gpr48m/m) mice had hyperkalemia and increased water loss and salt excretion despite elevated plasma aldosterone levels, suggesting aldosterone resistance. When we challenged the mice with a low-sodium diet, these features became more obvious; the mice also developed hyponatremia and increased renin expression and activity, resembling a mild state of PHA1. There was marked renal downregulation of MR and its downstream targets (e.g., the α-subunit of the amiloride-sensitive epithelial sodium channel), which could provide a mechanism for the aldosterone resistance. We identified a noncanonical cAMP-responsive element located in the MR promoter and demonstrated that GPR48 upregulates MR expression via the cAMP/protein kinase A pathway in vitro. Taken together, our data demonstrate that GPR48 enhances aldosterone responsiveness by activating MR expression, suggesting that GPR48 contributes to homeostasis of electrolytes and BP and may be a candidate gene for PHA1. PMID:22135314

  13. [Increasing reductant NADPH content via metabolic engineering of PHB synthesis pathway in Synechocystis sp. PCC 6803].

    PubMed

    Xie, Juan; Zhou, Jie; Zhang, Haifeng; Li, Yin

    2011-07-01

    Cyanobacteria have become attractive hosts for renewable chemicals production. The low productivity, however, prevents it from industrial application. Reductant NAD(P)H availability is a chief hurdle for the production of reductive metabolites in microbes. To increase NADPH content in Synechocystis sp. PCC 6803, PHB synthase encoding gene phaC and phaE in Synechocystis was inactivated by replacing phaC&E genes with chloromycetin resistance cassette via homologous recombination. PCR analysis showed that mutant S.delta phaC&E with complete genome segregation was generated. The comparison between growth curves of S.wt and S.delta phaC&E indicated the knockout of phaC & phaE genes did not affect obviously the cell growth. Gas chromatography analysis showed that the accumulation of PHB in wild type was about 2.3% of the dry cell weight, whereas no PHB was detected in the mutant S.delta phaC&E. The data indicated that inactivation of PHB synthase gene phaC and phaE interrupted the synthesis of PHB. Further comparative study of wild type and mutant demonstrated that NADPH content in S.delta phaC&E was obviously increased. On the third day, the NADPH content in S.delta phaC&E was up to 1.85 fold higher than that in wild type. These results indicated that deleting PHB synthase gene phaC and phaE not only can block the synthesis of PHB, but also can save NADPH to contribute reductant sink in cyanobacteria. Hence, the engineered cyanobacterial strain S.delta phaC&E, in which carbon flux was redirected and NADPH was increased, will be a potential host strain for chemicals production in cyanobacteria.

  14. Engineering Halomonas spp. as A Low-Cost Production Host for Production of Bio-surfactant Protein PhaP.

    PubMed

    Lan, Lu-Hong; Zhao, Han; Chen, Jin-Chun; Chen, Guo-Qiang

    2016-12-01

    Halomonas spp. have been studied as a low cost production host for producing bulk materials such as polyhydroxyalkanoates (PHA) bioplastics, since they are able to grow at high pH and high NaCl concentration under unsterile and continuous conditions without microbial contamination. In this paper, Halomonas strain TD is used as a host to produce a protein named PHA phasin or PhaP which has a potential to be developed into a bio-surfactant. Four Halomonas TD expression strains are constructed based on a strong T7-family expression system. Of these, the strain with phaC deletion and chromosomal expression system resulted in the highest production of PhaP in soluble form, reaching 19% of total cellular soluble proteins and with a yield of 1.86 g/L in an open fed-batch fermentation process. A simple "heat lysis and salt precipitation" method is applied to allow rapid PhaP purification from a mixture of cellular proteins with a PhaP recovery rate of 63%. It clearly demonstrated that Halomonas TD could be used for high yield expression of a bio-surfactant protein PhaP for industrial application in an economical way. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A common active site of polyhydroxyalkanoate synthase from Bacillus cereus YB-4 is involved in polymerization and alcoholysis reactions.

    PubMed

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Hisano, Tamao; Abe, Hideki; Tsuge, Takeharu

    2015-06-01

    Polyhydroxyalkanoate (PHA) synthase from Bacillus cereus YB-4 (PhaRCYB4) catalyzes not only PHA polymerization but also alcoholytic cleavage of PHA chains. The alcoholysis activity of PhaRCYB4 is expressed when a hydroxyacyl-CoA monomer is absent but an alcohol compound is present. In this study, we performed alanine mutagenesis of the putative catalytic triad (Cys(151), Asp(306), and His(335)) in the PhaCYB4 subunit to identify the active site residues for polymerization and alcoholysis activities. Individual substitution of each triad residue with alanine resulted in loss of both polymerization and alcoholysis activities, suggesting that these residues are commonly shared between polymerization and alcoholysis reactions. The loss of activity was also observed following mutagenesis of the triad to other amino acids, except for one PhaRCYB4 mutant with a C151S substitution, which lost polymerization activity but still possessed cleavage activity towards PHA chains. The low-molecular-weight PHA isolated from the PhaRCYB4(C151S)-expressing strain showed a lower ratio of alcohol capping at the P(3HB) carboxy terminus than did that from the wild-type-expressing strain. This observation implies that hydrolysis activity of PhaRCYB4 might be elicited by the C151S mutation.

  16. Impact of Ralstonia eutropha's poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB storage in recombinant Escherichia coli.

    PubMed

    Eggers, Jessica; Steinbüchel, Alexander

    2014-12-01

    The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Impact of Ralstonia eutropha's Poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB Storage in Recombinant Escherichia coli

    PubMed Central

    Eggers, Jessica

    2014-01-01

    The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes. PMID:25281380

  18. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67.

    PubMed

    Shamala, T R; Vijayendra, S V N; Joshi, G J

    2012-07-01

    Polyhydroxyalkanoates (PHA) and α-amylase (α-1,4 glucan-4-glucanohydrolase, E.C. 3.2.1.1) were co-produced by Bacillus sp. CFR-67 using unhydrolysed corn starch as a substrate. Bacterial growth and polymer production were enhanced with the supplementation of hydrolysates of wheat bran (WBH) or rice bran (RBH) individually or in combination (5-20 g L(-1), based on weight of soluble substrates-SS). In batch cultivation, a mixture of WBH and RBH (1:1, 10 g L(-1) of SS) along with ammonium acetate (1.75 g L(-1)) and corn starch (30 g L(-1)) produced maximum quantity of biomass (10 g L(-1)) and PHA (5.9 g L(-1)). The polymer thus produced was a copolymer of polyhydroxybutyrate-co-hydroxyvalerate of 95:5 to 90:10 mol%. Presence of WBH and corn starch (10-50 g L(-1)) in the medium enhanced fermentative yield of α-amylase (2-40 U mL(-1) min(-1)). The enzyme was active in a wide range of pH (4-9) and temperature (40-60°C). This is the first report on simultaneous production of copolymer of bacterial PHA and α-amylase from unhydrolysed corn starch and agro-industrial residues as substrates.

  19. Analysis of Two Polyhydroxyalkanoate Synthases in Bradyrhizobium japonicum USDA 110

    PubMed Central

    Mongiardini, Elías J.; Pérez-Giménez, Julieta; Parisi, Gustavo; Lodeiro, Aníbal R.

    2013-01-01

    Bradyrhizobium japonicum USDA 110 has five polyhydroxyalkanoate (PHA) synthases (PhaC) annotated in its genome: bll4360 (phaC1), bll6073 (phaC2), blr3732 (phaC3), blr2885 (phaC4), and bll4548 (phaC5). All these proteins possess the catalytic triad and conserved amino acid residues of polyester synthases and are distributed into four different PhaC classes. We obtained mutants in each of these paralogs and analyzed phaC gene expression and PHA production in liquid cultures. Despite the genetic redundancy, only phaC1 and phaC2 were expressed at significant rates, while PHA accumulation in stationary-phase cultures was impaired only in the ΔphaC1 mutant. Meanwhile, the ΔphaC2 mutant produced more PHA than the wild type under this condition, and surprisingly, the phaC3 transcript increased in the ΔphaC2 background. A double mutant, the ΔphaC2 ΔphaC3 mutant, consistently accumulated less PHA than the ΔphaC2 mutant. PHA accumulation in nodule bacteroids followed a pattern similar to that seen in liquid cultures, being prevented in the ΔphaC1 mutant and increased in the ΔphaC2 mutant in relation to the level in the wild type. Therefore, we used these mutants, together with a ΔphaC1 ΔphaC2 double mutant, to study the B. japonicum PHA requirements for survival, competition for nodulation, and plant growth promotion. All mutants, as well as the wild type, survived for 60 days in a carbon-free medium, regardless of their initial PHA contents. When competing for nodulation against the wild type in a 1:1 proportion, the ΔphaC1 and ΔphaC1 ΔphaC2 mutants occupied only 13 to 15% of the nodules, while the ΔphaC2 mutant occupied 81%, suggesting that the PHA polymer is required for successful competitiveness. However, the bacteroid content of PHA did not affect the shoot dry weight accumulation. PMID:23667236

  20. Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules.

    PubMed

    Sznajder, Anna; Jendrossek, Dieter

    2011-03-01

    A Rhodospirillum rubrum gene that is predicted to code for an extracellular poly(3-hydroxybutyrate) (PHB) depolymerase by the recently published polyhydroxyalkanoates (PHA) depolymerase engineering database was cloned. The gene product (PhaZ3( Rru )) was expressed in recombinant E. coli, purified and biochemically characterized. PhaZ3( Rru ) turned out, however, to share characteristics of intracellular PHB depolymerases and revealed a combination of properties that have not yet been described for other PHB depolymerases. A fusion of PhaZ3( Rru )with the enhanced cyan fluorescent protein was able to bind to PHB granules in vivo and supported the function as an intracellular PHB depolymerase. Purified PhaZ3( Rru ) was specific for short-chain-length polyhydroxyalkanoates (PHA(SCL)) and hydrolysed both untreated native PHB granules as well as trypsin-activated native PHB granules to a mixture of mono- and dimeric 3-hydroxybutyrate. Crystalline (denatured) PHB granules were not hydrolysed by PhayZ3( Rru ). Low concentrations of calcium or magnesium ions (1-5 mM) reversibly (EDTA) inhibited the enzyme. Our data suggest that PhaZ3( Rru ) is the representative of a new type of the growing number of intracellular PHB depolymerases.

  1. Transcriptional and Posttranscriptional Control of Phaseolin and Phytohemagglutinin Gene Expression in Developing Cotyledons of Phaseolus vulgaris.

    PubMed

    Chappell, J; Chrispeels, M J

    1986-05-01

    The expression of phaseolin and phytohemagglutinin (PHA) in the developing cotyledons of a normal (Greensleeves) and a PHA-deficient (Pinto 111) cultivar of Phaseolus vulgaris was investigated. Phaseolin mRNA translational activity and abundance were present at similar levels in both cultivars. In contrast, PHA mRNA translational activity and abundance in Pinto 111 were less than 1% of the levels measured in Greensleeves. Using nuclear runoff assays, the transcription rate of phaseolin gene sequences was similar in both cultivars. The transcription rate of PHA gene sequences in Pinto 111 was only 20% of that measured in Greensleeves. Comparison of the transcription rates with the relative mRNA amounts measured in RNA blot hybridizations indicated that the normally expressed storage protein gene mRNAs were very stable with half-lives greater than several days. Because a low level of PHA gene transcription in Pinto 111 was measurable but no PHA mRNA accumulated, these results suggest that the PHA deficiency in Pinto 111 is due to a reduced transcription rate and possibly an instability of the mRNA.

  2. Expression of lectin genes during seed development in normal and phytohemagglutinin-deficient cultivars of Phaseolus vulgaris.

    PubMed

    Staswick, P; Chrispeels, M J

    1984-01-01

    Phytohemagglutinin (PHA), the major lectin of the common bean Phaseolus vulgaris, is synthesized during the development of the seeds. In most cultivars PHA makes up 5-10% of the total seed protein, but certain cultivars do not contain PHA. In vivo labeling of a normal cultivar (Greensleeves) and a PHA-minus cultivar (Pinto 111) showed that PHA was not synthesized in the PHA-minus cultivar. To find out whether the lack of synthesis was due to the absence of mRNA for PHA, recombinant cDNA clones for PHA were obtained. Total poly(A)+ RNA was isolated from cotyledons of developing seeds of Greensleeves and used to direct cDNA synthesis. The double stranded cDNA was cloned in pUC8 and transformants of Escherichia coli screened with pPVL134, a recombinant plasmid which contains the complete coding sequence for a PHA-like protein. Two weakly hybridizing clones (pSC1 and pSC2) were selected. Hybrid selection experiments showed that these two clones selected mRNAs which could be translated into polypeptides identical in size to PHA and recognized by antibodies to PHA. The recombinant pPVL134 selected mRNA which translated into polypeptides which were slightly smaller than those of PHA, and poorly recognized by antibodies to PHA. The recombinant clones were used to demonstrate that the genes for PHA and for the PHA-like protein are under temporal control during seed development. The cultivar Pinto 111, which has no detectable PHA, also has greatly reduced levels of mRNA for PHA. However, the gene for the PHA-like protein encoded by pPVL134 is expressed to the same degree in the cultivars Greensleeves and Pinto 111.

  3. Enhanced alpha-galactosidase expression in pseudomonas chlororaphis

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas chlororaphis is a non-pathogenic bacterium useful for fermentative production of biopolymer (i.e., poly(hydroxyalkanoates); PHA) and biosurfactant (i.e., rhamnolipid; RhL). In order to enable P. chlororaphis to better fermentatively utilize the residual soy sugars in soy molasses – a lo...

  4. Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells

    PubMed Central

    John, Maliyakal E.; Keller, Greg

    1996-01-01

    Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry. PMID:11038522

  5. Increased Flow of Fatty Acids toward β-Oxidation in Developing Seeds of Arabidopsis Deficient in Diacylglycerol Acyltransferase Activity or Synthesizing Medium-Chain-Length Fatty Acids1

    PubMed Central

    Poirier, Yves; Ventre, Giovanni; Caldelari, Daniela

    1999-01-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids. PMID:10594123

  6. Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids.

    PubMed

    Poirier, Y; Ventre, G; Caldelari, D

    1999-12-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.

  7. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol.

    PubMed

    Oraby, Hesham; Venkatesh, Balan; Dale, Bruce; Ahmad, Rashid; Ransom, Callista; Oehmke, James; Sticklen, Mariam

    2007-12-01

    The catalytic domain of Acidothermus cellulolyticus thermostable endoglucanase gene (encoding for endo-1,4-beta-glucanase enzyme or E1) was constitutively expressed in rice. Molecular analyses of T1 plants confirmed presence and expression of the transgene. The amount of E1 enzyme accounted for up to 4.9% of the plant total soluble proteins, and its accumulation had no apparent deleterious effects on plant growth and development. Approximately 22 and 30% of the cellulose of the Ammonia Fiber Explosion (AFEX)-pretreated rice and maize biomass respectively was converted into glucose using rice E1 heterologous enzyme. As rice is the major food crop of the world with minimal use for its straw, our results suggest a successful strategy for producing biologically active hydrolysis enzymes in rice to help generate alcohol fuel, by substituting the wasteful and polluting practice of rice straw burning with an environmentally friendly technology.

  8. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    PubMed

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  9. Production of microbial polyester by fermentation of recombinant microorganisms.

    PubMed

    Lee, S Y; Choi, J I

    2001-01-01

    Polyhydroxyalkanoates (PHAs) can be produced from renewable sources and are biodegradable with similar material properties and processibility to conventional plastic materials. With recent advances in our understanding of the biochemistry and genetics of PHA biosynthesis and cloning of the PHA biosynthesis genes from a number of different bacteria, many different recombinant bacteria have been developed to improve PHA production for commercial applications. For enhancing PHA synthetic capacity, homologous or heterologous expression of the PHA biosynthetic enzymes has been attempted. Several genes that allow utilization of various substrates were transformed into PHA producers, or non-PHA producers utilizing inexpensive carbon substrate were transformed with the PHA biosynthesis genes. Novel PHAs have been synthesized by introducing a new PHA biosynthesis pathway or a new PHA synthase gene. In this article, recent advances in the production of PHA by recombinant bacteria are described.

  10. The plasma membrane H+-ATPase gene family in Solanum tuberosum L. Role of PHA1 in tuberization.

    PubMed

    Stritzler, Margarita; Muñiz García, María Noelia; Schlesinger, Mariana; Cortelezzi, Juan Ignacio; Capiati, Daniela Andrea

    2017-10-13

    This study presents the characterization of the plasma membrane (PM) H+-ATPases in potato, focusing on their role in stolon and tuber development. Seven PM H+-ATPase genes were identified in the Solanum tuberosum genome, designated PHA1-PHA7. PHA genes show distinct expression patterns in different plant tissues and under different stress treatments. Application of PM H+-ATPase inhibitors arrests stolon growth, promotes tuber induction, and reduces tuber size, indicating that PM H+-ATPases are involved in tuberization, acting at different stages of the process. Transgenic potato plants overexpressing PHA1 were generated (PHA1-OE). At early developmental stages, PHA1-OE stolons elongate faster and show longer epidermal cells than wild-type stolons; this accelerated growth is accompanied by higher cell wall invertase activity, lower starch content, and higher expression of the sucrose-H+ symporter gene StSUT1. PHA1-OE stolons display an increased branching phenotype and develop larger tubers. PHA1-OE plants are taller and also present a highly branched phenotype. These results reveal a prominent role for PHA1 in plant growth and development. Regarding tuberization, PHA1 promotes stolon elongation at early stages, and tuber growth later on. PHA1 is involved in the sucrose-starch metabolism in stolons, possibly providing the driving force for sugar transporters to maintain the apoplastic sucrose transport during elongation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Novel gene expression tools for rice biotechnology

    USDA-ARS?s Scientific Manuscript database

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  12. Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens

    PubMed Central

    Quelas, J. I.; Mesa, S.; Mongiardini, E. J.; Jendrossek, D.

    2016-01-01

    ABSTRACT Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4. Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2. IMPORTANCE In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer and the network responsible for microoxic metabolism through the interaction between the gene regulators phaR and fixK2. These results contribute to the understanding of the physiological conditions required for polyhydroxybutyrate biosynthesis. The interaction between these two main metabolic pathways is also reflected in the symbiotic phenotypes of soybeans inoculated with phaR mutants, which were more competitive for nodulation and enhanced dry matter production by the plants. Therefore, this knowledge may be applied to the development of superior strains to be used as improved inoculants for soybean crops. PMID:27208130

  13. In Vitro Interleukin-1 and 2 Production and Interleukin 2 Receptor Expression in the Rhesus Monkey

    NASA Technical Reports Server (NTRS)

    Schmitt, Didier A.; Sonnenfeld, Gerald; Husson, David; Tkaczuk, Jean; Andre, Eric; Schaffar, Laurance

    1996-01-01

    Anti-human monoclonal antibodies were used to detect and quantify interleukins-1 and 2 and interleukin-2 receptor expression in peripheral blood mononuclear cells from a rhesus monkey. Interleukin-1 production could be induced by phorbol esters (PMA) and was potentiated by phytohemagglutinin (PHA). Interleukin-2 secretion could also be induced by the combination of PHA and PMA, but only weakly with PHA alone. Interleukin-2 receptor expression was present in a subpopulation of unstimulated lymphocytes and could be enhanced by PHA or PMA. These data show once again that the rhesus monkey immune system is cross-reactive with the human one and that rhesus macaque could be a good model to study interleukin therapy.

  14. Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest.

    PubMed

    Li, Fengqi; Li, Wei; Lin, Yong-Jun; Pickett, John A; Birkett, Michael A; Wu, Kongming; Wang, Guirong; Zhou, Jing-Jiang

    2018-01-01

    Volatile terpenoids play a key role in plant defence against herbivory by attracting parasitic wasps. We identified seven terpene synthase genes from lima bean, Phaseolus lunatus L. following treatment with either the elicitor alamethicin or spider mites, Tetranychus cinnabarinus. Four of the genes (Pltps2, Pltps3, Pltps4 and Pltps5) were up-regulated with their derived proteins phylogenetically clustered in the TPS-g subfamily and PlTPS3 positioned at the base of this cluster. Recombinant PlTPS3 was able to convert geranyl diphosphate and farnesyl diphosphate to linalool and (E)-nerolidol, the latter being precursor of the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). Recombinant PlTPS4 showed a different substrate specificity and produced linalool and (E)-nerolidol, as well as (E,E)-geranyllinalool from geranylgeranyl diphosphate. Transgenic rice expressing Pltps3 emitted significantly more (S)-linalool and DMNT than wild-type plants, whereas transgenic rice expressing Pltps4 produced (S)-linalool, DMNT and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). In laboratory bioassays, female Cotesia chilonis, the natural enemy of the striped rice stemborer, Chilo suppressalis, were significantly attracted to the transgenic plants and their volatiles. We further confirmed this with synthetic blends mimicking natural rice volatile composition. Our study demonstrates that the transformation of rice to produce volatile terpenoids has the potential to enhance plant indirect defence through natural enemy recruitment. © 2017 John Wiley & Sons Ltd.

  15. Effect of carbon and nitrogen sources on simultaneous production of α-amylase and green food packaging polymer by Bacillus sp. CFR 67.

    PubMed

    Sreekanth, M S; Vijayendra, S V N; Joshi, G J; Shamala, T R

    2013-04-01

    In this paper, effect of different carbon and nitrogen sources, including hydrolysates of rice bran and wheat bran, on simultaneous production of α-amylase (for hydrolysis of starch in food systems) and polyhydroxyalkanoates (PHA, a green biopolymer, which can be used as a packing material for foods) by Bacillus sp. CFR 67 was studied by submerged fermentation. Amongst various carbon sources tested, glucose and sucrose supported production of significantly (P < 0.05) higher amount of α-amylase (66 U/ml) and PHA (444 mg/l), respectively. Of the nitrogen sources tested, ammonium acetate and beef extract led to the production of maximum amount of amylase (36 U/ml) and PHA (592 mg/l), respectively. Supplementation of the production medium with wheat bran hydrolysate (50 ml/l) produced significantly higher amounts of amylase (73 U/ml) and PHA (524 mg/l). Thus this study indicated the potential of agro-residues for the production of value added biomolecules, which can reduce the cost of production of these molecules and enables to reduce the pollution mainly caused by the use of non biodegradable plastics.

  16. Inhibitory effects of p-cresol and p-hydroxy anisole dimers on expression of the cyclooxygenase-2 gene and lipopolysaccharide-stimulated activation of nuclear factor-κB in RAW264.7 cells.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Ito, Shigeru; Katayama, Tadashi; Fujisawa, Seiichiro

    2014-01-01

    Phenolic compounds, particularly dihydroxybiphenyl-related compounds, possess efficient anti-oxidative and anti-inflammatory activity. We investigated the anti-inflammatory activity of 2,2'-dihydroxy-5,5'-dimethylbiphenol (p-cresol dimer), 2,2'-dihydroxy-5,5'-dimethoxybiphenol (pHA dimer), p-cresol, p-hydroxyanisole (pHA) and 2-t-butyl-4-hydroxyanisole (BHA). The cytotoxicity of the investigated compounds against RAW264.7 cells was determined using a cell counting kit (CCK-8). Their inhibitory effects on cyclooxygenase-2 (Cox2) mRNA expression stimulated by lipopolysaccharide (LPS) were determined using northern blot analysis, and their inhibition of LPS-stimulated nuclear factor-kappa B (Nf-κb) activation was evaluated using enzyme-linked immunosorbent assay-like microwell colorimetric transcription factor activity assay. The molecular orbital energy was calculated on the basis of density function theory BLYP/6-31G*. The cytotoxicity of the compounds declined in the order pHA dimer > p-cresol dimer > BHA > p-cresol > pHA. The inhibitory effect on Cox2 expression and Nf-κb activation was enhanced by p-cresol dimer and pHA dimer, particularly the former, suggesting potent anti-inflammatory activity, whereas p-cresol and pHA showed weak activity, and BHA no activity. Both p-cresol dimer and pHA dimer were highly electronegative, as determined by quantum chemical calculations. Dimerization of p-cresol and pHA enhances their anti-inflammatory activity. p-Cresol dimer and pHA dimer, particularly the former, are potent anti-inflammatory agents. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Immune responses to novel allergens and modulation of inflammation by vitamin K3 analogue: a ROS dependent mechanism.

    PubMed

    Kohli, Vineet; Sharma, Deepak; Sandur, Santosh Kumar; Suryavanshi, Shweta; Sainis, Krishna B

    2011-02-01

    The possibility of newer allergens being responsible for atopy needs to be explored at regional level due to environmental variables. Current studies were undertaken to identify common environmental allergens causing atopy in a defined population of India and to correlate the presence of various risk factors with the clinical presentation of allergy. Newer allergens like human dander and rice grain dust were identified and reported as the most common cause of atopy in this region. Atopy, elevated serum total IgE and familial tendency, was observed in 88%, 69% and 58% of allergic patients respectively. Further, allergen-specific immune responses like lymphocyte proliferation and cytokine secretion were studied in vitro using peripheral blood mononuclear cells (PBMC) isolated from both allergic and non-allergic individuals. Although, some allergens induced significant lymphocyte proliferation in vitro, allergen-induced cytokine secretion except that of TNF-α was not seen. Significantly higher ratio of secreted IL-4/IFN-γ cytokines was observed in PBMC isolated from allergic subjects in response to PHA. Plumbagin (vitamin K3 analogue) completely inhibited PHA-induced cytokine production in PBMC, in both allergic and non-allergic individuals. Plumbagin modulated the levels of intracellular reactive oxygen species and glutathione and suppressed PHA induced activation of NF-κB in human PBMC. The results thus show in human PMBC, for the first time, the anti-allergic and anti-inflammatory effects of plumbagin and underscore its therapeutic potential. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.

    PubMed

    Beckers, Veronique; Poblete-Castro, Ignacio; Tomasch, Jürgen; Wittmann, Christoph

    2016-05-03

    Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level of gene expression (transcriptome) and metabolic fluxes (fluxome), using precisely adjusted chemostat cultures, growth kinetics and stoichiometry, to gain a systematic understanding of the underlying metabolic and regulatory network. Glycerol-grown P. putida KT2440 has a maintenance energy requirement [0.039 (mmolglycerol (gCDW h)(-1))] that is about sixteen times lower than that of other bacteria, such as Escherichia coli, which provides a great advantage to use this substrate commercially. The shift from carbon (glycerol) to nitrogen (ammonium) limitation drives the modulation of specific genes involved in glycerol metabolism, transport electron chain, sensors to assess the energy level of the cell, and PHA synthesis, as well as changes in flux distribution to increase the precursor availability for PHA synthesis (Entner-Doudoroff pathway and pyruvate metabolism) and to reduce respiration (glyoxylate shunt). Under PHA-producing conditions (N-limitation), a higher PHA yield was achieved at low dilution rate (29.7 wt% of CDW) as compared to a high rate (12.8 wt% of CDW). By-product formation (succinate, malate) was specifically modulated under these regimes. On top of experimental data, elementary flux mode analysis revealed the metabolic potential of P. putida KT2440 to synthesize PHA and identified metabolic engineering targets towards improved production performance on glycerol. This study revealed the complex interplay of gene expression levels and metabolic fluxes under PHA- and non-PHA producing conditions using the attractive raw material glycerol as carbon substrate. This knowledge will form the basis for the development of future metabolically engineered hyper-PHA-producing strains derived from the versatile bacterium P. putida KT2440.

  19. Two Polyhydroxyalkanoate Synthases from Distinct Classes from the Aromatic Degrader Cupriavidus pinatubonensis JMP134 Exhibit the Same Substrate Preference.

    PubMed

    Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi

    2015-01-01

    Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path.

  20. Two Polyhydroxyalkanoate Synthases from Distinct Classes from the Aromatic Degrader Cupriavidus pinatubonensis JMP134 Exhibit the Same Substrate Preference

    PubMed Central

    Jiang, Xuan; Luo, Xi; Zhou, Ning-Yi

    2015-01-01

    Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path. PMID:26544851

  1. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    PubMed

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  2. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.

    PubMed

    Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei

    2015-08-01

    This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.

  3. Four rice seed cDNA clones belonging to the alpha-amylase/trypsin inhibitor gene family encode potential rice allergens.

    PubMed

    Alvarez, A M; Fukuhara, E; Nakase, M; Adachi, T; Aoki, N; Nakamura, R; Matsuda, T

    1995-07-01

    Four rice seed proteins encoded by cDNAs belonging to the alpha-amylase/trypsin inhibitor gene family were overexpressed as TrpE-fusion proteins in E. coli. The expressed rice proteins were detected by SDS-PAGE as major proteins in bacterial cell lysates. Western blot analyses showed that all the recombinant proteins were immunologically reactive to rabbit polyclonal antibodies and to a mouse monoclonal antibody (25B9) specific for a previously isolated rice allergen of 16 kDa. Some truncated proteins from deletion mutants of the cDNAs retained their reactivity to the specific antibodies. These results suggest that the cDNAs encode potential rice allergens and that some epitopes of the recombinant proteins are still immunoreactive when they are expressed as their fragments.

  4. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10more » U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.« less

  5. The Rice E3-Ubiquitin Ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Modulates the Expression of ROOT MEANDER CURLING, a Gene Involved in Root Mechanosensing, through the Interaction with Two ETHYLENE-RESPONSE FACTOR Transcription Factors1

    PubMed Central

    Lourenço, Tiago F.; Serra, Tânia S.; Cordeiro, André M.; Swanson, Sarah J.; Gilroy, Simon; Saibo, Nelson J.M.; Oliveira, M. Margarida

    2015-01-01

    Plant roots can sense and respond to a wide diversity of mechanical stimuli, including touch and gravity. However, little is known about the signal transduction pathways involved in mechanical stimuli responses in rice (Oryza sativa). This work shows that rice root responses to mechanical stimuli involve the E3-ubiquitin ligase rice HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1), which mediates protein degradation through the proteasome complex. The morphological analysis of the roots in transgenic RNA interference::OsHOS1 and wild-type plants, exposed to a mechanical barrier, revealed that the OsHOS1 silencing plants keep a straight root in contrast to wild-type plants that exhibit root curling. Moreover, it was observed that the absence of root curling in response to touch can be reverted by jasmonic acid. The straight root phenotype of the RNA interference::OsHOS1 plants was correlated with a higher expression rice ROOT MEANDER CURLING (OsRMC), which encodes a receptor-like kinase characterized as a negative regulator of rice root curling mediated by jasmonic acid. Using the yeast two-hybrid system and bimolecular fluorescence complementation assays, we showed that OsHOS1 interacts with two ETHYLENE-RESPONSE FACTOR transcription factors, rice ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN1 (OsEREBP1) and rice OsEREBP2, known to regulate OsRMC gene expression. In addition, we showed that OsHOS1 affects the stability of both transcription factors in a proteasome-dependent way, suggesting that this E3-ubiquitin ligase targets OsEREBP1 and OsEREBP2 for degradation. Our results highlight the function of the proteasome in rice response to mechanical stimuli and in the integration of these signals, through hormonal regulation, into plant growth and developmental programs. PMID:26381316

  6. Mutations Derived from the Thermophilic Polyhydroxyalkanoate Synthase PhaC Enhance the Thermostability and Activity of PhaC from Cupriavidus necator H16

    PubMed Central

    Chen, Wen-Ming; Lai, Yung-Wei; Chang, Rey-Chang

    2012-01-01

    The thermophile Cupriavidus sp. strain S-6 accumulated polyhydroxybutyrate (PHB) from glucose at 50°C. A 9.0-kbp EcoRI fragment cloned from the genomic DNA of Cupriavidus sp. S-6 enabled Escherichia coli XL1-Blue to synthesize PHB at 45°C. Nucleotide sequence analysis showed a pha locus in the clone. The thermophilic polyhydroxyalkanoate (PHA) synthase (PhaCCsp) shared 81% identity with mesophilic PhaC of Cupriavidus necator H16. The diversity between these two strains was found dominantly on their N and C termini, while the middle regions were highly homologous (92% identity). We constructed four chimeras of mesophilic and thermophilic phaC genes to explore the mutations related to its thermostability. Among the chimeras, only PhaCH16β, which was PhaCH16 bearing 30 point mutations derived from the middle region of PhaCCsp, accumulated a high content of PHB (65% [dry weight]) at 45°C. The chimera phaCH16β and two parental PHA synthase genes were overexpressed in E. coli BLR(DE3) cells and purified. At 30°C, the specific activity of the chimera PhaCH16β (172 ± 17.8 U/mg) was 3.45-fold higher than that of the parental enzyme PhaCH16 (50 ± 5.2 U/mg). At 45°C, the half-life of the chimera PhaCH16β (11.2 h) was 127-fold longer than that of PhaCH16 (5.3 min). Furthermore, the chimera PhaCH16β accumulated 1.55-fold (59% [dry weight]) more PHA content than the parental enzyme PhaCH16 (38% [dry weight]) at 37°C. This study reveals a limited number of point mutations which enhance not only thermostability but also PhaCH16 activity. The highly thermostable and active PHA synthase will provide advantages for its promising applications to in vitro PHA synthesis and recombinant E. coli PHA fermentation. PMID:22408158

  7. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.

    PubMed

    Wahl, Andreas; Schuth, Nora; Pfeiffer, Daniel; Nussberger, Stephan; Jendrossek, Dieter

    2012-11-16

    Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5.

  8. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.)

    PubMed Central

    Zhao, Jie

    2010-01-01

    Arabinogalactan proteins (AGPs) comprise a family of hydroxyproline-rich glycoproteins that are implicated in plant growth and development. In this study, 69 AGPs are identified from the rice genome, including 13 classical AGPs, 15 arabinogalactan (AG) peptides, three non-classical AGPs, three early nodulin-like AGPs (eNod-like AGPs), eight non-specific lipid transfer protein-like AGPs (nsLTP-like AGPs), and 27 fasciclin-like AGPs (FLAs). The results from expressed sequence tags, microarrays, and massively parallel signature sequencing tags are used to analyse the expression of AGP-encoding genes, which is confirmed by real-time PCR. The results reveal that several rice AGP-encoding genes are predominantly expressed in anthers and display differential expression patterns in response to abscisic acid, gibberellic acid, and abiotic stresses. Based on the results obtained from this analysis, an attempt has been made to link the protein structures and expression patterns of rice AGP-encoding genes to their functions. Taken together, the genome-wide identification and expression analysis of the rice AGP gene family might facilitate further functional studies of rice AGPs. PMID:20423940

  9. Cocoa procyanidins and human cytokine transcription and secretion.

    PubMed

    Mao, T; Van De Water, J; Keen, C L; Schmitz, H H; Gershwin, M E

    2000-08-01

    We examined whether cocoa, in its isolated procyanidin fractions (monomer through decamer), would modulate cytokine production at the levels of transcription and protein secretion in both resting and phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC). In resting cells, interleukin (IL)-1beta and IL-4 gene expression from cocoa-treated cells varied markedly among the subjects tested. However, at the protein level, the larger fractions (pentamer through decamer) stimulated a dramatic increase in IL-1beta concentration (up to ninefold) with increasing degree of polymerization. Similarly, these larger fractions augmented IL-4 concentration by as much as 2 pg/ml, whereas the control displayed levels nearly undetectable. In the presence of PHA, gene expression also seemed to be most affected by the larger procyanidin fractions. The pentameric through decameric fractions increased IL-1 beta expression by 7-19% compared with PHA control, whereas the hexameric through decameric fractions significantly inhibited PHA-induced IL-4 transcription in the range of 71-86%. This observation at the transcription level for IL-1 beta was reflected at the protein level in PHA-stimulated PBMC. Significant reductions in mitogen-induced IL-4 production were also seen at the protein level with the hexamer, heptamer and octamer. Individual oligomeric cocoa fractions were unstimulatory for IL-2 in resting PBMC. However, when induced with PHA, the pentamer, hexamer and heptamer fractions caused a 61-73% inhibition in IL-2 gene expression. This study offers additional data for the consideration of the health benefits of dietary polyphenols from a wide variety of foods, including those benefits associated specifically with cocoa and chocolate consumption.

  10. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging

    PubMed Central

    2012-01-01

    Background Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. Results We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. Conclusion We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species. PMID:22780875

  11. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging.

    PubMed

    Kumar, Gautam; Kushwaha, Hemant Ritturaj; Panjabi-Sabharwal, Vaishali; Kumari, Sumita; Joshi, Rohit; Karan, Ratna; Mittal, Shweta; Pareek, Sneh L Singla; Pareek, Ashwani

    2012-07-10

    Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species.

  12. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells.

    PubMed

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-11-25

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-gamma agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from patients with advanced-stage, metastatic NBL. Furthermore, using the NBL cell line SH-EP as a model, PHA665752 was shown to inhibit cMet/HGF/SF signaling in vitro, suggesting c-Met inhibitors may have efficacy for blocking local progression and/or metastatic spread of c-Met-positive NBL in vivo. These are novel findings for this disease and suggest that further studies of agents targeting the c-Met/HGF axis in NBL are warranted.

  13. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha

    PubMed Central

    2012-01-01

    Background Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Results Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Conclusion Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5. PMID:23157596

  14. The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions.

    PubMed

    La Rosa, Ruggero; de la Peña, Fernando; Prieto, María Axiliadora; Rojo, Fernando

    2014-01-01

    Pseudomonas putida synthesizes polyhydroxyalkanoates (PHAs) as storage compounds. PHA synthesis is more active when the carbon source is in excess and the nitrogen source is limiting, but can also occur at a lower rate under balanced carbon/nitrogen ratios. This work shows that PHA synthesis is controlled by the Crc global regulator, a protein that optimizes carbon metabolism by inhibiting the expression of genes involved in the use of non-preferred carbon sources. Crc acts post-transcriptionally. The mRNAs of target genes contain characteristic catabolite activity (CA) motifs near the ribosome binding site. Sequences resembling CA motifs can be predicted for the phaC1 gene, which codes for a PHA polymerase, and for phaI and phaF, which encode proteins associated to PHA granules. Our results show that Crc inhibits the translation of phaC1 mRNA, but not that of phaI or phaF, reducing the amount of PHA accumulated in the cell. Crc inhibited PHA synthesis during exponential growth in media containing a balanced carbon/nitrogen ratio. No inhibition was seen when the carbon/nitrogen ratio was imbalanced. This extends the role of Crc beyond that of controlling the hierarchical utilization of carbon sources and provides a link between PHA synthesis and the global regulatory networks controlling carbon flow. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Hong L.; Dai, Ziyu; Hsieh, Chia W.

    Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. In this study, the cellulose hydrolytic enzyme {beta}-1, 4-endoglucanase (E1) from the thermophilic bacterium Acidothermus cellulolyticus was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial gene in rice was driven by the constitutive Mac promoter, a hybridmore » promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer with the signal peptide of tobacco pathogenesis-related protein for targeting the protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial enzyme were obtained, which expressed the gene at high levels with a normal phenotype. The specific activities of E1 in the leaves of the highest expressing transgenic rice lines were about 20 fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. Zymogram and temperature-dependent activity analyses demonstrated the thermostability of the enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid yielded almost twice more reducing sugars than wild type straw. Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in transgenic rice may also facilitate saccharification of cellulose in rice straw and significantly reduce the costs for hydrolytic enzymes.« less

  16. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA.

    PubMed

    Ruiz-Roso, María Belén; Olivares-Álvaro, Elena; Quintela, José Carlos; Ballesteros, Sandra; Espinosa-Parrilla, Juan F; Ruiz-Roso, Baltasar; Lahera, Vicente; de Las Heras, Natalia; Martín-Fernández, Beatriz

    2018-05-30

    Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H 2 O 2 ) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O 2 - ) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H 2 O 2 -induced cell viability reduction in BV-2 activated cells and O 2 - production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.

  17. 24 CFR 970.11 - Procedures for the offer of sale to established eligible organizations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... amount and use of non-dwelling space, the current physical condition (fire damaged, friable asbestos... express its interest, in writing, in response to the PHA's offer to sell the property proposed for... proposal. (e) Response to the notice of sale. The established eligible organization or organizations have...

  18. Methods for the Isolation of Genes Encoding Novel PHA Metabolism Enzymes from Complex Microbial Communities.

    PubMed

    Cheng, Jiujun; Nordeste, Ricardo; Trainer, Maria A; Charles, Trevor C

    2017-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bio-plastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti and Pseudomonas putida, allows the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates the functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  19. Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation.

    PubMed

    Mittendorf, V; Bongcam, V; Allenbach, L; Coullerez, G; Martini, N; Poirier, Y

    1999-10-01

    Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.

  20. Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach.

    PubMed

    Tai, Yen Teng; Foong, Choon Pin; Najimudin, Nazalan; Sudesh, Kumar

    2016-04-01

    PHA synthase (PhaC) is the key enzyme in the production of biodegradable plastics known as polyhydroxyalkanoate (PHA). Nevertheless, most of these enzymes are isolated from cultivable bacteria using traditional isolation method. Most of the microorganisms found in nature could not be successfully cultivated due to the lack of knowledge on their growth conditions. In this study, a culture-independent approach was applied. The presence of phaC genes in limestone soil was screened using primers targeting the class I and II PHA synthases. Based on the partial gene sequences, a total of 19 gene clusters have been identified and 7 clones were selected for full length amplification through genome walking. The complete phaC gene sequence of one of the clones (SC8) was obtained and it revealed 81% nucleotide identity to the PHA synthase gene of Chromobacterium violaceum ATCC 12472. This gene obtained from uncultured bacterium was successfully cloned and expressed in a Cupriavidus necator PHB(-)4 PHA-negative mutant resulting in the accumulation of significant amount of PHA. The PHA synthase activity of this transformant was 64 ± 12 U/g proteins. This paper presents a pioneering study on the discovery of phaC in a limestone area using metagenomic approach. Through this study, a new functional phaC was discovered from uncultured bacterium. Phylogenetic classification for all the phaCs isolated from this study has revealed that limestone hill harbors a great diversity of PhaCs with activities that have not yet been investigated. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Altered expression of acetylcholinesterase gene in rice results in enhancement or suppression of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S

    2016-01-01

    Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants.

  2. Neural correlates of an attentional bias to health-threatening stimuli in individuals with pathological health anxiety.

    PubMed

    Mier, Daniela; Bailer, Josef; Ofer, Julia; Kerstner, Tobias; Zamoscik, Vera; Rist, Fred; Witthöft, Michael; Diener, Carsten

    2017-05-01

    An attentional bias to health-threat stimuli is assumed to represent the primary pathogenetic factor for the development and maintenance of pathological health anxiety (PHA; formerly termed "hypochondriasis"). However, little is known about the neural basis of this attentional bias in individuals with PHA. A group of patients with PHA, a group of depressed patients and a healthy control group completed an emotional Stroop task with health-threat (body symptom and illness) words and neutral control words while undergoing functional MRI. We included 33 patients with PHA, 28 depressed patients and 31 controls in our analyses. As reflected in reaction times, patients with PHA showed a significantly stronger attentional bias to health-threat words than both control groups. In addition, patients with PHA showed increased amygdala and rostral anterior cingulate cortex activation for body symptom, but not for illness words. Moreover, only in patients with PHA amygdala activation in response to symptom words was positively associated with higher arousal and more negative valence ratings of the body symptom word material. A control group of patients with an anxiety disorder but without PHA would have helped to define the specificity of the results for PHA. The attentional bias observed in patients with PHA is associated with hyperactivation in response to body symptom words in brain regions that are crucial for an arousal-related fear response (e.g., the amygdala) and for resolving emotional interference (e.g., the rostral anterior cingulate cortex). The findings have important implications for the nosological classification of PHA and suggest the application of innovative exposure-based interventions for the treatment of PHA.

  3. Neural correlates of an attentional bias to health-threatening stimuli in individuals with pathological health anxiety

    PubMed Central

    Mier, Daniela; Bailer, Josef; Ofer, Julia; Kerstner, Tobias; Zamoscik, Vera; Rist, Fred; Witthöft, Michael; Diener, Carsten

    2017-01-01

    Background An attentional bias to health-threat stimuli is assumed to represent the primary pathogenetic factor for the development and maintenance of pathological health anxiety (PHA; formerly termed “hypochondriasis”). However, little is known about the neural basis of this attentional bias in individuals with PHA. Methods A group of patients with PHA, a group of depressed patients and a healthy control group completed an emotional Stroop task with health-threat (body symptom and illness) words and neutral control words while undergoing functional MRI. Results We included 33 patients with PHA, 28 depressed patients and 31 controls in our analyses. As reflected in reaction times, patients with PHA showed a significantly stronger attentional bias to health-threat words than both control groups. In addition, patients with PHA showed increased amygdala and rostral anterior cingulate cortex activation for body symptom, but not for illness words. Moreover, only in patients with PHA amygdala activation in response to symptom words was positively associated with higher arousal and more negative valence ratings of the body symptom word material. Limitations A control group of patients with an anxiety disorder but without PHA would have helped to define the specificity of the results for PHA. Conclusion The attentional bias observed in patients with PHA is associated with hyperactivation in response to body symptom words in brain regions that are crucial for an arousal-related fear response (e.g., the amygdala) and for resolving emotional interference (e.g., the rostral anterior cingulate cortex). The findings have important implications for the nosological classification of PHA and suggest the application of innovative exposure-based interventions for the treatment of PHA. PMID:28234209

  4. Kinetics of prostaglandin E2 and thromboxane A2 synthesis and suppression of PHA-stimulated peripheral blood mononuclear leucocytes.

    PubMed Central

    Awara, W; Hillier, K; Jones, D

    1986-01-01

    The immunomodulatory effects of thromboxane A2 and prostaglandin E2 on peripheral blood mononuclear leucocytes stimulated with PHA in vitro, and the relationship of this to the time-course of their synthesis in culture, were investigated using prostaglandin E2, a thromboxane A2 synthesis inhibitor (UK37248), a thromboxane A2 mimic (U46619) and a thromboxane A2 receptor blocker (EP045). The inhibitory effect of prostaglandin E2 on PHA-induced human peripheral blood mononuclear leucocyte proliferation diminishes if the addition of PGE2 is delayed. If added 4 hr after a maximum concentration of PHA (5 micrograms/ml), the effect of PGE2 was reduced by 60%. If a submaximal concentration of PHA (1 microgram/ml) was used, the effect of PGE2 was not reduced if added 4 hr later but fell by about 60% after 16 hr. UK37248 moderately inhibited PHA-induced activation while substantially inhibiting thromboxane A2 synthesis and simultaneously enhancing PGE2 synthesis. The enhanced accumulation of PGE2 occurs while sensitivity to PGE2 is dropping. U46619, exogenously applied as a thromboxane A2 mimic, inhibited PHA-induced activation at concentrations that did not significantly alter PGE2 synthesis. EP045, which may modulate the effects of endogenous thromboxane A2 by blocking receptors, did not alter PHA-induced activation. We conclude that thromboxane A2 may have a role in inhibiting PHA-induced activation on the basis of the effect of U46619. However, this study highlights difficulties in utilizing prostaglandin and thromboxane receptor and synthesis inhibitors to examine their endogenous role in the modulation of mitogen-induced activation in vitro. If sensitivity to the purported endogenous substance is limited to the early stages of culture and if only low levels are synthesized at this early stage, then blocking drugs would have little effect. PMID:3468061

  5. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD.

