Sample records for rice fields located

  1. Estimating high mosquito-producing rice fields using spectral and spatial data

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Beck, L. R.; Washino, R. K.; Hibbard, K. A.; Salute, J. S.

    1992-01-01

    The cultivation of irrigated rice provides ideal larval habitat for a number of anopheline vectors of malaria throughout the world. Anopheles freeborni, a potential vector of human malaria, is associated with the nearly 240,000 hectares of irrigated rice grown annually in Northern and Central California; therefore, this species can serve as a model for the study of rice field anopheline population dynamics. Analysis of field data revealed that rice fields with early season canopy development, that are located near bloodmeal sources (i.e., pastures with livestock) were more likely to produce anopheline larvae than fields with less developed canopies located further from pastures. Remote sensing reflectance measurements of early-season canopy development and geographic information system (GIS) measurements of distanes between rice fields and pastures with livestock were combined to distinguish between high and low mosquito-producing rice fields. Using spectral and distance measures in either a discriminant or Bayesian analysis, the identification of high mosquito-producing fields was made with 85 percent accuracy nearly two months before anopheline larval populations peaked. Since omission errors were also minimized by these approaches, they could provide a new basis for directing abatement techniques for the control of malaria vectors.

  2. Root microbiota shift in rice correlates with resident time in the field and developmental stage.

    PubMed

    Zhang, Jingying; Zhang, Na; Liu, Yong-Xin; Zhang, Xiaoning; Hu, Bin; Qin, Yuan; Xu, Haoran; Wang, Hui; Guo, Xiaoxuan; Qian, Jingmei; Wang, Wei; Zhang, Pengfan; Jin, Tao; Chu, Chengcai; Bai, Yang

    2018-06-01

    Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota composition has been widely studied in several model plants and crops; however, little is known about how root microbiota vary throughout the plant's life cycle under field conditions. We performed longitudinal dense sampling in field trials to track the time-series shift of the root microbiota from two representative rice cultivars in two separate locations in China. We found that the rice root microbiota varied dramatically during the vegetative stages and stabilized from the beginning of the reproductive stage, after which the root microbiota underwent relatively minor changes until rice ripening. Notably, both rice genotype and geographical location influenced the patterns of root microbiota shift that occurred during plant growth. The relative abundance of Deltaproteobacteria in roots significantly increased overtime throughout the entire life cycle of rice, while that of Betaproteobacteria, Firmicutes, and Gammaproteobacteria decreased. By a machine learning approach, we identified biomarker taxa and established a model to correlate root microbiota with rice resident time in the field (e.g., Nitrospira accumulated from 5 weeks/tillering in field-grown rice). Our work provides insights into the process of rice root microbiota establishment.

  3. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches.

    PubMed

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Hydrology of a groundwater-irrigated rice field in Bangladesh: Seasonal and daily mechanisms of infiltration

    NASA Astrophysics Data System (ADS)

    Neumann, Rebecca B.; Polizzotto, Matthew L.; Badruzzaman, A. Borhan M.; Ali, M. Ashraf; Zhang, Zhongyuan; Harvey, Charles F.

    2009-09-01

    Flow through a groundwater-irrigated rice field in Bangladesh was characterized with data collected from a transect of tensiometers and time domain reflectometry sensors, novel tracer tests, infiltration tests, soil core analyses, and calculated water budgets. The combined data captured the dynamic hydrologic behavior of the rice field over an entire growing season, which included many irrigation events. Recharge to the aquifer flowed from the surface of the rice field through preferential flow paths located in the subsoil beneath the plowed surface of the field and in the bunds, the raised boundaries around the perimeter of the field. Water that remained within the soil matrix did not recharge the aquifer. Bund flow was the dominant loss for the field because the bulk hydraulic conductivity of the soil beneath the bunds was greater than that in the plowed and planted region of the rice field. Each year, farmers plow the rice fields, destroying cracks and decreasing the conductivity of the shallow soil, but leave the bunds unplowed because they follow property boundaries. We determined bund flow with a daily water balance and confirmed its importance by comparing irrigation losses among fields of different sizes and geometries and hence different ratios of perimeter to area. The perimeter-to-area ratio predicted the fraction of water lost down the bunds for these and other fields located throughout Southeast Asia. Finally, we determined the economic and environmental benefits of reducing bund flow.

  5. Spectral and spatial characterization of rice field mosquito habitat

    NASA Technical Reports Server (NTRS)

    Wood, Byron L.; Beck, Louisa R.; Washino, Robert K.; Palchick, Susan M.; Sebesta, Paul D.

    1991-01-01

    Irrigated rice provides an ideal breeding habitat for Anopheles free-borni, the western malaria mosquito, throughout California. In a 1985 study, it was determined that early-season rice canopy development, as monitored using remotely sensed data, could be used to distinguish between high and low mosquito producing rice fields. This distinction could be made over two months prior to peak mosquito production. It was found that high-producing fields were located in an area characterized by a diversity of land use, including livestock pastures, whereas the low-producing fields were in an area devoted almost exclusively to the cultivation of rice. The ability to distinguish between high and low mosquito producing fields prior to peak mosquito production is important in terms of mosquito habitat surveillance and control.

  6. Progress in the paddy field

    USDA-ARS?s Scientific Manuscript database

    Rice feeds around 3.5 billion people and provides a significant proportion of calories for many of the world’s poor. The USA is a major producer and exporter of rice. The USDA/ARS Dale Bumpers National Rice Research Center (DBNRRC) is located in the heart of the southern USA rice growing region in A...

  7. Reconciling the conservation of the purple swamphen (Porphyrio porphyrio) and its damage in Mediterranean rice fields through sustainable non-lethal techniques

    PubMed Central

    Piqué, Josep

    2018-01-01

    Resolving human–wildlife conflicts requires the assessment and implementation of appropriate technical measures that minimize negative impacts on socio-economic uses, including agriculture, and ensure the adequate protection of biological diversity. Rice paddies are widely distributed in the western Mediterranean region. Because of their high productivity, they can be a good habitat for waterbirds, including the purple swamphen Porphyrio porphyrio, particularly in areas where natural wetlands have been removed or reduced. As a result of its population growth, there have been increasing levels of damage caused by this species in rice fields due to stem-cutting and opening of bald patches in rice fields. With the aim of reducing damage, we evaluated the effectiveness of passive and active measures that would limit access to rice fields and deter/scare away purple swamphens in affected areas of the Ebro Delta (NE Spain). We selected the techniques according to the growth phase of rice and the activity of birds in the rice fields (perimeter fences and clearing vegetation around the rice plots during sprouting and growing phases, and falconry at maturation). There were positive results during the sprouting and growing phases thanks to fences and clearing vegetation, reducing the affected area by 37.8% between treatment and control plots. This would mean an economic savings of 18,550 €/year in compensation payments by regional administrations including the investment in implementing and maintaining passive protection measures. Active deterrence through falconry did not reduce the level of damage. The analysis of purple swamphen home range, activity centers (centroids), and the proportion of locations in and outside of rice fields showed no differences before and after dissuasive practices. These results were influenced by multiple concurrent factors including weather, the structural configuration of the rice plots and their location. In summary, we recommend the establishment of protection measures (perimeter fences + clearing vegetation around the rice plots) to reduce the level of damage. PMID:29707429

  8. Development of an Improved Irrigation Subroutine in SWAT to Simulate the Hydrology of Rice Paddy Grown under Submerged Conditions

    NASA Astrophysics Data System (ADS)

    Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.

    2014-12-01

    Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.

  9. Field Evaluation of Four Spatial Repellent Devices Against Arkansas Rice-Land Mosquitoes

    DTIC Science & Technology

    2014-03-01

    FIELD EVALUATION OF FOUR SPATIAL REPELLENT DEVICES AGAINST ARKANSAS RICE-LAND MOSQUITOES DAVID A. DAME,1 MAX V. MEISCH,2 CAROLYN N. LEWIS,2 DANIEL L... mosquitoes to locate a host. There are many commercially available spatial repellent products currently on the market. These products include...a large rice growing area where late-spring and summer agricultural irriga- tion generates dense mosquito populations. Spatial repellent devices

  10. Pesticide residue analysis of soil, water, and grain of IPM basmati rice.

    PubMed

    Arora, Sumitra; Mukherji, Irani; Kumar, Aman; Tanwar, R K

    2014-12-01

    The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008-2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (<0.001-0.05 μg/g) in all 24 samples of rice grains and soil under IPM and non-IPM trials. Residues were below detection level (<0.001-0.05 μg/L) in irrigation water samples (2008-09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (<0.001-0.05 μg/g) in all 40 samples of Basmati rice grains and soil. It was also observed as BDL (<0.001-0.05 μg/L) for 12 water samples (2009-2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (<0.001-0.05 μg/g) in 40 samples of Basmati rice grains and soil and 12 water samples (<0.001-0.05 μg/L) (2010-2011).

  11. Lead in rice: analysis of baseline lead levels in market and field collected rice grains.

    PubMed

    Norton, Gareth J; Williams, Paul N; Adomako, Eureka E; Price, Adam H; Zhu, Yongguan; Zhao, Fang-Jie; McGrath, Steve; Deacon, Claire M; Villada, Antia; Sommella, Alessia; Lu, Ying; Ming, Lei; De Silva, P Mangala C S; Brammer, Hugh; Dasgupta, Tapash; Islam, M Rafiqul; Meharg, Andrew A

    2014-07-01

    In a large scale survey of rice grains from markets (13 countries) and fields (6 countries), a total of 1578 rice grain samples were analysed for lead. From the market collected samples, only 0.6% of the samples exceeded the Chinese and EU limit of 0.2 μg g(-1) lead in rice (when excluding samples collected from known contaminated/mine impacted regions). When evaluating the rice grain samples against the Food and Drug Administration's (FDA) provisional total tolerable intake (PTTI) values for children and pregnant women, it was found that only people consuming large quantities of rice were at risk of exceeding the PTTI from rice alone. Furthermore, 6 field experiments were conducted to evaluate the proportion of the variation in lead concentration in rice grains due to genetics. A total of 4 of the 6 field experiments had significant differences between genotypes, but when the genotypes common across all six field sites were assessed, only 4% of the variation was explained by genotype, with 9.5% and 11% of the variation explained by the environment and genotype by environment interaction respectively. Further work is needed to identify the sources of lead contamination in rice, with detailed information obtained on the locations and environments where the rice is sampled, so that specific risk assessments can be performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Impact of spatial plan on the conversion of Subak rice fields and food security, in Badung and Gianyar Regencies, Bali Province

    NASA Astrophysics Data System (ADS)

    Lanya, Indayati; Netera Subadiyasa, N.; Ratna Adi, Gst. P.

    2018-05-01

    Regional Spatial Plan of Bali Province 2009-2029, allocating rice fields can be converted 10% (± 10.800 ha). Over the next 20 years, the conversion of rice field is permitted 540 ha year-1, the real condition in Bali is 800 ha year-1.Research location in Badung and Gianyar Regencies. Visual satellite image interpretation methods, digitization of on-screen, delineation of subak rice field, field survey, superimpose analysis of Spatial Plan (SP) map with rice field map, trough toolbox-analysis tools–overlay-intersect using QGIS, Harvest Index (HI) of cropping pattern in one year. SP has a negative impact on agricultural land resources and food security. Local Regulation (SP), subak rice fields outside the agricultural area licensed to be converted, and food deficits. Regency of Badung, potential land conversion of 3,324.97 ha (34.44%) from 119 subak with paddy field area of 24,184.85 ha. There are 10 subak 100% and 8 subak > 95% can be converted; projected food deficit -115.343 tons of rice by 2020 for HI 2. In Gianyar Regency, potential land conversion 13,021.41 ha (53.51%) of 66 subak with an area of 24184.85 ha; 8 subak 100% and 8 subak with area < 5 ha can be converted; projected food deficit is about -194438 tons of rice in 2040 for HI 2.

  13. Automatic rice crop height measurement using a field server and digital image processing.

    PubMed

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  14. Unravelling trophic subsidies of agroecosystems for biodiversity conservation: food consumption and nutrient recycling by waterbirds in Mediterranean rice fields.

    PubMed

    Navedo, Juan G; Hahn, Steffen; Parejo, Manuel; Abad-Gómez, José M; Gutiérrez, Jorge S; Villegas, Auxiliadora; Sánchez-Guzmán, Juan M; Masero, José A

    2015-04-01

    Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605±18,311 individuals) on rice fields during winter averaged at 89.9±39.0 kJ·m(-2), with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5±504.7 seeds·m(-2) in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha(-1)) of N and an additional 5.0 tons (0.2 kg·ha(-1)) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in 'dehesas' to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important for the conservation of migratory waterbirds. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Application of SAR remote sensing and crop modeling for operational rice crop monitoring in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Maunahan, A. A.; Gatti, L.; Quicho, E. D.; Pazhanivelan, S.; Campos-Taberner, M.; Collivignarelli, F.; Haro, J. G.; Intrman, A.; Phuong, D.; Boschetti, M.; Prasadini, P.; Busetto, L.; Minh, V. Q.; Tuan, V. Q.

    2017-12-01

    This study uses multi-temporal SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations in South and South Asian countries and assimilate the information into ORYZA Crop Growth Simulation Model (CGSM) to monitor rice yield. The study demonstrates examples of operational application of this rice monitoring system in: (1) detecting drought impact on rice planting in Central Thailand and Tamil Nadu, India, (2) mapping heat stress impact on rice yield in Andhra Pradesh, India, and (3) generating historical rice yield data for districts in Red River Delta, Vietnam.

  16. Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania

    PubMed Central

    Leonard, Alfonce; Rwegasira, Gration M.

    2015-01-01

    Species diversity, abundance, and dispersion of rice stem borers in framer’s fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania. PMID:26411785

  17. Changing cultural landscape in post-productivism of rice field in Nyuh Kuning Village Bali

    NASA Astrophysics Data System (ADS)

    Maulidi, C.; Wulandari, L. D.

    2017-06-01

    Natural landscape in developing countries is facing a challenge due to economic growth, a cultural shift, and population dynamics. Farm land where is close to urban areas tending to be converted into more economically valuable spaces. Watershed Pakerisan listed as World Heritage of UNESCO, rich of cultural value on its landscape, especially the Subak, a traditional irrigation system, has a close relationship to the philosophy of Hindu-Bali culture. Nyuh Kuning, a village (local terms is Banjar) located adjacent to the Pakerisan Watershed, and has a spatial pattern in synergic ally connected with tradition, culture, and their religion. Rice field not only for economical but also its place to worship the Goddess (Dewi Sri). Rice Field in Nyuh Kuning declined significantly along past 10 years. The changing landscape of Nyuh Kuning traced through serial of aerial photographs from 2005 until 2015. Along with the broad decline of rice field, villager’s attachment on their cultural space is also changing. An economic motive pronounces a winner in the bargaining between the motives of economic value and cultural value in the Nyuh Kuning. Villagers revealed arguments that necessities nowadays prosecute high consumption, both for household and for education. Therefore conversion of rice fields to become more economical is understandable among communities. Villagers rent the rice fields to foreigners (migrants), and then foreigners take rice-fields as personal assets, not for the villagers (ritual activities and the cultural traditions) any longer. In theoritical term, villager’s emotional bond to the cultural landscape in post—productivism of rice field, is weakened. Wawedangan Desa and its complex cultural values are not part of their identity anymore. However, place dependence become the reason why the shifting place attachment is happening. Functional economic bond is mentioned as place dependence dominats in villager’s attachment. Certainly it’s not a sustainable way in conserving cultural landscape. Learning from Nyuh Kuning case, new ideas need to conserve cultural landscape and at the same time increased the economic villagers. Through considering rice fields renters preferences and attachment land in Nyuh Kuning, rice field is an important element for their preferences to stay at Nyuh Kuning. Villas in Nyuh Kuning retaining rice field map as part of the villa’s character. Here we can see rice field not only culturally valuable but also as a tourist attraction, which can be sustained if the communities themselves manage it.

  18. Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza sativa L.) Grown at Four International Field Sites

    PubMed Central

    Norton, Gareth J.; Douglas, Alex; Lahner, Brett; Yakubova, Elena; Guerinot, Mary Lou; Pinson, Shannon R. M.; Tarpley, Lee; Eizenga, Georgia C.; McGrath, Steve P.; Zhao, Fang-Jie; Islam, M. Rafiqul; Islam, Shofiqul; Duan, Guilan; Zhu, Yongguan; Salt, David E.; Meharg, Andrew A.; Price, Adam H.

    2014-01-01

    The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel. PMID:24586963

  19. Epiphytic Cyanobacteria on Chara vulgaris Are the Main Contributors to N2 Fixation in Rice Fields

    PubMed Central

    Ariosa, Yoanna; Quesada, Antonio; Aburto, Juan; Carrasco, David; Carreres, Ramón; Leganés, Francisco; Fernández Valiente, Eduardo

    2004-01-01

    The distribution of nitrogenase activity in the rice-soil system and the possible contribution of epiphytic cyanobacteria on rice plants and other macrophytes to this activity were studied in two locations in the rice fields of Valencia, Spain, in two consecutive crop seasons. The largest proportion of photodependent N2 fixation was associated with the macrophyte Chara vulgaris in both years and at both locations. The nitrogen fixation rate associated with Chara always represented more than 45% of the global nitrogenase activity measured in the rice field. The estimated average N2 fixation rate associated with Chara was 27.53 kg of N ha−1 crop−1. The mean estimated N2 fixation rates for the other parts of the system for all sampling periods were as follows: soil, 4.07 kg of N ha−1 crop−1; submerged parts of rice plants, 3.93 kg of N ha−1 crop−1; and roots, 0.28 kg of N ha−1 crop−1. Micrographic studies revealed the presence of epiphytic cyanobacteria on the surface of Chara. Three-dimensional reconstructions by confocal scanning laser microscopy revealed no cyanobacterial cells inside the Chara structures. Quantification of epiphytic cyanobacteria by image analysis revealed that cyanobacteria were more abundant in nodes than in internodes (on average, cyanobacteria covered 8.4% ± 4.4% and 6.2% ± 5.0% of the surface area in the nodes and internodes, respectively). Epiphytic cyanobacteria were also quantified by using a fluorometer. This made it possible to discriminate which algal groups were the source of chlorophyll a. Chlorophyll a measurements confirmed that cyanobacteria were more abundant in nodes than in internodes (on average, the chlorophyll a concentrations were 17.2 ± 28.0 and 4.0 ± 3.8 μg mg [dry weight] of Chara−1 in the nodes and internodes, respectively). These results indicate that this macrophyte, which is usually considered a weed in the context of rice cultivation, may help maintain soil N fertility in the rice field ecosystem. PMID:15345425

  20. Speciation and Localization of Arsenic in White and Brown Rice Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meharg, Andrew A.; Lombi, Enzo; Williams, Paul N.

    2008-06-30

    Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As inmore » the outer grain of brown rice was confirmed by laser ablation ICP?MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (?-XANES) and bulk extraction followed by anion exchange HPLC?ICP?MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n = 39) and brown (n = 45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.« less

  1. North Korea Drought

    NASA Image and Video Library

    2015-06-29

    North Korea's state news agency reported the country is facing its worst drought in a century. Rice-growing provinces have been badly affected and more than 30% of rice paddies were parching up. A Landsat 7 image from June 29, 2002, compared with an ASTER image from June 26, 2015, shows the disparity in the rice crop. The images display vegetation in red, and bare fields in dark blue. The images cover an area of 27 x 34.5 km, and are located at 38.5 degrees north, 125.6 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA19501

  2. Analysis of Subak Landuse Change Due to Tourism Accomodation Development in North Kuta Sub-district, Badung Regency, Indonesia

    NASA Astrophysics Data System (ADS)

    Lanya, I.; Dibia, I. N.; Diara, I. W.; Suarjaya, D. G.

    2017-12-01

    Subak is a traditional irrigation management system in Bali which governs the distribution of irrigation water into rice fields. The problems that occur in Subak in North Kuta Subdistrict is the high landuse change of rice field due to the rapid development of tourism and in the Region Spatial Plan is mostly designated as land for non agriculture. The aim of the research is to find out the Subak landuse change into tourism accommodation during the last five years, as well as knowing the area of Subak which located in the area of agricultural lands food crops related to landuse planning regulation of Badung Regency.The research methods included analysis of satellite imagery, literature studies, field survey, analysis of Subak landuse change, analysis of the subak in the area of the agricultural land food crop. Subak landuse change into non rice fields in the North of Kuta as uch as 538.88 ha during the last five years. The change of rice fields into tourist accommodation as much as 92 accommodation. Subak which is within the area of farmland of food crops 548.35 ha and outside the area of farmland 459.04ha.

  3. Comparison of CH4 Emission from Rice Paddy Soils between Coastal Zone and Inland Regions

    NASA Astrophysics Data System (ADS)

    Sun, M.; Li, X.

    2016-12-01

    Numerous measurements of methane (CH4) emission fluxes have been carried out in rice paddy soil between coastal zone and inland regions. However, the differences of CH4 emission from rice paddy soils in these two locations were unavailable. A database of CH4 emission in paddy rice was compiled from previous published references and field observations with major parameters including water regimes, fertilizer application, CH4 fluxes, and environmental variables. Results showed that CH4 emission from inland paddy fields was significantly higher than that in the coastal zone (p < 0.05). Fertilizer application and water management played an important role in CH4 emission. The application of organic fertilizer and continuous flooding significantly promoted CH4 emission from paddy fields. CH4 fluxes showed significantly positive correlations with organic matter, total nitrogen, available potassium and annual temperature (R2 = 0.39, 0.53, 0.27 and 0.23, p < 0.05), and negative correlations with pH and available phosphorus (R2 = 0.29 and 0.37, p < 0.05). Significant differences occurred in available potassium between inland and coastal rice paddy (p < 0.05), which might account for the difference of CH4 emission between inland and coastal rice paddy. The contrasting of CH4 fluxes between inland and coastal wetlands could improve our understanding of the roles of rice paddies in the regional CH4 regulation. Our results also have implications for informing rice paddy management and climate change policy making the efforts being made by agricultural organizations and enterprises to restore coastal rice paddies for mitigating CH4 emissions.

  4. Effect of depth of flooding on the rice water weevil, Lissorhoptrus oryzophilus, and yield of rice.

    PubMed

    Tindall, Kelly V; Bernhardt, John L; Stout, Michael J; Beighley, Donn H

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0-20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.

  5. Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice

    PubMed Central

    Tindall, Kelly V.; Bernhardt, John L.; Stout, Michael J.; Beighley, Donn H.

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus. PMID:23906324

  6. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ⤠500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤ 500...

  7. Contrasting patterns of variation in weedy traits and unique crop features in divergent populations of US weedy rice (Oryza sativa sp.) in Arkansas and California.

    PubMed

    Kanapeckas, Kimberly L; Tseng, Te-Ming; Vigueira, Cynthia C; Ortiz, Aida; Bridges, William C; Burgos, Nilda R; Fischer, Albert J; Lawton-Rauh, Amy

    2018-06-01

    Weed evolution from crops involves changes in key traits, but it is unclear how genetic and phenotypic variation contribute to weed diversification and productivity. Weedy rice is a conspecific weed of rice (Oryza sativa) worldwide. We used principal component analysis and hierarchical clustering to understand how morphologically and evolutionarily distinct US weedy rice populations persist in rice fields in different locations under contrasting management regimes. Further, we used a representative subset of 15 sequence-tagged site fragments of expressed genes from global Oryza to assess genome-wide sequence variation among populations. Crop hull color and crop-overlapping maturity dates plus awns, seed (panicle) shattering (> 50%), pigmented pericarp and stature variation (30.2% of total phenotypic variance) characterize genetically less diverse California weedy rice. By contrast, wild-like hull color, seed shattering (> 50%) and stature differences (55.8% of total phenotypic variance) typify genetically diverse weedy rice ecotypes in Arkansas. Recent de-domestication of weedy species - such as in California weedy rice - can involve trait combinations indistinguishable from the crop. This underscores the need for strict seed certification with genetic monitoring and proactive field inspection to prevent proliferation of weedy plant types. In established populations, tillage practice may affect weed diversity and persistence over time. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    PubMed

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  9. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil.

    PubMed

    Reche, Maria Helena L R; Machado, Vilmar; Saul, Danilo A; Macedo, Vera R M; Marcolin, Elio; Knaak, Neiva; Fiuza, Lidia M

    2016-03-01

    This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  10. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions, Existing Compression Ignition Stationary RICE >500 HP, and Existing 4SLB Stationary RICE >500 HP Located at...

  11. Microbial Community and Greenhouse Gas Fluxes from Abandoned Rice Paddies with Different Vegetation.

    PubMed

    Kim, Sunghyun; Lee, Seunghoon; McCormick, Melissa; Kim, Jae Geun; Kang, Hojeong

    2016-10-01

    The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems.

  12. 40 CFR Table 2d to Subpart Zzzz of... - Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RICE Located at Area Sources of HAP Emissions 2d Table 2d to Subpart ZZZZ of Part 63 Protection of... 2d Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area... requirements for existing stationary RICE located at area sources of HAP emissions: For each . . . You must...

  13. A study of the sources and sinks of methane and methyl chloroform using a global three-dimensional Lagrangian tropospheric tracer transport model

    NASA Technical Reports Server (NTRS)

    Taylor, John A.; Brasseur, G. P.; Zimmerman, P. R.; Cicerone, R. J.

    1991-01-01

    Sources and sinks of methane and methyl chloroform are investigated using a global three-dimensional Lagrangian tropospheric tracer transport model with parameterized hydroxyl and temperature fields. Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). The second model identified source regions for methane from rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies, indicating that either the assumption that a uniform fraction of NPP is converted to methane is not valid for rice paddies, or that NPP is underestimated for rice paddies, or that present methane emission estimates from rice paddies are too high.

  14. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison.

    PubMed

    Li, Chengdao; Ni, Peixiang; Francki, Michael; Hunter, Adam; Zhang, Yong; Schibeci, David; Li, Heng; Tarr, Allen; Wang, Jun; Cakir, Mehmet; Yu, Jun; Bellgard, Matthew; Lance, Reg; Appels, Rudi

    2004-05-01

    Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable. A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified as a candidate gene controlling the seed dormancy/pre-harvest sprouting QTL on 5HL. This chromosomal region also shared synteny with the telomere region of wheat chromosome 4AL, but was located outside of the QTL reported for seed dormancy in wheat. The wheat chromosome 4AL QTL region for seed dormancy was syntenic to both rice chromosome 3 and 11. In both cases, corresponding QTLs for seed dormancy have been mapped in rice.

  15. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems

    PubMed Central

    Wade, Len J.; Bartolome, Violeta; Mauleon, Ramil; Vasant, Vivek Deshmuck; Prabakar, Sumeet Mankar; Chelliah, Muthukumar; Kameoka, Emi; Nagendra, K.; Reddy, K. R. Kamalnath; Varma, C. Mohan Kumar; Patil, Kalmeshwar Gouda; Shrestha, Roshi; Al-Shugeairy, Zaniab; Al-Ogaidi, Faez; Munasinghe, Mayuri; Gowda, Veeresh; Semon, Mande; Suralta, Roel R.; Shenoy, Vinay; Vadez, Vincent; Serraj, Rachid; Shashidhar, H. E.; Yamauchi, Akira; Babu, Ranganathan Chandra; Price, Adam; McNally, Kenneth L.; Henry, Amelia

    2015-01-01

    The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions. PMID:25909711

  16. Fertilizer nitrogen, soil chemical properties, and their determinacy on rice yield: Evidence from 92 paddy fields of a large-scale farm in the Kanto Region of Japan

    NASA Astrophysics Data System (ADS)

    Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.

    2017-07-01

    Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.

  17. Dynamics of N-NH4 +, N-NO3 -, and total soil nitrogen in paddy field with azolla and biochar

    NASA Astrophysics Data System (ADS)

    Dewi, W. S.; Wahyuningsih, G. I.; Syamsiyah, J.; Mujiyo

    2018-03-01

    Nitrogen (N) is one of macronutrients which is dynamic in the soil and becomes constraint factor for rice crops. The addition of nitrogen fertilizers and its absorption in paddy field causes the dynamics of nitrogen, thus declines of N absorption efficiency. The aim of this research is to know influence Azolla, biochar and different varieties application on N-NH4 +, N-NO3 -, and total soil N in paddy field. This research was conducted in a screen house located in Jumantono Laboratory, Faculty of Agriculture, Universitas Sebelas Maret (UNS) with altitude 170 m asl from April to June 2016. Treatment factors that were examined consisted of azolla (0 and 10 tons/ha), biochar (0 and 2 tons/ha), and rice varieties (Cisadane, Memberamo, Ciherang, IR64). The results of this research showed that there was no interaction between azolla, biochar and varieties. Nevertheless, azolla treatment with dose of 10 tons/ha increased soil NH4 + content (41 days after planting, DAP) by 13.4% but tend to decrease at 70 and 90 DAP. Biochar treatment with dose of 2 ton/ha increases NO3 - soil content (70 DAP) by 1.7% but decreases total N soil by 5.8% (41 DAP) and 4.7% (90 DAP). Different rice varieties generated different soil NH4 + content (41 DAP) and rice root volume. Cisadane variety can increase soil NH4 + content (41 DAP) by 52.08% and root volume by 51.80% (90 DAP) compared with Ciherang variety. Organic rice field management with azolla and biochar affects the availability of N in the soil and increase N absorption efficiency through its role in increasing rice root volume.

  18. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis

    PubMed Central

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-01-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or ‘expressology’, thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). PMID:24147765

  19. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    PubMed

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  20. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand. (1) Existing stationary RICE. (i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major...

  1. 40 CFR 63.6590 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand. (1) Existing stationary RICE. (i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major...

  2. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  3. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a...

  4. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet the...

  5. Synthetic Aperture Radar (SAR)-based paddy rice monitoring system: Development and application in key rice producing areas in Tropical Asia

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Quicho, E.; Collivignarelli, F.; Maunahan, A.; Gatti, L.; Romuga, G. C.

    2017-01-01

    Reliable and regular rice information is essential part of many countries’ national accounting process but the existing system may not be sufficient to meet the information demand in the context of food security and policy. Synthetic Aperture Radar (SAR) imagery is highly suitable for detecting lowland paddy rice, especially in tropical region where pervasive cloud cover in the rainy seasons limits the use of optical imagery. This study uses multi-temporal X-band and C-band SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations across Tropical Asia and assimilate the information into ORYZA Crop Growth Simulation model (CGSM) to generate high resolution yield maps. The resulting cultivated rice area maps had classification accuracies above 85% and yield estimates were within 81-93% agreement against district level reported yields. The study sites capture much of the diversity in water management, crop establishment and rice maturity durations and the study demonstrates the feasibility of rice detection, yield monitoring, and damage assessment in case of climate disaster at national and supra-national scales using multi-temporal SAR imagery combined with CGSM and automated methods.

  6. 40 CFR Table 2d to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at Area Sources of HAP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ignition Stationary RICE Located at Area Sources of HAP Emissions 2d Table 2d to Subpart ZZZZ of Part 63... Stationary RICE Located at Area Sources of HAP Emissions As stated in §§ 63.6600 and 63.6640, you must comply with the following emission and operating limitations for existing compression ignition stationary RICE...

  7. Diversity and population dynamics of pests and predators in irrigated rice fields with treated and untreated pesticide.

    PubMed

    Rattanapun, W

    2012-01-01

    The monitoring of rice pests and their predators in pesticide untreated and treated rice fields was conducted at the southern of Thailand. Twenty-two species in 15 families and 6 orders of rice pests were sampled from untreated rice field. For treated rice field, 22 species in 14 families and 5 orders of rice pest were collected. Regardless of treatment type, dominant species and individual number of rice pest varied to physiological stage of rice. Lepidopteran pests had highest infestation during the vegetative stage of rice growth, while hemipteran pests composed of hopper species (Hemipetra: Auchenorrhyncha) and heteropteran species (Hemiptera: Heteroptera) were dominant groups during the reproductive stage and grain formation and ripening stage of rice growth. In contrast, dominant species of predator did not change throughout rice growing season. There were 35 species in 25 families and seven orders and 40 species in 29 families and seven orders of predators collected from untreated and treated rice field, respectively. Major predators of both rice fields were Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae), Tetragnatha sp. (Araneae: Tetragnathidae) and Agriocnemis pygmaea Rambur (Odonata: Agrionidae). The population dynamic of predators were not related with rice pest population in both treatments. However, the fluctuation of population pattern of rice pests in the untreated treatment were more distinctly synchronized with their predators than that of the treated treatment. There were no significant differences in the total number of rice pest and predator between two treatments at vegetative and reproductive stages of rice growth. Untreated rice field had a higher population number of predator and a lower population number of rice pest than that of treated rice field during grain formation and ripening stages. These results indicated the ago-ecosystem balance in rice fields could be produced through minimal pesticide application, in order to allow the natural balance between pests and their predators to be restored and maintained.

  8. Transgenic Bacillus thuringiensis (Bt) rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    PubMed

    Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan

    2014-01-01

    Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  9. Transgenic Bacillus thuringiensis (Bt) Rice Is Safer to Aquatic Ecosystems than Its Non-Transgenic Counterpart

    PubMed Central

    Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan

    2014-01-01

    Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems. PMID:25105299

  10. International tourist preference of Lodok Rice Field natural elements, the cultural rice field from Manggarai - Indonesia

    NASA Astrophysics Data System (ADS)

    March Syahadat, Ray; Trie Putra, Priambudi; Nuraini; Nailufar, Balqis; Fatmala Makhmud, Desy

    2017-10-01

    Lodok Rice Field or usually known as spiderweb rice field is a system of land division. It cultural rice field only found on Manggarai, Province of East Nusa Tenggara, Indonesia. The landscape of Lodok Rice Field was aesthetic and it has big potential for tourism development. The aim of this study was to know the perception of natural elements of Lodok Rice Field landscape that could influence international tourist to visited Lodok Rice Field. If we know the elements that could influenced the international tourist, we could used the landscape image for tourism media promotion. The methods of this study used scenic beauty estimation (SBE) by 85 respondents from 34 countries and Kruskal Wallis H test. The countries grouped by five continents (Asia, America, Europe, Africa, and Oceania). The result showed that the Asian respondents liked the elements of sky, mountain, and the rice field. Then, the other respondent from another continent liked the elements of sunshine, mountain, and the rice field. Although the Asian had different perception about landscape elements of rice field’s good view, it’s not differ significantly by Kruskal Wallis H test.

  11. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China.

    PubMed

    Dong, Wenjun; Guo, Jia; Xu, Lijun; Song, Zhifeng; Zhang, Jun; Tang, Ao; Zhang, Xijuan; Leng, Chunxu; Liu, Youhong; Wang, Lianmin; Wang, Lizhi; Yu, Yang; Yang, Zhongliang; Yu, Yilei; Meng, Ying; Lai, Yongcai

    2018-02-01

    Water regime and nitrogen (N) fertilizer are two important factors impacting greenhouse gases (GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane (CH 4 ) emission compared with continuous flooding, however, the decrement was far lower than the global average level. The N 2 O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH 4 emissions at low level (75kgN/ha). But both CH 4 and N 2 O emissions were uninfluenced at the levels of 150kgN/ha and 225kgN/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150kgN/ha. From our results, we recommended that the intermittent irrigation and 150kgN/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields. Copyright © 2017. Published by Elsevier B.V.

  12. [Effects of fish on field resource utilization and rice growth in rice-fish coculture].