    PubMed

    Dong, Ying; Li, Ping; Chen, Chong-bo; Wang, Zhi-hui; Ma, Ping; Chen, Guo-Qiang

    2010-12-01

    Polyhydroxyalkanoates (PHA), a family of biopolyesters, have been studied as tissue engineering biomaterials due to their adjustable mechanical properties, biodegradability and tissue compatibility. Amphiphilic PHA granule binding protein PhaP has been shown to be able to bind to hydrophobic surfaces of polymers, especially PHA, via strong hydrophobic interaction. Genes of PhaP and RGD peptides, which are a cell adhesion motif recognized by many cell surface receptors, were successfully expressed and obtained as a pure fusion protein PhaP-RGD in Escherichia coli DH5α. When films of poly(3-hydroxybutyrate-co-3-hydroxy- hexanoate) (PHBHHx), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) were coated with PhaP-RGD, their surface hydrophilicities were all increased compared with their corresponding naked (non-coated) films, respectively. Among the three biopolyesters, PHBHHx demonstrated the strongest affinity to PhaP. In vitro study showed that mouse fibroblasts L929 and mouse embryonic fibroblasts NIH/3T3 attached better and grew faster on all three PhaP-RGD coated films compared with their related behaviors on PhaP coated and non-coated films, respectively. Both fibroblasts attached and grew very well on PhaP-RGD coated PHBHHx, PHBV and PLA, even in their serum-free medium, while the non-coated and PhaP coated biopolyesters poorly supported the cell growth if the two fibroblasts were incubated in their serum free medium. These results indicated that PhaP-RGD could be used as a coating material to improve cell growth on hydrophobic biopolyesters for implant tissue engineering purposes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Altered expression of acetylcholinesterase gene in rice results in enhancement or suppression of shoot gravitropism

    PubMed Central

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S.

    2016-01-01

    ABSTRACT Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants. PMID:26979939

  7. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy.

    PubMed

    Mravec, Filip; Obruca, Stanislav; Krzyzanek, Vladislav; Sedlacek, Petr; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Nebesarova, Jana

    2016-05-01

    Many bacteria are capable of accumulating intracellular granules of polyhydroxyalkanoates (PHA). In this work, we developed confocal microscopy analysis of bacterial cells to study changes in the diameters of cells as well as PHA granules during growth and PHA accumulation in the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha). The cell envelope was stained by DiD(®) fluorescent probe and PHA granules by Nile Red. Signals from both probes were separated based on their spectral and fluorescence life-time properties. During growth and PHA accumulation, bacterial cells increased their length but the width of the cells remained constant. The volume fraction of PHA granules in cells increased during PHA accumulation, nevertheless, its value did not exceed 40 vol. % regardless of the PHA weight content. It seems that bacterial cultures lengthen the cells in order to control the PHA volume portion. However, since similar changes in cell length were also observed in a PHA non-accumulating mutant, it seems that there is no direct control mechanism, which regulates the prolongation of the cells with respect to PHA granules volume. It is more likely that PHA biosynthesis and the length of cells are influenced by the same external stimuli such as nutrient limitation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. RNA-Seq Analysis Provides Insights for Understanding Photoautotrophic Polyhydroxyalkanoate Production in Recombinant Synechocystis Sp.

    PubMed Central

    Lau, Nyok-Sean; Foong, Choon Pin; Kurihara, Yukio; Sudesh, Kumar; Matsui, Minami

    2014-01-01

    The photosynthetic cyanobacterium, Synechocystis sp. strain 6803, is a potential platform for the production of various chemicals and biofuels. In this study, direct photosynthetic production of a biopolymer, polyhydroxyalkanoate (PHA), in genetically engineered Synechocystis sp. achieved as high as 14 wt%. This is the highest production reported in Synechocystis sp. under photoautotrophic cultivation conditions without the addition of a carbon source. The addition of acetate increased PHA accumulation to 41 wt%, and this value is comparable to the highest production obtained with cyanobacteria. Transcriptome analysis by RNA-seq coupled with real-time PCR was performed to understand the global changes in transcript levels of cells subjected to conditions suitable for photoautotrophic PHA biosynthesis. There was lower expression of most PHA synthesis-related genes in recombinant Synechocystis sp. with higher PHA accumulation suggesting that the concentration of these enzymes is not the limiting factor to achieving high PHA accumulation. In order to cope with the higher PHA production, cells may utilize enhanced photosynthesis to drive the product formation. Results from this study suggest that the total flux of carbon is the possible driving force for the biosynthesis of PHA and the polymerizing enzyme, PHA synthase, is not the only critical factor affecting PHA-synthesis. Knowledge of the regulation or control points of the biopolymer production pathways will facilitate the further use of cyanobacteria for biotechnological applications. PMID:24466058

  9. Identification of a new polyhydroxyalkanoate (PHA) producer Aquitalea sp. USM4 (JCM 19919) and characterization of its PHA synthase.

    PubMed

    Ng, Lee-Mei; Sudesh, Kumar

    2016-11-01

    Aquitalea sp. USM4 (JCM 19919) was isolated from a freshwater sample at Lata Iskandar Waterfall in Perak, Malaysia. It is a rod-shaped, gram-negative bacterium with high sequence identity (99%) to Aquitalea magnusonii based on 16S rRNA gene analysis. Aquitalea sp. USM4 also possessed a PHA synthase gene (phaC), which had amino acid sequence identity of 77-78% to the PHA synthase of Chromobacterium violaceum ATCC12472 and Pseudogulbenkiania sp. NH8B. PHA biosynthesis results showed that wild-type Aquitalea sp. USM4 was able to accumulate up to 1.5 g/L of poly(3-hydroxybutyrate), [P(3HB)]. The heterologous expression of the PHA synthase gene of Aquitalea sp. USM4 (phaC Aq ) in Cupriavidus necator PHB - 4 had resulted in PHA accumulation up to 3.2 g/L of P(3HB). It was further confirmed by 1 H nuclear magnetic resonance (NMR) analysis that Aquitalea sp. USM4 and C. necator PHB - 4 transformant were able to produce PHA containing 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB) and 3-hydroxy-4-methylvalerate (3H4MV) monomers from suitable precursor substrates. Interestingly, relatively high PHA synthase activity of 863 U/g and 1402 U/g were determined in wild-type Aquitalea sp. USM4 and C. necator PHB - 4 transformant respectively. This is the first report on the member of genus Aquitalea as a new PHA producer as well as in vitro and in vivo characterization of a novel PHA synthase from Aquitalea sp. USM4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Expression and immunogenicity of enterotoxigenic Escherichia coli heat-labile toxin B subunit in transgenic rice callus.

    PubMed

    Kim, Tae-Geum; Kim, Bang-Geul; Kim, Mi-Young; Choi, Jae-Kwon; Jung, Eun-Sun; Yang, Moon-Sik

    2010-01-01

    Enterotoxigenic Escherichia coli is one of the leading causes of diarrhea in developing countries, and the disease may be fatal in the absence of treatment. Enterotoxigenic E. coli heat-labile toxin B subunit (LTB) can be used as an adjuvant, as a carrier of fused antigens, or as an antigen itself. The synthetic LTB (sLTB) gene, optimized for plant codon usage, has been introduced into rice cells by particle bombardment-mediated transformation. The integration and expression of the sLTB gene were observed via genomic DNA PCR and western blot analysis, respectively. The binding activity of LTB protein expressed in transgenic rice callus to G(M1)-ganglioside, a receptor for biologically active LTB, was confirmed by G(M1)-ELISA. Oral inoculation of mice with lyophilized transgenic rice calli containing LTB generated significant IgG antibody titers against bacterial LTB, and the sera of immunized mice inhibited the binding of bacterial LTB to G(M1)-ganglioside. Mice orally immunized with non-transgenic rice calli failed to generate detectable anti-LTB IgG antibody titers. Mice immunized with plant-produced LTB generated higher IgG1 antibody titers than IgG2a, indicating a Th2-type immune response. Mice orally immunized with lyophilized transgenic rice calli containing LTB elicited higher fecal IgA antibody titers than mice immunized with non-transgenic rice calli. These experimental results demonstrate that LTB proteins produced in transgenic rice callus and given to mice by oral administration induce humoral and secreted antibody immune responses. We suggest that transgenic rice callus may be suitable as a plant-based edible vaccine to provide effective protection against enterotoxigenic E. coli heat-labile toxin.

  11. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems.

    PubMed

    Demircan, Pinar Cetinalp; Sariboyaci, Ayla Eker; Unal, Zehra Seda; Gacar, Gulcin; Subasi, Cansu; Karaoz, Erdal

    2011-11-01

    BACKGROUND AIMS. Studies performed using human and animal models have indicated the immunoregulatory capability of mesenchymal stromal cells in several lineages. We investigated whether human dental pulp-derived stem cells (hDP-SC) have regulatory effects on phytohemagglutinin (PHA)-activated CD3(+) T cells. We aimed to define the regulatory mechanisms associated with hDP-SC that occur in mixed lymphocyte reaction (MLR) and transwell systems with PHA-CD3(+) T cells and hDP-SC at a ratio of 1:1. METHODS. Proliferation, apoptosis and pro- and anti-inflammatory cytokines of PHA-CD3(+)T cells, the expression of Regulatory T cells (Treg) markers and some regulatory factors related to hDP-SC, were studied in Both transwell and MLR are co-cultures systems. RESULTS. Anti-proliferative and apoptotic effects of hDP-SC were determined in co-culture systems. Elevated expression levels of human leukocyte antigen (HLA)-G, hepatocyte growth factor (HGF)-β1, intracellular adhesion molecule (ICAM-1)-1, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β1, vascular adhesion molecule (VCAM)-1 and vascular endothelial growth factor (VEGF) by hDP-SC were detected in the co-culture systems. We observed decreased expression levels of pro-inflammatory cytokines [interferon (IFN)-γ, IL-2, IL-6 receptor (R), IL-12, Interleukin-17A (IL-17A), tumor necrosis factor (TNF)-α] and increased expression levels of anti-inflammatory cytokine [inducible protein (IP)-10] from PHA-CD3(+) T cells in the transwell system. Expression of Treg (CD4(+) CD25(+) Foxp3(+)) markers was significantly induced by hDP-SC in both co-culture systems. We observed apoptosis of PHA-CD3(+) T cells with 24 h using time-lapse camera photographs and active caspase labeling; it is likely that paracrine soluble factors and molecular signals secreted by hDP-SC led this apoptosis. CONCLUSIONS. We suggest that hDP-SC have potent immunoregulatory functions because of their soluble factors and cytokines via paracrine mechanisms associated with PHA-CD3(+) T cells, which could contribute to clinical therapies.

  12. High levels of E4-PHA-reactive oligosaccharides: potential as marker for cells with characteristics of hepatic progenitor cells.

    PubMed

    Sasaki, Nozomi; Moriwaki, Kenta; Uozumi, Naofumi; Noda, Katsuhisa; Taniguchi, Naoyuki; Kameyama, Akihiko; Narimatsu, Hisashi; Takeishi, Shunsaku; Yamada, Masao; Koyama, Nobuto; Miyoshi, Eiji

    2009-12-01

    Oligosaccharides serve as markers of the cell surface and have been used as certain kinds of tumor markers. In the present study, we established a simple method for isolating hepatic progenitor cells using a lectin, which recognizes a characteristic oligosaccharide structure. Rat liver epithelial (RLE) cells, which have been established as a hepatic stem-like cell, were used to identify characteristic oligosaccharide structures on hepatic stem cells. As a result from lectin micro array, several types of lectin including E4-PHA were identified to bind RLE cells specifically. Furthermore, lectin blot and lectin flow cytometry analyses showed that binding to E(4)-PHA lectin was significantly increased in RLE cells, compared to hepatocytes, and hepatoma cells. The induction of differentiation into a hepatocyte lineage of RLE cells by treatment with Oncostatin M and dexamethasone resulted in a decrease in E(4)-PHA binding. Using an E(4)-PHA column, we succeeded in isolating hepatic stem cells from LEC (Long-Evans with cinnamon coat color) rat livers with fluminant hepatitis. The characteristics of the established cells were similar to RLE cells and had a potential of proliferating in rat liver. These results suggest that oligosaccharides can serve as a novel marker for the isolation of the hepatic progenitor cells.

  13. Genetic Analysis of Comamonas acidovorans Polyhydroxyalkanoate Synthase and Factors Affecting the Incorporation of 4-Hydroxybutyrate Monomer

    PubMed Central

    Sudesh, Kumar; Fukui, Toshiaki; Doi, Yoshiharu

    1998-01-01

    The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp β-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB−4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism’s PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content. PMID:9726894

  14. Peoria Housing Authority(PHA) Weatherization Training Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillip Chrismon; Jason Dollarhide

    2011-12-31

    The DOE Weatherization Training Project's goal is to obtain a solid foundation of administrative and technical knowledge so the Peoria Housing Authority (PHA) can establish and implement a successful Weatherization Program by 2011. The DOE weatherization Training Project's two objectives are to (1) build PHA's capabilities by (2) developing its staff members capacities via the acquisition of weatherization skills and competencies. The impacts from this project include: (a) the improvement and expansion of PHA staff skills, (b) the overall enhancement of the quality of the PHA workforce, which will (c) foster employment, (d) the ability to properly weatherize PHA housingmore » stock, tribal buildings, and tribal members houses, which will (e) result in reduced energy use, and (f) improved tribal and household economies.« less

  15. Controlling microbial PHB synthesis via CRISPRi.

    PubMed

    Li, Dan; Lv, Li; Chen, Jin-Chun; Chen, Guo-Qiang

    2017-07-01

    Microbial polyhydroxyalkanoates (PHA) are a family of biopolyesters with properties similar to petroleum plastics such as polyethylene (PE) or polypropylene (PP). Polyhydroxybutyrate (PHB) is the most common PHA known so far. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a technology recently developed to control gene expression levels in eukaryotic and prokaryotic genomes, was employed to regulate PHB synthase activity influencing PHB synthesis. Recombinant Escherichia coli harboring an operon of three PHB synthesis genes phaCAB cloned from Ralstonia eutropha, was transformed with various single guided RNA (sgRNA with its guide sequence of 20-23 bases) able to bind to various locations of the PHB synthase PhaC, respectively. Depending on the binding location and the number of sgRNA on phaC, CRISPRi was able to control the phaC transcription and thus PhaC activity. It was found that PHB content, molecular weight, and polydispersity were approximately in direct and reverse proportion to the PhaC activity, respectively. The higher the PhaC activity, the more the intracellular PHB accumulation, yet the less the PHB molecular weights and the wider the polydispersity. This study allowed the PHB contents to be controlled in the ranges of 1.47-75.21% cell dry weights, molecular weights from 2 to 6 millions Dalton and polydispersity of 1.2 to 1.43 in 48 h shake flask studies. This result will be very important for future development of ultrahigh molecular weight PHA useful to meet high strength application requirements.

  16. Expression of Rice Mature Carbonic Anhydrase Gene Increase E. coli Tolerance to Heat Stress.

    PubMed

    Tianpei, Xiuzi; Mao, Zhinang; Zhu, Yingguo; Li, Shaoqing

    2015-05-01

    Carbonic anhydrate is a zinc-containing metalloenzyme and involved in plant abiotic stress tolerance. In this study, we found that heat stress could induce rice mature carbonic anhydrate gene over-expression in rice plants. An Escherichia coli heterologous expression system was performed to identify the function of rice mature carbonic anhydrate in vitro. By sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mature OsCA fusion protein was identified and proved to be soluble. The results of spot, survival rate, and growth curve assay demonstrated that the expression of the mature OsCA could enhance the thermo-tolerance of the induced mature OsCA recombinants in comparison with controls under heat stress. Meanwhile, compared with controls, the levels of reactive oxygen species in induced mature OsCA recombinants were apparently low under heat stress, and correspondingly, activities of the critical antioxidant enzymes including superoxide dismutase, catalase, and peroxidase in the induced mature OsCA recombinants were significantly increased. Additionally, relative to controls, the activity of the lactate dehydrogenase decreased in the induced mature OsCA recombinants under heat stress. Based on these results, we suggest that mature OsCA protein could confer the E. coli recombinants' tolerance to heat stress by a synergistic fashion of increasing the antioxidant enzymes' activities to reduce the oxidative damage and maintaining the lactate dehydrogenase (LDH) activity of E. coli.

  17. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    PubMed

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  18. Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    USDA-ARS?s Scientific Manuscript database

    To better understand the olfactory mechanism in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), one of the most serious insect pests of rice in Asia, we have established six partial transcriptomes from antennae, tarsus, and reproductive organs of male and female adults. A total of 102 genes...

  19. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.

    PubMed

    Lu, Wanlu; Lu, Libing; Feng, Yun; Chen, Jiao; Li, Yan; Kong, Xiangli; Chen, Sixiu; Li, Xiaoyu; Chen, Qianming; Zhang, Ping

    2013-05-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8 + T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.

  20. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression

    PubMed Central

    LU, WANLU; LU, LIBING; FENG, YUN; CHEN, JIAO; LI, YAN; KONG, XIANGLI; CHEN, SIXIU; LI, XIAOYU; CHEN, QIANMING; ZHANG, PING

    2013-01-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8+ T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment PMID:23761816

  1. A phasin with extra talents: a polyhydroxyalkanoate granule-associated protein has chaperone activity.

    PubMed

    Mezzina, Mariela P; Wetzler, Diana E; de Almeida, Alejandra; Dinjaski, Nina; Prieto, M Auxiliadora; Pettinari, Maria Julia

    2015-05-01

    Phasins are proteins associated to intracellular polyhydroxyalkanoate granules that affect polymer accumulation and the number and size of the granules. Previous work demonstrated that a phasin from Azotobacter sp FA-8 (PhaPAz ) had an unexpected growth-promoting and stress-protecting effect in Escherichia coli, suggesting it could have chaperone-like activities. In this work, in vitro and in vivo experiments were performed in order to investigate this possibility. PhaPAz was shown to prevent in vitro thermal aggregation of the model protein citrate synthase and to facilitate the refolding process of this enzyme after chemical denaturation. Microscopy techniques were used to analyse the subcellular localization of PhaPAz in E. coli strains and to study the role of PhaPAz in in vivo protein folding and aggregation. PhaPAz was shown to colocalize with inclusion bodies of PD, a protein that aggregates when overexpressed. A reduction in the number of inclusion bodies of PD was observed when it was coexpressed with PhaPAz or with the known chaperone GroELS. These results demonstrate that PhaPAz has chaperone-like functions both in vitro and in vivo in E. coli recombinants, and suggests that phasins could have a general protective role in natural polyhydroxyalkanoate producers. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. 24 CFR 990.115 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Definitions. The following definitions apply to the Operating Fund program: 1937 Act means the United States... this part. Other operating costs (add-ons) means PHA expenses that are recognized as formula expenses...) expressed as a PUM cost. Project units means all dwelling units in all of a PHA's projects under an ACC...

  3. 24 CFR 990.115 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Definitions. The following definitions apply to the Operating Fund program: 1937 Act means the United States... this part. Other operating costs (add-ons) means PHA expenses that are recognized as formula expenses...) expressed as a PUM cost. Project units means all dwelling units in all of a PHA's projects under an ACC...

  4. 24 CFR 990.115 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Definitions. The following definitions apply to the Operating Fund program: 1937 Act means the United States... this part. Other operating costs (add-ons) means PHA expenses that are recognized as formula expenses...) expressed as a PUM cost. Project units means all dwelling units in all of a PHA's projects under an ACC...

  5. 24 CFR 990.115 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Definitions. The following definitions apply to the Operating Fund program: 1937 Act means the United States... this part. Other operating costs (add-ons) means PHA expenses that are recognized as formula expenses...) expressed as a PUM cost. Project units means all dwelling units in all of a PHA's projects under an ACC...

  6. 24 CFR 990.115 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Definitions. The following definitions apply to the Operating Fund program: 1937 Act means the United States... this part. Other operating costs (add-ons) means PHA expenses that are recognized as formula expenses...) expressed as a PUM cost. Project units means all dwelling units in all of a PHA's projects under an ACC...

  7. Molecular analysis of a phytohemagglutinin-defective cultivar of Phaseolus vulgaris L.

    PubMed

    Vitale, A; Ceriotti, A; Bollini, R

    1985-10-01

    The seeds of Phaseolus vulgaris cv. Pinto III are known to lack detectable amounts of phytohemagglutinin (PHA) and to accumulate very reduced levels of PHA mRNA compared with normal cultivars. Using PHA complementary-DNA clones and monospecific antibodies we analyzed cv. Pinto III genomic DNA and cotyledonary proteins synthesized both in vitro and in vivo. We detected genomic DNA sequences that hybridize with complementary-DNA clones for the two different classes of PHA polypeptides (PHA-E and PHA-L), at levels comparable to a normal bean cultivar. This indicates that the cv. Pinto III phenotype is not the result of a large deletion of the PHA structural genes. Messenger RNA isolated from cv. Pinto III developing cotyledons synthesizes in vitro very small amounts of a protein which is recognized by antibodies specific for PHA, and gives, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a single band with molecular weight similar but not identical to that of PHA-L polypeptides. This protein is also synthesized in vivo at a very reduced level, less than 1% compared with PHA in normal cultivars, and has mitogenic activity comparable to that of the PHA-L subunit, while it shows very weak erythroagglutinating activity. The initial steps in the synthesis and processing of this protein are identical to those already identified for PHA polypeptides. The cv. Pinto III protein could be either a PHA-L polypeptide whose synthesis is not affected by the mutation or a PHA-like lectin present normally at low levels in P. vulgaris.

  8. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.

    PubMed

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T; Morales-Gamez, Laura; Babu, Ramesh P; O'Connor, Kevin E; Steinbüchel, Alexander

    2016-10-15

    The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO 2 -containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter P cooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHA MCL ), enhanced gene expression through the P cooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the P lac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHA MCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Scary symptoms? Functional magnetic resonance imaging evidence for symptom interpretation bias in pathological health anxiety.

    PubMed

    Yan, Zhimin; Witthöft, Michael; Bailer, Josef; Diener, Carsten; Mier, Daniela

    2017-08-12

    Patients with pathological health anxiety (PHA) tend to automatically interpret bodily sensations as sign of a severe illness. To elucidate the neural correlates of this cognitive bias, we applied an functional magnetic resonance imaging adaption of a body-symptom implicit association test with symptom words in patients with PHA (n = 32) in comparison to patients with depression (n = 29) and healthy participants (n = 35). On the behavioral level, patients with PHA did not significantly differ from the control groups. However, on the neural-level patients with PHA in comparison to the control groups showed hyperactivation independent of condition in bilateral amygdala, right parietal lobe, and left nucleus accumbens. Moreover, patients with PHA, again in comparison to the control groups, showed hyperactivation in bilateral posterior parietal cortex and left dorsolateral prefrontal cortex during incongruent (i.e., harmless) versus congruent (i.e., dangerous) categorizations of body symptoms. Thus, body-symptom cues seem to trigger hyperactivity in salience and emotion processing brain regions in PHA. In addition, hyperactivity in brain regions involved in cognitive control and conflict resolution during incongruent categorization emphasizes enhanced neural effort to cope with negative implicit associations to body-symptom-related information in PHA. These results suggest increased neural responding in key structures for the processing of both emotional and cognitive aspects of body-symptom information in PHA, reflecting potential neural correlates of a negative somatic symptom interpretation bias.

  10. A closer look on the polyhydroxybutyrate- (PHB-) negative phenotype of Ralstonia eutropha PHB-4.

    PubMed

    Raberg, Matthias; Voigt, Birgit; Hecker, Michael; Steinbüchel, Alexander

    2014-01-01

    The undefined poly(3-hydroxybutyrate)- (PHB-) negative mutant R. eutropha PHB-4 was generated in 1970 by 1-nitroso-3-nitro-1-methylguanidine (NMG) treatment. Although being scientific relevant, its genotype remained unknown since its isolation except a recent first investigation. In this study, the mutation causing the PHA-negative phenotype of R. eutropha PHB-4 was confirmed independently: sequence analysis of the phaCAB operon identified a G320A mutation in phaC yielding a stop codon, leading to a massively truncated PhaC protein of 106 amino acids (AS) in R. eutropha PHB-4 instead of 589 AS in the wild type. No other mutations were observed within the phaCAB operon. As further mutations probably occurred in the genome of mutant PHB-4 potentially causing secondary effects on the cells' metabolism, the main focus of the study was to perform a 2D PAGE-based proteome analysis in order to identify differences in the proteomes of the wild type and mutant PHB-4. A total of 20 differentially expressed proteins were identified which provide valuable insights in the metabolomic changes of mutant PHB-4. Besides excretion of pyruvate, mutant PHB-4 encounters the accumulation of intermediates such as pyruvate and acetyl-CoA by enhanced expression of the observed protein species: (i) ThiJ supports biosynthesis of cofactor TPP and thereby reinforces the 2-oxoacid dehydrogenase complexes as PDHC, ADHC and OGDHC in order to convert pyruvate at a higher rate and the (ii) 3-isopropylmalate dehydrogenase LeuB3 apparently directs pyruvate to synthesis of several amino acids. Different (iii) acylCoA-transferases enable transfer reactions between organic acid intermediates, and (iv) citrate lyase CitE4 regenerates oxaloacetate from citrate for conversion with acetyl-CoA in the TCC in an anaplerotic reaction. Substantial amounts of reduction equivalents generated in the TCC are countered by (v) synthesis of more ubiquinones due to enhanced synthesis of MenG2 and MenG3, thereby improving the respiratory chain which accepts electrons from NADH and succinate.

  11. A Closer Look on the Polyhydroxybutyrate- (PHB-) Negative Phenotype of Ralstonia eutropha PHB-4

    PubMed Central

    Raberg, Matthias; Voigt, Birgit; Hecker, Michael; Steinbüchel, Alexander

    2014-01-01

    The undefined poly(3-hydroxybutyrate)- (PHB-) negative mutant R. eutropha PHB-4 was generated in 1970 by 1-nitroso-3-nitro-1-methylguanidine (NMG) treatment. Although being scientific relevant, its genotype remained unknown since its isolation except a recent first investigation. In this study, the mutation causing the PHA-negative phenotype of R. eutropha PHB-4 was confirmed independently: sequence analysis of the phaCAB operon identified a G320A mutation in phaC yielding a stop codon, leading to a massively truncated PhaC protein of 106 amino acids (AS) in R. eutropha PHB-4 instead of 589 AS in the wild type. No other mutations were observed within the phaCAB operon. As further mutations probably occurred in the genome of mutant PHB-4 potentially causing secondary effects on the cells' metabolism, the main focus of the study was to perform a 2D PAGE-based proteome analysis in order to identify differences in the proteomes of the wild type and mutant PHB-4. A total of 20 differentially expressed proteins were identified which provide valuable insights in the metabolomic changes of mutant PHB-4. Besides excretion of pyruvate, mutant PHB-4 encounters the accumulation of intermediates such as pyruvate and acetyl-CoA by enhanced expression of the observed protein species: (i) ThiJ supports biosynthesis of cofactor TPP and thereby reinforces the 2-oxoacid dehydrogenase complexes as PDHC, ADHC and OGDHC in order to convert pyruvate at a higher rate and the (ii) 3-isopropylmalate dehydrogenase LeuB3 apparently directs pyruvate to synthesis of several amino acids. Different (iii) acylCoA-transferases enable transfer reactions between organic acid intermediates, and (iv) citrate lyase CitE4 regenerates oxaloacetate from citrate for conversion with acetyl-CoA in the TCC in an anaplerotic reaction. Substantial amounts of reduction equivalents generated in the TCC are countered by (v) synthesis of more ubiquinones due to enhanced synthesis of MenG2 and MenG3, thereby improving the respiratory chain which accepts electrons from NADH and succinate. PMID:24787649

  12. New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16

    PubMed Central

    Bresan, Stephanie

    2017-01-01

    ABSTRACT The formation and localization of polyhydroxybutyrate (PHB) granules in Ralstonia eutropha are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by in vitro and in vivo methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid. Instead, formation of PHB granule clusters at polar regions of the rod-shaped cells and an unequal distribution of PHB granules to daughter cells were observed. The formation of PHB granules was studied by the expression of chromosomally anchored gene fusions of fluorescent proteins with PhaM and PhaC in different backgrounds. PhaM and PhaC fusions showed a distinct colocalization at formed PHB granules in the nucleoid region of the wild type. In a ΔphaC background, PhaM and the catalytically inactive PhaCC319A protein were not able to form fluorescent foci, indicating that correct positioning requires the formation of PHB. Furthermore, time-lapse experiments revealed that PhaC and PhaM proteins detach from formed PHB granules at later stages, resulting in a nonhomogeneous population of PHB granules. This could explain why growth of individual PHB granules stops under PHB-permissive conditions at a certain size. IMPORTANCE PHB granules are storage compounds for carbon and energy in many prokaryotes. Equal distribution of accumulated PHB granules during cell division is therefore important for optimal fitness of the daughter cells. In R. eutropha, PhaM is responsible for maximal activity of PHB synthase, for initiation of PHB granule formation at discrete regions in the cells, and for association of formed PHB granules with the nucleoid. Here we found that four lysine residues of C-terminal PhaM sequence motifs are essential for association of PHB granules with the nucleoid. Furthermore, we followed PHB granule formation by time-lapse microscopy and provide evidence for aging of PHB granules that is manifested by detachment of previously PHB granule-associated PhaM and PHB synthase. PMID:28389545

  13. Enhanced poly(3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase.

    PubMed

    Yokoo, Toshinori; Matsumoto, Ken'ichiro; Ooba, Takashi; Morimoto, Kenjiro; Taguchi, Seiichi

    2015-01-01

    Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.

  14. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice

    PubMed Central

    Dinger, Katharina; Kasper, Philipp; Hucklenbruch-Rother, Eva; Vohlen, Christina; Jobst, Eva; Janoschek, Ruth; Bae-Gartz, Inga; van Koningsbruggen-Rietschel, Silke; Plank, Christian; Dötsch, Jörg; Alejandre Alcázar, Miguel Angel

    2016-01-01

    Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma. PMID:27087690

  15. Novel Extracellular PHB Depolymerase from Streptomyces ascomycinicus: PHB Copolymers Degradation in Acidic Conditions

    PubMed Central

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation. PMID:23951224

  16. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    PubMed

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  17. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice.

    PubMed

    Huang, Chun-Kai; Sie, Yi-Syuan; Chen, Yu-Fu; Huang, Tian-Sheng; Lu, Chung-An

    2016-04-12

    The exon junction complex (EJC), which contains four core components, eukaryotic initiation factor 4AIII (eIF4AIII), MAGO/NASHI (MAGO), Y14/Tsunagi/RNA-binding protein 8A, and Barentsz/Metastatic lymph node 51, is formed in both nucleus and cytoplasm, and plays important roles in gene expression. Genes encoding core EJC components have been found in plants, including rice. Currently, the functional characterizations of MAGO and Y14 homologs have been demonstrated in rice. However, it is still unknown whether eIF4AIII is essential for the functional EJC in rice. This study investigated two DEAD box RNA helicases, OsRH2 and OsRH34, which are homologous to eIF4AIII, in rice. Amino acid sequence analysis indicated that OsRH2 and OsRH34 had 99 % identity and 100 % similarity, and their gene expression patterns were similar in various rice tissues, but the level of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings. From bimolecular fluorescence complementation results, OsRH2 and OsRH34 interacted physically with OsMAGO1 and OsY14b, respectively, which indicated that both of OsRH2 and OsRH34 were core components of the EJC in rice. To study the biological roles of OsRH2 and OsRH34 in rice, transgenic rice plants were generated by RNA interference. The phenotypes of three independent OsRH2 and OsRH34 double-knockdown transgenic lines included dwarfism, a short internode distance, reproductive delay, defective embryonic development, and a low seed setting rate. These phenotypes resembled those of mutants with gibberellin-related developmental defects. In addition, the OsRH2 and OsRH34 double-knockdown transgenic lines exhibited the accumulation of unspliced rice UNDEVELOPED TAPETUM 1 mRNA. Rice contains two eIF4AIII paralogous genes, OsRH2 and OsRH34. The abundance of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings, suggesting that the OsRH2 is major eIF4AIII in rice. Both OsRH2 and OsRH34 are core components of the EJC, and participate in regulating of plant height, pollen, and seed development in rice.

  18. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins

    PubMed Central

    Mezzina, Mariela P.

    2016-01-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. PMID:27287326

  19. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins.

    PubMed

    Mezzina, Mariela P; Pettinari, M Julia

    2016-09-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Advances in cyanobacterial polyhydroxyalkanoates production.

    PubMed

    Singh, Akhilesh Kumar; Mallick, Nirupama

    2017-11-01

    Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.).

    PubMed

    Bae, Hansol; Kim, Sung Keun; Cho, Seok Keun; Kang, Bin Goo; Kim, Woo Taek

    2011-06-01

    CaRma1H1 was previously identified as a hot pepper drought-induced RING E3 Ub ligase. We have identified five putative proteins that display a significant sequence identity with CaRma1H1 in the rice genome database (http://signal.salk.edu/cgi-bin/RiceGE). These five rice paralogs possess a single RING motif in their N-terminal regions, consistent with the notion that RING proteins are encoded by a multi-gene family. Therefore, these proteins were named OsRDCPs (Oryza sativa RING domain-containing proteins). Among these paralogs, OsRDCP1 was induced by drought stress, whereas the other OsRDCP members were constitutively expressed, with OsRDCP4 transcripts expressed at the highest level in rice seedlings. osrdcp1 loss-of-function knockout mutant and OsRDCP1-overexpressing transgenic rice plants were developed. Phenotypic analysis showed that wild-type plants and the homozygous osrdcp1 G2 mutant line displayed similar phenotypes under normal growth conditions and in response to drought stress. This may be due to complementation by other OsRDCP paralogs. In contrast, 35S:OsRDCP1 T2 transgenic rice plants exhibited improved tolerance to severe water deficits. Although the physiological function of OsRDCP1 remains unclear, there are several possible mechanisms for its involvement in a subset of physiological responses to counteract dehydration stress in rice plants. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    PubMed

    Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming

    2016-01-01

    In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  3. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species, TNF-α: tumor necrosis factor-α.

  4. Alternative Respiratory Pathway Component Genes (AOX and ND) in Rice and Barley and Their Response to Stress

    PubMed Central

    Dametto, Lettee; Shavrukov, Yuri; Jenkins, Colin L. D.

    2018-01-01

    Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2. PMID:29558397

  5. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  6. A Comprehensive Assessment of the Effects of Transgenic Cry1Ac/Cry1Ab Rice Huahui 1 on Adult Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae)

    PubMed Central

    Zhou, Xia; Guo, Yunling; Kong, Hua; Zuo, Jiao; Huang, Qixing; Jia, Ruizong; Guo, Anping; Xu, Lin

    2016-01-01

    Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae) is a widely distributed coleoptera predator in southern Asia in rice ecosystem, and adult M. discolor feed on both rice pollen and soft-bodied arthropods. Bitrophic bioassay and tritrophic bioassay were conducted to evaluate the potential impact of Cry1Ac/Cry1Ab-expressing rice Huahui 1 and its non-transgenic counterpart Minghui 63 on fitness parameters of adult M. discolor. The results showed that the survival, and fecundity of this beetle’ adults were not different when they fed on Bt rice or non-Bt rice pollen or Nilaparvata lugens (Stål) reared on Bt rice or non-Bt rice. Toxicity assessment to ensure M. discolor adults were not sensitive to Cry1Ab or Cry1Ac protein independent from the pollen background, M. discolor adults were fed with an artificial diet containing Cry1Ac, Cry1Ab or both protein approximately 10 times higher concentration than in Huahui 1 rice pollen. No difference was detected for any of the life-table parameters tested between Cry protein-containing and pure diet. Artificial diet containing E-64 (N-(trans-Epoxysuccinyl)-L-leucine 4-guanidinobutylamide) was included as a positive control. In contrast, the pre-oviposition and fecundity of M. discolor were significantly adversely affected by feeding on E-64-containing diet. In both bioassays, the uptakes of Cry protein by adult M. discolor were tested by ELISA measurements. These results indicated that adults of M. discolor are not affected by Cry1Ab- or Cry1Ac-expressing rice pollen and are not sensitive to Cry protein at concentrations exceeding the levels in rice pollen in Huahui1. This suggests that M. discolor adults would not be harmed by Cry1Ac/Cry1Ab rice if Bt rice Huahui 1 were commercialized. PMID:26914608

  7. Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests.

    PubMed

    Chakraborty, M; Reddy, P Sairam; Mustafa, G; Rajesh, G; Narasu, V M Laxmi; Udayasuriyan, V; Rana, Debashis

    2016-10-01

    A chimeric Bacillus thuringiensis toxin (Bt) gene, cry2AX1was cloned in a bi-selectable marker free binary vector construct. The cry2AX1 gene, driven by the Chrysanthemum rbcS1 promoter, was introduced into JK1044R, the restorer line (Oryza sativa L. ssp. Indica) of a notified commercially grown rice hybrid in India, by Agrobacterium-mediated transformation. Its effect against two major lepidopteran insect pests viz., yellow stem borer (YSB) Scirpophaga incertulas, rice leaf folder (RLF) Cnaphalocrocis medinalis and one minor insect pest, oriental army worm (OAW) Mythimna separata was demonstrated through bioassays of transgenic rice plants under laboratory and greenhouse conditions. The rbcS1 promoter with chloroplast signal peptide was used to avoid Cry2AX1 protein expression in rice seed endosperm tissue. A total of 37 independent transformants were generated, of which after preliminary molecular characterization and YSB bioassay screening, five events were selected for their protein expression and bioefficacy against all three rice insect. One elite transgenic rice line, BtE15, was identified with Cry2AX1 expression ranging from 0.68 to 1.34 µg g(-1) leaf fresh weight and with 80-92 % levels of resistance against rice pests at the vegetative and reproductive stages. Increase in Cry2AX1 protein concentration was also observed with crop maturity. The Cry2AX1protein concentration in the de-husked seeds was negligible (as low as 2.7-3.6 ng g(-1)). These results indicate the potential application of cry2AX1 gene in rice for protection against YSB, RLF and OAW.

  8. Genetic diversity of high performance cultivars of upland and irrigated Brazilian rice.

    PubMed

    Coelho, G R C; Brondani, C; Hoffmann, L V; Valdisser, P A M R; Borba, T C O; Mendonça, J A; Rodrigues, L A; de Menezes, I P P

    2017-09-21

    The objective of this study was to analyze the diversity and discrimination of high-performance Brazilian rice cultivars using microsatellite markers. Twenty-nine rice cultivars belonging to EMBRAPA Arroz e Feijão germplasm bank in Brazil were genotyped by 24 SSR markers to establish their structure and genetic discrimination. It was demonstrated that the analyzed germplasm of rice presents an expressive and significant genetic diversity with low heterogeneity among the cultivars. All 29 cultivars were differentiated genetically, and were organized into two groups related to their upland and irrigated cultivation systems. These groups showed a high genetic differentiation, with greater diversity within the group that includes the cultivars for irrigated system. The genotyping data of these cultivars, with the morphological e phenotypical data, are valuable information to be used by rice breeding programs to develop new improved cultivars.

  9. Correlating interleukin-12 stimulated interferon-γ production and the absence of ectodermal dysplasia and anhidrosis (EDA) in patients with mutations in NF-κB essential modulator (NEMO).

    PubMed

    Haverkamp, Margje H; Marciano, Beatriz E; Frucht, David M; Jain, Ashish; van de Vosse, Esther; Holland, Steven M

    2014-05-01

    Patients with hypomorphic mutations in Nuclear Factor-κB Essential Modulator (NEMO) are immunodeficient (ID) and most display ectodermal dysplasia and anhidrosis (EDA). We compared cytokine production by NEMO-ID patients with and without EDA. PBMCs of NEMO-ID patients, four with EDA carrying E315A, C417R, D311N and Q403X, and three without EDA carrying E315A, E311_L333del and R254G, were cultured with PHA, PHA plus IL-12p70, LPS, LPS plus IFN-γ, TNF and IL-1β. The production of various cytokines was measured in the supernatants. Fifty-nine healthy individuals served as controls. PBMCs of NEMO-ID patients without EDA produce subnormal amounts of IFN-γ after stimulation with PHA, but normal amounts of IFN-γ after PHA plus IL-12p70. In contrast, IFN-γ production by patients with EDA was low in both cases. Patients with EDA also generate lower PHA-stimulated IL-10 and IL-1β than controls, whereas the production of these cytokines by patients without EDA was normal. Responses of PBMCs in NEMO-ID patients with EDA to PHA with and without IL-12p70 appear less robust than in NEMO-ID patients without EDA. This possibly indicates a better preserved NEMO function in our patients without EDA.

  10. Development of Posiphen, an Inhibitor of Phosphorylated Tau Expression, as a Treatment of TBI

    DTIC Science & Technology

    2015-09-01

    Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as...W81xWH-13-2-0092 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER Maria Maccecchini, Ph.D 5e. TASK NUMBER E-Mail: maccecchini...qrpharma.com 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER QR Pha QR Pharma

  11. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture.

    PubMed

    Han, Zhenying; Li, Li; Wang, Liang; Degos, Vincent; Maze, Mervyn; Su, Hua

    2014-11-01

    Bone fracture at the acute stage of stroke exacerbates stroke injury by increasing neuroinflammation. We hypothesize that activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) attenuates neuroinflammation and oxidative stress, and reduces brain injury in mice with bone fracture and stroke. Permanent middle cerebral artery occlusion (pMCAO) was performed in C57BL/6J mice followed by tibia fracture 1 day later. Mice were treated with 0.8 mg/kg PHA 568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg methyllycaconitine (α-7 nAchR antagonist), or saline 1 and 2 days after pMCAO. Behavior was tested 3 days after pMCAO. Neuronal injury, CD68(+) , M1 (pro-inflammatory) and M2 (anti-inflammatory) microglia/macrophages, phosphorylated p65 component of nuclear factor kappa b in microglia/macrophages, oxidative and anti-oxidant gene expression were quantified. Compared to saline-treated mice, PHA-treated mice performed better in behavioral tests, had fewer apoptotic neurons (NeuN(+) TUNEL(+) ), fewer CD68(+) and M1 macrophages, and more M2 macrophages. PHA increased anti-oxidant gene expression and decreased oxidative stress and phosphorylation of nuclear factor kappa b p65. Methyllycaconitine had the opposite effects. Our data indicate that α-7 nAchR agonist treatment reduces neuroinflammation and oxidative stress, which are associated with reduced brain injury in mice with ischemic stroke plus tibia fracture. Bone fracture at the acute stage of stroke exacerbates neuroinflammation, oxidative stress, and brain injury, and our study has shown that the α-7 nAchR agonist, PHA (PHA 568487), attenuates neuroinflammation, oxidative stress, and brain injury in mice with stroke and bone fracture. Hence, PHA could provide an opportunity to develop a new strategy to reduce brain injury in patients suffering from stroke and bone fracture. © 2014 International Society for Neurochemistry.

  12. Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study

    PubMed Central

    Barrea, Luigi; Muscogiuri, Giovanna; Macchia, Paolo Emidio; Di Somma, Carolina; Falco, Andrea; Savanelli, Maria Cristina; Colao, Annamaria; Savastano, Silvia

    2017-01-01

    The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA) is a direct measure by Bioelectrical Impedance Analysis (BIA) used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI). The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern). In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively (p < 0.001). A novel association was reported between the adherence to the Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity. PMID:28218645

  13. Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study.

    PubMed

    Barrea, Luigi; Muscogiuri, Giovanna; Macchia, Paolo Emidio; Di Somma, Carolina; Falco, Andrea; Savanelli, Maria Cristina; Colao, Annamaria; Savastano, Silvia

    2017-02-17

    The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA) is a direct measure by Bioelectrical Impedance Analysis (BIA) used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI). The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern). In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively ( p < 0.001). A novel association was reported between the adherence to the Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity.

  14. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    PubMed

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  15. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice.

    PubMed

    Park, Chan-Ho; Chen, Songbiao; Shirsekar, Gautam; Zhou, Bo; Khang, Chang Hyun; Songkumarn, Pattavipha; Afzal, Ahmed J; Ning, Yuese; Wang, Ruyi; Bellizzi, Maria; Valent, Barbara; Wang, Guo-Liang

    2012-11-01

    Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.

  16. Impact of phosphate limitation on PHA production in a feast-famine process.

    PubMed

    Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2017-12-01

    Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803

    PubMed Central

    Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander

    2015-01-01

    Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471

  18. Characterization of a family of structurally related glycoproteins expressing beta 1-6-branched asparagine-linked oligosaccharides in human colon carcinoma cells.

    PubMed

    Laferté, S; Loh, L C

    1992-04-01

    Previous studies have established that metastatic tumour cells express high levels of beta 1-6-branched Asn-linked oligosaccharides which can be detected with the lectin leucoagglutinin (L-PHA) [Dennis, Laferté, Waghorne, Breitman & Kerbel (1987) Science 236, 582-585]. In order to identify L-PHA-binding glycoproteins which may play a role specifically in colon cancer, we have prepared monoclonal antibodies (MAbs) to the moderately well-differentiated human colon carcinoma cell line HT29. In this paper we present the initial characterization of a family of structurally related L-PHA-binding glycoproteins detected by MAb 1H9 which are differentially expressed and processed by HT29 cells and by two other human colon carcinoma cell lines, SW480 and SW620. In contrast to HT29, the SW480 and SW620 cell lines were established from a poorly differentiated grade III/IV primary tumour and one of its lymph node metastases respectively. MAb 1H9 detects in HT29 cells a conformational determinant present on three L-PHA-binding glycoproteins of 100, 70 and 25kDa, as well as a 74 kDa glycoprotein with high-mannose-type Asn-linked oligosaccharides. Pulse-chase experiments and peptide mapping analyses revealed that the 74 kDa and 100 kDa species are related by carbohydrate processing and are probably derived from a common 76 kDa precursor. On the other hand, the 70 kDa glycoprotein is synthesized from an endoglycosidase H-sensitive precursor of 56 kDa which is structurally related to, but distinct from, the aforementioned 76 kDa precursor. In addition, the 100 kDa species is secreted into the culture medium, whereas the 70 kDa glycoprotein is retained intracellularly. SW480 and SW620 cells showed qualitative and quantitative differences from HT29 cells, including increased secretion of a smaller L-PHA-binding glycoprotein of 92 kDa into the culture medium, as well as apparent differences in glycosylation of the intracellular 66 kDa glycoprotein. These results suggested that the expression, glycosylation and subcellular localization of this family of L-PHA-binding glycoproteins may correlate with the differentiation status of colon cancer cells and/or reflect biochemical changes. characteristic of more progressive metastatic tumours.

  19. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.

    PubMed

    Koller, Martin; Maršálek, Lukáš; de Sousa Dias, Miguel Miranda; Braunegg, Gerhart

    2017-07-25

    Sustainable production of microbial polyhydroxyalkanoate (PHA) biopolyesters on a larger scale has to consider the "four magic e": economic, ethical, environmental, and engineering aspects. Moreover, sustainability of PHA production can be quantified by modern tools of Life Cycle Assessment. Economic issues are to a large extent affected by the applied production mode, downstream processing, and, most of all, by the selection of carbon-rich raw materials as feedstocks for PHA production by safe and naturally occurring wild type microorganisms. In order to comply with ethics, such raw materials should be used which do not interfere with human nutrition and animal feed supply chains, and shall be convertible towards accessible carbon feedstocks by simple methods of upstream processing. Examples were identified in carbon-rich waste materials from various industrial braches closely connected to food production. Therefore, the article shines a light on hetero-, mixo-, and autotrophic PHA production based on various industrial residues from different branches. Emphasis is devoted to the integration of PHA-production based on selected raw materials into the holistic patterns of sustainability; this encompasses the choice of new, powerful microbial production strains, non-hazardous, environmentally benign methods for PHA recovery, and reutilization of waste streams from the PHA production process itself. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Suppressed PHA Activation of T Lymphocytes in Simulated Microgravity Is Restored by Direct Activation of Protein Kinase C with Phorbol Ester

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pellis, Neal R.

    1997-01-01

    Various aspects of spaceflight, including microgravity, cosmic radiation, and physiological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. We utilized clinostatic RWV bioreactors that simulate aspects of microgravity to analyze the response of human PBMC to polyclonal activation. PHA responsiveness in the RWV was almost completely diminished. IL-2 and IFN-gamma secretion was reduced whereas IL- 1 beta and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions did not suppress PHA activation. Furthermore, increasing cell density and, therefore, cell-cell interactions in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, submitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  1. Production of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) by Halomonas campisalis MCM B-1027 using agro-wastes.

    PubMed

    Kulkarni, S O; Kanekar, P P; Jog, J P; Sarnaik, S S; Nilegaonkar, S S

    2015-01-01

    For cost effective production of PHA, agro-wastes like fruit peels, bagasse and deoiled cakes were screened as a sole source of carbon. Halomonas campisalis MCM B-1027, which was isolated from one of the extreme environment, i.e. Lonar Lake, India, was explored for the production of PHA using fruit peels and bagasse having fermentable sugars. Among the agro-wastes tested, 1% (v/v) aqueous extract of bagasse was found to be the optimum carbon source with 47% PHA production on dry cell weight basis. Significant amount of total sugars are utilized and converted into cell mass and PHA, e.g. 62% sugar utilized from bagasse extract, 84% from orange peel extract and 71% from banana peel extract as compared to 51% in case of maltose. Hence the cost of production would be positively reduced. The detailed characterization of PHA formed by H. campisalis using bagasse extract as sole carbon source revealed that the organism produces a copolymer of PHB-co-PHV (94.4:5.6) having molecular weight M(w) 1.394 × 10(6) and melting temperature 168.9 °C. Production of PHA by H. campisalis using aqueous extract of fruit peels and a copolymer PHB-co-PHV using aqueous extract of bagasse is presumably the first report. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum

    PubMed Central

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T.; Morales-Gamez, Laura; Babu, Ramesh P.; O'Connor, Kevin E.

    2016-01-01

    ABSTRACT The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO2-containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter PcooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum. P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHAMCL), enhanced gene expression through the PcooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the Plac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHAMCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. IMPORTANCE Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs. PMID:27520812

  3. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    Utilizing clinostatic rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity, we found phytohemagglutinin (PHA) responsiveness to be almost completely diminished. Activation marker expression was significantly reduced in RWV cultures. Furthermore, cytokine secretion profiles suggested that monocytes are not as adversely affected by simulated microgravity as T cells. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness because placing peripheral blood mononuclear cells (PBMC) within small collagen beads did partially restore PHA responsiveness. However, activation of purified T cells with cross-linked CD2/CD28 and CD3/CD28 antibody pairs was completely suppressed in the RWV, suggesting a defect in signal transduction. Activation of purified T cells with PMA and ionomycin was unaffected by RWV culture. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  4. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    PubMed

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and containedmore » a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.« less

  6. Synthetic Biology of Polyhydroxyalkanoates (PHA).

    PubMed

    Meng, De-Chuan; Chen, Guo-Qiang

    Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

  7. RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function.

    PubMed

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-02-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.

  8. RiceFOX: A Database of Arabidopsis Mutant Lines Overexpressing Rice Full-Length cDNA that Contains a Wide Range of Trait Information to Facilitate Analysis of Gene Function

    PubMed Central

    Sakurai, Tetsuya; Kondou, Youichi; Akiyama, Kenji; Kurotani, Atsushi; Higuchi, Mieko; Ichikawa, Takanari; Kuroda, Hirofumi; Kusano, Miyako; Mori, Masaki; Saitou, Tsutomu; Sakakibara, Hitoshi; Sugano, Shoji; Suzuki, Makoto; Takahashi, Hideki; Takahashi, Shinya; Takatsuji, Hiroshi; Yokotani, Naoki; Yoshizumi, Takeshi; Saito, Kazuki; Shinozaki, Kazuo; Oda, Kenji; Hirochika, Hirohiko; Matsui, Minami

    2011-01-01

    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named ‘RiceFOX’. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/. PMID:21186176

  9. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    PubMed Central

    Singh, Mamtesh; Patel, Sanjay KS; Kalia, Vipin C

    2009-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA. PMID:19619289

  10. Bacillus subtilis as potential producer for polyhydroxyalkanoates.

    PubMed

    Singh, Mamtesh; Patel, Sanjay Ks; Kalia, Vipin C

    2009-07-20

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process - for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  11. Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.).

    PubMed

    Abreu, Fernanda Raquel Martins; Dedicova, Beata; Vianello, Rosana Pereira; Lanna, Anna Cristina; de Oliveira, João Augusto Vieira; Vieira, Ariadna Faria; Morais, Odilon Peixoto; Mendonça, João Antônio; Brondani, Claudio

    2018-05-30

    This work aimed to evaluate the drought tolerance of transformed plants of the cultivar BRSMG Curinga that overexpress the rice phospholipase D α1 (OsPLDα1) gene. The productivity of independent transformation event plants of the OsPLDα1 gene was evaluated in an experiment where 19 days of water deficit were applied at the reproductive stage, a very strict growing condition for upland rice. The non-genetically modified cultivar (NGM) under drought treatment reduced productivity by 89% compared with that under irrigated treatment, whereas transformed plants (PLDα1_E2) reduced productivity by only 41%. After the drought treatment, the PLDα1_E2 plants productivity was five times greater than that of the NGM plant. Moreover, no adverse effects on growth and development of the transgenic plants were observed. Seven days after the resumption of irrigation, PLDα1_E2 plants had higher stomatal conductance, greater photosynthetic rate, and transpiration rate than did NGM plants, as well as a higher expression level of the OsPLDα1 gene. A delay in the senescence process was observed in these PLDα1_E2 plants, and this was determined for the recovery of photosynthesis, with greater expression of the Rubisco and lower expression of the SOD. This finding was suggestive of decreased oxidative stress, probably due to gas exchange by the partial closure of the stomata of these transformed plants, which prevented the formation of reactive oxygen species. OsPLDα1 gene overexpression resulted in a reduction in production loss under severe water deficit and revealed a possibility for the development of upland rice cultivars that are more tolerant to extreme drought conditions.

  12. 4-Hydroxy-17-methylincisterol from Agaricus blazei Decreased Cytokine Production and Cell Proliferation in Human Peripheral Blood Mononuclear Cells via Inhibition of NF-AT and NF-κB Activation

    PubMed Central

    Tsai, Wei-Jern; Yang, Shih-Chien; Huang, Yu-Ling; Chen, Chien-Chih; Chuang, Kai-An; Kuo, Yuh-Chi

    2013-01-01

    Agaricus blazei Murill is an edible and medicinal mushroom. In the previous study, we have proved that extracts of A. blazei inhibit human peripheral blood mononuclear cell (PBMC) proliferation activated with phytohemagglutinin (PHA). Currently, we purified 4-hydroxy-17-methylincisterol (4-HM; C21H33O3) from A. blazei investigated its regulatory effects on cytokine productions and cell proliferation of PBMC induced by PHA. The results indicated that 4-HM suppressed, in activated PBMC, the production and mRNA expression of interleukin-2 (IL-2), IL-4, tumor necrosis factor-α, and interferon-γ in a concentration-dependent manner. This inhibition was not related to cell viability. While 4-HM did not affect ERK phosphorylation and its downstream c-fos gene expression in PBMC induced by PHA, it decreased both NF-AT and NF-κB activation. The upstream signaling of NF-AT and NF-κB, intracellular calcium concentrations ([Ca2+]i), and protein kinase C theta (PKC θ) activation in PHA-treated PBMC were reduced by 4-HM. The data demonstrated that the suppressant effects of 4-HM on cell proliferation in PBMC activated by PHA appeared to be mediated, at least in part, through inhibition of Ca2+ mobilization and PKC θ activation, NF-AT and NF-κB activation, and cytokine transcripts and productions of PBMC. We suggested that A. blazei contained a potential immunomodulator 4-HM. PMID:23533483

  13. The rare sugar d-allose acts as a triggering molecule of rice defence via ROS generation

    PubMed Central

    Akimitsu, Kazuya

    2013-01-01

    Only d-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to d-allose. d-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-d-allose, a structural derivative of d-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding d-allose kinase to increase d-allose 6-phosphate synthesis were more sensitive to d-allose, but E. coli AlsI encoding d-allose 6-phosphate isomerase expression to decrease d-allose 6-phosphate reduced sensitivity. A d-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, d-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of d-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of d-allose to d-allose 6-phosphate, and treatment with d-allose might prove to be useful for reducing disease development in rice. PMID:24014866

  14. The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation.

    PubMed

    Kano, Akihito; Fukumoto, Takeshi; Ohtani, Kouhei; Yoshihara, Akihide; Ohara, Toshiaki; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ohkouchi, Takeo; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Gomi, Kenji; Akimitsu, Kazuya

    2013-11-01

    Only D-allose, among various rare monosaccharides tested, induced resistance to Xanthomonas oryzae pv. oryzae in susceptible rice leaves with defence responses: reactive oxygen species, lesion mimic formation, and PR-protein gene expression. These responses were suppressed by ascorbic acid or diphenylene iodonium. Transgenic rice plants overexpressing OsrbohC, encoding NADPH oxidase, were enhanced in sensitivity to D-allose. D-Allose-mediated defence responses were suppressed by the presence of a hexokinase inhibitor. 6-Deoxy-D-allose, a structural derivative of D-allose unable to be phosphorylated, did not confer resistance. Transgenic rice plants expressing Escherichia coli AlsK encoding D-allose kinase to increase D-allose 6-phosphate synthesis were more sensitive to D-allose, but E. coli AlsI encoding D-allose 6-phosphate isomerase expression to decrease D-allose 6-phosphate reduced sensitivity. A D-glucose 6-phosphate dehydrogenase-defective mutant was also less sensitive, and OsG6PDH1 complementation restored full sensitivity. These results reveal that a monosaccharide, D-allose, induces rice resistance to X. oryzae pv. oryzae by activating NADPH oxidase through the activity of D-glucose 6-phosphate dehydrogenase, initiated by hexokinase-mediated conversion of D-allose to D-allose 6-phosphate, and treatment with D-allose might prove to be useful for reducing disease development in rice.

  15. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth.

    PubMed

    Li, Shuangcheng; Li, Wenbo; Huang, Bin; Cao, Xuemei; Zhou, Xingyu; Ye, Shumei; Li, Chengbo; Gao, Fengyan; Zou, Ting; Xie, Kailong; Ren, Yun; Ai, Peng; Tang, Yangfan; Li, Xuemei; Deng, Qiming; Wang, Shiquan; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Li, Ping

    2013-01-01

    Grain number, panicle seed setting rate, panicle number and grain weight are the most important components of rice grain yield. To date, several genes related to grain weight, grain number and panicle number have been described in rice. However, no genes regulating the panicle seed setting rate have been functionally characterized. Here we show that the domestication-related POLLEN TUBE BLOCKED 1 (PTB1), a RING-type E3 ubiquitin ligase, positively regulates the rice panicle seed setting rate by promoting pollen tube growth. The natural variation in expression of PTB1 which is affected by the promoter haplotype and the environmental temperature, correlates with the rice panicle seed setting rate. Our results support the hypothesis that PTB1 is an important maternal sporophytic factor of pollen tube growth and a key modulator of the rice panicle seed setting rate. This finding has implications for the improvement of rice yield.

  16. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants.

    PubMed

    Moire, Laurence; Rezzonico, Enea; Goepfert, Simon; Poirier, Yves

    2004-01-01

    Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.

  17. Impact of Unusual Fatty Acid Synthesis on Futile Cycling through β-Oxidation and on Gene Expression in Transgenic Plants1[w

    PubMed Central

    Moire, Laurence; Rezzonico, Enea; Goepfert, Simon; Poirier, Yves

    2004-01-01

    Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal β-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward β-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through β-oxidation than the expression profile of genes involved in lipid metabolism. PMID:14671017

  18. 24 CFR 984.201 - Action Plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... within 90 days after the PHA receives notice from HUD of: (A) Approval of the PHA's application for...; (2) Estimate of participating families. A description of the number of eligible FSS families who can..., training, and education programs (e.g., Job Training for the Homeless Demonstration program) in the...

  19. 24 CFR 984.201 - Action Plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... within 90 days after the PHA receives notice from HUD of: (A) Approval of the PHA's application for...; (2) Estimate of participating families. A description of the number of eligible FSS families who can..., training, and education programs (e.g., Job Training for the Homeless Demonstration program) in the...

  20. 24 CFR 984.201 - Action Plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... within 90 days after the PHA receives notice from HUD of: (A) Approval of the PHA's application for...; (2) Estimate of participating families. A description of the number of eligible FSS families who can..., training, and education programs (e.g., Job Training for the Homeless Demonstration program) in the...

  1. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains.

    PubMed

    Nakata, Masaru; Fukamatsu, Yosuke; Miyashita, Tomomi; Hakata, Makoto; Kimura, Rieko; Nakata, Yuriko; Kuroda, Masaharu; Yamaguchi, Takeshi; Yamakawa, Hiromoto

    2017-01-01

    Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s) that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α - amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E , in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E -overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by α-amylases. Moreover, the chalky grains contained increased amounts of soluble sugars including maltooligosaccharides at the expense of starch. The integrated analyses proposed that expression of Amy1A, Amy3C , and Amy3D at the specific regions of the developing endosperm could generate the chalkiness. This finding provides the fundamental knowledge to narrow down the targets for the development of high temperature-tolerant premium rice.

  2. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains

    PubMed Central

    Nakata, Masaru; Fukamatsu, Yosuke; Miyashita, Tomomi; Hakata, Makoto; Kimura, Rieko; Nakata, Yuriko; Kuroda, Masaharu; Yamaguchi, Takeshi; Yamakawa, Hiromoto

    2017-01-01

    Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s) that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by α-amylases. Moreover, the chalky grains contained increased amounts of soluble sugars including maltooligosaccharides at the expense of starch. The integrated analyses proposed that expression of Amy1A, Amy3C, and Amy3D at the specific regions of the developing endosperm could generate the chalkiness. This finding provides the fundamental knowledge to narrow down the targets for the development of high temperature-tolerant premium rice. PMID:29270189

  3. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    PubMed Central

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  4. Comparative safety testing of genetically modified foods in a 90-day rat feeding study design allowing the distinction between primary and secondary effects of the new genetic event.

    PubMed

    Knudsen, Ib; Poulsen, Morten

    2007-10-01

    This article discusses the wider experiences regarding the usefulness of the 90-day rat feeding study for the testing of whole foods from genetically modified (GM) plant based on data from a recent EU-project [Poulsen, M., Schrøder, M., Wilcks, A., Kroghsbo, S., Lindecrona, R.H., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Shu, Q., Emami, K., Taylor, M., Gatehouse, A., Engel, K.-H., Knudsen, I., 2007a. Safety testing of GM-rice expressing PHA-E lectin using a new animal test design. Food Chem. Toxicol. 45, 364-377; Poulsen, M., Kroghsbo, S., Schrøder, M., Wilcks, A., Jacobsen, H., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Shu, Q., Emami, K., Sudhakar, D., Gatehouse, A., Engel, K.-H., Knudsen, I., 2007b. A 90-day safety in Wistar rats fed genetically modified rice expressing snowdrop lectin Galanthus nivalis (GNA). Food Chem. Toxicol. 45, 350-363; Schrøder, M., Poulsen, M., Wilcks, A., Kroghsbo, S., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Emami, K., Gatehouse, A., Shu, Q., Engel, K.-H., Knudsen, I., 2007. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food Chem. Toxicol. 45, 339-349]. The overall objective of the project has been to develop and validate the scientific methodology necessary for assessing the safety of foods from genetically modified plants in accordance with the present EU regulation. The safety assessment in the project is combining the results of the 90-day rat feeding study on the GM food with and without spiking with the pure novel gene product, with the knowledge about the identity of the genetic change, the compositional data of the GM food, the results from in-vitro/ex-vivo studies as well as the results from the preceding 28-day toxicity study with the novel gene product, before the hazard characterisation is concluded. The results demonstrated the ability of the 90-day rat feeding study to detect the biological/toxicological effects of the new gene product in the GM food. The authors consider on this basis that the 90-day, rodent feeding study with one high dose level and a dietary design based upon compositional data on the GM food and toxicity data on the gene product is sensitive and specific enough to verify the presence/absence of the biological/nutritional/toxicological effects of the novel gene insert and further by the use of spiking able to separate potentially unintended effects of the novel gene product from other unintended effects at the level of intake defined in the test and within the remit of the test. Recommendations for further work necessary in the field are given.

  5. Characterization of a family of structurally related glycoproteins expressing beta 1-6-branched asparagine-linked oligosaccharides in human colon carcinoma cells.

    PubMed Central

    Laferté, S; Loh, L C

    1992-01-01

    Previous studies have established that metastatic tumour cells express high levels of beta 1-6-branched Asn-linked oligosaccharides which can be detected with the lectin leucoagglutinin (L-PHA) [Dennis, Laferté, Waghorne, Breitman & Kerbel (1987) Science 236, 582-585]. In order to identify L-PHA-binding glycoproteins which may play a role specifically in colon cancer, we have prepared monoclonal antibodies (MAbs) to the moderately well-differentiated human colon carcinoma cell line HT29. In this paper we present the initial characterization of a family of structurally related L-PHA-binding glycoproteins detected by MAb 1H9 which are differentially expressed and processed by HT29 cells and by two other human colon carcinoma cell lines, SW480 and SW620. In contrast to HT29, the SW480 and SW620 cell lines were established from a poorly differentiated grade III/IV primary tumour and one of its lymph node metastases respectively. MAb 1H9 detects in HT29 cells a conformational determinant present on three L-PHA-binding glycoproteins of 100, 70 and 25kDa, as well as a 74 kDa glycoprotein with high-mannose-type Asn-linked oligosaccharides. Pulse-chase experiments and peptide mapping analyses revealed that the 74 kDa and 100 kDa species are related by carbohydrate processing and are probably derived from a common 76 kDa precursor. On the other hand, the 70 kDa glycoprotein is synthesized from an endoglycosidase H-sensitive precursor of 56 kDa which is structurally related to, but distinct from, the aforementioned 76 kDa precursor. In addition, the 100 kDa species is secreted into the culture medium, whereas the 70 kDa glycoprotein is retained intracellularly. SW480 and SW620 cells showed qualitative and quantitative differences from HT29 cells, including increased secretion of a smaller L-PHA-binding glycoprotein of 92 kDa into the culture medium, as well as apparent differences in glycosylation of the intracellular 66 kDa glycoprotein. These results suggested that the expression, glycosylation and subcellular localization of this family of L-PHA-binding glycoproteins may correlate with the differentiation status of colon cancer cells and/or reflect biochemical changes. characteristic of more progressive metastatic tumours. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:1567368

  6. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...

  7. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...

  8. 24 CFR 970.19 - Disposition of property; use of proceeds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fair market value before the property is advertised for bid, the PHA shall have one independent... advertised for bid, HUD may accept a reasonable valuation of the property. (e) A PHA shall use net proceeds... housing; or (ii) Leveraging amounts for securing commercial enterprises, on-site in public housing...

  9. 24 CFR 983.51 - Owner proposal selection procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... operated to provide broad public notice of the opportunity to offer PBV proposals for consideration by the... general circulation and other means designed and actually operated to provide broad public notice. The... operated to provide broad public notice. (e) PHA-owned units. A PHA-owned unit may be assisted under the...

  10. Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber.

    PubMed Central

    Pieper-Fürst, U.; Madkour, M. H.; Mayer, F.; Steinbüchel, A.

    1994-01-01

    The N-terminal amino acid sequence of the polyhydroxyalkanoic acid (PHA) granule-associated M(r)-15,500 protein of Rhodococcus ruber (the GA14 protein) was analyzed. The sequence revealed that the corresponding structural gene is represented by open reading frame 3, encoding a protein with a calculated M(r) of 14,175 which was recently localized downstream of the PHA synthase gene (U. Pieper and A. Steinbüchel, FEMS Microbiol. Lett. 96:73-80, 1992). A recombinant strain of Escherichia coli XL1-Blue carrying the hybrid plasmid (pSKXA10*) with open reading frame 3 overexpressed the GA14 protein. The GA14 protein was subsequently purified in a three-step procedure including chromatography on DEAE-Sephacel, phenyl-Sepharose CL-4B, and Superose 12. Determination of the molecular weight by gel filtration as well as electron microscopic studies indicates that a tetrameric structure of the recombinant, native GA14 protein is most likely. Immunoelectron microscopy demonstrated a localization of the GA14 protein at the periphery of PHA granules as well as close to the cell membrane in R. ruber. Investigations of PHA-leaky and PHA-negative mutants of R. ruber indicated that expression of the GA14 protein depended strongly on PHA synthesis. Images PMID:8021220

  11. Isolation of a Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18-25-9.

    PubMed

    Takaku, Hiroaki; Kimoto, Ayumi; Kodaira, Shoko; Nashimoto, Masayuki; Takagi, Masamichi

    2006-11-01

    A Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterial strain was isolated from compost. This organism, identified as Bacillus megaterium N-18-25-9, produced a clearing zone on opaque NB-PHB agar, indicating the presence of extracellular PHB depolymerase. A PHB depolymerase gene, PhaZ(Bm), of B. megaterium N-18-25-9 was cloned and sequenced, and the recombinant gene product was purified from Escherichia coli. The N-terminal half region of PhaZ(Bm) shared significant homologies with a catalytic domain of other PHB depolymerases. Although the C-terminal half region of PhaZ(Bm) showed no significant similarity with those of other PHB depolymerases, that region was necessary for the PHB depolymerase activity. Therefore, this enzyme's domain structure is unique among extracellular PHB depolymerase domain structures. The addition of PHB to the medium led to a sixfold increase in PhaZ(Bm) mRNA, while the presence of glucose repressed PhaZ(Bm) expression. The maximum activity was observed at pH 9.0 at 65 degrees C.

  12. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).

    PubMed

    Du, Yiwei; He, Wei; Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.

  13. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa)

    PubMed Central

    Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23–26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes. PMID:26934377

  14. Expression of Aeromonas caviae polyhydroxyalkanoate synthase gene in Burkholderia sp. USM (JCM15050) enables the biosynthesis of SCL-MCL PHA from palm oil products.

    PubMed

    Chee, J-Y; Lau, N-S; Samian, M-R; Tsuge, T; Sudesh, K

    2012-01-01

    Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain.   The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced.   This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  15. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates.

    PubMed

    Aldor, Ilana S; Keasling, Jay D

    2003-10-01

    Implementing several metabolic engineering strategies, either individually or in combination, it is possible to construct microbial plastic factories to produce a variety of polyhydroxyalkanoate (PHA) biopolymers with desirable structures and material properties. Approaches include external substrate manipulation, inhibitor addition, recombinant gene expression, host cell genome manipulation and, most recently, protein engineering of PHA biosynthetic enzymes. In addition, mathematical models and molecular methods can be used to elucidate metabolically engineered systems and to identify targets for performance improvement.

  16. In vitro assessment of silver nanoparticles immunotoxicity.

    PubMed

    Galbiati, Valentina; Cornaghi, Laura; Gianazza, Elisabetta; Potenza, Marco A; Donetti, Elena; Marinovich, Marina; Corsini, Emanuela

    2018-02-01

    This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Modulation of N-glycosylation by mesalamine facilitates membranous E-cadherin expression in colon epithelial cells☆

    PubMed Central

    Khare, Vineeta; Lang, Michaela; Dammann, Kyle; Campregher, Christoph; Lyakhovich, Alex; Gasche, Christoph

    2014-01-01

    Genome wide association studies have implicated intestinal barrier function genes in the pathogenesis of ulcerative colitis. One of such loci CDH1, encoding E-cadherin, a transmembrane glycoprotein with known tumor suppressor functions, is also linked to the susceptibility to colorectal cancer. Loss of membranous E-cadherin expression is common in both colitis and cancer. We have recently demonstrated that mesalamine (5-ASA); the anti-inflammatory drug used to treat ulcerative colitis, induces membranous expression of E-cadherin and increases intercellular adhesion. Using colorectal cancer epithelial cells with aberrant E-cadherin expression, we investigated the mechanism underlying such an effect of 5-ASA. Post-translational modification of E-cadherin glycosylation was analyzed by biotin/streptavidin detection of sialylated glycoproteins. GnT-III (N-acetylglucosaminyltransferase III) expression was assessed by qRT-PCR, Western blot and immunofluorescence. GnT-III activity was analyzed by reactivity with E-4/L-4-PHA. Expression, localization and interaction of E-cadherin and β-catenin were analyzed by Western blot, immunocytochemistry and RNA interference. 5-ASA activity modulated E-cadherin glycosylation and increased both mRNA and protein levels of GnT-III and its activity as detected by increased E4-lectin reactivity. Intestinal APCMin polyps in mice showed low expression of GnT-III and 5-ASA was effective in increasing its expression. The data demonstrated that remodeling of glycans by GnT-III mediated bisect glycosylation, contributes to the membranous retention of E-cadherin by 5-ASA; facilitating intercellular adhesion. Induction of membranous expression of E-cadherin by 5-ASA is a novel mechanism for mucosal healing in colitis that might impede tumor progression by modulation of GnT-III expression. PMID:24184502

  18. Effects of Brown Rice and White Rice on Expression of Xenobiotic Metabolism Genes in Type 2 Diabetic Rats

    PubMed Central

    Imam, Mustapha Umar; Ismail, Maznah

    2012-01-01

    Xenobiotics constantly influence biological systems through several means of interaction. These interactions are disturbed in type 2 diabetes, with implications for disease outcome. We aimed to study the implications of such disturbances on type 2 diabetes and rice consumption, the results of which could affect management of the disease in developing countries. In a type 2 diabetic rat model induced through a combination of high fat diet and low dose streptozotocin injection, up-regulation of xenobiotic metabolism genes in the diabetic untreated group was observed. Xenobiotic metabolism genes were upregulated more in the white rice (WR) group than the diabetic untreated group while the brown rice (BR) group showed significantly lower expression values, though not as effective as metformin, which gave values closer to the normal non-diabetic group. The fold changes in expression in the WR group compared to the BR group for Cyp2D4, Cyp3A1, Cyp4A1, Cyp2B1, Cyp2E1, Cyp2C11, UGT2B1, ALDH1A1 and Cyp2C6 were 2.6, 2, 1.5, 4, 2.8, 1.5, 1.8, 3 and 5, respectively. Our results suggest that WR may upregulate these genes in type 2 diabetes more than BR, potentially causing faster drug metabolism, less drug efficacy and more toxicity. These results may have profound implications for rice eating populations, constituting half the world’s population. PMID:22942722

  19. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer’s disease subjects: exploring the cholinergic anti-inflammatory pathway

    PubMed Central

    Reale, Marcella; Di Nicola, Marta; Velluto, Lucia; D’Angelo, Chiara; Costantini, Erica; Lahiri, Debomoy K.; Kamal, Mohammad A.; Yu, Qian-sheng; Greig, Nigel H.

    2016-01-01

    Increasing evidence suggests that the early pathogenesis of Alzheimer’s disease (AD) is driven by elevated production and/or reduced clearance of amyloid-β peptide (Aβ), which is derived from the larger Aβ precursor protein (APP). Aβ aggregates to form neurotoxic soluble oligomers that trigger a cascade of events leading to neuronal dysfunction, neurodegeneration and, ultimately, clinical dementia. Inflammation, both within the brain and systemically, together with a deficiency in the brain neurotransmitter acetylcholine, which underpinned the development of anticholinesterases for the symptomatic treatment of AD, are invariable hallmarks of the disease. The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each feeding back onto the others to drive disease progression. To elucidate these interactions plasma samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy control (HC) subjects and AD patients. Plasma levels of acetyl- (AChE) and butyrylcholinesterase (BuChE) as well as Aβ were significantly elevated in AD vs. HC subjects, and acetylcholine showed a trend towards reduced levels. Aβ challenge of the AD and HC PBMCs resulted in greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 expression being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) challenge, to allow preliminary analysis of the cellular and molecular pathways that underpin Aβ-induced changes in cytokine expression. In light of prior studies demonstrating that APP expression was regulated by specific cytokines and anticholinesterase drugs, the latter were evaluated on Aβ- and PHA-induced chemo-cytokine expression. Co-incubation with selective inhibitors, such as the acetylcholinesterase (AChE)-inhibitor (−)-phenserine and the butyrylcholinesterase (BuChE)-inhibitor (−)-cymserine analogues mitigated the rise in cytokine levels, and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove valuable in AD. PMID:24359497

  20. HrpE3 is a type III effector protein required for full virulence of Xanthomonas oryzae pv. oryzicola in rice.

    PubMed

    Cui, Yiping; Zou, Lifang; Zou, Huasong; Li, Yurong; Zakria, Muhammad; Chen, Gongyou

    2013-09-01

    Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of bacterial leaf streak, a devastating disease in rice. Xoc uses a type III secretion (T3S) system, which is encoded by the hrp-hrc-hpa (hypersensitive response and pathogenicity, hrp-conserved and hrp-associated) genes, to inject repertoires of T3S effectors (T3Es) into plant cells. Many of the hrp-hrc-hpa genes have roles in pathogenesis, but the role of hrpE3, which shows homology to hpaE in X. campestris pv. vesicatoria (Xcv), is poorly understood. In this study, hrpE3 was shown to be transcribed independent of the hrpD operon, and its expression was dependent on a promoter within hpaB. The expression of hrpE3 was positively regulated by HrpG and HrpX, a finding probably caused by an imperfect plant-inducible promoter (PIP) box (TTCGT-N16 -TTCGA) in the hrpE3 promoter. The secretion of HrpE3 was dependent on T3S, and subcellular localization of HrpE3 was cytoplasmic and nuclear in plant cells. A mutation in hrpE3 reduced the virulence of Xoc by decreasing disease lesion length and bacterial growth in planta. Full virulence was restored to the mutant when Xoc hrpE3, but not Xcv hpaE, was expressed in trans. The differences in transcription, secretion via the T3S system and bacterial virulence in plants were attributed to N-terminal amino acid differences between Xoc HrpE3 and Xcv HpaE. Collectively, the results demonstrate that hrpE3 encodes a T3E protein which is delivered into the plant cell through the T3S system, localizes to the cytoplasm and nucleus, and is required for full virulence in rice. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  1. Transcriptome profiling confirmed correlations between symptoms and transcriptional changes in RDV infected rice and revealed nucleolus as a possible target of RDV manipulation.

    PubMed

    Yang, Liang; Du, Zhenguo; Gao, Feng; Wu, Kangcheng; Xie, Lianhui; Li, Yi; Wu, Zujian; Wu, Jianguo

    2014-05-06

    Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which limits rice production in many areas of south East Asia. Transcriptional changes of rice in response to RDV infection have been characterized by Shimizu et al. and Satoh et al.. Both studies found induction of defense related genes and correlations between transcriptional changes and symptom development in RDV-infected rice. However, the same rice cultivar, namely Nipponbare belonging to the Japonic subspecies of rice was used in both studies. Gene expression changes of the indica subspecies of rice, namely Oryza sativa L. ssp. indica cv Yixiang2292 that show moderate resistance to RDV, in response to RDV infection were characterized using an Affymetrix Rice Genome Array. Differentially expressed genes (DEGs) were classified according to their Gene Ontology (GO) annotation. The effects of transient expression of Pns11 in Nicotiana benthaminana on the expression of nucleolar genes were studied using real-time PCR (RT-PCR). 856 genes involved in defense or other physiological processes were identified to be DEGs, most of which showed up-regulation. Ribosome- and nucleolus related genes were significantly enriched in the DEGs. Representative genes related to nucleolar function exhibited altered expression in N. benthaminana plants transiently expressing Pns11 of RDV. Induction of defense related genes is common for rice infected with RDV. There is a co-relation between symptom severity and transcriptional alteration in RDV infected rice. Besides ribosome, RDV may also target nucleolus to manipulate the translation machinery of rice. Given the tight links between nucleolus and ribosome, it is intriguing to speculate that RDV may enhance expression of ribosomal genes by targeting nucleolus through Pns11.

  2. Determinants and short-term physiological consequences of PHA immune response in lesser kestrel nestlings.

    PubMed

    Rodríguez, Airam; Broggi, Juli; Alcaide, Miguel; Negro, Juan José; Figuerola, Jordi

    2014-08-01

    Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis. © 2014 Wiley Periodicals, Inc.

  3. Mathematical Modeling of Nitrous Oxide Production during Denitrifying Phosphorus Removal Process.

    PubMed

    Liu, Yiwen; Peng, Lai; Chen, Xueming; Ni, Bing-Jie

    2015-07-21

    A denitrifying phosphorus removal process undergoes frequent alternating anaerobic/anoxic conditions to achieve phosphate release and uptake, during which microbial internal storage polymers (e.g., Polyhydroxyalkanoate (PHA)) could be produced and consumed dynamically. The PHA turnovers play important roles in nitrous oxide (N2O) accumulation during the denitrifying phosphorus removal process. In this work, a mathematical model is developed to describe N2O dynamics and the key role of PHA consumption on N2O accumulation during the denitrifying phosphorus removal process for the first time. In this model, the four-step anoxic storage of polyphosphate and four-step anoxic growth on PHA using nitrate, nitrite, nitric oxide (NO), and N2O consecutively by denitrifying polyphosphate accumulating organisms (DPAOs) are taken into account for describing all potential N2O accumulation steps in the denitrifying phosphorus removal process. The developed model is successfully applied to reproduce experimental data on N2O production obtained from four independent denitrifying phosphorus removal study reports with different experimental conditions. The model satisfactorily describes the N2O accumulation, nitrogen reduction, phosphate release and uptake, and PHA dynamics for all systems, suggesting the validity and applicability of the model. The results indicated a substantial role of PHA consumption in N2O accumulation due to the relatively low N2O reduction rate by using PHA during denitrifying phosphorus removal.

  4. Evidence for Biotrophic Lifestyle and Biocontrol Potential of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease

    PubMed Central

    Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long

    2013-01-01

    The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast. PMID:23637814

  5. The receptor-like cytoplasmic kinase BSR1 mediates chitin-induced defense signaling in rice cells.

    PubMed

    Kanda, Yasukazu; Yokotani, Naoki; Maeda, Satoru; Nishizawa, Yoko; Kamakura, Takashi; Mori, Masaki

    2017-08-01

    Broad-Spectrum Resistance 1 (BSR1) encodes a rice receptor-like cytoplasmic kinase, and enhances disease resistance when overexpressed. Rice plants overexpressing BSR1 are highly resistant to diverse pathogens, including rice blast fungus. However, the mechanism responsible for this resistance has not been fully characterized. To analyze the BSR1 function, BSR1-knockout (BSR1-KO) plants were generated using a clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Experiments using suspension-cultured cells revealed that defense responses including H 2 O 2 production (i.e. oxidative burst) and expression of defense-related genes induced by autoclaved conidia of the rice blast fungus significantly decreased in BSR1-KO cells. Furthermore, a treatment with chitin oligomers which function as microbe-associated molecular patterns (MAMPs) of the rice blast fungus resulted in considerably suppressed defense responses in BSR1-KO cells. These results suggest that BSR1 is important for the rice innate immunity triggered by the perception of chitin.

  6. Rice University observations of the galactic center

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1978-01-01

    The most sensitive of the four balloon fight observations of the galactic center made by Rice University was conducted in 1974 from Rio Cuarto, Argentina at a float altitude of 4 mbar. The count rate spectrum of the observed background and the energy spectrum of the galactic center region are discussed. The detector used consists of a 6 inch Nal(T 1ambda) central detector collimated to approximately 15 deg FWHM by a Nal(T lamdba) anticoincidence shield. The shield in at least two interaction mean free paths thick at all gamma ray energies. The instrumental resolution is approximately 11% FWHM at 662 keV. Pulses from the central detector are analyzed by two 256 channel PHA's covering the energy range approximately 20 keV to approximately 12 MeV. The detector is equatorially mounted and pointed by command from the ground. Observations are made by measuring source and background alternately for 10 minute periods. Background is measured by rotating the detector 180 deg about the azimuthal axis.

  7. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.

    PubMed

    Wu, Dianhui; Li, Xiaomin; Lu, Jian; Chen, Jian; Zhang, Liang; Xie, Guangfa

    2016-01-01

    Urea and ethanol are the main precursors of ethyl carbamate (EC) in Chinese rice wine. During fermentation, urea is generated from arginine by arginase in Saccharomyces cerevisiae, and subsequently cleaved by urea amidolyase or directly transported out of the cell into the fermentation liquor, where it reacts with ethanol to form EC. To reduce the amount of EC in Chinese rice wine, we metabolically engineered two yeast strains, N85(DUR1,2) and N85(DUR1,2)-c, from the wild-type Chinese rice wine yeast strain N85. Both new strains were capable of constitutively expressing DUR1,2 (encodes urea amidolyase) and thus enhancing urea degradation. The use of N85(DUR1,2) and N85(DUR1,2)-c reduced the concentration of EC in Chinese rice wine fermented on a small-scale by 49.1% and 55.3%, respectively, relative to fermentation with the parental strain. All of the engineered strains showed good genetic stability and minimized the production of urea during fermentation, with no exogenous genes introduced during genetic manipulation, and were therefore suitable for commercialization to increase the safety of Chinese rice wine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling.

    PubMed

    Pan, Yufang; Li, Qiaofeng; Wang, Zhizheng; Wang, Yang; Ma, Rui; Zhu, Lili; He, Guangcun; Chen, Rongzhi

    2014-12-16

    Thermosensitive genic male sterile (TGMS) lines and photoperiod-sensitive genic male sterile (PGMS) lines have been successfully used in hybridization to improve rice yields. However, the molecular mechanisms underlying male sterility transitions in most PGMS/TGMS rice lines are unclear. In the recently developed TGMS-Co27 line, the male sterility is based on co-suppression of a UDP-glucose pyrophosphorylase gene (Ugp1), but further study is needed to fully elucidate the molecular mechanisms involved. Microarray-based transcriptome profiling of TGMS-Co27 and wild-type Hejiang 19 (H1493) plants grown at high and low temperatures revealed that 15462 probe sets representing 8303 genes were differentially expressed in the two lines, under the two conditions, or both. Environmental factors strongly affected global gene expression. Some genes important for pollen development were strongly repressed in TGMS-Co27 at high temperature. More significantly, series-cluster analysis of differentially expressed genes (DEGs) between TGMS-Co27 plants grown under the two conditions showed that low temperature induced the expression of a gene cluster. This cluster was found to be essential for sterility transition. It includes many meiosis stage-related genes that are probably important for thermosensitive male sterility in TGMS-Co27, inter alia: Arg/Ser-rich domain (RS)-containing zinc finger proteins, polypyrimidine tract-binding proteins (PTBs), DEAD/DEAH box RNA helicases, ZOS (C2H2 zinc finger proteins of Oryza sativa), at least one polyadenylate-binding protein and some other RNA recognition motif (RRM) domain-containing proteins involved in post-transcriptional processes, eukaryotic initiation factor 5B (eIF5B), ribosomal proteins (L37, L1p/L10e, L27 and L24), aminoacyl-tRNA synthetases (ARSs), eukaryotic elongation factor Tu (eEF-Tu) and a peptide chain release factor protein involved in translation. The differential expression of 12 DEGs that are important for pollen development, low temperature responses or TGMS was validated by quantitative RT-PCR (qRT-PCR). Temperature strongly affects global gene expression and may be the common regulator of fertility in PGMS/TGMS rice lines. The identified expression changes reflect perturbations in the transcriptomic regulation of pollen development networks in TGMS-Co27. Findings from this and previous studies indicate that sets of genes involved in post-transcriptional and translation processes are involved in thermosensitive male sterility transitions in TGMS-Co27.

  9. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2

    PubMed Central

    Naheed, Nighat; Jamil, Nazia

    2014-01-01

    Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW) respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01%) was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810) is first time being reported for PHA production. PMID:25242924

  10. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture.

    PubMed

    Colombo, Bianca; Favini, Francesca; Scaglia, Barbara; Sciarria, Tommy Pepè; D'Imporzano, Giuliana; Pognani, Michele; Alekseeva, Anna; Eisele, Giorgio; Cosentino, Cesare; Adani, Fabrizio

    2017-01-01

    In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. The optimized acidogenic process resulted in an OA production of 151 g kg -1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg -1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg -1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg -1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙10 5 kDa with a low polydispersity index, i.e. 1.4. This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.

  11. Quantitative measurement of the growth rate of the PHA-producing photosynthetic bacterium Rhodocyclus gelatinous CBS-2[PolyHydroxyAlkanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfrum, E.J.; Weaver, P.F.

    Researchers at the National Renewable Energy Laboratory (NREL) have been investigating the use of model photosynthetic microorganisms that use sunlight and two-carbon organic substrates (e.g., ethanol, acetate) to produce biodegradable polyhydroxyalkanoate (PHA) copolymers as carbon storage compounds. Use of these biological PHAs in single-use plastics applications, followed by their post-consumer composting or anaerobic digestion, could impact petroleum consumption as well as the overloading of landfills. The large-scale production of PHA polymers by photosynthetic bacteria will require large-scale reactor systems utilizing either sunlight or artificial illumination. The first step in the scale-up process is to quantify the microbial growth rates andmore » the PHA production rates as a function of reaction conditions such as nutrient concentration, temperature, and light quality and intensity.« less

  12. Expression of Magnaporthe grisea Avirulence Gene ACE1 Is Connected to the Initiation of Appressorium-Mediated Penetration▿

    PubMed Central

    Fudal, Isabelle; Collemare, Jérôme; Böhnert, Heidi U.; Melayah, Delphine; Lebrun, Marc-Henri

    2007-01-01

    Magnaporthe grisea is responsible for a devastating fungal disease of rice called blast. Current control of this disease relies on resistant rice cultivars that recognize M. grisea signals corresponding to specific secreted proteins encoded by avirulence genes. The M. grisea ACE1 avirulence gene differs from others, since it controls the biosynthesis of a secondary metabolite likely recognized by rice cultivars carrying the Pi33 resistance gene. Using a transcriptional fusion between ACE1 promoter and eGFP, we showed that ACE1 is only expressed in appressoria during fungal penetration into rice and barley leaves, onion skin, and cellophane membranes. ACE1 is almost not expressed in appressoria differentiated on Teflon and Mylar artificial membranes. ACE1 expression is not induced by cellophane and plant cell wall components, demonstrating that it does not require typical host plant compounds. Cyclic AMP (cAMP) signaling mutants ΔcpkA and Δmac1 sum1-99 and tetraspanin mutant Δpls1::hph differentiate melanized appressoria with normal turgor but are unable to penetrate host plant leaves. ACE1 is normally expressed in these mutants, suggesting that it does not require cAMP signaling or a successful penetration event. ACE1 is not expressed in appressoria of the buf1::hph mutant defective for melanin biosynthesis and appressorial turgor. The addition of hyperosmotic solutes to buf1::hph appressoria restores appressorial development and ACE1 expression. Treatments of young wild-type appressoria with actin and tubulin inhibitors reduce both fungal penetration and ACE1 expression. These experiments suggest that ACE1 appressorium-specific expression does not depend on host plant signals but is connected to the onset of appressorium-mediated penetration. PMID:17142568

  13. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    PubMed

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance.

  14. OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice1[OPEN

    PubMed Central

    Khong, Giang Ngan; Richaud, Frédérique; Parizot, Boris; Mai, Chung Duc; Bès, Martine; Bourrié, Isabelle; Meynard, Donaldo; Beeckman, Tom; Selvaraj, Michael Gomez; Manabu, Ishitani; Brugidou, Christophe; Nang Do, Vinh; Guiderdoni, Emmanuel; Morel, Jean-Benoit; Gantet, Pascal

    2015-01-01

    Functional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g. flowering and floral organ identity) as well as stress-related developmental processes, such as abscission, fruit ripening, and senescence. Overexpression of the rice (Oryza sativa) MADS26 gene in rice has revealed a possible function related to stress response. Here, we show that OsMADS26-down-regulated plants exhibit enhanced resistance against two major rice pathogens: Magnaporthe oryzae and Xanthomonas oryzae. Despite this enhanced resistance to biotic stresses, OsMADS26-down-regulated plants also displayed enhanced tolerance to water deficit. These phenotypes were observed in both controlled and field conditions. Interestingly, alteration of OsMADS26 expression does not have a strong impact on plant development. Gene expression profiling revealed that a majority of genes misregulated in overexpresser and down-regulated OsMADS26 lines compared with control plants are associated to biotic or abiotic stress response. Altogether, our data indicate that OsMADS26 acts as an upstream regulator of stress-associated genes and thereby, a hub to modulate the response to various stresses in the rice plant. PMID:26424158

  15. RISC-interacting clearing 3’- 5’ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana

    PubMed Central

    Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren

    2017-01-01

    RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC. DOI: http://dx.doi.org/10.7554/eLife.24466.001 PMID:28463111

  16. Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene.

    PubMed

    Shimizu, Masami; Kimura, Tetsuya; Koyama, Takayoshi; Suzuki, Katsuhisa; Ogawa, Naoto; Miyashita, Kiyotaka; Sakka, Kazuo; Ohmiya, Kunio

    2002-08-01

    The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.

  17. CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.).

    PubMed

    Min, Hye Jo; Jung, Ye Jin; Kang, Bin Goo; Kim, Woo Taek

    2016-03-01

    Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature (4°C) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

  18. Analysis of the differential gene and protein expression profile of the rolled leaf mutant of transgenic rice (Oryza sativa L.).

    PubMed

    Zhu, Qiuqiang; Yu, Shuguang; Chen, Guanshui; Ke, Lanlan; Pan, Daren

    2017-01-01

    The importance of leaf rolling in rice (Oryza sativa L.) has been widely recognized. Although several studies have investigated rice leaf rolling and identified some related genes, knowledge of the molecular mechanism underlying rice leaf rolling, especially outward leaf rolling, is limited. Therefore, in this study, differential proteomics and gene expression profiling were used to analyze rolled leaf mutant of transgenic rice in order to investigate differentially expressed genes and proteins related to rice leaf rolling. To this end, 28 differentially expressed proteins related to rolling leaf traits were isolated and identified. Digital expression profiling detected 10 genes related to rice leaf rolling. Some of the proteins and genes detected are involved in lipid metabolism, which is related to the development of bulliform cells, such as phosphoinositide phospholipase C, Mgll gene, and At4g26790 gene. The "omics"-level techniques were useful for simultaneously isolating several proteins and genes related to rice leaf rolling. In addition, the results of the analysis of differentially expressed proteins and genes were closely consistent with those from a corresponding functional analysis of cellular mechanisms; our study findings might form the basis for further research on the molecular mechanisms underlying rice leaf rolling.

  19. Function of xyloglucan endotransglucosylase/hydrolases in rice

    PubMed Central

    Hara, Yoshinao; Yokoyama, Ryusuke; Osakabe, Keishi; Toki, Seiichi; Nishitani, Kazuhiko

    2014-01-01

    Background and Aims Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized. Methods This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19. Key Results All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana. Conclusions OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth. PMID:24363334

  20. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock.