    PubMed

    Zhang, Jian; Hu, Liang Liang; Ren, Wei Zheng; Guo, Liang; Wu, Min Fang; Tang, Jian Jun; Chen, Xin

    2017-01-01

    Rice field can provide habitat for fish and other aquatic animals. Rice-fish coculture can increase rice yield and simultaneously reduce the use of chemicals through reducing rice pest occurrence and nutrient complementary use. However, how fish uses food sources (e.g. phytoplankton, weeds, duckweed, macro-algal and snail) from rice field, and whether the nutrients releasing from those food sources due to fish transforming can improve rice growth are still unknown. Here, we conducted two field experiments to address these questions. One was to investigate the pattern of fish activity in the field using the method of video recording. The other was to examine the utilization of field resources by fish using stable isotope technology. Rice growth and rice yield were also exa-mined. Results showed that fish tended to be more active and significantly expanded the activity range in the rice-fish coculture compared to fish monoculture (fish not living together with rice plants). The contributions of 3 potential aquatic organisms (duckweed, phytoplankton and snail) to fish dietary were 22.7%, 34.8% and 30.0% respectively under rice-fish coculture without feed. Under the treatment with feed, however, the contributions of these 3 aquatic organisms to the fish die-tary were 8.9%, 5.9% and 1.6% respectively. The feed contribution was 71.0%. Rice-fish coculture significantly increased the nitrogen concentration in rice leaves, prolonged tillering stage by 10-12 days and increased rice spike rate and yield. The results suggested that raising fish in paddy field may transform the nutrients contained in field resources to bioavailable for rice plants through fish feeding activity, which can improve rice growth and rice yield.

  13. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.

    PubMed

    Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin

    2015-03-01

    Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

  14. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structure, variation, and assembly of the root-associated microbiomes of rice

    PubMed Central

    Edwards, Joseph; Johnson, Cameron; Santos-Medellín, Christian; Lurie, Eugene; Podishetty, Natraj Kumar; Bhatnagar, Srijak; Eisen, Jonathan A.; Sundaresan, Venkatesan

    2015-01-01

    Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants. PMID:25605935

  16. Do rice water weevils and rice stem borers compete when sharing a host plant?*

    PubMed Central

    Shi, Sheng-wei; He, Yan; Ji, Xiang-hua; Jiang, Ming-xing; Cheng, Jia-an

    2008-01-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice. PMID:18600788

  17. Do rice water weevils and rice stem borers compete when sharing a host plant?

    PubMed

    Shi, Sheng-Wei; He, Yan; Ji, Xiang-Hua; Jiang, Ming-Xing; Cheng, Jia-An

    2008-07-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice.

  18. Post-harvest field manipulations to conserve waste rice for waterfowl

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.; Kurtz, M.E.; Manley, S.W.

    2005-01-01

    Rice seeds escaping collection by combines during harvest (hereafter, waste rice) provide quality forage for migrating and wintering waterfowl in the Lower Mississippi Alluvial Valley (MAV) and other rice growing regions in the United States. Recent sample surveys across the MAV have revealed abundance of waste rice in fields declined an average of 71% between harvest and late autumn. Thus, we evaluated the ability of common post-harvest, field-management practices to conserve waste rice for waterfowl until early winter via controlled experiments in Mississippi rice test plots in 2001 and 2003 and analyses of data from MAV-wide surveys of waste rice in rice production fields in 2000-2002. Our experiments indicated test plots with burned rice stubble that were not flooded during autumn contained more waste rice than other treatments in 2001 (P?0.10). Waste-rice abundance in test plots did not differ among postharvest treatments in 2003 (P = 0.97). Our analyses of data from the MAV sample surveys did not detect differences in abundance of waste rice among fields burned, rolled, disked, or left in standing stubble post-harvest (P?0.04; Bonferroni corrected critical ( a= 0.017). Because results from test-plot experiments were inconclusive, we based our primary inference regarding best post-harvest treatments on patterns of rice abundance identified from the MAV surveys and previously documented environmental and agronomic benefits of managing harvested rice fields for wintering waterfowl. Therefore, we recommend leaving standing stubble in rice fields after harvest as a preliminary beneficial management practice. We suggest future research evaluate potential of postharvest practices to conserve waste rice for waterfowl and reduce straw in production rice fields managed for wintering waterfowl throughout the MAV.

  19. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary Rice Located at Major Sources of HAP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., non-black start CI 500 HP a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or... Ignition Stationary Rice Located at Major Sources of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary Rice Located at Major Sources of HAP Emissions As stated in §§ 63.6600 and 63.6640, you must...

  20. Identification of rice field using Multi-Temporal NDVI and PCA method on Landsat 8 (Case Study: Demak, Central Java)

    NASA Astrophysics Data System (ADS)

    Sukmono, Abdi; Ardiansyah

    2017-01-01

    Paddy is one of the most important agricultural crop in Indonesia. Indonesia’s consumption of rice per capita in 2013 amounted to 78,82 kg/capita/year. In 2017, the Indonesian government has the mission of realizing Indonesia became self-sufficient in food. Therefore, the Indonesian government should be able to seek the stability of the fulfillment of basic needs for food, such as rice field mapping. The accurate mapping for rice field can use a quick and easy method such as Remote Sensing. In this study, multi-temporal Landsat 8 are used for identification of rice field based on Rice Planting Time. It was combined with other method for extract information from the imagery. The methods which was used Normalized Difference Vegetation Index (NDVI), Principal Component Analysis (PCA) and band combination. Image classification is processed by using nine classes, those are water, settlements, mangrove, gardens, fields, rice fields 1st, rice fields 2nd, rice fields 3rd and rice fields 4th. The results showed the rice fields area obtained from the PCA method was 50,009 ha, combination bands was 51,016 ha and NDVI method was 45,893 ha. The accuracy level was obtained PCA method (84.848%), band combination (81.818%), and NDVI method (75.758%).

  1. 40 CFR Table 3 to Subpart Zzzz of... - Subsequent Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reconstructed 2SLB stationary RICE with a brake horsepower > 500 located at major sources; new or reconstructed 4SLB stationary RICE with a brake horsepower ≥ 250 located at major sources; and new or reconstructed CI stationary RICE with a brake horsepower > 500 located at major sources Reduce CO emissions and not...

  2. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Yulnafatmawita; Yasin, S.

    2018-03-01

    Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.

  3. Effects of implementing organic rice-duck integrated farming on reducing agricultural diffuse pollution around Dianshan Lake in the western suburbs of Shanghai

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Teng, Qing

    2017-04-01

    Located in the western suburbs of Shanghai, Dianshan Lake is a major source of Huangpu River, a mother river flowing through the metropolitan area. To protect the drinking water source areas, the development of any industries and livestock breeding is forbidden around the lake since the early time. However, the lake is still under a eutrophic state throughout the year. In 2013, for example, total N and total P in the lake water were 2.98 mg L-1 and 0.17 mg L-1 on average, respectively. It is believed that 72.2% of N and 73.1% of P in the lake come from agricultural diffuse pollution. The areas surrounding the lake include six towns and are all low-lying in landform. There are 5975 ha paddy fields at the six towns, making up 33.1% of total farming land in the areas. According to our questionnaires to local farmers at Jinze Town, one of the six towns, for the consecutive five years, the amounts of N and P2O5 applied within the rice growing season under the conventional rice farming are 336.6 kg ha-1 and 76.9 kg ha-1 on average, respectively, and those lost through leaching and runoff are 15.42 kg ha-1 and 3.55 kg ha-1 on average, respectively. Further study estimated that the total amounts of N and P2O5 applied around the lake within the rice growing season are 2.01×106 kg year-1 and 4.59×105 kg year-1, respectively; those lost through leaching and runoff are 0.99×105 kg year-1 and 0.23×105 kg year-1, respectively; those discharged from the fields into the lake are 0.99×104 kg year-1 and 0.23×104 kg year-1, respectively. Our study also indicated that the amount of pesticides and herbicides discharged from the paddy fields at the six towns into the lake is approximately 1.67×104 kg year-1. Appreciately, the agricultural diffuse pollution from the paddy fields surrounding the lake have posed severe threat to the lake. The field experiments indicated that raising ducks in the paddy fields within the rice growing season can not only highly reduce weed hazards and incidence of rice pests and diseases, but also significantly improve soil fertility. The rice plants co-cultured with ducks grow healthily, if not applying any herbicides and pesticides, which is conducive to establish organic rice farming. It is estimated that the total amounts of N and P2O5 discharged from the paddy fields into the lake would reduce by 75.8% and 95.2%, respectively, and the potential pollution from pesticides and herbicides can be totally prevented, if implementing the organic rice-duck integrated system at the six towns surrounding Dianshan Lake. This will contribute greatly to improve the water quality of the lake. Moreover, the organic rice produced by the rice-duck integrated system is five times higher in prize than the conventional rice, and the ducks ecologically growing in the fields are four times higher in prize than the intensively cultivated ones. This will also be beneficial to increase farmers' incomes.

  4. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  5. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... following operating emission limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP...

  6. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus or...

  7. An Innovative Modeling and Measurement Approach to Improve Rice Water Use Efficiency in California

    NASA Astrophysics Data System (ADS)

    Montazar, A.; Little, C.; Rejmanek, H.; Tindula, G.; Snyder, R. L.

    2014-12-01

    California is amongst the top rice producing states in the USA, and more than 95 percent of California's rice is grown in the Sacramento Valley. Based on older literature, the rice water requirement (ETc), ranges between 914 and 1,100 mm. In this study, the actual rice water requirement was measured using the residual of the energy balance method over three paddy rice fields during 2011-2013 seasons in the Sacramento Valley. Net radiation and ground heat flux density were measured, and both eddy covariance (EC) and the surface renewal (SR) technique were employed to determine the sensible heat flux density. The surface renewal method uses high frequency temperature measurements from fine wire thermocouples above the canopy. Mean amplitude and duration of the ramps over half hour periods were determined using a structure function and the characteristics are employed to estimate the direction and magnitude of sensible heat flux using the ratio of the amplitude to the ramp duration as the change in temperature per unit time and the volumetric heat capacity of the air to estimate the magnitude of the heat flux. In the study, 76.2 mm diameter chromel-constantan thermocouples were used to measure high frequency temperature at 10 Hz. The results indicate that there is considerable variability in rice water use both spatially and temporally. The average three-year measured ET of the experimental fields located in Butte County was 734 and 725 mm; and in Colusa County was 771 mm. A typical crop coefficient (Kc) curve was derived from the measured ETc and reference ET (ETo) data. Spatial estimates of monthly climate data from the Sacramento Valley were used to calculate monthly mean ETo, and smooth curve fits of the monthly data gave estimates of typical daily ETo. The daily ETc was calculated as the product of ETo and Kc, and seasonal ETc was calculated by summing the daily ETc values. The results reveal that the seasonal rice ETc was less than earlier estimates. Surface renewal equipment is relatively inexpensive and it provides rice growers with remote monitoring of water consumption by tracking ETc of the paddy fields; and hence assists them to improve rice water use efficiency. The information provided here is useful for determining volumes of water for water transfers and insuring adequate water supplies for optimal production.

  8. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay

    PubMed Central

    Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A.; Martínez, Sebastián; Casales, Luis; Caraballo, María P.; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    Abstract The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country. PMID:29755261

  9. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay.

    PubMed

    Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.

  10. 40 CFR Table 5 to Subpart Zzzz of... - Initial Compliance With Emission Limitations and Operating Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... demonstrated initial compliance if . . . 1. 2SLB and 4SLB stationary RICE >500 HP located at a major source and new or reconstructed CI stationary RICE >500 HP located at a major source a. Reduce CO emissions and... initial performance test. 2. 2SLB and 4SLB stationary RICE >500 HP located at a major source and new or...

  11. 40 CFR Table 5 to Subpart Zzzz of... - Initial Compliance With Emission Limitations and Operating Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrated initial compliance if . . . 1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP...

  12. The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java

    NASA Astrophysics Data System (ADS)

    Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.

    2018-03-01

    Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.

  13. Rice growth monitoring using simulated compact polarimetric C band SAR

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo

    2014-12-01

    In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.

  14. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    PubMed Central

    2011-01-01

    Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as agricultural areas rather than pristine ecosystems. This paper provides selected results from a study of wild food conducted in several villages in Northeast Thailand. A complete botanical inventory of wild food plants from these communities and surrounding areas is provided including their diversity of growth forms, the different anthropogenic locations were these species grow and the multiplicity of uses they have. Methods Data was collected using focus groups and key informant interviews with women locally recognized as knowledgeable about contemporarily gathered plants. Plant species were identified by local taxonomists. Results A total of 87 wild food plants, belonging to 47 families were reported, mainly trees, herbs (terrestrial and aquatic) and climbers. Rice fields constitute the most important growth location where 70% of the plants are found, followed by secondary woody areas and home gardens. The majority of species (80%) can be found in multiple growth locations, which is partly explained by villagers moving selected species from one place to another and engaging in different degrees of management. Wild food plants have multiple edible parts varying from reproductive structures to vegetative organs. More than two thirds of species are reported as having diverse additional uses and more than half of them are also regarded as medicine. Conclusions This study shows the remarkable importance of anthropogenic areas in providing wild food plants. This is reflected in the great diversity of species found, contributing to the food and nutritional security of rice farmers in Northeast Thailand. PMID:22067578

  15. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.

    2016-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671

  16. 40 CFR 63.6603 - What emission limitations and operating limitations must I meet if I own or operate an existing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limitations must I meet if I own or operate an existing stationary CI RICE located at an area... and operating limitations must I meet if I own or operate an existing stationary CI RICE located at an... stationary CI RICE located at an area source of HAP emissions, you must comply with the requirements in Table...

  17. Seasonal variation of carbon dioxide and methane exchange between rice paddy fields and atmosphere in Japan

    NASA Astrophysics Data System (ADS)

    Kokubo, R.

    2017-12-01

    Rice paddy fields spread throughout Asia and play an important role in terms of regulating greenhouse gases on the ground. Rice paddies have the potential to either increase or decrease the net balance of greenhouse gases in the atmosphere. In the rice growth period, rice paddy fields are sources of CH4, whereas they generally act as a sink of CO2. However, the behavior of greenhouse gases during fallow periods has not been well understood. A field experiment was conducted at a rice paddy field in Fuchu, central Japan in 2014. We evaluated CO2 and CH4 fluxes in the rice paddy field using the eddy covariance method. Except for 20 days after transplanting (DAT), temporal CO2 fluxes showed negative values during a rice growth period whereas they showed positive values throughout a fallow period. The positive CO2 fluxes at 2 emissions by respiration of rice plants and soil microorganisms than CO2 uptake by photosynthesis of rice plants. In the middle of the growing season at around DAT=50, CO2 emission became dominant again because flooded water was temporarily drained in the rice paddy field. Seasonal CH4 fluxes during a growth period were regulated by water management and plant growth stages. During a fallow period, however, the field was kept a non-flooded condition that resulted in an aerobic soil condition and thus very low CH4 emission.

  18. Avian foods, foraging and habitat conservation in world rice fields

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.

    2010-01-01

    Worldwide, rice (Oryza sativa) agriculture typically involves seasonal flooding and soil tillage, which provides a variety of microhabitats and potential food for birds. Water management in rice fields creates conditions ranging from saturated mud flats to shallow (<30 cm) water, thereby attracting different guilds of birds. Grain not collected during harvest (i.e. waste rice) is typically the most abundant potential food of birds in rice fields, with estimates of seed mass from North America ranging from 66672 kg/ha. Although initially abundant after harvest, waste rice availability can be temporally limited. Few abundance estimates for other foods, such as vertebrate prey or forage vegetation, exist for rice fields. Outside North America, Europe and Japan, little is known about abundance and importance of any avian food in rice fields. Currently, flooding rice fields after harvest is the best known management practice to attract and benefit birds. Studies from North America indicate specific agricultural practices (e.g. burning stubble) may increase use and improve access to food resources. Evaluating and implementing management practices that are ecologically sustainable, increase food for birds and are agronomically beneficial should be global priorities to integrate rice production and avian conservation. Finally, land area devoted to rice agriculture appears to be stable in the USA, declining in China, and largely unquantified in many regions. Monitoring trends in riceland area may provide information to guide avian conservation planning in rice-agriculture ecosystems.

  19. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China

    PubMed Central

    Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian

    2017-01-01

    To meet the World’s food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a “banker plant system” for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) – the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system. PMID:28367978

  20. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China.

    PubMed

    Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian

    2017-04-03

    To meet the World's food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a "banker plant system" for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) - the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system.

  1. Waterbird communities in rice fields subjected to different post-harvest treatments

    USGS Publications Warehouse

    Day, J.H.; Colwell, M.A.

    1998-01-01

    In California's Sacramento Valley, the potential value of rice fields as habitat for waterbirds may vary with harvest method, post-harvest treatment of rice straw (chopped, burned, plowed), and extent of flooding. Recent changes in rice harvesting methods (i.e., use of stripper-headers) and a legislative mandate to decrease burning of rice straw after harvest may alter habitat availability and use. Thus, we investigated species richness and community composition of nonbreeding waterbirds during October-March 1993-94 and 1994-95 in rice fields of the northern Sacramento Valley. Most (85-91% of land area) rice was conventionally harvested (i.e., cutter bar), and the remainder was stripped. Rice straw was left untreated in more than half of fields (52% in 1994 and 54% in 1995), especially in stripped fields (56-70%). In fields where farmers treated straw, the most common management methods were plowing (15-21%), burning (19-24%), and chopping (3-5%). Fields became increasingly wet from October through March as seasonal precipitation accumulated and farmers flooded fields to facilitate straw decomposition and provide habitat for ducks. Species richness of waterbirds was greater (P 0.23). Species richness in stripped fields probably was low because foraging opportunities were limited by tall dense straw, decreased grain density, and infrequent flooding. We recommend that land managers wishing to provide habitat for a diverse waterbird community harvest rice using conventional methods and flood fields shallowly.

  2. Rice Field Geochemistry and Hydrology: An Explanation for Why Groundwater Irrigated Fields in Bangladesh are Net Sinks of Arsenic from Groundwater

    PubMed Central

    Neumann, Rebecca B.; St. Vincent, Allison P.; Roberts, Linda C.; Badruzzaman, A. Borhan M.; Ali, M. Ashraf; Harvey, Charles F.

    2011-01-01

    Irrigation of rice fields in Bangladesh with arsenic-contaminated groundwater transfers tens of cubic kilometers of water and thousands of tons of arsenic from aquifers to rice fields each year. Here we combine observations of infiltration patterns with measurements of porewater chemical composition from our field site in Munshiganj Bangladesh to characterize the mobility of arsenic in soils beneath rice fields. We find that very little arsenic delivered by irrigation returns to the aquifer, and that recharging water mobilizes little, if any, arsenic from rice field subsoils. Arsenic from irrigation water is deposited on surface soils and sequestered along flow paths that pass through bunds, the raised soil boundaries around fields. Additionally, timing of flow into bunds limits the transport of biologically available organic carbon from rice fields into the subsurface where it could stimulate reduction processes that mobilize arsenic from soils and sediments. Together, these results explain why groundwater irrigated rice fields act as net sinks of arsenic from groundwater. PMID:21332196

  3. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, Existing Non-Emergency Compression Ignition Stationary RICE >500 HP, and New and Reconstructed 4SLB Burn Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2b Table 2b to Subpart ZZZZ of Part 63...

  4. Impact of volunteer rice infestation on yield and grain quality of rice.

    PubMed

    Singh, Vijay; Burgos, Nilda R; Singh, Shilpa; Gealy, David R; Gbur, Edward E; Caicedo, Ana L

    2017-03-01

    Volunteer rice (Oryza sativa L.) grains may differ in physicochemical traits from cultivated rice, which may reduce the quality of harvested rice grain. To evaluate the effect of volunteer rice on cultivated rice, fields were surveyed in Arkansas in 2012. Cropping history that included hybrid cultivars in the previous two years (2010 and 2011) had higher volunteer rice infestation (20%) compared with fields planted previously with inbred rice (5.5%). The total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density. The grain quality did not change in fields planted with the same cultivar for three years. Volunteer rice density of at least 7.6% negatively impacted the head rice and when infestation reached 17.7%, it also reduced the rice grain yield. The protein and amylose contents of rice were not affected until volunteer rice infestation exceeded 30%. Crop rotation systems that include hybrid rice are expected to have higher volunteer rice infestation than systems without hybrid rice. It is predicted that, at 8% infestation, volunteer rice will start to impact head rice yield and will reduce total yield at 18% infestation. It could alter the chemical quality of rice grain at >30% infestation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients.

    PubMed

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-02-01

    The transfer coefficient (TF) from soil to rice plants of (134)Cs and (137)Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure (134)Cs and (137)Cs radioactivity at 5-cm intervals. (134)Cs and (137)Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the (134)Cs and (137)Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the (40)K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019-0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10-0.16, 0.013-0.017 and 0.005-0.013, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Integrating Spatial Land Use Analysis and Mathematical Material Flow Analysis for Nutrient Management: A Case Study of the Bang Pakong River Basin in Thailand

    NASA Astrophysics Data System (ADS)

    Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth

    2015-05-01

    Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.

  7. Integrating spatial land use analysis and mathematical material flow analysis for nutrient management: a case study of the Bang Pakong River Basin in Thailand.

    PubMed

    Kupkanchanakul, Wallapa; Kwonpongsagoon, Suphaphat; Bader, Hans-Peter; Scheidegger, Ruth

    2015-05-01

    Rivers in developing and emerging countries often lack good water quality. Tools to assess the water quality in rivers, including identification of possible sources of pollution, are therefore of increasing importance. The aim of this study is to apply mathematical material flow and spatial land use analyses to identify and geographically locate the main nitrogen and phosphorus sources and processes in Bang Pakong Basin (BPB). Potential measures to mitigate the nitrogen and phosphorus loads to the water system can then be efficiently evaluated. The combination of these two methods reveals the overall nutrient load as well as local "hot spots." This allows possible mitigation measures to be discussed with regard to their spatial location. This approach goes beyond previous work in which mathematical material flow analysis was shown to be a useful tool to investigate sources of nutrients regardless of their location. The results show that the main sources contributing nutrients to waterways are aquaculture, such as shrimp, tilapia, catfish, and sea bass farming, as well as rice paddies along the main river. Additional sources contributing nutrients to this basin are field crops, livestock, aquaculture, households, and industry. High levels of nutrient inflows come from feeds and fertilizers through aquaculture and rice cultivation. The excess nutrients run into the waterways by direct discharge from aquaculture and runoff processes from rice paddies. Scenario analysis shows that management practices for aquaculture, rice, pig, and poultry farming are key drivers for reducing nutrients in the BPB.

  8. Effects of landscape features on waterbird use of rice fields

    USGS Publications Warehouse

    King, S.; Elphick, C.S.; Guadagnin, D.; Taft, O.; Amano, T.

    2010-01-01

    Literature is reviewed to determine the effects of landscape features on waterbird use of fields in regions where rice (Oryza sativa) is grown. Rice-growing landscapes often consist of diverse land uses and land cover, including rice fields, irrigation ditches, other agricultural fields, grasslands, forests and natural wetlands. Numerous studies indicate that local management practices, such as water depth and timing of flooding and drawdown, can strongly influence waterbird use of a given rice field. However, the effects of size and distribution of rice fields and associated habitats at a landscape scale have received less attention. Even fewer studies have focused on local and landscape effects simultaneously. Habitat connectivity, area of rice, distance to natural wetlands, and presence and distance to unsuitable habitat can be important parameters influencing bird use of rice fields. However, responses to a given landscape vary with landscape structure, scale of analysis, among taxa and within taxa among seasons. A lack of multi-scale studies, particularly those extending beyond simple presence and abundance of a given species, and a lack of direct tests comparing the relative importance of landscape features with in-field management activities limits understanding of the importance of landscape in these systems and hampers waterbird conservation and management.

  9. Identification, measurement, and assessment of water cycle of unhusked rice agricultural phases: Case study at Tangerang paddy field, Indonesia

    NASA Astrophysics Data System (ADS)

    Hartono, N.; Laurence; Johannes, H. P.

    2017-11-01

    According to one of UN reports, water scarcity has happened all around the world, including Indonesia. Irrigation sector takes up 70% of world water consumption and potentially increases 20% due to the population explosion. Rice is accounted for 69% of agricultural products contributions in Indonesia’s water footprint. Therefore, evaluation of water cycle was essential to raise awareness among practitioners. Data collections were conducted in the functional unit of one-hectare rice field located in Tangerang. This study used CropWat 8.0 and SimaPro software. Identification involved data such as climate, crop, and soil. Nursery became the highest water consumed phase, requiring 419 mm in height. Measurement through water footprint resulted in consumption of green water footprint for 8,183,618.5 liters (62.9%), followed by grey for 4,805,733.2 liters (36.9%) and blue for 23,902.36 liters (0.2%). The grey consumption was exceeding the average, which indicated high doses of pesticides. Life Cycle Assessment showed negative impacts of fertilizers that caused damages like fossil depletion, respiratory health, and eutrophication.

  10. Climate Change Implications to Irrigated Rice Production in Southern Brazil: A Modelling Approach

    NASA Astrophysics Data System (ADS)

    Dos Santos, Thiago

    Rice is one of the staple foods for more than three billion people worldwide. When cultivated under irrigated conditions (i.e. lowland rice), rice is one of the most intensive water consumer crops globally. Therefore, representation of rice growth should be integrated into the latest land surface models to allow studies on food security and to ensure that accurate simulations of the bidirectional feedbacks between the land surface and atmosphere take place. In this study, I present a new process-based model for rice fields that includes rice growth and rice irrigation as modules within the Agro-IBIS dynamic agro-ecosystem model. The model includes a series of equations, agricultural management parameters and an irrigation scheme that are specifically tailored for rice crops. The model was evaluated against leaf area index and biomass observations, obtained for one growing season in Rio Grande do Sul state (southern Brazil), and in Los Banos, Philippines. The model accurately captured the temporal dynamics of leaf area index in both the Brazilian and the Philippine sites, and predicted end-of-season biomass with an error of between -9.5% and 11.3% depending on the location and the plant organ. Rice phenology is predicted by the model based on experimentally-derived growth rates, and was evaluated by comparing simulated and observed durations of the four growth phases considered by the model. Agro-IBIS showed a tendency to overestimate the duration of the growth stages between 3% and 16%, but underestimated by 8% the duration of the panicle formation phase in one growing season. The new irrigation model is based on the water balance at the surface and applies irrigation in order to keep the water layer at the paddy field always in the optimum level. A set of climate projections from global climate models under two emission scenarios, and excluding and considering CO2 fertilizations effects, was used to drive the updated Agro-IBIS to estimate the effects of climate change on rice phenology, productivity and irrigation demand in southern Brazil during the 21st century. The results suggest that rice yields in southern Brazil can increase in average by 10-30%, but by up to 80% in regions where the current temperature is below optimum for rice growth and therefore will be benefited by warming. However, the same region might experience higher water demand for rice irrigation, which might pose a challenge for rice production in that region.

  11. Waterbird nest density and nest survival in rice fields of southwestern Louisiana

    USGS Publications Warehouse

    Pierluissi, S.; King, Sammy L.; Kaller, Michael D.

    2010-01-01

    Rice fields in southwestern Louisiana provide breeding habitat for several waterbird species; however, little is known about nest density, nest survival and the importance of landscape context of rice fields in determining breeding activity. In 2004, 42 rice fields were searched for nests, and 40 were searched in 2005. Land uses surrounding rice fields, including irrigation canals, trees, crawfish ponds, rice, fallow and soybean fields, were examined to determine influence on nest density and survival. Nest densities were 13.5-16.0 nests/km2 for Purple Gallinules (Porphyrio martinica), 3.0-13.7 nests/km2 for Fulvous Whistling Ducks (Dendrocygna bicolor), 2.6-2.8 nests/km2 for Common Moorhens (Gallinula chloropus), 0.3-0.92 nests/km2 for Least Bitterns (Ixobrychus exilisi) and 0-0.6 nests/km2 for Mottled Ducks (Anas fulvigula). Nest survival was 52-79% for Purple Gallinules and 39-43% for Fulvous Whistling Ducks. Apparent nest success of Common Moorhens was 73-75%, 83% for Least Bitterns and 33% for Mottled Ducks. Purple Gallinule and Common Moorhen nest densities were highest in fields with a larger proportion of irrigation canals surrounding rice fields. Purple Gallinule nest densities were greater in fields devoid of trees and landscapes dominated by rice fields and pasture, rather than landscapes containing soybean fields and residential areas. Fulvous Whistling Duck nest densities were higher in agriculturally-dominated landscapes with few trees.

  12. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    USGS Publications Warehouse

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field treatment should be tracked and impacts of postharvest field treatment and other farming practices on waste rice seed availability should be investigated.

  13. AmeriFlux US-Twt Twitchell Island

    DOE Data Explorer

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Twt Twitchell Island. Site Description - The Twitchell Island site is a rice paddy that is owned by the state and managed by the California Department of Water Resources. While Bare Peat field was leveled for rice planting, the tower was installed on April 3, 2009. The rice paddy was converted from corn in 2007. In Summer 2009, Bispyribac-sodium and Pendimethalin herbicides were applied to the fields prior to rice planting and flooding, then pesticide and fertilizer application took place. Each year after rice is planted in the spring by drilling, the field is flooded. Then, the field is drained in early fall, rice is harvested, and the field site is moved.

  14. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    PubMed Central

    Carey, Anne-Marie; Lombi, Enzo; Donner, Erica; de Jonge, Martin D.; Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou; Price, Adam H.; Meharg, Andrew A.

    2014-01-01

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. PMID:22159463

  15. 40 CFR Table 3 to Subpart Zzzz of... - Subsequent Performance Tests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Existing non-emergency, non-black start CI stationary RICE with a brake horsepower >500 that are not... 4SLB stationary RICE with a brake horsepower >500 located at major sources and new or reconstructed CI stationary RICE with a brake horsepower >500 located at major sources Reduce CO emissions and not using a...

  16. Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in rice straw smoke and their origins in Japan.

    PubMed

    Minomo, Kotaro; Ohtsuka, Nobutoshi; Nojiri, Kiyoshi; Hosono, Shigeo; Kawamura, Kiyoshi

    2011-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs) contained in the smoke generated from rice straw burning in post-harvest paddy fields in Japan were analyzed to determine their congener profiles. Both the apportionment of toxic equivalent (TEQ) by using indicative congeners and the comparison of the homolog profiles showed that the PCDDs/PCDFs/DL-PCBs present in the rice-straw smoke were greatly influenced by those present as impurities in pentachlorophenol (PCP) and chlornitrofen (CNP, 4-nitrophenyl-2,4,6-trichlorophenyl ether) formulations that had been widely used as herbicides in paddy fields in Japan. Further, in order to investigate the effects of paddy-field soil on the PCDDs/PCDFs/DL-PCBs present in rice-straw smoke, PCDD/PCDF/DL-PCB homolog profiles of rice straw, rice-straw smoke and paddy-field soil were compared. Rice-straw smoke was generated by burning rice straw on a stainless-steel tray in a laboratory. The results suggested that the herbicides-originated PCDDs/PCDFs/DL-PCBs and the atmospheric PCDDs/PCDFs/DL-PCBs contributed predominantly to the presence of PCDDs/PCDFs/DL-PCBs in the rice-straw smoke while the contribution of PCDDs/PCDFs/DL-PCBs formed during rice straw burning was relatively minimal. The major sources of the PCDDs/PCDFs/DL-PCBs found in the rice-straw smoke were attributed primarily to the paddy-field soil adhered to the rice straw surface and secondarily to the air taken by the rice straw. The principal component analysis supported these conclusions. It is concluded that rice straw burning at paddy fields acts as a driving force in the transfer of PCDDs/PCDFs/DL-PCBs from paddy-field soil to the atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  18. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    NASA Astrophysics Data System (ADS)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  19. Transfer function control strategy of Subak rice field land and agricultural development in Denpasar city

    NASA Astrophysics Data System (ADS)

    Lanya, Indayati; Netera Subadiyasa, N.; Sardiana, Ketut; Putu Ratna Adi, Gst.

    2017-01-01

    The success of tourism development in Bali gave a negative impact on Subak rice fields, especially on land convertion over 2579 ha year-1 (2002-2013) to the area awakened. Denpasar city has lost rice fields 185 ha year-1 and six Subak, as well as potentially losing 10 Subak, as a result of the allocation of space in the region in the Spatial Planing. UNESCO, in 2012 the establishment of Subak as a cultural heritage. Most Subak rice fields designated as an Urban Green Open Space ( UGOS). Satellite image Iconos 2002, World 2015 View Coverage of Denpasar, and ArcGIS 10.3 software used for mapping the balance of rice field and violation of land use in the area of UGOS. The control strategy over the convertion of spatial land-based environment is done through zoning map. Land conversion of rice fields for 13 years (2002-2015) in Denpasar (572.76 ha), comes standard acreage of rice fields in 2015. Denpasar city has experienced of food deficits, even in the UGOS has awakened 96.04 ha (24.04 ha year-1). A period of 50 years into the future, rice fields which needs to be protected 872.83 ha, buffer area 984.77 ha, and can be converted 499.81 ha.

  20. Components of a rice-oilseed rape production system augmented with trichoderma sp. Tri-1 control sclerotinia sclerotiorum on oilseed rape

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. In two field trials conducted at the same location in consecutive years, a treatment containing formulated Trichoderma harzianum-1 (Tri-1) resulted in oilseed rape seed yield that was significantly greater than...

  1. Planning of Agro-Tourism Development, Specific Location in Green Open Space Sarbagita Area, Bali Province

    NASA Astrophysics Data System (ADS)

    Lanya, I.; Subadiyasa, N.; Sardiana, K.; Ratna Adi, G. P.

    2018-02-01

    Tourism development has a negative impact on agricultural land in Bali, resulted in the transfer of rice field of 800 ha/year. Subak rice field area as a world cultural heritage, requires conservation strategy, increasing economic and environmental value, through integrated agriculture development with tourism. Tourism destination planning in the form of tourist destination (TD) and tourism object (TO) by raising local genius, at specific location, is expected to preserve nature and culture, as well as the economic value of the region. Research Methods: (1) identification of agrarian cultures, (2) field survey, (3) mapping of site specific TD/TO plans, and (4) compile documents of agro-tourism road map based on local genius. Seven subak areas in the green open space area have the potential to develop new TD/TO, namely: (1) Gedon2Subak in Tanah Lot area, is developed for the preservation of agriculture, the implementation of the zoning plan of the sacred, madya and nista areas, (2) the Kerdung and Penatih Subak areas, developed for urban farming in Denpasar City, (3) Cangi south Subak area, built for agro-tourism plasmanutfah banana and Cemagi Let Subak area developed agro-tourism food crops and horticulture, (4) Erjeruk Subak area, developed tourism plasmanutfah coconut.

  2. 40 CFR 63.6665 - What parts of the General Provisions apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site... reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a... stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or...

  3. 40 CFR 63.6665 - What parts of the General Provisions apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site... reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a... stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or...

  4. Waste rice for waterfowl in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.; Manley, S.W.

    2006-01-01

    Flooded rice fields are important foraging habitats for waterfowl in the lower Mississippi Alluvial Valley (MAV). Waste rice previously was abundant in late autumn (140?492 kg/ha), but early planting and harvest dates in recent years may have increased losses of waste rice during autumn before waterfowl arrive. Research in Mississippi rice fields revealed waste-rice abundance decreased 79?99% during autumns 1995?1996. To determine if this trend existed throughout the MAV, we used multistage sampling (MSS) to estimate waste-rice abundance during September?December 2000?2002. Averaged over years, mean abundance of waste rice decreased 71% between harvest ((x) over bar = 271.0 kg/ha, CV = 13% n = 3 years) and late autumn ( (x) over bar = 78.4 kg/ha, CV = 15% n = 3). Among 15 models formulated to explain variation in rice abundance among fields and across years, the best model indicated abundance of waste rice in late autumn differed between harvester types (i.e., conventional > stripper header) and was positively related to initial waste-rice abundance after harvest. Because abundance of waste rice in late autumn was less than previous estimates in all 3 years, we concluded that waterfowl conservationists have overestimated carrying capacity of rice fields for wintering waterfowl by 52?83% and recommend 325 duck-use days/ha (DUDs) as a revised estimate. We suggest monitoring advances in rice harvest dates to determine when new surveys are warranted and recommend increased management of moist-soil wetlands to compensate for decreased rice abundance.