    PubMed

    Saratale, Ganesh D; Oh, Min-Kyu

    2015-09-01

    Alkaline pretreatment using NaOH, KOH, or NaOCl has been applied to various types of waste biomass to enhance enzymatic digestibility. Pretreatment (2% NaOH, 121 °C, 30 min) of rice paddy straw (PS) resulted in a maximum yield of 703 mg of reducing sugar per gram of PS with 84.19% hydrolysis yield after a two-step enzymatic hydrolysis process. Ralstonia eutropha ATCC 17699 was tested for its ability to synthesize poly-3-hydroxybutyrate (PHB) using PS hydrolysates as its sole carbon source. It is noteworthy that dry cell weight, polyhydroxyalkanoate (PHA) accumulation and PHB yield with the use of laboratory-grade sugars were similar to those achieved with PS-derived sugars. Under optimized conditions, we observed maximal PHA accumulation (75.45%) and PHB production (11.42 g/L) within 48 h of fermentation. After PHB recovery, the physicochemical properties of PHB were determined by various analytical techniques, showed the results were consistent with the characteristics of a standard polymer of PHB. Thus, the PS hydrolysate proved to be an excellent cheap carbon substrate for PHB production. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain

    PubMed Central

    Jo, Yeong-Min; Cho, Kyoungwon; Lee, Hye-Jung; Lim, Sun-Hyung; Kim, Jin Sun; Kim, Young-Mi; Lee, Jong-Yeol

    2017-01-01

    Rice (Oryza sativa L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes 1Dx5_KK and 1Dy10_JK, which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter and were expressed in the high-amylose Korean rice cultivar Koami (Oryza sativa L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T3 generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice. PMID:29156580

  3. Biosynthesis of poly-beta-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source.

    PubMed

    Silva, Johanna A; Tobella, Lorena M; Becerra, José; Godoy, Félix; Martínez, Miguel A

    2007-06-01

    Poly-beta-hydroxyalkanoate (PHA) is a biodegradable polymer accumulated in intracellular granules by different bacterial species. Its physical and chemical properties are similar to those of petroleum-derived plastics. Material generated by the acid hydrolysis of wood was evaluated for use in the bacterial synthesis of PHA. Acid-hydrolyzed sawdust was prepared and adjusted to pH 7. Mineral salts with carbon:nitrogen (C:N) proportions of 100:1, 100:3.5, 100:10, 100:30, or 100:50 and trace elements were added and these solutions were inoculated with a bacterial strain Brevundimonas vesicularis LMG P-23615 or Sphingopyxis macrogoltabida LMG 17324. The percentage of cells accumulating PHA was evaluated by flow cytometry. The hydrolyzed sawdust composition was analyzed by gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). The organic material (601.5 mg l(-1)) contained 112.5 mg l(-1) sugars. Over 96% of these sugars were consumed and more than 90% of the bacterial cells accumulated PHA. The 100:3.5 C:N proportion was optimal for growth and PHA synthesis, with yields ranging from 64% to 72% of the dry cell weight. The results suggest that acid-hydrolyzed sawdust can be used by bacteria as a carbon source for growth and PHA production. This forestry by sub-product offers a low-cost alternative for obtaining biodegradable plastics (e.g., PHA) synthesized by bacteria.

  4. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection.

    PubMed

    Zhang, Jinfeng; Zhao, Wenjuan; Fu, Rong; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2018-05-05

    Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.

  5. Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16.

    PubMed

    Sznajder, Anna; Pfeiffer, Daniel; Jendrossek, Dieter

    2015-03-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16

    PubMed Central

    Sznajder, Anna; Pfeiffer, Daniel

    2014-01-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. PMID:25548058

  7. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation1[C][W

    PubMed Central

    Campo, Sonia; Baldrich, Patricia; Messeguer, Joaquima; Lalanne, Eric; Coca, María; San Segundo, Blanca

    2014-01-01

    The OsCPK4 gene is a member of the complex gene family of calcium-dependent protein kinases in rice (Oryza sativa). Here, we report that OsCPK4 expression is induced by high salinity, drought, and the phytohormone abscisic acid. Moreover, a plasma membrane localization of OsCPK4 was observed by transient expression assays of green fluorescent protein-tagged OsCPK4 in onion (Allium cepa) epidermal cells. Overexpression of OsCPK4 in rice plants significantly enhances tolerance to salt and drought stress. Knockdown rice plants, however, are severely impaired in growth and development. Compared with control plants, OsCPK4 overexpressor plants exhibit stronger water-holding capability and reduced levels of membrane lipid peroxidation and electrolyte leakage under drought or salt stress conditions. Also, salt-treated OsCPK4 seedlings accumulate less Na+ in their roots. We carried out microarray analysis of transgenic rice overexpressing OsCPK4 and found that overexpression of OsCPK4 has a low impact on the rice transcriptome. Moreover, no genes were found to be commonly regulated by OsCPK4 in roots and leaves of rice plants. A significant number of genes involved in lipid metabolism and protection against oxidative stress appear to be up-regulated by OsCPK4 in roots of overexpressor plants. Meanwhile, OsCPK4 overexpression has no effect on the expression of well-characterized abiotic stress-associated transcriptional regulatory networks (i.e. ORYZA SATIVA DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN1 and ORYZA SATIVA No Apical Meristem, Arabidopsis Transcription Activation Factor1-2, Cup-Shaped Cotyledon6 genes) and LATE EMBRYOGENESIS ABUNDANT genes in their roots. Taken together, our data show that OsCPK4 functions as a positive regulator of the salt and drought stress responses in rice via the protection of cellular membranes from stress-induced oxidative damage. PMID:24784760

  8. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia

    PubMed Central

    Schumacher, Frances-Rose; Siew, Keith; Zhang, Jinwei; Johnson, Clare; Wood, Nicola; Cleary, Sarah E; Al Maskari, Raya S; Ferryman, James T; Hardege, Iris; Figg, Nichola L; Enchev, Radoslav; Knebel, Axel; O’Shaughnessy, Kevin M; Kurz, Thimo

    2015-01-01

    Deletion of exon 9 from Cullin-3 (CUL3, residues 403–459: CUL3Δ403–459) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3Δ403–459, is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3Δ403–459 auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3WT/Δ403–459 closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases. PMID:26286618

  9. Enhanced Incorporation of 3-Hydroxy-4-Methylvalerate Unit into Biosynthetic Polyhydroxyalkanoate Using Leucine as a Precursor

    PubMed Central

    2011-01-01

    Ralstonia eutropha PHB-4 expressing Pseudomonas sp. 61-3 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps) synthesizes PHA copolymer containing 3-hydroxybutyrate (3HB) and a small amount (0.5 mol%) of 3-hydroxy-4-methylvalerate (3H4MV) from fructose as a carbon source. In this study, enhanced incorporation of 3H4MV into PHA was investigated using branched amino acid leucine as a precursor of 3H4MV. Leucine has the same carbon backbone as 3H4MV and is expected to be a natural and self-producible precursor. We found that the incorporation of 3H4MV was enhanced by the supplementation of excess amount (10 g/L) of leucine in the culture medium. This finding indicates that 3H4MV can be derived from leucine. To increase metabolic flux to leucine biosynthesis in the host strain by eliminating the feedback inhibition, the cells were subjected to N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and leucine analog resistant mutants were generated. The mutants showed statistically higher 3H4MV fraction than the parent strain without supplementing leucine. Additionally, by supplying excess amount of leucine, the mutants synthesized 3HB-based PHA copolymer containing 3.1 mol% 3H4MV and 1.2 mol% 3-hydroxyvalerate (3HV) as minor constituents, which significantly affected the thermal properties of the copolymer. This study demonstrates that it is possible to enhance the monomer supply of 3H4MV into PHA by manipulating leucine metabolism. PMID:21906338

  10. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses.

    PubMed

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicholas; Thomas, Nicolas; Holton, Nicolas; Nekrasov, Vladimir; Ruan, Deling; Canlas, Patrick E; Daudi, Arsalan; Petzold, Christopher J; Singan, Vasanth R; Kuo, Rita; Chovatia, Mansi; Daum, Christopher; Heazlewood, Joshua L; Zipfel, Cyril; Ronald, Pamela C

    2015-03-01

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.

  11. Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses

    PubMed Central

    Thomas, Nicolas; Holton, Nicolas; Nekrasov, Vladimir; Ruan, Deling; Canlas, Patrick E.; Daudi, Arsalan; Petzold, Christopher J.; Singan, Vasanth R.; Kuo, Rita; Chovatia, Mansi; Daum, Christopher; Heazlewood, Joshua L.; Zipfel, Cyril; Ronald, Pamela C.

    2015-01-01

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. PMID:25821973

  12. Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli.

    PubMed

    Xiao, Wenjun; Jiang, Li; Wang, Weiyu; Wang, Ruyue; Fan, Jun

    2018-02-01

    Fusion of solubility-enhancing tag is frequently used for improving soluble production of target protein in Escherichia coli. The Arabidopsis tetraticopeptide domain-containing thioredoxin (TDX) has been documented to exhibit functions of disulfide reductase, foldase chaperone, and holdase chaperone. Here, we identified that fusion of rice TDX with the smaller size increased soluble expression levels of three fluorescent proteins with different fluorophores in the E. coli strain BL21(DE3) or the Rosetta (DE3) strain with coexpression of six rare tRNAs, but decreased conformational quality of certain fluorescent proteins, as comparison with the His6-tagged ones. Among five maize proteins, the rice TDX fusion carrier displayed higher solubility-enhancing activity than the yeast SUMO3 tag toward three proteins in both E. coli strains. Five fusion constructs were cleaved with the co-expressed TEV protease variant, but the released target proteins were partly insolubly aggregated in vivo. Attachment of the His6-tag to the TDX tagged proteins had little impact on protein solubility. After Ni-NTA purification, five His6-TDX tagged proteins displayed different apparent purities. Taken together, our work presents that rice TDX tag is a novel solubility enhancer. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase.

    PubMed

    Hirota, Tomoya; Tsuboi, Hiroto; Iizuka-Koga, Mana; Takahashi, Hiroyuki; Asashima, Hiromitsu; Yokosawa, Masahiro; Kondo, Yuya; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-05-01

    To investigate the effects of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI-induced arthritis (GIA). We generated transgenic rice expressing T-cell epitope of hGPI 325-339 and APL12 contained in the seed endosperm. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined for IL-17 production in splenocytes and inguinal lymph node (iLN) cells, and analyzed the expression levels of functional molecules in splenocytes. Prophylactic treatment of GIA mice with APL12 transgenic (APL12-TG) rice seeds significantly reduced the severity of arthritis and titers of serum anti-GPI antibodies compared with non-transgenic (Non-TG) rice-treated mice. APL12-TG and hGPI 325-339 transgenic (hGPI 325-339 -TG) rice seeds improved the histopathological arthritis scores and decreased IL-17 production compared with non-TG rice-treated mice. APL12-TG rice-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4  +  CD25  +  Foxp3 +  cells in the spleen compared with non-TG rice- and hGPI 325-339 -TG rice-treated mice. APL12-TG rice seeds improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on Treg cells in spleen.

  14. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4(+)CD25(high)CD45RA(+) regulatory T cell production and modulating cytokine secretion.

    PubMed

    Yang, Hongna; Sun, Jinhua; Li, Yan; Duan, Wei-Ming; Bi, Jianzhong; Qu, Tingyu

    2016-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are promising candidate cells for therapeutic application in autoimmune diseases due to their immunomodulatory properties. Unused human umbilical cords (UC) offer an abundant and noninvasive source of MSCs without ethical issues and are emerging as a valuable alternative to bone marrow tissue for producing MSCs. We thus investigated the immunomodulation effect of umbilical cord-derived MSCs (UC-MSCs) on human peripheral blood mononuclear cells (PBMCs), T cells in particular, in a co-culture system. We found that UC-MSCs efficiently suppressed the proliferation of phytohaemagglutinin (PHA)-stimulated PBMCs (p<0.01). Kinetic analysis revealed that UC-MSCs primarily inhibited the division of generation 3 (G3) and 4 (G4) of PBMCs. In addition, UC-MSCs augmented the expression of CD127(+) and CD45RA(+) but reduced the expression of CD25(+) in PBMCs stimulated by PHA (p<0.05). Furthermore, UC-MSCs inhibited PHA-resulted increase in the frequency of CD4(+)CD25(+)CD127(low/-) Tregs significantly (p<0.01) but augmented PHA-resulted increase in the frequency of CD4(+)CD25(high)CD45RA(+) Tregs to about three times in PBMCs. The levels of anti-inflammatory cytokines, PEG2, TGF-β, and IL-10 were greatly up-regulated, accompanied by a significant down-regulation of pro-inflammatory IFN-γ in the co-culture (p<0.01). Our results showed that UC-MSCs are able to suppress mitogen-induced PBMC activation and proliferation in vitro by altering T lymphocyte phenotypes, increasing the frequency of CD4(+)CD25(high)CD45RA(+) Tregs, and modulating the associated cytokine production. Further studies are warranted to investigate the therapeutic potential of UC-MSCs in immunologically-diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa)

    PubMed Central

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-01-01

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. PMID:27797952

  16. PhaR, a Negative Regulator of PhaP, Modulates the Colonization of a Burkholderia Gut Symbiont in the Midgut of the Host Insect, Riptortus pedestris.

    PubMed

    Jang, Seong Han; Jang, Ho Am; Lee, Junbeom; Kim, Jong Uk; Lee, Seung Ah; Park, Kyoung-Eun; Kim, Byung Hyun; Jo, Yong Hun; Lee, Bok Luel

    2017-06-01

    Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (Δ phaP1 , Δ phaP2 , Δ phaP3 , and Δ phaP4 mutants), one phaR gene-depleted mutant, and a phaR -complemented mutant (Δ phaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro , the Δ phaP3 and Δ phaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the Δ phaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia -infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the Δ phaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut. IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP -depleted mutants and one phaR -depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut. Copyright © 2017 American Society for Microbiology.

  17. PhaR, a Negative Regulator of PhaP, Modulates the Colonization of a Burkholderia Gut Symbiont in the Midgut of the Host Insect, Riptortus pedestris

    PubMed Central

    Jang, Seong Han; Jang, Ho Am; Lee, Junbeom; Kim, Jong Uk; Lee, Seung Ah; Park, Kyoung-Eun; Kim, Byung Hyun; Jo, Yong Hun

    2017-01-01

    ABSTRACT Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (ΔphaP1, ΔphaP2, ΔphaP3, and ΔphaP4 mutants), one phaR gene-depleted mutant, and a phaR-complemented mutant (ΔphaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro, the ΔphaP3 and ΔphaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the ΔphaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia-infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the ΔphaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut. IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP-depleted mutants and one phaR-depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut. PMID:28341680

  18. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    DOE PAGES

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicolas; ...

    2015-03-30

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistancemore » to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.« less

  19. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicolas

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistancemore » to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.« less

  20. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    PubMed

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  1. Identification and Comparative Expression Profiles of Chemoreception Genes Revealed from Major Chemoreception Organs of the Rice Leaf Folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Zeng, Fang-Fang; Zhao, Zhen-Fei; Yan, Miao-Jun; Zhou, Wen; Zhang, Zan; Zhang, Aijun; Lu, Zhong-Xian; Wang, Man-Qun

    2015-01-01

    To better understand the olfactory mechanisms in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), a serious pest of rice in Asia, we established six partial transcriptomes from antennae, protarsus, and reproductive organs of male and female adults. A total of 102 transcripts were identified, including 29 odorant receptors (ORs), 15 ionotropic receptors (IRs), 30 odorant-binding proteins (OBPs), 26 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). The expression patterns of these genes were calculated by fragments per kilobase of exon per million fragments mapped (FPKM) and validated by real-time quantitative PCR (RT-qPCR). Some transcripts were exclusively expressed in specific organs, such as female protarsus, whereas others were universally expressed, this varied expression profile may provide insights into the specific functions mediated by chemoreception proteins in insects. To the best of our knowledge, among the 102 identified transcripts, 81 are novel and have never been reported before. In addition, it also is the first time that ORs and IRs are identified in C. medinalis. Our findings significantly enhance the currently limited understanding olfactory mechanisms of the olfactory mechanisms underlying the chemoreception system in C. medinalis. PMID:26657286

  2. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A maternal-effect selfish genetic element in Caenorhabditis elegans.

    PubMed

    Ben-David, Eyal; Burga, Alejandro; Kruglyak, Leonid

    2017-06-09

    Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing embryonic lethality in crosses between wild strains of the nematode Caenorhabditis elegans The element is made up of sup-35 , a maternal-effect toxin that kills developing embryos, and pha-1 , its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development on the basis of its mutant phenotype, but this phenotype arises from a loss of suppression of sup-35 toxicity. Inactive copies of the sup-35/pha-1 element show high sequence divergence from active copies, and phylogenetic reconstruction suggests that they represent ancestral stages in the evolution of the element. Our results suggest that other essential genes identified by genetic screens may turn out to be components of selfish elements. Copyright © 2017, American Association for the Advancement of Science.

  4. Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

    PubMed Central

    Salgaonkar, Bhakti B.; Bragança, Judith M.

    2017-01-01

    Sugarcane bagasse (SCB), one of the major lignocellulosic agro-industrial waste products, was used as a substrate for biosynthesis of polyhydroxyalkanoates (PHA) by halophilic archaea. Among the various wild-type halophilic archaeal strains screened, Halogeometricum borinquense strain E3 showed better growth and PHA accumulation as compared to Haloferaxvolcanii strain BBK2, Haloarcula japonica strain BS2, and Halococcus salifodinae strain BK6. Growth kinetics and bioprocess parameters revealed the maximum PHA accumulated by strain E3 to be 50.4 ± 0.1 and 45.7 ± 0.19 (%) with specific productivity (qp) of 3.0 and 2.7 (mg/g/h) using NaCl synthetic medium supplemented with 25% and 50% SCB hydrolysate, respectively. PHAs synthesized by strain E3 were recovered in chloroform using a Soxhlet apparatus. Characterization of the polymer using crotonic acid assay, X-ray diffraction (XRD), differential scanning calorimeter (DSC), Fourier transform infrared (FT-IR), and proton nuclear magnetic resonance (1H-NMR) spectroscopy analysis revealed the polymer obtained from SCB hydrolysate to be a co-polymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] comprising of 13.29 mol % 3HV units. PMID:28952529

  5. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    PubMed

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Severe hyperkalemia is rescued by low-potassium diet in renal βENaC-deficient mice.

    PubMed

    Boscardin, Emilie; Perrier, Romain; Sergi, Chloé; Maillard, Marc; Loffing, Johannes; Loffing-Cueni, Dominique; Koesters, Robert; Rossier, Bernard Claude; Hummler, Edith

    2017-10-01

    In adulthood, an induced nephron-specific deficiency of αENaC (Scnn1a) resulted in pseudohypoaldosteronism type 1 (PHA-1) with sodium loss, hyperkalemia, and metabolic acidosis that is rescued through high-sodium/low-potassium (HNa + /LK + ) diet. In the present study, we addressed whether renal βENaC expression is required for sodium and potassium balance or can be compensated by remaining (α and γ) ENaC subunits using adult nephron-specific knockout (Scnn1b Pax8/LC1 ) mice. Upon induction, these mice present a severe PHA-1 phenotype with weight loss, hyperkalemia, and dehydration, but unlike the Scnn1a Pax8/LC1 mice without persistent salt wasting. This is followed by a marked downregulation of STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and Na + /Cl - co-transporter (NCC) protein expression and activity. Most of the experimental Scnn1b Pax8/LC1 mice survived with a HNa + /LK + diet that partly normalized NCC phosphorylation, but not total NCC expression. Since salt loss was minor, we applied a standard-sodium/LK + diet that efficiently rescued these mice resulting in normokalemia and normalization of NCC phosphorylation, but not total NCC expression. A further switch to LNa + /standard-K + diet induced again a severe PHA-1-like phenotype, but with only transient salt wasting indicating that low-K + intake is critical to decrease hyperkalemia in a NCC-dependent manner. In conclusion, while the βENaC subunit plays only a minor role in sodium balance, severe hyperkalemia results in downregulation of NCC expression and activity. Our data demonstrate the importance to primarily correct the hyperkalemia with a low-potassium diet that normalizes NCC activity.

  7. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.

    PubMed

    Simmet, Kilian; Reichenbach, Myriam; Reichenbach, Horst-Dieter; Wolf, Eckhard

    2015-12-01

    Multiplication of bovine embryos by the production of aggregation chimeras is based on the concept that few blastomeres of a donor embryo form the inner cell mass (ICM) and thus the embryo proper, whereas cells of a host embryo preferentially contribute to the trophectoderm (TE), the progenitor cells of the embryonic part of the placenta. We aggregated two fluorescent blastomeres from enhanced green fluorescent protein (eGFP) transgenic Day 5 morulae with two Day 4 embryos that did not complete their first cleavage until 27 hours after IVF and tested the effect of phytohemagglutinin-L (PHA) on chimeric embryo formation. The resulting blastocysts were characterized by differential staining of cell lineages using the TE-specific factor CDX2 and confocal laser scanning microscopy to facilitate the precise localization of eGFP-positive cells. The proportions of blastocyst development of sandwich aggregates with (n = 99) and without PHA (n = 46) were 85.9% and 54.3% (P < 0.05), respectively. Epifluorescence microscopy showed that the proportion of blastocysts with eGFP-positive cells in the ICM was higher in the PHA group than in the no-PHA group (40% vs. 16%; P < 0.05). Confocal laser scanning microscopy revealed that the total cell numbers of blastocysts from the PHA group of aggregation chimeras (n = 17; 207.8 ± 67.3 [mean ± standard deviation]) were higher (P < 0.05) than those of embryos without ZP and exposed to PHA (n = 30; 159.6 ± 42.2) and of handling control embryos (n = 19; 176.9 ± 53.3). The same was true for ICM cell counts (56.5 ± 22.0 vs. 37.7 ± 14.2 and 38.7 ± 12.4) and TE cell counts (151.2 ± 58.0 vs. 121.9 ± 37.4 and 138.3 ± 53.0), whereas the ICM/total cell number ratio was not different between the groups. Of the 17 chimeric blastocysts analyzed by confocal laser scanning microscopy, nine had eGFP-positive cells (three of them in the ICM, three in the TE, and three in both lineages). When integration in the ICM occurred, the number of eGFP-positive cells in this compartment was 8.3 ± 2.3 (mean ± standard error of the mean). We conclude that PHA is advantageous for the formation of aggregation chimeras, but the approach tested in the present study with only two donor blastomeres and two host embryos did not result in multiplication of genetically valuable donor embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation

    PubMed Central

    Xu, Jiajia; Bräutigam, Andrea; Weber, Andreas P. M.; Zhu, Xin-Guang

    2016-01-01

    Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5′UTR, 3′UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5′UTR, 3′UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution. PMID:27436282

  9. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis

    PubMed Central

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-01-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or ‘expressology’, thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). PMID:24147765

  10. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    PubMed

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination

    PubMed Central

    Nochi, Tomonori; Takagi, Hidenori; Yuki, Yoshikazu; Yang, Lijun; Masumura, Takehiro; Mejima, Mio; Nakanishi, Ushio; Matsumura, Akiko; Uozumi, Akihiro; Hiroi, Takachika; Morita, Shigeto; Tanaka, Kunisuke; Takaiwa, Fumio; Kiyono, Hiroshi

    2007-01-01

    Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 μg of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyer's patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism. PMID:17573530

  12. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants.

    PubMed

    Yang, Zhifan; Zhang, Futie; He, Qing; He, Guangcun

    2005-06-01

    To investigate the molecular response of brown planthopper, Nilaparvata lugens (BPH) to BPH-resistant rice plants, we isolated cDNA fragments of the genes encoding for carboxylesterase (CAR), trypsin (TRY), cytochrome P450 monooxygenase (P450), NADH-quinone oxidoreductase (NQO), acetylcholinesterase (ACE), and Glutathione S-transferase (GST). Expression profiles of the genes were monitored on fourth instar nymphs feeding on rice varieties with different resistance levels. Northern blot hybridization showed that, compared with BPH reared on susceptible rice TN1, expression of the genes for P450 and CAR was apparently up-regulated and TRY mRNA decreased in BPH feeding on a highly resistant rice line B5 and a moderately resistant rice variety MH63, respectively. Two transcripts of GST increased in BPH feeding on B5; but in BPH feeding on MH63, this gene was inducible and its expression reached a maximum level at 24 h, and then decreased slightly. The expression of NQO gene was enhanced in BPH on B5 plants but showed a constant expression in BPH on MH63 plants. No difference in ACE gene expression among BPH on different rice plants was detected by the RT-PCR method. The results suggest these genes may play important roles in the defense response of BPH to resistant rice.

  13. Population dynamics of Sesamia inferens on transgenic rice expressing Cry1Ac and CpTI in southern China.

    PubMed

    Han, Lanzhi; Liu, Peilei; Wu, Kongming; Peng, Yufa; Wang, Feng

    2008-10-01

    Genetically modified insect-resistant rice lines containing the cry1Ac gene from Bacillus thuringiensis (Bt) or the CpTI (cowpea trypsin inhibitor) gene developed for the management of lepidopterous pests are highly resistant to the major target pests, Chilo suppressalis (Walker), Cnaphalocrocis medinalis (Guenée), and Scirpophaga incertulas (Walker), in the main rice-growing areas of China. However, the effects of these transgenic lines on Sesamia inferens (Walker), an important lepidopterous rice pest, are currently unknown. Because different insect species have varying susceptibility to Bt insecticidal proteins that may affect population dynamics, research into the effects of these transgenic rice lines on the population dynamics of S. inferens was conducted in Fuzhou, southern China, in 2005 and 2006. The results of laboratory, field cage, and field plot experiments show that S. inferens has comparatively high susceptibility to the transgenic line during the early growing season, with significant differences observed in larval density and infestation levels between transgenic and control lines. Because of a decrease in Cry1Ac levels in the plant as it ages, the transgenic line provided only a low potential for population suppression late in the growing season. There is a correlation between the changing expression of Cry1Ac and the impact of transgenic rice on the population dynamics of S. inferens during the season. These results indicate that S. inferens may become a major pest in fields of prospective commercially released transgenic rice, and more attention should be paid to developing an effective alternative management strategy.

  14. A Patatin-Like Protein Associated with the Polyhydroxyalkanoate (PHA) Granules of Haloferax mediterranei Acts as an Efficient Depolymerase in the Degradation of Native PHA

    PubMed Central

    Liu, Guiming; Hou, Jing; Cai, Shuangfeng; Zhao, Dahe; Cai, Lei; Han, Jing; Zhou, Jian

    2015-01-01

    The key enzymes and pathways involved in polyhydroxyalkanoate (PHA) biosynthesis in haloarchaea have been identified in recent years, but the haloarchaeal enzymes for PHA degradation remain unknown. In this study, a patatin-like PHA depolymerase, PhaZh1, was determined to be located on the PHA granules in the haloarchaeon Haloferax mediterranei. PhaZh1 hydrolyzed the native PHA (nPHA) [including native polyhydroxybutyrate (nPHB) and native poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (nPHBV) in this study] granules in vitro with 3-hydroxybutyrate (3HB) monomer as the primary product. The site-directed mutagenesis of PhaZh1 indicated that Gly16, Ser47 (in a classical lipase box, G-X-S47-X-G), and Asp195 of this depolymerase were essential for its activity in nPHA granule hydrolysis. Notably, phaZh1 and bdhA (encoding putative 3HB dehydrogenase) form a gene cluster (HFX_6463 to _6464) in H. mediterranei. The 3HB monomer generated from nPHA degradation by PhaZh1 could be further converted into acetoacetate by BdhA, indicating that PhaZh1-BdhA may constitute the first part of a PHA degradation pathway in vivo. Interestingly, although PhaZh1 showed efficient activity and was most likely the key enzyme in nPHA granule hydrolysis in vitro, the knockout of phaZh1 had no significant effect on the intracellular PHA mobilization, implying the existence of an alternative PHA mobilization pathway(s) that functions effectively within the cells of H. mediterranei. Therefore, identification of this patatin-like depolymerase of haloarchaea may provide a new strategy for producing the high-value-added chiral compound (R)-3HB and may also shed light on the PHA mobilization in haloarchaea. PMID:25710370

  15. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture.

    PubMed

    Su, Chin-Fen; Kuo, I-Chun; Chen, Peng-Wen; Huang, Chiung-Hui; Seow, See Voon; Chua, Kaw Yan; Yu, Su-May

    2012-02-01

    Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy.

  16. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    PubMed

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  17. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa).

    PubMed

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-12-31

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA-mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants.

    PubMed

    Aguirre, Elena; Elena, Aguirre; Leménager, Diane; Diane, Leménager; Bacaicoa, Eva; Eva, Bacaicoa; Fuentes, Marta; Marta, Fuentes; Baigorri, Roberto; Roberto, Baigorri; Zamarreño, Angel Ma; García-Mina, José Ma

    2009-03-01

    The aim of this study is to investigate the effect of a well-characterized purified humic acid (non-measurable concentrations of the main plant hormones were detected) on the transcriptional regulation of the principal molecular agents involved in iron assimilation. To this end, non-deficient cucumber plants were treated with different concentrations of a purified humic acid (PHA) (2, 5, 100 and 250 mg of organic carbonL(-1)) and harvested 4, 24, 48, 76 and 92 h from the onset of the treatment. At harvest times, the mRNA transcript accumulation of CsFRO1 encoding for Fe(III) chelate-reductase (EC 1.16.1.7); CsHa1 and CsHa2 encoding for plasma membrane H+-ATPase (EC 3.6.3.6); and CsIRT1 encoding for Fe(II) high-affinity transporter, was quantified by real-time RT-PCR. Meanwhile, the respective enzyme activity of the Fe(III) chelate-reductase and plasma membrane H+-ATPase was also investigated. The results obtained indicated that PHA root treatments affected the regulation of the expression of the studied genes, but this effect was transient and differed (up-regulation or down-regulation) depending on the genes studied. Thus, principally the higher doses of PHA caused a transient increase in the expression of the CsHa2 isoform for 24 and 48 h whereas the CsHa1 isoform was unaffected or down-regulated. These effects were accompanied by an increase in the plasma membrane H+-ATPase activity for 4, 48 and 96 h. Likewise, PHA root treatments (principally the higher doses) up-regulated CsFRO1 and CsIRT1 expression for 48 and 72 h; whereas these genes were down-regulated by PHA for 96 h. These effects were associated with an increase in the Fe(III) chelate-reductase activity for 72 h. These effects were not associated with a significant decrease in the Fe root or leaf concentrations, although an eventual effect on the Fe root assimilation pattern cannot be ruled out. These results stress the close relationships between the effects of humic substances on plant development and iron nutrition. However, further studies are needed in order to elucidate if these effects at molecular level are caused by mechanisms involving hormone-like actions and/or nutritional factors.

  19. The Polycistronic miR166k-166h Positively Regulates Rice Immunity via Post-transcriptional Control of EIN2

    PubMed Central

    Salvador-Guirao, Raquel; Hsing, Yue-ie; San Segundo, Blanca

    2018-01-01

    MicroRNAs (miRNAs) are small RNAs acting as regulators of gene expression at the post-transcriptional level. In plants, most miRNAs are generated from independent transcriptional units, and only a few polycistronic miRNAs have been described. miR166 is a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes. Here, we show that a polycistronic miRNA comprising two miR166 family members, miR166k and miR166h, functions as a positive regulator of rice immunity. Rice plants with activated MIR166k-166h expression showed enhanced resistance to infection by the fungal pathogens Magnaporthe oryzae and Fusarium fujikuroi, the causal agents of the rice blast and bakanae disease, respectively. Disease resistance in rice plants with activated MIR166k-166h expression was associated with a stronger expression of defense responses during pathogen infection. Stronger induction of MIR166k-166h expression occurred in resistant but not susceptible rice cultivars. Notably, the ethylene-insensitive 2 (EIN2) gene was identified as a novel target gene for miR166k. The regulatory role of the miR166h-166k polycistron on the newly identified target gene results from the activity of the miR166k-5p specie generated from the miR166k-166h precursor. Collectively, our findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression. Because rice blast is one of the most destructive diseases of cultivated rice worldwide, unraveling miR166k-166h-mediated mechanisms underlying blast resistance could ultimately help in designing appropriate strategies for rice protection. PMID:29616057

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of themore » bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.« less

  1. OsGA2ox5, a Gibberellin Metabolism Enzyme, Is Involved in Plant Growth, the Root Gravity Response and Salt Stress

    NASA Astrophysics Data System (ADS)

    Cai, Weiming; Shan, Chi

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2b-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GAdeficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 mM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  2. OsGA2ox5, a Gibberellin Metabolism Enzyme, Is Involved in Plant Growth, the Root Gravity Response and Salt Stress

    PubMed Central

    Shan, Chi; Mei, Zhiling; Duan, Jianli; Chen, Haiying; Feng, Huafeng; Cai, Weiming

    2014-01-01

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice. PMID:24475234

  3. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress.

    PubMed

    Shan, Chi; Mei, Zhiling; Duan, Jianli; Chen, Haiying; Feng, Huafeng; Cai, Weiming

    2014-01-01

    Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C₁₉-GA2oxs and a smaller class of C₂₀-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C₂₀-GA2oxs subfamily, a subfamily of GA2oxs acting on C₂₀-GAs (GA₁₂, GA₅₃). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.

  4. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S

    2015-09-25

    Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Tocopherol and tocotrienol contents of different varieties of rice in Malaysia.

    PubMed

    Shammugasamy, Balakrishnan; Ramakrishnan, Yogeshini; Ghazali, Hasanah M; Muhammad, Kharidah

    2015-03-15

    The present study examined the contents of tocopherols and tocotrienols and their distribution in 58 different varieties of whole rice cultivated in Malaysia. The analytical method used was saponification of samples followed by dispersive liquid-liquid microextraction and reverse phase high-performance liquid chromatography. The total vitamin E contents of different varieties of whole rice ranged between 19.36 and 63.29 mg kg⁻¹. Contents of vitamin E isomers varied among rice varieties both within and between grain color groups. Black-pigmented rice showed significantly higher mean contents of α-tocopherol, β-tocopherol and α-tocotrienol than non-pigmented rice and red-pigmented rice. Red-pigmented rice had significantly lower mean contents of γ-tocotrienol and total vitamin E than non-pigmented rice. The mean contents of δ-tocotrienol and total vitamin E in non-pigmented rice, however, were similar to those in black-pigmented rice. γ-Tocotrienol was the predominant form of vitamin E isomer in all analyzed varieties. The Pearson correlations among vitamin E isomers and total vitamin E content of whole rice were also studied. This study provides information on vitamin E content of different rice varieties that would be beneficial for decision making in genetic breeding of bioactive compound-rich rice varieties. © 2014 Society of Chemical Industry.

  6. Identification of the Haloarchaeal Phasin (PhaP) That Functions in Polyhydroxyalkanoate Accumulation and Granule Formation in Haloferax mediterranei

    PubMed Central

    Cai, Shuangfeng; Cai, Lei; Liu, Hailong; Liu, Xiaoqing; Han, Jing; Zhou, Jian

    2012-01-01

    The polyhydroxyalkanoate (PHA) granule-associated proteins (PGAPs) are important for PHA synthesis and granule formation, but currently little is known about the haloarchaeal PGAPs. This study focused on the identification and functional analysis of the PGAPs in the haloarchaeon Haloferax mediterranei. These PGAPs were visualized with two-dimensional gel electrophoresis (2-DE) and identified by matrix-assisted laser desorption ionization–tandem time of flight mass spectrometry (MALDI-TOF/TOF MS). The most abundant protein on the granules was identified as a hypothetical protein, designated PhaP. A genome-wide analysis revealed that the phaP gene is located upstream of the previously identified phaEC genes. Through an integrative approach of gene knockout/complementation and fermentation analyses, we demonstrated that this PhaP is involved in PHA accumulation. The ΔphaP mutant was defective in both PHA biosynthesis and cell growth compared to the wild-type strain. Additionally, transmission electron microscopy results indicated that the number of PHA granules in the ΔphaP mutant cells was significantly lower, and in most of the ΔphaP cells only a single large granule was observed. These results demonstrated that the H. mediterranei PhaP was the predominant structure protein (phasin) on the PHA granules involved in PHA accumulation and granule formation. In addition, BLASTp and phylogenetic results indicate that this type of PhaP is exclusively conserved in haloarchaea, implying that it is a representative of the haloarchaeal type PHA phasin. PMID:22247127

  7. Combining iGoogle and personal health records to create a prototype personal health application for diabetes self-management.

    PubMed

    Fonda, Stephanie J; Kedziora, Richard J; Vigersky, Robert A; Bursell, Sven-Erik

    2010-05-01

    The aim of this project is to create a prototype for a personal health application (PHA) for patients (i.e., consumers) with diabetes by employing a user-centered design process. This article describes the design process for and resulting architecture, workflow, and functionality of such a PHA. For the design process, we conducted focus groups with people who have diabetes (n = 21) to ascertain their needs for a PHA. We then developed a prototype in response to these needs, and through additional focus groups and step-by-step demonstrations for people with diabetes as well as healthcare providers, we obtained feedback about the prototype. The feedback led to changes in the PHA's presentation and function. Focus group participants said they wanted a tool that could give them timely, readily available information on how diabetes-related domains interact, how their behaviors affect them, and what to do next. Thus, the prototype PHA is Internet-based, retrieves data for diabetes self-management from a personal health record, displays those data using gadgets in the consumer's iGoogle page, and makes the data available to a decision-support component that provides lifestyle-oriented advice. Manipulation of the data enables consumers to anticipate the results of future actions and to see interrelationships. A user-centered design process resulted in a PHA that uses technology that is publicly available, employs a personal health record, and is Internet based. This PHA can provide the backbone for a decision support system that can bring together the cornerstones of diabetes self-management and integrate them into the life of the person with diabetes.

  8. Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus.

    PubMed

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhang, Yu-Ying; Lin, Chun-Jing; Zhong, Xiao-Fang; Wang, Yue-Lin; Ma, Jing-Yong; Ma, Jian; Xing, Shao-Chen

    2015-03-02

    Rice blast is a major destructive fungal disease that poses a serious threat to rice production and the improvement of blast resistance is critical to rice breeding. The antimicrobial peptide MSI-99 has been suggested as an antimicrobial peptide conferring resistance to bacterial and fungal diseases. Here, a vector harboring the MSI-99 gene was constructed and introduced into the tobacco chloroplast genome via particle bombardment. Transformed plants were obtained and verified to be homoplastomic by PCR and Southern hybridization. In planta assays demonstrated that the transgenic tobacco plants displayed an enhanced resistance to the fungal disease. The evaluation of the antimicrobial activity revealed that the crude protein extracts from the transgenic plants manifested an antimicrobial activity against E. coli, even after incubation at 120 °C for 20 min, indicating significant heat stability of MSI-99. More importantly, the MSI-99-containing protein extracts were firstly proved in vitro and in vivo to display significant suppressive effects on two rice blast isolates. These findings provide a strong basis for the development of new biopesticides to combat rice blast.

  9. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop. © 2012 John Wiley & Sons A/S.

  10. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.

    PubMed

    Oliveira, Catarina S S; Silva, Carlos E; Carvalho, Gilda; Reis, Maria A

    2017-07-25

    Production of polyhydroxyalkanoates (PHAs) by open mixed microbial cultures (MMCs) has been attracting increasing interest as an alternative technology to PHA production by pure cultures, due to the potential for lower costs associated with the use of open systems (eliminating the requirement for sterile conditions) and the utilisation of cheap feedstock (industrial and agricultural wastes). Such technology relies on the efficient selection of an MMC enriched in PHA-accumulating organisms. Fermented cheese whey, a protein-rich complex feedstock, has been used previously to produce PHA using the feast and famine regime for selection of PHA accumulating cultures. While this selection strategy was found efficient when operated at relatively low organic loading rate (OLR, 2g-CODL -1 d -1 ), great instability and low selection efficiency of PHA accumulating organisms were observed when higher OLR (ca. 6g-CODL -1 d -1 ) was applied. High organic loading is desirable as a means to enhance PHA productivity. In the present study, a new selection strategy was tested with the aim of improving selection for high OLR. It was based on uncoupling carbon and nitrogen supply and was implemented and compared with the conventional feast and famine strategy. For this, two selection reactors were fed with fermented cheese whey applying an OLR of ca. 8.5g-CODL -1 (with 3.8g-CODL -1 resulting from organic acids and ethanol), and operated in parallel under similar conditions, except for the timing of nitrogen supplementation. Whereas in the conventional strategy nitrogen and carbon substrates were added simultaneously at the beginning of the cycle, in the uncoupled substrates strategy, nitrogen addition was delayed to the end of the feast phase (i.e. after exogenous carbon was exhausted). The two different strategies selected different PHA-storing microbial communities, dominated by Corynebacterium and a Xantomonadaceae, respectively with the conventional and the new approaches. The new strategy originated a more efficient PHA-production process than the conventional one (global PHA productivity of 6.09g-PHAL -1 d -1 and storage yield of 0.96 versus 2.55g-PHAL -1 d -1 and 0.86, respectively). Dissociation between the feast to famine length ratio (F/F) and storage efficiency was shown to be possible with the new strategy, allowing selection of an efficient PHA-storing culture with complex feedstock under high organic loading rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Magnaporthe oryzae Induces the Expression of a MicroRNA to Suppress the Immune Response in Rice.

    PubMed

    Zhang, Xin; Bao, Yalin; Shan, Deqi; Wang, Zhihui; Song, Xiaoning; Wang, Zhaoyun; Wang, Jiansheng; He, Liqiang; Wu, Liang; Zhang, Zhengguang; Niu, Dongdong; Jin, Hailing; Zhao, Hongwei

    2018-05-01

    MicroRNAs play crucial roles in plant responses to pathogen infections. The rice blast disease, caused by the fungus Magnaporthe oryzae , is the most important disease of rice ( Oryza sativa ). To explore the microRNA species that participate in rice immunity against the rice blast disease, we compared the expression of small RNAs between mock- and M. oryzae -treated rice. We found that infection by M. oryzae strain Guy11 specifically induced the expression of rice miR319 and, consequently, suppressed its target gene TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR1 ( OsTCP21 ), which encodes a transcription factor. Using transgenic rice that overexpresses miR319b (OE) or expresses OsTCP21 -Res (which is resistant to miR319-mediated silencing), we found that OsTCP21 is a positive regulator of the rice defense response against the blast disease. When wild-type and miR319b-OE rice were infected by Guy11, multiple jasmonic acid (JA) synthetic and signaling components were suppressed, indicating that Guy11 suppresses JA signaling through inducing miR319. In particular, we found that LIPOXYGENASE2 ( LOX2 ) and LOX5 were specifically suppressed by miR319 overexpression or by Guy11 infection. LOXs are the key enzymes of JA synthesis, which catalyze the conversion of α-linoleic acid to hydroperoxy-octadecadienoic acid. The application of α-linoleic acid rescued disease symptoms on the OsTCP21 -Res rice but not wild-type rice, supporting our hypothesis that OsLOX2 and OsLOX5 are the key JA synthesis genes hijacked by Guy11 to subvert host immunity and facilitate pathogenicity. We propose that induced expression of OsLOX2/5 may improve resistance to the rice blast disease. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. Magnaporthe oryzae Induces the Expression of a MicroRNA to Suppress the Immune Response in Rice1[OPEN

    PubMed Central

    Zhang, Xin; Bao, Yalin; Shan, Deqi; Wang, Zhihui; Song, Xiaoning; Wang, Zhaoyun; Wang, Jiansheng; He, Liqiang; Wu, Liang; Zhang, Zhengguang; Niu, Dongdong

    2018-01-01

    MicroRNAs play crucial roles in plant responses to pathogen infections. The rice blast disease, caused by the fungus Magnaporthe oryzae, is the most important disease of rice (Oryza sativa). To explore the microRNA species that participate in rice immunity against the rice blast disease, we compared the expression of small RNAs between mock- and M. oryzae-treated rice. We found that infection by M. oryzae strain Guy11 specifically induced the expression of rice miR319 and, consequently, suppressed its target gene TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (OsTCP21), which encodes a transcription factor. Using transgenic rice that overexpresses miR319b (OE) or expresses OsTCP21-Res (which is resistant to miR319-mediated silencing), we found that OsTCP21 is a positive regulator of the rice defense response against the blast disease. When wild-type and miR319b-OE rice were infected by Guy11, multiple jasmonic acid (JA) synthetic and signaling components were suppressed, indicating that Guy11 suppresses JA signaling through inducing miR319. In particular, we found that LIPOXYGENASE2 (LOX2) and LOX5 were specifically suppressed by miR319 overexpression or by Guy11 infection. LOXs are the key enzymes of JA synthesis, which catalyze the conversion of α-linoleic acid to hydroperoxy-octadecadienoic acid. The application of α-linoleic acid rescued disease symptoms on the OsTCP21-Res rice but not wild-type rice, supporting our hypothesis that OsLOX2 and OsLOX5 are the key JA synthesis genes hijacked by Guy11 to subvert host immunity and facilitate pathogenicity. We propose that induced expression of OsLOX2/5 may improve resistance to the rice blast disease. PMID:29549093

  13. 24 CFR 982.355 - Portability: Administration by receiving PHA.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... by the receiving PHA. (1) If funding is available under the consolidated ACC for the receiving PHA... consolidated ACC for the receiving PHA tenant-based program. (2) HUD may require that the receiving PHA absorb... families to the receiving PHA from funds available under the initial PHA ACC. (2) HUD may provide...

  14. 24 CFR 982.355 - Portability: Administration by receiving PHA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... by the receiving PHA. (1) If funding is available under the consolidated ACC for the receiving PHA... consolidated ACC for the receiving PHA tenant-based program. (2) HUD may require that the receiving PHA absorb... families to the receiving PHA from funds available under the initial PHA ACC. (2) HUD may provide...

  15. Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers.

    PubMed

    Ray, Subhasree; Kalia, Vipin Chandra

    2017-03-01

    Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.

  16. Modified pseudomonas oleovorans phaC1 nucleic acids encoding bispecific polyhydroxyalkanoate polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srienc, Friedrich; Jackson, John K.; Somers, David A.

    A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.

  17. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    PubMed Central

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  18. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  19. Enzymatic and structural characterization of hydrolysis of gibberellin A4 glucosyl ester by a rice β-D-glucosidase.

    PubMed

    Hua, Yanling; Sansenya, Sompong; Saetang, Chiraporn; Wakuta, Shinji; Ketudat Cairns, James R

    2013-09-01

    In order to identify a rice gibberellin ester β-D-glucosidase, gibberellin A4 β-D-glucosyl ester (GA4-GE) was synthesized and used to screen rice β-glucosidases. Os3BGlu6 was found to have the highest hydrolysis activity to GA4-GE among five recombinantly expressed rice glycoside hydrolase family GH1 enzymes from different phylogenic clusters. The kinetic parameters of Os3BGlu6 and its mutants E178Q, E178A, E394D, E394Q and M251N for hydrolysis of p-nitrophenyl β-D-glucopyranoside (pNPGlc) and GA4-GE confirmed the roles of the catalytic acid/base and nucleophile for hydrolysis of both substrates and suggested M251 contributes to binding hydrophobic aglycones. The activities of the Os3BGlu6 E178Q and E178A acid/base mutants were rescued by azide, which they transglucosylate to produce β-D-glucopyranosyl azide, in a pH-dependent manner, while acetate also rescued Os3BGlu6 E178A at low pH. High concentrations of sodium azide (200-400 mM) inhibited Os3BGlu6 E178Q but not Os3BGlu6 E178A. The structures of Os3BGlu6 E178Q crystallized with either GA4-GE or pNPGlc had a native α-D-glucosyl moiety covalently linked to the catalytic nucleophile, E394, which showed the hydrogen bonding to the 2-hydroxyl in the covalent intermediate. These data suggest that a GH1 β-glucosidase uses the same retaining catalytic mechanism to hydrolyze 1-O-acyl glucose ester and glucoside. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China).

    PubMed

    Liu, Xiaojun; Ferguson, Richard B; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-03-24

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = ( 1 + e - 15.2829 × ( R A G D D i - 0.1944 ) ) - 1 - ( 1 + e - 11.6517 × ( R A G D D i - 1.0267 ) ) - 1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status.

  1. Evaluation of stability and validation of reference genes for RT-qPCR expression studies in rice plants under water deficit.

    PubMed

    Auler, Priscila Ariane; Benitez, Letícia Carvalho; do Amaral, Marcelo Nogueira; Vighi, Isabel Lopes; Dos Santos Rodrigues, Gabriela; da Maia, Luciano Carlos; Braga, Eugenia Jacira Bolacel

    2017-05-01

    Many studies use strategies that allow for the identification of a large number of genes expressed in response to different stress conditions to which the plant is subjected throughout its cycle. In order to obtain accurate and reliable results in gene expression studies, it is necessary to use reference genes, which must have uniform expression in the majority of cells in the organism studied. RNA isolation of leaves and expression analysis in real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. In this study, nine candidate reference genes were tested, actin 11 (ACT11), ubiquitin conjugated to E2 enzyme (UBC-E2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta tubulin (β-tubulin), eukaryotic initiation factor 4α (eIF-4α), ubiquitin 10 (UBQ10), ubiquitin 5 (UBQ5), aquaporin TIP41 (TIP41-Like) and cyclophilin, in two genotypes of rice, AN Cambará and BRS Querência, with different levels of soil moisture (20%, 10% and recovery) in the vegetative (V5) and reproductive stages (period preceding flowering). Currently, there are different softwares that perform stability analyses and define the most suitable reference genes for a particular study. In this study, we used five different methods: geNorm, BestKeeper, ΔCt method, NormFinder and RefFinder. The results indicate that UBC-E2 and UBQ5 can be used as reference genes in all samples and softwares evaluated. The genes β-tubulin and eIF-4α, traditionally used as reference genes, along with GAPDH, presented lower stability values. The gene expression of basic leucine zipper (bZIP23 and bZIP72) was used to validate the selected reference genes, demonstrating that the use of an inappropriate reference can induce erroneous results.

  2. A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa.

    PubMed

    Ficklin, Stephen P; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.

  3. A Systems-Genetics Approach and Data Mining Tool to Assist in the Discovery of Genes Underlying Complex Traits in Oryza sativa

    PubMed Central

    Ficklin, Stephen P.; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance. PMID:23874666

  4. Auxin regulated OsRGP1 and OsSuS are involved in the gravitropic bending of rice shoot bases

    NASA Astrophysics Data System (ADS)

    Hu, Liwei; Cui, Dayong; Cai, Weiming

    The gravitropic bending of rice shoot in horizontal position results from differential elongation of cells between two halves of shoot bases. In our experiment, reversibly glycosylated polypeptide (OsRGP1), sucrose synthase (OsSuS) genes which related to sugar metabolism were identified by suppressive subtractive hybridization (SSH) in gravitropism in rice shoot bases. Realtime RT-PCR were used to study the expression of two genes in detail. OsRGP1 and OsSuS were differentially induced in the abaxial (lower) side of rice shoot bases during gravitropism. The OsRGP1 and OsSuS expression were regulated by auxin. The sequence analysis of their promoters was in concurrence. TIBA treatment could inhibit the asymmetrical expression of OsRGP1 and OsSuS in gravitropism in rice shoot bases. In addition, there was more hexose in the lower side of rice shoot bases in gravitropism. Our data suggested that asymmetric redistribution of auxin following gravistimulation resulted in the different localized expression of OsRGP1 and OsSuS. It is possible that asymmetrical expression of OsSuS resulted in the asymmetrical distribution of hexose and asymmetrical expression of OsRGP1 induced the synthesis of cell wall polysaccharides in the lower half of rice shoot bases. Hexose and cell wall polysaccharides accumulation in lower side of rice shoot bases might contribute to the cell expansion, thus leading to gravitropic bending.

  5. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy.

    PubMed

    Jung, Ki-Hong; Dardick, Christopher; Bartley, Laura E; Cao, Peijian; Phetsom, Jirapa; Canlas, Patrick; Seo, Young-Su; Shultz, Michael; Ouyang, Shu; Yuan, Qiaoping; Frank, Bryan C; Ly, Eugene; Zheng, Li; Jia, Yi; Hsia, An-Ping; An, Kyungsook; Chou, Hui-Hsien; Rocke, David; Lee, Geun Cheol; Schnable, Patrick S; An, Gynheung; Buell, C Robin; Ronald, Pamela C

    2008-10-06

    Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.

  6. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis.

    PubMed

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2017-11-20

    Biosynthesis of polyhydroxyalkanoates (PHA) has been studied since the 1920s. The biosynthesis pathways have been well understood and various attempts have been made to improve the PHA biosynthesis efficiency. Recent progresses have been focused on systematic improvements on PHA biosynthesis including changing growth pattern for rapid proliferation, engineering to enlarge cell sizes for more PHA accumulation space, reprogramming the PHA synthesis pathways using optimized RBS and promoter, redirecting metabolic flux to PHA synthesis using CRISPR/Cas9 tools, and very importantly, the employment of non-traditional host such as halophiles for reduced complexity on PHA production. All of the efforts should lead to ultrahigh PHA accumulation, controllable PHA compositions and molecular weights, open and continuous PHA production with gravity separation processes, resulting in competitive PHA production cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Quantification of vitamin E and gamma-oryzanol components in rice germ and bran.

    PubMed

    Yu, Shanggong; Nehus, Zachary T; Badger, Thomas M; Fang, Nianbai

    2007-09-05

    Rice bran is a rich natural source of vitamin E and gamma-oryzanol, which have been extensively studied and reported to possess important health-promoting properties. However, commercial rice bran is a mixture of rice bran and germ, and profiles of vitamin E and gamma-oryzanol components in these two different materials are less well-studied. In the current study, vitamin E and gamma-oryzanol components in rice bran and germ were analyzed by liquid chromatography/mass spectrometry/mass spectrometry. The components were identified by electrospray ionization mass spectrometry (ESI-MS) with both positive- and negative-ion modes. Both deprotonated molecular ion [M - H](-) and protonated molecular ion [M + H](+) found as the base peaks in spectra of vitamin E components made ESI-MS a valuable analytic method in detecting vitamin E compounds, especially when they were at very low levels in samples. Ultraviolet absorption was used for quantification of vitamin E and gamma-oryzanol components. While the level of vitamin E in rice germ was 5 times greater than in rice bran, the level of gamma-oryzanol in rice germ was 5 times lower than in rice bran. Also, the major vitamin E component was alpha-tocopherol in rice germ and gamma-tocotrienol in rice bran. These data suggest that rice bran and germ have significantly different profiles of vitamin E and gamma-oryzanol components. The method enables rapid and direct on-line identification and quantification of the vitamin E and gamma-oryzanol components in rice bran and germ.

  8. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.

    PubMed

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-05-25

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.

  9. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    PubMed

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  10. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris)

    PubMed Central

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E.; Chapman, B. Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L.; Pauls, Karl P.; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might also be determined at the translational level. PMID:27066039

  11. Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis.

    PubMed

    Zhao, Hongyu; Yao, Zhenyu; Chen, Xiangbin; Wang, Xinquan; Chen, Guo-Qiang

    2017-11-01

    Phasins are unusual amphiphilic proteins that bind to microbial polyhydroxyalkanoate (PHA) granules in nature and show great potential for various applications in biotechnology and medicine. Despite their remarkable diversity, only the crystal structure of PhaP A h from Aeromonas hydrophila has been solved to date. Based on the structure of PhaP A h , homology models of PhaP A z from Azotobacter sp. FA-8 and PhaP TD from Halomonas bluephagenesis TD were successfully established, allowing rational mutagenesis to be conducted to enhance the stability and surfactant properties of these proteins. PhaP A z mutants, including PhaP A z Q38L and PhaP A z Q78L, as well as PhaP TD mutants, including PhaP TD Q38M and PhaP TD Q72M, showed better emulsification properties and improved thermostability (6-10°C higher melting temperatures) compared with their wild-type homologues under the same conditions. Importantly, the established PhaP homology-modelling approach, based on the high-resolution structure of PhaP A h , can be generalized to facilitate the study of other PhaP members. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Lymphocyte responses to influenza and tetanus toxoid in vitro following intensive exercise and carbohydrate ingestion on consecutive days.

    PubMed

    Bishop, Nicolette C; Walker, Gary J; Bowley, Lee A; Evans, Kate F; Molyneux, Karen; Wallace, Fiona A; Smith, Alice C

    2005-10-01

    The effect of carbohydrate (CHO) ingestion on antigen- (rather than mitogen-) stimulated T-cell responses to prolonged, intensive exercise may give a more realistic insight into the effect of CHO on T-cell functional capacity and subsequent infection risk. This study investigated the effect of CHO ingestion during prolonged, intensive exercise on influenza- and tetanus toxoid-stimulated T-cell cytokine mRNA expression and proliferation. Mitogen- [phytohemagglutinin (PHA)] stimulated proliferation was assessed for comparison. Responses were assessed following exercise on consecutive mornings to determine any carryover effect. Fifteen male games players performed two exercise trials in a double-blind, randomized, crossover design. Each trial comprised 90 min of intensive, intermittent running on consecutive mornings, with either CHO (6.4% wt/vol) or placebo (PLA) beverage ingestion before, during, and after each bout of exercise. Postexercise CD3(+) cell counts were higher in PLA than CHO on both days (P < 0.05). Antigen-stimulated T-cell cytokine mRNA expression was unaffected by exercise or CHO ingestion. Before exercise on day 2, T-cell proliferative responses to PHA, influenza, and tetanus toxoid were higher in CHO than PLA by 99, 80, and 58%, respectively (P < 0.01 for PHA, P < 0.05 for influenza and tetanus toxoid). At 1 h postexercise on day 2, PHA-induced proliferation was 70% higher in CHO than PLA (P < 0.05), yet there were no differences between trials for antigen-induced proliferative responses. Therefore, mitogen-induced T-cell proliferation following strenuous exercise and CHO does not necessarily reflect responses to specific antigens and, consequently, may not provide a good model for the situation in vivo.

  13. Modulation of the interface between polyester and spent coffee grounds in polysaccharide membranes: Preparation, cell proliferation, antioxidant activity and tyrosinase activity.

    PubMed

    Wu, Chin-San

    2017-09-01

    The structural, antioxidant and cytocompatibility properties of membranes prepared from polyhydroxyalkanoate (PHA) and spent coffee ground (SCG) blends (PHA/SCG) were studied. Acrylic acid-grafted PHA (PHA-g-AA) was used to enhance the desirable characteristics of these membranes, which had better tensile properties than the corresponding PHA/SCG membranes. The water resistance of the PHA-g-AA/SCG membranes was greater than that of the PHA/SCG membranes, and a cytocompatibility evaluation with mouse normal tail fibroblasts (FBs) indicated that both materials were nontoxic. Cell cycle assays of FBs on PHA/SCG and PHA-g-AA/SCG membrane samples were not affected by the DNA content related to damage. Moreover, SCG enhanced the saccharide and polyphenol contents, and antioxidant properties, of the PHA-g-AA/SCG and PHA/SCG membranes. Therefore, we analysed the effects of these compounds' membranes on melanogenesis in B16-F10 melanoma cells. The results demonstrated that PHA/SCG and PHA-g-AA/SCG membranes reduced cellular tyrosinase activities in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  15. Intercellular communication in the immune system: differential expression of connexin40 and 43, and perturbation of gap junction channel functions in peripheral blood and tonsil human lymphocyte subpopulations

    PubMed Central

    Oviedo‐orta, E; Hoy, T; Evans, W H

    2000-01-01

    The distribution and function of connexins (integral membrane proteins assembled into gap junction intercellular communication channels) were studied in human lymphocyte subpopulations. The expression of mRNA encoding connexins in peripheral blood and tonsil‐derived T, B and natural killer (NK) lymphocytes was examined. Connexin43 (Cx43) mRNA was expressed in peripheral blood and tonsil lymphocytes, but Cx40 mRNA expression was confined to tonsil‐derived T and B lymphocytes; Cx26, Cx32, Cx37 and Cx45 were not detected by reverse transcription–polymerase chain reaction (RT–PCR). Western blot analysis also demonstrated the presence of Cx40 and Cx43 proteins in T and B lymphocytes in a manner coincidental to the mRNA detection. Stimulation in vitro of T and B lymphocytes with phytohaemagglutinin (PHA) and lipopolysaccharide (LPS), respectively, increased Cx40 and Cx43 protein expression. Flow cytometric analysis, using antibodies to extracellular loop amino acid sequences of connexins, confirmed the surface expression of connexins in all lymphocyte subpopulations. Assembly of connexins into gap junctions providing direct intercellular channels linking attached lymphocytes was demonstrated by using a dye transfer technique. The exchange of dye between lymphocytes was inhibited by a connexin extracellular loop mimetic peptide and α‐glycyrrhetinic acid, two reagents that restrict intercellular communication across gap junctions. Dye coupling occurred between homologous and heterologous co‐cultures of T and B lymphocytes, and was not influenced by their stimulation with PHA and LPS. The connexin mimetic peptide caused a significant decrease in the in vitro synthesis of immunoglobulin M (IgM) by T‐ and B‐lymphocyte co‐cultured populations in the presence or absence of stimulation by PHA. The results identify connexins as important cell surface components that modulate immune processes. PMID:10792506

  16. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter

    PubMed Central

    Shao, Ji Feng; Xia, Jixing; Yamaji, Naoki; Shen, Ren Fang; Ma, Jian Feng

    2018-01-01

    Abstract Reducing cadmium (Cd) accumulation in rice grain is an important issue for human health. The aim of this study was to manipulate both expression and tissue localization of OsHMA3, a tonoplast-localized Cd transporter, in the roots by expressing it under the control of the OsHMA2 promoter, which shows high expression in different organs including roots, nodes, and shoots. In two independent transgenic lines, the expression of OsHMA3 was significantly enhanced in all organs compared with non-transgenic rice. Furthermore, OsHMA3 protein was detected in the root pericycle cells and phloem region of both the diffuse vascular bundle and the enlarged vascular bundle of the nodes. At the vegetative stage, the Cd concentration in the shoots and xylem sap of the transgenic rice was significantly decreased, but that of the whole roots and root cell sap was increased. At the reproductive stage, the concentration of Cd, but not other essential metals, in the brown rice of transgenic lines was decreased to less than one-tenth that of the non-transgenic rice. These results indicate that expression of OsHMA3 under the control of the OsHMA2 promoter can effectively reduce Cd accumulation in rice grain through sequestering more Cd into the vacuoles of various tissues. PMID:29562302

  17. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter.

    PubMed

    Shao, Ji Feng; Xia, Jixing; Yamaji, Naoki; Shen, Ren Fang; Ma, Jian Feng

    2018-04-27

    Reducing cadmium (Cd) accumulation in rice grain is an important issue for human health. The aim of this study was to manipulate both expression and tissue localization of OsHMA3, a tonoplast-localized Cd transporter, in the roots by expressing it under the control of the OsHMA2 promoter, which shows high expression in different organs including roots, nodes, and shoots. In two independent transgenic lines, the expression of OsHMA3 was significantly enhanced in all organs compared with non-transgenic rice. Furthermore, OsHMA3 protein was detected in the root pericycle cells and phloem region of both the diffuse vascular bundle and the enlarged vascular bundle of the nodes. At the vegetative stage, the Cd concentration in the shoots and xylem sap of the transgenic rice was significantly decreased, but that of the whole roots and root cell sap was increased. At the reproductive stage, the concentration of Cd, but not other essential metals, in the brown rice of transgenic lines was decreased to less than one-tenth that of the non-transgenic rice. These results indicate that expression of OsHMA3 under the control of the OsHMA2 promoter can effectively reduce Cd accumulation in rice grain through sequestering more Cd into the vacuoles of various tissues.

  18. Characterization and Functional Analyses of R-Specific Enoyl Coenzyme A Hydratases in Polyhydroxyalkanoate-Producing Ralstonia eutropha

    PubMed Central

    Kawashima, Yui; Cheng, Wen; Mifune, Jun; Orita, Izumi; Nakamura, Satoshi

    2012-01-01

    A genome survey of polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha H16 detected the presence of 16 orthologs of R-specific enoyl coenzyme A (enoyl-CoA) hydratase, among which three proteins shared high homologies with the enzyme specific to enoyl-CoAs of medium chain length encoded by phaJ4 from Pseudomonas aeruginosa (phaJ4Pa). The recombinant forms of the three proteins, termed PhaJ4aRe to PhaJ4cRe, actually showed enoyl-CoA hydratase activity with R specificity, and the catalytic efficiencies were elevated as the substrate chain length increased from C4 to C8. PhaJ4aRe and PhaJ4bRe showed >10-fold-higher catalytic efficiency than PhaJ4cRe. The functions of the new PhaJ4 proteins were investigated using previously engineered R. eutropha strains as host strains; these strains are capable of synthesizing poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from soybean oil. Deletion of phaJ4aRe from the chromosome resulted in significant decrease of 3HHx composition in the accumulated copolyester, whereas no change was observed with deletion of phaJ4bRe or phaJ4cRe, indicating that only PhaJ4aRe was one of the major enzymes supplying the (R)-3HHx-CoA monomer through β-oxidation. Introduction of phaJ4aRe or phaJ4bRe into the R. eutropha strains using a broad-host-range vector enhanced the 3HHx composition of the copolyesters, but the introduction of phaJ4cRe did not. The two genes were then inserted into the pha operon on chromosome 1 of the engineered R. eutropha by homologous recombination. These modifications enabled the biosynthesis of P(3HB-co-3HHx) composed of a larger 3HHx fraction without a negative impact on cell growth and PHA production on soybean oil, especially when phaJ4aRe or phaJ4bRe was tandemly introduced with phaJAc from Aeromonas caviae. PMID:22081565

  19. Enoyl-CoA hydratase mediates polyhydroxyalkanoate mobilization in Haloferax mediterranei

    PubMed Central

    Liu, Guiming; Cai, Shuangfeng; Hou, Jing; Zhao, Dahe; Han, Jing; Zhou, Jian; Xiang, Hua

    2016-01-01

    Although polyhydroxyalkanoate (PHA) accumulation and mobilization are one of the most general mechanisms for haloarchaea to adapt to the hypersaline environments with changeable carbon sources, the PHA mobilization pathways are still not clear for any haloarchaea. In this study, the functions of five putative (R)-specific enoyl-CoA hydratases (R-ECHs) in Haloferax mediterranei, named PhaJ1 to PhaJ5, respectively, were thoroughly investigated. Through gene deletion and complementation, we demonstrated that only certain of these ECHs had a slight contribution to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis. But significantly, PhaJ1, the only R-ECH that is associated with PHA granules, was shown to be involved in PHA mobilization in this haloarchaeon. PhaJ1 catalyzes the dehydration of (R)-3-hydroxyacyl-CoA, the common product of PHA degradation, to enoyl-CoA, the intermediate of the β-oxidation cycle, thus could link PHA mobilization to β-oxidation pathway in H. mediterranei. This linkage was further indicated from the up-regulation of the key genes of β-oxidation under the PHA mobilization condition, as well as the obvious inhibition of PHA degradation upon inhibition of the β-oxidation pathway. Interestingly, 96% of phaJ-containing haloarchaeal species possess both phaC (encoding PHA synthase) and the full set genes of β-oxidation, implying that the mobilization of carbon storage in PHA through the β-oxidation cycle would be general in haloarchaea. PMID:27052994

  20. Enoyl-CoA hydratase mediates polyhydroxyalkanoate mobilization in Haloferax mediterranei.

    PubMed

    Liu, Guiming; Cai, Shuangfeng; Hou, Jing; Zhao, Dahe; Han, Jing; Zhou, Jian; Xiang, Hua

    2016-04-07

    Although polyhydroxyalkanoate (PHA) accumulation and mobilization are one of the most general mechanisms for haloarchaea to adapt to the hypersaline environments with changeable carbon sources, the PHA mobilization pathways are still not clear for any haloarchaea. In this study, the functions of five putative (R)-specific enoyl-CoA hydratases (R-ECHs) in Haloferax mediterranei, named PhaJ1 to PhaJ5, respectively, were thoroughly investigated. Through gene deletion and complementation, we demonstrated that only certain of these ECHs had a slight contribution to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis. But significantly, PhaJ1, the only R-ECH that is associated with PHA granules, was shown to be involved in PHA mobilization in this haloarchaeon. PhaJ1 catalyzes the dehydration of (R)-3-hydroxyacyl-CoA, the common product of PHA degradation, to enoyl-CoA, the intermediate of the β-oxidation cycle, thus could link PHA mobilization to β-oxidation pathway in H. mediterranei. This linkage was further indicated from the up-regulation of the key genes of β-oxidation under the PHA mobilization condition, as well as the obvious inhibition of PHA degradation upon inhibition of the β-oxidation pathway. Interestingly, 96% of phaJ-containing haloarchaeal species possess both phaC (encoding PHA synthase) and the full set genes of β-oxidation, implying that the mobilization of carbon storage in PHA through the β-oxidation cycle would be general in haloarchaea.

  1. Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation.

    PubMed

    Xu, Jiajia; Bräutigam, Andrea; Weber, Andreas P M; Zhu, Xin-Guang

    2016-09-01

    Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5'UTR, 3'UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5'UTR, 3'UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro.

    PubMed

    Pinheiro, Marcelo Maia; Stoppa, Caroline Lais; Valduga, Claudete Justina; Okuyama, Cristina Eunice; Gorjão, Renata; Pereira, Regina Mara Silva; Diniz, Susana Nogueira

    2017-03-30

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents that are widely used in clinical practice to improve glycemic control in patients with type 2 diabetes. DPP-4 is also known as lymphocyte cell surface protein, CD26, and plays an important role in T-cell immunity. Recent studies suggest that DPP-4 inhibitors improve beta-cell function and attenuate autoimmunity in type 1 diabetic mouse models. To investigate the direct effect of DPP4 in immune response, human peripheral blood mononuclear cells (PBMC) from healthy volunteers were obtained by Ficoll gradient and cultivated in the absence (control) or presence of phytohemagglutinin (PHA), or stimulated with PHA and treated with sitagliptin. The immune modulation mechanisms analyzed were: cell proliferation, by MTT assay; cytokine quantification by ELISA or cytometric bead array (CBA), Th1/Th2/Th17 phenotyping by flow cytometric analysis and CD26 gene expression by real time PCR. The results showed that sitagliptin treatment inhibited the proliferation of PBMC-PHA stimulated cells in a dose dependent manner and decreased CD26 expression by these cells, suggesting that sitagliptin may interfere in CD26 expression, dimerization and cell signaling. Sitagliptin treatment not only inhibited IL-10 (p<0.05) and IFN-gamma (p=0.07) cytokines, but also completely abolish IL-6 expression by PBMCs (p<0.001). On the other hand, IL-4 were secreted in culture supernatants from sitagliptin treated cells. A statistically significant increase (p<0.05) in the ratio of TGF-beta/proliferation index after sitagliptin treatment (2627.97±1351.65), when comparing to untreated cells (646.28±376.94), was also demonstrated, indicating higher TGF-beta1 production by viable cells in cultures. Sitagliptin treatment induced a significantly (p<0.05) decrease in IL-17 and IFN-gamma intracellular expression compared with PHA alone. Also, the percentage of T CD4 + IL-17 + , T CD4 + IFNgamma + and T CD4 + IL-4 + cells were significantly reduced (p<0.05) by sitagliptin. Our data demonstrated an immunosuppressive effect of sitagliptin on Th1, Th17 and Th2 lymphocytes differentiation that leads to the generation of regulatory TGF-beta1 secreting cells with low CD26 gene expression that may influence the state of pancreatic beta-cells and controlling DM1 patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of L-arginine supplementation on immune responsiveness in patients with sickle cell disease.

    PubMed

    Scavella, Arnette; Leiva, Lily; Monjure, Hanh; Zea, Arnold H; Gardner, Renee V

    2010-08-01

    L-arginine (L-Arg) is deficient in sickle cell disease (SSD) during vasoocclusion. We investigated possible causal relationship between L-Arg deficiency and immune dysfunction in SSD in steady-state. Fifteen patients with SSD in steady-state and 13 controls were studied. Plasma L-Arg levels were measured using liquid chromatography. T cell subsets and CD3zeta (CD3zeta) chain expression were analyzed using flow cytometry. Lymphocyte proliferative response to phytohemagglutinin (PHA) and production of IL-6 and interferon-gamma (IFN-gamma) were evaluated with and without L-Arg. SSD patients had significantly lower L-Arg levels than controls. CD3 and CD19 cell populations were comparable for both groups, but SSD patients had above normal numbers of natural killer cells (P = 0.06). Patients and controls exhibited significantly increased lymphocyte blastogenesis to PHA after introduction of L-Arg to cultures; response of patients was significantly greater than values for control individuals. Proliferative response to candida in SSD patients was significantly lower than in controls; L-Arg supplementation did not increase this response. L-Arg had no effect on blastogenic response to PPD and candida albicans. No effect was likewise seen in production of IL-6 and IFN-gamma after addition of L-Arg. CD3zeta chain expression increased after addition of L-Arg in both groups; differences were insignificant. L-Arg levels in steady-state SSD are significantly lower than in controls. L-Arg supplementation enhanced lymphocyte blastogenesis to PHA for both controls and patients, but not in response to antigen. There were no significant differences in CD3zeta chain expression although upregulation of expression occurred after L-Arg supplementation for both groups. (c) 2010 Wiley-Liss, Inc.

  4. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    PubMed

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  5. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    PubMed Central

    Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment. PMID:27380174

  6. Molecular and Biochemical Analysis of Two Rice Flavonoid 3'-Hydroxylase to Evaluate Their Roles in Flavonoid Biosynthesis in Rice Grain.

    PubMed

    Park, Sangkyu; Choi, Min Ji; Lee, Jong Yeol; Kim, Jae Kwang; Ha, Sun-Hwa; Lim, Sun-Hyung

    2016-09-13

    Anthocyanins and proanthocyanidins, the major flavonoids in black and red rice grains, respectively, are mainly derived from 3',4'-dihydroxylated leucocyanidin. 3'-Hydroxylation of flavonoids in rice is catalyzed by flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21). We isolated cDNA clones of the two rice F3'H genes (CYP75B3 and CYP75B4) from Korean varieties of white, black, and red rice. Sequence analysis revealed allelic variants of each gene containing one or two amino acid substitutions. Heterologous expression in yeast demonstrated that CYP75B3 preferred kaempferol to other substrates, and had a low preference for dihydrokaempferol. CYP75B4 exhibited a higher preference for apigenin than for other substrates. CYP75B3 from black rice showed an approximately two-fold increase in catalytic efficiencies for naringenin and dihydrokaempferol compared to CYP75B3s from white and red rice. The F3'H activity of CYP75B3 was much higher than that of CYP75B4. Gene expression analysis showed that CYP75B3, CYP75B4, and most other flavonoid pathway genes were predominantly expressed in the developing seeds of black rice, but not in those of white and red rice, which is consistent with the pigmentation patterns of the seeds. The expression levels of CYP75B4 were relatively higher than those of CYP75B3 in the developing seeds, leaves, and roots of white rice.

  7. Mineralocorticoid Receptor Mutations and a Severe Recessive Pseudohypoaldosteronism Type 1

    PubMed Central

    Hubert, Edwige-Ludiwyne; Teissier, Raphaël; Fernandes-Rosa, Fábio L.; Fay, Michel; Rafestin-Oblin, Marie-Edith; Jeunemaitre, Xavier; Metz, Chantal; Escoubet, Brigitte

    2011-01-01

    Pseudohypoaldosteronism type 1 (PHA1) is a rare genetic disease of mineralocorticoid resistance characterized by salt wasting and failure to thrive in infancy. Here we describe the first case of a newborn with severe recessive PHA1 caused by two heterozygous mutations in NR3C2, gene coding for the mineralocorticoid receptor (MR). Independent segregation of the mutations occurred in the family, with p.Ser166X being transmitted from the affected father and p.Trp806X from the asymptomatic mother Whereas the truncated MR166X protein was degraded, MR806X was expressed both at the mRNA and protein level. Functional studies demonstrated that despite its inability to bind aldosterone, MR806X had partial ligand-independent transcriptional activity. Partial nuclear localization of MR806X in the absence of hormone was identified as a prerequisite to initiate transcription. This exceptional case broadens the spectrum of clinical phenotypes of PHA1 and demonstrates that minimal residual activity of MR is compatible with life. It also suggests that rare hypomorphic NR3C2 alleles may be more common than expected from the prevalence of detected PHA1 cases. This might prove relevant for patient's care in neonatal salt losing disorders and may affect renal salt handling and blood pressure in the general population. PMID:21903996

  8. Why is golden rice golden (yellow) instead of red?

    PubMed

    Schaub, Patrick; Al-Babili, Salim; Drake, Rachel; Beyer, Peter

    2005-05-01

    The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, zeta-carotene desaturase, carotene cis-trans-isomerase, beta-lycopene cyclase, and beta-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that beta-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, alpha/beta-lycopene cyclase, beta-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or zeta-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the beta-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed.

  9. Why Is Golden Rice Golden (Yellow) Instead of Red?1[w

    PubMed Central

    Schaub, Patrick; Al-Babili, Salim; Drake, Rachel; Beyer, Peter

    2005-01-01

    The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of β-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, ζ-carotene desaturase, carotene cis-trans-isomerase, β-lycopene cyclase, and β-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that β-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, α/β-lycopene cyclase, β-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or ζ-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the β-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed. PMID:15821145

  10. A comparison of spider communities in Bt and non-Bt rice fields.

    PubMed

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  11. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.

    PubMed

    Ding, Junzhou; Ulanov, Alexander V; Dong, Mengyi; Yang, Tewu; Nemzer, Boris V; Xiong, Shanbai; Zhao, Siming; Feng, Hao

    2018-01-01

    Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical stimulation, has been documented as a novel approach to improve the nutritional quality of plant-based food. This study was undertaken to test the use of ultrasound to enhance the nutritional value of red rice. Ultrasonication (5min, 16W/L) was applied to rice during soaking or after 66h germination. Changes of metabolites (amino acids, sugars, and organic acids) in red rice treated by ultrasonication were determined using a GC/MS plant primary metabolomics analysis platform. Differential expressed metabolites were identified through multivariate statistical analysis. Results showed that γ-aminobutyric acid (GABA) and riboflavin (vitamin B 2 ) in red rice significantly increased after germination for 72h, and then experienced a further increase after treatment by ultrasound at different stages during germination. The metabolomics analysis showed that some plant metabolites, i.e. GABA, O-phosphoethanolamine, and glucose-6-phosphate were significantly increased after the ultrasonic treatment (VIP>1.5) in comparison with the untreated germinated rice. The findings of this study showed that controlled germination with ultrasonic stress is an effective method to enhance GABA and other health-promoted components in de-hulled rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review.

    PubMed

    Suriyamongkol, Pornpa; Weselake, Randall; Narine, Suresh; Moloney, Maurice; Shah, Saleh

    2007-01-01

    The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.

  13. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE-/- mice.

    PubMed

    Perez-Ternero, Cristina; Claro, Carmen; Parrado, Juan; Herrera, Maria Dolores; Alvarez de Sotomayor, Maria

    2017-05-01

    Rice bran is a by-product of rice milling and is rich in bioactive molecules such as γ-oryzanol, phytosterols, and tocotrienols. The rice bran enzymatic extract (RBEE) previously showed vessel remodeling prevention and lipid-lowering, antioxidant, anti-inflammatory, and antiapoptotic activities. The aim of this study was to identify RBEE hypolipidemic mechanisms and to study the effects of RBEE on the progression of atherosclerosis disease and linked vascular dysfunction and liver steatosis in apolipoprotein E-knockout (ApoE-/-) mice fed low- or high-fat (LFD, HFD, respectively) and cholesterol diets. ApoE-/- mice were fed LFD (13% kcal) or HFD (42% kcal) supplemented or not supplemented with 1 or 5% RBEE (w/w) for 23 wk. Then, serum, aorta, liver, and feces were collected and flash frozen for further analysis. RBEE supplementation of HFD improved serum values by augmenting high-density lipoprotein cholesterol and preventing total cholesterol and aspartate aminotransferase increase. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity was attenuated (1 and 5% RBEE) and cholesterol excretion increased (5% RBEE). Diet supplementation with 5% RBEE reduced plaque development regardless of the diet. In HFD-fed mice, both doses of RBEE reduced lipid deposition and macrophage infiltration in the aortic sinus and downregulated intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. None of these effects was observed in mice fed LFD. Liver steatosis was reduced by RBEE supplementation of LFD (1% RBEE) and HFD (1 and 5% RBEE) and nuclear peroxisome proliferator-activated receptor-α expression upregulated in the HDF 5% RBEE group. Regular consumption of RBEE-supplemented HFD reduced plaque development and liver steatosis by decreasing inflammation and hyperlipidemia through an HMG-CoA reductase activity and lipid excretion-related mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21.

    PubMed

    Gao, Lifen; Cao, Yinghao; Xia, Zhihui; Jiang, Guanghuai; Liu, Guozhen; Zhang, Weixiong; Zhai, Wenxue

    2013-10-29

    The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study.

  15. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

    PubMed Central

    2013-01-01

    Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. Conclusions These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study. PMID:24165682

  16. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells.

    PubMed Central

    Gao, W Y; Shirasaka, T; Johns, D G; Broder, S; Mitsuya, H

    1993-01-01

    The antiviral activity of azidothymidine (AZT), dideoxycytidine (ddC), and dideoxyinosine (ddI) against HIV-1 was comparatively evaluated in PHA-stimulated PBM. The mean drug concentration which yielded 50% p24 Gag negative cultures were substantially different: 0.06, 0.2, and 6 microM for AZT, ddC, and ddI, respectively. We found that AZT was preferentially phosphorylated to its triphosphate (TP) form in PHA-PBM rather than unstimulated, resting PBM (R-PBM), producing 10- to 17-fold higher ratios of AZTTP/dTTP in PHA-PBM than in R-PBM. The phosphorylation of ddC and ddI to their TP forms was, however, much less efficient in PHA-PBM, resulting in approximately 5-fold and approximately 15-fold lower ratios of ddCTP/dCTP and ddATP/dATP, respectively, in PHA-PBM than in R-PBM. The comparative order of PHA-induced increase in cellular enzyme activities examined was: thymidine kinase > uridine kinase > deoxycytidine kinase > adenosine kinase > 5'-nucleotidase. We conclude that AZT, ddC, and ddI exert disproportionate antiviral effects depending on the activation state of the target cells, i.e., ddI and ddC exert antiviral activity more favorably in resting cells than in activated cells, while AZT preferentially protects activated cells against HIV infection. Considering that HIV-1 proviral DNA synthesis in resting lymphocytes is reportedly initiated at levels comparable with those of activated lymphocytes, the current data should have practical relevance in the design of anti-HIV chemotherapy, particularly combination chemotherapy. PMID:8387546

  17. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests

    PubMed Central

    Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao

    2008-01-01

    Background Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which ~21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Results Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. Conclusion In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice lines appear promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding. PMID:18854007

  18. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests.

    PubMed

    Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao

    2008-10-14

    Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which approximately 21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice lines appear promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding.

  19. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn

    2017-01-01

    ABSTRACT Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system. PMID:28916558

  20. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation.

    PubMed

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung

    2017-11-15

    Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice ( Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO 3 , NH 4 NO 3 , or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean ( Vigna radiata ) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system. Copyright © 2017 American Society for Microbiology.

  1. Label-Free Quantitative Proteomic Analysis of Chitosan Oligosaccharide-Treated Rice Infected with Southern Rice Black-Streaked Dwarf Virus.

    PubMed

    Yang, Anming; Yu, Lu; Chen, Zhuo; Zhang, Shanxue; Shi, Jing; Zhao, Xiaozhen; Yang, Yuanyou; Hu, Deyu; Song, Baoan

    2017-05-18

    Southern rice black-streaked dwarf virus (SRBSDV) has spread from thesouth of China to the north of Vietnam in the past few years and severelyinfluenced rice production. Its long incubation period and early symptoms are not evident; thus, controlling it is difficult. Chitosan oligosaccharide (COS) is a green plant immunomodulator. Early studies showed that preventing and controlling SRBSDV have a certain effect and reduce disease infection rate, but its underlying controlling and preventing mechanism is unclear. In this study, label-free proteomics was used to analyze differentially expressed proteins in rice after COS treatment. The results showed that COS can up-regulate the plant defense-related proteins and down-regulate the protein expression levels of SRBSDV. Meanwhile, quantitative real-time PCR test results showed that COS can improve defense gene expression in rice. Moreover, COS can enhance the defense enzymatic activities of peroxidase, superoxide dismutase and catalase through mitogen-activated protein kinase signaling cascade pathway, and enhance the rice disease resistance.

  2. Identification of heavy-ion radiation-induced microRNAs in rice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liang, Shujian; Hang, Xiaoming; Sun, Yeqing

    As an excellent model organism for studying the effects of environmental stress, rice was used to assess biological effect of the space radiation environment. Rice abnormal development or growth was observed frequently after seeds space flight. MicroRNAs (miRNAs) are a family of small non-coding regulatory RNAs, which have significant roles in regulating development and stress responses in plant. To identify whether the miRNAs were involved in biological effects of heavy-ion radiation, the germinated seeds of rice were exposed to 20 Gy dose of 12 C heavy-ion radiation which could induce rice development retarded. The microarray was used to monitor rice (Oryza sativa) miRNAs expression profiles under radiation stress. Members of miR164 family and miR156a-j were found up-regulated significantly, and confirmed by relative quantifi-cation real-time PCR. We found that the expression of the miR156 and miR164 increased and targets genes expression decrease was closely bound up with the irradiation rice phenotypes changes.

  3. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains.

    PubMed

    Boonyaves, Kulaporn; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-02-01

    Rice is a staple food for over half of the world's population, but it contains only low amounts of bioavailable micronutrients for human nutrition. Consequently, micronutrient deficiency is a widespread health problem among people who depend primarily on rice as their staple food. Iron deficiency anemia is one of the most serious forms of malnutrition. Biofortification of rice grains for increased iron content is an effective strategy to reduce iron deficiency. Unlike other grass species, rice takes up iron as Fe(II) via the IRON REGULATED TRANSPORTER (IRT) in addition to Fe(III)-phytosiderophore chelates. We expressed Arabidopsis IRT1 (AtIRT1) under control of the Medicago sativa EARLY NODULIN 12B promoter in our previously developed high-iron NFP rice lines expressing NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN. Transgenic rice lines expressing AtIRT1 alone had significant increases in iron and combined with NAS and FERRITIN increased iron to 9.6 µg/g DW in the polished grains that is 2.2-fold higher as compared to NFP lines. The grains of AtIRT1 lines also accumulated more copper and zinc but not manganese. Our results demonstrate that the concerted expression of AtIRT1, AtNAS1 and PvFERRITIN synergistically increases iron in both polished and unpolished rice grains. AtIRT1 is therefore a valuable transporter for iron biofortification programs when used in combination with other genes encoding iron transporters and/or storage proteins.

  5. Effects of macrocyclic trichothecene mycotoxins on the murine immune system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, B.J.

    1988-01-01

    The macrocyclic trichothecenes are a unique group of toxins which have some antileukemic properties. In the first study, verrucarin A and roridin A were examined. Both mycotoxins were administered intraperitoneally at an equitoxic dose of 0.35 mg/kg to CD-1 mice. Lymphocyte proliferation was studied after animals were dosed with verrucarin A. After day 2, no differences in {sup 3}H-thymidine incorporation were observed using concanavalin A (Con A), phytohemagglutinin (PHA), pokeweed mitogen (PWM), or lipopolysaccharide (LPS). On day 4, DNA synthesis induced by Con A, PHA, and PWM increased significantly. On day 7, PHA stimulation increased above controls while Con A,more » PWM, and LPS responses were not significantly different. In contrast, roridin A decreased PHA stimulation only on day 7. In the second study the mycotoxins roritoxin B, myrotoxin B, roridin A, verrucarin A, 16-hydroxyverrucarin A, verrucarin J, baccharinoid B12, roridin D, roridin E, baccharinoid B4, and baccharinoid B5 were investigated. In the third study lymphocytes were cultured with each of the mycotoxins for 48 hr to assess their lethality.« less

  6. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes.

    PubMed

    Kumar, Prasun; Ray, Subhasree; Kalia, Vipin C

    2016-01-01

    Production of polyhydroxyalkanoate (PHA) co-polymers by Bacillus spp. was studied by feeding defined volatile fatty acids (VFAs) obtained through controlled hydrolysis of various wastes. Eleven mixed hydrolytic cultures (MHCs) each containing 6 strains could generate VFA from slurries of (2% total solids): pea-shells (PS), potato peels (PP), apple pomace (AP) and onion peels (OP). PS hydrolysates (obtained with MHC2 and MHC5) inoculated with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45 produced co-polymers of PHA at the rate of 15-60mg/L with a 3HV content of 1%w/w. An enhancement in PHA yield of 3.66-fold, i.e. 205-550mg/L with 3HV content up to 7.5%(w/w) was observed upon addition of OP hydrolysate and 1% glucose (w/v) to PS hydrolysates. This is the first demonstration, where PHA co-polymer composition, under non-axenic conditions, could be controlled by customizing VFA profile of the hydrolysate by the addition of different biowastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Production, process optimization and molecular characterization of polyhydroxyalkanoate (PHA) by CO2 sequestering B. cereus SS105.

    PubMed

    Maheshwari, Neha; Kumar, Madan; Thakur, Indu Shekhar; Srivastava, Shaili

    2018-04-01

    Carbon dioxide sequestering bacterial strains were previously isolated from free air CO 2 enriched (FACE) soil. In the present study, these strains were screened for PHA accumulation and Bacillus cereus SS105 was found to be the most prominent PHA accumulating strain on sodium bicarbonate and molasses as carbon source. This strain was further characterized by Spectrofluorometric method and Confocal microscopy after staining with Nile red. PHA granules in inclusion bodies were visualized by Transmission Electron Microscopy. The PHA and its monomer composition were characterized by GC-MS followed by FTIR and NMR. The genetic basis of PHA production was confirmed by the amplification, cloning and analysis of PHA biosynthesis genes phaR, phaB and phaC from B. cereus with the degenerate primers. The PHA production was further optimized by Response Surface Methodology and the percent increase observed after optimization was 55.16% (w/v). Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility.

    PubMed

    Wu, Chin-San; Liao, Hsin-Tzu

    2017-01-01

    The structural, mechanical, antioxidant, and cytocompatibility properties of membranes prepared from the polyhydroxyalkanoate (PHA) and arrowroot (Maranta arundinacea) starch powder (ASP) blend (PHA/ASP) were studied. The acrylic acid-grafted PHA (PHA-g-AA) and the coupling agent treated ASP (TASP) were used to enhance the desired characteristics of these membranes. The PHA-g-AA/TASP membranes had better mechanical properties than the PHA/ASP membrane. This effect was attributed to greater compatibility between the grafted PHA and TASP. The water resistance of the PHA-g-AA/TASP membranes was greater than that of the PHA/ASP membranes, and a cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. Moreover, both ASP and TASP enhanced the polyphenol content and antioxidant properties of the membranes. PHA-g-AA/TASP and PHA/ASP membranes had better antioxidant activity than the control group. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cross-Layer Design for Space-Time coded MIMO Systems over Rice Fading Channel

    NASA Astrophysics Data System (ADS)

    Yu, Xiangbin; Zhou, Tingting; Liu, Xiaoshuai; Yin, Xin

    A cross-layer design (CLD) scheme for space-time coded MIMO systems over Rice fading channel is presented by combining adaptive modulation and automatic repeat request, and the corresponding system performance is investigated well. The fading gain switching thresholds subject to a target packet error rate (PER) and fixed power constraint are derived. According to these results, and using the generalized Marcum Q-function, the calculation formulae of the average spectrum efficiency (SE) and PER of the system with CLD are derived. As a result, closed-form expressions for average SE and PER are obtained. These expressions include some existing expressions in Rayleigh channel as special cases. With these expressions, the system performance in Rice fading channel is evaluated effectively. Numerical results verify the validity of the theoretical analysis. The results show that the system performance in Rice channel is effectively improved as Rice factor increases, and outperforms that in Rayleigh channel.

  10. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater.

    PubMed

    Foong, Choon Pin; Lau, Nyok-Sean; Deguchi, Shigeru; Toyofuku, Takashi; Taylor, Todd D; Sudesh, Kumar; Matsui, Minami

    2014-12-24

    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHB-4 (PHB-negative mutant). A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.

  11. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.

    PubMed

    Chen, Guo-Qiang

    2009-08-01

    Biopolyesters polyhydroxyalkanoates (PHA) produced by many bacteria have been investigated by microbiologists, molecular biologists, biochemists, chemical engineers, chemists, polymer experts and medical researchers. PHA applications as bioplastics, fine chemicals, implant biomaterials, medicines and biofuels have been developed and are covered in this critical review. Companies have been established or involved in PHA related R&D as well as large scale production. Recently, bacterial PHA synthesis has been found to be useful for improving robustness of industrial microorganisms and regulating bacterial metabolism, leading to yield improvement on some fermentation products. In addition, amphiphilic proteins related to PHA synthesis including PhaP, PhaZ or PhaC have been found to be useful for achieving protein purification and even specific drug targeting. It has become clear that PHA and its related technologies are forming an industrial value chain ranging from fermentation, materials, energy to medical fields (142 references).

  12. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.

    PubMed

    Silva, Fernando; Campanari, Sabrina; Matteo, Stefania; Valentino, Francesco; Majone, Mauro; Villano, Marianna

    2017-07-25

    A sequencing batch reactor (SBR) is typically used for selecting mixed microbial cultures (MMC) for polyhydroxyalkanoate (PHA) production. Since many waste streams suitable as process feedstock for PHA production are nitrogen-deficient, a nutrient supply in the SBR is typically required to allow for efficient microbial growth. The scope of this study was to devise a nitrogen feeding strategy which allows controlling the nitrogen levels during the feast and famine regime of a lab-scale SBR, thereby selecting for PHA-storing microorganisms. At the beginning of the cycle the reactor was fed with a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5gCODL -1 d -1 (i.e. 260CmmolL -1 d -1 ), whereas nitrogen (in the form of ammonium sulphate) was added either simultaneously to the carbon feed (coupled feeding strategy) or after the end of the feast phase (uncoupled feeding strategy). As a main result, PHA production was more than doubled (up to about 1300±64mgCODL -1 ) when carbon and nitrogen were separately fed and the higher PHA production also corresponded to an 82% increase in the polymer HV content (up to 20±1%, wtwt -1 ). Three SBR runs were performed with the uncoupled carbon and nitrogen feeding at different carbon to nitrogen (C/N) ratios (of 14.3, 17.9, and 22.3CmolNmol -1 , respectively) which were varied by progressively reducing the concentration of the nitrogen feeding. In spite of a comparable PHA storage yield at 14.3 and 17.9CmolNmol -1 (0.41±0.05 gCOD PHA gCOD VFA -1 and 0.38±0.05 gCOD PHA gCOD VFA -1 , respectively), the storage response of the selected MMC significantly decreased when the C/N ratio was set at the highest investigated value. Notably, an increase in this parameter also resulted in a change in the HV content in the polymer regardless the composition of the organic acids solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    PubMed

    Hu, Hongtao; Rashotte, Aaron M; Singh, Narendra K; Weaver, David B; Goertzen, Leslie R; Singh, Shree R; Locy, Robert D

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a second round of both cis- and trans-cleavage of additional siRNAs, leading to the formation of complex sRNA regulatory networks mediating posttranscriptional gene silencing. Results from this study extended our knowledge on G. arboreum sRNAs and their biological importance, which would facilitate future studies on regulatory mechanism of tissue development in cotton and other plant species.