  5. [Ecological characteristics of phytoplankton in waters of biological-controlling and ordinary rice fields].

    PubMed

    Liu, W; Wang, Y; Xu, R

    2001-02-01

    Through investigations from March to June 1998 on the phytoplankton in waters of biological-controlled and ordinary rice fields, 112 species of phytoplankton were found, of which, Bacillariophyta, Euglenophyta and Chlorophyta were dominant. The comparison of the species in two rice fields showed that in biological-controlled rice field, there were more species of Euglenophyta, with 5 most dominant species, i.e., 2 of Euglenophyta, 2 of Bacillariophyta and 1 of Chlorophyta. In ordinary rice field, there were more Bacillariophyta species, in which, 5 most dominant species belonged to Bacillariophyta, except Scenedesmus bijuga to Chlorophyta. The biodiversities of phytoplankton and their evennesses were also analyzed with the period from the seedlings being planted to the rice fields being dried, showing that a little increase in their biodiversity mainly caused by the increase of species number and an evident decrease in their evennesses.

  6. Estimating shorebird populations during spring stopover in rice fields of the Louisiana and Texas Gulf Coastal Plain

    USGS Publications Warehouse

    Norling, Wayne; Jeske, Clinton W.; Thigpen, Tyler F.; Chadwick, Paul C.

    2012-01-01

    Migrating shorebird populations using approximately 2% of Louisiana and Texas Gulf Coastal rice fields were surveyed during spring migration (March–May of 1997 and 1998) using biweekly stratified random surveys conducted at 50 roadside survey points and approximately 30,000 shorebirds were observed. Shorebird counts were extrapolated and almost 1.4 million birds in 1997 and over 1.6 million birds of 31 species in 1998 were estimated to use rice field habitat for stopover sites in Louisiana and Texas. Greater than 50% of the estimated North American populations were estimated to use rice field habitats for five species, including a species of concern, Buff-breasted Sandpiper (Tryngites subruficollis) at 187%. Because of predictability of suitable rice field habitat acreage, timing of field preparation and water availability, coastal rice prairies are identified as critical spring migration stopover sites.

  7. [Land-use and urinary schistosomiasis in Daloa (Côte d'Ivoire)].

    PubMed

    Fournet, F; N'Guessan, N A; Cadot, E

    2004-02-01

    The relation between agricultural land development of inland-valleys and health population has been studied in a town of the Ivorian forest area using urinary schistosomiasis as an indicator. Snails were collected during 4 months in rice fields and water holes used for market gardening of two urban inland-valleys (Batagnihi and Gakognihi). Prevalence of schistosomiasis was evaluated in two districts, Kennedy II and Fadiga, located close to the investigated inland-valleys. Schistosomiasis risk was higher in the Batagnihi where rice cultivation was more developed and prevalence of urinary schistosomiasis was higher in the Kennedy II district which is close to this inland-valley particularly among the Northern migrant people. The Kennedy II population has much more contacts with the inland-valley because of rice cultivation and social status. The higher socio-economic level of the Fadiga population limiting its contacts with the inland-valley can explain this result.

  8. Pesticides in soil and sediment of a dyke-protected area of the Red River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Braun, Gianna; Bläsing, Melanie; Kruse, Jens; Amelung, Wulf; Renaud, Fabrice; Sebesvari, Zita

    2017-04-01

    Coastal regions are densely populated but at the same time represent important agricultural areas for food production of the growing world population. To sustain high agricultural yields, in monocultures such as permanent rice systems, pesticides are used in high quantity and frequency. While earlier studies monitored the fate of pesticides in paddy rice systems, the overall fate of these compounds is altered nowadays due to the construction of dykes, which are needed in many delta regions to protect them from high tides, storm surges and salt water intrusion such as in the Red River Delta. The dyke system regulates the discharge and water exchange inside the diked area including irrigation channels for the paddy rice production. Local authorities observed increasing pollution towards the sea (highest pollution close to the dykes) and hypothesized that the dyke system would prevent water exchange and thus lead to an accumulation of pollutants within the diked area. Hence, the purpose of this study was to investigate the effect of dykes on pesticide pollution patterns in coastal delta regions of the Red River Delta. The study was conducted in the district Giao Thuy of the Red River Delta, Vietnam. This area is surrounded by a sea and river dyke; both have several inlet and outlet gates to control the water level in the irrigation channels. We determined the pesticide pollution pattern in a diked agricultural area, as well as along salinity gradients in and outside the diked areas. Samples were taken from rice fields and sediments from irrigation channels inside the diked area as well from saline aquaculture fields located outside the dyke. Pesticide analysis was conducted by accelerated solvent extraction (ASE), followed up by the clean-up process described by Laabs et al. (2007) and analyses using gas chromatography coupled with a mass selective detector (MSD). Preliminary results suggest that out of the 26 analysed compounds chlorpyrifos, propiconazole and isoprothiolane occurred frequently in samples taken from rice fields. Pesticide concentrations were not higher in rice field closer to the dykes. Pesticide concentrations within paddy fields are likely driven by pesticide inputs on site. However, pattern in canal sediment samples is more likely de-coupled from on-site applications. Results will be discussed in relation to adaptation to increasing salinity intrusion in coastal areas.

  9. 40 CFR 63.6612 - By what date must I conduct the initial performance tests or other initial compliance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions? 63.6612 Section 63.6612... other initial compliance demonstrations if I own or operate an existing stationary RICE with a site...

  10. 40 CFR 63.6612 - By what date must I conduct the initial performance tests or other initial compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions? 63.6612 Section 63.6612... other initial compliance demonstrations if I own or operate an existing stationary RICE with a site...

  11. Combining eddy-covariance measurements and Penman-Monteith type models to estimate evapotranspiration of flooded and aerobic rice

    NASA Astrophysics Data System (ADS)

    Facchi, Arianna; Masseroni, Daniele; Gharsallah, Olfa; Gandolfi, Claudio

    2014-05-01

    Rice is of great importance both from a food supply point of view, since it represents the main food in the diet of over half the world's population, and from a water resources point of view, since it consumes almost 40% of the water amount used for irrigation. About 90% of global production takes place in Asia, while European production is quantitatively modest (about 3 million tons). However, Italy is the Europe's leading producer, with over half of total production, almost totally concentrated in a large traditional paddy rice area between the Lombardy and Piedmont regions, in the north-western part of the country. In this area, irrigation of rice is traditionally carried out by continuous flooding. The high water requirement of this irrigation regime encourages the introduction of water saving irrigation practices, as flood irrigation after sowing in dry soil and intermittent irrigation (aerobic rice). In the agricultural season 2013 an intense monitoring activity was conducted on three experimental fields located in the Padana plain (northern Italy) and characterized by different irrigation regimes (traditional flood irrigation, flood irrigation after sowing in dry soil, intermittent irrigation), with the aim of comparing the water balance terms for the three irrigation treatments. Actual evapotranspiration (ET) is one of the terms, but, unlike others water balance components, its field monitoring requires expensive instrumentation. This work explores the possibility of using only one eddy covariance system and Penman-Monteith (PM) type models for the determination of ET fluxes for the three irrigation regimes. An eddy covariance station was installed on the levee between the traditional flooded and the aerobic rice fields, to contemporaneously monitor the ET fluxes from this two treatments as a function of the wind direction. A detailed footprint analysis was conducted - through the application of three different analytical models - to determine the position and the size of the footprint area at each monitoring time step (30-min). Two sets of half-hourly ET values, each one concerning one of the two treatments, were therefore obtained, each one comprising about 10-15% of the daytime time steps over the whole agricultural season. To confirm the reliability of the measured ET fluxes, the energy balance closure was computed for the two fields and resulted in an imbalance lower than 10% for both the irrigation treatments. The two eddy covariance data-sets were then used to calibrate three Penman-Monteith type models: one for the estimation of the rice crop transpiration (T), the second for the soil evaporation (ES), and the third for the evaporation from the water covering the soil in the case of flooded rice fields (EH20). Models were implemented using the available agro-meteorological data detected over the rice canopies and the periodically measured values of crop parameters (leaf area index, crop height). Finally, the calibrated models were used to compute the complete hourly ET data series for the three irrigation regimes.

  12. Green-tuff landslide areas are beneficial for rice nutrition in Japan.

    PubMed

    Tazaki, Kazue

    2006-12-01

    Japanese Islands are covered with weathered volcanic rocks and soils. Terraced rice field are located in green-tuff areas which are very fertile but where landslides occur associated to strong earthquakes. The Xray diffraction and X-ray fluorescence analyses of the soils in landslide area identified predominant smectite and Mg, Al, Si, K, Ti, Mn and Fe are main components. The rice leaf showed that S, Cl, K and Ca play important roles for nutrients in the area. Drainpipe systems have set up in the green- tuff areas to reduce the risks of landslides. Reddish brown microbial mats inhabited bacteria and diatom in the drainpipe outlets. The microbial mats are rich in Fe and PO4(3-). The iron bacteria in the ground water have a high metabolic rate suggesting that the weathering materials were produced by not only physical and chemical influence but also by microorganism. Many microorganisms attach to mineral surfaces and show their high impact in the water mineral chemistry in the landslide area. Bacteria in the green-tuff over landslide area play important roles for sustainable agriculture including rice nutrition.

  13. Determination of sockage for accurate rough rice quality assessment

    USDA-ARS?s Scientific Manuscript database

    Determination of dockage of freshly harvested rice is crucial for precise development of a universal rice shrinking chart. The objectives of this research were to determine the effect of different factors, including rice variety, farm location, harvest moisture and time, drying, dropping, weather ev...

  14. Observations on the fulvous tree duck in Louisiana

    USGS Publications Warehouse

    Meanley, B.; Meanley, A.G.

    1959-01-01

    The Fulvous Tree Duck is a locally common breeding bird of the rice fields of southwestern Louisiana. Observations made in 1955, 1956 and 1957, showed that this species was probably most abundant in the vicinity of Mamou, Evangeline Parish, and Roanoke, Jefferson Davis Parish. Tree ducks arrive in the rice country as the rice is planted in the spring and usually depart following fall harvest. A few winter in the coastal marshes. The nesting period extends from late May well into August. Thirteen and 20 pairs were found nesting in two separate five-square-mile areas. All nests observed were in rice fields. Clutch size in several nests found by John J. Lynch averaged about 13 eggs. A clutch of 23 eggs was probably a dump nest. Several investigators have reported incubation periods varying from 24 to 26 days. Nests were constructed of rice or other plants that occurred in the rice fields; they usually had a canopy and ramp; none was lined with down. Renesting compensated for some first attempt losses. Depredations on rice plantings sometimes occurred in spring in water-planted rice fields. Favorite foods were seeds of grasses and sedges found in rice fields. Flocks totalling 3000 were occasionally seen in the fall on the Lacassine Wildlife Refuge.

  15. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.

    PubMed

    Ohba, S Y; Matsuo, T; Takagi, M

    2013-03-01

    Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.

  16. An Assessment of Wave and Wind Data for Use in Design of Tension Leg Platforms - U.S. Offshore Areas.

    DTIC Science & Technology

    1984-07-01

    level crossing rate equations first developed by Rice are commonly employed, reference 4. If one assumes that the wave height variance spectrum is...wave photo was kindly furnished by Mr. Dillard Hammett of SEDCO, Inc. : "The photo was taken in November, 1982. The location was the Ekofisk Field

  17. Rice available to waterfowl in harvested fields in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, M.R.; Sharp, D.E.; Gilmer, D.S.; Mulvaney, W.R.

    1989-01-01

    Rice fields in the Sacramento Valley, California were sampled in 1985 and 1986 to determine the weight of rice seed remaining in the fields immediately after harvest and again after the fields were burned. No significant differences were found between years (P>0.05). The pooled mean was 388 kg/ha in harvested fields and 276 kg/ha in burned fields. These values are less than estimates previously available. The values for harvested fields both years were no different (P>0.05) than values obtained by the U.S. Department of Agriculture (USDA). Surveys of rice fields in December both years showed that most fields were left either harvested (26-32%) or burned (37-40%) through the winter. Fields flooded for duck hunting made up 15% of the total. The proportion of fields plowed by December increased from 14% in 1985 to 22% in 1986. Sixty-three percent of all fields that had been flooded for hunting were drained within two weeks after the end of the hunting season. Harvest yield field size levee type (contour, lasered), straw status (spread, windrowed), harvest date, and rice variety did not affect the quantity of seeds remaining after harvest (P>0.05). One harvester model, the Hardy Harvester, left more rice in fields than did others we tested (P<0.001). Specific management programs are recommended to mitigate annual variation in rice seed availability to waterfowl caused by differences in total hectares grown (15% less in 1986) and in the proportion of fields burned and plowed.

  18. Depletion of rice as food of waterfowl wintering in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Greer, Danielle M.; Dugger, Bruce D.; Reinecke, Kenneth J.; Petrie, Mark J.

    2009-01-01

    Waterfowl habitat conservation strategies in the Mississippi Alluvial Valley (MAV) and several other wintering areas assume carrying capacity is limited by available food, and increasing food resources is an effective conservation goal. Because existing research on winter food abundance and depletion is insufficient to test this hypothesis, we used harvested rice fields as model foraging habitats to determine if waste rice seed is depleted before spring migration. We sampled rice fields (n = 39 [winter 2000-2001], n = 69 [2001-2002]) to estimate seed mass when waterfowl arrived in late autumn and departed in late winter. We also placed exclosures in subsets of fields in autumn (n = 8 [2000-2001], n = 20 [2001-2002]) and compared seed mass inside and outside exclosures in late winter to estimate rice depletion attributable to waterfowl and other processes. Finally, we used an experiment to determine if the extent of rice depletion differed among fields of varying initial abundance and if the seed mass at which waterfowl ceased foraging or abandoned fields differed from a hypothesized giving-up value of 50 kg/ha. Mean seed mass was greater in late autumn 2000 than 2001 (127.0 vs. 83.9 kg/ha; P = 0.018) but decreased more during winter 2000-2001 than 2001-2002 (91.3 vs. 55.7 kg/ha) and did not differ at the end of winter (35.8 vs. 28.3 kg/ha; P = 0.651). Assuming equal loss to deterioration inside and outside exclosures, we estimated waterfowl consumed 61.3 kg/ha (48.3%) of rice present in late autumn 2000 and 21.1 kg/ha (25.1%) in 2001. When we manipulated late-autumn rice abundance, mean giving-up mass of rice seed was similar among treatments (48.7 kg/ha; P = 0.205) and did not differ from 50 kg/ha (P = 0.726). We integrated results by constructing scenarios in which waterfowl consumed rice at different times in winter, consumption and deterioration were competing risks, and consumption occurred only above 50 kg/ha. Results indicated waterfowl likely consumed available rice soon after fields were flooded and the amount consumed exceeded our empirical estimates but was -48% (winters pooled) of rice initially present. We suggest 1) using 50 kg/ha as a threshold below which profitability limits waterfowl feeding in MAV rice fields; 2) reducing the current estimate (130 kg/ha) of rice consumed in harvested fields to 47.1 kg/ha; and 3) increasing available rice by increasing total area of fields managed, altering management practices (e.g., staggered flooding), and exploring the potential for producing second or ratoon rice crops for waterfowl.

  19. 40 CFR 63.6603 - What emission limitations and operating limitations must I meet if I own or operate an existing...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating limitations must I meet if I own or operate an existing stationary RICE located at an area source... operating limitations must I meet if I own or operate an existing stationary RICE located at an area source... procedures in § 63.6620 and Table 4 to this subpart. (a) If you own or operate an existing stationary RICE...

  20. A comparison of weed communities of coastal rice fields in Peninsular Malaysia.

    PubMed

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Selamat, A

    2013-09-01

    A survey was conducted at 100 different rice fields in coastal areas of West Malaysia to identify most common and prevalent weeds associated with rice. Fields surveyed were done according to the quantitative survey method by using 0.5m x 0.5m size quadrate with 20 samples from each field. A total of 53 different weed species belong to 18 families were identified of which 32 annual and 21 perennial; 12 grassy, 13 sedges and 28 broadleaved weeds. Based on relative abundance the most prevalent and abundant weed species were selected in the coastal rice field. Among the 10 most abundant weed species, there were four grasses viz. Echinochloa crusgalli, Leptochloo chinensis, Echinochloo colona, Oryza sotivo L. (weedy rice).; four sedges viz. Fimbristylis miliacea, Cyperus iria, Cyperus difformis, Scirpus grossus and two broadleaved weeds viz. Sphenocleo zeylonica, Jussiaea linifolio. Leptochloa chinensis, E. crusgalli, F. miliocea, E. colona were more prevalent and abundant species out of the 10 most dominant weed species in the coastal rice field of Peninsular Malaysia.

  1. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery

    NASA Astrophysics Data System (ADS)

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2015-07-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  2. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery.

    PubMed

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2015-07-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms ( R 2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  3. Effect of fertilizer application on ammonia emission and concentration levels of ammonium, nitrate, and nitrite ions in a rice field.

    PubMed

    Das, Piw; Sa, Jae-Hwan; Kim, Ki-Hyun; Jeon, Eui-Chan

    2009-07-01

    The concentrations of ammonium NH4+, nitrate NO3-, and nitrite NO2- ions were recorded along with ammonia (NH(3)) emission from a fertilized rice field located in the Kwangju province in South Korea over a period of 4 months (June to October 2006). The highest magnitude of NH(3) flux was 20,754 microg m(-2) h(-1), while the average flux value over the entire sampling period was 2,395 microg m(-2) h(-1). The highest ionic concentrations were 1.67, 0.44, and 0.71 ppm for NH4+, NO3-, and NO2- ions, respectively. Possible effects of soil pH on NH(3) fluxes were detected, as they concurrently exhibited a gradual and periodic change during the sampling period. Positive correlations existed between concentrations of NH4+ and NO2- ions and the soil pH. Positive correlations also existed between NH(3) emission flux and ambient (and water) temperatures. Results indicated that fertilizer application to rice can lead to significant emission of NH(3) along with NH4+ and NO3- ions.

  4. Characterization of field isolates of Magnaporthe oryzae with mating type, DNA fingerprinting, and pathogenicity assays

    USDA-ARS?s Scientific Manuscript database

    Due to the harmful nature of the rice blast fungus, Magnaporthe oryzae, it is beneficial to characterize field isolates to help aid in the deployment of resistance (R) genes in rice. In the present study, 190 field isolates of M. oryzae, collected from rice fields of Yunnan province in China, were a...

  5. Acetylcholinesterase inhibition and gill lesions in Rasbora caverii, an indigenous fish inhabiting rice field associated waterbodies in Sri Lanka.

    PubMed

    Wijeyaratne, W M D N; Pathiratne, Asoka

    2006-10-01

    The present study was aimed at applying condition factor (CF), brain acetylcholinesterase (AChE) and gill histology as biomarkers for detecting possible exposure/effect induced by pesticides in fish residing rice field associated waterbodies in Sri Lanka. Biomarkers of an indigenous fish, Rasbora caverii collected from five sampling sites including canals near rice fields, a river and a reservoir (the reference site) were evaluated at four sampling stages covering pesticide application periods during rice cultivation season in 2004. Results indicated that CF of the fish did not show significant alterations regardless of the sampling sites or sampling stages. Site specific differences in AChE activities of the fish were not evident either prior to application of pesticides or at 7 days after Paraquat application to the rice fields. Two days after the application of a mixture of Fenthion and Phenthoate to the rice fields, AChE activity of the fish collected from canals near rice fields was significantly depressed (65-75%) compared to the fish in the reference site. The activities remain depressed to 50-56% even at 65 days after the insecticides application. Laboratory studies showed that prior exposure of R. caverii to Paraquat (2 microg l(-1), 7 days) enhanced the extent of inhibition of brain AChE activity induced by Fenthion (3 microg l(-1)) or a mixture of Fenthion (3 microg l(-1)) and Phenthoate (5 microg l(-1)). Gills of fish collected from canals near rice fields exhibited abnormal multiple divisions at the tips of some secondary lamellae in addition to hyperplasia, hypertrophy and club shaped deformities. Results indicate that application of pesticides in rice culture could manifest a threat to native fish populations residing rice field associated waterbodies. The response of brain AChE and histological changes in the gills of R. caverii allowed differentiating sampling sites after insecticide applications to the rice fields. Hence, R. caverii may be considered as a surrogate species in ecotoxicological risk evaluation of agrochemicals in the region.

  6. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines.

    PubMed

    Gadde, Butchaiah; Bonnet, Sébastien; Menke, Christoph; Garivait, Savitri

    2009-05-01

    Rice is a widely grown crop in Asia. China (30%) and India (21%) contribute to about half of the world's total rice production. In this study, three major rice-producing countries in Asia are considered, India, Thailand and the Philippines (the later two contributing 4% and 2% of the world's rice production). Rice straw is one of the main field based residues produced along with this commodity and its applications vary widely in the region. Although rice production practises vary from one country to another, open burning of straw is a common practice in these countries. In this study, an approach was followed aiming at (a) determining the quantity of rice straw being subject to open field burning in those countries, (b) congregating pollutant specific emissions factors for rice straw burning, and (c) quantifying the resulting air pollutant emissions. Uncertainties in the results obtained as compared to a global approach are also discussed.

  7. Role of Remote Sensing and Geographyc Information System Mapping for Protected Areas Land Rice Field Subak, Buffer Zones, and Area Conversion (Case Studies In Gianyar Regency, Bali Province)

    NASA Astrophysics Data System (ADS)

    Lanya, Indayati; Netera Subadiyasa, N.

    2016-11-01

    Conversion of rice fields in Bali 2579 ha/year, Law Number 41 of 2009 [1] and five of Government Regulation (GR), mandates the Local Government (LG) has a Regional Regulation (RR) or Rule Regent/Mayor, on the protection of agricultural land sustainable food (PALSF). Yet none provincial government of Bali has PALSF; although Subak as world cultural heritage. Similarly, Gianyar regency development strategy directed to integrate agriculture with tourism. Landsat 8 images, Word View Coverage 2015 Gianyar district and ArcGIS 10.3 software used for of rice field mapping and zoning of land protection Subak. Ten thematic maps (watersheds, land use, irrigation, relief/slope, rainfall, spatial planning, land suitability, productivity, the distance from downtown) as a variable parameter, weighted and balanced numerically. Numerical classification agricultura land using for the overlay menu and reselek. The total value of >125 as rice need to be protected, 100-125 value for buffer zone, and the value of <100 rice fields can be converted to 40 next year. For the 20 next year, the total value of> 100, 50-100 and <50 respectively to rice fields that need to be protected, wetland buffer, and rice fields can be converted. Region Subak sustainable of rice field protection, buffer and can be converted in a row for the next 20 years is 10973 ha, 3855 ha and 311 ha. For the next 40 years Subak conserved of rice field (8019 ha), buffer (5855 ha), and can be converted (3124 ha). Subak land pattern of spread can be converted to an supply of land for non-agricultural development of the region downstream to the access road Ida Bagus Matera (Jln. Province / national) in the coastal areas of Gianyar.

  8. Rapid assessment of rice seed availability for wildlife in harvested fields

    USGS Publications Warehouse

    Halstead, B.J.; Miller, M.R.; Casazza, Michael L.; Coates, P.S.; Farinha, M.A.; Benjamin, Gustafson K.; Yee, J.L.; Fleskes, J.P.

    2011-01-01

    Rice seed remaining in commercial fields after harvest (waste rice) is a critical food resource for wintering waterfowl in rice-growing regions of North America. Accurate and precise estimates of the seed mass density of waste rice are essential for planning waterfowl wintering habitat extents and management. In the Sacramento Valley of California, USA, the existing method for obtaining estimates of availability of waste rice in harvested fields produces relatively precise estimates, but the labor-, time-, and machineryintensive process is not practical for routine assessments needed to examine long-term trends in waste rice availability. We tested several experimental methods designed to rapidly derive estimates that would not be burdened with disadvantages of the existing method. We first conducted a simulation study of the efficiency of each method and then conducted field tests. For each approach, methods did not vary in root mean squared error, although some methods did exhibit bias for both simulations and field tests. Methods also varied substantially in the time to conduct each sample and in the number of samples required to detect a standard trend. Overall, modified line-intercept methods performed well for estimating the density of rice seeds. Waste rice in the straw, although not measured directly, can be accounted for by a positive relationship with density of rice on the ground. Rapid assessment of food availability is a useful tool to help waterfowl managers establish and implement wetland restoration and agricultural habitat-enhancement goals for wintering waterfowl. ?? 2011 The Wildlife Society.

  9. 40 CFR 63.6600 - What emission limitations and operating limitations must I meet if I own or operate a stationary...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500... RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions... 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP...

  10. 40 CFR 63.6600 - What emission limitations and operating limitations must I meet if I own or operate a stationary...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500... RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions... 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP...

  11. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions 1b... Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of... 15 percent O2 and using NSCR; a. maintain your catalyst so that the pressure drop across the catalyst...

  12. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions 1b... Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of... 15 percent O2 and using NSCR; a. maintain your catalyst so that the pressure drop across the catalyst...

  13. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  14. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice

    PubMed Central

    Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro

    2012-01-01

    To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082

  15. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field.

    PubMed

    Busconi, M; Baldi, G; Lorenzoni, C; Fogher, C

    2014-01-01

    In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Herbicide options for effective weed management in dry direct-seeded rice under scented rice-wheat rotation of western Indo-Gangetic Plains.

    PubMed

    Singh, Vijay; Jat, Mangi L; Ganie, Zahoor A; Chauhan, Bhagirath S; Gupta, Raj K

    2016-03-01

    Farmers' participatory field trials were conducted at Madhuban, and Taraori, the two participatory experimental sites/locations of the Cereal Systems Initiative for South Asia (CSISA), a collaborative project of IRRI and CIMMYT in Karnal district of Haryana, India, during Kharif (wet season) 2010 and 2011. This research aimed to evaluate preemergence (PRE) and postemergence (POST) herbicides for providing feasible and economically viable weed management options to farmers for predominant scented rice varieties. Treatments with pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST had lower weed biomass at 45 days after sowing (DAS). At Madhuban, highest grain yield of scented basmati rice (3.43 t ha -1 ) was recorded with the sequential application of pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST. However, at Taraori, yields were similar with pendimethalin or oxadiargyl PRE fb bispyribac-sodium and/or azimsulfuron POST. Applying oxadiargyl by mixing with sand onto flooded field was less effective than spray applications in non-flooded field. The benefit-cost ratio of rice crop was higher with herbicide treatments at both sites as compared with the non-treated weed-free check except single PRE and POST applications and sequential application of oxadiargyl PRE fb oxadiargyl PRE. In a separate experiment conducted at Nagla and Taraori sites, scented rice cultivars' ('CSR 30' and 'Pusa 1121') tolerance to three rates of azimsulfuron (15, 25, and 35 g ai ha -1 ) was evaluated over two years (2010 and 2011). CSR 30 (superfine, scented) was more sensitive to higher rates (35 g ai ha -1 ) of azimsulfuron as compared to Pusa 1121 (fine, scented). Crop injuries were 8 and 28% in case of CSR 30; 5 and 15% in Pusa 1121 when applied with azimsulfuron 25 and 35 g ai ha -1 , respectively. Azimsulfuron applied at 35 g ai ha -1 reduced yield in both cultivars but in CSR 30 yield reduction was twofold (11.5%) as that of Pusa 1121 (5.2%).

  17. Herbicide options for effective weed management in dry direct-seeded rice under scented rice-wheat rotation of western Indo-Gangetic Plains

    PubMed Central

    Singh, Vijay; Jat, Mangi L.; Ganie, Zahoor A.; Chauhan, Bhagirath S.; Gupta, Raj K.

    2016-01-01

    Farmers' participatory field trials were conducted at Madhuban, and Taraori, the two participatory experimental sites/locations of the Cereal Systems Initiative for South Asia (CSISA), a collaborative project of IRRI and CIMMYT in Karnal district of Haryana, India, during Kharif (wet season) 2010 and 2011. This research aimed to evaluate preemergence (PRE) and postemergence (POST) herbicides for providing feasible and economically viable weed management options to farmers for predominant scented rice varieties. Treatments with pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST had lower weed biomass at 45 days after sowing (DAS). At Madhuban, highest grain yield of scented basmati rice (3.43 t ha−1) was recorded with the sequential application of pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST. However, at Taraori, yields were similar with pendimethalin or oxadiargyl PRE fb bispyribac-sodium and/or azimsulfuron POST. Applying oxadiargyl by mixing with sand onto flooded field was less effective than spray applications in non-flooded field. The benefit-cost ratio of rice crop was higher with herbicide treatments at both sites as compared with the non-treated weed-free check except single PRE and POST applications and sequential application of oxadiargyl PRE fb oxadiargyl PRE. In a separate experiment conducted at Nagla and Taraori sites, scented rice cultivars' ('CSR 30′ and 'Pusa 1121′) tolerance to three rates of azimsulfuron (15, 25, and 35 g ai ha−1) was evaluated over two years (2010 and 2011). CSR 30 (superfine, scented) was more sensitive to higher rates (35 g ai ha−1) of azimsulfuron as compared to Pusa 1121 (fine, scented). Crop injuries were 8 and 28% in case of CSR 30; 5 and 15% in Pusa 1121 when applied with azimsulfuron 25 and 35 g ai ha−1, respectively. Azimsulfuron applied at 35 g ai ha−1 reduced yield in both cultivars but in CSR 30 yield reduction was twofold (11.5%) as that of Pusa 1121 (5.2%). PMID:26941471

  18. Photodegradation of clothianidin under simulated California rice field conditions.

    PubMed

    Mulligan, Rebecca A; Redman, Zachary C; Keener, Megan R; Ball, David B; Tjeerdema, Ronald S

    2016-07-01

    Photodegradation can be a major route of dissipation for pesticides applied to shallow rice field water, leading to diminished persistence and reducing the risk of offsite transport. The objective of this study was to characterize the aqueous-phase photodegradation of clothianidin under simulated California rice field conditions. Photodegradation of clothianidin was characterized in deionized, Sacramento River and rice field water samples. Pseudo-first-order rate constants and DT50 values in rice field water (mean k = 0.0158 min(-1) ; mean DT50 = 18.0 equivalent days) were significantly slower than in deionized water (k = 0.0167 min(-1) ; DT50 = 14.7 equivalent days) and river water (k = 0.0146 min(-1) ; DT50 = 16.6 equivalent days) samples. Quantum yield ϕc values demonstrate that approximately 1 and 0.5% of the light energy absorbed results in photochemical transformation in pure and field water respectively. Concentrations of the photodegradation product thiazolymethylurea in aqueous photolysis samples were determined using liquid chromatography-tandem mass spectrometry and accounted for ≤17% in deionized water and ≤8% in natural water. Photodegradation rates of clothianidin in flooded rice fields will be controlled by turbidity and light attenuation. Aqueous-phase photodegradation may reduce the risk of offsite transport of clothianidin from flooded rice fields (via drainage) and mitigate exposure to non-target organisms. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Sequential Classifier Training for Rice Mapping with Multitemporal Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Jia, X.; Paull, D.

    2017-10-01

    Most traditional methods for rice mapping with remote sensing data are effective when they are applied to the initial growing stage of rice, as the practice of flooding during this period makes the spectral characteristics of rice fields more distinguishable. In this study, we propose a sequential classifier training approach for rice mapping that can be used over the whole growing period of rice for monitoring various growth stages. Rice fields are firstly identified during the initial flooding period. The identified rice fields are used as training data to train a classifier that separates rice and non-rice pixels. The classifier is then used as a priori knowledge to assist the training of classifiers for later rice growing stages. This approach can be applied progressively to sequential image data, with only a small amount of training samples being required from each image. In order to demonstrate the effectiveness of the proposed approach, experiments were conducted at one of the major rice-growing areas in Australia. The proposed approach was applied to a set of multitemporal remote sensing images acquired by the Sentinel-2A satellite. Experimental results show that, compared with traditional spectral-indexbased algorithms, the proposed method is able to achieve more stable and consistent rice mapping accuracies and it reaches higher than 80% during the whole rice growing period.

  20. Mapping cropping patterns in irrigated rice fields in West Java: Towards mapping vulnerability to flooding using time-series MODIS imageries

    NASA Astrophysics Data System (ADS)

    Sianturi, Riswan; Jetten, V. G.; Sartohadi, Junun

    2018-04-01

    Information on the vulnerability to flooding is vital to understand the potential damages from flood events. A method to determine the vulnerability to flooding in irrigated rice fields using the Enhanced Vegetation Index (EVI) was proposed in this study. In doing so, the time-series EVI derived from time-series 8 day 500 m spatial resolution MODIS imageries (MOD09A1) was used to generate cropping patterns in irrigated rice fields in West Java. Cropping patterns were derived from the spatial distribution and phenology metrics so that it is possible to show the variation of vulnerability in space and time. Vulnerability curves and cropping patterns were used to determine the vulnerability to flooding in irrigated rice fields. Cropping patterns capture the shift in the vulnerability, which may lead to either an increase or decrease of the degree of damage in rice fields of origin and other rice fields. The comparison of rice field areas between MOD09A1 and ALOS PALSAR and MOD09A1 and Agricultural Statistics showed consistent results with R2 = 0.81 and R2 = 0.93, respectively. The estimated and observed DOYs showed RMSEs = 9.21, 9.29, and 9.69 days for the Start of Season (SOS), heading stage, and End of Season (EOS), respectively. Using the method, one can estimate the relative damage provided available information on the flood depth and velocity. The results of the study may support the efforts to reduce the potential damages from flooding in irrigated rice fields.

  1. Riceland mosquito management practices for Anopheles quadrimaculatus larvae.

    PubMed

    Allen, R A; Wilkes, W W; Lewis, C N; Meisch, M V

    2008-12-01

    Two separate but related studies were conducted regarding management of Anopheles quadrimaculatus larval populations in commercial rice fields near Cleveland, MS, in 2004. Study 1 was to evaluate the effectiveness of 2 treatments of aerially applied ultra-low volume applications of Bacillus thuringiensis var. israelensis (Bti) against An. quadrimaculatus larvae in dense, high-canopy mid- to late-season rice crop. Study 2 was to investigate the effect of preflood treatments of lambda-cyhalothrin (Karate), which is commonly used against rice water weevil (Lissorhoptrus oryzophilus), on An. quadrimaculatus larvae. Excellent initial, but short residual control (>99% control 1 day after treatment) was observed in the Bti-treated fields in both mid- and late-season rice. Little or no effect on mosquito larvae was observed in the lambda-cyhalothrin-treated fields. Results indicate that Bti can be effectively used by mosquito management personnel to control larval populations of An. quadrimaculatus in late-season rice fields; however, lambda-cyhalothrin did not effectively control larval An. quadrimaculatus when applied preflood to rice fields.

  2. Investigating Pigment Radicals in Black Rice Using HPLC and Multi-EPR.

    PubMed

    Nakagawa, Kouichi; Maeda, Hayato

    2017-01-01

    We investigated the location and distribution of paramagnetic species in black and white rice using electron paramagnetic resonance (EPR), X-band (9 GHz) EPR imaging (EPRI), and HPLC. EPR primarily detected two paramagnetic species in black rice, which were identified as a stable radical and Mn 2+ species, based on the g values and hyperfine components of the EPR signals. The signal from the stable radical appeared at g ≈ 2.00 and was relatively strong and stable. Subsequent noninvasive two-dimensional (2D) EPRI revealed that this stable radical was primarily located in the pigmented region of black rice, while very few radicals were observed in the rice interior. Pigments extracted from black rice were analyzed using HPLC; the major compound was found to be cyanidin-3-glucoside. EPR and HPLC results indicate that the stable radical was only found within the pigmented region of the rice, and that it could either be cyanidin-3-glucoside, or one of its oxidative decomposition products.

  3. A digital photography and analysis system for estimation of root and shoot development in rice weed suppression studies in the field

    USDA-ARS?s Scientific Manuscript database

    Rice germplasm with an inherent ability to suppress weeds can potentially improve the economics and sustainability of weed control in rice. We devised a simple, rapid, and inexpensive digital imaging system to quantify several shoot and root growth characteristics in field-grown rice plants that ha...

  4. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed

    PubMed Central

    Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.

    2013-01-01

    Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.

  5. Behavioral response of giant gartersnakes (Thamnophis gigas) to the relative availability of aquatic habitat on the landscape

    USGS Publications Warehouse

    Reyes, Gabriel A.; Halstead, Brian J.; Rose, Jonathan P.; Ersan, Julia S. M.; Jordan, Anna C.; Essert, Allison M.; Fouts, Kristen J.; Fulton, Alexandria M.; Gustafson, K. Benjamin; Wack, Raymond F.; Wylie, Glenn D.; Casazza, Michael L.

    2017-11-16

    Most extant giant gartersnake (Thamnophis gigas) populations persist in an agro-ecosystem dominated by rice, which serves as a surrogate to the expansive marshes lost to flood control projects and development of the Great Central Valley of California. Knowledge of how giant gartersnakes use the rice agricultural landscape, including how they respond to fallowing, idling, or crop rotations, would greatly benefit conservation of giant gartersnakes by informing more snake-friendly land and water management practices. We studied adult giant gartersnakes at 11 sites in the rice-growing regions of the Sacramento Valley during an extended drought in California to evaluate their response to differences in water availability at the site and individual levels. Although our study indicated that giant gartersnakes make little use of rice fields themselves, and avoid cultivated rice relative to its availability on the landscape, rice is a crucial component of the modern landscape for giant gartersnakes. Giant gartersnakes are strongly associated with the canals that supply water to and drain water from rice fields; these canals provide much more stable habitat than rice fields because they maintain water longer and support marsh-like conditions for most of the giant gartersnake active season. Nonetheless, our results suggest that maintaining canals without neighboring rice fields would be detrimental to giant gartersnake populations, with decreases in giant gartersnake survival rates associated with less rice production in the surrounding landscape. Increased productivity of prey populations, dispersion of potential predators across a larger landscape, and a more secure water supply are just some of the mechanisms by which rice fields might benefit giant gartersnakes in adjacent canals. Results indicate that identifying how rice benefits giant gartersnakes in canals and the extent to which the rice agro-ecosystem could provide these benefits when rice is fallowed would inform the use of water for other purposes without harm to giant gartersnakes. Our study also suggests that without such understanding, maintaining rice and associated canals in the Sacramento Valley is critical for the sustainability of giant gartersnake populations.

  6. The relationship between mosquito abundance and rice field density in the Republic of Korea

    PubMed Central

    2010-01-01

    Background Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is endemic to the Republic of Korea (ROK) where unvaccinated United States (U.S.) military Service members, civilians and family members are stationed. The primary vector of the JEV in the ROK is Culex tritaeniorhynchus. The ecological relationship between Culex spp. and rice fields has been studied extensively; rice fields have been shown to increase the prevalence of Cx. tritaeniorhynchus. This research was conducted to determine if the quantification of rice field land cover surrounding U.S. military installations in the ROK should be used as a parameter in a larger risk model that predicts the abundance of Cx. tritaeniorhynchus populations. Mosquito data from the U.S. Forces Korea (USFK) mosquito surveillance program were used in this project. The average number of female Cx. tritaeniorhynchus collected per trap night for the months of August and September, 2002-2008, was calculated. Rice fields were manually digitized inside 1.5 km buffer zones surrounding U.S. military installations on high-resolution satellite images, and the proportion of rice fields was calculated for each buffer zone. Results Mosquito data collected from seventeen sample sites were analyzed for an association with the proportion of rice field land cover. Results demonstrated that the linear relationship between the proportion of rice fields and mosquito abundance was statistically significant (R2 = 0.62, r = .79, F = 22.72, p < 0.001). Conclusions The analysis presented shows a statistically significant linear relationship between the two parameters, proportion of rice field land cover and log10 of the average number of Cx. tritaeniorhynchus collected per trap night. The findings confirm that agricultural land cover should be included in future studies to develop JE risk prediction models for non-indigenous personnel living at military installations in the ROK. PMID:20573242

  7. Rice crop growth monitoring using ENVISAT-1/ASAR AP mode

    NASA Astrophysics Data System (ADS)

    Konishi, Tomohisa; Suga, Yuzo; Omatu, Shigeru; Takeuchi, Shoji; Asonuma, Kazuyoshi

    2007-10-01

    Hiroshima Institute of Technology (HIT) is operating the direct down-links of microwave and optical earth observation satellite data in Japan. This study focuses on the validation for rice crop monitoring using microwave remotely sensed image data acquired by ENIVISAT-1 referring to ground truth data such as height of rice crop, vegetation cover rate and leaf area index in the test sites of Hiroshima district, the western part of Japan. ENVISAT-1/ASAR data has the capabilities for the monitoring of the rice crop growing cycle by using alternating cross polarization mode images. However, ASAR data is influenced by several parameters such as land cover structure, direction and alignment of rice crop fields in the test sites. In this study, the validation was carried out to be combined with microwave image data and ground truth data regarding rice crop fields to investigate the above parameters. Multi-temporal, multi-direction (descending and ascending) and multi-angle ASAR alternating cross polarization mode images were used to investigate during the rice crop growing cycle. On the other hand, LANDSAT-7/ETM+ data were used to detect land cover structure, direction and alignment of rice crop fields corresponding to the backscatter of ASAR. Finally, the extraction of rice planted area was attempted by using multi-temporal ASAR AP mode data such as VV/VH and HH/HV. As the result of this study, it is clear that the estimated rice planted area coincides with the existing statistical data for area of the rice crop field. In addition, HH/HV is more effective than VV/VH in the rice planted area extraction.

  8. Spatial landuse planning using land evaluation and dynamic system to define sustainable area of paddy field: Case study in Karawang Regency, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Widiatmaka, Widiatmaka; Ambarwulan, Wiwin; Firmansyah, Irman; Munibah, Khursatul; Santoso, Paulus B. K.

    2015-04-01

    Indonesia is the country with the 4th largest population in the worlds; the population reached more than 237 million people. With rice as the staple food for more than 95 percent of the population, there is an important role of paddy field in Indonesian food security. Actually, paddy field in Java has produced 52,6% of the total rice production in Indonesia, showing the very high dependence of Indonesia on food production from paddy fields in Java island. Karawang Regency is one of the regions in West Java Province that contribute to the national food supply, due to its high soil fertility and its high extent of paddy field. Dynamics of land use change in this region are high because of its proximity to urban area; this dynamics has led to paddy field conversion to industry and residential landuse, which in turn change the regional rice production capacity. Decreasing paddy field landuse in this region could be serve as an example case of the general phenomena which occurred in Javanese rice production region. The objective of this study were: (i) to identify the suitable area for paddy field, (ii) to modelize the decreasing of paddy field in socio-economic context of the region, and (iii) to plan the spatial priority area of paddy field protection according to model prediction. A land evaluation for paddy was completed after a soil survey, while IKONOS imagery was analyzed to delineate paddy fields. Dynamic system model of paddy field land use is built, and then based on the model built, the land area of paddy field untill 2040 in some scenarios was developped. The research results showed that the land suitability class for paddy fields in Karawang Regency ranged from very suitable (S1) to marginally suitable (S3), with various land characteristics as limiting factors. The model predicts that if the situation of paddy field land use change continues in its business as usual path, paddy field area that would exist in the region in 2040 will stay half of the recent area. Based on the model, the scenario were developed for the protection of priority area. With such scenario, paddy field remains close to the value predicted oficially. Spatial information then can play a role by presenting the scenario spatially. Combining spatial information with land suitability, priority areas of paddy field protection can be delineated. Policies that followed also then be compiled, including the location of protection. Key-words: Land evaluation, food security, spatial information

  9. Monoclonal antibody-based serological assays and immunocapture-RT-PCR for detecting Rice dwarf virus in field rice plants and leafhopper vectors.

    PubMed

    Wu, Jianxiang; Ni, Yuequn; Liu, Huan; Ding, Ming; Zhou, Xueping

    2014-01-01

    Rice dwarf virus (RDV) causes Rice dwarf disease, which leads to considerable losses in rice production in Asia. Purified RDV virions were used as the immunogen to prepare monoclonal antibodies (mAbs). Three murine mAbs against RDV were prepared. Plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA), dot enzyme-linked immunosorbent assay (dot-ELISA) and immunocapture-RT-PCR (IC-RT-PCR) were then developed for sensitive, specific, and rapid detection of RDV in rice and leafhopper samples obtained in the field using the mAbs. The PTA-ELISA, dot-ELISA and IC-RT-PCR detected the virus in infected tissue crude extracts diluted at 1:81,920, 1:10,240 and 1:655,360 (w/v, g mL(-1)), in individual viruliferous rice green leafhopper crude extracts diluted at 1:25,600, 1:6400 and 1:3,276,800 (individual leafhopper/μL), respectively. 878 rice field samples and 531 leafhopper field samples from ten provinces of China were screened for the presence of RDV using the two serological assays and the IC-RT-PCR and the results indicated that 37 of the 878 rice samples and 22 of the 531 leafhopper samples were infected by RDV. All positive samples were from Yunnan Province, indicating that RDV is prevalent in this province, but not in the other nine provinces. The dot-ELISA is suitable for routine detection of large-scale rice and leafhopper samples in field surveys. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Assessing farmers' community readiness towards the enhancement of natural enemy population in rice fields in Malacca

    NASA Astrophysics Data System (ADS)

    Fairuz, K.; Idris, A. G.; Syahrizan, S.; Hatijah, K.

    2018-04-01

    Malacca has committed to be a green technology state by the year 2020. Agriculture is one of the main industries that have been highlighted to achieve this goal especially rice farming activities. Some limitations for this issue have restricted the accomplishment of the plan including pesticide usage among rice farmers. The use of chemicals in rice field need to be reduced significantly in order to support the goal. One of the indicators to the successfulness of pesticide reduction is the increasing numbers of natural enemies' species abundance and population in the rice field. Natural enemies were important to regulate pest populations in rice field naturally. Farmers' readiness to participate in this issue is very important to ensure the successfulness. The level of readiness of farmers' community will determine whether they are ready or not to execute the plan. Unfortunately, such information in rice farmers' community was not properly measured. Thus this study was aimed to assess the readiness level of rice farmers' community to change in order to enhance natural enemies in their rice field. This study was adapting the CR model as its theoretical framework. Three rice farming area in Malacca were involved in this study namely, Jasin, Melaka Tengah and Alor Gajah. Questionnaires were used as major instrument and were randomly distributed to 224 farmers. Data collected were tested for their reliability, significance and level of readiness. Knowledge of issue, knowledge of effort and resources dimensions were found influencing the readiness dimension significantly, whilst the attitude and leadership dimensions were not. Generally, the level of readiness for farmers' community in Malacca was found in the sixth or initial stage, where some of them initially have started to practice a few related activities to enhance the natural enemies' population in their rice field. Continuous support and assistant from the leaders and local authorities are crucially needed in order to sustain and improve the farmers' community level of readiness.

  11. Wetland management and rice farming strategies to decrease methylmercury bioaccumulation and loads from the Cosumnes River Preserve, California

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Fleck, Jacob; Windham-Myers, Lisamarie; McQuillen, Harry; Heim, Wes

    2014-01-01

    We evaluated mercury (Hg) concentrations in caged fish (deployed for 30 days) and water from agricultural wetland (rice fields), managed wetland, slough, and river habitats in the Cosumnes River Preserve, California. We also implemented experimental hydrological regimes on managed wetlands and post-harvest rice straw management techniques on rice fields in order to evaluate potential Best Management Practices to decrease methylmercury bioaccumulation within wetlands and loads to the Sacramento-San Joaquin River Delta. Total Hg concentrations in caged fish were twice as high in rice fields as in managed wetland, slough, or riverine habitats, including seasonal managed wetlands subjected to identical hydrological regimes. Caged fish Hg concentrations also differed among managed wetland treatments and post-harvest rice straw treatments. Specifically, Hg concentrations in caged fish decreased from inlets to outlets in seasonal managed wetlands with either a single (fall-only) or dual (fall and spring) drawdown and flood-up events, whereas Hg concentrations increased slightly from inlets to outlets in permanent managed wetlands. In rice fields, experimental post-harvest straw management did not decrease Hg concentrations in caged fish. In fact, in fields in which rice straw was chopped and either disked into the soil or baled and removed from the fields, fish Hg concentrations increased from inlets to outlets and were higher than Hg concentrations in fish from rice fields subjected to the more standard post-harvest practice of simply chopping rice straw prior to fall flood-up. Finally, aqueous methylmercury (MeHg) concentrations and export were highly variable, and seasonal trends in particular were often opposite to those of caged fish. Aqueous MeHg concentrations and loads were substantially higher in winter than in summer, whereas caged fish Hg concentrations were relatively low in winter and substantially higher in summer. Together, our results highlight the importance of habitat, seasonal processes, and wetland management practices on Hg cycling and ecological risk in aquatic ecosystems.

  12. Genetic diversity of weedy red rice (Oryza sativa) in Arkansas, USA

    USDA-ARS?s Scientific Manuscript database

    Weedy red rice (Oryza sativa L.) is a problematic weed in rice. About 50% of US rice is produced in Arkansas and 60% of these fields have some red rice infestation. Red rice populations are morphologically and phenologically diverse. We hypothesize that red rice in Arkansas has high genetic diversit...

  13. Seasonal assessment of greenhouse gas emission from irrigated lowland rice field under infrared warming

    USDA-ARS?s Scientific Manuscript database

    Rice fields are considered as one of the major sources of methane (CH4), and they also emit nitrous oxide (N2O). A field experiment was conducted at the International Rice Research Institute, Philippines, in 2010 – 2011 using a temperature free-air controlled enhancement (T-FACE) system. Our object...

  14. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment.

    PubMed

    Cao, Qian-Jin; Xia, Hui; Yang, Xiao; Lu, Bao-Rong

    2009-12-01

    Transgene escape from genetically modified (GM) rice into weedy rice via gene flow may cause undesired environmental consequences. Estimating the field performance of crop-weed hybrids will facilitate our understanding of potential introgression of crop genes (including transgenes) into weedy rice populations, allowing for effective biosafety assessment. Comparative studies of three weedy rice strains and their hybrids with two GM rice lines containing different insect-resistance transgenes (CpTI or Bt/CpTI) indicated an enhanced relative performance of the crop-weed hybrids, with taller plants, more tillers, panicles, and spikelets per plant, as well as higher 1 000-seed weight, compared with the weedy rice parents, although the hybrids produced less filled seeds per plant than their weedy parents. Seeds from the F(1) hybrids had higher germination rates and produced more seedlings than the weedy parents, which correlated positively with 1 000-seed weight. The crop-weed hybrids demonstrated a generally enhanced relative performance than their weedy rice parents in our field experiments. These findings indicate that transgenes from GM rice can persist to and introgress into weedy rice populations through recurrent crop-to-weed gene flow with the aid of slightly increased relative fitness in F(1) hybrids.

  15. Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage.

    PubMed

    Ji, Xionghui; Liu, Saihua; Juan, Huang; Bocharnikova, Elena A; Matichenkov, Vladimir V

    2017-04-01

    Silicon has been found to enhance the plants' tolerance to heavy metal stress. In a field study, the effect of different types of Si-rich soil amendments (slag, ground slag, and diatomaceous earth) and fertilizers (activated slag, ground activated slag, and commercial Si fertilizer) on the distribution of soluble and insoluble forms of Cd in the rice plant organs grown on long-term cultivated paddy soil contaminated with Cd (central part of Hunan Province, China) was investigated. The soluble Si and Cd were tested in the apoplast and symplast of the roots, stems, and leaves of rice at a tillering stage. The Si-rich materials increased rice biomass by up to 15.5% and reduced the total leaf Cd by 8.5 to 21.9%. Commercial Si fertilizer was the most effective. Three main locations of the most active Si-Cd interactions were distinguished in the soil-plant system: soil, where monosilicic acid affords adsorption and fixation of the bioavailable Cd and root apoplast and apoplast above roots, where monosilicic acid can precipitate Cd. The transport of Cd to stems and leaves and the mobility of Cd in the soil depend on the content of monosilicic acid in the system.

  16. Changes in the status of harvested rice fields in the Sacramento Valley, California: Implications for wintering waterfowl.

    USGS Publications Warehouse

    Miller, Michael R.; Garr, Jay D.; Coates, Peter S.

    2010-01-01

    Harvested rice fields provide critical foraging habitat for wintering waterfowl in North America, but their value depends upon post-harvest treatments. We visited harvested ricefields in the Sacramento Valley, California, during the winters of 2007 and 2008 (recent period) and recorded their observed status as harvested (standing or mechanically modified stubble), burned, plowed, or flooded. We compared these data with those from identical studies conducted during the 1980s (early period). We documented substantial changes in field status between periods. First, the area of flooded rice increased 4-5-fold, from about 15% to >40% of fields, because of a 3-4-fold increase in the percentage of fields flooded coupled with a 37-41% increase in the area of rice produced. Concurrently, the area of plowed fields increased from 35% of fields, burned fields declined from about 40% to 1%, and fields categorized as harvested declined from 22-54% to <15%. The increased flooding has likely increased access to food resources for wintering waterfowl, but this benefit may not be available to some goose species, and may be at least partially countered by the increase of plowed fields, especially those left dry, and the decrease of fields left as harvested.We encourage waterfowl managers to implement a rice field status survey in the Sacramento Valley and other North American rice growing regions as appropriate to support long-term monitoring programs and wetland habitat conservation planning for wintering waterfowl.

  17. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  18. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  19. Confirming and identifying new loci for rice blast disease resistance using magnaporthe oryzae field isolates in the US

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait loci (QTL) in rice play important roles in controlling rice blast disease. In the present study, 10 field isolates of the races IA1, IB1, IB17, and IC1 of U.S. rice blast fungus Magnaporthe oryzae collected in 1996 and 2009 were used to identify blast resistance QTL with a recombi...

  20. Mapping regional risks from climate change for rainfed rice cultivation in India.

    PubMed

    Singh, Kuntal; McClean, Colin J; Büker, Patrick; Hartley, Sue E; Hill, Jane K

    2017-09-01

    Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~ 50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~ 18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration ( PER ), maximum and minimum temperatures ( T max and T min ), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%-40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased precipitation. Hence our CEM and BRT models agree on the locations most at risk, but there is less consensus about the degree of risk at these locations. Our results help to identify locations where livelihoods of low-income farmers and regional food security may be threatened in the next few decades by climate changes. The use of more drought-resilient rice varieties and better irrigation infrastructure in these regions may help to reduce these impacts and reduce the vulnerability of farmers dependent on rainfed cropping.

  1. Decline of traditional rice farming constrains the recovery of the endangered Asian crested ibis (Nipponia nippon).

    PubMed

    Sun, Yiwen; Wang, Tiejun; Skidmore, Andrew K; Wang, Qi; Ding, Changqing

    2015-12-01

    Traditional agriculture benefits a rich diversity of plants and animals. The winter-flooded rice fields in the Qinling Mountains, China, are the last refuge for the endangered Asian crested ibis (Nipponia nippon), and intensive efforts have been made to protect this anthropogenic habitat. Analyses of multi-temporal satellite data indicate that winter-flooded rice fields have been continuously reduced across the current range of crested ibis during the past two decades. The rate of loss of these fields in the core-protected areas has unexpectedly increased to a higher level than that in non-protected areas in the past decade. The best fit (R (2) = 0.87) numerical response model of the crested ibis population shows that a reduction of winter-flooded rice fields decreases population growth and predicts that the population growth will be constrained by the decline of traditional winter-flooded rice fields in the coming decades. Our findings suggest that the decline of traditional rice farming is likely to continue to pose a threat to the long-term survival and recovery of the crested ibis population in China.

  2. Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures

    NASA Astrophysics Data System (ADS)

    Datta, A.; Yeluripati, Jagadeesh B.; Nayak, D. R.; Mahata, K. R.; Santra, S. C.; Adhya, T. K.

    2013-02-01

    A field experiment was conducted in an irrigated saline rice field of Gadakujang (a fishing hamlet of coastal Odisha, India, ravaged by the super cyclone of 1999 and cyclone BOB02 of 2006), to study the effects of locally available organic and fresh green manure amendment to the saline soil on methane (CH4) emission during wet and dry seasons using the conventional closed chamber flux measurement method. In a first report of this kind, CH4 emission vis-à-vis yield improvement of rice with different locally available organic manure application from coastal saline rice field soil of Odisha, is reported. The study confirms that CH4 flux from the saline soil planted to rice is significantly lower than that of irrigated inland non-saline rice field during both wet and dry seasons. Cumulative seasonal CH4 flux from different treatments of the coastal saline rice field ranged between 119.51 and 263.60 kg ha-1 during the wet season and 15.35-100.88 kg ha-1 during the dry season. Lower CH4 emission during the dry season may be attributed to the increased soil salinity (EC1:2) that went up from 0.76 dS m-1 during the wet season to 3.96 dS m-1 during the dry season. Annual CH4 emission per Mg grain yield was significantly low from plots treated with locally available green manure Morning glory (Ipomoea lacunosa) (17.27) with significantly high rice grain yield. Study indicates that Morning glory may be used as a potential green manure to increase grain yield and reduced CH4 emission from the coastal saline rice ecosystems of the tropics.

  3. A comparison of spider communities in Bt and non-Bt rice fields.

    PubMed

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  4. Development Planning of Tourist Village Using Participatory Mapping (Case study: Mambal Village, Badung Regency, Indonesia)

    NASA Astrophysics Data System (ADS)

    Arida, I. N. S.; Wiguna, P. P. K.; Narka, I. W.; Febrianti, N. K. O.

    2017-12-01

    Tourism sector is the highest source of income in Badung Regency so it is interesting to see the development of tourist village as one of the alternative tourist destinations in Badung Regency. Most of the village areas in Badung Regency do not have policies, vision and mission as an effort to develop the village into a tourist village. As a result the role of tourist village does not grow in terms of economic and social community. The purpose of this research is to determine and to map the tourism development plan using participatory mapping. The methodology used in this research is field surveys and interviews for data collection and participatory mapping to map the development plan to support tourism. Mambal village is located in Sub-district of Abiansemal, Badung Regency, Indonesia. Mambal village has the potential to become a tourism village because it is supported by the uniqueness of nature and tradition. Mambal village passed by Ayung river, where along the river there are beautiful cliffs which potential to develop as adventure tourism. There is also Senaung Pengibul Cave with a length of more than 15 meters and is wide enough to pass. Mambal village also has a spiritual tour of Pura Demung and Pancoran Pitu, which has a magical story. Currently farmers in Mambal Village are focusing on developing organic farming, of which 38% of the rice fields present in Mambal are pure organic that produces organic rice. Around the rice field area is also created a jogging track for visitors while enjoying the natural beauty of rice fields. Farmers also cultivate oyster mushrooms. In addition, Mambal Village Community also produces handicraft products that are woven in the form of symmetrical Endek (traditional fabrics) and processed products from used goods such as bags, wallets, pencil boxes and others.

  5. Spatial use by wintering greater white-fronted geese relative to a decade of habitat change in California's Central Valley

    USGS Publications Warehouse

    Ackerman, Joshua T.; Takekawa, John Y.; Orthmeyer, D.L.; Fleskes, J.P.; Yee, J.L.; Kruse, K.L.

    2006-01-01

    We investigated the effect of recent habitat changes in California's Central Valley on wintering Pacific greater white-fronted geese (Anser albifrons frontalis) by comparing roost-to-feed distances, distributions, population range sizes, and habitat use during 1987-1990 and 1998-2000. These habitat changes included wetland restoration and agricultural land enhancement due to the 1990 implementation of the Central Valley Joint Venture, increased land area used for rice (Oryza sativa) production, and the practice of flooding, rather than burning, rice straw residues for decomposition because of burning restrictions enacted in 1991. Using radiotelemetry, we tracked 192 female geese and recorded 4,516 locations. Geese traveled shorter distances between roosting and feeding sites during 1998-2000 (24.2 ?? 2.2 km) than during 1987-1990 (32.5 ?? 3.4 km); distance traveled tended to decline throughout winter during both decades and varied among watershed basins. Population range size was smaller during 1998-2000 (3,367 km2) than during 1987-1990 (5,145 km2), despite a 2.2-fold increase in the size of the Pacific Flyway population of white-fronted geese during the same time period. The population range size also tended to increase throughout winter during both decades. Feeding and roosting distributions of geese also differed between decades; geese shifted into basins that had the greatest increases in the amount of area in rice production (i.e., American Basin) and out of other basins (i.e., Delta Basin). The use of rice habitat for roosting (1987-1990: 40%, 1998-2000: 54%) and feeding (1987-1990: 57%, 1998-2000: 72%) increased between decades, whereas use of wetlands declined for roosting (1987-1990: 36%, 1998-2000: 31%) and feeding (1987-1990: 22%, 1998-2000: 12%). Within postharvested rice habitats, geese roosted and fed primarily in burned rice fields during 1987-1990 (roost: 43%, feed: 34%), whereas they used flooded rice fields during 1998-2000 (roost: 78%, feed: 64%). Our results suggest that white-fronted geese have altered their spatial use of California's Central Valley during the past decade in response to changing agricultural practices and the implementation of the Central Valley Joint Venture.

  6. First report of multiple races of the rice blast fungus Magnaporthe oryzae in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The rice nursery located in the Lajas Valley, in the southwestern corner of Puerto Rico has been used by US rice breeders for the past 43 years to produce one to two extra generations per year. In April, 2015, blast disease lesions were observed on rice breeding lines belonging to the USDA ARS DB NR...

  7. [Ammonia volatilization loss of nitrogen fertilizer from rice field and wet deposition of atmospheric nitrogen in rice growing season].

    PubMed

    Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong

    2003-11-01

    Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.

  8. Habitat use and movement patterns of Northern Pintails during spring in northern Japan: the importance of agricultural lands

    USGS Publications Warehouse

    Yamaguchi, Noriyuki M.; Hupp, Jerry W.; Flint, Paul L.; Pearce, John M.; Shigeta, Yusuke; Shimada, Tetsuo; Hiraoka, Emiko N.; Higuchi, Hiroyoshi

    2012-01-01

    From 2006 to 2009, we marked 198 Northern Pintails (Anas acuta) with satellite transmitters on their wintering areas in Japan to study their migration routes and habitat use in spring staging areas. We hypothesized that the distribution of pintails during spring staging was influenced by patterns of land use and expected that the most frequently used areas would have more agricultural habitat than lesser-used areas. We obtained 3031 daily locations from 163 migrant pintails marked with satellite transmitters and identified 524 stopover sites. Based on a fixed kernel home range analysis of stopover utilization distribution (UD), core staging areas (areas within the 50% UD) were identified in northern Honshu and western Hokkaido, and were used by 71% of marked pintails. Core staging areas had a greater proportion of rice fields than peripheral (51–95% UD) and rarely used (outside the 95% UD) staging areas. Stopover sites also contained more rice fields and other agricultural land than were available at regional scales, indicating that pintails selected rice and other agricultural habitats at regional and local scales. Pintails remained at spring staging areas an average of 51 d. Prolonged staging in agricultural habitats of northern Japan was likely necessary for pintails to prepare for transoceanic migration to Arctic nesting areas in eastern Russia.

  9. Rice cultivation and methane emission: Documentation of distributed geographic data sets

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; John, Jasmin; Fung, Inez

    1994-01-01

    High-resolution global data bases on the geographic and seasonal distribution of rice cultivation and associated methane emission, compiled by Matthews et al., were archived for public use. In addition to the primary data sets identifying location, seasonality, and methane emission from rice cultivation, a series of supporting data sets is included, allowing users not only to replicate the work of Matthews et al. but to investigate alternative cultivation and emission scenarios. The suite of databases provided, at 1 latitude by 1 longitude resolution for the globe, includes (1) locations of rice cultivation, (2) monthly arrays of actively growing rice areas, (3) countries and political subdivisions, and (4) monthly arrays of methane emission from rice cultivation. Ancillary data include (1) a listing, by country, of harvested rice areas and seasonal distribution of crop cycles and (2) country names and codes. Summary tables of zonal/monthly distributions of actively growing rice areas and of methane emissions are presented. Users should consult original publications for complete discussion of the data bases. This short paper is designed only to document formats of the distributed information and briefly describe the contents of the data sets and their initial application to evaluating the role of rice cultivation in the methane budget.

  10. Effects of raising frogs and putting pest-killing lamps in paddy fields on the prevention of rice pests and diseases

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Luo, Fan; Cao, Ming-Yang

    2014-05-01

    Frogs in paddy fields become less and less due to applying large amounts of pesticides and human hunting for a long time, which causes the aggravation of rice pests and diseases. A field experiment was carried out in the suburb of Shanghai to study the effects of artificially raising frogs and putting frequency oscillation pest-killing lamps in paddy fields on the prevention of rice pests and diseases. The field experiment includes three treatments. Treatment I: 150 frogs, each 20 g in weight, per 100 m2 were put in the fields; Treatment II: a frequency oscillation pest-killing lamp was put in the fields; Treatment III: no frogs and pest-killing lamps were put in the fields. All the experimental fields were operated based on the organic faming system. The amount of organic manure, 7500 kg/hm2, was applied to the fields as base fertilizer before sowing in early June, 2013. No any chemical fertilizers and pesticides were used during the entire period of rice growth. Each treatment is in triplicate and each plot is 67 m2 in area. The results are as follows: (1) During the entire growth period, the incidences of rice pests and diseases with Treatment I and II are significantly lower than those with CK (Treatment III). The incidence of chilo suppressalis with Treatment I, II and III is 0, 0.46% and 1.69%, respectively; that of cnaphalocrocis medinalis is 7.67%, 6.62% and 10.10%, respectively; that of rice sheath blight is 0, 11.11% and 5.43%, respectively; that of rice planthopper is 4.25 per hill, 5.75 per hill and 11 per hill, respectively. (2) The grain yield of the three treatments is significantly different. That of Treatment I, II and III is 5157.73 kg/hm2, 4761.60 kg/hm2 and 3645.14kg/hm2 on average, respectively. (3) Affected by frog activities, the contents of NH4-N, available P and available K in the soil with Treatment I are significantly raised. All the above suggest that artificially raising frogs in paddy fields could effectively prevent rice pests and diseases, especially reduce the incidences of rice sheath blight and chilo suppressalis, and setting pest-killing lamps could also effectively control rice pests, but not rice sheath blight, which contribute to the increase of grain yield largely. Moreover, the activity of frogs in paddy fields could improve soil fertility and increase bio-diversity. Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 41130526).

  11. Diazinon reduction and partitioning between water, sediment and vegetation in stormwater runoff mitigation through rice fields.

    PubMed

    Moore, Matthew T; Kröger, Robert; Cooper, Charles M; Cullum, Robert F; Smith, Sammie; Locke, Martin A

    2009-11-01

    Contamination of surface waters by pesticides is a concern in the United States and around the world. Innovative mitigation strategies are needed to remediate this potential environmental contaminant. One potential solution is to divert pesticide-laden drainage or surface water through agricultural rice fields. With a hydroperiod, hydrosoil and hydrophyte (rice), these systems serve essentially as a type of constructed wetland. In both summer and fall experiments, diazinon-amended water was diverted through two rice ponds at the University of Mississippi Field Station. Likewise, a non-vegetated control pond was amended with diazinon-laden water. Water, sediment and plant samples were taken spatially and temporally to determine the distribution of diazinon within systems. Outflow diazinon concentrations decreased significantly (P < 0.05) from inflow in both vegetated ponds for both preharvest and post-harvest experiments. Although sorption to rice plants was minimal in the overall mass distribution of diazinon (1-3%), temporal data indicated that diazinon concentrations reached the outflow sediment of the non-vegetated control twice as fast as in either vegetated (rice) system. In both vegetated systems, sediment diazinon concentrations decreased (77 and 100%) from inflow to outflow, while a decrease of <2% was noted in the non-vegetated control. Diversion of pesticide-contaminated water through rice fields demonstrated potential as a low-cost, environmentally efficient mitigation practice. Studies on these systems are continuing to evaluate the optimal chemical retention time for rice field mitigation, as well as diazinon transfer to rice grain seeds that may be used as a food source.

  12. Effect of rice-cooking water to the daily arsenic intake in Bangladesh: results of field surveys and rice-cooking experiments.

    PubMed

    Ohno, K; Matsuo, Y; Kimura, T; Yanase, T; Rahman, M H; Magara, Y; Matsushita, T; Matsui, Y

    2009-01-01

    The effect of rice-cooking water to the daily arsenic intake of Bangladeshi people was investigated. At the first field survey, uncooked rice and cooked rice of 29 families were collected. Their arsenic concentrations were 0.22+/-0.11 and 0.26+/-0.15 mg/kg dry wt, respectively. In 15 families, arsenic concentration in rice increased after cooking. Good correlation (R(2)=0.89) was observed between arsenic in rice-cooking water and the difference of arsenic concentration in rice by cooking. In the second survey, we collected one-day duplicated food of 18 families. As a result, we estimated that six of 18 families likely used the arsenic contaminated water for cooking rice even they drank less arsenic-contaminated water for drinking purpose. We also conducted rice-cooking experiments in the laboratory, changing arsenic concentration in rice-cooking water. Clear linear relationships were obtained between the arsenic in rice-cooking water and the difference of arsenic concentration in rice by cooking. Factors that affect arsenic concentration in cooked rice are suggested as follows: (1) arsenic concentration in uncooked rice, (2) that in rice-cooking water, (3) difference in water content of rice before and after cooking, and (4) types of rice, especially, the difference between parboiled and non-parboiled rice.

  13. Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species

    PubMed Central

    Chuma, Izumi; Isobe, Chihiro; Hotta, Yuma; Ibaragi, Kana; Futamata, Natsuru; Kusaba, Motoaki; Yoshida, Kentaro; Terauchi, Ryohei; Fujita, Yoshikatsu; Nakayashiki, Hitoshi; Valent, Barbara; Tosa, Yukio

    2011-01-01

    Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation. PMID:21829350

  14. Physiological time model of Scirpophaga incertulas (Lepidoptera: Pyralidae) in rice in Guandong Province, People's Republic of China.

    PubMed

    Stevenson, Douglass E; Feng, Ge; Zhang, Runjie; Harris, Marvin K

    2005-08-01

    Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae) is autochthonous and monophagous on rice, Oryza spp., which favors the development of a physiological time model using degree-days (degrees C) to establish a well defined window during which adults will be present in fields. Model development of S. incertulas adult flight phenology used climatic data and historical field observations of S. incertulas from 1962 through 1988. Analysis of variance was used to evaluate 5,203 prospective models with starting dates ranging from 1 January (day 1) to 30 April (day 121) and base temperatures ranging from -3 through 18.5 degrees C. From six candidate models, which shared the lowest standard deviation of prediction error, a model with a base temperature of 10 degrees C starting on 19 January was selected for validation. Validation with linear regression evaluated the differences between predicted and observed events and showed the model consistently predicted phenological events of 10 to 90% cumulative flight activity within a 3.5-d prediction interval regarded as acceptable for pest management decision making. The degree-day phenology model developed here is expected to find field application in Guandong Province. Expansion to other areas of rice production will require field validation. We expect the degree-day characterization of the activity period will remain essentially intact, but the start day may vary based on climate and geographic location. The development and validation of the phenology model of the S. incertulas by using procedures originally developed for pecan nut casebearer, Acrobasis nuxvorella Neunzig, shows the fungibility of this approach to developing prediction models for other insects.