  14. Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis

    DOE PAGES

    Oyserman, Ben O.; Noguera, Daniel R.; del Rio, Tijana Glavina; ...

    2015-11-10

    Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobicmore » acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified ~35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. As a result, this analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms.« less

  15. Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyserman, Ben O.; Noguera, Daniel R.; del Rio, Tijana Glavina

    Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobicmore » acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified ~35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. As a result, this analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms.« less

  16. Identification of Rice Koji Extract Components that Increase β-Glucocerebrosidase Levels in Human Epidermal Keratinocytes.

    PubMed

    Maeda, Kazuhisa; Ogino, Yuuka; Nakamura, Ayano; Nakata, Keiji; Kitagawa, Manabu; Ito, Seiki

    2018-06-18

    Rice miso contains many ingredients derived from rice koji and has been a valuable source of nutrition since ancient times. We found that the consumption of rice miso led to improvements in the moisture content of cheek stratum corneum, skin viscoelasticity, and skin texture. Further, rice miso extract was found to increase the mRNA expression and activity of β-glucocerebrosidase (β-GCase), an enzyme involved in ceramide synthesis in the stratum corneum, in cultures. In this study, we identified the lipid-derived components of rice koji that increase the β-GCase activity in cultured human epidermal keratinocytes. The methanol fraction of rice koji extract induced an increase in the mRNA expression and activity of β-GCase in keratinocytes. The active fraction of rice koji was found to contain phosphatidic acid (PA) and lysophosphatidic acid (LPA). The total PA concentration in rice koji was 973.9 ng/mg dry weight, which was 17.5 times higher than that in steamed rice. Among the molecular species, PA_18:2/18:2 was the most frequently found. The total LPA concentration in rice koji was 29.6 ng/mg dry weight, and 2-LPA_18:2 was the most frequently found LPA. Since PA and LPA increase the mRNA expression and activity of β-GCase in keratinocytes, they are thought to be the active ingredients in rice koji that increase the β-GCase levels in human epidermal keratinocytes.

  17. Fructose-Bisphophate Aldolase Exhibits Functional Roles between Carbon Metabolism and the hrp System in Rice Pathogen Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Li, Yu-rong; Cui, Yi-ping; Ji, Zhi-yuan; Cai, Lu-lu; Zou, Hua-song; Hutchins, William C.; Yang, Ching-hong; Chen, Gong-you

    2012-01-01

    Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator. PMID:22384086

  18. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae.

    PubMed

    Wang, Zhaoyun; Xia, Yeqiang; Lin, Siyuan; Wang, Yanru; Guo, Baohuan; Song, Xiaoning; Ding, Shaochen; Zheng, Liyu; Feng, Ruiying; Chen, Shulin; Bao, Yalin; Sheng, Cong; Zhang, Xin; Wu, Jianguo; Niu, Dongdong; Jin, Hailing; Zhao, Hongwei

    2018-05-18

    Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more ROS accumulation and callose deposition, and up-regulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Genome-Wide Identification and Analysis of Biotic and Abiotic Stress Regulation of C4 Photosynthetic Pathway Genes in Rice.

    PubMed

    Muthusamy, Senthilkumar K; Lenka, Sangram K; Katiyar, Amit; Chinnusamy, Viswanathan; Singh, Ashok K; Bansal, Kailash C

    2018-06-19

    Photosynthetic fixation of CO 2 is more efficient in C 4 than in C 3 plants. Rice is a C 3 plant and a potential target for genetic engineering of the C 4 pathway. It is known that genes encoding C 4 enzymes are present in C 3 plants. However, no systematic analysis has been conducted to determine if these C 4 gene family members are expressed in diverse rice genotypes. In this study, we identified 15 genes belonging to the five C 4 gene families in rice genome through BLAST search using known maize C 4 photosynthetic pathway genes. Phylogenetic relationship of rice C 4 photosynthetic pathway genes and their isoforms with other grass genomes (Brachypodium, maize, Sorghum and Setaria), showed that these genes were highly conserved across grass genomes. Spatiotemporal, hormone, and abiotic stress specific expression pattern of the identified genes revealed constitutive as well as inductive responses of the C 4 photosynthetic pathway in different tissues and developmental stages of rice. Expression levels of C 4 specific gene family members in flag leaf during tillering stage were quantitatively analyzed in five rice genotypes covering three species, viz. Oryza sativa, ssp. japonica (cv. Nipponbare), Oryza sativa, ssp. indica (cv IR64, Swarna), and two wild species Oryza barthii and Oryza australiensis. The results showed that all the identified genes expressed in rice and exhibited differential expression pattern during different growth stages, and in response to biotic and abiotic stress conditions and hormone treatments. Our study concludes that C 4 photosynthetic pathway genes present in rice play a crucial role in stress regulation and might act as targets for C 4 pathway engineering via CRISPR-mediated breeding.

  20. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  2. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules.

    PubMed Central

    Pieper-Fürst, U; Madkour, M H; Mayer, F; Steinbüchel, A

    1995-01-01

    The function of the polyhydroxyalkanoic acid (PHA) granule-associated GA14 protein of Rhodococcus ruber was investigated in Escherichia coli XL1-Blue, which coexpressed this protein with the polyhydroxybutyric acid (PHB) biosynthesis operon of Alcaligenes eutrophus. The GA14 protein had no influence on the biosynthesis rate of PHB in E. coli XL1-Blue(pSKCO7), but this recombinant E. coli strain formed smaller PHB granules than were formed by an E. coli strain that expressed only the PHB operon. Immunoelectron microscopy with GA14-specific antibodies demonstrated the binding of GA14 protein to these mini granules. In a previous study, two hydrophobic domains close to the C terminus of the GA14 protein were analyzed, and a working hypothesis that suggested an anchoring of the GA14 protein in the phospholipid monolayer surrounding the PHA granule core by these hydrophobic domains was developed (U. Pieper-Fürst, M. H. Madkour, F. Mayer, and A. Steinbüchel, J. Bacteriol. 176:4328-4337, 1994). This hypothesis was confirmed by the construction of C-terminally truncated variants of the GA14 protein lacking the second or both hydrophobic domains and by the demonstration of their inability to bind to PHB granules. Further confirmation of the hypothesis was obtained by the construction of a fusion protein composed of the acetaldehyde dehydrogenase II of A. eutrophus and the C terminus of the GA14 protein containing both hydrophobic domains and by its affinity to native and artificial PHB granules. PMID:7730285

  3. Physiological and molecular characterization of Si uptake in wild rice species.

    PubMed

    Mitani-Ueno, Namiki; Ogai, Hisao; Yamaji, Naoki; Ma, Jian Feng

    2014-07-01

    Cultivated rice (Oryza sativa) accumulates high concentration of silicon (Si), which is required for its high and sustainable production. High Si accumulation in cultivated rice is achieved by a high expression of both influx (Lsi1) and efflux (Lsi2) Si transporters in roots. Herein, we physiologically investigated Si uptake, isolated and functionally characterized Si transporters in six wild rice species with different genome types. Si uptake by the roots was lower in Oryza rufipogon, Oryza barthii (AA genome), Oryza australiensis (EE genome) and Oryza punctata (BB genome), but similar in Oryza glumaepatula and Oryza meridionalis (AA genome) compared with the cultivated rice (cv. Nipponbare). However, all wild rice species and the cultivated rice showed similar concentration of Si in the shoots when grown in a field. All species with AA genome showed the same amino acid sequence of both Lsi1 and Lsi2 as O. sativa, whereas species with EE and BB genome showed several nucleotide differences in both Lsi1 and Lsi2. However, proteins encoded by these genes also showed transport activity for Si in Xenopus oocyte. The mRNA expression of Lsi1 in all wild rice species was lower than that in the cultivated rice, whereas the expression of Lsi2 was lower in O. rufipogon and O. barthii but similar in other species. Similar cellular localization of Lsi1 and Lsi2 was observed in all wild rice as the cultivated rice. These results indicate that superior Si uptake, the important trait for rice growth, is basically conserved in wild and cultivated rice species. © 2013 Scandinavian Plant Physiology Society.

  4. Transcriptional changes of rice in response to rice black-streaked dwarf virus.

    PubMed

    Ahmed, Mohamed M S; Ji, Wen; Wang, Muyue; Bian, Shiquan; Xu, Meng; Wang, Weiyun; Zhang, Jiangxiang; Xu, Zhihao; Yu, Meimei; Liu, Qiaoquan; Zhang, Changquan; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-09-10

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the understanding of the regulatory mechanisms involved in rice-RBSDV interaction and the biological basis of rice black-streaked dwarf disease development in rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cry1Ab-expressing rice did not influence expression of fecundity-related genes in the wolf spider Pardosa pseudoannulata.

    PubMed

    Wang, Juan; Peng, Yuan-De; He, Chao; Wei, Bao-Yang; Liang, Yun-Shan; Yang, Hui-Lin; Wang, Zhi; Stanley, David; Song, Qi-Sheng

    2016-10-30

    The impact of Bacillus thuringiensis (Bt) toxin proteins on non-target predatory arthropods is not well understood at the cellular and molecular levels. Here, we investigated the potential effects of Cry1Ab expressing rice on fecundity of the wolf spider, Pardosa pseudoannulata, and some of the underlying molecular mechanisms. The results indicated that brown planthoppers (BPHs) reared on Cry1Ab-expressing rice accumulated the Cry toxin and that reproductive parameters (pre-oviposition period, post-oviposition stage, number of eggs, and egg hatching rate) of the spiders that consumed BPHs reared on Bt rice were not different from those that consumed BPHs reared on the non-Bt control rice. The accumulated Cry1Ab did not influence several vitellin (Vt) parameters, including stored energy and amino acid composition, during one generation. We considered the possibility that the Cry toxins exert their influence on beneficial predators via more subtle effects detectable at the molecular level in terms of gene expression. This led us to transcriptome analysis to detect differentially expressed genes in the ovaries of spiders exposed to dietary Cry1Ab and their counterpart control spiders. Eight genes, associated with vitellogenesis, vitellogenin receptor activity, and vitellin membrane formation were not differentially expressed between ovaries from the treated and control spiders, confirmed by qPCR analysis. We infer that dietary Cry1Ab expressing rice does not influence fecundity, nor expression levels of Vt-associated genes in P. pseudoannulata. Copyright © 2016. Published by Elsevier B.V.

  6. Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification

    PubMed Central

    Kulkarni, Kalyani S.; Madhu Babu, P.; Sanjeeva Rao, D.; Surekha, K.; Ravindra Babu, V

    2018-01-01

    Polished rice is poor source of micronutrients, however wide genotypic variability exists for zinc uptake and remobilization and zinc content in brown and polished grains in rice. Two landraces (Chittimutyalu and Kala Jeera Joha) and one popular improved variety (BPT 5204) were grown under zinc sufficient soil and their analyses showed high zinc in straw of improved variety, but high zinc in polished rice in landraces suggesting better translocation ability of zinc into the grain in landraces. Transcriptome analyses of the panicle tissue showed 41182 novel transcripts across three samples. Out of 1011 differentially expressed exclusive transcripts by two landraces, 311 were up regulated and 534 were down regulated. Phosphate transporter-exporter (PHO), proton-coupled peptide transporters (POT) and vacuolar iron transporter (VIT) showed enhanced and significant differential expression in landraces. Out of 24 genes subjected to quantitative real time analyses for confirmation, eight genes showed significant differential expression in landraces. Through mapping, six rice microsatellite markers spanning the genomic regions of six differentially expressed genes were validated for their association with zinc in brown and polished rice using recombinant inbred lines (RIL) of BPT 5204/Chittimutyalu. Thus, this study reports repertoire of genes associated with high zinc in polished rice and a proof concept for deployment of transcriptome information for validation in mapping population and its use in marker assisted selection for biofortification of rice with zinc. PMID:29394277

  7. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR.

    PubMed

    Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong

    2015-10-24

    Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.

  8. Transporter genes identified in landraces associated with high zinc in polished rice through panicle transcriptome for biofortification.

    PubMed

    Neeraja, C N; Kulkarni, Kalyani S; Madhu Babu, P; Sanjeeva Rao, D; Surekha, K; Ravindra Babu, V

    2018-01-01

    Polished rice is poor source of micronutrients, however wide genotypic variability exists for zinc uptake and remobilization and zinc content in brown and polished grains in rice. Two landraces (Chittimutyalu and Kala Jeera Joha) and one popular improved variety (BPT 5204) were grown under zinc sufficient soil and their analyses showed high zinc in straw of improved variety, but high zinc in polished rice in landraces suggesting better translocation ability of zinc into the grain in landraces. Transcriptome analyses of the panicle tissue showed 41182 novel transcripts across three samples. Out of 1011 differentially expressed exclusive transcripts by two landraces, 311 were up regulated and 534 were down regulated. Phosphate transporter-exporter (PHO), proton-coupled peptide transporters (POT) and vacuolar iron transporter (VIT) showed enhanced and significant differential expression in landraces. Out of 24 genes subjected to quantitative real time analyses for confirmation, eight genes showed significant differential expression in landraces. Through mapping, six rice microsatellite markers spanning the genomic regions of six differentially expressed genes were validated for their association with zinc in brown and polished rice using recombinant inbred lines (RIL) of BPT 5204/Chittimutyalu. Thus, this study reports repertoire of genes associated with high zinc in polished rice and a proof concept for deployment of transcriptome information for validation in mapping population and its use in marker assisted selection for biofortification of rice with zinc.

  9. Phase Unwrapping in the Presence of Strong Turbulence

    DTIC Science & Technology

    2010-03-01

    r a t i o n 49 h2=hh( IIndex ) ; 50 hhh =[(h2−de l ta4 ) (h2−de l ta3 ) h2 ( h2+de l ta3 ) ( h2+de l ta4 ) ] ; 51 121 52 f o r index=1:5 53 pha s e sh...i f t= hhh ( index ) ; 54 NonLS phase2 ( : , : , index ) = wrap wave ( w phase /(2∗ pi )−LS phase−pha s e sh i f t ) ; % wrapped waves 55 [ iwc l2...Index ] = min ( iwc l2 ) ; 60 UnwrappedPhase=LS phase+NonLS phase2 ( : , : , I Index ) ; 61 62 h= hhh ( IIndex ) ; % Get phase s h i f t from lowest

  10. Isolation and characterization of naturally occurring subclasses of human peripheral blood T cells with regulatory functions.

    PubMed

    Strelkauskas, A J; Schauf, V; Wilson, B S; Chess, L; Schlossman, S F

    1978-04-01

    By utilizing naturally occurring autoimmune antibodies from patients with juvenile rheumatoid arthritis, we have isolated and functionally characterized two unique subpopulations of T cells. JRA+ T cells, i.e., those identified by sera from these patients, react poorly in response to allogeneic cells, respond to Con A but not PHA, and do not help in the synthesis and secretion of Ig by B cells. In contrast, JRA- T cells, i.e., those not identified by sera from these patients, respond very well to allogeneic cells, proliferate well in response to PHA but not Con A, and more interestingly, can greatly enhance the secretion of Ig by B cells.

  11. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    NASA Astrophysics Data System (ADS)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation in association with rice roots.

  12. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  13. The Caenorhabditis elegans Homeobox Gene ceh-19 Is Required for MC Motorneuron Function

    PubMed Central

    Feng, Huiyun; Hope, Ian A

    2013-01-01

    Simplicity has made C. elegans pharyngeal development a particularly well-studied subject. Nevertheless, here we add the previously uncharacterized homeobox gene F20D12.6/ceh-19 to the set of transcription factor genes involved. GFP reporter assays revealed that ceh-19 is expressed in three pairs of neurons, the pharyngeal pace-maker neurons MC, the amphid neurons ADF and the phasmid neurons PHA. ceh-19(tm452) mutants are viable and fertile, but grow slightly slower, produce less progeny over a prolonged period, and live longer than the wild type. These phenotypes are likely due to the moderately reduced pharyngeal pumping speed arising from the impairment of MC activity. MC neurons are still born in the ceh-19 mutants but display various morphological defects. ceh-19 expression in MC is completely lost in progeny from animals subject to RNAi for pha-4, which encodes an organ-specifying forkhead transcription factor. CEH-19 is required for the activation in MCs of the excitatory FMRFamide-like neuropeptide-encoding gene flp-2. A regulatory pathway from pha-4 through ceh-19 to flp-2 is thereby defined. The resilience of MC identity in the absence of CEH-19 may reflect the buffering qualities of transcription factor regulatory networks. genesis 51:163–178, 2013. © 2013 Wiley Periodicals, Inc. PMID:23315936

  14. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico.

    PubMed

    Martínez-Gutiérrez, Carolina A; Latisnere-Barragán, Hever; García-Maldonado, José Q; López-Cortés, Alejandro

    2018-01-01

    Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs) in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs), which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida , suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.

  15. Organophosphorus pesticide residues in milled rice (Oryza sativa) on the Chinese market and dietary risk assessment.

    PubMed

    Chen, Chen; Li, Yun; Chen, Mingxue; Chen, Zhijun; Qian, Yongzhong

    2009-03-01

    The present study investigates the occurrence of acetylcholinesterase (AChE)-inhibiting organophosphorus (OP) pesticide residues in milled rice samples obtained form local markets in China during the period 2004-2006 and estimates their cumulative exposure. Concentrations of OP pesticides were determined by gas chromatography with flame photometric detection (GC-FPD). The results showed that 9.3% of the samples contained detectable residues of at least one of the seven target OP pesticides (chlorpyrifos, dichlorvos, omethoate, methamidophos, parathion-methyl, parathion and triazophos) mainly used for agriculture in China, with concentrations ranging 0.011-1.756 mg kg(-1). Rice consumption data was obtained from an individual food consumption survey. Relative potency factors (RPFs) for each pesticide were calculated with methamidophos as the index compound (IC), using 1- or 2-year chronic non-observed adverse effect levels (NOAEL) for AChE inhibition, mostly in rat brain, obtained from international evaluations of pesticides. Exposure to AChE-inhibiting pesticides for the population above 7 years old at P99.9 represented 52-94.5% of the acceptable daily intake (ADI) expressed as methamidophos. Estimated exposure for children aged 2-4 and 4-7 years at P99.9 were 119 and 104.3% of the ADI level, respectively. This study suggests that a yearly monitoring program for OP pesticide residues and strict implementation of the national safety standard for milled rice is necessary.

  16. Multiple Rice MicroRNAs Are Involved in Immunity against the Blast Fungus Magnaporthe oryzae1[C][W][OPEN

    PubMed Central

    Li, Yan; Lu, Yuan-Gen; Shi, Yi; Wu, Liang; Xu, Yong-Ju; Huang, Fu; Guo, Xiao-Yi; Zhang, Yong; Fan, Jing; Zhao, Ji-Qun; Zhang, Hong-Yu; Xu, Pei-Zhou; Zhou, Jian-Min; Wu, Xian-Jun; Wang, Ping-Rong; Wang, Wen-Ming

    2014-01-01

    MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease. PMID:24335508

  17. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    PubMed

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  18. Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates.

    PubMed

    Ren, Yilin; Meng, Dechuan; Wu, Linping; Chen, Jinchun; Wu, Qiong; Chen, Guo-Qiang

    2017-03-01

    Polylactide (PLA) is a bio-based plastic commonly synthesized by chemical catalytic reaction using lactic acid (LA) as a substrate. Here, novel LA-containing terpolyesters, namely, P[LA-co-3-hydroxybutyrate (3HB)-co-3-hydroxypropionate (3HP)], short as PLBP, were successfully synthesized for the first time by a recombinant Escherichia coli harbouring polyhydroxyalkanoate (PHA) synthase from Pseudomonas stutzeri (PhaC1 Ps ) with 4-point mutations at E130D, S325T, S477G and Q481K, and 3-hydroxypropionyl-CoA (3HP-CoA) synthesis pathway from glycerol, 3-hydroxybutyryl-CoA (3HB-CoA) as well as lactyl-CoA (LA-CoA) pathways from glucose. Combining these pathways with the PHA synthase mutant phaC1 Ps (E130D S325T S477G Q481K), the random terpolyester P(LA-co-3HB-co-3HP), or PLBP, was structurally confirmed by nuclear magnetic resonance to consist of 2 mol% LA, 90 mol% 3HB, and 8 mol% 3HP respectively. Remarkably, the PLBP terpolyester was produced from low-cost sustainable glycerol and glucose. Monomer ratios of PLBP could be regulated by ratios of glycerol to glucose. Other terpolyester thermal and mechanical properties can be manipulated by adjusting the monomer ratios. More PLBP applications are to be expected. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. PhaM Is the Physiological Activator of Poly(3-Hydroxybutyrate) (PHB) Synthase (PhaC1) in Ralstonia eutropha

    PubMed Central

    Pfeiffer, Daniel

    2014-01-01

    Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-d-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules. PMID:24212577

  20. PhaM is the physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha.

    PubMed

    Pfeiffer, Daniel; Jendrossek, Dieter

    2014-01-01

    Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-D-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules.

  1. [Effect of phytohemagglutinin (PHA) from Yunnan white kidney bean on development of mouse embryos].

    PubMed

    Zhang, Lifen; Wang, Changmei; Yang, Mingjie; Zhang, Tian; Wang, Minkang

    2011-06-01

    To study the effect of different concentration of phytohemagglutinin (PHA) on mouse embryo development. In experiment 1, crude and purified PHA extracted from Yunnan white kidney bean with different concentration were added into M16 culture medium, the final concentration of PHA were: 50, 100, 200, 500, 1 000, 2 000 and 5 000 mg x L(-1) respectively. 2-cell stage embryos were collected and cultured in PHA containing or control medium for 72-96 h and their development were recorded. In experiment 2, different stage of embryos from 1-cell to blastocyst were treated by different concentrations of PHA same as experiment 1 and 10 000 mg x L(-1) in culture medium for 24 h before washing and cultured in M16 + PVA without PHA to blastocyst or hatching blastocyst stage. Low concentrations PHA at 50-100 mg x L(-1) promoted embryo development and increased the number of blastocyst stage embryos. In contrast, high concentrations of PHA (> 1 000 mg x L(-1)) blocked the embryos development from 1-cell to blastocyst stage and showed apoptosis morphology or death. Depending on the concentrations, PHA from white kidney bean shown promotion or inhibition on mouse embryo development. 1-cell stage embryo shown more sensitive to PHA treatment than that of later stage embryos. Pretreatment 24 h in PHA containing medium can influence the further development of embryos. Low concentrations of PHA is benefit to embryo development, but high concentrations of PHA (> 1 000 mg x L(-1)) will block of the development of embryos.

  2. Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication.

    PubMed

    Wang, Yu; Bai, Xuefei; Yan, Chenghai; Gui, Yiejie; Wei, Xinghua; Zhu, Qian-Hao; Guo, Longbiao; Fan, Longjiang

    2012-11-01

    The lack of a MIRNA set and genome sequence of wild rice (Oryza rufipogon) has prevented us from determining the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O. rufipogon were sequenced by Illumina platform and the expression levels of microRNAs (miRNAs) were investigated by miRNA chips. A de novo O. rufipogon genome was assembled using c. 55× coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on c. 5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these, O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting a loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression differences between wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated that MIRNA genes, like protein-coding genes, might have been significantly shaped during rice domestication and could be one of the driving forces that contributed to rice domestication. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress

    PubMed Central

    Liao, Jiang-Lin; Zhou, Hui-Wen; Huang, Ying-Jin

    2014-01-01

    Rice yield and quality are adversely affected by high temperatures, and these effects are more pronounced at the ‘milky stage’ of the rice grain ripening phase. Identifying the functional proteins involved in the response of rice to high temperature stress may provide the basis for improving heat tolerance in rice. In the present study, a comparative proteomic analysis of paired, genetically similar heat-tolerant and heat-sensitive rice lines was conducted. Two-dimensional electrophoresis (2-DE) revealed a total of 27 differentially expressed proteins in rice grains, predominantly from the heat-tolerant lines. The protein profiles clearly indicated variations in protein expression between the heat-tolerant and heat-sensitive rice lines. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis revealed that 25 of the 27 differentially displayed proteins were homologous to known functional proteins. These homologous proteins were involved in biosynthesis, energy metabolism, oxidation, heat shock metabolism, and the regulation of transcription. Seventeen of the 25 genes encoding the differentially displayed proteins were mapped to rice chromosomes according to the co-segregating conditions between the simple sequence repeat (SSR) markers and the target genes in recombinant inbred lines (RILs). The proteins identified in the present study provide a basis to elucidate further the molecular mechanisms underlying the adaptation of rice to high temperature stress. PMID:24376254

  4. Comparative Transcriptional Profiling and Preliminary Study on Heterosis Mechanism of Super-Hybrid Rice

    PubMed Central

    Song, Gui-Sheng; Zhai, Hong-Li; Peng, Yong-Gang; Zhang, Lei; Wei, Gang; Chen, Xiao-Ying; Xiao, Yu-Guo; Wang, Lili; Wu, Bin; Zhang, Yu; Feng, Xiu-Jing; Gong, Wan-Kui; Liu, Yao; Yin, Zhi-Jie; Wang, Feng; Liu, Guo-Zhen; Xu, Hong-Lin; Wei, Xiao-Li; Zhao, Xiao-Ling; Ouwerkerk, Pieter B.F.; Hankemeier, Thomas; Reijmers, Theo; van der Heijden, Rob; Wang, Mei; van der Greef, Jan; Zhu, Zhen

    2010-01-01

    Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utilizing heterosis. Transcriptional profiling of F1 super-hybrid rice Liangyou-2186 and its parents by serial analysis of gene expression (SAGE) revealed 1183 differentially expressed genes (DGs), among which DGs were found significantly enriched in pathways such as photosynthesis and carbon-fixation, and most of the key genes involved in the carbon-fixation pathway exhibited up-regulated expression in F1 hybrid rice. Moreover, increased catabolic activity of corresponding enzymes and photosynthetic efficiency were also detected, which combined to indicate that carbon fixation is enhanced in F1 hybrid, and might probably be associated with the yield vigor and heterosis in super-hybrid rice. By correlating DGs with yield-related quantitative trait loci (QTL), a potential relationship between differential gene expression and phenotypic changes was also found. In addition, a regulatory network involving circadian-rhythms and light signaling pathways was also found, as previously reported in Arabidopsis, which suggest that such a network might also be related with heterosis in hybrid rice. Altogether, the present study provides another view for understanding the molecular mechanism underlying heterosis in rice. PMID:20729474

  5. Transgenic Bt Rice Does Not Challenge Host Preference of the Target Pest of Rice Leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Sun, Xiao; Zhou, Wen; Liu, Hao; Zhang, Aijun; Ai, Chao-Ren; Zhou, Shuang-Shuang; Zhou, Chang-Xiang; Wang, Man-Qun

    2013-01-01

    Background Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. Results The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. Conclusions There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior. PMID:24244410

  6. 24 CFR 983.254 - Vacancies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... vacancy (and notwithstanding the reasonable good faith efforts of the PHA to fill such vacancies), the PHA... on the PHA waiting list referred by the PHA. (3) The PHA and the owner must make reasonable good faith efforts to minimize the likelihood and length of any vacancy. (b) Reducing number of contract...

  7. 24 CFR 982.103 - PHA application for funding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false PHA application for funding. 982... URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Funding and PHA Application for Funding § 982.103 PHA application for funding. (a) a PHA must submit an application for...

  8. Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production.

    PubMed

    Gurieff, Nicholas; Lant, Paul

    2007-12-01

    A life cycle assessment and financial analysis of mixed culture PHA (PHA(MC)) and biogas production was undertaken based on treating an industrial wastewater. Internal rate of return (IRR) and non-renewable CO(2)eq emissions were used to quantify financial viability and environmental impact. PHA(MC) was preferable to biogas production for treating the specified industrial effluent. PHA(MC) was also financially attractive in comparison to pure culture PHA production. Both PHA production processes had similar environmental impacts that were significantly lower than HDPE production. A large potential for optimisation exists for the PHA(MC) process as financial and environmental costs were primarily due to energy use for downstream processing. Under the conditions used in this work PHA(MC) was shown to be a viable biopolymer production process and an effective industrial wastewater treatment technology. This is the first study of its kind and provides valuable insight into the PHA(MC) process.

  9. Polyhydroxyalkanoate (PHA) production from waste.

    PubMed

    Rhu, D H; Lee, W H; Kim, J Y; Choi, E

    2003-01-01

    PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHA(produced)/gCOD(applied) or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.

  10. New PHA products using unrelated carbon sources

    PubMed Central

    Matias, Fernanda; de Andrade Rodrigues, Maria Filomena

    2011-01-01

    Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used. PMID:24031764

  11. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals.

    PubMed

    Ong, Su Yean; Zainab-L, Idris; Pyary, Somarajan; Sudesh, Kumar

    2018-03-01

    Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.

  12. Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds.

    PubMed

    An, Na; Ou, Jiquan; Jiang, Daiming; Zhang, Liping; Liu, Jingru; Fu, Kai; Dai, Ying; Yang, Daichang

    2013-02-07

    Basic fibroblast growth factor (FGF-2) is an important member of the FGF gene family. It is widely used in clinical applications for scald and wound healing in order to stimulate cell proliferation. Further it is applied for inhibiting stem cell differentiation in cultures. Due to a shortage of plasma and low expression levels of recombinant rbFGF in conventional gene expression systems, we explored the production of recombinant rbFGF in rice grains (Oryza sativa bFGF, OsrbFGF). An expression level of up to 185.66 mg/kg in brown rice was obtained. A simple purification protocol was established with final recovery of 4.49% and resulting in a yield of OsrbFGF reaching up to 8.33 mg/kg OsrbFGF. The functional assay of OsrbFGF indicated that the stimulating cell proliferation activity on NIH/3T3 was the same as with commercialized rbFGF. Wound healing in vivo of OsrbFGF is equivalent to commercialized rbFGF. Our results indicate that rice endosperm is capable of expressing small molecular mass proteins, such as bFGF. This again demonstrates that rice endosperm is a promising system to express various biopharmaceutical proteins.

  13. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen.

    PubMed

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun

    2017-11-07

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .

  14. Total and inorganic arsenic in rice and rice bran purchased in Thailand.

    PubMed

    Ruangwises, Suthep; Saipan, Piyawat; Tengjaroenkul, Bundit; Ruangwises, Nongluck

    2012-04-01

    Concentrations of total and inorganic arsenic were determined in 180 samples of polished and brown rice of three rice types, namely white, jasmine, and sticky, and 44 samples of rice bran from these three rice types purchased in Thailand. Concentrations (expressed in nanograms per gram) of inorganic arsenic in polished white, jasmine, and sticky rice were 68.3 ± 17.6 (with a range of 45.0 to 106), 68.4 ± 15.6 (41.7 to 101), and 75.9 ± 24.8 (43.5 to 156), respectively, while those in the three brown rice samples were 124 ± 34.4 (74.5 to 193), 120 ± 31.6 (73.1 to 174), and 131 ± 35.6 (78.0 to 188), respectively. Inorganic arsenic concentrations (expressed in nanograms per gram) in rice bran produced from the three rice types were 633 ± 182 (375 to 919), 599 ± 112 (447 to 824), and 673 ± 195 (436 to 1,071), respectively. Rice bran contained concentrations of total and inorganic arsenic approximately seven and nine times higher, respectively, than those found in the corresponding polished rice. The levels of inorganic arsenic in the three rice types of both polished and brown rice were within the only published regulatory limit of 200 ng/g.

  15. Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

    PubMed Central

    Xue, Liang-Jiao; Zhang, Jing-Jing; Xue, Hong-Wei

    2012-01-01

    Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed. PMID:22363552

  16. Analysis of poly-β-hydroxyalkonates (PHA) during the enhanced biological phosphorus removal process using FTIR spectroscopy.

    PubMed

    Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing

    2014-06-01

    Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge.

  17. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  18. Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria.

    PubMed

    Montenegro, Eduarda Morgana da Silva; Delabary, Gabriela Scholante; Silva, Marcus Adonai Castro da; Andreote, Fernando Dini; Lima, André Oliveira de Souza

    2017-05-25

    The use of molecular diagnostic techniques for bioprospecting and microbial diversity study purposes has gained more attention thanks to their functionality, low cost and quick results. In this context, ten degenerate primers were designed for the amplification of polyhydroxyalkanoate synthase ( phaC ) gene, which is involved in the production of polyhydroxyalkanoate (PHA)-a biodegradable, renewable biopolymer. Primers were designed based on multiple alignments of phaC gene sequences from 218 species that have their genomes already analyzed and deposited at Biocyc databank. The combination of oligos phaCF3/phaCR1 allowed the amplification of the expected product (PHA synthases families types I and IV) from reference organisms used as positive control (PHA producer). The method was also tested in a multiplex system with two combinations of initiators, using 16 colonies of marine bacteria (pre-characterized for PHA production) as a DNA template. All amplicon positive organisms ( n = 9) were also PHA producers, thus no false positives were observed. Amplified DNA was sequenced ( n = 4), allowing for the confirmation of the pha C gene identity as well its diversity among marine bacteria. Primers were also tested for screening purposes using 37 colonies from six different environments. Almost 30% of the organisms presented the target amplicon. Thus, the proposed primers are an efficient tool for screening bacteria with potential for the production of PHA as well to study PHA genetic diversity.

  19. Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate.

    PubMed

    Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang

    2013-09-01

    Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    NASA Astrophysics Data System (ADS)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  1. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process.

    PubMed

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-03

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  2. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors.

    PubMed

    Wijeyekoon, Suren; Carere, Carlo R; West, Mark; Nath, Shresta; Gapes, Daniel

    2018-09-01

    Organic waste residues can be hydrothermally treated to produce organic acid rich liquors. These hydrothermal liquors are a potential feedstock for polyhydroxyalkanoate (PHA) production. We investigated the effect of dissolved oxygen concentration and substrate feeding regimes on PHA accumulation and yield using two hydrothermal liquors derived from a mixture of primary and secondary municipal wastewater treatment sludge and food waste. The enriched culture accumulated a maximum of 41% PHA of cell dry weight within 7 h; which is among the highest reported for N and P rich hydrothermal liquors. Recovered PHA was 77% polyhydroxybutyrate and 23% polyhydroxyvalerate by mass. The families Rhodocyclaceae (84%) and Saprospiraceae (20.5%) were the dominant Proteobacteria (73%) in the enriched culture. The third most abundant bacterial genus, Bdellovibrio, includes species of known predators of PHA producers which may lead to suboptimal PHA accumulation. The PHA yield was directly proportional to DO concentration for ammonia stripped liquor (ASL) and inversely proportional to DO concentration for low strength liquor (LSL). The highest yield of 0.50 Cmol PHA/Cmol substrate was obtained for ASL at 25% DO saturation. A progressively increasing substrate feeding regime resulted in increased PHA yields. These findings demonstrate that substrate feeding regime and oxygen concentration can be used to control the PHA yield and accumulation rate thereby enhancing PHA production viability from nutrient rich biomass streams. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria

    PubMed Central

    Montenegro, Eduarda Morgana da Silva; Delabary, Gabriela Scholante; da Silva, Marcus Adonai Castro; Andreote, Fernando Dini; Lima, André Oliveira de Souza

    2017-01-01

    The use of molecular diagnostic techniques for bioprospecting and microbial diversity study purposes has gained more attention thanks to their functionality, low cost and quick results. In this context, ten degenerate primers were designed for the amplification of polyhydroxyalkanoate synthase (phaC) gene, which is involved in the production of polyhydroxyalkanoate (PHA)—a biodegradable, renewable biopolymer. Primers were designed based on multiple alignments of phaC gene sequences from 218 species that have their genomes already analyzed and deposited at Biocyc databank. The combination of oligos phaCF3/phaCR1 allowed the amplification of the expected product (PHA synthases families types I and IV) from reference organisms used as positive control (PHA producer). The method was also tested in a multiplex system with two combinations of initiators, using 16 colonies of marine bacteria (pre-characterized for PHA production) as a DNA template. All amplicon positive organisms (n = 9) were also PHA producers, thus no false positives were observed. Amplified DNA was sequenced (n = 4), allowing for the confirmation of the phaC gene identity as well its diversity among marine bacteria. Primers were also tested for screening purposes using 37 colonies from six different environments. Almost 30% of the organisms presented the target amplicon. Thus, the proposed primers are an efficient tool for screening bacteria with potential for the production of PHA as well to study PHA genetic diversity. PMID:28952531

  4. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics.

    PubMed

    Chek, Min Fey; Kim, Sun-Yong; Mori, Tomoyuki; Arsad, Hasni; Samian, Mohammed Razip; Sudesh, Kumar; Hakoshima, Toshio

    2017-07-13

    Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.

  5. 24 CFR 968.330 - PHA performance and evaluation report.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false PHA performance and evaluation... 250 or More Public Housing Units) § 968.330 PHA performance and evaluation report. For any FFY in which a PHA has received assistance under this subpart, the PHA shall submit a Performance and...

  6. Mechanical properties, biocompatibility, and biodegradation of cross-linked cellulose acetate-reinforced polyester composites.

    PubMed

    Wu, Chin-San

    2014-05-25

    Composites of treated (cross-linked) cellulose acetate (t-CA) and acrylic acid-grafted poly(hydroxyalkanoate) (PHA-g-AA/t-CA) exhibited noticeably superior mechanical properties compared with PHA/CA composites due to greater compatibility between the two components. The dispersion covering of t-CA in the PHA-g-AA matrix was highly homogeneous as a result of condensation reactions. Human lung fibroblasts (FBs) were seeded on these two series of composites to characterize the biocompatibility properties. In a time-dependent course, the FB proliferation results demonstrated higher performance from the PHA/CA series of composites than from the PHA-g-AA/t-CA composites. The water resistance of PHA-g-AA/t-CA was higher than that of PHA/CA, although the weight loss of both composites buried in Acetobacter pasteurianus (A. pasteurianus) indicated that they were both biodegradable, especially at higher levels of cellulose acetate substitution. The PHA/CA and PHA-g-AA/t-CA composites were more biodegradable than pure PHA, implying a strong connection between cellulose acetate content and biodegradability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Metabolic engineering for microbial production and applications of copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates.

    PubMed

    Zou, Xiang Hui; Chen, Guo-Qiang

    2007-02-12

    Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.

  8. A new biological recovery approach for PHA using mealworm, Tenebrio molitor.

    PubMed

    Murugan, Paramasivam; Han, Lizhu; Gan, Chee-Yuen; Maurer, Frans H J; Sudesh, Kumar

    2016-12-10

    Bacterial polyhydroxyalkanoates (PHA) are expensive partly due to the recovery and purification processes. Thus, many studies have been carried out in order to minimize the cost. Here we report on the use of mealworm, which is the larva of mealworm beetle (Tenebrio molitor) to recover PHA granules from Cupriavidus necator. Mealworms were shown to readily consume the freeze-dried C. necator cells and excrete the PHA granules in the form of whitish feces. Further purification using water, detergent and heat resulted in almost 100% pure PHA granules. Comparison with chloroform extraction showed no signs of reduction in the molecular weight and dispersion of the PHA molecules. Scanning electron microscopy and dynamic light scattering measurements revealed that the biologically recovered PHA granules retained their native spherical morphology. The PHA granules were subjected to a battery of tests to determine their purity and properties in comparison to the chloroform extracted PHA. This study has demonstrated the possibility of using mealworms as a biological agent to partially purify the PHA granules. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Overexpression of the Qc-SNARE gene OsSYP71 enhances tolerance to oxidative stress and resistance to rice blast in rice (Oryza sativa L.).

    PubMed

    Bao, Yong-Mei; Sun, Shu-Jing; Li, Meng; Li, Li; Cao, Wen-Lei; Luo, Jia; Tang, Hai-Juan; Huang, Ji; Wang, Zhou-Fei; Wang, Jian-Fei; Zhang, Hong-Sheng

    2012-08-10

    OsSYP71 is an oxidative stress and rice blast response gene that encodes a Qc-SNARE protein in rice. Qc-SNARE proteins belong to the superfamily of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), which function as important components of the vesicle trafficking machinery in eukaryotic cells. In this paper, 12 Qc-SNARE genes were isolated from rice, and expression patterns of 9 genes were detected in various tissues and in seedlings challenged with oxidative stresses and inoculated with rice blast. The expression of OsSYP71 was clearly up-regulated under these stresses. Overexpression of OsSYP71 in rice showed more tolerance to oxidative stress and resistance to rice blast than wild-type plants. These results indicate that Qc-SNAREs play an important role in rice response to environmental stresses, and OsSYP71 is useful in engineering crop plants with enhanced tolerance to oxidative stress and resistance to rice blast. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Molecular weight-dependent degradation of D-lactate-containing polyesters by polyhydroxyalkanoate depolymerases from Variovorax sp. C34 and Alcaligenes faecalis T1.

    PubMed

    Sun, Jian; Matsumoto, Ken'ichiro; Tabata, Yuta; Kadoya, Ryosuke; Ooi, Toshihiko; Abe, Hideki; Taguchi, Seiichi

    2015-11-01

    Polyhydroxyalkanoate depolymerase derived from Variovorax sp. C34 (PhaZVs) was identified as the first enzyme that is capable of degrading isotactic P[67 mol% (R)-lactate(LA)-co-(R)-3-hydroxybutyrate(3HB)] [P(D-LA-co-D-3HB)]. This study aimed at analyzing the monomer sequence specificity of PhaZVs for hydrolyzing P(LA-co-3HB) in comparison with a P(3HB) depolymerase from Alcaligenes faecalis T1 (PhaZAf) that did not degrade the same copolymer. Degradation of P(LA-co-3HB) by action of PhaZVs generated dimers, 3HB-3HB, 3HB-LA, LA-3HB, and LA-LA, and the monomers, suggesting that PhaZVs cleaved the linkages between LA and 3HB units and between LA units. To provide a direct evidence for the hydrolysis of these sequences, the synthetic methyl trimers, 3HB-3HB-3HB, LA-LA-3HB, LA-3HB-LA, and 3HB-LA-LA, were treated with the PhaZs. Unexpectedly, not only PhaZVs but also PhaZAf hydrolyzed all of these substrates, namely PhaZAf also cleaved LA-LA linkage. Considering the fact that both PhaZs did not degrade P[(R)-LA] (PDLA) homopolymer, the cleavage capability of LA-LA linkage by PhaZs was supposed to depend on the length of the LA-clustering region in the polymer chain. To test this hypothesis, PDLA oligomers (6 to 40 mer) were subjected to the PhaZ assay, revealing that there was an inverse relationship between molecular weight of the substrates and their hydrolysis efficiency. Moreover, PhaZVs exhibited the degrading activity toward significantly longer PDLA oligomers compared to PhaZAf. Therefore, the cleaving capability of PhaZs used here toward the D-LA-based polymers containing the LA-clustering region was strongly associated with the substrate length, rather than the monomer sequence specificity of the enzyme.

  11. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice.

    PubMed

    Dong, Qianli; Li, Ning; Li, Xiaochong; Yuan, Zan; Xie, Dejian; Wang, Xiaofei; Li, Jianing; Yu, Yanan; Wang, Jinbin; Ding, Baoxu; Zhang, Zhibin; Li, Changping; Bian, Yao; Zhang, Ai; Wu, Ying; Liu, Bao; Gong, Lei

    2018-06-01

    The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  12. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    PubMed

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.

  13. Expression and purification of recombinant human serum albumin from selectively terminable transgenic rice.

    PubMed

    Zhang, Qing; Yu, Hui; Zhang, Feng-zhen; Shen, Zhi-cheng

    2013-10-01

    Human serum albumin (HSA) is widely utilized for medical purposes and biochemical research. Transgenic rice has proved to be an attractive bioreactor for mass production of recombinant HSA (rHSA). However, transgene spread is a major environmental and food safety concern for transgenic rice expressing proteins of medical value. This study aimed to develop a selectively terminable transgenic rice line expressing HSA in rice seeds, and a simple process for recovery and purification of rHSA for economical manufacture. An HSA expression cassette was inserted into a T-DNA vector encoding an RNA interference (RNAi) cassette suppressing the CYP81A6 gene. This gene detoxifies the herbicide bentazon and is linked to the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) cassette which confers glyphosate tolerance. ANX Sepharose Fast Flow (ANX FF) anion exchange chromatography coupled with Butyl Sepharose High Performance (Butyl HP) hydrophobic interaction chromatography was used to purify rHSA. A transgenic rice line, HSA-84, was obtained with stable expression of rHSA of up to 0.72% of the total dry weight of the dehusked rice seeds. This line also demonstrated high sensitivity to bentazon, and thus could be killed selectively by a spray of bentazon. A two-step chromatography purification scheme was established to purify the rHSA from rice seeds to a purity of 99% with a recovery of 62.4%. Results from mass spectrometry and N-terminus sequencing suggested that the purified rHSA was identical to natural plasma-derived HSA. This study provides an alternative strategy for large-scale production of HSA with a built-in transgene safety control mechanism.

  14. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene.

    PubMed

    Liu, Xin; Zhang, Cuicui; Wang, Xiurong; Liu, Qiaoquan; Yuan, Dingyang; Pan, Gang; Sun, Samuel S M; Tu, Jumin

    2016-06-29

    Lysine (Lys) is considered to be the first limiting essential amino acid in rice. Although there have been extensive efforts to improve the Lys content of rice through traditional breeding and genetic engineering, no satisfactory products have been achieved to date. We expressed a LYSINE-RICH PROTEIN gene (LRP) from Psophocarpus tetragonolobus (L.) DC using an endosperm-specific GLUTELIN1 promoter (GT1) in Peiai64S (PA64S), an elite photoperiod-thermo sensitive male sterility (PTSMS) line. The expression of the foreign LRP protein was confirmed by Western blot analysis. The Lys level in the transgenic rice seeds increased more than 30 %, the total amount of other amino acids also increased compared to wild-type. Persistent investigation of amino acids in 3 generations showed that the Lys content was significantly increased in seeds of transgenic rice. Furthermore, Lys content in the hybrid of the transgenic plants also had an approximate 20 % increase compared to hybrid control. At the grain-filling stage, we monitored the transcript abundance of many genes encoding key enzymes involved in amino acid metabolism, and the results suggested that reduced amino acid catabolism led to the accumulation of amino acids in the transgenic plants. The genetically engineered rice showed unfavorable grain phenotypes compared to wild-type, however, its hybrid displayed little negative effects on grain. Endosperm-specific expression of foreign LRP significantly increased the Lys content in the seeds of transgenic plant, and the the Lys increase was stably heritable with 3 generation investigation. The hybrid of the transgenic plants also showed significant increases of Lys content in the seeds. These results indicated that expression of LRP in rice seeds may have promising applications in improving Lys levels in rice.

  15. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    PubMed

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  16. [Analysis of photoperiod-sensitivity genes in Minghui63, an restorer line of indica rice(Oryza sativa L.)].

    PubMed

    Luo, Lin-Guang; Xu, Jun-Feng; Zhai, Hu-Qu; Wan, Jian-Min

    2003-09-01

    Hybrid rice is very important in agriculture production in China. Its selecting property makes it significant to study the genetic performance of F1's date to heading (DH). Minghui63, an indica rice restorer line, has been widdly applied to hybrid rice seed production in China, but the photoperiod-sensitivity gene of heading date in this restorer line is still unknown. This definitely limited the further use of this restorer line in breeding practice and re-production of hybrid seeds. To solve this problem, using heading time nearly isogenic lines EGO-EG7, ER-LR and two heading date QTL-isogenic lines, NIL (Hd1) and NIL (Hd4), with the genes of Nipponbare but Hd1 (Se-1) and Hd4 (E1) genes from Kasalath, respectively, we performed a genetic analysis of Minghui63 with special reference to photoperiod-sensitivity loci, using natural long days in Nanjing(32 degrees N) and natural short days in Linshui county, Hainan province (18 degrees 29'N), where the average day-length is about 14 h and 11.6 h during the course of rice growing, respectively. The F1 and F2 generations from the crosses "heading time nearly isogenic lines x Minghui63" were subjected to genetic analyses. Experimental results showed that Minghui63 carries photoperiod-sensitivity allele gene E1 and E3 in E1 and E3 loci, respectly, and a photoperiod insensitivity allele Se-1e in Se-1 locus, and it also carries a recessive inhibitor for photoperiod-sensitivity gene E1. Meanwhile, the photoperiod-sensitive genes, E1 and the photoperiod-insensitive genes, Se-1e, in Minghui63 were also identified by crossing with the nearly isogenic lines for heading time QTLs, NIL (Hd1) and NIL(Hd4). The results indicated that Minghui63's genotype of heading date was: E1E1e2e2E3E3Se-1eSe-1e. The result from this research indicated that Minghui63 carries a major dominant photoperiod-sensitive gene E1 in E1 locus, and our previous researches indicated that Zhenshan97A carried a major dominant photoperiod-sensitive gene Se-1n in Se-1 locus and a recessive inhibitor gene i-Se-1. The DH of the hybrid rice "Shanyou63" is 94.7 in Nanjing, lying between Zhenshan97A's and Minghui63's, but more nearer to late maturity parent Minghui63. It has been not expressed that E1 gene usually prolongs days to heading by about 20 days when coexisting with Se-1u or Se-1n. This is possibly made by that inhibitor genes exist in respective parents, which make DH transgression of "Shanyou63" not appear. This phenomenon indicated that the heading date of indica hybrid rice is resulted from the interaction among the photoperiod-sensitive genes and their inhibitor genes in the sterile and the restorer lines.

  17. Effects of a diet containing genetically modified rice expressing the Cry1Ab/1Ac protein (Bacillus thuringiensis toxin) on broiler chickens.

    PubMed

    Li, Zeyang; Gao, Yang; Zhang, Minhong; Feng, Jinghai; Xiong, Yandan

    2015-01-01

    The aim of this study was to evaluate the effect of feeding Bacillus thuringiensis (Bt) rice expressing the Cry1Ab/1Ac protein on broiler chicken. The genetically modified (GM) Bt rice was compared with the corresponding non-GM rice regarding performance of feeding groups, their health status, relative organ weights, biochemical serum parameters and occurrence of Cry1Ab/1Ac gene fragments. One hundred and eighty day-old Arbor Acres female broilers with the same health condition were randomly allocated to the two treatments (6 replicate cages with 15 broilers in each cage per treatment). They received diets containing GM rice (GM group) or its parental non-GM rice (non-GM group) at 52-57% of the air-dried diet for 42 days. The results show that the transgenic rice had a similar nutrient composition as the non-GM rice and had no adverse effects on chicken growth, biochemical serum parameters and necropsy during the 42-day feeding period. In birds fed the GM rice, no transgenic gene fragments were detected in the samples of blood, liver, kidneys, spleen, jejunum, ileum, duodenum and muscle tissue. In conclusion, the results suggest that Bt rice expressing Cry1Ab/1Ac protein has no adverse effects on broiler chicken. Therefore, it can be considered as safe and used as feed source for broiler chicken.

  18. 24 CFR 941.205 - PHA contracts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PUBLIC HOUSING DEVELOPMENT PHA Eligibility and Program Requirements § 941.205 PHA contracts. (a) ACC... into by the PHA shall provide for compliance with the provisions of the ACC. (b) Contract forms. HUD...

  19. 24 CFR 941.205 - PHA contracts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PUBLIC HOUSING DEVELOPMENT PHA Eligibility and Program Requirements § 941.205 PHA contracts. (a) ACC... into by the PHA shall provide for compliance with the provisions of the ACC. (b) Contract forms. HUD...

  20. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice.

    PubMed

    Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo

    2010-06-24

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.

  1. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.

    PubMed

    Zou, Huibin; Shi, Mengxun; Zhang, Tongtong; Li, Lei; Li, Liangzhi; Xian, Mo

    2017-10-01

    With the finite supply of petroleum and increasing concern with environmental issues associated with their harvest and processing, the development of more eco-friendly, sustainable alternative biopolymers that can effectively fill the role of petro-polymers has become a major focus. Polyhydroxyalkanoate (PHA) can be naturally produced by many species of bacteria and the PHA synthase is believed to be key enzyme in this natural pathway. Natural PHA synthases are diverse and can affect the properties of the produced PHAs, such as monomer composition, molecular weights, and material properties. Moreover, recent studies have led to major advances in the searching of PHA synthases that display specific properties, as well as engineering efforts that offer more efficient PHA synthases, increased PHA compound production, or even novel biopolyesters which cannot be naturally produced. In this article, we review the updated information of natural PHA synthases and their engineering strategies for improved performance in polyester production. We also speculate future trends on the development of robust PHA synthases and their application in biopolyester production.

  2. Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy.

    PubMed

    Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Lee, Duu-Jong

    2017-10-01

    Low biomass output is a crucial reason for low polyhydroxyalkanoate (PHA) production in mixed microbial cultures (MMCs) PHA process. In this research, an extended cultivation strategy was proposed to rapidly expand the biomass yield of PHA accumulating MMCs and conserve the PHA accumulating ability simultaneously. High PHA content of the cultivated MMCs of 71.4% and 66.7% (higher than 62.1% of the seed biomass) in batch assays and biomass magnification of 43 and 52 were obtained after 10days of extended cultivation with and without sludge discharge, respectively. By embedding the extended cultivation process into the production process, a highly competitive PHA production performance in terms of overall PHA storage yield (0.49g CODPHA/gCODVFA) and volumetric productivity (1.21gPHA/L/d with final cell density of 17.22g/L) was achieved. The proposed PHA production process based on the extended cultivation can be a promising choice in industrial scale practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Generation of a transgenic rice seed-based edible vaccine against house dust mite allergy.

    PubMed

    Yang, Lijun; Kajiura, Hiroyuki; Suzuki, Kazuya; Hirose, Sakiko; Fujiyama, Kazuhito; Takaiwa, Fumio

    2008-01-11

    As an alternative approach to conventional allergen-specific immunotherapy, transgenic rice seed expressing a major house dust mite (HDM) allergen, Der p 1, was developed as an edible vaccine. The C-terminal KDEL-tagged Der p 1 allergen specifically accumulated in seed endosperm tissue under the control of the endosperm-specific GluB1 promoter. Der p 1 reached a maximum concentration of 58 microg/grain and was deposited in the endoplasmic reticulum (ER)-derived protein body I (PB-I). Plant-derived Der p 1 was posttranslationally modified with high-mannose-type glycan structures. Glycosylated Der p 1 displayed reduced IgE binding capacity in comparison with its unglycosylated counterpart in vitro. Our results indicate that transgenic Der p 1 rice seeds are a safe, potential oral delivery vaccine for the treatment of HDM allergy.

  4. Exploring the potential of the bacterial carotene desaturase CrtI to increase the beta-carotene content in Golden Rice.

    PubMed

    Al-Babili, Salim; Hoa, Tran Thi Cuc; Schaub, Patrick

    2006-01-01

    To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.

  5. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency.

    PubMed

    Beyer, Peter; Al-Babili, Salim; Ye, Xudong; Lucca, Paola; Schaub, Patrick; Welsch, Ralf; Potrykus, Ingo

    2002-03-01

    To obtain a functioning provitamin A (beta-carotene) biosynthetic pathway in rice endosperm, we introduced in a single, combined transformation effort the cDNA coding for phytoene synthase (psy) and lycopene beta-cyclase (beta-lcy) both from Narcissus pseudonarcissus and both under the control of the endosperm-specific glutelin promoter together with a bacterial phytoene desaturase (crtI, from Erwinia uredovora under constitutive 35S promoter control). This combination covers the requirements for beta-carotene synthesis and, as hoped, yellow beta-carotene-bearing rice endosperm was obtained in the T(0)-generation. Additional experiments revealed that the presence of beta-lcy was not necessary, because psy and crtI alone were able to drive beta-carotene synthesis as well as the formation of further downstream xanthophylls. Plausible explanations for this finding are that these downstream enzymes are constitutively expressed in rice endosperm or are induced by the transformation, e.g., by enzymatically formed products. Results using N. pseudonarcissus as a model system led to the development of a hypothesis, our present working model, that trans-lycopene or a trans-lycopene derivative acts as an inductor in a kind of feedback mechanism stimulating endogenous carotenogenic genes. Various institutional arrangements for disseminating Golden Rice to research institutes in developing countries also are discussed.

  6. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  7. Black rice (Oryza sativa L. var. japonica) hydrolyzed peptides induce expression of hyaluronan synthase 2 gene in HaCaT keratinocytes.

    PubMed

    Sim, Gwan Sub; Lee, Dong-Hwan; Kim, Jin-Hwa; An, Sung-Kwan; Choe, Tae-Boo; Kwon, Tae-Jong; Pyo, Hyeong-Bae; Lee, Bum-Chun

    2007-02-01

    Black rice (Oryza sativa L. var. japonica) has been used in folk medicine in Asia. To understand the effects of black rice hydrolyzed peptides (BRP) from germinated black rice, we assessed the expression levels of about 20,000 transcripts in BRP-treated HaCaT keratinocytes using human 1A oligo microarray analysis. As a result, the BRP treatment showed a differential expression ratio of more than 2-fold: 745 were activated and 1,011 were repressed. One of the most interesting findings was a 2-fold increase in hyaluronan synthase 2 (HAS2) gene expression by BRP. Semiquantitative RT-PCR showed that BRP increased HAS2 mRNA in dose-dependent manners. ELISA showed that BRP effectively increased hyaluronan (HA) production in HaCaT keratinocytes.

  8. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    PubMed

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  9. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of rubisco in rice.

    PubMed

    Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi

    2014-01-01

    Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.

  10. Unusual Small Subunit That Is Not Expressed in Photosynthetic Cells Alters the Catalytic Properties of Rubisco in Rice1[C][W][OPEN

    PubMed Central

    Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi

    2014-01-01

    Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity. PMID:24254313

  11. 24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...

  12. 24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...

  13. 24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...

  14. 24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...

  15. 24 CFR 982.629 - Homeownership option: Additional PHA requirements for family search and purchase.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PHA requirements for family search and purchase. 982.629 Section 982.629 Housing and Urban Development...: Additional PHA requirements for family search and purchase. (a) The PHA may establish the maximum time for a family to locate a home, and to purchase the home. (b) The PHA may require periodic family reports on the...

  16. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.

    PubMed

    Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari

    2016-01-01

    This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation

    PubMed Central

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-01-01

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. PMID:25212861

  18. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene.

    PubMed

    Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji

    2014-11-01

    We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after cultivation in a flask, suggesting the possibility of large-scale PHA production by UMI-21 from starch. A major issue for the industrial production of microbial PHAs is the very high production cost. Starch is a relatively inexpensive substrate that is also found in abundant seaweeds such as Ulva. Therefore, the strain isolated in this study may be very useful for producing PHA from seaweeds containing polysaccharides such as starch. In addition, a 3.7-kbp DNA fragment containing the whole PHA synthase gene (phaC) was obtained from the strain UMI-21. The results of open reading frame (ORF) analysis suggested that the DNA fragment contained two ORFs, which were composed of 1740 (phaC) and 564 bp (phaR). The deduced amino acid sequence of PhaC from strain UMI-21 shared high similarity with PhaC from Ralstonia eutropha, which is a representative PHA-producing bacterium with a class I PHA synthase. This is the first report for the cloning of the PHA synthase gene from Massilia species. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    PubMed Central

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Ronald, Pamela C.

    2013-01-01

    Glycoside hydrolases (GH) catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/). This database integrates multiple data types including the structural features, orthologous relationships, mutant availability, and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification. PMID:23986771

  20. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts1[W][OPEN

    PubMed Central

    Maruyama, Kyonoshin; Urano, Kaoru; Yoshiwara, Kyouko; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Shibata, Daisuke; Saito, Kazuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2014-01-01

    Correlations between gene expression and metabolite/phytohormone levels under abiotic stress conditions have been reported for Arabidopsis (Arabidopsis thaliana). However, little is known about these correlations in rice (Oryza sativa ‘Nipponbare’), despite its importance as a model monocot. We performed an integrated analysis to clarify the relationships among cold- and dehydration-responsive metabolites, phytohormones, and gene transcription in rice. An integrated analysis of metabolites and gene expression indicated that several genes encoding enzymes involved in starch degradation, sucrose metabolism, and the glyoxylate cycle are up-regulated in rice plants exposed to cold or dehydration and that these changes are correlated with the accumulation of glucose (Glc), fructose, and sucrose. In particular, high expression levels of genes encoding isocitrate lyase and malate synthase in the glyoxylate cycle correlate with increased Glc levels in rice, but not in Arabidopsis, under dehydration conditions, indicating that the regulation of the glyoxylate cycle may be involved in Glc accumulation under dehydration conditions in rice but not Arabidopsis. An integrated analysis of phytohormones and gene transcripts revealed an inverse relationship between abscisic acid (ABA) signaling and cytokinin (CK) signaling under cold and dehydration stresses; these stresses increase ABA signaling and decrease CK signaling. High levels of Oryza sativa 9-cis-epoxycarotenoid dioxygenase transcripts correlate with ABA accumulation, and low levels of Cytochrome P450 (CYP) 735A transcripts correlate with decreased levels of a CK precursor in rice. This reduced expression of CYP735As occurs in rice but not Arabidopsis. Therefore, transcriptional regulation of CYP735As might be involved in regulating CK levels under cold and dehydration conditions in rice but not Arabidopsis. PMID:24515831

  1. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    PubMed

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various growth stages and chlorophyll biosynthesis pathway related proteins, especially magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), may provide new insights into the molecular mechanisms of rice hull development and chlorophyll associated regulation.

  2. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene.

    PubMed

    Kim, Tae Hyun; Park, Jong Ho; Kim, Moon Chul; Cho, Sung Ho

    2008-01-01

    Treatment with the cutin monomer 16-hydroxypalmitic acid (HPA), a major component of cutin, elicited the synthesis of hydrogen peroxide (H2O2) in rice leaves and induced the expression of the lipid transfer protein gene OsLTP5. Treatment with HPA also induced expression of OsLTP1, OsLTP2, and the pathogen-related PR-10 genes to a lesser extent. The OsLTP5 transcript was expressed prominently in stems and flowers, but was barely detectable in leaves. Expression of OsLTP5 was induced in shoots in response to ABA and salicylic acid. It is proposed that HPA is perceived by rice as a signal, inducing defense reactions.

  3. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition.

    PubMed

    Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh

    2016-12-01

    The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.

  4. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    PubMed

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail.

  5. A Pepper MSRB2 Gene Confers Drought Tolerance in Rice through the Protection of Chloroplast-Targeted Genes

    PubMed Central

    Chae, Songhwa; Lee, Tae-Ho; Hwang, Duk-Ju; Oh, Sung-Dug; Park, Jong-Sug; Song, Dae-Geun; Pan, Cheol-Ho; Choi, Doil; Kim, Yul-Ho; Nahm, Baek Hie; Kim, Yeon-Ki

    2014-01-01

    Background The perturbation of the steady state of reactive oxygen species (ROS) due to biotic and abiotic stresses in a plant could lead to protein denaturation through the modification of amino acid residues, including the oxidation of methionine residues. Methionine sulfoxide reductases (MSRs) catalyze the reduction of methionine sulfoxide back to the methionine residue. To assess the role of this enzyme, we generated transgenic rice using a pepper CaMSRB2 gene under the control of the rice Rab21 (responsive to ABA protein 21) promoter with/without a selection marker, the bar gene. Results A drought resistance test on transgenic plants showed that CaMSRB2 confers drought tolerance to rice, as evidenced by less oxidative stress symptoms and a strengthened PSII quantum yield under stress conditions, and increased survival rate and chlorophyll index after the re-watering. The results from immunoblotting using a methionine sulfoxide antibody and nano-LC-MS/MS spectrometry suggest that porphobilinogen deaminase (PBGD), which is involved in chlorophyll synthesis, is a putative target of CaMSRB2. The oxidized methionine content of PBGD expressed in E. coli increased in the presence of H2O2, and the Met-95 and Met-227 residues of PBGD were reduced by CaMSRB2 in the presence of dithiothreitol (DTT). An expression profiling analysis of the overexpression lines also suggested that photosystems are less severely affected by drought stress. Conclusions Our results indicate that CaMSRB2 might play an important functional role in chloroplasts for conferring drought stress tolerance in rice. PMID:24614245

  6. The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant.

    PubMed

    Tu, Kun-Yu; Tsai, Shin-Fu; Guo, Tzu-Wei; Lin, Hou-Ho; Yang, Zhi-Wei; Liao, Chung-Ta; Chuang, Wen-Po

    2018-05-12

    Atmospheric temperature increases along with increasing atmospheric CO2 concentration. This is a major concern for agroecosystems. Although the impact of an elevated temperature or increased CO2 has been widely reported, there are few studies investigating the combined effect of these two environmental factors on plant-insect interactions. In this study, plant responses (phenological traits, defensive enzyme activity, secondary compounds, defense-related gene expression and phytohormone) of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) -susceptible and resistant rice under various conditions (environment, soil type, variety, C. medinalis infestation) were used to examine the rice-C. medinalis interaction. The results showed that leaf chlorophyll content and trichome density in rice were variety-dependent. Plant defensive enzyme activities were affected environment, variety, or C. medinalis infestation. In addition, total phenolic content of rice leaves was decreased by elevated CO2 and temperature and C. medinalis infestation. Defense-related gene expression patterns were affected by environment, soil type, or C. medinalis infestation. Abscisic acid and salicylic acid content were decreased by C. medinalis infestation. However, jasmonic acid content was increased by C. medinalis infestation. Furthermore, under elevated CO2 and temperature, rice plants had higher abscisic acid content than plants under ambient conditions. The adult morphological traits of C. medinalis also were affected by environment. Under elevated CO2 and temperature, C. medinalis adults had greater body length in the second and third generations. Taken together these results indicated that elevated CO2 and temperature not only affects plants but also the specialized insects that feed on them.

  7. The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.

    PubMed

    Raiger-Iustman, Laura J; Ruiz, Jimena A

    2008-07-01

    To determine whether the stationary sigma factor, sigma(S), influences polyhydroxyalkanoate metabolism in Pseudomonas putida KT2440, an rpoS-negative mutant was constructed to evaluate polyhydroxyalkanoate accumulation and expression of a translational fusion to the promoter region of the genes that code for polyhydroxyalkanoate synthase 1 (phaC1) and polyhydroxyalkanoate depolymerase (phaZ). By comparison with the wild-type, the rpoS mutant showed a higher polyhydroxyalkanoate degradation rate and increased expression of the translational fusion during the stationary growth phase. These results suggest that sigma(S) might control the genes involved in polyhydroxyalkanoate metabolism, possibly in an indirect manner. In addition, survival and oxidative stress assays performed under polyhydroxyalkanoate- and nonpolyhydroxyalkanoate- accumulating conditions demonstrated that the accumulated polyhydroxyalkanoate increased the survival and stress tolerance of the rpoS mutant. According to this, polyhydroxyalkanoate accumulation would help cells to overcome the adverse conditions encountered during the stationary phase in the strain that lacks RpoS.

  8. PHB Biosynthesis Counteracts Redox Stress in Herbaspirillum seropedicae.

    PubMed

    Batista, Marcelo B; Teixeira, Cícero S; Sfeir, Michelle Z T; Alves, Luis P S; Valdameri, Glaucio; Pedrosa, Fabio de Oliveira; Sassaki, Guilherme L; Steffens, Maria B R; de Souza, Emanuel M; Dixon, Ray; Müller-Santos, Marcelo

    2018-01-01

    The ability of bacteria to produce polyhydroxyalkanoates such as poly(3-hydroxybutyrate) (PHB) enables provision of a carbon storage molecule that can be mobilized under demanding physiological conditions. However, the precise function of PHB in cellular metabolism has not been clearly defined. In order to determine the impact of PHB production on global physiology, we have characterized the properties of a Δ phaC1 mutant strain of the diazotrophic bacterium Herbaspirillum seropedicae . The absence of PHB in the mutant strain not only perturbs redox balance and increases oxidative stress, but also influences the activity of the redox-sensing Fnr transcription regulators, resulting in significant changes in expression of the cytochrome c -branch of the electron transport chain. The synthesis of PHB is itself dependent on the Fnr1 and Fnr3 proteins resulting in a cyclic dependency that couples synthesis of PHB with redox regulation. Transcriptional profiling of the Δ phaC1 mutant reveals that the loss of PHB synthesis affects the expression of many genes, including approximately 30% of the Fnr regulon.

  9. Ralstonia eutropha's Poly(3-hydroxybutyrate)(PHB) polymerase PhaC1 and PHB depolymerase PhaZa1 are phosphorylated in vivo.

    PubMed

    Jüngert, Janina R; Patterson, Cameron; Jendrossek, Dieter

    2018-04-20

    In this study, we screened PHB synthase PhaC1 and PHB depolymerase PhaZa1 of Ralstonia eutropha for the presence of phosphorylated residues during the PHB accumulation and PHB degradation phase. Thr373 of PHB synthase PhaC1 was phosphorylated in the stationary growth phase but was not modified in the exponential and PHB accumulation phases. Ser35 of PHB depolymerase PhaZa1 was identified in phosphorylated form both in the exponential and in the stationary growth phase. Additional phosphosites were identified for both proteins in sample-dependent forms. Site-directed mutagenesis of the codon for Thr373 and other phosphosites of PhaC1 revealed a strong negative impact on PHB synthase activity. Modification of Thr26 and Ser35 of PhaZa1 reduced the ability of R. eutropha to mobilize PHB in the stationary growth phase. Our results show that phosphorylation of PhaC1 and PhaZa1 can be important for modulation of the activities of PHB synthase and PHB depolymerase. Importance Polyhydroxybutyrate (PHB) and related polyhydroxyalkanoates (PHAs) are important intracellular carbon and energy storage compounds in many prokaryotes. The accumulation of PHB or PHAs increases the fitness of cells during periods of starvation and other stress conditions. The simultaneous presence of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) and PHB depolymerase (PhaZa1) on synthesized PHB granules in Ralstonia eutropha (alternative designation Cupriavidus necator ) has been previously shown in several laboratories. These findings imply that the activities of PHB synthase and PHB depolymerase should be regulated to avoid a futile cycle of simultaneous synthesis and degradation of PHB. Here, we addressed this question by identifying phosphorylation sites on PhaC1 and PhaZa1 and by site-directed mutagenesis of identified residues. Furthermore, we conducted in vitro and in vivo analysis of PHB synthase activity and PHB contents. Copyright © 2018 American Society for Microbiology.

  10. Transgenic elite indica rice plants expressing CryIAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas).

    PubMed

    Nayak, P; Basu, D; Das, S; Basu, A; Ghosh, D; Ramakrishnan, N A; Ghosh, M; Sen, S K

    1997-03-18

    Generation of insect-resistant, transgenic crop plants by expression of the insecticidal crystal protein (ICP) gene of Bacillus thuringiensis (Bt) is a standard crop improvement approach. In such cases, adequate expression of the most appropriate ICP against the target insect pest of the crop species is desirable. It is also considered advantageous to generate Bt-transgenics with multiple toxin systems to control rapid development of pest resistance to the ICP. Larvae of yellow stem borer (YSB), Scirpophaga incertulas, a major lepidopteran insect pest of rice, cause massive losses of rice yield. Studies on insect feeding and on the binding properties of ICP to brush border membrane receptors in the midgut of YSB larvae revealed that cryIAb and cryIAc are two individually suitable candidate genes for developing YSB-resistant rice. Programs were undertaken to develop Bt-transgenic rice with these ICP genes independently in a single cultivar. A cryIAc gene was reconstructed and placed under control of the maize ubiquitin 1 promoter, along with the first intron of the maize ubiquitin 1 gene, and the nos terminator. The gene construct was delivered to embryogenic calli of IR64, an elite indica rice cultivar, using the particle bombardment method. Six highly expressive independent transgenic ICP lines were identified. Molecular analyses and insect-feeding assays of two such lines revealed that the transferred synthetic cryIAc gene was expressed stably in the T2 generation of these lines and that the transgenic rice plants were highly toxic to YSB larvae and lessened the damage caused by their feeding.

  11. Effects of Exogenous Plant Growth Regulator Abscisic Acid-Induced Resistance in Rice on the Expression of Vitellogenin mRNA in Nilaparvata lugens (Hemiptera: Delphacidae) Adult Females

    PubMed Central

    Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew

    2014-01-01

    Abstract Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin ( Nlvg ) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants’ defenses on phloem-feeding insects. PMID:25502025

  12. Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant.

    PubMed

    Wei, Dai-Xu; Chen, Chong-Bo; Fang, Guo; Li, Shi-Yan; Chen, Guo-Qiang

    2011-08-01

    PhaP or phasin is an amphiphilic protein located on surfaces of microbial storage polyhydroxyalkanoates granules. This study aimed to explore amphiphilic properties of PhaP for possible application as a protein surfactant. Following agents were used to conduct this study as controls including bovine serum albumin, sodium dodecyl sulfate (SDS), Tween 20, sodium oleate, a commercial liquefied detergent together with the same amount of PhaP. Among all these tested control surfactants, PhaP showed the strongest effect to form emulsions with lubricating oil, diesel, and soybean oil, respectively. PhaP emulsion stability study compared with SDS revealed that PhaP had a stronger capability to maintain a very stable emulsion layer after 30 days while SDS lost half and two-thirds of its capacity after 2 and 30 days, respectively. When PhaP was more than 200 μg/ml in the water, all liquids started to exhibit stable emulsion layers. Similar to SDS, PhaP significantly reduced the water contact angles of water on a hydrophobic film of biaxially oriented polypropylene. PhaP was thermally very stable, it showed ability to form emulsion and to bind to the surface of polyhydroxybutyrate nanoparticles after a 60- min heating process at 95 °C. It is therefore concluded that PhaP is a protein with thermally stable property for application as natural and environmentally friendly surfactant for food, cosmetic, and pharmaceutical usages.

  13. Dynamics of polyhydroxyalkanoate accumulation in aerobic granules during the growth-disintegration cycle.

    PubMed

    Gobi, K; Vadivelu, V M

    2015-11-01

    The polyhydroxyalkanoate (PHA) accumulation dynamics in aerobic granules that undergo the growth-disintegration cycle were investigated. Four sequencing batch reactors (SBR) were inoculated with aerobic granules at different stages of development (different sizes). Different sizes of aerobic granules showed varying PHA contents. Thus, further study was conducted to investigate the diffusion of substrate and oxygen on PHA accumulation using various organic loading rates (OLR) and aeration rates (AR). An increase in OLR from 0.91 to 3.64kg COD/m(3)day increased the PHA content from 0.66 to 0.87g PHA/g CDW. Meanwhile, an AR increase from 1 to 4L/min only accelerated the maximum PHA accumulation without affecting the PHA content. However, the PHA composition only changes with AR, while the hydroxyvalerate (HV) content increased at a higher AR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2015-01-01

    Polyhydroxyalkanoate (PHA) recovery from aerobic granules was investigated using four cell digestion agents, namely, sodium hypochlorite, sodium hydroxide, acetone and sodium chloride. Simultaneously, the removal of extracellular polymeric substances (EPS) and its effect on PHA yield were investigated. The highest PHA recovery yield was obtained using sodium hypochlorite, accounting for 89% cell dry weight (CDW). The highest PHA was recovered after the sodium hypochlorite completely removed the EPS from the aerobic granules. The average molecular weight (Mw) of the PHA recovered using sodium hypochlorite was 5.31 × 10(5)g/mol with only 1.8% molecular weight degradation. The energy and duration analysis for PHA recovery revealed that the sodium hypochlorite method required the least amount of energy and time at 0.0561 MJ/g PHA and 26 h, respectively. The PHA that was recovered was a P3(HB-co-HV) co-polymer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Genotype and environment effects on Tocopherol, Tocotrienol, and y-Oryzanol contents of southern US rice

    USDA-ARS?s Scientific Manuscript database

    Rice bran contains phytochemicals such as E vitamers (i.e., tocopherols and tocotrienols) and the y-oryzanol fraction that reportedly may have positive effects on human health. Brown rice, rice bran, and rice bran extracts are therefore attractive candidates for use in the development of functional ...

  16. Identification and Biochemical Evidence of a Medium-Chain-Length Polyhydroxyalkanoate Depolymerase in the Bdellovibrio bacteriovorus Predatory Hydrolytic Arsenal

    PubMed Central

    Martínez, Virginia; de la Peña, Fernando; García-Hidalgo, Javier; de la Mata, Isabel; García, José Luis

    2012-01-01

    The obligate predator Bdellovibrio bacteriovorus HD100 shows a large set of proteases and other hydrolases as part of its hydrolytic arsenal needed for its predatory life cycle. We present genetic and biochemical evidence that open reading frame (ORF) Bd3709 of B. bacteriovorus HD100 encodes a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase (PhaZBd). The primary structure of PhaZBd suggests that this enzyme belongs to the α/β-hydrolase fold family and has a typical serine hydrolase catalytic triad (serine-histidine-aspartic acid) in agreement with other PHA depolymerases and lipases. PhaZBd has been extracellularly produced using different hypersecretor Tol-pal mutants of Escherichia coli and Pseudomonas putida as recombinant hosts. The recombinant PhaZBd has been characterized, and its biochemical properties have been compared to those of other PHA depolymerases. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. It is also affected by the reducing agent dithiothreitol and nonionic detergents like Tween 80. PhaZBd is an endoexohydrolase that cleaves both large and small PHA molecules, producing mainly dimers but also monomers and trimers. The enzyme specifically degrades mcl-PHA and is inactive toward short-chain-length polyhydroxyalkanoates (scl-PHA) like polyhydroxybutyrate (PHB). These studies shed light on the potentiality of these predators as sources of new biocatalysts, such as an mcl-PHA depolymerase, for the production of enantiopure hydroxyalkanoic acids and oligomers as building blocks for the synthesis of biobased polymers. PMID:22706067

  17. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    PubMed

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.

  18. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development.

    PubMed

    Li, Li; Li, Yixing; Song, Shufeng; Deng, Huafeng; Li, Na; Fu, Xiqin; Chen, Guanghui; Yuan, Longping

    2015-01-01

    In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.

  19. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    PubMed

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells1[OA

    PubMed Central

    Obata, Toshihiro; Kitamoto, Hiroko K.; Nakamura, Atsuko; Fukuda, Atsunori; Tanaka, Yoshiyuki

    2007-01-01

    We screened a rice (Oryza sativa L. ‘Nipponbare’) full-length cDNA expression library through functional complementation in yeast (Saccharomyces cerevisiae) to find novel cation transporters involved in salt tolerance. We found that expression of a cDNA clone, encoding the rice homolog of Shaker family K+ channel KAT1 (OsKAT1), suppressed the salt-sensitive phenotype of yeast strain G19 (Δena1–4), which lacks a major component of Na+ efflux. It also suppressed a K+-transport-defective phenotype of yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+ uptake by OsKAT1. By the expression of OsKAT1, the K+ contents of salt-stressed G19 cells increased during the exponential growth phase. At the linear phase, however, OsKAT1-expressing G19 cells accumulated less Na+ than nonexpressing cells, but almost the same K+. The cellular Na+ to K+ ratio of OsKAT1-expressing G19 cells remained lower than nonexpressing cells under saline conditions. Rice cells overexpressing OsKAT1 also showed enhanced salt tolerance and increased cellular K+ content. These functions of OsKAT1 are likely to be common among Shaker K+ channels because OsAKT1 and Arabidopsis (Arabidopsis thaliana) KAT1 were able to complement the salt-sensitive phenotype of G19 as well as OsKAT1. The expression of OsKAT1 was restricted to internodes and rachides of wild-type rice, whereas other Shaker family genes were expressed in various organs. These results suggest that OsKAT1 is involved in salt tolerance of rice in cooperation with other K+ channels by participating in maintenance of cytosolic cation homeostasis during salt stress and thus protects cells from Na+. PMID:17586689

  1. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice.

    PubMed

    Li, Qian-Feng; Yu, Jia-Wen; Lu, Jun; Fei, Hong-Yuan; Luo, Ming; Cao, Bu-Wei; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2018-04-18

    Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.

  2. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling.

    PubMed

    Kandasamy, Saveetha; Loganathan, Karthiba; Muthuraj, Raveendran; Duraisamy, Saravanakumar; Seetharaman, Suresh; Thiruvengadam, Raguchander; Ponnusamy, Balasubramanian; Ramasamy, Samiyappan

    2009-12-24

    Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  3. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan

    2013-02-01

    Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Nan; Guan, Ju; Ferrer, Jean-Luc

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1more » expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.« less

  5. The mature anther-preferentially expressed genes are associated with pollen fertility, pollen germination and anther dehiscence in rice.

    PubMed

    Ling, Sheng; Chen, Caisheng; Wang, Yang; Sun, Xiaocong; Lu, Zhanhua; Ouyang, Yidan; Yao, Jialing

    2015-02-19

    The anthers and pollen grains are critical for male fertility and hybrid rice breeding. The development of rice mature anther and pollen consists of multiple continuous stages. However, molecular mechanisms regulating mature anther development were poorly understood. In this study, we have identified 291 mature anther-preferentially expressed genes (OsSTA) in rice based on Affymetrix microarray data. Gene Ontology (GO) analysis indicated that OsSTA genes mainly participated in metabolic and cellular processes that are likely important for rice anther and pollen development. The expression patterns of OsSTA genes were validated using real-time PCR and mRNA in situ hybridizations. Cis-element identification showed that most of the OsSTA genes had the cis-elements responsive to phytohormone regulation. Co-expression analysis of OsSTA genes showed that genes annotated with pectinesterase and calcium ion binding activities were rich in the network, suggesting that OsSTA genes could be involved in pollen germination and anther dehiscence. Furthermore, OsSTA RNAi transgenic lines showed male-sterility and pollen germination defects. The results suggested that OsSTA genes function in rice male fertility, pollen germination and anther dehiscence and established molecular regulating networks that lay the foundation for further functional studies.

  6. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice.

    PubMed

    Xu, Donglin; Mou, Guiping; Wang, Kang; Zhou, Guohui

    2014-09-22

    Southern rice black-streaked dwarf virus (SRBSDV) is a recently emerged rice virus that has spread across Asia. This devastating virus causes rice plants to produce a variety of symptoms during different growth stages. MicroRNAs (miRNAs) comprise a large group of 21-24-nt RNA molecules that are important regulators of plant development processes and stress responses. In this study, we used microarray profiling to investigate rice miRNAs responding to SRBSDV infection at 3, 9, 15, and 20 days post-inoculation (dpi). Expression levels of 56 miRNAs were altered in SRBSDV-infected rice plants, with these changes classified into eight different regulation patterns according to their temporal expression dynamics. Fourteen miRNAs belonging to six families (miR164, R396, R530, R1846, R1858, and R2097) were significantly regulated at 20 dpi. We used RT-qPCR to search for expression level correlations between members of these families and their putative targets at 3, 9, and 15 dpi. Some members of the miR164, R396, R530, and R1846 families were found to be positively or negatively correlated with their respective targets during 3-15 days after SRBSDV infection, whereas in more cases the rice miRNAs were not in correlation with their targets along the post-inoculation period, suggesting that some additional factors may be involved in rice miRNA-target interactions. The reported functions of rice genes targeted by the miR164, R396, R530, R1846, and R1858 families indicated that these genes are associated with symptom development. These results provide insights into miRNA-mediated SRBSDV-rice interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    PubMed

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  8. Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia.

    PubMed

    Burniol-Figols, Anna; Varrone, Cristiano; Le, Simone Balzer; Daugaard, Anders Egede; Skiadas, Ioannis V; Gavala, Hariklia N

    2018-06-01

    Crude glycerol is an important by-product of the biodiesel industry, which can be converted into volatile fatty acids (VFA) and/or 1,3-propanediol (1,3-PDO) by fermentation. In this study, a selective conversion of VFA to polyhydroxyalkanoates (PHA) was attained while leaving 1,3-PDO in the supernatant by means of mixed microbial consortia selection strategies. The process showed highly reproducible results in terms of PHA yield, 0.99 ± 0.07 C mol PHA/C mol S (0.84 g COD PHA/g COD S), PHA content (76 ± 3.1 g PHA/100 g TSS) and 1,3-PDO recovery (99 ± 2.1%). The combined process had an ultimate yield from crude glycerol of 0.19 g COD PHA and 0.42 g COD 1,3-PDO per g of input COD. The novel enrichment strategy applied for selectively transforming fermentation by-products into a high value product (PHA) demonstrates the significance of the enrichment process for targeting specific bio-transformations and could potentially prove valuable for other biotechnological applications as well. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A sensitive synthetic reporter for visualizing cytokinin signaling output in rice.

    PubMed

    Tao, Jinyuan; Sun, Huwei; Gu, Pengyuan; Liang, Zhihao; Chen, Xinni; Lou, Jiajing; Xu, Guohua; Zhang, Yali

    2017-01-01

    Cytokinins play many essential roles in plant growth and development, mainly through signal transduction pathways. Although the cytokinin signaling pathway in rice has been clarified, no synthetic reporter for cytokinin signaling output has been reported for rice. The sensitive synthetic reporter two-component signaling sensor ( TCSn ) is used in the model plant Arabidopsis; however, whether the reporter reflects the cytokinin signaling output pattern in rice remains unclear. Early-cytokinin-responsive type-A OsRR-binding element (A/G)GAT(C/T) was more clustered in the 15 type-A OsRRs than in the 13 control genes. Quantitative polymerase chain reaction analysis showed that the relative expression of seven type-A OsRRs in roots and shoots was significantly induced by exogenous cytokinin application, and that of seven OsRRs , mainly in roots, was inhibited by exogenous auxin application. We constructed a transgenic rice plant harboring a beta-glucuronidase (GUS) driven by the synthetic promoter TCSn . TCSn::GUS was expressed in the meristem of germinated rice seed and rice seedlings. Furthermore, TCSn::GUS expression in rice seedlings was induced specifically by exogenous cytokinin application and decreased by exogenous auxin application. Moreover, no obvious reduction in GUS levels was observed after three generations of selfing of transgenic plants, indicating that TCSn::GUS is not subject to transgene silencing. We report here a robust and sensitive synthetic sensor for monitoring the transcriptional output of the cytokinin signaling network in rice.

  10. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222

    PubMed Central

    Olaya-Abril, Alfonso; Luque-Almagro, Víctor M; Manso, Isabel; Gates, Andrew J; Moreno-Vivián, Conrado; Richardson, David J

    2017-01-01

    Abstract Paracoccus denitrificans PD1222 accumulates short-length polyhydroxyalkanoates, poly(3-hydroxybutyrate), under nitrogen-deficient conditions. Polyhydroxybutyrate metabolism requires the 3-ketoacyl-CoA thiolase PhaA, the acetoacetyl-CoA dehydrogenase/reductase PhaB and the synthase PhaC for polymerization. Additionally, P. denitrificans PD1222 grows aerobically with nitrate as sole nitrogen source. Nitrate assimilation is controlled negatively by ammonium through the two-component NtrBC system. NtrB is a sensor kinase that autophosphorylates a histidine residue under low-nitrogen concentrations and, in turn, transfers a phosphoryl group to an aspartate residue of the response regulator NtrC protein, which acts as a transcriptional activator of the P. denitrificans PD1222 nasABGHC genes. The P. denitrificans PD1222 NtrB mutant was unable to use nitrate efficiently as nitrogen source when compared to the wild-type strain, and it also overproduced poly(3-hydroxybutyrate). Acetyl-CoA concentration in the P. denitrificans PD1222 NtrB mutant strain was higher than in the wild-type strain. The expression of the phaC gene was also increased in the NtrB mutant when compared to the wild-type strain. These results suggest that accumulation of poly(3-hydroxybutyrate) in the NtrB mutant strain of PD1222 responds to the high levels of acetyl-CoA that accumulate in the cytoplasm as consequence of its inability to efficiently use nitrate as nitrogen source. PMID:29228177

  11. The effects of triazophos applied to transgenic Bt rice on the nutritional indexes, Nlvg expression, and population growth of Nilaparvata lugens Stål under elevated CO₂.

    PubMed

    Ge, Lin-Quan; Sun, Yu-Cheng; Ouyang, Fang; Wu, Jin-Cai; Ge, Feng

    2015-02-01

    The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a typical pest in which population resurgence can be induced by insecticides. Warmer global temperatures, associated with anthropogenic climate change, are likely to have marked ecological effects on terrestrial ecosystems. However, the effects of elevated CO2 (eCO2) concentrations on the resurgence of N. lugens that have been treated with pesticides used for transgenic Bt rice cultivation are not fully understood. The present study investigated changes in the protein content, soluble sugar content, free amino acid level, vitellogenin (Nlvg) mRNA expression, and the population growth of N. lugens on transgenic Bt rice (TT51) following triazaophos foliar spray under conditions of eCO2. The results showed that the protein content in the fat bodies and ovaries of N. lugens adult females in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under ambient CO2 (aCO2) and was also higher than that in females feeding on the non-transgenic parent (MH63) under aCO2 at different days after emergence (DAEs). The soluble sugar content and free amino level of adult females in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under aCO2 and was also higher than in MH63 under aCO2 at 1 and 3 DAE. The Nlvg mRNA expression level of N. lugens adult females in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under aCO2 and was also higher than in MH63 under aCO2 at 1 and 3 DAE. The population number of N. lugens in TT51 treated with 40 ppm triazophos under eCO2 was significantly higher than under aCO2 and was also higher than in MH63 under aCO2. The present findings provide important information for integrated pest management with transgenic varieties and a better understanding of the resurgence mechanism of N. lugens under eCO2. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  13. Comparative transcript profiling of alloplasmic male-sterile lines revealed altered gene expression related to pollen development in rice (Oryza sativa L.).

    PubMed

    Hu, Jihong; Chen, Guanglong; Zhang, Hongyuan; Qian, Qian; Ding, Yi

    2016-08-05

    Cytoplasmic male sterility (CMS) is an ideal model for investigating the mitochondrial-nuclear interaction and down-regulated genes in CMS lines which might be the candidate genes for pollen development in rice. In this study, a set of rice alloplasmic sporophytic CMS lines was obtained by successive backcrossing of Meixiang B, with three different cytoplasmic types: D62A (D type), ZS97A (WA type) and XQZ-A (DA type). Using microarray, the anther transcript profiles of the three indica rice CMS lines revealed 622 differentially expressed genes (DEGs) in each of the three CMS lines compared with the maintainer line Meixiang B. GO and MapMan analysis indicated that these DEGs were mainly involved in lipid metabolism and cell wall organization. Compared with the gene expression of sporophytic and gametophytic CMS lines, 303 DEGs were identified and 56 of them were down-regulated in all the CMS lines of rice. These down-regulated DEGs in the CMS lines were found to be involved in tapetum or cell wall formation and their suppressed expression might be related to male sterility. Weighted gene co-expression network analysis (WGCNA) revealed that two modules were significantly associated with male sterility and many hub genes that were differentially expressed in the CMS lines. A large set of putative genes involved in anther development was identified in the present study. The results will give some information for the nuclear gene regulation by different cytoplasmic genotypes and provide a rich resource for further functional research on the pollen development in rice.

  14. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.

  15. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice

    PubMed Central

    2012-01-01

    Background WD40 proteins represent a large family in eukaryotes, which have been involved in a broad spectrum of crucial functions. Systematic characterization and co-expression analysis of OsWD40 genes enable us to understand the networks of the WD40 proteins and their biological processes and gene functions in rice. Results In this study, we identify and analyze 200 potential OsWD40 genes in rice, describing their gene structures, genome localizations, and evolutionary relationship of each member. Expression profiles covering the whole life cycle in rice has revealed that transcripts of OsWD40 were accumulated differentially during vegetative and reproductive development and preferentially up or down-regulated in different tissues. Under phytohormone treatments, 25 OsWD40 genes were differentially expressed with treatments of one or more of the phytohormone NAA, KT, or GA3 in rice seedlings. We also used a combined analysis of expression correlation and Gene Ontology annotation to infer the biological role of the OsWD40 genes in rice. The results suggested that OsWD40 genes may perform their diverse functions by complex network, thus were predictive for understanding their biological pathways. The analysis also revealed that OsWD40 genes might interact with each other to take part in metabolic pathways, suggesting a more complex feedback network. Conclusions All of these analyses suggest that the functions of OsWD40 genes are diversified, which provide useful references for selecting candidate genes for further functional studies. PMID:22429805

  16. Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions.

    PubMed

    Hooks, David O; Rehm, Bernd H A

    2015-10-01

    The polyhydroxyalkanoate (PHA) synthase catalyzes the synthesis of PHA and remains attached to the hydrophobic PHA inclusions it creates. Although this feature is actively exploited to generate functionalized biobeads via protein engineering, little is known about the structure of the PHA synthase. Here, the surface topology of Ralstonia eutropha PHA synthase was probed to inform rational protein engineering toward the production of functionalized PHA beads. Surface-exposed residues were detected by conjugating biotin to inclusion-bound PHA synthase and identifying the biotin-conjugated lysine and cysteine residues using peptide fingerprinting analysis. The identified sites (K77, K90, K139, C382, C459, and K518) were investigated as insertion sites for the generation of new protein fusions. Insertions of FLAG epitopes into exposed sites K77, K90, K139, and K518 were tolerated, retaining >65 % of in vivo activity. Sites K90, K139, and K518 were also tested by insertion of the immunoglobulin G (IgG)-binding domain (ZZ), successfully producing PHA inclusions able to bind human IgG in vitro. Although simultaneous insertions of the ZZ domain into two sites was permissive, insertion at all three lysine sites inactivated the synthase. The K90/K139 double ZZ insertion had the optimum IgG-binding capacity of 16 mg IgG/g wet PHA beads and could selectively purify the IgG fraction from human serum. Overall, this study identified surface-exposed flexible regions of the PHA synthase which either tolerate protein/peptide insertions or are critical for protein function. This further elucidates the structure and function of PHA synthase and provides new opportunities for generating functionalized PHA biobeads.

  17. A built-in mechanism to mitigate the spread of insect-resistance and herbicide-tolerance transgenes into weedy rice populations.

    PubMed

    Liu, Chengyi; Li, Jingjing; Gao, Jianhua; Shen, Zhicheng; Lu, Bao-Rong; Lin, Chaoyang

    2012-01-01

    The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m(2), which is approximately the recommended dose for the field application to control common rice weeds, killed all F(2) plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401). Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations.