  15. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyuan; Akiyama, Hiroko; Yagi, Kazuyuki; Akimoto, Hajime

    2009-06-01

    The Intergovernmental Panel on Climate Change (IPCC) regularly publishes guidelines for national greenhouse gas inventories and methane emission (CH4) from rice paddies has been an important component of these guidelines. While there have been many estimates of global CH4 emissions from rice fields, none of them have been obtained using the IPCC guidelines. Therefore, we used the Tier 1 method described in the 2006 IPCC guidelines to estimate the global CH4 emissions from rice fields. To accomplish this, we used country-specific statistical data regarding rice harvest areas and expert estimates of relevant agricultural activities. The estimated global emission for 2000 was 25.6 Tg a-1, which is at the lower end of earlier estimates and close to the total emission summarized by individual national communications. Monte Carlo simulation revealed a 95% uncertainty range of 14.8-41.7 Tg a-1; however, the estimation uncertainty was found to depend on the reliability of the information available regarding the amount of organic amendments and the area of rice fields that were under continuous flooding. We estimated that if all of the continuously flooded rice fields were drained at least once during the growing season, the CH4 emissions would be reduced by 4.1 Tg a-1. Furthermore, we estimated that applying rice straw off season wherever and whenever possible would result in a further reduction in emissions of 4.1 Tg a-1 globally. Finally, if both of these mitigation options were adopted, the global CH4 emission from rice paddies could be reduced by 7.6 Tg a-1. Although draining continuously flooded rice fields may lead to an increase in nitrous oxide (N2O) emission, the global warming potential resulting from this increase is negligible when compared to the reduction in global warming potential that would result from the CH4 reduction associated with draining the fields.

  16. Single-wavelength based rice leaf color analyzer for nitrogen status estimation

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2014-02-01

    With the need of a tool for efficient nitrogen (N) fertilizer management in the rice field, this paper proposes a low-cost compact single-wavelength based colorimeter that can be used to indicate the specified six color levels of a rice leaf associated with the desired amount of N fertilizer for the rice field. Our key design is in a reflective optical architecture that allows us to investigate the amount of light scattered from only one side of the rice leaf. We also show how we implement this needed rice leaf color analyzer by integrating an off-the-shelf 562-nm wavelength light emitting diode (LED), a silicon photodiode, an 8-bit microcontroller, and a 6×1 LED panel in a compact plastic package. Field test results in rice fields confirm that leaf color levels of 1, 2, 3, 5, and 6 are effectively identified and their corresponding amount of N fertilizer can be determined. For the leaf color level of 4, our single-wavelength based rice leaf color analyzer sometimes indicates a higher color level of 5 whose suggested amount of N fertilizer is equal to that for the leaf color level of 4. Other key features include ease of use and upgradability for different color levels.

  17. First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan-Province (PR China)

    NASA Astrophysics Data System (ADS)

    Wassmann, R.; Wang, M. X.; Shangguan, X. J.; Xie, X. L.; Shen, R. X.; Wang, Y. S.; Papen, H.; Rennenberg, H.; Seiler, W.

    Fertilizer effects on methane emission from Chinese rice fields were investigated by a praxis-oriented approach applying balanced amendments of N, P and K. The data set obtained covered the emission rates of app. one month in early rice and one month in late rice 1991. An intercomparison between the 4 treatments showed pronounced differences in the magnitudes of methane emission rates. The combined organic/mineral fertilizer application, commonly used as local farming practice, resulted in relatively high seasonal averages of methane emission rates (26.5 mg CH4 m-2 h-1 in early rice and 50.1 mg CH4 m-2 h-1 in late rice). The lowest emission rates were observed in the plot with pure mineral fertilization (6.5 mg CH4 m-2 h-1 in early rice and 14.3 mg CH4 m-2 h-1 in late rice). Pure organic fertilizers by unfermented substances yielded the highest methane emission rates of all field trials (38.6 mg CH4 m-2 h-1 in early rice and 56.2 CH4 m-2 h-1 in late rice). The fertilization with fermented material derived from biogas generators resulted in substantially lower emission rates than the other trials with organic amendments, the seasonal averages corresponded to 15.9 mg CH4 m-2 h-1 (early rice) and 22.5 mg CH4 m-2 h-1 (late rice). Interpretation of the results can be obtained from the different potentials of these fertilizers for methane production. Based on this concept the different methane emission rates observed with organic/mineral, pure mineral and pure unfermented-organic fertilizers could directly be attributed to the different quantities of organic matter incorporated into the soil. The low methane emission from the plot treated with fermented material could be explained by a depletion of potential methane precursors resulting from the preceding fermentation. The results of this investigation provide evidence that the extensive use of specific chemical fertilizers and the application of sludge from the operation of biogas generators could lead to a net reduction of the methane emission from rice fields.

  18. Thermal and wind-driven water motions in vegetated waters and their role in greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2016-12-01

    The relative importance of different methane transport pathways in wetlands can impact total wetland methane fluxes. The transport of methane and other gases through the water column is affected by a variety of forces. We investigate the role of wind- and thermally-driven water motions in greenhouse gas fluxes in a freshwater marsh and a rice field using in situ velocity measurements in combination with gas transfer velocity models. We measure velocity using an Acoustic Doppler velocimeter, correcting for instrument generated velocities, and a Volumetric Particle Imager. These measurements indicate the presence of wind-driven motions in the wetland water column located below a dense 3-m emergent vegetation canopy. In the rice field's water column, velocity data suggest the occurrence of thermal convection. Results from these in-situ velocity measurements correspond with the non-negligible gas transfer velocities we predict via semi-empirical models. This underscores the importance of hydrodynamics to greenhouse gas fluxes even in shallow, vegetated inland waters.

  19. Diversity of Cultivable Methane-Oxidizing Bacteria in Microsites of a Rice Paddy Field: Investigation by Cultivation Method and Fluorescence in situ Hybridization (FISH)

    PubMed Central

    Dianou, Dayéri; Ueno, Chihoko; Ogiso, Takuya; Kimura, Makoto; Asakawa, Susumu

    2012-01-01

    The diversity of cultivable methane-oxidizing bacteria (MOB) in the rice paddy field ecosystem was investigated by combined culture-dependent and fluorescence in situ hybridization (FISH) techniques. Seven microsites of a Japanese rice paddy field were the focus of the study: floodwater, surface soil, bulk soil, rhizosphere soil, root, basal stem of rice plant, and rice stumps of previous harvest. Based on pmoA gene analysis and transmission electron microscopy (TEM), four type I, and nine type II MOB isolates were obtained from the highest dilution series of enrichment cultures. The type I MOB isolates included a novel species in the genus Methylomonas from floodwater and this is the first type I MOB strain isolated from floodwater of a rice paddy field. In the type I MOB, two isolates from stumps were closely related to Methylomonas spp.; one isolate obtained from rhizosphere soil was most related to Methyloccocus-Methylocaldum-Methylogaea clade. Almost all the type II MOB isolates were related to Methylocystis methanotrophs. FISH confirmed the presence of both types I and II MOB in all the microsites and in the related enrichment cultures. The study reported, for the first time, the diversity of cultivable methanotrophs including a novel species of type I MOB in rice paddy field compartments. Refining growth media and culture conditions, in combination with molecular approaches, will allow us to broaden our knowledge on the MOB community in the rice paddy field ecosystem and consequently to implement strategies for mitigating CH4 emission from this ecosystem. PMID:22446309

  20. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    NASA Astrophysics Data System (ADS)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  1. Insights into molecular mechanism of blast resistance in weedy rice

    USDA-ARS?s Scientific Manuscript database

    Weedy rice is a serious pest in direct-seeded rice fields in the U.S. and worldwide. Under suitable conditions, weedy rice can reduce crop yields up to 70%. However, weedy rice may carry novel disease resistance genes. Rice blast disease caused by the fungus Magnaporthe oryzae is a major disease wo...

  2. Molecular evolution of the sh4 shattering locus in U.S. weedy rice

    USDA-ARS?s Scientific Manuscript database

    Cultivated rice fields worldwide are plagued with weedy rice, a congeneric weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice g...

  3. Water consumption, grain yield, and water productivity in response to field water management in double rice systems in China.

    PubMed

    Wu, Xiao Hong; Wang, Wei; Yin, Chun Mei; Hou, Hai Jun; Xie, Ke Jun; Xie, Xiao Li

    2017-01-01

    Rice cultivation has been challenged by increasing food demand and water scarcity. We examined the responses of water use, grain yield, and water productivity to various modes of field water managements in Chinese double rice systems. Four treatments were studied in a long-term field experiment (1998-2015): continuous flooding (CF), flooding-midseason drying-flooding (F-D-F), flooding-midseason drying-intermittent irrigation without obvious standing water (F-D-S), and flooding-rain-fed (F-RF). The average precipitation was 483 mm in early-rice season and 397 mm in late-rice season. The irrigated water for CF, F-D-F, F-D-S, and F-RF, respectively, was 263, 340, 279, and 170 mm in early-rice season, and 484, 528, 422, and 206 mm in late-rice season. Grain yield for CF, F-D-F, F-D-S, and F-RF, respectively, was 4,722, 4,597, 4,479, and 4,232 kgha-1 in early-rice season, and 5,420, 5,402, 5,366, and 4,498 kgha-1 in late-rice season. Compared with CF, F-D-F consumed more irrigated water, which still decreased grain yield, leading to a decrease in water productivity by 25% in early-rice season and by 8% in late-rice season. Compared with F-D-F, F-D-S saved much irrigated water with a small yield reduction, leading to an increase in water productivity by 22% in early-rice season and by 26% in late-rice season. The results indicate that CF is best for early-rice and FDS is best for late-rice in terms of grain yield and water productivity.

  4. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was observed in different plot levels in the paddy fields from the two images. However, no such significant variation in rice genotypes at growth level was observed. Hence, the spectral information acquired from space platform can be linearly scaled to map the variation in field levels of rice crop which will be act as an informative system for rice agriculture practice.

  5. Feral rice from introgression of weedy rice genes into transgenic herbicide-resistant hybrid-rice progeny.

    PubMed

    Zhang, Jingxu; Kang, Ye; Valverde, Bernal E; Dai, Weimin; Song, Xiaoling; Qiang, Sheng

    2018-06-05

    Pollen-mediated herbicide-resistance transgene flow occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice is underestimated and poorly understood. Two of each glufosinate-resistant transgenic rice varieties and hybrid rice (F1) and their succeeding generations (F2-F4) were planted for three years in weedy-rice-free field plots adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants, both glufosinate-resistant and with red-pericarp seed, were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid rice. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of glufosinate-resistant transgenic hybrid rice (the original female parent of feral progeny) under common monoculture garden conditions. Hybrid rice progeny segregated into individuals of variable height and extended flowering. Hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96%-1.65%) than their progenitors (0.07%-0.98%). Herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice. Their segregating pollen-receptive progeny pose greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.

  6. 40 CFR Table 7 to Subpart Zzzz of... - Requirements for Reports

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... submit a . . . The report must contain . . . You must submit the report . . . 1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency...

  7. 40 CFR Table 7 to Subpart Zzzz of... - Requirements for Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... submit a . . . The report must contain . . . You must submit the report . . . 1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency...

  8. Speciation And Localization Of Arsenic In White And Brown Rice Grains

    EPA Science Inventory

    Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the...

  9. A possible alternative method for collecting mosquito larvae in rice fields

    PubMed Central

    Robert, Vincent; Goff, Gilbert Le; Ariey, Frédéric; Duchemin, Jean-Bernard

    2002-01-01

    Background Rice fields are efficient breeding places for malaria vectors in Madagascar. In order to establish as easily as possible if a rice field is an effective larval site for anophelines, we compared classical dipping versus a net as methods of collecting larvae. Results Using similar collecting procedures, we found that the total number of anopheline larvae collected with the net was exactly double (174/87) that collected by dipping. The number of anopheline species collected was also greater with a net. Conclusions The net is an effective means of collecting anopheline larvae and can be used for qualitative ecological studies and to rapidly determine which rice fields are containing malaria vectors. PMID:12057018

  10. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  11. Nest-site selection and success of mottled ducks on agricultural lands in southwest Louisiana

    USGS Publications Warehouse

    Durham, R.S.; Afton, A.D.

    2003-01-01

    Listing of the mottled duck (Anas fulvigula maculosa) as a priority species in the Gulf Coast Joint Venture of the North American Waterfowl Management Plan, coupled with recent declines of rice (Oryza sativa) acreage, led us to investigate the nesting ecology of this species on agricultural lands in southwest Louisiana. We examined nest-site selection at macro- and microhabitat levels, nest success, causes of nest failures, and habitat features influencing nest success. We found that female mottled ducks preferred to nest in permanent pastures with knolls (53% of nests) and idle fields (22% of nests). Vegetation height was greater at nests than at random points within the same macrohabitat patch. Successful nests were associated with greater numbers of plant species, located farther from water, and associated with higher vegetation density values than were unsuccessful nests. We determined that mammalian predators caused most nest failures (77% of 52 unsuccessful nests). Our results suggest that nest success of mottled ducks on agricultural lands in southwest Louisiana could be improved by 1) locating large permanent pastures and idle fields near rice fields and other available wetlands, 2) managing plant communities in these upland areas to favor dense stands of perennial bunch grasses, tall composites, dewberry (Rubus trivialis), and other native grasses and forbs, and 3) managing cattle-stocking rates and the duration and timing of grazing to promote tall, dense stands of these plant taxa during the nesting season (March-June).

  12. Annual Changes of Paddy Rice Planting Areas in Northeastern Asia from MODIS images in 2000-2014

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhang, G.; Dong, J.; Menarguez, M. A.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Moore, B., III

    2014-12-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, estimation of greenhouse gas (methane) emissions, and understanding avian influenza virus transmission. Over the past two decades, paddy rice cultivation has expanded northward in temperate and cold temperate zones, particularly in Northeastern China. There is a need to quantify and map changes in paddy rice planting areas in Northeastern Asia (Japan, North and South Korea, and northeast China) at annual interval. We developed a pixel- and phenology-based image analysis system, MODIS-RICE, to map the paddy rice in Northeastern Asia by using multi-temporal MODIS thermal and surface reflectance imagery. Paddy rice fields during the flooding and transplanting phases have unique physical and spectral characteristics, which make it possible for the development of an automated and robust algorithm to track flooding and transplanting phases of paddy rice fields over time. In this presentation, we will show the MODIS-based annual maps of paddy rice planting area in the Northeastern Asia from 2000-2014 (500-m spatial resolution). Accuracy assessments using high-resolution images show that the resultant paddy rice map of Northeastern Asia had a comparable accuracy to the existing products, including 2010 Landsat-based National Land Cover Dataset (NLCD) of China, the 2010 RapidEye-based paddy rice map in North Korea, and the 2010 AVNIR-2-based National Land Cover Dataset in Japan in terms of both area and spatial pattern of paddy rice. This study has demonstrated that our novel MODIS-Rice system, which use both thermal and optical MODIS data over a year, are simple and robust tools to identify and map paddy rice fields in temperate and cold temperate zones.

  13. [Characteristics of nitrogen and phosphorus runoff losses from croplands with different planting patterns in a riverine plain area of Zhejiang Province, East China].

    PubMed

    Zhang, Ming-Kui; Wang, Yang; Huang, Chao

    2011-12-01

    By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.

  14. GEODATA: Information System Based on Geospatial for Early Warning Tracking and Analysis Agricultural Plant Diseases in Central Java

    NASA Astrophysics Data System (ADS)

    Prasetyo, S. Y. J.; Agus, Y. H.; Dewi, C.; Simanjuntak, B. H.; Hartomo, K. D.

    2017-03-01

    The Government of Indonesia is currently faced with the problems of food, especially rice. It needs in large numbers that have to import from neighboring countries. Actually, the Indonesian government has the ability to produce rice to meet national needs but is still faced with the problem of pest attack rice annually increasing extent. One of the factors is that geographically Indonesia located on the migration path of world rice insect pests (called BPH or Brown Planthoppers) (Nilaparvata lugens Stal.) It leads endemic status annually. One proposed strategy to be applied is to use an early warning system based on a specific region of the main pest population. The proposed information system called GEODATA. GEODATA is Geospatial Outbreak of Disease Tracking and Analysis. The system works using a library ESSA (Exponential Smoothing - Spatial Autocorrelation) developed in previous studies in Satya Wacana Christian University. GEODATA built to meet the qualifications required surveillance device by BMKG (Indonesian Agency of Meteorology, Climatology and Geophysics’ Central Java Provinces), BPTPH (Indonesian Agency of Plant Protection and Horticulture) Central Java Provinces, BKP-KP District Boyolali, Central Java, (Indonesian Agency of Food Security and Agriculture Field Supervisor, District Boyolali, Central Java Provinces) and farmer groups. GIS GEODATA meets the needs of surveillance devices that include: (1) mapping of the disease, (2) analysis of the dynamics of the disease, and (3) prediction of attacks / disease outbreaks in a particular region. GIS GEODATA is currently under implementation in the laboratory field observations of plant pest in Central Java province, Indonesia.

  15. Rice diversity panels available through the genetic stocks oryza collection

    USDA-ARS?s Scientific Manuscript database

    The Genetic Stocks Oryza (GSOR) Collection was established in 2004 at the USDA-ARS, Dale Bumpers National Rice Research Center (DBNRRC) located in Stuttgart, AR. The mission of GSOR is to provide unique genetic resources to the rice research community for genetic and genomics related research. GSOR ...

  16. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce and emit more methane than when inhabited by Methanomicrobiales, indicating that the methanogenic archaeal community is an important factor for methane emission from rice fields.

  17. Elucidation of molecular dynamics of invasive species of rice

    USDA-ARS?s Scientific Manuscript database

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  18. Molecular evolution of flowering time loci in U.S. weedy rice

    USDA-ARS?s Scientific Manuscript database

    Weedy rice is a persistent weed of cultivated rice (Oryza sativa) fields worldwide, which competes with the crop and drastically reduces rice yields. Within the US, two main populations of genetically differentiated weedy rice exist, the straw-hulled (SH) group and the black-hulled awned (BHA) grou...

  19. Model development for nutrient loading estimates from paddy rice fields in Korea.

    PubMed

    Jeon, Ji-Hong; Yoon, Chun G; Ham, Jong-Hwa; Jung, Kwang-Wook

    2004-01-01

    A field experiment was performed to evaluate water and nutrient balances in paddy rice culture operations during 2001-2002. The water balance analysis indicated that about half (50-60%) of the total outflow was lost by surface drainage, with the remainder occurring by evapotranspiration (490-530 mm). The surface drainage from paddy fields was mainly caused by rainfall and forced-drainage, and in particular, the runoff during early rice culture periods depends more on the forced-drainage due to fertilization practices. Most of the total phosphorus (T-P) inflow was supplied by fertilization at transplanting, while the total nitrogen (T-N) inflow was supplied by the three fertilizations, precipitation. and from the upper paddy field, which comprised 13-33% of the total inflow. Although most of the nutrient outflow was attributed to plant uptake. nutrient loss by surface drainage was substantial, comprising 20% for T-N and 10% for T-P. Water and nutrient balances indicate that reduction of surface drainage from paddy rice fields is imperative for nonpoint source pollution control. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient (T-N and T-P) behavior in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and convenient planning model that could be used to evaluate BMPs of paddy rice fields alone or in combination with other complex watershed models. Application of the PADDIMOD to other paddy rice fields with different agricultural environments might require further calibration and validation.

  20. Dynamical roguing model for controlling the spread of tungro virus via Nephotettix Virescens in a rice field

    NASA Astrophysics Data System (ADS)

    Blas, Nikki; David, Guido

    2017-10-01

    Rice tungro disease is described as a cancer due to its major impact on the livelihood of farmers and the difficulty of controlling it. Tungro is a semi-persistent virus transmitted by green leafhoppers called Nephotettix Virescens. In this paper, we presented a compartmental plant-vector model of the Nephotettix Virescens - rice plant interaction based on a system of ordinary differential equations to simulate the effects of roguing in controlling the spread of Tungro virus in a model rice field of susceptible rice variety (Taichung Native 1).

  1. Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data

    NASA Astrophysics Data System (ADS)

    Yang, Huijin; Pan, Bin; Wu, Wenfu; Tai, Jianhao

    2018-07-01

    Rice is one of the most important cereals in the world. With the change of agricultural land, it is urgently necessary to update information about rice planting areas. This study aims to map rice planting areas with a field-based approach through the integration of multi-temporal Sentinel-1A and Landsat-8 OLI data in Wuhua County of South China where has many basins and mountains. This paper, using multi-temporal SAR and optical images, proposes a methodology for the identification of rice-planting areas. This methodology mainly consists of SSM applied to time series SAR images for the calculation of a similarity measure, image segmentation process applied to the pan-sharpened optical image for the searching of homogenous objects, and the integration of SAR and optical data for the elimination of some speckles. The study compares the per-pixel approach with the per-field approach and the results show that the highest accuracy (91.38%) based on the field-based approach is 1.18% slightly higher than that based on the pixel-based approach for VH polarization, which is brought by eliminating speckle noise through comparing the rice maps of these two approaches. Therefore, the integration of Sentinel-1A and Landsat-8 OLI images with a field-based approach has great potential for mapping rice or other crops' areas.

  2. Dynamic changes in the rice blast population in the USA over six decades

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease caused by Magnaporthe oryzae is one of the most destructive diseases of rice. Field isolates of M. oryzae rapidly adapt to the hosts and climate. Tracking the genetic and pathogenic variability of the field isolates is essential to understand how M. oryzae interacts with hosts an...

  3. Long-term cultivation of Bt rice expressing the Cry1Ab/1Ac gene reduced phytoparasitic nematode abundance but did not affect other nematode parameters in paddy fields.

    PubMed

    Chen, Qunying; Yang, Bing; Liu, Xianghui; Chen, Fajun; Ge, Feng

    2017-12-31

    The uncertainty of ecological risks and the effects of growing transgenic Bt rice on the environment hamper its commercial production. Here, soil nematode communities were used as an indicator of soil health and soil food web structure to evaluate the potential effects of growing Bt rice without chemical insecticides for 3years in the paddy field. The nematodes and soil physicochemical properties of Bt rice fields were compared to the near-isogenic control, non-Bt rice fields. A total of 108,363 specimens belonging to 28 different genera were enumerated. The Hirschmanniella, Tobrilus, Dorylaimus and Filenchus were dominant genera. A three-year paddy rice cultivation of Bt rice (Huahui 1) negatively affected the abundance of phytoparasitic nematodes but did not affect the total number of nematodes, the abundance and relative abundance of free-living nematodes, genera richness, diversity indices, soil food web conditions, or community compositions. However, apparent seasonal and inter-annual changes in these variables were observed, indicating that the impact of environmental factors was more stronger than that of the Bt toxin. In conclusion, the potential ecological risks of Bt rice on soil health and sustainability warrant further research to disentangle the impacts from various confounding environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. No effect of Bt-transgenic rice litter on the meiobenthos community in field ditches.

    PubMed

    Liu, Yongbo; Jiang, Wanxiang; Liang, Yuyong; Zhao, Caiyun; Li, Junsheng

    2017-06-01

    The non-target effect of Bacillus thuringiensis (Bt) toxins in aquatic ecosystems is crucial to improve the present assessment of Bt-transgenic plants, particularly where crops are cultivated near aquatic ecosystems. We conducted decomposition experiments during two growing seasons to determine the effects of Bt-transgenic rice litter with and without insecticide application on the meiobenthos communities in a field ditch. The community composition of meiobenthos colonised on leaf litter was not significantly different between Bt and non-Bt rice. The abundance of meiobenthos colonising leaves differed between insecticide application and control, and this insecticide effect interacted with rice type. No Bt toxin was detected in field ditch water. Leaf decomposition and nutrient content were comparable for both Bt and non-Bt rice with or without insecticide application. Bt-transgenic rice litter had no effect on the meiobenthos community composition in field ditches, but the chronic persistence of transgenic litter in nature needs to be taken into account at large scales in aquatic ecosystems. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss.

    PubMed

    Wang, M Y; Chen, A K; Wong, M H; Qiu, R L; Cheng, H; Ye, Z H

    2011-06-01

    Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg⁻¹ in soil) and a soil pot trial (control, 100 mg Cd kg⁻¹), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg⁻¹) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg⁻¹) in a pot trial, and (3) rates of ROL (15-31 mmol O₂ kg⁻¹ root d.w. h⁻¹). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. 40 CFR Table 7 to Subpart Zzzz of... - Requirements for Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... submit a ... The report must contain ... You must submit the report ... 1. Existing non-emergency, non-black start stationary RICE 100 ≤ HP ≤ 500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE > 500 HP located at a major source of HAP; existing non-emergency 4SRB...

  7. 40 CFR Table 7 to Subpart Zzzz of... - Requirements for Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... submit a ... The report must contain ... You must submit the report ... 1. Existing non-emergency, non-black start stationary RICE 100 ≤ HP ≤ 500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE > 500 HP located at a major source of HAP; existing non-emergency 4SRB...

  8. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    PubMed

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  9. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae).

    PubMed

    Chen, Hao; Zhang, Guoan; Zhang, Qifa; Lin, Yongjun

    2008-02-01

    Ten transgenic Bacillus thuringiensis Bt rice, Oryza sativa L., lines with different Bt genes (two Cry1Ac lines, three Cry2A lines, and five Cry9C lines) derived from the same variety Minghui 63 were evaluated in both the laboratory and the field. Bioassays were conducted by using the first instars of two main rice lepidopteran insect species: yellow stem borer, Scirpophaga incertulas (Walker) and Asiatic rice borer, Chilo suppressalis (Walker). All transgenic lines exhibited high toxicity to these two rice borers. Field evaluation results also showed that all transgenic lines were highly insect resistant with both natural infestation and manual infestation of the neonate larvae of S. incertulas compared with the nontransformed Minghui63. Bt protein concentrations in leaves of 10 transgenic rice lines were estimated by the sandwich enzyme-linked immunosorbent assay. The cry9C gene had the highest expression level, next was cry2A gene, and the cry1Ac gene expressed at the lowest level. The feeding behavior of 7-d-old Asiatic rice borer to three classes of Bt transgenic rice lines also was detected by using rice culm cuttings. The results showed that 7-d-old larvae of Asiatic rice borer have the capacity to distinguish Bt and non-Bt culm cuttings and preferentially fed on non-Bt cuttings. When only Bt culm cuttings with three classes of different Bt proteins (CrylAc, Cry2A, and Cry9C) were fed, significant distribution difference of 7-d-old Asiatic rice borer in culm cuttings of different Bt proteins also was found. In the current study, we evaluate different Bt genes in the same rice variety in both the laboratory and the field, and also tested feeding behavior of rice insect to these Bt rice. These data are valuable for the further development of two-toxin Bt rice and establishment of appropriate insect resistance management in the future.

  10. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to MeHg contamination.

  11. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    NASA Astrophysics Data System (ADS)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  12. Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Maurer, Felix; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2010-12-01

    Groundwater rich in arsenic (As) is extensively used for dry season boro rice cultivation in Bangladesh, leading to long-term As accumulation in soils. This may result in increasing levels of As in rice straw and grain, and eventually, in decreasing rice yields due to As phytotoxicity. In this study, we investigated the As contents of rice straw and grain over three consecutive harvest seasons (2005-2007) in a paddy field in Munshiganj, Bangladesh, which exhibits a documented gradient in soil As caused by annual irrigation with As-rich groundwater since the early 1990s. The field data revealed that straw and grain As concentrations were elevated in the field and highest near the irrigation water inlet, where As concentrations in both soil and irrigation water were highest. Additionally, a pot experiment with soils and rice seeds from the field site was carried out in which soil and irrigation water As were varied in a full factorial design. The results suggested that both soil As accumulated in previous years and As freshly introduced with irrigation water influence As uptake during rice growth. At similar soil As contents, plants grown in pots exhibited similar grain and straw As contents as plants grown in the field. This suggested that the results from pot experiments performed at higher soil As levels can be used to assess the effect of continuing soil As accumulation on As content and yield of rice. On the basis of a recently published scenario of long-term As accumulation at the study site, we estimate that, under unchanged irrigation practice, average grain As concentrations will increase from currently ∼0.15 mg As kg(-1) to 0.25-0.58 mg As kg(-1) by the year 2050. This translates to a 1.5-3.8 times higher As intake by the local population via rice, possibly exceeding the provisional tolerable As intake value defined by FAO/WHO.

  13. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants.

    PubMed

    Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi; Minamisawa, Kiwamu

    2014-08-01

    In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Spatial Analysis of Rice Blast in China at Three Different Scales.

    PubMed

    Guo, Fangfang; Chen, Xinglong; Lu, Minghong; Yang, Li; Wang, Shi Wei; Wu, Bo Ming

    2018-05-22

    In this study, spatial analyses were conducted at three different scales to better understand the epidemiology of rice blast, a major rice disease caused by Magnaporthe oryzae. At regional scale, across the major rice production regions in China, rice blast incidence was monitored on 101 dates at 193 stations from June 10 th to Sep. 10 th during 2009-2014, and surveyed in 143 fields in September, 2016; at county scale, 3 surveys were done covering 1-5 counties in 2015-2016; and at field scale, blast was evaluated in 6 fields in 2015-2016. Spatial cluster and hot spot analyses were conducted in GIS on the geographical pattern of the disease at regional scale, and geostatistical analysis performed at all the three scales. Cluster and hot spot analyses revealed that high-disease areas were clustered in mountainous areas in China. Geostatistical analyses detected spatial dependence of blast incidence with influence ranges of 399 to 1080 km at regional scale, and 5 to 10 m at field scale, but not at county scale. The spatial patterns at different scales might be determined by inherent properties of rice blast and environmental driving forces, and findings from this study provide helpful information to sampling and management of rice blast.

  15. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    USDA-ARS?s Scientific Manuscript database

    Weedy rice is a significant problem in cultivated rice fields throughout the world, and is an emerging threat in regions where it was previously absent. Prior research has classified weedy rice as the same species as Asian cultivated rice (Oryza sativa L.). This close genetic relationship makes cont...

  16. Understanding of evolutionary genomics of invasive species of rice

    USDA-ARS?s Scientific Manuscript database

    Red rice is an aggressive, weedy form of cultivated rice (Oryza sativa) that infests crop fields and is a primary factor limiting rice productivity in the U.S. and worldwide. As the weedy relative of a genomic model species, red rice is a model for understanding the genetic and evolutionary mechani...

  17. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon)

    USDA-ARS?s Scientific Manuscript database

    The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa) is located in Dongxiang county, China where it is considered the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were geno...

  18. Participatory evaluation guides the development and selection of farmers' preferred rice varieties for salt- and flood-affected coastal deltas of South and Southeast Asia.

    PubMed

    Burman, D; Maji, B; Singh, Sudhanshu; Mandal, Subhasis; Sarangi, Sukanta K; Bandyopadhyay, B K; Bal, A R; Sharma, D K; Krishnamurthy, S L; Singh, H N; delosReyes, A S; Villanueva, D; Paris, T; Singh, U S; Haefele, S M; Ismail, Abdelbagi M

    2018-05-01

    Rice is the staple food and provides livelihood for smallholder farmers in the coastal delta regions of South and Southeast Asia. However, its productivity is often low because of several abiotic stresses including high soil salinity and waterlogging during the wet (monsoon) season and high soil and water salinity during the dry season. Development and dissemination of suitable rice varieties tolerant of these multiple stresses encountered in coastal zones are of prime importance for increasing and stabilizing rice productivity, however adoption of new varieties has been slow in this region. Here we implemented participatory varietal selection (PVS) processes to identify and understand smallholder farmers' criteria for selection and adoption of new rice varieties in coastal zones. New breeding lines together with released rice varieties were evaluated in on-station and on-farm trials (researcher-managed) during the wet and dry seasons of 2008-2014 in the Indian Sundarbans region. Significant correlations between preferences of male and female farmers in most trials indicated that both groups have similar criteria for selection of rice varieties. However, farmers' preference criteria were different from researchers' criteria. Grain yield was important, but not the sole reason for variety selection by farmers. Several other factors also governed preferences and were strikingly different when compared across wet and dry seasons. For the wet season, farmers preferred tall (140-170 cm), long duration (160-170 d), lodging resistant and high yielding rice varieties because these traits are required in lowlands where water stagnates in the field for about four months (July to October). For the dry season, farmers' preferences were for high yielding, salt tolerant, early maturing (115-130 d) varieties with long slender grains and good quality for better market value. Pest and disease resistance was important in both seasons but did not rank high. When farmers ranked the two most preferred varieties, the ranking order was sometimes variable between locations and years, but when the top four varieties that consistently ranked high were considered, the variability was low. This indicates that at least 3-4 of the best-performing entries should be considered in succeeding multi-location and multi-year trials, thereby increasing the chances that the most stable varieties are selected. These findings will help improve breeding programs by providing information on critical traits. Selected varieties through PVS are also more likely to be adopted by farmers and will ensure higher and more stable productivity in the salt- and flood-affected coastal deltas of South and Southeast Asia.

  19. Weed control in organic rice using plastic mulch and water seeding methods in addition to cover crops

    USDA-ARS?s Scientific Manuscript database

    Weeds are a major yield limiting factor in organic rice farming and are more problematic than in conventional production systems. Water seeding is a common method of reducing weed pressure in rice fields as many weeds connot tolerate flooded field conditions. The use of cover crops is another method...

  20. Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Linquist, Bruce A.

    2018-01-01

    In flooded soils, including those found in rice (Oryza sativa L.) fields, microbes convert inorganic Hg to more toxic methylmercury (MeHg). Methylmercury is accumulated in rice grain, potentially affecting health. Methylmercury in rice field surface water can bioaccumulate in wildlife. We evaluated how introducing aerobic periods into an otherwise continuously flooded rice growing season affects MeHg dynamics. Conventional continuously flooded (CF) rice field water management was compared with alternate wetting and drying, where irrigation was stopped twice during the growing season, allowing soil to dry to 35% volumetric moisture content, at which point plots were reflooded (AWD-35). Methylmercury studies began at harvest in Year 3 and throughout Year 4 of a 4-yr replicated field experiment. Bulk soil, water, and plant samples were analyzed for MeHg and total Hg (THg), and iron (Fe) speciation was measured in soil samples. Rice grain yield over 4 yr did not differ between treatments. Soil chemistry responded quickly to AWD-35 dry-downs, showing significant oxidation of Fe(II) accompanied by a significant reduction of MeHg concentration (76% reduction at harvest) compared with CF. Surface water MeHg decreased by 68 and 39% in the growing and fallow seasons, respectively, suggesting that the effects of AWD-35 management can last through to the fallow season. The AWD-35 treatment reduced rice grain MeHg and THg by 60 and 32%, respectively. These results suggest that the more aerobic conditions caused by AWD-35 limited the activity of Hg(II)-methylating microbes and may be an effective way to reduce MeHg concentrations in rice ecosystems.

  1. 40 CFR 63.6602 - What emission limitations must I meet if I own or operate an existing stationary RICE with a site...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake....6602 What emission limitations must I meet if I own or operate an existing stationary RICE with a site... operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a...

  2. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images

    PubMed Central

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-01-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region. PMID:27688742

  3. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    PubMed

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  4. Species diversity of ostracods (Crustacea: Ostracoda) from rice fields in Northeast Thailand, with the description of a new Tanycypris species.

    PubMed

    Savatenalinton, Sukonthip

    2017-12-07

    The species diversity of ostracods in rice fields from Northeast Thailand was studied. Fifty-two samples were collected from 43 rice fields during 2010-2016. This investigation revealed 23 genera and 52 species, including one new to science (Tanycypris eugenkempfi n. sp.) and 21 endemic species: endemic to the Oriental region (14 species), Southeast Asia (two species) and Thailand (five species). In addition, two species that were restricted to rice fields in this study were recognized: Bradleytriebella tuberculata (Hartmann, 1964) and Notodromas sinensis Neale & Zhao, 1991. The most diverse genus was Pseudostrandesia, followed by Strandesia with eight and five species, respectively. The most widely distributed species were Pseudocypretta maculata Klie, 1932 and Strandesia kraepelini (G.W. Müller, 1906) occurring in 48.8 % of the total of surveyed rice fields. The number of species in individual rice fields ranged from none to 18. Most of the samples contained three species, but one rice field showed very high species richness (18 species). Most of the species recorded in this study were also found in several types of water bodies and reported from several zoogeographical regions. The main distinguishing characters between Tanycypris eugenkempfi n. sp. and other Tanycypris species are the more tumid carapace in dorsal view, the distinctly arched dorsal margin of the carapace in lateral view, the presence of a subapical dorsal seta on the first segment of the first antenna, the smooth large bristles on the third endite of the maxillula, the absence of c-seta on the first thoracopod, and the long proximal claw (Gp) of the caudal ramus.