  18. Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal.

    PubMed

    Markolf, Keith L; Jackson, Steven R; McAllister, David R

    2012-02-01

    Tears of the medial meniscus posterior horn attachment (PHA) occur clinically, and an anterior cruciate ligament (ACL)-deficient knee may be more vulnerable to this injury. The PHA forces from applied knee loadings will increase after removal of the ACL. Controlled laboratory study. A cap of bone containing the medial meniscus PHA was attached to a load cell that measured PHA tensile force. Posterior horn attachment forces were recorded before and after ACL removal during anteroposterior (AP) laxity testing at ±200 N and during passive knee extension tests with 5 N·m tibial torque and varus-valgus moment. Selected tests were also performed with 500 N joint load. For AP tests with no joint load, ACL removal increased laxity between 0° and 90° and increased PHA force generated by applied anterior tibial force between 30° and 90°. For AP tests with an intact ACL, application of joint load approximately doubled PHA forces. Anteroposterior testing of ACL-deficient knees was not possible with joint load because of bone cap failures from high PHA forces. Removal of the ACL during knee extension tests under joint load significantly increased PHA forces between 20° and 90° of flexion. For unloaded tests with applied tibial torque and varus-valgus moment, ACL removal had no significant effect on PHA forces. Applied anterior tibial force and external tibial torque were loading modes that produced relatively high PHA forces, presumably by impingement of the medial femoral condyle against the medial meniscus posterior horn rim. Under joint load, an ACL-deficient knee was particularly susceptible to PHA injury from applied anterior tibial force. Because tensile forces developed in the PHA are also borne by meniscus tissue near the attachment site, loading mechanisms that produce high PHA forces could also produce complete or partial radial tears near the posterior horn, a relatively common clinical observation.

  19. Data on partial polyhydroxyalkanoate synthase genes (phaC) mined from Aaptos aaptos marine sponge-associated bacteria metagenome.

    PubMed

    Amelia, Tan Suet May; Amirul, Al-Ashraf Abdullah; Bhubalan, Kesaven

    2018-02-01

    We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).

  20. Carbon dioxide sequestration by chemolithotrophic oleaginous bacteria for production and optimization of polyhydroxyalkanoate.

    PubMed

    Kumar, Manish; Gupta, Asmita; Thakur, Indu Shekhar

    2016-08-01

    The present work involved screening of a previously reported carbon concentrating oleaginous bacterial strain Serratia sp. ISTD04 for production of PHA and optimization of process parameters for enhanced PHA and biomass generation. The selected bacterial strain was screened for PHA production based on Nile red staining followed by visualization under fluorescence microscope. Spectrofluorometric measurement of Nile red fluorescence of the bacterial culture was also done. Confirmatory analysis of PHA accumulation by GC-MS revealed the presence of 3-hydroxyvalerate. Detection of characteristic peaks in the FT-IR spectrum further confirmed the production of PHA by the bacterium. Response Surface Methodology was used for optimization of pH and carbon sources' concentrations for higher PHA production. There was almost a 2 fold increase in the production of PHA following optimization as compared to un-optimized condition. The study thus establishes the production of PHA by Serratia sp. ISTD04. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Characterization of medium-chain-length polyhydroxyalkanoate biosynthesis by Pseudomonas mosselii TO7 using crude glycerol.

    PubMed

    Liu, Ming-Hsu; Chen, Yi-Jr; Lee, Chia-Yin

    2018-03-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters produced by microorganisms that are environmentally friendly. PHAs can be used to replace traditional plastic to reduce environmental pollution in various fields. PHA production costs are high because PHA must be produced from a carbon substrate. The purpose of this study was to find the strain that can used the BDF by-product as the sole carbon source to produce high amounts of medium-chain-length PHA. Three isolates were evaluated for potential PHA production by using biodiesel-derived crude glycerol as the sole carbon source. Among them, Pseudomonas mosselii TO7 yielded high PHA content. The PHA produced from P. mosselii TO7 were medium-chain-length-PHAs. The PHA content of 48% cell dry weight in 48 h with a maximum PHA productivity of 13.16 mg PHAs L -1  h -1 . The narrow polydispersity index value of 1.3 reflected the homogeneity of the polymer chain, which was conducive to industrial applications.

  3. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator.

    PubMed

    Passanha, Pearl; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J; Esteves, Sandra R

    2014-07-01

    External stress factors in the form of ionic species or temperature increases have been shown to produce a stress response leading to enhanced PHA production. The effect of five different NaCl concentrations, namely 3.5, 6.5, 9, 12 and 15 g/l NaCl on PHA productivity using Cupriavidus necator has been investigated alongside a control (no added NaCl). A dielectric spectroscopy probe was used to measure PHA accumulation online in conjunction with the chemical offline analysis of PHA. The highest PHA production was obtained with the addition of 9 g/l NaCl, which yielded 30% higher PHA than the control. Increasing the addition of NaCl to 15 g/l was found to inhibit the production of PHA. NaCl addition can therefore be used as a simple, low cost, sustainable, non toxic and non reactive external stress strategy for increasing PHA productivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice.

    PubMed

    Huo, Chenmin; Zhang, Baowen; Wang, Hui; Wang, Fawei; Liu, Meng; Gao, Yingjie; Zhang, Wenhua; Deng, Zhiping; Sun, Daye; Tang, Wenqiang

    2016-04-01

    To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.).

    PubMed

    Takakura, Y; Ito, T; Saito, H; Inoue, T; Komari, T; Kuwata, S

    2000-04-01

    A flower-predominant cDNA for a gene, termed OsChia 1;175, was isolated from a cDNA library of rice pistils. Northern blot and RT-PCR analyses revealed that the OsChia 1;175 gene is highly expressed in floral organs (pistils, stamens and lodicules at the heading stage) but not or at an extremely low level in vegetative organs. OsChia 1;175 encodes a protein that consists of 340 amino acid residues, and the putative mature protein shows 52% to 63% amino acid identity to class I chitinases of rice or other plants. The phylogenetic tree shows that the OsChia 1;175 protein is a new type of plant class I chitinase in rice. The expression of OsChia 1;175 in vegetative organs is not induced by several chemicals, UV, and wounding. The soluble putative mature OsChia 1;175 protein expressed in Escherichia coli exhibited chitinase activity in the assay with colloidal chitin as a substrate. Genomic Southern analysis revealed that the OsChia 1;175 gene was organized as a low-copy gene family. The rice genomic library was screened and a genome clone corresponding to OsChia 1;175 was isolated. The transcription start sites of the OsChia 1;175 gene were mapped by primer extension analysis. The 1.2 kb putative promoter region of the OsChia 1;175 gene was fused to the GUS (beta-glucuronidase) gene, and this chimeric gene was introduced to rice by Agrobacterium-mediated transformation. The flower-predominant gene expression was identified also in the transgenic rice plants. The high promoter activity was detected in the stigmas, styles, stamens and lodicules in transgenic plants. The possible functions of OsChia 1;175 are discussed.

  6. Transgenic elite indica rice plants expressing CryIAc ∂-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas)

    PubMed Central

    Nayak, Pritilata; Basu, Debabrata; Das, Sampa; Basu, Asitava; Ghosh, Dipankar; Ramakrishnan, Neeliyath A.; Ghosh, Maloy; Sen, Soumitra K.

    1997-01-01

    Generation of insect-resistant, transgenic crop plants by expression of the insecticidal crystal protein (ICP) gene of Bacillus thuringiensis (Bt) is a standard crop improvement approach. In such cases, adequate expression of the most appropriate ICP against the target insect pest of the crop species is desirable. It is also considered advantageous to generate Bt-transgenics with multiple toxin systems to control rapid development of pest resistance to the ICP. Larvae of yellow stem borer (YSB), Scirpophaga incertulas, a major lepidopteran insect pest of rice, cause massive losses of rice yield. Studies on insect feeding and on the binding properties of ICP to brush border membrane receptors in the midgut of YSB larvae revealed that cryIAb and cryIAc are two individually suitable candidate genes for developing YSB-resistant rice. Programs were undertaken to develop Bt-transgenic rice with these ICP genes independently in a single cultivar. A cryIAc gene was reconstructed and placed under control of the maize ubiquitin 1 promoter, along with the first intron of the maize ubiquitin 1 gene, and the nos terminator. The gene construct was delivered to embryogenic calli of IR64, an elite indica rice cultivar, using the particle bombardment method. Six highly expressive independent transgenic ICP lines were identified. Molecular analyses and insect-feeding assays of two such lines revealed that the transferred synthetic cryIAc gene was expressed stably in the T2 generation of these lines and that the transgenic rice plants were highly toxic to YSB larvae and lessened the damage caused by their feeding. PMID:9122157

  7. Effects of exogenous plant growth regulator abscisic acid-induced resistance in rice on the expression of vitellogenin mRNA in Nilaparvata lugens (Hemiptera: Delphacidae) adult females.

    PubMed

    Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew

    2014-01-01

    Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin (Nlvg) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants' defenses on phloem-feeding insects. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Evolution of a web-based, prototype Personal Health Application for diabetes self-management.

    PubMed

    Fonda, Stephanie J; Kedziora, Richard J; Vigersky, Robert A; Bursell, Sven-Erik

    2010-10-01

    Behaviors carried out by the person with diabetes (e.g., healthy eating, physical activity, judicious use of medication, glucose monitoring, coping and problem-solving, regular clinic visits, etc.) are of central importance in diabetes management. To assist with these behaviors, we developed a prototype PHA for diabetes self-management that was based on User-Centered Design principles and congruent with the anticipatory vision of Project Health Design (PHD). This article presents aspects of the prototype PHA's functionality as conceived under PHD and describes modifications to the PHA now being undertaken under new sponsorship, in response to user feedback and timing tests we have performed. In brief, the prototype Personal Health Application (PHA) receives data on the major diabetes management domains from a Personal Health Record (PHR) and analyzes and provides feedback based on clinically vetted educational content. The information is presented within "gadgets" within a portal-based website. The PHR used for the first implementation was the Common Platform developed by PHD. Key changes include a re-conceptualization of the gadgets by topic areas originally defined by the American Association of Diabetes Educators, a refocusing on low-cost approaches to diabetes monitoring and data entry, and synchronization with a new PHR, Microsoft® HealthVault™. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Crystal structure analysis, covalent docking, and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase.

    PubMed

    Kellici, Tahsin F; Mavromoustakos, Thomas; Jendrossek, Dieter; Papageorgiou, Anastassios C

    2017-07-01

    An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high-resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Natural variations in OsγTMT contribute to diversity of the α-tocopherol content in rice.

    PubMed

    Wang, Xiao-Qiang; Yoon, Min-Young; He, Qiang; Kim, Tae-Sung; Tong, Wei; Choi, Bu-Woong; Lee, Young-Sang; Park, Yong-Jin

    2015-12-01

    Tocopherols and tocotrienols, collectively known as tocochromanols, are lipid-soluble molecules that belong to the group of vitamin E compounds. Among them, α-tocopherol (αΤ) is one of the antioxidants with diverse functions and benefits for humans and animals. Thus, understanding the genetic basis of these traits would be valuable to improve nutritional quality by breeding in rice. Genome-wide association study (GWAS) has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. To discover the genes or QTLs underlying the naturally occurring variations of αΤ content in rice, we performed GWAS using 1.44 million high-quality single-nucleotide polymorphisms acquired from re-sequencing of 137 accessions from a diverse rice core collection. Thirteen candidate genes were found across 2-year phenotypic data, among which gamma-tocopherol methyltransferase (OsγTMT) was identified as the major factor responsible for the αΤ content among rice accessions. Nucleotide variations in the coding region of OsγTMT were significantly associated with the αΤ content variations, while nucleotide polymorphisms in the promoter region of OsγTMT also could partly demonstrate the correlation with αΤ content variations, according to our RNA expression analyses. This study provides useful information for genetic factors underlying αΤ content variations in rice, which will significantly contribute the research on αΤ biosynthesis mechanisms and αΤ improvement of rice.

  11. 24 CFR 902.22 - Physical inspection of PHA projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...

  12. 24 CFR 902.22 - Physical inspection of PHA projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...

  13. 24 CFR 902.22 - Physical inspection of PHA projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...

  14. 24 CFR 902.22 - Physical inspection of PHA projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Physical inspection of PHA projects... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM Physical Condition Indicator § 902.22 Physical inspection of PHA projects. (a) The inspection, generally. The PHA's score for the physical condition...

  15. Comparative Transcriptome Analysis of Shoots and Roots of TNG67 and TCN1 Rice Seedlings under Cold Stress and Following Subsequent Recovery: Insights into Metabolic Pathways, Phytohormones, and Transcription Factors

    PubMed Central

    Yang, Yun-Wei; Chen, Hung-Chi; Jen, Wei-Fu; Liu, Li-Yu; Chang, Men-Chi

    2015-01-01

    Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive) in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA)-, polyamine-, auxin- and jasmonic acid (JA)-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice during cold stress and recovery. The cross-talk of hormones may play an essential role in the ability of rice plants to cope with cold stress. PMID:26133169

  16. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    PubMed

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.

  17. Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties.

    PubMed

    Pradhan, Subrata; Chakraborty, Anirban; Sikdar, Narattam; Chakraborty, Saikat; Bhattacharyya, Jagannath; Mitra, Joy; Manna, Anulina; Dutta Gupta, Snehasish; Sen, Soumitra Kumar

    2016-10-01

    Genetically engineered rice lines with broad insecticidal properties against major lepidopteran pests were generated using a synthetic, truncated form of vegetative insecticidal protein (Syn vip3BR) from Bacillus thuringiensis. The selectable marker gene and the redundant transgene(s) were eliminated through Cre/ lox mediated recombination and genetic segregation to make consumer friendly Bt -rice. For sustainable resistance against lepidopteran insect pests, chloroplast targeted synthetic version of bioactive core component of a vegetative insecticidal protein (Syn vip3BR) of Bacillus thuringiensis was expressed in rice under the control of green-tissue specific ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene promoter. The transgenic plants (in Oryza sativa indica Swarna cultivar) showed high insect mortality rate in vitro against major rice pests, yellow stem borer (Scirpophaga incertulas), rice leaf folder (Cnaphalocrocis medinalis) and rice horn caterpillar (Melanitis leda ismene) in T1 generation, indicating insecticidal potency of Syn vip3BR. Under field conditions, the T1 plants showed considerable resistance against leaf folders and stem borers. The expression cassette (vip-lox-hpt-lox) as well as another vector with chimeric cre recombinase gene under constitutive rice ubiquitin1 gene promoter was designed for the elimination of selectable marker hygromycin phosphotransferase (hptII) gene. Crossing experiments were performed between T1 plants with single insertion site of vip-lox-hpt-lox T-DNA and one T1 plant with moderate expression of cre recombinase with linked bialaphos resistance (syn bar) gene. Marker gene excision was achieved in hybrids with up to 41.18 % recombination efficiency. Insect resistant transgenic lines, devoid of selectable marker and redundant transgene(s) (hptII + cre-syn bar), were established in subsequent generation through genetic segregation.

  18. Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development.

    PubMed

    Wu, Ya; Yang, Liyu; Cao, Aqin; Wang, Jianbo

    2015-01-01

    The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.

  19. Characterization of a novel rice gene OsATX and modulation of its expression by components of the stress signalling pathways.

    PubMed

    Agrawal, Ganesh K; Rakwal, Randeep; Jwa, N-S; Agrawal, Vishwanath P

    2002-09-01

    In our search to identify gene(s) involved in the rice self-defense responses, we cloned a novel rice (Oryza sativa L. cv. Nipponbare) gene, OsATX, a single copy gene, from the JA treated rice seedling leaves cDNA library. This gene encodes a 69 amino acid polypeptide with a predicted molecular mass of 7649.7 and a pI of 5.6. OsATX was responsive to cutting (wounding by cutting the excised leaf), over its weak constitutive expression in the healthy leaves. The critical signalling molecules, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and hydrogen peroxide, together with protein phosphatase inhibitors, effectively up-regulated the OsATX expression with time, over the excised leaf cut control, whereas ethylene had no affect. Furthermore, copper, a heavy metal, also up-regulated OsATX expression. Moreover, induced expression of OsATX mRNA was influenced by light signal(s), and showed a requirement for de novo synthesized protein factors. Additionally, co-application of either JA or ABA with SA drastically suppressed the induced OsATX mRNA level. Finally, the blast pathogen, Magnaporthe grisea, triggered OsATX mRNA accumulation. These results strongly suggest a function/role(s) for OsATX in defense/stress responses in rice.

  20. Comparative Transcriptomic Analysis in Paddy Rice under Storage and Identification of Differentially Regulated Genes in Response to High Temperature and Humidity.

    PubMed

    Zhao, Chanjuan; Xie, Junqi; Li, Li; Cao, Chongjiang

    2017-09-20

    The transcriptomes of paddy rice in response to high temperature and humidity were studied using a high-throughput RNA sequencing approach. Effects of high temperature and humidity on the sucrose and starch contents and α/β-amylase activity were also investigated. Results showed that 6876 differentially expressed genes (DEGs) were identified in paddy rice under high temperature and humidity storage. Importantly, 12 DEGs that were downregulated fell into the "starch and sucrose pathway". The quantitative real-time polymerase chain reaction assays indicated that expression of these 12 DEGs was significantly decreased, which was in parallel with the reduced level of enzyme activities and the contents of sucrose and starch in paddy rice stored at high temperature and humidity conditions compared to the control group. Taken together, high temperature and humidity influence the quality of paddy rice at least partially by downregulating the expression of genes encoding sucrose transferases and hydrolases, which might result in the decrease of starch and sucrose contents.

  1. In vitro synthesis of polyhydroxyalkanoate (PHA) incorporating lactate (LA) with a block sequence by using a newly engineered thermostable PHA synthase from Pseudomonas sp. SG4502 with acquired LA-polymerizing activity.

    PubMed

    Tajima, Kenji; Han, Xuerong; Satoh, Yasuharu; Ishii, Ayako; Araki, Yuji; Munekata, Masanobu; Taguchi, Seiichi

    2012-04-01

    Recently, we succeeded in isolating a thermotolerant bacterium, Pseudomonas sp. SG4502, which is capable of accumulating polyhydroxyalkanoate (PHA) even at 55 °C, as a source of thermostable enzymes. In this study, we cloned a pha locus from the bacterium and identified two genes encoding PHA synthases (PhaC1(SG) and PhaC2(SG)). Two mutations, Ser324Thr and Gln480Lys, corresponding to those of a lactate (LA)-polymerizing enzyme (LPE) from mesophilic Pseudomonas sp. 61-3 were introduced into PhaC1(SG) to evaluate the potential of the resulting protein as a "thermostable LPE". The mutated PhaC1(SG) [PhaC1(SG)(STQK)] showed high thermal stability in synthesizing P(LA-co-3HB) in an in vitro reaction system under a range of high temperatures. Requirement of 3HBCoA as a priming unit for LA polymerization by the LPE has been suggested in both of the in vitro and in vivo experiments. Based on the finding, the PhaC1(SG)(STQK)-mediated synthesis of a LA-based copolymer with a block sequence was achieved in the in vitro system by sequential feeding of the corresponding two substrates. This in vitro reaction system using the thermostable LPE provides us with a versatile way to synthesize the various types of LA-based copolymers with desired sequence patterns, random or block, depending on the way of supplying hydroxyalkanoates (mixed or sequential feeding).

  2. Purification, crystallization and preliminary X-ray crystallographic analysis of rice Bowman–Birk inhibitor from Oryza sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yi-Hung; Li, Hsin-Tai; Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan

    2006-06-01

    Rice Bowman–Birk inhibitor was expressed and crystallized. Bowman–Birk inhibitors (BBIs) are cysteine-rich proteins with inhibitory activity against proteases that are widely distributed in monocot and dicot species. The expression of rice BBI from Oryza sativa is up-regulated and induced by pathogens or insects during germination of rice seeds. The rice BBI (RBTI) of molecular weight 15 kDa has been crystallized using the hanging-drop vapour-diffusion method. According to the diffraction of rice BBI crystals at a resolution of 2.07 Å, the unit cell belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.37, b = 96.69, cmore » = 100.36 Å. Preliminary analysis indicates four BBI molecules in an asymmetric unit, with a solvent content of 58.29%.« less

  3. Safety assessment of lepidopteran insect-protected transgenic rice with cry2A* gene.

    PubMed

    Zou, Shiying; Huang, Kunlun; Xu, Wentao; Luo, Yunbo; He, Xiaoyun

    2016-04-01

    Numerous genetically modified (GM) crops expressing proteins for insect resistance have been commercialized following extensive testing demonstrating that the foods obtained from them are as safe as that obtained from their corresponding non-GM varieties. In this paper, we report the outcome of safety studies conducted on a newly developed insect-resistant GM rice expressing the cry2A* gene by a subchronic oral toxicity study on rats. GM rice and non-GM rice were incorporated into the diet at levels of 30, 50, and 70% (w/w), No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. These results demonstrate that the GM rice with cry2A* gene is as safe for food as conventional non-GM rice.

  4. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress.

    PubMed

    Zhao, Qian; Zhou, Lujian; Liu, Jianchao; Du, Xiaoxia; Asad, Muhammad-Asad-Ullah; Huang, Fudeng; Pan, Gang; Cheng, Fangmin

    2018-01-01

    High temperature (HT) at meiosis stage is one of most important environment constraint affecting spikelet fertility and rice yield. In this paper, the effects of HT exposure at meiosis stage on the ROS (reactive oxygen species) accumulation, various superoxide dismutase (SOD, EC1.15.1.11) isozymes in developing anther, and its relationship with HT-induced decline in pollen viability and floret fertility were investigated by using four rice cultivars differing in heat tolerance under well-controlled climatic condition. Results showed that HT exposure significantly increased ROS level and malondialdehyde (MDA) content in rice anther, and this occurrence was strongly responsible for the HT-induced decline in pollen viability and harmful effect of HT adversity on floret fertility. However, the increased extent of ROS concentration in rice anther under HT exposure was greatly variable, depending on both the intensity and duration of HT exposure and different rice cultivars used. The SOD and CAT activities of HT-sensitive cultivars decreased more profoundly than those of HT-tolerant cultivars under the same HT regimes. Among various types of SOD enzymes, Cu/Zn-SODa expressed highly in rice anther and responded sensitively to HT exposure, while Cu/Zn-SODb expressed weakly in rice anther and preferentially in rice leaves. HT exposure suppressed the expression of Cu/Zn-SODa in developing anther, which was closely associated with the down-regulated transcripts of cCu/Zn-SOD1 gene. Hence, Cu/Zn-SODa may play a central role in the regulation of total SOD activity and ROS detoxification in rice anther as affected by HT exposure at meiosis stage. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Efficacy of oral immunotherapy with a rice-based edible vaccine containing hypoallergenic Japanese cedar pollen allergens for treatment of established allergic conjunctivitis in mice.

    PubMed

    Fukuda, Ken; Ishida, Waka; Harada, Yosuke; Wakasa, Yuhya; Takagi, Hidenori; Takaiwa, Fumio; Fukushima, Atsuki

    2018-01-01

    We have previously shown that prophylactic oral administration of transgenic rice seeds expressing hypoallergenic modified antigens suppressed the development of allergic conjunctivitis induced by Japanese cedar pollen. We have now investigated the efficacy of oral immunotherapy with such transgenic rice for established allergic conjunctivitis in mice. BALB/c mice were sensitized with two intraperitoneal injections of Japanese cedar pollen in alum, challenged with pollen in eyedrops, and then fed for 16 days with transgenic rice seeds expressing modified Japanese cedar pollen allergens Cry j 1 and Cry j 2 or with nontransgenic rice seeds as a control. They were then challenged twice with pollen in eyedrops, with clinical signs being evaluated at 15 min after the first challenge and the eyes, blood, spleen, and lymph nodes being isolated at 24 h after the second challenge. The number of eosinophils in the conjunctiva and the clinical score for conjunctivitis were both significantly lower in mice fed the transgenic rice than in those fed nontransgenic rice. Oral vaccination with transgenic rice seeds also resulted in a significant increase in the production of IFN-γ by splenocytes, whereas it had no effect on the number of CD4 + CD25 + Foxp3 + regulatory T cells in the spleen or submandibular or mesenteric lymph nodes. Oral administration of transgenic rice seeds expressing hypoallergenic allergens ameliorated allergic conjunctivitis in the established setting. Such a rice-based edible vaccine is potentially both safe and effective for oral immunotherapy in individuals with allergic conjunctivitis. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  6. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa

    PubMed Central

    2010-01-01

    Background Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots. Results We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. Conclusions Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination. PMID:20507633

  7. The RhoGAP SPIN6 Associates with SPL11 and OsRac1 and Negatively Regulates Programmed Cell Death and Innate Immunity in Rice

    PubMed Central

    Liu, Jinling; Park, Chan Ho; He, Feng; Nagano, Minoru; Wang, Mo; Bellizzi, Maria; Zhang, Kai; Zeng, Xiaoshan; Liu, Wende; Ning, Yuese; Kawano, Yoji; Wang, Guo-Liang

    2015-01-01

    The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity. PMID:25658451

  8. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

    PubMed

    Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo

    2014-09-10

    Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Comparative Transcriptome Analyses of Gene Expression Changes Triggered by Rhizoctonia solani AG1 IA Infection in Resistant and Susceptible Rice Varieties.

    PubMed

    Zhang, Jinfeng; Chen, Lei; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Cheng, Yuanzhi; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2017-01-01

    Rice sheath blight, caused by Rhizoctonia solani , is one of the most devastating diseases for stable rice production in most rice-growing regions of the world. Currently, studies of the molecular mechanism of rice sheath blight resistance are scarce. Here, we used an RNA-seq approach to analyze the gene expression changes induced by the AG1 IA strain of R. solani in rice at 12, 24, 36, 48, and 72 h. By comparing the transcriptomes of TeQing (a moderately resistant cultivar) and Lemont (a susceptible cultivar) leaves, variable transcriptional responses under control and infection conditions were revealed. From these data, 4,802 differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses suggested that most DEGs and related metabolic pathways in both rice genotypes were common and spanned most biological activities after AG1 IA inoculation. The main difference between the resistant and susceptible plants was a difference in the timing of the response to AG1 IA infection. Photosynthesis, photorespiration, and jasmonic acid and phenylpropanoid metabolism play important roles in disease resistance, and the relative response of disease resistance-related pathways in TeQing leaves was more rapid than that of Lemont leaves at 12 h. Here, the transcription data include the most comprehensive list of genes and pathway candidates induced by AG1 IA that is available for rice and will serve as a resource for future studies into the molecular mechanisms of the responses of rice to AG1 IA.

  10. Food supplementation with rice bran enzymatic extract prevents vascular apoptosis and atherogenesis in ApoE-/- mice.

    PubMed

    Perez-Ternero, C; Herrera, M D; Laufs, U; Alvarez de Sotomayor, M; Werner, C

    2017-02-01

    Atherosclerosis is associated with reduced mononuclear cell (MNC) telomere length, and senescent cells have been detected in atherosclerotic plaques. Rice bran is a source of γ-oryzanol, phytosterols and tocols with potential lipid-lowering, antioxidant and anti-inflammatory activities. Here, we tested the hypothesis that rice bran enzymatic extract (RBEE) impacts on apoptosis, telomere length and atherogenesis in mice. Seven-week-old male ApoE-/- mice were fed high-fat diet (HFD) or isocaloric HFD supplemented with 5 % (w/w) RBEE for 23 weeks. Wild-type mice of the same age were kept under standard diet as controls. RBEE treatment reduced total cholesterol (19.24 ± 1.63 vs 24.49 ± 1.71 mmol/L) and triglycerides (1.13 ± 0.18 vs 1.75 ± 0.22 mmol/L) and augmented HDL-cholesterol (1.86 ± 0.20 vs 1.07 ± 0.20 mmol/L). RBEE attenuated macrophage infiltration by 56.69 ± 4.65 % and plaque development (7737 ± 836 vs 12,040 ± 1001 μm 2 ) in the aortic sinus. In the aorta, RBEE treatment reduced expression of the apoptosis pathway components p16, p53 and bax/bcl-2 ratio. RBEE prevented apoptosis of aortic endothelial cells (2.81 ± 0.71-1.14 ± 0.35 apoptotic nuclei/ring for ApoE-/- HFD and ApoE-/- HFD 5 % RBEE, respectively). In contrast, MNC of RBEE-fed mice exhibited enhanced apoptosis marker expression with increased p53 and bax/bcl-2 protein levels. Compared to WT, ApoE-/- mice on HFD were characterized by significant telomere shortening in aorta (11 ± 2 %) and MNC (73 ± 7 %), which was reduced by supplementation with RBEE (aorta: 40 ± 7 %; MNC: 105 ± 10 %). Expression of telomere repeat-binding factor 2 was increased in RBEE-fed mice. Long-term food supplementation with RBEE lowers cholesterol and prevents atherosclerotic plaque development in ApoE-/- mice. Differential regulation of vascular and MNC apoptosis and senescence were identified as potential mechanisms.

  11. OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.).

    PubMed

    Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng

    2014-01-01

    Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.

  12. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    PubMed Central

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant’Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-01-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity. PMID:26610564

  13. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    PubMed

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.

  14. Metaphase yields from staphylococcal enterotoxin A stimulated peripheral blood lymphocytes of unirradiated and irradiated aged rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Hill, F. S.; Cox, A. B.; Salmon, Y. L.; Cantu, A. O.; Lucas, J. N.

    1994-01-01

    The mitogen phytohemagglutinin (PHA) works well in both human and cynomolgus monkey (Macaca fascicularis) lymphocyte cultures to stimulate T cell proliferation. T cells from rhesus monkeys (Macaca mulatta) are less responsive than human cells, producing few metaphases when thousands are required, e.g. in biological dosimetry studies. We show that staphylococcal enterotoxin A (SEA), one of the most potent mitogens known, at a concentration of 0.5 microgram/ml stimulated peripheral lymphocytes to grow with a mitotic index (MI) averaging 0.13 metaphases/cell in old, irradiated rhesus macaques. This was significantly greater (p < 0.001) than that produced by PHA (MI < 0.01) in lymphocytes from the same animals. Whole blood was cultured for 96, 120 and 144 h for five irradiated individuals and for two controls. All cells cultured with SEA produced a high MI with a peak response at 120 h whereas the same cultures showed low MI for each PHA stimulated culture.

  15. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed

    PubMed Central

    2011-01-01

    Background High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. Results Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. Conclusions Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA. PMID:21324151

  16. Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper

    PubMed Central

    Dong, Yan; Fang, Xianping; Yang, Yong; Xue, Gang-Ping; Chen, Xian; Zhang, Weilin; Wang, Xuming; Yu, Chulang; Zhou, Jie; Mei, Qiong; Fang, Wang; Yan, Chengqi; Chen, Jianping

    2017-01-01

    The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH) is one of the major destructive pests of rice (Oryza sativa L.). Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant) and 02428 (SBPH-susceptible), were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05) at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs) showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD) and glutathione (GSH) were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT) activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA)-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and physiological responses to SBPH infestation. PMID:29089949

  17. Cloning and characterization of an RNase-related protein gene preferentially expressed in rice stems.

    PubMed

    Wei, Jun-Ya; Li, An-Ming; Li, Yin; Wang, Jing; Liu, Xiao-Bin; Liu, Liang-Shi; Xu, Zeng-Fu

    2006-04-01

    RNase-related proteins (RRPs) are S- and S-like RNase homologs lacking the active site required for RNase activity. Here we describe the cloning and characterization of the rice (Oryza sativa) RRP gene (OsRRP). A single copy of OsRRP occurs in the rice genome. OsRRP contains three introns and an open reading frame encoding 252 amino acids, with the replacement of two histidines involved in the active site of RNase by lysine and tyrosine respectively. OsRRP is preferentially expressed in stems of wild-type rice and is significantly down-regulated in an increased tillering dwarf mutant ext37.

  18. Rice bran protein hydrolysates prevented interleukin-6- and high glucose-induced insulin resistance in HepG2 cells.

    PubMed

    Boonloh, Kampeebhorn; Kukongviriyapan, Upa; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Senggunprai, Laddawan; Prawan, Auemduan; Thawornchinsombut, Supawan; Kukongviriyapan, Veerapol

    2015-02-01

    Rice bran, which is a byproduct of rice milling process, contains various nutrients and biologically active compounds. Rice bran protein hydrolysates have various pharmacological activities such as antidiabetic and antidyslipidemic effects. However, there are limited studies about the mechanisms of rice bran protein hydrolysates (RBP) on insulin resistance and lipid metabolism. RBP used in this study were prepared from Thai Jasmine rice. When HepG2 cells were treated with IL-6, the IRS-1 expression and Akt phosphorylation were suppressed. This effect of IL-6 was prevented by RBP in association with inhibition of STAT3 phosphorylation and SOCS3 expression. RBP could increase the phospho-AMPK levels and inhibit IL-6- or high glucose-induced suppression of AMPK and Akt activation. High glucose-induced dysregulation of the expression of lipogenic genes, including SREBP-1c, FASN and CPT-1, was normalized by RBP treatment. Moreover, impaired glucose utilization in insulin resistant HepG2 cells was significantly alleviated by concurrent treatment with RBP. Our results suggested that RBP suppresses inflammatory cytokine signaling and activates AMPK, and thereby these effects may underlie the insulin sensitizing effect.

  19. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    PubMed Central

    2009-01-01

    Background Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion. PMID:20034395

  20. A Built-In Mechanism to Mitigate the Spread of Insect-Resistance and Herbicide-Tolerance Transgenes into Weedy Rice Populations

    PubMed Central

    Liu, Chengyi; Li, Jingjing; Gao, Jianhua; Shen, Zhicheng; Lu, Bao-Rong; Lin, Chaoyang

    2012-01-01

    Background The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. Methodology/Principal Findings An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m2, which is approximately the recommended dose for the field application to control common rice weeds, killed all F2 plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401). Conclusions/Significance Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations. PMID:22359609

  1. Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge.

    PubMed

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2018-05-01

    In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR ( 1 H and 13 C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Identification of a rice metal tolerance protein OsMTP11 as a manganese transporter

    PubMed Central

    Zhang, Mei; Liu, Baoxiu

    2017-01-01

    Metal tolerance proteins (MTPs) are a gene family of cation efflux transporters that occur widely in plants and might serve an essential role in metal homeostasis and tolerance. Our research describes the identification, characterization, and localization of OsMTP11, a member of the MTP family from rice. OsMTP11 was expressed constitutively and universally in different tissues in rice plant. Heterologous expression in yeast showed that OsMTP11 complemented the hypersensitivity of mutant strains to Mn, and also complemented yeast mutants to other metals, including Co and Ni. Real time RT-PCR analysis demonstrated OsMTP11 expression was substantially enhanced following 4 h under Cd, Zn, Ni, and Mn treatments, suggesting possible roles of OsMTP11 involvement in heavy metal stress responses. Promoter analysis by transgenic assays with GUS as a reporter gene and mRNA in situ hybridization experiments showed that OsMTP11 was expressed specifically in conducting tissues in rice. DNA methylation assays of genomic DNA in rice treated with Cd, Zn, Ni, and Mn revealed that decreased DNA methylation levels were present in the OsMTP11 promoter region, which was consistent with OsMTP11 induced-expression patterns resulting from heavy metal stress. This result suggested that DNA methylation is one of major factors regulating expression of OsMTP11 through epigenetic mechanisms. OsMTP11 fused to green fluorescent protein (GFP) localized to the entire onion epidermal cell cytoplasm, while vacuolar membrane exhibited increased GFP signals, consistent with an OsMTP11 function in cation sequestration. Our results indicated that OsMTP11 might play vital roles in Mn and other heavy metal transportation in rice. PMID:28394944

  3. Genome-Wide Survey on Genomic Variation, Expression Divergence, and Evolution in Two Contrasting Rice Genotypes under High Salinity Stress

    PubMed Central

    Jiang, Shu-Ye; Ma, Ali; Ramamoorthy, Rengasamy; Ramachandran, Srinivasan

    2013-01-01

    Expression profiling is one of the most important tools for dissecting biological functions of genes and the upregulation or downregulation of gene expression is sufficient for recreating phenotypic differences. Expression divergence of genes significantly contributes to phenotypic variations. However, little is known on the molecular basis of expression divergence and evolution among rice genotypes with contrasting phenotypes. In this study, we have implemented an integrative approach using bioinformatics and experimental analyses to provide insights into genomic variation, expression divergence, and evolution between salinity-sensitive rice variety Nipponbare and tolerant rice line Pokkali under normal and high salinity stress conditions. We have detected thousands of differentially expressed genes between these two genotypes and thousands of up- or downregulated genes under high salinity stress. Many genes were first detected with expression evidence using custom microarray analysis. Some gene families were preferentially regulated by high salinity stress and might play key roles in stress-responsive biological processes. Genomic variations in promoter regions resulted from single nucleotide polymorphisms, indels (1–10 bp of insertion/deletion), and structural variations significantly contributed to the expression divergence and regulation. Our data also showed that tandem and segmental duplication, CACTA and hAT elements played roles in the evolution of gene expression divergence and regulation between these two contrasting genotypes under normal or high salinity stress conditions. PMID:24121498

  4. 24 CFR 983.252 - PHA information for accepted family.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false PHA information for accepted family... family. (a) Oral briefing. When a family accepts an offer of PBV assistance, the PHA must give the family... of how the program works; and (2) Family and owner responsibilities. (b) Information packet. The PHA...

  5. 24 CFR 982.555 - Informal hearing for participant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... allowance schedule. (iii) A determination of the family unit size under the PHA subsidy standards. (iv) A... appropriate for the family unit size under the PHA subsidy standards, or the PHA determination to deny the... with HQS because of the family size. (8) A determination by the PHA to exercise or not to exercise any...

  6. 24 CFR 941.501 - HUD review of PHA performance; sanctions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HUD review of PHA performance... URBAN DEVELOPMENT PUBLIC HOUSING DEVELOPMENT Performance Review § 941.501 HUD review of PHA performance; sanctions. (a) HUD determination. HUD shall carry out such reviews of the performance of each PHA as may be...

  7. 24 CFR 983.252 - PHA information for accepted family.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false PHA information for accepted family... family. (a) Oral briefing. When a family accepts an offer of PBV assistance, the PHA must give the family... of how the program works; and (2) Family and owner responsibilities. (b) Information packet. The PHA...

  8. 24 CFR 982.403 - Terminating HAP contract when unit is too small.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Dwelling Unit: Housing Quality Standards, Subsidy Standards, Inspection and Maintenance § 982.403... change in family composition, the PHA must issue the family a new voucher, and the family and PHA must...-based certificate program. (2) The PHA must issue the family a new voucher, and the family and PHA must...

  9. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice

    PubMed Central

    2011-01-01

    Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM, GTE4 and MAP, require CRL1 to be induced by auxin suggesting that they are likely directly regulated by CRL1. These genes have a function related to polarized cell growth, cell cycle regulation or chromatin remodelling. This suggests that these genes are controlled by CRL1 and involved in CR initiation in rice. PMID:21806801

  10. Synthesis of polyhydroxyalkanoate from palm oil and some new applications.

    PubMed

    Sudesh, Kumar; Bhubalan, Kesaven; Chuah, Jo-Ann; Kek, Yik-Kang; Kamilah, Hanisah; Sridewi, Nanthini; Lee, Yan-Fen

    2011-03-01

    Polyhydroxyalkanoate (PHA) is a potential substitute for some petrochemical-based plastics. This biodegradable plastic is derived from microbial fermentation using various carbon substrates. Since carbon source has been identified as one of the major cost-absorbing factors in PHA production, cheap and renewable substrates are currently being investigated as substitutes for existing sugar-based feedstock. Plant oils have been found to result in high-yield PHA production. Malaysia, being the world's second largest producer of palm oil, is able to ensure continuous supply of palm oil products for sustainable PHA production. The biosynthesis and characterization of various types of PHA using palm oil products have been described in detail in this review. Besides, by-products and waste stream from palm oil industry have also demonstrated promising results as carbon sources for PHA biosynthesis. Some new applications in cosmetic and wastewater treatment show the diversity of PHA usage. With proper management practices and efficient milling processes, it may be possible to supply enough palm oil-based raw materials for human consumption and other biotechnological applications such as production of PHA in a sustainable manner.

  11. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida.

    PubMed

    Prieto, Auxiliadora; Escapa, Isabel F; Martínez, Virginia; Dinjaski, Nina; Herencias, Cristina; de la Peña, Fernando; Tarazona, Natalia; Revelles, Olga

    2016-02-01

    Polyhydroxyalkanoate (PHA) metabolism has been traditionally considered as a futile cycle involved in carbon and energy storage. The use of cutting-edge technologies linked to systems biology has improved our understanding of the interaction between bacterial physiology, PHA metabolism and other cell functions in model bacteria such as Pseudomonas putida KT2440. PHA granules or carbonosomes are supramolecular complexes of biopolyester and proteins that are essential for granule segregation during cell division, and for the functioning of the PHA metabolic route as a continuous cycle. The simultaneous activities of PHA synthase and depolymerase ensure the carbon flow to the transient demand for metabolic intermediates to balance the storage and use of carbon and energy. PHA cycle also determines the number and size of bacterial cells. The importance of PHAs as nutrients for members of the microbial community different to those that produce them is illustrated here via examples of bacterial predators such as Bdellovibrio bacteriovorus that prey on PHA producers and produces specific extra-cellular depolymerases. PHA hydrolysis confers Bdellovibrio ecological advantages in terms of motility and predation efficiency, demonstrating the importance of PHA producers predation in population dynamics. Metabolic modulation strategies for broadening the portfolio of PHAs are summarized and their properties are compiled. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Potential for mcl-PHA production from nonanoic and azelaic acids.

    PubMed

    Gillis, James; Ko, Kenton; Ramsay, Juliana A; Ramsay, Bruce A

    2018-01-01

    Greater than 65% of canola and high-oleic soy oil fatty acids is oleic acid, which is readily converted to nonanoic (NA) and azelaic (AzA) acids by ozonolysis. NA is an excellent substrate for medium-chain-length polyhydroxyalkanoate (mcl-PHA) production but AzA has few uses. Pseudomonas citronellolis DSM 50332 and Pseudomonas fluorescens ATCC 17400, both able to produce mcl-PHA from fatty acids and to grow on AzA as the sole source of carbon and energy, were assessed for the accumulation of mcl-PHA from AzA and NA. In N-limited shake flasks using NA, P. citronellolis produced 32% of its dry biomass as mcl-PHA containing 78% 3-hydroxynonanoate with 22% 3-hydroxyheptanoate. Pseudomonas fluorescens produced only 2% PHA. N-limited P. citronellolis on AzA produced 20% dry weight PHA containing 75% 3-hydroxydecanoate and 25% 3-hydroxyoctanoate, indicative of de novo synthesis. Although selective pressure, including β-oxidation inhibition, under well-controlled (chemostat) conditions was applied to P. citronellolis, no side-chain carboxyl groups were detected. It was concluded that one or more of FabG and PhaJ or the PHA synthase cannot catalyze reactions involving ω-carboxy substrates. However, a process based on oleic acid could be established if Pseudomonas putida was engineered to grow on AzA.

  14. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis

    PubMed Central

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice. PMID:27415428

  15. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    PubMed

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  16. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.)

    PubMed Central

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice. PMID:26752408

  17. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight.

    PubMed

    Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

  18. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance

    PubMed Central

    Li, Jian-Yong; Liu, Jiping; Dong, Dekun; Jia, Xiaomin; McCouch, Susan R.; Kochian, Leon V.

    2014-01-01

    Aluminum (Al) toxicity is a major constraint for crop production on acid soils which compose ∼40% of arable land in the tropics and subtropics. Rice is the most Al-tolerant cereal crop and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natural variation in the rice Nramp aluminum transporter (NRAT1) gene encoding a root plasma membrane Al uptake transporter previously hypothesized to underlie a unique Al tolerance mechanism. DNA sequence variation in the NRAT1 coding and regulatory regions was associated with changes in NRAT1 expression and NRAT1 Al transport properties. These sequence changes resulted in significant differences in Al tolerance that were found to be associated with changes in the Al content of root cell wall and cell sap in 24 representative rice lines from a rice association panel. Expression of the tolerant OsNRAT1 allele in yeast resulted in higher Al uptake than did the sensitive allele and conferred greater Al tolerance when expressed in transgenic Arabidopsis. These findings indicate that NRAT1 plays an important role in rice Al tolerance by reducing the level of toxic Al in the root cell wall and transporting Al into the root cell, where it is ultimately sequestered in the vacuole. Given its ability to enhance Al tolerance in rice and Arabidopsis, this work suggests that the NRAT1 gene or its orthologs may be useful tools for enhancing Al tolerance in a wide range of plant species. PMID:24728832

  19. Expression of beta-expansins is correlated with internodal elongation in deepwater rice.

    PubMed

    Lee, Y; Kende, H

    2001-10-01

    Fourteen putative rice (Oryza sativa) beta-expansin genes, Os-EXPB1 through Os-EXPB14, were identified in the expressed sequence tag and genomic databases. The DNA and deduced amino acid sequences are highly conserved in all 14 beta-expansins. They have a series of conserved C (cysteine) residues in the N-terminal half of the protein, an HFD (histidine-phenylalanine-aspartate) motif in the central region, and a series of W (tryptophan) residues near the carboxyl terminus. Five beta-expansin genes are expressed in deepwater rice internodes, with especially high transcript levels in the growing region. Expression of four beta-expansin genes in the internode was induced by treatment with gibberellin and by wounding. The wound response resulted from excising stem sections or from piercing pinholes into the stem of intact plants. The level of wound-induced beta-expansin transcripts declined rapidly 5 h after cutting of stem sections. We conclude that the expression of beta-expansin genes is correlated with rapid elongation of deepwater rice internodes, it is induced by gibberellin and wounding, and wound-induced beta-expansin mRNA appears to turn over rapidly.

  20. Quantification of polyhydroxyalkanoates in mixed and pure cultures biomass by Fourier transform infrared spectroscopy: comparison of different approaches.

    PubMed

    Isak, I; Patel, M; Riddell, M; West, M; Bowers, T; Wijeyekoon, S; Lloyd, J

    2016-08-01

    Fourier transform infrared (FTIR) spectroscopy was used in this study for the rapid quantification of polyhydroxyalkanoates (PHA) in mixed and pure culture bacterial biomass. Three different statistical analysis methods (regression, partial least squares (PLS) and nonlinear) were applied to the FTIR data and the results were plotted against the PHA values measured with the reference gas chromatography technique. All methods predicted PHA content in mixed culture biomass with comparable efficiency, indicated by similar residuals values. The PHA in these cultures ranged from low to medium concentration (0-44 wt% of dried biomass content). However, for the analysis of the combined mixed and pure culture biomass with PHA concentration ranging from low to high (0-93% of dried biomass content), the PLS method was most efficient. This paper reports, for the first time, the use of a single calibration model constructed with a combination of mixed and pure cultures covering a wide PHA range, for predicting PHA content in biomass. Currently no one universal method exists for processing FTIR data for polyhydroxyalkanoates (PHA) quantification. This study compares three different methods of analysing FTIR data for quantification of PHAs in biomass. A new data-processing approach was proposed and the results were compared against existing literature methods. Most publications report PHA quantification of medium range in pure culture. However, in our study we encompassed both mixed and pure culture biomass containing a broader range of PHA in the calibration curve. The resulting prediction model is useful for rapid quantification of a wider range of PHA content in biomass. © 2016 The Society for Applied Microbiology.

Top