  5. Methylmercury dynamics in Upper Sacramento Valley rice fields with low background soil mercury levels

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Tate, Kenneth W.; Linquist, Bruce A.

    2018-01-01

    Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice (Oryza sativa L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g−1). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g−1 (range: <0.007–2.1 ng g−1). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76–110 ng m−2) and THg (1947–7224 ng m−2) during the growing season, and net exporters of MeHg (35–200 ng m−2) and THg (248–6496 ng m−2) during the fallow season. At harvest, 190 to 700 ng MeHg m−2 and 1400 to 1700 ng THg m−2 were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m−2 and 7000–10,500 ng m−2 THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.

  6. Water management practices affect arsenic and cadmium accumulation in rice grains.

    PubMed

    Sun, Liming; Zheng, Manman; Liu, Hongyan; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2014-01-01

    Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that water management practices significantly influenced the Cd and As concentration in rice grains and aerobic cultivation of rice furnished less As concentration in its grains. Nonetheless, Cd concentration in this treatment was higher than the grains of flooded rice. Likewise, in field study, aerobic and flooded rice cultivation recorded higher Cd and As concentration, respectively. However, growing of rice in aerobic-flooded conditions decreased the Cd concentration by 9.38 times on average basis as compared to aerobic rice. Furthermore, this treatment showed 28% less As concentration than that recorded in flooded rice cultivation. The results suggested that aerobic-flooded cultivation may be a promising strategy to reduce the Cd and As accumulations in rice grains simultaneously.

  7. Spatial Numeric Classification Model Suitability with Landuse Change in Sustainable Food Agriculture Zone in Kediri Sub-district, Tabanan Regency, Indonesia

    NASA Astrophysics Data System (ADS)

    Trigunasih, N. M.; Lanya, I.; Hutauruk, J.; Arthagama, I. D. M.

    2017-12-01

    The development of rapid population will make the availability and utilization of land resources is increasingly shrinking in number, especially occurs in rice field. Since the last 5 years the numbers of farmland is decrasing by industry, infrastructure development, tourism development and other services. The agricultural problems facing at the moment is the occurrence of a change of use of agricultural land into farming now is not more popular is called over the function of agricultural land into non-farming. According to the Central Bureau of statistics (BPS) of the province of Bali (2013) within a period of 14 years (1999-2013), there has been a change of use of agricultural land be not agriculture/wetland functions over the 4,906 hectares. When averaged over the function flatten paddy fields per year occurred in Bali approximately 350 ha (0.41%). The highest paddy fields over the function during a period of fourteen years there is in Tabanan area of 1,230 ha. To maintain the existence of the rice fields or subak in Bali in particular, need to be done protection against agricultural lands sustainable. Ninth District/Town in Bali today, haven’t had a Perda on protection of agricultural land sustainable food that is mandated by law 41 Year 2009. This will have an impact on food security of the region, and the world’s cultural heritage as the water will lose its existence as a system of irrigation organization in Bali. The purpose of this research was done to (1) determine the numerical classification of spatial parameters of sustainable food farm in Tabanan Regency Kediri Subdistrict, (2) determine the model of the zoning of agricultural land area of sustainable food that fits on Years 2020, 2030, 2040, and in district of Kediri, Tabanan Regency. The method used is the kuantitaif method includes the focus group discussion, the development of spatial data, analysis geoprosessing (spatial analysis and analysis of proximity), and statistical analysis, interpolation of digital elevation model raster data, and visualization (cartography) and qualitative methods include the study of the literature (introduction). The research results obtained by as much as 23 rice fields mapped in spatial control system based on its geographical location. The parameters in the classification of sustainable food farming in district of Kediri consists of (1) the suitability of the location of a rice field with spatial Plan area of Tabanan Regency years 2012-2032, (2) land use, (3) Watershed morphology, (4) the type of irrigation, (5) rainfall, (6) the form region, (7) the high place, (8) the suitability of the agroecosystem paddy fields, (9) productivity, (10) the distance from the center of town, (11) minimum area. Spatial numerical classification produces a wide variety of modeling (5 models) and is associated with the projected changes in rice fields by the year 2020, 2030, and 2040. In the year 2020 using model 4 due to sustainable subak in model 4 of 2682.71 ha, approached the farm field area by the year in 2020 of 2684 ha. In the year 2030 using model 3 due to sustainable subak on the model is 1651.37 ha 3 plus ¾ buffer subak of 773.51 ha be 2424.88 ha approached the farm field by the year in 2030 of 2364 ha. In the year 2040 using model 2 due to sustainable subak on the model of 307,99 ha 3 plus ¾ buffer subak of 1781,04 ha be 2089,33 ha approached the farm field by the year in 2040 of 2033 ha.

  8. Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels.

    PubMed

    Marques, Catarina R; Pereira, Ruth; Gonçalves, Fernando

    2011-09-01

    An ecotoxicological screening of environmental samples collected in the vicinity of rice fields followed a combination of physical and chemical measurements and chronic bioassays with two freshwater trophic levels (microalgae: Pseudokirchneriella subcapitata and Chlorella vulgaris; daphnids: Daphnia longispina and Daphnia magna). As so, water and sediment/soil elutriate samples were obtained from three sites: (1) in a canal reach crossing a protected wetland upstream, (2) in a canal reach surrounded by rice fields and (3) in a rice paddy. The sampling was performed before and during the rice culture. During the rice cropping, the whole system quality decreased comparatively to the situation before that period (e.g. nutrient overload, the presence of pesticides in elutriates from sites L2 and L3). This was reinforced by a significant inhibition of both microalgae growth, especially under elutriates. Contrary, the life-history traits of daphnids were significantly stimulated with increasing concentrations of water and elutriates, for both sampling periods.

  9. [Effects of land-use conversion from double rice cropping to vegetables on CO2 and CH4 fluxes in southern China].

    PubMed

    Yuan, Ye; Liu, Chang-hong; Dai, Xiao-qin; Wang, Hui-min

    2015-01-01

    In this study, the CO2 and CH4 fluxes in the first year after land use conversion from paddy rice to vegetables were measured by static opaque chamber and gas-chromatograph (GC) method to investigate the land conversion effects on soil CO2 and CH4 emissions. Our results showed that the differences in CO2 fluxes depended on the vegetable types, growing status and seasons. The CO2 flux from the vegetable field was greater than that from the paddy rice field when cowpea was planted, but was lower when pepper was planted. The CH4 flux significantly decreased from 6.96 mg C . m-2 . h-1 to -0.004 mg C . m-2 . h-1 with the land use conversion from rice to vegetables.The net carbon absorption ( CO2 + CH4) of the vegetable fields was 543 kg C . hm-2, significantly lower than that (3641 kg C . hm-2) of the rice paddies. However, no significant difference was found in their global warming impact. In addition, soil carbon content increased in vegetable fields compared to the paddy rice fields after a year of conversion, especially in the 10-20 cm soil layer.

  10. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-06-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  11. An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhadeep; Mohanta, Subhajit

    2018-03-01

    Biomass energy is one of the potential renewable energy sources which occupy 77% of the available natural resources of the world. In India, agro residues constitute a major part of the total annual production of the biomass resource. Rice is the major crop in India that leaves substantial quantity of straw in the field. 34% of rice straw residue produced in the country is surplus and is either left in the field as uncollected or to a large extent open-field burnt. Thus, the unutilized rice straw is found promising for heat and power generation either through incineration (direct combustion) or thermo chemical conversion. This present work envisages the comprehensive performative evaluation of a rice straw supported biomass incineration power plant mainly through plant performance characterization, plant economics, and co-firing issues with emission analysis.

  12. Establishment of a rice-duck integrated farming system and its effects on soil fertility and rice disease control

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-Qing; Luo, Fan

    2015-04-01

    Rice-duck integrated farming is an ecological farming system newly established in some areas of southern China . It was reported that the ducks walking around the paddy fields is beneficial to control weed hazards and reduce rice pests and diseases. To study and evaluate the effects of the rice-duck integrated farming on soil fertility and rice disease control, a field experiment of rice cultivation was carried out in the suburb of Shanghai in 2014. It includes a treatment of raising ducks in the fields and a control without ducks. The treatment was implemented by building a duck coop nearby the experimental fields and driving 15 ducks into a plot at daytime since the early stage of rice growth. Each plot is 667 m2 in area. The treatment and control were replicated for three times. No any herbicides, pesticides, fungicides and chemical fertilizers were applied during the experiment to prevent any disturbance to duck growing and rice weed hazards and disease incidences from agrochemicals. The results are as follows: (1) The incidences of rice leaf rollers (Cnaphalocrocis medinalis) and stem borers treated with ducks, 0.45%and 1.18% on average, respectively, are lower than those of the control, 0.74% and 1.44% on average, respectively. At the late stage of rice growth, the incidence of rice sheath blight treated with ducks, 13.15% on average, is significantly lower than that of the control, 16.9% on average; and the incidence of rice planthoppers treated with ducks, 11.3 per hill on average, is also significantly lower than that of the control, 47.4 per hill on average. (2) The number of weeds in the plots treated with ducks, 8.3 per m2 on average, is significantly lower than that of the control, 87.5 m2 on average. (3) Raising ducks in the fields could also enhance soil enzyme activity and nutrient status. At the late stage of rice growth, the activities of urease, phosphatase, sucrase and catalase in the soils treated with ducks are 1.39 times, 1.40 times, 1.29 times and 1.13 times those of the control, respectively; and the content of available P and alkali-hydrolyzable N in the soils treated with ducks, 23.35 mg kg-1 and 107.33 mg kg-1, on average, respectively, are significantly higher than those of the control, 15.70 mg kg-1 and 84.00 mg kg-1 on average, respectively. (4) The grain yield of the plots treated with ducks, 6456.25 kg hm-2 on average, is significantly higher than that of the control, 3403.81 kg hm-2. In short, raising ducks in the paddy fields not only shows a potential of controlling weed hazards and reducing rice pests and diseases, but also effectively improves soil fertility and rice grain yield. Such rice-duck integrated farming will highly contribute to establishing an organic or low-input farming system in southern China in the future.

  13. Agro-ecological variations of sheath rot disease of rice caused by Sarocladium oryzae and DNA fingerprinting of the pathogen's population structure.

    PubMed

    Tajul Islam Chowdhury, M; Salim Mian, M; Taher Mia, M A; Rafii, M Y; Latif, M A

    2015-12-28

    To examine the impact of regional and seasonal variations on the incidence and severity of sheath rot, a major seed-borne disease of rice caused by Sarocladium oryzae, data on incidence and severity were collected from 27 selected fields in the Gazipur, Rangpur, Bogra, Chittagong, Comilla, Gopalgonj, Jessore, Manikgonj, and Bhola districts of Bangladesh in rain-fed and irrigated conditions. Cultural variability of 29 pathogen isolates obtained from 8 different locations was studied on potato dextrose agar (PDA) and genetic variability was determined by DNA fingerprinting using variable number tandem repeat-polymerase chain reaction markers. Overall, disease incidence and severity were higher in irrigated rice. Disease incidence and severity were highest in the Bhola district in rain-fed rice and lowest in irrigated rice. Mycelial growth of 29 representative isolates was found to vary on PDA and the isolates were divided into 6 groups. The range of the overall size of conidia of the selected isolates was 2.40-7.20 x 1.20-2.40 μm. Analysis of the DNA fingerprint types of the 29 isolates of S. oryzae, obtained from the amplification reactions, revealed 10 fingerprinting types (FPTs) that were 80% similar. FPT-1 was the largest group and included 13 isolates (44.8%), while FPT-2 was the third largest group and included 3 isolates. Each of FPT-3, 4, 5, and 6 included only 1 isolate. We observed no relationship between cultural and genetic groupings.

  14. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields.

  15. No-tillage effects on grain yield, N use efficiency, and nutrient runoff losses in paddy fields.

    PubMed

    Liang, Xinqiang; Zhang, Huifang; He, Miaomiao; Yuan, Junli; Xu, Lixian; Tian, Guangming

    2016-11-01

    The effect of no-tillage (NT) on rice yield and nitrogen (N) behavior often varies considerably from individual studies. A meta-analysis was performed to assess quantitatively the effect of NT on rice yield and N uptake by rice, N use efficiency (NUE, i.e., fertilizer N recovery efficiency), and nutrient runoff losses. We obtained data from 74 rice-field experiments reported during the last three decades (1983-2013). Results showed the NT system brought a reduction of 3.8 % in the rice yield compared with conventional tillage (CT). Soil pH of 6.5-7.5 was favorable for the improvement of rice yield with the NT system, while a significant negative NT effect on rice yield was observed in sandy soils (p < 0.05). N rate, ranging from 120 to 180 kg N ha -1 , for at least 3 years was necessary for NT to enable rice yield comparable with that of CT. Furthermore, the observations indicated NT reduced N uptake and NUE of the rice by 5.4 and 16.9 %, while increased the N and P exports via runoff by 15.4 and 40.1 % compared with CT, respectively. Seedling cast transplantation, N rate within the range 120-180 kg N ha -1 , and employing NT for longer than 3 years should be encouraged to compromise between productivity and environmental effects of NT implementation in rice fields.

  16. The influence of continuous rice cultivation and different waterlogging periods on morphology, clay mineralogy, Eh, pH and K in paddy soils.

    PubMed

    Bahmanyar, M A

    2007-09-01

    The effect of different rice cultivation periods on the properties of selected soils in alluvial plain were studied in Mazandaran province (north of Iran) in 2004. Soils were sampled form 0, 6, 16, 26 and over 40 years rice cultivation fields. In each treatment three soil profiles and six nearby auger holes were studied. The present study results indicated that continuous rice cultivation have changed soil moisture regime from xeric to aquic, soil color from brown to grayish, surface horizons from mollic to ochric epipedon and soil structure changed from granular or blocky to massive. Therefore, the soil order has changed from Mollisols to Inceptisols. No illuviation and eluviation of clay minerals occurred as a consequence of rice cultivation. X-ray diffraction analysis showed that clay minerals in non-rice cultivated field were illite, vermiculite, montmorillonite, kaolinite and chlorite, but in rice field were illite, montmorillonite, kaolinite and chlorite, respectively. In contrast of montmorillonite, the amount of illite and vermiculite have been decreased by increasing periods of rice cultivation. The pH values of the saturated soil surface in six weeks past plantation have shifted toward neutrality. While Eh value of non-paddy soils were about +90 mv, surface horizons of paddy soils at field conditions had Eh value about +40, -12, -84, -122 mv, respectively. The amounts of organic matter and available Fe, Mn, Zn and Cu were increased whereas available K was decreased in paddy soils.

  17. The land use patterns for soil organic carbon conservation at Endanga watershed Southeast Sulawesi Indonesia

    NASA Astrophysics Data System (ADS)

    Leomo, S.; Ginting, S.; Sabaruddin, L.; Tufaila, M.; Muhidin

    2018-02-01

    The Endanga basin is one part of the Konaweeha watershed located in South Konawe, Southeast Sulawesi Province, covering an area of 1,353.67 hectares. The land use patterns in Endanga Watershed contained forests, shrubs, oil palm plantations, pepper fields, and cultivated fields of field rice, corn monoculture and intercropping of peanuts and corn. This watershed needs serious attention because most of its territory is on slope of 15-40%, with erosion hazard levels (EHL) varying from mild erosion to severe erosion. The loss of organic carbon (C-organic) soil is measured from the soil carried along with the surface stream and into the reservoir on various land uses. The result measurement of C-organic soil loss on forest land use is 14.02 kg ha-1, shrubs land 22.71 kg ha-1, oil palm 151.32 kg ha-1, pepper garden 93.69 kg ha-1, field rice 313.80 kg.ha-1, monoculture of maize 142.44 kg ha-1, intercropped maize and corn 51.10 kg ha-1 and open land 1,909.16 kg ha-1. The forest land and shrubs is best in conserving soil C-organic, but economically unfavorable for the community, so land use pattern for intercropping and pepper plantation can be used for soil C-organic conservation

  18. Microwave Backscatter and Attenuation Dependence of Leaf Area Index for Flooded Rice Fields

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Morrissey, Leslie A.; Livingston, Gerald P.

    1995-01-01

    Wetlands are important for their role in global climate as a source of methane and other reduced trace gases. As part of an effort to determine whether radar is suitable for wetland vegetation monitoring, we have studied the dependence of microwave backscatter and attenuation on leaf area index (LAI) for flooded rice fields. We find that the radar return from a flooded rice field does show dependence on LAI. In particular, the C-band VV cross section per unit area decreases with increasing LAI. A simple model for scattering from rice fields is derived and fit to the observed HH and VV data. The model fit provides insight into the relation of backscatter to LAI and is also used to calculate the canopy path attenuation as a function of LAI.

  19. Genetic and field management strategies to for limiting accumulation of arsenic in rice grains

    USDA-ARS?s Scientific Manuscript database

    In 2002, high levels of arsenic were reported in rice produced in Bangladesh using soil and water naturally high in arsenic. Study of arsenic in rice produced in additional countries, including the USA, soon followed. Grain-arsenic is higher in rice than other crops because the flooding of rice pa...

  20. All roads lead to weediness: patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza

    USDA-ARS?s Scientific Manuscript database

    Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), invades and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the “agricultural weed syndrome,” making this an ideal model to study the genetic b...

  1. Little white lies: pericarp color provides insights into the origins and evolution of Southeast Asian weedy rice

    USDA-ARS?s Scientific Manuscript database

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy ...

  2. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms

    PubMed Central

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W.; Stout, Michael

    2018-01-01

    Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil (Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm (Spodoptera frugiperda, FAW), and against infection by sheath blight (Rhizoctonia solani, ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study represents the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens. PMID:29922319

  3. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms.

    PubMed

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W; Stout, Michael

    2018-01-01

    Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil ( Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm ( Spodoptera frugiperda , FAW), and against infection by sheath blight ( Rhizoctonia solani , ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study represents the first study conducted in the U.S. in rice showing AMF-induced plant susceptibility to several antagonists that specialize on different plant tissues. Given the widespread occurrence of AMF, our findings will help to provide a different perspective into the causal basis of rice systemic resistance/susceptibility to insects and pathogens.

  4. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    PubMed Central

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security. PMID:27695637

  5. Effects of water-saving irrigation on the residues and risk of polycyclic aromatic hydrocarbon in paddy field.

    PubMed

    Zhao, Zhenhua; Xia, Liling; Jiang, Xin; Gao, Yanzheng

    2018-03-15

    The effects of different water-saving modes on PAHs residue and risk, field environment conditions and enzyme activities in paddy field were investigated in a field experiment plot in Laoyaba, Nanjing, China. Results showed that (1) water-saving treatment affected greatly the ΣPAHs in water and soil. The order of ΣPAHs residue in surface water and groundwater in farmland is as follows: dry fieldsroot>stem>rice grain. (4) Water-saving irrigation evidently decreased soil ecological risk (up to 55%-73%) and rice carcinogenic risk (up to 30%-45%) caused by PAHs compared with flooding irrigation. Water-saving irrigation could also reduce the Total Toxic Equivalency Concentration of PAHs in rice grain up to 50% relative to flooding irrigation. (5) The significant negative correlations were observed between the residual PAHs and the activities of laccase and dioxygenase (p<0.019), and the physical and chemical indexes (temperature, redox potential and dissolved oxygen of field, p<0.041). The changes of field environment conditions and enzyme activities induced by moisture control may be the main key factors affecting PAHs residue in water, soil and rice. Copyright © 2017. Published by Elsevier B.V.

  6. Paddy rice productivity under climate and land-use change in northern Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, R.; Fukui, S.; Shimada, T.; Hasegawa, T.; Iwasaki, T.

    2013-12-01

    An evaluation of the best rice cultivar under climate change is an important issue because the projected climate change has a potential to bring a negative impact on crop yield. In this study, we estimate an impact of climate change on rice yield and potential best cultivar in northern Japan where the larger paddy field is located than other regions in Japan. Two global climate model data, MIROC5 (RCP 4.5) and MRI-AGCM (SRES A1B), are applied as the future scenario. These data are too coarse to resolve the regional differences in northern Japan; we conduct the downscale experiments by a regional climate model (JMA-NHM) with a 10-km grid spacing. Considering that rice yield is sensitive to warm season climate, we conduct the downscaling from 28th May to 1st September during 1981-2000 and 2081-2099. The biases of downscaled two scenarios are corrected to match their cumulative distribution functions (CDF) of present climate with that of the station-based observation. The derived CDF-based biases are also used to correct the future scenarios. These corrected scenarios are applied to rice growth model (NIAES-Rice). To take account for the impacts of land use change (LUC) on climate and rice yield, we consider the additional temperature changes due to the LUC. As a reference, we add the LUC-induced temperature change in southwest Japan because the data are available from the previous study. We first check the climate change in northern Japan. General tendencies derived from the bias-corrected-downscaled future climates are that 1) surface warming was approximately twice in low elevation area relative to mountainous area and 2) downward shortwave radiation homogeneously increased 7-8 W m-2. Then, we evaluated the simulated yield through comparing with observation. Using observed ambient conditions as input data, the NIAES-Rice model provides the reasonable performance in simulating the rice yield with biases ranging from -19.0 to 29.2 % in prefecture base. Climate changes enhance the rice yield for 'Koshihikari' from 372.4 to 388.1 g/10a. The cultivar is planted in half of prefectures in Japan. For each analysis grid, we chose the cultivar that held the largest yield among the 10 analyzed cultivars and found that the location of cultivar that achieves the largest yields shifted northward in future climate. Also, the grids that cultivar developed in central Japan become the largest yield among 10 cultivars increase more than triple in the future climate. A LUC-induced temperature impact on prefecture-based yield corresponds to about 18 % of the climate-change-induced yield change, ranging from 0.6 to 33.5 % for six prefectures in the analyzed area. There is unclear tendency between the present rice yield amount and the intensity of LUC impact. However, surface warming due to urbanization decrease the rice yield in all six prefectures. Thus land use management and planting cultivar change are essential for stable food security.

  7. Growth and Survival of Baldcypress Planted in an Old Rice Field of Coastal South Carolina

    Treesearch

    William H. Conner; L. Wayne Inabinette; Mehmet Ozalp

    2004-01-01

    Vast acreages of baldcypress [Taxodium distichum (L.) Rich.] swampland in coastal South Carolina were cleared for rice production starting in the late 1600s. When rice cultivation ended in the late 1800s, many cultivated areas became marshlands. Other fields failed to return to forest unless they were planted. In one such area, nine acres were...

  8. Seasonal variation in measured H2O and CO2 flux of irrigated rice in the Mid-South

    USDA-ARS?s Scientific Manuscript database

    Rice production in the Lower Mississippi River Basin constitutes over half of US rice production, but little research has been done on water and carbon flux in this region at the field scale. Eddy covariance measurements of water and CO2 flux allow for an integrated field measurement of the interac...

  9. Winter fluxes from Eastern Arkansas Rice-Waterfowl Habitats

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Fong, B.; Runkle, B.; Suvocarev, K.; Adviento-Borbe, A.

    2016-12-01

    Seasonal flooding of rice fields in the mid-South for migratory birds during the winter months (December- January) has occurred for years. This practice can impact total annual greenhouse gas (GHG) emissions and fluxes during the production season (June-August). Over 75% of US rice production occurs in the mid-South, but limited research has analyzed the winter fluxes of methane and carbon dioxide in this rice-waterfowl habitat. Usually rice fields are flooded from June to August for the production season, and again December to January for migratory birds. In addition to hunting revenue, added benefits of winter flooding include weed control and prevention of soil oxidation and subsidence. Eddy covariance systems measuring carbon dioxide, water vapor and methane fluxes were installed at two sites in northeastern and east central Arkansas. Each site had two systems on neighboring fields with one flooded and the other not flooded. Seasonal variability in fluxes were compared and contrasted during the 2015-2016 winter. Both carbon dioxide and methane fluxes were positively related to temperatures. These findings will improve the understanding of seasonal greenhouse gas emissions at a field scale under typical mid-South rice production practices.

  10. Partitioning of arsenic in soil-crop systems irrigated using groundwater: a case study of rice paddy soils in southwestern Taiwan.

    PubMed

    Hsu, Wen-Ming; Hsi, Hsing-Cheng; Huang, You-Tuan; Liao, Chien-Sen; Hseu, Zeng-Yei

    2012-02-01

    The accumulation of As in rice due to groundwater irrigation in paddy fields represents a serious health hazard in South and Southeast Asia. In Taiwan, the fate of As in long-term irrigated paddy fields is poorly understood. Groundwater, surface soil, and rice samples were collected from a paddy field that was irrigated with As-containing groundwater in southwestern Taiwan. The purpose of this study is to elucidate the source and sink of As in the paddy field by comparing the As fractions in the soils that were obtained by a sequential extraction procedure (SEP) with the As uptake of rice. The risks associated with eating rice from the field can thus be better understood. The concentration of As in groundwater varied with time throughout the growing seasons of rice, but always exceeded the permitted maximum (10 μg L(-1)) for drinking water by the WHO. The As concentration increased with the concentration of Fe in the groundwater, supporting the claim that a large amount of As was concentrated in the Fe flocs collected from the internal wall of the groundwater pump. The results of the SEP revealed that As bound with amorphous and crystalline hydrous oxides exhibited high availability in the soils. The root of rice accumulated the largest amount of As, followed by the straw, husk, and grain. Although the As concentration in the rice grain was less than 1.0 mg kg(-1), the estimated intake level was close to the maximum tolerable daily intake of As, as specified by the WHO. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    PubMed

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  12. Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.

    Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions

  13. Habitat manipulation in lowland rice-coconut cropping systems of the Philippines--an effective rodent pest management strategy?

    PubMed

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2014-06-01

    Reduction of vegetation height is recommended as a management strategy for controlling rodent pests of rice in South-east Asia, but there are limited field data to assess its effectiveness. The breeding biology of the main pest species of rodent in the Philippines, Rattus tanezumi, suggests that habitat manipulation in irrigated rice-coconut cropping systems may be an effective strategy to limit the quality and availability of their nesting habitat. The authors imposed a replicated manipulation of vegetation cover in adjacent coconut groves during a single rice-cropping season, and added artificial nest sites to facilitate capture and culling of young. Three trapping sessions in four rice fields (two treatments, two controls) adjacent to coconut groves led to the capture of 176 R. tanezumi, 12 Rattus exulans and seven Chrotomys mindorensis individuals. There was no significant difference in overall abundance between crop stages or between treatments, and there was no treatment effect on damage to tillers or rice yield. Only two R. tanezumi were caught at the artificial nest sites. Habitat manipulation to reduce the quality of R. tanezumi nesting habitat adjacent to rice fields is not effective as a lone rodent management tool in rice-coconut cropping systems. © 2013 Society of Chemical Industry.

  14. Bt rice does not disrupt the host-searching behavior of the parasitoid Cotesia chilonis

    PubMed Central

    Liu, Qingsong; Romeis, Jörg; Yu, Huilin; Zhang, Yongjun; Li, Yunhe; Peng, Yufa

    2015-01-01

    We determined whether plant volatiles help explain why Cotesia chilonis (a parasitoid of the target pest Chilo suppressalis) is less abundant in Bt than in non-Bt rice fields. Olfactometer studies revealed that C. chilonis females responded similarly to undamaged Bt and non-Bt rice plants. Parasitoids preferred rice plants damaged by 3rd-instar larvae of C. suppressalis, but did not differentiate between caterpillar-infested Bt and non-Bt plants. According to GC-MS analyses of rice plant volatiles, undamaged Bt and non-Bt rice plants emitted the same number of volatile compounds and there were no significant differences in the quantity of each volatile compound between the treatments. When plants were infested with and damaged by C. suppressalis larvae, both Bt and non-Bt rice plants emitted higher numbers and larger amounts of volatile compounds than undamaged plants, but there were no significant differences between Bt and non-Bt plants. These results demonstrate that the volatile-mediated interactions of rice plants with the parasitoid C. chilonis were not disrupted by the genetic engineering of the plants. We infer that parasitoid numbers are lower in Bt than in non-Bt fields because damage and volatile induction by C. suppressalis larvae are greatly reduced in Bt fields. PMID:26470012

  15. Mapping of Rice Varieties and Sowing Date Using X-Band SAR Data

    PubMed Central

    Le Toan, Thuy; Nguyen, Lam Dao; Pham Duy, Tien

    2018-01-01

    Rice is a major staple food for nearly half of the world’s population and has a considerable contribution to the global agricultural economy. While spaceborne Synthetic Aperture Radar (SAR) data have proved to have great potential to provide rice cultivation area, few studies have been performed to provide practical information that meets the user requirements. In rice growing regions where the inter-field crop calendar is not uniform such as in the Mekong Delta in Vietnam, knowledge of the start of season on a field basis, along with the planted rice varieties, is very important for correct field management (timing of irrigation, fertilization, chemical treatment, harvest), and for market assessment of the rice production. The objective of this study is to develop methods using SAR data to retrieve in addition to the rice grown area, the sowing date, and the distinction between long and short cycle varieties. This study makes use of X-band SAR data from COSMO-SkyMed acquired from 19 August to 23 November 2013 covering the Chau Thanh and Thoai Son districts in An Giang province, Viet Nam, characterized by a complex cropping pattern. The SAR data have been analyzed as a function of rice parameters, and the temporal and polarization behaviors of the radar backscatter of different rice varieties have been interpreted physically. New backscatter indicators for the detection of rice paddy area, the estimation of the sowing date, and the mapping of the short cycle and long cycle rice varieties have been developed and assessed. Good accuracy has been found with 92% in rice grown area, 96% on rice long or short cycle, and a root mean square error of 4.3 days in sowing date. The results have been discussed regarding the generality of the methods with respect to the rice cultural practices and the SAR data characteristics. PMID:29361776

  16. Atmospheric Teleconnection and Climate Variability: Affecting Rice Productivity of Bihar, India

    NASA Astrophysics Data System (ADS)

    Saini, A.

    2017-12-01

    Climate variability brought various negative results to the environment around us and area under rice crop in Bihar has also faced a lot of negative impacts due to variability in temperature and rainfall. Location of Bihar in Northern Plain of India automatically makes it prime location for agriculture and therefore variability in climatic variables brings highly sensitive results to the agricultural production (especially rice). In this study, rainfall and temperature variables are taken into consideration to investigate the impact on rice cultivated area. Change in climate variable with the passage of time is prevailing since the start of geological time scale, how the variability in climate variables has affected the major crops. Climate index of Pacific Ocean and Indian Ocean influences the seasonal weather in Bihar and therefore role of ENSO and IOD is an interesting point of inquiry. Does there exists direct relation between climate variability and area under agricultural crops? How many important variables directly signals towards the change in area under agriculture production? These entire questions are answered with respect to change in area under rice cultivation of Bihar State of India. Temperature, rainfall and ENSO are a good indicator with respect to rice cultivation in Indian subcontinent. Impact on the area under rice has been signaled through ONI, Niño3 and DMI. Increasing range of temperature in the rice productivity declining years is observed since 1990.

  17. Linkage Block and Recombination Suppression at the Pi-ta locus at the Centromere Region of Rice Chromosome 12

    USDA-ARS?s Scientific Manuscript database

    The Pi-ta gene, located near the centromeric region of chromosome 12 is an effective resistance gene to Magnaporthe oryzae that causes rice blast disease. Pi-ta has been incorporated into diverse resistant rice cultivars by classical plant breeding in the southern US and worldwide. Previously, la...

  18. [Dynamics and combined injuries of main pest species in rice cropping zones of Yunnan, Southwest China].

    PubMed

    Dong, Kun; Dong, Yan; Wang, Hai-Long; Zhang, Li-Min; Zan, Qing-An; Chen, Bin; Li, Zheng-Yue

    2014-01-01

    A series of rice pest injuries (due to pathogens, insects, and weeds) were surveyed in 286 farmers' fields for major rice varieties of three rice cropping zones of Yunnan Province, Southwest China. The composition and dynamics of main pest species were analyzed, and the trend of rice pest succession in Yunnan was discussed based upon landmark publications. The results showed that the three rice cropping zones had different pest characteristics as regard to main species, dynamics and combined injuries. Sheath rot, bacterial leaf blight, rice stripe, leaf hoppers, armyworms and stem borers were serious in the japonica rice zone. Sheath blight and rice stripe were serious in the japonica-indica interlacing zone. Leaf blast, sheath blight, leaf folders and weeds above rice crop canopy were serious in the indica rice zone. False smut, plant hoppers and weeds below rice crop canopy were ubiquitous and serious in the three kinds of rice cropping zones. Many kinds of weed infestation emerged in the whole rice cropping seasons. Echinochloa crusgalli, Sagittaria pygmaea, Potamogeton distinctus and Spirodela polyrhiza were the main species of weeds in the rice cropping zones of Yunnan. Overall, levels of combined injuries due to pests in the japonica rice zone and the indica rice zone were higher than that in the japonica-indica interlacing zone. In terms of the trend of rice pest succession in Yunnan, injuries due to false smut, sheath blight and plant hoppers seemed to be in a worse tendency in all rice cropping zones of Yunnan, while dominants species of weeds in the paddy fields are shifting from the annual weeds to the perennial malignant weeds.

  19. [Effect of transgenic insect-resistant rice on biodiversity].

    PubMed

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  20. A new approach to evaluate regional methane emission from irrigated rice paddies: Combining process study, modeling and remote sensing into GIS

    NASA Astrophysics Data System (ADS)

    Ding, Aiju

    2000-10-01

    A large seasonal variation in methane emission from Texas rice fields was observed in most of the growing seasons from 1989 through 1997. In general, the pattern showed small fluxes in the early season of cultivation and reached maximum at post-heading time, then declined and stopped after fields were drained. The amount of methane emission positively relates to the aboveground biomass, the number of effective stems and tillers, and nitrogen addition. The day-to-day pattern of methane emissions was similar among all cultivars. The seasonal total methane emission shows a significant positive correlation with post-heading plant height. The total methane emission from Texas rice fields was estimated as 33.25 × 109 g in 1993, ranging from 25.85 × 109 g/yr to 40.65 × 109 g/yr. A mitigation technique was developed to obtain both high yield and less methane emission from Texas rice fields. A new approach was also developed to evaluate regional to large-scale methane emission from irrigated rice paddies. By combining modeling, ground truth information and remote sensing into a Geographic Information System (GIS)-a computer based system, the seasonal methane emission from a large area can be calculated efficiently and more accurately. The methodology was tested at the Richmond Irrigation District (RID) site in Texas. The average daily methane emission varied from field to field and even within a single field. The calculated seasonal total methane emission from RID rice fields was as low as 3.34 × 108 g CH4 in 1996 and as high as 7.80 × 108 g CH4 in 1998. To support the application of the estimation method in a worldwide study, an algorithm describing the mapping of irrigated rice paddies from Landsat TM data was demonstrated. The accuracy in 1998- supervised classification approached 95% when cloud cover was taken into account. Model uncertainty and data availability are the two major potential problems in worldwide application of the new approach. A potential alternative model is proposed which allows estimation of regional methane emission from rice plant height.

  1. Rice methylmercury exposure and mitigation: a comprehensive review

    USGS Publications Warehouse

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  2. Rice Methylmercury Exposure and Mitigation: A Comprehensive Review

    PubMed Central

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effect of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, which minimize methylmercury exposure through rice ingestion. PMID:24972509

  3. Greenhouse gas budget from a rice paddy field in the Albufera of Valencia, Spain.

    NASA Astrophysics Data System (ADS)

    Meijide, Ana; López-Ballesteros, Ana; Calvo-Roselló, Esperanza; López-Jiménez, Ramón; Recio-Huetos, Jaime; Calatayud, Vicent; Carrara, Arnaud; Serrano-Ortiz, Penelope

    2017-04-01

    Rice paddy fields are large sources of anthropogenic methane (CH4) and therefore many studies have assessed CH4 fluxes from rice paddy fields, mainly in Asia where most of the rice cultivation takes place. However, rice is also cultivated in the Mediterranean, where climatic and management conditions greatly differ. In the Albufera of Valencia, the largest freshwater lagoon in Spain, rice paddy fields have the particularity of being flooded not only while the rice grows, but also after the harvest during the winter. These flooding conditions might result in emissions which are very specific of this ecosystem, and cannot be extrapolated from other studies. We studied CH4 fluxes in a rice paddy field in the Albufera of Valencia at different stages of rice cultivation using the eddy covariance technique and static chambers. We additionally measured carbon dioxide (CO2), water fluxes and nitrous oxide (N2O) fluxes with eddy covariance and chamber methods respectively, in order to obtain a full greenhouse gas (GHG) budget. Our study also aimed at providing a mechanistic understanding of GHG emissions at different stages of rice cultivation, and therefore we also used the Enhanced and Normalized Vegetation Indexes (EVI and NDVI, respectively), derived from remote sensing images. The general ecosystem functioning encompasses three different phases. The first one, over the autumn and the winter, a biological dormancy period causes low CO2 emissions (ca. 1-5 µmol m-2 s-1), which coincides with the EVI and NDVI. The intermittent flooding taking place during this period is expected to cause CH4 emissions. Then, during the spring months (March-May), larger CO2 respiratory emissions take place during the daytime (> 5 µmol m-2 s-1) due to an increase in air temperature, which turn to neutral at the end of spring due to the start of photosynthesis by the rice. The third phase corresponds to the vegetation growth, when the net CO2 uptake increases gradually up to maximum CO2 sequestration rates of ca. 40 µmol m-2 s-1. During this period, the higher air temperature together with the flooding allows for the development of rice plants, resulting in the highest EVI and NDVI values (0.59 and 0.85, respectively) and nighttime maximum CO2 emissions (5-10 µmol m-2 s-1). These conditions also favor the production of CH4, which make the rice paddy field a CH4 source. The ecosystem behaved as a N2O sink during most of the study period. Positive N2O emissions were only observed at the beginning of the vegetation growth phase, which seems to be related to fertilizer application.

  4. Rice microstructure

    USDA-ARS?s Scientific Manuscript database

    An understanding of plant structure is desirable to obtain a clear idea of the overall impact of a crop. A mature rice plant consists of leafy components (left in the field post-harvest) and paddy rice (collected). The rice plant is supported by a hollow stem (culm) with leaf sheaths attached to nod...

  5. Studying the Impacts of Environmental Factors and Agricultural Management on Methane Emissions from Rice Paddies Using a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.

  6. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system.

    PubMed

    Xie, Jian; Hu, Liangliang; Tang, Jianjun; Wu, Xue; Li, Nana; Yuan, Yongge; Yang, Haishui; Zhang, Jiaen; Luo, Shiming; Chen, Xin

    2011-12-13

    For centuries, traditional agricultural systems have contributed to food and livelihood security throughout the world. Recognizing the ecological legacy in the traditional agricultural systems may help us develop novel sustainable agriculture. We examine how rice-fish coculture (RF), which has been designated a "globally important agricultural heritage system," has been maintained for over 1,200 y in south China. A field survey demonstrated that although rice yield and rice-yield stability are similar in RF and rice monoculture (RM), RF requires 68% less pesticide and 24% less chemical fertilizer than RM. A field experiment confirmed this result. We documented that a mutually beneficial relationship between rice and fish develops in RF: Fish reduce rice pests and rice favors fish by moderating the water environment. This positive relationship between rice and fish reduces the need for pesticides in RF. Our results also indicate a complementary use of nitrogen (N) between rice and fish in RF, resulting in low N fertilizer application and low N release into the environment. These findings provide unique insights into how positive interactions and complementary use of resource between species generate emergent ecosystem properties and how modern agricultural systems might be improved by exploiting synergies between species.

  7. NO X fluxes from several typical agricultural fields during summer-autumn in the Yangtze Delta, China

    NASA Astrophysics Data System (ADS)

    Fang, Shuangxi; Yujing, Mu

    NO X fluxes from three kinds of vegetable lands and a rice field were measured during summer-autumn in the Yangtze Delta, China. The average NO fluxes from the rice fields (RF), celery field (CE), maize field (MA) and cowpea field (CP) were 4.1, 30.8, 54 and 32.2 ng N m -2 s -1, respectively; and the average NO 2 fluxes were -2.12, 0.68, 1.33 and 0.5 ng N m -2 s -1, respectively. The liquid N fertilizer (the mixture of swine excrement and urine) which is widely applied to vegetable lands by Chinese farmers was found to quickly stimulate NO emission, and have significant contribution to NO emission from the investigated vegetable lands. Apparent linearity correlations were found between NO 2 fluxes and the ambient concentrations of the rice fields, with a compensation point of about 2.84 μg m -3. Total emissions of NO during summer-autumn time from this area were roughly estimated to be 4.1 and 8.4 Gg N for rice field and vegetable lands, respectively.

  8. PCDD/F EMISSIONS FROM BURNING WHEAT AND RICE FIELD RESIDUE

    EPA Science Inventory

    The paper presents the first known values for emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) from combustion of agricultural field biomass. Wheat and rice straw stubble collected from two western U.S. states were tested in a field burn simulation to dete...

  9. Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.

    NASA Astrophysics Data System (ADS)

    Takemine, S.; Rikimaru, A.; Takahashi, K.

    The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed

  10. Insect abundance over Chinese rice fields in relation to environmental parameters, studied with a polarization-sensitive CW near-IR lidar system

    NASA Astrophysics Data System (ADS)

    Zhu, Shiming; Malmqvist, Elin; Li, Wansha; Jansson, Samuel; Li, Yiyun; Duan, Zheng; Svanberg, Katarina; Feng, Hongqiang; Song, Ziwei; Zhao, Guangyu; Brydegaard, Mikkel; Svanberg, Sune

    2017-07-01

    Effective monitoring of flying insects is of major societal importance in view of the role of insects as indispensable pollinators, destructive disease vectors and economically devastating agricultural pests. The present paper reports on monitoring of flying agricultural pests using a continuous-wave lidar system in a rice-field location in Southern China. Using a Scheimpflug arrangement, range resolution over several 100 m long observational paths was achieved. The system operates with two perpendicularly polarized near-infrared lasers, which are activated intermittently, and back-scattered radiation from insects was recorded by a linear array detector placed after a linear polarizer. Our polarization sensitive system was used to monitor the flying insect diurnal activity and also the influence of changes in weather conditions, e.g., the occurrence of rain. Activity strongly peaked at dusk and rose again, although to a lower extent, just before dawn. At the onset of rainfall, a strong increase in insect counts occurred which was interpreted as the rain-induced bringing down of high-altitude migrant insects.

  11. Effect of irrigation and silicon fertilizer on total rice grain arsenic content and yield

    USDA-ARS?s Scientific Manuscript database

    Field tests were conducted for two years with rice grown with different irrigation systems and rates of calcium silicate fertilizer to determine the effects on brown rice arsenic (As) levels and rough rice yields. Irrigation systems were sprinkler irrigation using a center pivot system, intermitten...

  12. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

    PubMed

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops.

  13. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901

  14. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    PubMed

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  15. 40 CFR 63.6601 - What emission limitations must I meet if I own or operate a 4SLB stationary RICE with a site...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... if I own or operate a 4SLB stationary RICE with a site rating of greater than or equal to 250 brake... RICE with a site rating of greater than or equal to 250 brake HP and less than 500 brake HP located at... reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to...

  16. Carbon dioxide emissions and energy balance closure before, during, and after biomass burning in mid-South rice fields

    NASA Astrophysics Data System (ADS)

    Fong, B.; Adviento-Borbe, A.; Reba, M. L.; Runkle, B.; Suvocarev, K.

    2017-12-01

    Biomass burning or field burning is a crop management practice that removes rice straw, reduces tillage, controls pests and releases nutrients for the next cropping season. Current field burning emissions are not included in agricultural field annual emissions largely because of the lack of studies, especially on the field scale. Field burning measurements are important for greenhouse gas emission inventories and quantifying the annual carbon footprint of rice. Paired eddy covariance systems were used to measure energy balance, CO2 fluxes, and H2O fluxes in mid-South US rice fields (total area of 25 ha) before, during and after biomass burning for 20 days after harvest. During the biomass burning, air temperatures increased 29°C, while ambient CO2 concentration increased from 402 to 16,567 ppm and H2O concentrations increased from 18.73 to 25.62 ppt. For the burning period, 67-86 kg CO2 ha-1 period-1 was emitted calculated by integrating fluxes over the biomass burning event. However, the estimated emission using aboveground biomass and combustion factors was calculated as 11,733 kg CO2 ha-1 period-1. Part of the difference could be attributed to sensor sensitivity decreasing 80% during burning for two minutes due to smoke. Net ecosystem exchange (NEE) increased by a factor of two, 1.14 before burning to 2.44 μmol m-2 s-1 possibly due to greater reduction of plant material and photosynthesis following burning. This study highlights the contribution of rice straw burning to total CO2 emissions from rice production.

  17. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand.

    PubMed

    Shrestha, Sangam; Chapagain, Ranju; Babel, Mukand S

    2017-12-01

    Northeast Thailand makes a significant contribution to fragrant and high-quality rice consumed within Thailand and exported to other countries. The majority of rice is produced in rainfed conditions while irrigation water is supplied to rice growers in the dry season. This paper quantifies the potential impact of climate change on the water footprint of rice production using the DSSAT (CERES-Rice) crop growth model for the Nam Oon Irrigation Project located in Northeast Thailand. Crop phenology data was obtained from field experiments and used to set up and validate the CERES-Rice model. The present and future water footprint of rice, the amount of water evaporated during the growing period, was calculated under current and future climatic condition for the irrigation project area. The outputs of three regional climate models (ACCESS-CSIRO-CCAM, CNRM-CM5-CSIRO-CCAM, and MPI-ESM-LR-CSIRO-CCAM) for scenarios RCP 4.5 and RCP 8.5 were downscaled using quantile mapping method. Simulation results show a considerably high increase in the water footprint of KDML-105 and RD-6 rice varieties ranging from 56.5 to 92.2% and 27.5 to 29.7%. respectively for the future period under RCP 4.5, and 71.4 to 76.5% and 27.9 to 37.6%, respectively under RCP 8.5 relative to the simulated baseline water footprint for the period 1976-2005. Conversely, the ChaiNat-1 variety shows a decrease in projected water footprint of 42.1 to 39.4% under RCP 4.5 and 38.5 to 31.7% under RCP 8.5. The results also indicate a huge increase in the future blue water footprint, which will consequently cause a high increment in the irrigation water requirement in order to meet the plant's evaporation demand. The research outcome highlights the importance of proper adaptation strategies to reduce or maintain acceptable water footprints under future climate conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Estimating rice yield from MODIS-Landsat fusion data in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.

    2017-12-01

    Rice production monitoring with remote sensing is an important activity in Taiwan due to official initiatives. Yield estimation is a challenge in Taiwan because rice fields are small and fragmental. High spatiotemporal satellite data providing phenological information of rice crops is thus required for this monitoring purpose. This research aims to develop data fusion approaches to integrate daily Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat data for rice yield estimation in Taiwan. In this study, the low-resolution MODIS LST and emissivity data are used as reference data sources to obtain the high-resolution LST from Landsat data using the mixed-pixel analysis technique, and the time-series EVI data were derived the fusion of MODIS and Landsat spectral band data using STARFM method. The LST and EVI simulated results showed the close agreement between the LST and EVI obtained by the proposed methods with the reference data. The rice-yield model was established using EVI and LST data based on information of rice crop phenology collected from 371 ground survey sites across the country in 2014. The results achieved from the fusion datasets compared with the reference data indicated the close relationship between the two datasets with the correlation coefficient (R2) of 0.75 and root mean square error (RMSE) of 338.7 kgs, which were more accurate than those using the coarse-resolution MODIS LST data (R2 = 0.71 and RMSE = 623.82 kgs). For the comparison of total production, 64 towns located in the west part of Taiwan were used. The results also confirmed that the model using fusion datasets produced more accurate results (R2 = 0.95 and RMSE = 1,243 tons) than that using the course-resolution MODIS data (R2 = 0.91 and RMSE = 1,749 tons). This study demonstrates the application of MODIS-Landsat fusion data for rice yield estimation at the township level in Taiwan. The results obtained from the methods used in this study could be useful to policymakers; and thus, the methods can be transferable to other regions in the world for rice yield estimation.

  19. Integrated rice-duck farming decreases global warming potential and increases net ecosystem economic budget in central China.

    PubMed

    Sheng, Feng; Cao, Cou-Gui; Li, Cheng-Fang

    2018-05-31

    Over the past decades, many attempts have been made to assess the effects of integrated rice-duck farming on greenhouse gas emissions, use efficient of energy, soil fertility, and economic significance. However, very few studies have been focused on the effects of the farming on net ecosystem economic budget (NEEB). Here, a 2-year field experiment was conducted to comprehensively investigate the effects of ducks raised in paddy fields on CH 4 and N 2 O emissions, global warming potential (GWP), rice grain yield, and NEEB in central China. The experiment included two treatments: integrated rice-duck farming (RD) and conventional rice farming (R). The introduction of ducks into the paddy fields markedly increased the rice grain yield due to enhanced tiller number and root bleeding rate. RD treatment significantly elevated the N 2 O emissions (p < 0.05) but decreased CH 4 emissions (p < 0.05) during rice growing seasons compared with R treatment. Analysis of GWP based on CH 4 and N 2 O emissions showed that compared with R treatment, RD treatment significantly decreased the GWP by 28.1 and 28.0% and reduced the greenhouse gas intensity by 30.6 and 29.8% in 2009 and 2010, respectively. In addition, RD treatment increased NEEB by 40.8 and 39.7% respectively in 2009 and 2010 relative to R treatment. Taken together, our results suggest that the integrated rice-duck farming system is an effective strategy to optimize the economic and environmental benefits of paddy fields in central China.

  20. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    PubMed

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  1. Studies on mosquito biting risk among migratory rice farmers in rural south-eastern Tanzania and development of a portable mosquito-proof hut.

    PubMed

    Swai, Johnson K; Finda, Marceline F; Madumla, Edith P; Lingamba, Godfrey F; Moshi, Irene R; Rafiq, Mohamed Y; Majambere, Silas; Okumu, Fredros O

    2016-11-22

    Subsistence rice farmers in south-eastern Tanzania are often migratory, spending weeks or months tending to crops in distant fields along the river valleys and living in improvised structures known as Shamba huts, not fully protected from mosquitoes. These farmers also experience poor access to organized preventive and curative services due to long distances. Mosquito biting exposure in these rice fields, relative to main village residences was assessed, then a portable mosquito-proof hut was developed and tested for protecting these migratory farmers. Pair-wise mosquito surveys were conducted in four villages in Ulanga district, south-eastern Tanzania in 20 randomly-selected Shamba huts located in the distant rice fields and in 20 matched houses within the main villages, to assess biting densities and Plasmodium infection rates. A portable mosquito-proof hut was designed and tested in semi-field and field settings against Shamba hut replicas, and actual Shamba huts. Also, semi-structured interviews were conducted, timed-participant observations, and focus-group discussions to assess experiences and behaviours of the farmers regarding mosquito-bites and the mosquito-proof huts. There were equal numbers of mosquitoes in Shamba huts and main houses [RR (95% CI) 27 (25.1-31.2), and RR (95% CI) 30 (27.5-33.4)], respectively (P > 0.05). Huts having >1 occupant had more mosquitoes than those with just one occupant, regardless of site [RR (95% CI) 1.57 (1.30-1.9), P < 0.05]. Open eaves [RR (95% CI) 1.15 (1.08-1.23), P < 0.05] and absence of window shutters [RR (95% CI) 2.10 (1.91-2.31), P < 0.05] increased catches of malaria vectors. All Anopheles mosquitoes caught were negative for Plasmodium. Common night-time outdoor activities in the fields included cooking, eating, fetching water or firewood, washing dishes, bathing, and storytelling, mostly between 6 and 11 p.m., when mosquitoes were also biting most. The prototype hut provided 100% protection in semi-field and field settings, while blood-fed mosquitoes were recaptured in Shamba huts, even when occupants used permethrin-impregnated bed nets. Though equal numbers of mosquitoes were caught between main houses and normal Shamba huts, the higher proportions of blood-fed mosquitoes, reduced access to organized healthcare and reduced effectiveness of LLINs, may increase vulnerability of the itinerant farmers. The portable mosquito-proof hut offered sufficient protection against disease-transmitting mosquitoes. Such huts could be improved to expand protection for migratory farmers and possibly other disenfranchised communities.

  2. Study of mosquito fauna in rice ecosystems around Hanoi, northern Vietnam.

    PubMed

    Ohba, Shin-ya; Van Soai, Nguyen; Van Anh, Dinh Thi; Nguyen, Yen T; Takagi, Masahiro

    2015-02-01

    Species of the Culex vishnui subgroup, Cx. fuscocephala and Cx. gelidus, which are known Japanese encephalitis (JE) vectors, are distributed in rice agroecosystems in Asian countries. Hence, although ecological studies of rice agroecosystems in northern Vietnam are necessary, very few integrated studies of breeding habitats of mosquitoes, including JE vectors, have been conducted. We carried out a field study and investigated the mosquito fauna in six rice production areas in northern Vietnam during the rainy and dry seasons of 2009. Mosquitoes and potential mosquito predators were collected from aquatic habitats by using larval dippers. We collected 1780 Culex individuals (including 254 Cx. tritaeniorhynchus; 113 Cx. vishnui, 58 Cx. vishnui complex, consisting of Cx. vishnui and Cx. pseudovishnui; 12 Cx. gelidus; 1 Cx. bitaeniorhynchus; and 1 Cx. fuscocephala), 148 Anopheles individuals (including 5 An. vagus), 1 Mansonia annulifera, and 1 Mimomyia chamberlaini during the rainy season. During the dry season, we collected 176 Culex individuals (including 33 Cx. vishnui, 24 Cx. tritaeniorhynchus, 8 Cx. vishnui complex, and 1 Cx. gelidus) and 186 Anopheles individuals (including 9 An. tessellatus, 2 An. kochi, and 2 An. barbumbrosus). We found mosquitoes in all aquatic habitats, namely, rice fields, ditches, ponds, wetlands, irrigation canals, and rice nurseries, and Cx. tritaeniorhynchus and Cx. vishnui complex were found in all the above six areas. Heteroptera such as Micronecta, Veliidae, and Pleidae were abundant and widely distributed in both the seasons. The abundance of mosquito larvae was higher in the rice fields, ditches, and ponds during the rainy season than during the dry season. Cx. tritaeniorhynchus, Cx. vishnui complex, Cx. fuscocephala, and Cx. gelidus were abundant in rice agroecosystems (rice fields, ditches, ponds, and wetlands) in northern Vietnam, and their abundance was high during the rainy season. These findings deepen our understanding of mosquito ecology and strengthen mosquito control strategies to be applied in rice ecosystems Vietnam in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions.

    PubMed

    Chen, Yang; Tian, Jun-Ce; Shen, Zhi-Chen; Peng, Yu-Fa; Hu, Cui; Guo, Yu-Yuan; Ye, Gong-Yin

    2010-08-01

    Six transgenic rice, Oryza sativa L., lines (G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) expressing a fused Cry1Ab/Vip3H protein, were evaluated for resistance against the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and the stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) in the laboratory and field. The bioassay results indicated that the mortality of Asiatic rice borer and S. inferens neonate larvae on six transgenic lines from seedling to filling stage was up to 100% at 168 h after infestation. The cumulative feeding area by Asiatic rice borer neonate larvae on all transgenic lines was significantly reduced compared with the untransformed parental 'Xiushui 110' rice. A 2-yr field evaluation showed that damage during the vegetative stage (deadheart) or during the reproductive stage (whitehead) caused by Asiatic rice borer and S. inferens for transgenic lines was much lower than the control. For three lines (G6H1, G6H2, and G6H6), no damage was found during the entire growing period. Estimation of fused Cry1Ab/Vip3H protein concentrations using PathoScreen kit for Bt-Cry1Ab/1Ac protein indicated that the expression levels of Cry1Ab protein both in main stems (within the average range of 0.006-0.073% of total soluble protein) and their flag leaves (within the average range of 0.001-0.038% of total soluble protein) were significantly different among six transgenic lines at different developmental stages. Both laboratory and field researches suggested that the transgenic rice lines have considerable potential for protecting rice from attack by both stem borers.

  4. The distribution of the invasive pest, rice water weevil Lissorhoptrus oryzophilus (Coleoptera: Curculionidae), is expanding in Europe: First record in the Balkans, confirmed by CO1 DNA barcoding

    USDA-ARS?s Scientific Manuscript database

    This is the first report of the invasive rice pest, rice water weevil (Lissorhoptrus oryzophilus Kuschel) in the Balkans. Adult specimens were collected in flooded rice fields in the principal rice-growing region of Central Macedonia, Greece during July-August, 2016. Morphological identification was...

  5. Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice.

    PubMed

    Gamal-Eldin, Hosny; Elbanna, Khaled

    2011-02-01

    In a previous study, we evaluated the effects of inoculating rice plants with the phototrophic purple nonsulfur bacterium Rhodobacter capsulatus (Rc) on growth and yield of rice in pots and lysimeter experiments and the results obtained have been highly encouraging. In this study, we carried out two field experiments: one in the experimental farm of the Faculty of Agriculture, Fayoum University, and the second in a farmer's field in Kafr El-sheikh, to assess the effects of Rc on growth and yield of rice in comparison and in combination with chemical nitrogen fertilizer (CNF) and farmyard manure. The results indicated that both biological and grain yields in all the Rc inoculated treatments were significantly higher than those in the uninoculated corresponding treatments in both fields. With regard to grain yield, the major factor for determining the effectiveness of any agricultural treatment, inoculation with Rc in combination with 50% of the recommended CNF rate gave a grain yield that was statistically equivalent to that obtained with 100% of the recommended CNF rate. These results provide a clear evidence for the potential of Rc as biofertilizer for flooded rice under field conditions.

  6. Comparison of on-site field measured inorganic arsenic in rice with laboratory measurements using a field deployable method: Method validation.

    PubMed

    Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg

    2018-10-15

    A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Landuse change identification using SPOT 6 for food security analysis of Denpasar City, Bali Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Supardan, N.; Panularsih, M.; Darmawan, M.

    2018-05-01

    Land use change was common in Indonesia, including Bali, especially land conversion from paddy field to other uses. Based on statistics data of Bali 2015, the area of rice fields continues to decline every year, both irrigated and rain-fed rice fields. This study was conducted to analyze land use change and its impact on food security in Denpasar. Land use change dynamics can be observed by multi-temporal land use changes. GIS analysis was performed to obtain spatial land use changes in the study area by using topographic map 1: 25,000 with data sources 2002 and land cover classification of SPOT 6 image acquisition 2015. The results of GIS analysis indicate that settlement and built-up area increased by 1,736 hectares and the area of rice field decreased by 1,695 hectares during 13 years. The increasing of settlement rate was 133,5 ha / year and the decreasing of rice field was 130 ha / year. Meanwhile, the result of food availability analysis shows that the Denpasar City still deficit of rice amount 48,997 tons in 2014, and 69,175 tons in 2015 or only fulfill about 45% of food requirement.

  8. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety.

    PubMed

    Yu, Lingling; Zhu, Junyan; Huang, Qingqing; Su, Dechun; Jiang, Rongfeng; Li, Huafen

    2014-10-01

    This field experiment analyzed the phytoremediation effects of oilseed rape in moderately cadmium (Cd)-contaminated farmland and the food safety of successive rice in an oilseed rape-rice rotation system. Two oilseed rape cultivars accumulated Cd at different rates. The rapeseed cultivar Zhucang Huazi exhibited high Cd accumulation rates, higher than the legal limit for human consumption (0.2mgkg(-1)); Cd concentrations in the cultivar Chuanyou II-93 were all below the maximum allowed level. Planting oilseed rape increased the uptake of Cd by the successive rice crop compared with a previous fallow treatment. Most Cd concentrations of brown rice were below the maximum allowed level. The phytoextraction efficiency was lower in the moderately Cd-contaminated soil in field experiments. The results suggest screening rice cultivars with lower Cd accumulation can assure the food safety; the mobilization of heavy metals by roots of different plant species should be considered during crop rotation to assure food safety. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mapping rice areas of South Asia using MODIS multitemporal data

    NASA Astrophysics Data System (ADS)

    Gumma, Murali Krishna; Nelson, Andrew; Thenkabail, Prasad S.; Singh, Amrendra N.

    2011-01-01

    Our goal is to map the rice areas of six South Asian countries using moderate-resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to 2001. South Asia accounts for almost 40% of the world's harvested rice area and is also home to 74% of the population that lives on less than $2.00 a day. The population of the region is growing faster than its ability to produce rice. Thus, accurate and timely assessment of where and how rice is cultivated is important to craft food security and poverty alleviation strategies. We used a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify and classify rice areas over large spatial extents. These methods are used in conjunction with ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a large volume of field-plot data. The resulting rice maps and statistics are compared against a subset of independent field-plot points and the best available subnational statistics on rice areas for the main crop growing season (kharif season). A fuzzy classification accuracy assessment for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most of the mixing was within rice classes. The derived physical rice area was highly correlated with the subnational statistics with R2 values of 97% at the district level and 99% at the state level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for generating their statistics over large areas.

  10. Adapting rice production to climate change for sustainable blue water consumption: an economic and virtual water analysis

    NASA Astrophysics Data System (ADS)

    Darzi-Naftchali, Abdullah; Karandish, Fatemeh

    2017-12-01

    Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a suitable strategy for sustainable blue water consumption for producing rice under future climate.

  11. Mapping rice areas of South Asia using MODIS multitemporal data

    USGS Publications Warehouse

    Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N.

    2011-01-01

    Our goal is to map the rice areas of six South Asian countries using moderate-resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to 2001. South Asia accounts for almost 40% of the world's harvested rice area and is also home to 74% of the population that lives on less than $2.00 a day. The population of the region is growing faster than its ability to produce rice. Thus, accurate and timely assessment of where and how rice is cultivated is important to craft food security and poverty alleviation strategies. We used a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify and classify rice areas over large spatial extents. These methods are used in conjunction with ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a large volume of field-plot data. The resulting rice maps and statistics are compared against a subset of independent field-plot points and the best available subnational statistics on rice areas for the main crop growing season (kharif season). A fuzzy classification accuracy assessment for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most of the mixing was within rice classes. The derived physical rice area was highly correlated with the subnational statistics with R2 values of 97% at the district level and 99% at the state level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for generating their statistics over large areas. ?? 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. GAD1 Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication[OPEN

    PubMed Central

    Hua, Lei; Zhao, Xinhui; Zhang, Weifeng; Liu, Fengxia; Fu, Yongcai; Cai, Hongwei; Sun, Xianyou; Gu, Ping; Xie, Daoxin

    2016-01-01

    Cultivated rice (Oryza sativa) was domesticated from wild rice (Oryza rufipogon), which typically displays fewer grains per panicle and longer grains than cultivated rice. In addition, wild rice has long awns, whereas cultivated rice has short awns or lacks them altogether. These changes represent critical events in rice domestication. Here, we identified a major gene, GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT1 (GAD1), that regulates those critical changes during rice domestication. GAD1 is located on chromosome 8 and is predicted to encode a small secretary signal peptide belonging to the EPIDERMAL PATTERNING FACTOR-LIKE family. A frame-shift insertion in gad1 destroyed the conserved cysteine residues of the peptide, resulting in a loss of function, and causing the increased number of grains per panicle, shorter grains, and awnless phenotype characteristic of cultivated rice. Our findings provide a useful paradigm for revealing functions of peptide signal molecules in plant development and helps elucidate the molecular basis of rice domestication. PMID:27634315

  13. Phenotype diversity analysis of red-grained rice landraces from Yuanyang Hani's terraced fields, China

    NASA Astrophysics Data System (ADS)

    Li, Lianjie; Cheng, Long

    2017-10-01

    There are many areas in the world have terraced fields, Yuanyang Rani's terraced fields are examples in the world, and their unique ecological diversity is beyond other terraced fields, rice landraces are very rich. In order to provide useful information for protection and utilization of red-grained rice landraces from Rani's terraced fields, 61 red-grained rice landraces were assessed based 20 quantitative traits. Principal component analysis (PCA) suggested that 20 quantitative characters could be simplified to seven principal components, and their accumulative contribution ration amounted to 78.699%. The first principal component (PC1) explained 18.375% of the total variance, which was contributed by filled grain number, 1000-grain weight, spikelets per panicle, secondary branch number, grain length, and grain thickness. PC2 accounted for 16.548% of the variance and featured flag leaf width, flag leaf area, panicle neck length and primary branch number. These traits were the most effective parameters to discriminate individuals. At the request of the proceedings editor and with the approval of all authors, article 040111 titled, "Phenotype diversity analysis of red-grained rice landraces from Yuanyang Hani's terraced fields, China," is being retracted from the public record due to the fact that it is a duplication of article 040110 published in the same volume.

  14. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields.

    PubMed

    Scavino, Ana Fernandez; Ji, Yang; Pump, Judith; Klose, Melanie; Claus, Peter; Conrad, Ralf

    2013-09-01

    Irrigated rice fields in Uruguay are temporarily established on soils used as cattle pastures. Typically, 4 years of cattle pasture are alternated with 2 years of irrigated rice cultivation. Thus, oxic upland conditions are rotated with seasonally anoxic wetland conditions. Only the latter conditions are suitable for the production of CH4 from anaerobic degradation of organic matter. We studied soil from a permanent pasture as well as soils from different years of the pasture-rice rotation hypothesizing that activity and structure of the bacterial and archaeal communities involved in production of CH4 change systematically with the duration of either oxic or anoxic conditions. Soil samples were taken from drained fields, air-dried and used for the experiments. Indeed, methanogenic archaeal gene copy numbers (16S rRNA, mcrA) were lower in soil from the permanent pasture than from the pasture-rice alternation fields, but within the latter, there was no significant difference. Methane production started to accumulate after 16 days and 7 days of anoxic incubation in soil from the permanent pasture and the pasture-rice alternation fields respectively. Then, CH4 production rates were slightly higher in the soils used for pasture than for rice production. Analysis of δ(13) C in CH4, CO2 and acetate in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis, indicated that CH4 was mainly (58-75%) produced from acetate, except in the permanent pasture soil (42%). Terminal restriction fragment length polymorphism (T-RFLP) of archaeal 16S rRNA genes showed no difference among the soils from the pasture-rice alternation fields with Methanocellaceae and Methanosarcinaceae as the main groups of methanogens, but in the permanent pasture soil, Methanocellaceae were relatively less abundant. T-RFLP analysis of bacterial 16S rRNA genes allowed the distinction of permanent pasture and fields from the pasture-rice rotation, but nevertheless with a high similarity. Pyrosequencing of bacterial 16S rRNA genes generally revealed Firmicutes as the dominant bacterial phylum, followed by Proteobacteria, Acidobacteria and Actinobacteria. We conclude that a stable methanogenic microbial community established once pastures have been turned into management by pasture-rice alternation despite the fact that 2 years of wetland conditions were followed by 4 years of upland conditions that were not suitable for CH4 production. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia.

    PubMed

    Jarju, Lamin B S; Fillinger, Ulrike; Green, Clare; Louca, Vasilis; Majambere, Silas; Lindsay, Steven W

    2009-07-27

    Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0-100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to fly. The traditional practice of 'swamp rice' cultivation uses different bodies of water on the floodplains to cultivate rice during the rainy season. A consequence of this cultivation is the provizion of ideal conditions for malaria vectors to thrive. As the demand for locally-produced rice grows, increased rice farming will generate great numbers of vectors; emphasizing the need to protect local communities against malaria.

  16. Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice.

    PubMed

    Liu, Yongbo; Ge, Feng; Liang, Yuyong; Wu, Gang; Li, Junsheng

    2015-04-26

    Transgene flow through pollen and seeds leads to transgenic volunteers and feral populations in the nature, and consumer choice and economic incentives determine whether transgenic crops will be cultivated in the field. Transgenic and non-transgenic plants are likely to coexist in the field and natural habitats, but their competitive interactions are not well understood. Field experiments were conducted in an agricultural ecosystem with insecticide spraying and a natural ecosystem, using Bt-transgenic rice (Oryza sativa) and its non-transgenic counterpart in pure and mixed stands with a replacement series. Insect damage and competition significantly decreased plant growth and reproduction under the coexistence of transgenic and conventional rice. Insect-resistant transgenic rice was not competitively superior to its counterpart under different densities in both agricultural and natural ecosystems, irrespective of insect infection. Fitness cost due to Bt-transgene expression occurred only in an agroecosystem, where the population yield decreased with increasing percentage of transgenic rice. The population yield fluctuated in a natural ecosystem, with slight differences among pure and mixed stands under plant competition or insect pressure. The presence of Chilo suppressalis infection increased the number of non-target insects. Plant growth and reproduction patterns, relative competition ability and population yield indicate that Bt-transgenic and non-transgenic rice can coexist in agroecosystems, whereas in more natural habitats, transgenic rice is likely to outcompete non-transgenic rice.

  17. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance

    PubMed Central

    Yang, Qing-qing; Zhang, Chang-quan; Chan, Man-ling; Zhao, Dong-sheng; Chen, Jin-zhu; Wang, Qing; Li, Qian-feng; Yu, Heng-xiu; Gu, Ming-hong; Sun, Samuel Sai-ming; Liu, Qiao-quan

    2016-01-01

    Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice. PMID:27252467

  18. Rapid Measurement of Soil Carbon in Rice Paddy Field of Lombok Island Indonesia Using Near Infrared Technology

    NASA Astrophysics Data System (ADS)

    Kusumo, B. H.; Sukartono, S.; Bustan, B.

    2018-02-01

    Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.

  19. Richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides in rice paddy fields.

    PubMed

    Wandscheer, Alana C D; Marchesan, Enio; Santos, Sandro; Zanella, Renato; Silva, Marília F; Londero, Guilherme P; Donato, Gabriel

    2017-01-01

    The objective of this study was to verify the richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides of the rice paddy fields. In the crop seasons of 2012/13 and 2013/14, field experiments were performed, which consisted of single-dose applications of the fungicides trifloxystrobin + tebuconazole and tricyclazole, and the insecticides lambda-cyhalothrin + thiamethoxam and diflubenzuron, in 10 m2 experimental plots, over rice plants in the R3 stage. Control plots with and without rice plants were maintained in order to simulate a natural environment. Soil samples were collected during rice cultivation for assessment of the macroinvertebrate fauna. Chemical-physical parameters assessed in the experiments included temperature, pH and oxygen dissolved in the water and pesticide persistence in the water and in the soil. The application of a single dose of the pesticides and fungicides in the recommended period does not cause significant negative effects over the richness and density of the macroinvertebrates. Tebuconazole, tricyclazole and thiamethoxam showed high persistence in the irrigation water of rice paddy fields. Thus, the doses and number of applications of these products in crops should be carefully handled in order to avoid contamination of the environment.

  20. Rice methylmercury exposure and mitigation: a comprehensive review.

    PubMed

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Aerobic Decomposition and Organic Amendments Effects on Grain Yield of Triple-Cropped Rice in the Mekong Delta, Vietnam

    USDA-ARS?s Scientific Manuscript database

    Soil aeration during decomposition of incorporated crop residues and application of organic amendments might help improve soil quality and rice yield for sustainable intensive rice production. A field experiment was conducted on triple-cropped rice during three consecutive crops with five treatments...

  2. Simulation of future global warming scenarios in rice paddies with an open-field ecosystem warming facility

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) in Yangtze River Valley (YRV) suffered serious yield losses in 2003 when extreme heatwave (HW), hampered rice reproductive growth phase (RGP). Climate change induced extreme and asymmetrical fluctuations in temperature during heat sensitive stage of rice growth cycle, i.e., RG...

  3. Rice emissions during field flooding and air pollution feedbacks across South Korea

    NASA Astrophysics Data System (ADS)

    So, C.; Diskin, G. S.; DiGangi, J. P.; Choi, Y.; Rana, M.; Hughes, S.; Blake, D. R.; Nault, B.; Schroeder, J.; Campuzano Jost, P.; Jimenez, J. L.; Kim, M. J.; Teng, A.; Crounse, J. D.; Wenneberg, P.; Kaser, L.; Mikoviny, T.; Müller, M.; Wisthaler, A.; Pusede, S. E.

    2017-12-01

    Nitrous oxide (N2O) and methane (CH4) are important long-lived greenhouse gases. Known anthropogenic sources of these gases include rice cultivation, which represents anywhere between 5% and 20% of methane emissions globally. Other volatile molecules are also produced by soil biogeochemistry when rice fields are flooded, including small organic oxygenates. Here, we use recent aircraft measurements from the KORUS-AQ experiment to describe controls over rice emissions of N2O and CH4 at regional-scales across the South Korean Peninsula. We also investigate potential emissions of molecular hydrogen and volatile alcohols and organic acids and consider the effect of aerosol nitrate and sulfate deposition on rice soil biogeochemistry on paddies downwind of polluted urban areas.

  4. Weed communities of rain-fed lowland rice vary with infestation by Rhamphicarpa fistulosa

    NASA Astrophysics Data System (ADS)

    Houngbédji, Tossimidé; Dessaint, Fabrice; Nicolardot, Bernard; Shykoff, Jacqui A.; Gibot-Leclerc, Stéphanie

    2016-11-01

    The facultative hemiparasitic plant Rhamphicarpa fistulosa (Orobanchaceae) thrives in seasonally wet soils in sub-Saharan Africa, mainly in marginal lowland rice growing environments where weeds are already a major constraint for rice production. Because lowland rice production is increasing in tropical Africa, it is important to ascertain the influence of R. fistulosa on weed plant communities in these rice-growing habitats. We investigated weed plant community richness and composition at four different levels of R. fistulosa infestation across two years of surveys from lowland rice fields in northern Togo (West Africa). Despite a lack of significant differences in community richness among sites with different R. fistulosa infestation levels, there were significant differences in community composition, both when estimated from presence-absence data and from relative abundance data, after controlling statistically for geographic proximity among sites. Rhamphicarpa fistulosa infestation, therefore, may influence the competitive balance between rice and its weeds and shape weed community structure. However, experimental studies are required to elucidate the weed host range of R. fistulosa and the direct and indirect effects of this hemiparasite in rice fields in order to predict its net impact on rice and its weed species.

  5. [Reducing cadmium content of rice grains by means of flooding and a few problems].

    PubMed

    Kawasaki, Akira; Arao, Tomohito; Ishikawa, Satoru

    2012-01-01

    The effects of water management in rice paddies on the levels of cadmium (Cd) and arsenic (As) in Japanese rice grains were tested. In order to reduce the Cd concentration in rice grains, flooding for 3 weeks before and after heading was most effective, but this treatment increased As concentration considerably. Aerobic treatment was effective in reducing As concentration in rice grains, but increased Cd concentration markedly. In the pot experiment, flooding treatment after heading was more effective than flooding treatment before heading in reducing both Cd and As concentrations in rice grains. The concentration of dimethylarsinic acid (DMA) in rice grains was very low under aerobic conditions, but increased in the continuous-flooding treatment. In the field experiment, the grain As concentration in the case of flooding for 3 weeks before and after heading was higher than that in the case of intermittent irrigation. The ratios of DMA to the total As concentration were 3-52% in the pot experiment and 7-13% in the field experiment.

  6. A major QTL controlling deep rooting on rice chromosome 4

    PubMed Central

    Uga, Yusaku; Yamamoto, Eiji; Kanno, Noriko; Kawai, Sawako; Mizubayashi, Tatsumi; Fukuoka, Shuichi

    2013-01-01

    Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for the ratio of deep rooting (RDR) in three F2 mapping populations derived from crosses between each of three shallow-rooting varieties (‘ARC5955', ‘Pinulupot1', and ‘Tupa729') and a deep-rooting variety, ‘Kinandang Patong'. In total, we detected five RDR QTLs on chromosomes 2, 4, and 6. In all three populations, QTLs on chromosome 4 were found to be located at similar positions; they explained from 32.0% to 56.6% of the total RDR phenotypic variance. This suggests that one or more key genetic factors controlling the root growth angle in rice is located in this region of chromosome 4. PMID:24154623

  7. A major QTL controlling deep rooting on rice chromosome 4.

    PubMed

    Uga, Yusaku; Yamamoto, Eiji; Kanno, Noriko; Kawai, Sawako; Mizubayashi, Tatsumi; Fukuoka, Shuichi

    2013-10-24

    Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for the ratio of deep rooting (RDR) in three F₂ mapping populations derived from crosses between each of three shallow-rooting varieties ('ARC5955', 'Pinulupot1', and 'Tupa729') and a deep-rooting variety, 'Kinandang Patong'. In total, we detected five RDR QTLs on chromosomes 2, 4, and 6. In all three populations, QTLs on chromosome 4 were found to be located at similar positions; they explained from 32.0% to 56.6% of the total RDR phenotypic variance. This suggests that one or more key genetic factors controlling the root growth angle in rice is located in this region of chromosome 4.

  8. Nontarget bird exposure to DRC-1339 during fall in North Dakota and spring in South Dakota

    USGS Publications Warehouse

    Custer, Thomas W.; Custer, Christine M.; Dummer, Paul M.; Linz, George M.; Sileo, Louis; Stahl, Randal S.; Johnston, John J.; Linz, G.M.

    2003-01-01

    Blackbirds frequently use ripening sunflower (Heltantbus annuus) as a food source in the northern Great Plains. In 1999 and 2000, the avicide DRC-1339 (3-chloro-4-methylaniline hydrochloride) was used experimentally on fall-ripening sunflower fields in North Dakota so researchers could evaluate its effectiveness for reducing crop depredations by blackbirds. DRC-1339 was applied to rice and broadcast on the ground in a confined area within ripening sunflower fields. One objective of this study was to determine whether nontarget birds, birds other than blackbirds, were eating rice and were exposed to the DRC-1339. In 1999, 8 of 11 (73%) sparrows collected by shotgun in sunflower fields treated with DRe-1339 had rice in their gastrointestinal (GI) tracts. In 2000, 5 mourning doves (Zenaida macroura) and 3 sparrows were collected by shotgun in sunflower fields treated with DRC-1339. Three doves had rice in their GI tracts, 4 doves and all 3 sparrows had measurable DRC1339 concentrations in their GI tracts, and 3 mourning doves and 1 savannah sparrow (Passerculus sanduncbensis) exhibited histopathological signs of kidney damage. In April 2002, untreated rice was applied to corn stubble plots in South Dakota to determine which bird species ate rice. In 2002, 3 of 3 song sparrows (Melospiza melodia) collected by shotgun had rice in their GI tracts. Our results demonstrate that the use of DRC-1339 to control blackbirds in the northern Great Plains will likely expose nontarget birds to the DRC-1339 bait.

  9. Mercury cycling in agricultural and managed wetlands of California: seasonal influences of vegetation on mercury methylation, storage, and transport

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Kakouros, Evangelos; Agee, Jennifer L.; Kieu, Le H.; Stricker, Craig A.; Fleck, Jacob A.; Ackerman, Joshua T.

    2013-01-01

    Plants are a dominant biologic and physical component of many wetland capable of influencing the internal pools and fluxes of methylmercury (MeHg). To investigate their role with respect to the latter, we examined the changing seasonal roles of vegetation biomass and Hg, C and N composition from May 2007-February 2008 in 3 types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields), and in adjacent managed natural wetlands dominated by cattail and bulrush (tule). We also determined the impact of vegetation on seasonal microbial Hg methylation rates, and Hg and MeHg export via seasonal storage in vegetation, and biotic consumption of rice seed. Despite a compressed growing season of ~ 3 months, annual net primary productivity (NPP) was greatest in white rice fields and carbon more labile (leaf median C:N ratio = 27). Decay of senescent litter (residue) was correlated with microbial MeHg production in winter among all wetlands. As agricultural biomass accumulated from July to August, THg concentrations declined in leaves but MeHg concentrations remained consistent, such that MeHg pools generally increased with growth. Vegetation provided a small, temporary, but significant storage term for MeHg in agricultural fields when compared with hydrologic export. White rice and wild rice seeds reached mean MeHg concentrations of 4.1 and 6.2 ng gdw- 1, respectively. In white rice and wild rice fields, seed MeHg concentrations were correlated with root MeHg concentrations (r = 0.90, p < 0.001), suggesting transport of MeHg to seeds from belowground tissues. Given the proportionally elevated concentrations of MeHg in rice seeds, white and wild rice crops may act as a conduit of MeHg into biota, especially waterfowl which forage heavily on rice seeds within the Central Valley of California, USA. Thus, while plant tissues and rhizosphere soils provide temporary storage for MeHg during the growing season, export of MeHg is enhanced post-harvest through increased hydrologic and biotic export.

  10. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images.

    PubMed

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-05-12

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.

  11. Hydrolytic Activation Kinetics of the Herbicide Benzobicyclon in Simulated Aquatic Systems.

    PubMed

    Williams, Katryn L; Tjeerdema, Ronald S

    2016-06-22

    Herbicide resistance is a growing concern for weeds in California rice fields. Benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has proven successful against resistant rice field weeds in Asia. A pro-herbicide, BZB forms the active agent, benzobicyclon hydrolysate (BH), in water; however, the transformation kinetics are not understood for aquatic systems, particularly flooded California rice fields. A quantitative experiment was performed to assess the primary mechanism and kinetics of BZB hydrolysis to BH. Complete conversion to BH was observed for all treatments. Basic conditions (pH 9) enhanced the reaction, with half-lives ranging from 5 to 28 h. Dissolved organic carbon (DOC) hindered transformation, which is consistent with other base-catalyzed hydrolysis reactions. BH was relatively hydrolytically stable, with 18% maximum loss after 5 days. Results indicate BZB is an efficient pro-herbicide under aqueous conditions such as those of a California rice field, although application may be best suited for fields with recirculating tailwater systems.

  12. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    PubMed

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  13. 40 CFR 63.6610 - By what date must I conduct the initial performance tests or other initial compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE... performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site... stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you...

  14. 40 CFR 63.6610 - By what date must I conduct the initial performance tests or other initial compliance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE... performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site... stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you...

  15. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine

    PubMed Central

    Dong, Jinwei; Xiao, Xiangming; Menarguez, Michael A.; Zhang, Geli; Qin, Yuanwei; Thau, David; Biradar, Chandrashekhar; Moore, Berrien

    2016-01-01

    Area and spatial distribution information of paddy rice are important for understanding of food security, water use, greenhouse gas emission, and disease transmission. Due to climatic warming and increasing food demand, paddy rice has been expanding rapidly in high latitude areas in the last decade, particularly in northeastern (NE) Asia. Current knowledge about paddy rice fields in these cold regions is limited. The phenology- and pixel-based paddy rice mapping (PPPM) algorithm, which identifies the flooding signals in the rice transplanting phase, has been effectively applied in tropical areas, but has not been tested at large scale of cold regions yet. Despite the effects from more snow/ice, paddy rice mapping in high latitude areas is assumed to be more encouraging due to less clouds, lower cropping intensity, and more observations from Landsat sidelaps. Moreover, the enhanced temporal and geographic coverage from Landsat 8 provides an opportunity to acquire phenology information and map paddy rice. This study evaluated the potential of Landsat 8 images on annual paddy rice mapping in NE Asia which was dominated by single cropping system, including Japan, North Korea, South Korea, and NE China. The cloud computing approach was used to process all the available Landsat 8 imagery in 2014 (143 path/rows, ~3290 scenes) with the Google Earth Engine (GEE) platform. The results indicated that the Landsat 8, GEE, and improved PPPM algorithm can effectively support the yearly mapping of paddy rice in NE Asia. The resultant paddy rice map has a high accuracy with the producer (user) accuracy of 73% (92%), based on the validation using very high resolution images and intensive field photos. Geographic characteristics of paddy rice distribution were analyzed from aspects of country, elevation, latitude, and climate. The resultant 30-m paddy rice map is expected to provide unprecedented details about the area, spatial distribution, and landscape pattern of paddy rice fields in NE Asia, which will contribute to food security assessment, water resource management, estimation of greenhouse gas emissions, and disease control. PMID:28025586

  16. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine.

    PubMed

    Dong, Jinwei; Xiao, Xiangming; Menarguez, Michael A; Zhang, Geli; Qin, Yuanwei; Thau, David; Biradar, Chandrashekhar; Moore, Berrien

    2016-11-01

    Area and spatial distribution information of paddy rice are important for understanding of food security, water use, greenhouse gas emission, and disease transmission. Due to climatic warming and increasing food demand, paddy rice has been expanding rapidly in high latitude areas in the last decade, particularly in northeastern (NE) Asia. Current knowledge about paddy rice fields in these cold regions is limited. The phenology- and pixel-based paddy rice mapping (PPPM) algorithm, which identifies the flooding signals in the rice transplanting phase, has been effectively applied in tropical areas, but has not been tested at large scale of cold regions yet. Despite the effects from more snow/ice, paddy rice mapping in high latitude areas is assumed to be more encouraging due to less clouds, lower cropping intensity, and more observations from Landsat sidelaps. Moreover, the enhanced temporal and geographic coverage from Landsat 8 provides an opportunity to acquire phenology information and map paddy rice. This study evaluated the potential of Landsat 8 images on annual paddy rice mapping in NE Asia which was dominated by single cropping system, including Japan, North Korea, South Korea, and NE China. The cloud computing approach was used to process all the available Landsat 8 imagery in 2014 (143 path/rows, ~3290 scenes) with the Google Earth Engine (GEE) platform. The results indicated that the Landsat 8, GEE, and improved PPPM algorithm can effectively support the yearly mapping of paddy rice in NE Asia. The resultant paddy rice map has a high accuracy with the producer (user) accuracy of 73% (92%), based on the validation using very high resolution images and intensive field photos. Geographic characteristics of paddy rice distribution were analyzed from aspects of country, elevation, latitude, and climate. The resultant 30-m paddy rice map is expected to provide unprecedented details about the area, spatial distribution, and landscape pattern of paddy rice fields in NE Asia, which will contribute to food security assessment, water resource management, estimation of greenhouse gas emissions, and disease control.

  17. Looking Inward to the Use of Unmanned Aerial Vehicle (UAV) for Rice Production Assessment in Indonesia

    NASA Astrophysics Data System (ADS)

    Komaladara, A. A. S. P.; Ambarawati, I. G. A. A.; Wijaya, I. M. A. S.; Hongo, C.; Mirah Adi, A. A. A.

    2015-12-01

    Rice is the main source of carbohydrate for most Indonesians. Rice production has been very dynamic due to improved infrastructure, research and development, and better farm management. However, rice production is susceptible to loss caused by drought, pest and disease attack and climate change. With the growing concern on sustainable and self-reliance food production in the country, there is an urgency to encourage research and efforts to increase rice productivity. Attempts to provide spatial distribution of rice fields on high resolution optical remote sensing data have been employed to some extent, however this technology could be costly. The use of UAV has been introduced to estimate damage ratio in rice crop recently in Indonesia. This technology is one of the ways to estimate rice production quicker, cost-saving and before harvesting time. This study aims to analyze spatio temporal and damage ratio of rice crop using UAV in Indonesia. The study empirically presents the use of UAV (Phantom 2 Vision +) on rice fields to the soil condition and development of management zone map in Bali as an example. The study concludes that the use of UAV allows researchers to pin point characteristics of crop and land in a specific area of a farm. This will then allow researchers to assist farmers in implementing specific and appropriate solutions to production issues. Key words: UAV, rice production, damage ratio

  18. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    PubMed

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  19. INTESTINAL LIFE CYCLE OF EIMERIA CALIGINOSA (APICOMPLEXA: EIMERIIDAE) FROM THE DUSKY RICE RAT, MELANOMYS CALIGINOSUS (RODENTIA: CRICETIDAE: SIGMODONTINAE) IN COSTA RICA.

    PubMed

    Chinchilla, Misael; Valerio, Idalia; Sanchez, Ronald; Duszynski, Donald

    2018-05-08

    The endogenous life cycle of Eimeria caliginosa was studied in experimentally-infected dusky rice rats, Melanomys caliginosus. All endogenous stages were located in the epithelial cells of villi in the small intestine. Both Giemsa-stained mucosal scrapings and histological sections were studied for the diagnosis of all the life cycle stages. Eimeria caliginosa has 3 generations of meronts (M) that differ by size, shape, and number of merozoites (m), which also differ in their size, shape, and location of their nuclei within the cytoplasm of the meronts. The 3 meront types, M1-M3, respectively, had 20-33 (m1), 5-9 (m2), and 13-16 (m3) merozoites. Macrogametocytes and microgametocytes, as well as macrogametes and microgametes, completed the sexual cycle, which conclude with the formation of unsporulated oocysts. This parasite's endogenous development produced severe intestinal lesions in the experimentally-infected dusky rice rats. In our ongoing work to understand the biodiversity present in plants and animals of our protected Reserva Biológica Alberto Manuel Brenes (ReBAMB) field station in Costa Rica, we now have discovered 3 new Eimeria species, and this is the second complete life cycle in which we document both the asexual and sexual stages The presence of Eimeria caliginosa was discovered in Costa Rica, in the dusky rice rat, Melanomys caliginosus (Tomes, 1860), captured in the protected Reserva Biológica Alberto Manuel Brenes (ReBAMB) in San Ramón, Alajuela, Costa Rica (Chinchilla et al. 2014). The original description was based on sporulated oocyst characteristics, but there was no information known about this parasite or its life history at the time of our discovery. Now, using careful experimental protocols, we are able to offer a description of the endogenous stages of the intestinal life cycle of E. caliginosa in M. caliginosus were able to determine the prepatent and patent periods, and we were able to make some observations about the intestinal pathology caused by E. caliginosa in its natural host, the dusky rice rat.

  20. The archaeobotany of Asian rice expansion and the development of wet-field cultivation

    NASA Astrophysics Data System (ADS)

    Fuller, D.

    2008-12-01

    Archaeobotanical evidence provides direct data on past human diet and agriculture, including a geographical and chronological framework for studying the expansion of rice agriculture. The growth of systematic archaeobotanical sampling in recent years has allowed for the past presence of rice to be seen in relation to cultivation of other crops and associated weeds. The weed flora provides a basis for inferring the nature of cultivation systems, whether rain-fed dry rice or wetland "paddy" rice, a key distinction for considerations of past methane production. Nevertheless, current data is very unevenly distributed. This poster will summarize available evidence for the origins and spread of rice in South Asia (India and Pakistan), and mainland and Island Southeast Asia deriving from an earlier Chinese domestication. Where possible, such as in India or China, the potential of the weed flora remains for distinguishing wetland rice crops will be summarized. In broad terms, although the origins of rice use and cultivation begins by or during the Middle Holocene (6000- 3000 BC), rice cultivation spread outside the regions of the wild progenitor after this time. Two phases of rice expansion can be distinguished. Phase 1, between 3000 and 1500 BC, introduced rice to Southeast Asia, probably under wetland cultivation, and the spread of dry rice over northern India and Pakistan. Phase 2, taking place between 1000 and 0 BC, sees the spread of rice throughout the Southern Indian Peninsula, with weed evidence suggesting irrigated wetland rice. Similarly, this period sees the spread of intensive paddy agriculture through Korea and Japan, but in Southeast Asia is probably related to a spread of rice in upland, dry field systems.

  1. [Tasseled cap triangle (TCT)-leaf area index (LAI)model of rice fields based on PROSAIL model and its application].

    PubMed

    Li, Ya Ni; Lu, Lei; Liu, Yong

    2017-12-01

    The tasseled cap triangle (TCT)-leaf area index (LAI) isoline is a model that reflects the distribution of LAI isoline in the spectral space constituted by reflectance of red and near-infrared (NIR) bands, and the LAI retrieval model developed on the basis of this is more accurate than the commonly used statistical relationship models. This study used ground-based measurements of the rice field, validated the applicability of PROSAIL model in simulating canopy reflectance of rice field, and calibrated the input parameters of the model. The ranges of values of PROSAIL input parameters for simulating rice canopy reflectance were determined. Based on this, the TCT-LAI isoline model of rice field was established, and a look-up table (LUT) required in remote sensing retrieval of LAI was developed. Then, the LUT was used for Landsat 8 and WorldView 3 data to retrieve LAI of rice field, respectively. The results showed that the LAI retrieved using the LUT developed from TCT-LAI isoline model had a good linear relationship with the measured LAI R 2 =0.76, RMSE=0.47. Compared with the LAI retrieved from Landsat 8, LAI values retrieved from WorldView 3 va-ried with wider range, and data distribution was more scattered. Resampling the Landsat 8 and WorldView 3 reflectance data to 1 km to retrieve LAI, the result of MODIS LAI product was significantly underestimated compared to that of retrieved LAI.

  2. Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice.

    PubMed

    Li, Hui; Liu, Yan; Zhou, Yaoyu; Zhang, Jiachao; Mao, Qiming; Yang, Yuan; Huang, Hongli; Liu, Zhaohui; Peng, Qinghui; Luo, Lin

    2018-06-04

    Highly effective, economical, and replicable ways of Cd-polluted paddy field remediation (in situ) are urgently needed. In this work, a yearlong field experiment (both early and late rice) was conducted to investigate the effects of red mud based passivator [red mud, diatomite, and lime (5:3:2)] on remediation of an acidic Cd-polluted paddy field in Hunan Province. Compared with the control, the addition of red mud based passivator in the early and late rice reduced Cd concentration in each part of the rice plant (with the most significant decrease rate of 59.18% and 72.11% for brown rice in the early rice and late rice seasons respectively). The effect of Cd reduction in the rice plant was persistent in the next growing season. The addition of red mud based passivator also reduced the exchangeable fraction of Cd in the soil and converted the exchangeable fraction into other unavailable fractions. This study demonstrated that the pH in acidic soil increased after the application of red mud based passivator. Furthermore, red mud based passivator had no effect on the concentrations of Olsen-K, Alkaline-N, Olsen-P in the soil, but increased rice grain yield. Overall, the results of this study indicated that the red mud based passivator at 0.6 kg m -2 could be a recommendation for Cd-polluted acidic paddy soil stabilization, and it would be a suitable method for remediation of Cd-polluted acidic paddy soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  4. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  5. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups

    PubMed Central

    Dar, Manzoor H.; de Janvry, Alain; Emerick, Kyle; Raitzer, David; Sadoulet, Elisabeth

    2013-01-01

    Approximately 30% of the cultivated rice area in India is prone to crop damage from prolonged flooding. We use a randomized field experiment in 128 villages of Orissa India to show that Swarna-Sub1, a recently released submergence-tolerant rice variety, has significant positive impacts on rice yield when fields are submerged for 7 to 14 days with no yield penalty without flooding. We estimate that Swarna-Sub1 offers an approximate 45% increase in yields over the current popular variety when fields are submerged for 10 days. We show additionally that low-lying areas prone to flooding tend to be more heavily occupied by people belonging to lower caste social groups. Thus, a policy relevant implication of our findings is that flood-tolerant rice can deliver both efficiency gains, through reduced yield variability and higher expected yield, and equity gains in disproportionately benefiting the most marginal group of farmers. PMID:24263095

  6. Genome Sequence of the Rice-Pathogenic Bacterium Acidovorax avenae subsp. avenae RS-1 ▿

    PubMed Central

    Xie, Guan-Lin; Zhang, Guo-Qing; Liu, He; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Zhu, Bo; Jin, Gu-Lei

    2011-01-01

    Acidovorax avenae subsp. avenae is a phytobacterium which is the causative agent of several plant diseases with economic significance. Here, we present the draft genome sequence of strain RS-1, which was isolated from rice shoots in a rice field in China. This strain can cause bacterial stripe of rice. PMID:21742879

  7. 76 FR 47608 - Notice of Availability of the Final Environmental Impact Statement for the Rice Solar Energy, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... on privately owned land, would contain the power block, a central receiver or tower, a solar field... Availability of the Final Environmental Impact Statement for the Rice Solar Energy, LLC Rice Solar Energy... Desert Conservation Area (CDCA) Plan Amendment for the Rice Solar Energy Project (RSEP) in Riverside...

  8. Evaluation of host-plant resistance of selected rice genotypes to the rice water weevil (Coleoptera:Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel, is the most important economic insect pest of rice in the United States. Currently, management of RWW mainly depends upon the use of insecticides due to the lack of effective alternate management tactics. A three year field study was co...

  9. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.

    PubMed

    Koga, Nobuhisa; Tajima, Ryosuke

    2011-03-01

    To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw was removed from the paddy fields in an effort to mitigate CH(4) emissions. Thus, rice straw removal avers itself a key practice with respect to lessening the impacts of greenhouse gas emissions in paddy rice-based ethanol production systems in northern Japan. More crucially, the rice straw removed is available for ethanol production and generation of heat energy with a biomass boiler, all elements required for biomass-to-ethanol transformation steps including saccharification, fermentation and distillation. This indicates opportunities for further improvement in energy efficiency and reductions in greenhouse gas emissions under whole rice plant-based bioethanol production systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Lead pollution from waterfowl hunting in wetlands and rice fields in Argentina.

    PubMed

    Romano, Marcelo; Ferreyra, Hebe; Ferreyroa, Gisele; Molina, Fernando V; Caselli, Andrea; Barberis, Ignacio; Beldoménico, Pablo; Uhart, Marcela

    2016-03-01

    The pollution of wetlands by lead derived from waterfowl hunting with lead shot was investigated. We determined soil pellet density and Pb concentration in soil, water and vegetation in natural wetlands and rice fields in central-eastern Santa Fe province, Argentina. Pellet density varied greatly among hunting sites (between 5.5-141 pellets/m(2)) and pellets were present in some control sites. Soil Pb concentration in most hunting sites (approximately 10-20 mg kg(-1)) was not much higher than in control sites (~5-10 mg kg(-1)), with the exception of the site with highest pellet density, which also had a high Pb soil concentration. In water, on the other hand, Pb concentration was similar in all sites (~4-7 μg L(-1)), both control and hunting, and higher than reference values for aquatic media. Lead was also present in vegetation, including grasses and rice crops, in almost all cases. Most soil-collection sites were slightly acidic, and were frequently flooded. These results strongly suggest that metallic Pb from spent shot is oxidized and dissolved due to wetland conditions. Thus, the pollutant is readily mobilized and distributed across all wetland areas, effectively homogenizing its concentration in locations with and without hunting activities. The replacement of lead by nontoxic materials in pellets appears to be the only effective way to prevent Pb pollution in wetlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    PubMed

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  12. Sustainable Rural Energy: Traditional Water Wheels in Padang (PWW) Indonesia

    NASA Astrophysics Data System (ADS)

    Ibrahim, Gusri Akhyar; Haron, Che Hassan Che; Azhari, Che Husna

    2010-06-01

    Renewable and sustainable energy is increasingly gaining interest in current research circles due to the debates on renewable energy resources. It is essential for scientists and researchers to search for solutions in renewable energy resources, with effective technologies, and low cost in operation and maintenance. Hydro resources can be considered a potential renewable energy resource. The traditional water wheel with simple construction coupled with a basic concept of technology can be utilised as a renewable and sustainable rural energy system. This paper discusses the case of the water wheel as a renewable energy system employed in Padang, Indonesia. The Padang water wheel is constructed from hardwood material with a diameter of 300 cm and width of 40 cm. It is built on a river using water flow to generate the movement of the wheel. The water wheel application in the area showed that it is suitable to be utilised to elevate and distribute water to rice fields located at a higher level than the water level of the river. The water wheel capacity is about 100-120 liters/min. It could continuously irrigate ±5 ha. of the rice fields. One of the advantages of this water wheel type is to function as a green technology concept promising no negative effect on the environment. The traditional water wheel has also a big economic impact on the rural economy, increasing the productivity of the rice fields. The people of Padang live in a water landscape encompassing the water wheel as an ubiquitous part of their lives, hence they relate to it and the technology of fabrication as well as the utilisation, making it an amenable and effective technology, finding relevance in the modern world.

  13. Partitioning of CH4 and CO2 Production Originating from Rice Straw, Soil and Root Organic Carbon in Rice Microcosms

    PubMed Central

    Yuan, Quan; Pump, Judith; Conrad, Ralf

    2012-01-01

    Flooded rice fields are an important source of the greenhouse gas CH4. Possible carbon sources for CH4 and CO2 production in rice fields are soil organic matter (SOM), root organic carbon (ROC) and rice straw (RS), but partitioning of the flux between the different carbon sources is difficult. We conducted greenhouse experiments using soil microcosms planted with rice. The soil was amended with and without 13C-labeled RS, using two 13C-labeled RS treatments with equal RS (5 g kg−1 soil) but different δ13C of RS. This procedure allowed to determine the carbon flux from each of the three sources (SOM, ROC, RS) by determining the δ13C of CH4 and CO2 in the different incubations and from the δ13C of RS. Partitioning of carbon flux indicated that the contribution of ROC to CH4 production was 41% at tillering stage, increased with rice growth and was about 60% from the booting stage onwards. The contribution of ROC to CO2 was 43% at tillering stage, increased to around 70% at booting stage and stayed relatively constant afterwards. The contribution of RS was determined to be in a range of 12–24% for CH4 production and 11–31% for CO2 production; while the contribution of SOM was calculated to be 23–35% for CH4 production and 13–26% for CO2 production. The results indicate that ROC was the major source of CH4 though RS application greatly enhanced production and emission of CH4 in rice field soil. Our results also suggest that data of CH4 dissolved in rice field could be used as a proxy for the produced CH4 after tillering stage. PMID:23162678

  14. Effects on wildlife of ethyl and methyl parathion applied to California rice fields

    USGS Publications Warehouse

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  15. Effects of wildlife of ethyl and methyl parathion applied to California USA rice fields

    USGS Publications Warehouse

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  16. Heavy Metal Content in Terraced Rice Fields at Sruwen Tengaran Semarang - Indonesia

    NASA Astrophysics Data System (ADS)

    Hindarwati, Yulis; Soeprobowati, Tri Retnaningsih; Sudarno

    2018-02-01

    The presence of heavy metal on agricultural soils can be caused not only natural factors but also due to human intervention. Differences in management and lack of understanding of farmers in the production input of fertilizers and pesticides ensued in land ravaged. Periodic testing of paddy fields is necessary to minimize the contaminants from being absorbed by plants that will have an impact on health decline. The purpose of the assessment was to identify the heavy metal content in the terraced rice field in Sruwen Village, Tengaran District, Semarang Regency. Survey was conducted in February 2017. Sampling on terraced rice fields of different heights consisted of upper, middle, and upper down. Taken as many as eight single points and composed at a depth of 0-20 cm and 20-40 cm. The identification results showed that heavy metal content of Pb, Cd, and Cu were present at all altitudes. Heavy Metals Pb and Cd at a depth of 0-20 cm were higher from 20-40 cm in the upper and lower rice fields but lower in the middle rice field. Cu heavy metal at a depth of 0-20 cm was higher than 20-40 cm in all altitude land. The heavy metal content of Pb, Cd, and Cu was still below the heavy metal standard set by the European Union and India.

  17. Persistence behavior of metamifop and its metabolite in rice ecosystem.

    PubMed

    Barik, Suhrid Ranjan; Ganguly, Pritam; Patra, Sandip; Dutta, Swaraj Kumar; Goon, Arnab; Bhattacharyya, Anjan

    2018-02-01

    A field experiment was conducted to determine the persistence of metamifop in transplanted rice crop for two seasons. Metamifop 10% EC was applied at two doses: 100 g a.i. ha -1 and 200 g a.i. ha -1 at 2-3 leaf stage of Echinochloa crusgalli. The residues of metamifop along with its major metabolite, N-(2-fluorophenyl)-2-hydroxy-N-methylpropionamide (HFMPA), were estimated in rice plant, field water and soil using Liquid Chromatography Mass Spectrometry. Limit of detection and limit of quantification of the method for both the compounds were set at 0.003 μg g -1 and 0.010 μg g -1 respectively. Metamifop showed less persistence in field water and rice plant as compared to soil samples. Presence of HFMPA was recorded in rice plant and soil. Both the compounds were found below level of quantification in harvest samples of straw, grains, husk and soil. A safe waiting period of 52 d was suggested for harvesting of rice when metamifop was applied at 100 g a.i. ha -1 (recommended dose). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... complying with the requirement to reduce CO emissions and using an oxidation catalyst; andNew and... requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation... limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst a...

  19. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... complying with the requirement to reduce CO emissions and using an oxidation catalyst; andNew and... requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation... limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst a...

  20. Conserving waste rice for wintering waterfowl in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Kross, J.P.; Kaminski, R.M.; Reinecke, K.J.; Pearse, A.T.

    2008-01-01

    Rice lost before or during harvest operations (hereafter waste rice) provides important food for waterfowl in the Mississippi Alluvial Valley, USA, but >70% of waste rice is lost during autumn. We conducted experiments in 19 production rice fields in Arkansas and Mississippi during autumns 2003 and 2004 to evaluate the ability of common postharvest practices (i.e., burn, mow, roll, disk, or standing stubble) to conserve waste rice. We detected a postharvest treatment effect and a positive effect of initial abundance of waste rice on late-autumn abundance of waste rice (P < 0.022). Standing stubble contained the greatest abundance of waste rice followed by burned, mowed, rolled, and disked stubble. We recommend standing stubble or burning to maximize waste rice abundance for wintering waterfowl.

  1. Conserving waste rice for wintering waterfowl in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Kross, J.P.; Kaminski, R.M.; Reinecke, K.J.; Pearse, A.T.

    2008-01-01

    Rice lost before or during harvest operations (hereafter waste rice) provides important food for waterfowl in the Mississippi Alluvial Valley, USA, but >70% of waste rice is lost during autumn. We conducted experiments in 19 production rice fields in Arkansas and Mississippi during autumns 2003 and 2004 to evaluate the ability of common postharvest practices (i.e., burn, mow, roll, disk, or standing stubble) to conserve waste rice. We detected a postharvest treatment effect and a positive effect of initial abundance of waste rice on late-autumn abundance of waste rice (P ??? 0.022). Standing stubble contained the greatest abundance of waste rice followed by burned, mowed, rolled, and disked stubble. We recommend standing stubble or burning to maximize waste rice abundance for wintering waterfowl.

  2. Greenhouse gas emissions of different land uses in the delta region of Red River, Vietnam

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Ha, Thu; An, Ngo The; Brüggemann, Nicolas

    2017-04-01

    Agricultural activities are responsible for up to a third of total anthropogenic GHG emissions. The subtropical/tropical delta areas of the large rivers in Southeast Asia are long-term history agricultural regions in the world. However, due to lack of field measurements, the estimation of the contribution of agro-ecosystems in the subtropical/tropical delta areas to global greenhouse gas emissions remains largely uncertain. Here, we conducted field experiments since January 2016 to quantify greenhouse gases (CO2, CH4 and N2O) emissions from four agricultural land uses of annual rice-rice, rice-vegetable, continuous vegetable system and fish pond in Red River delta region of Vietnam by using the transparent static chamber-gas chromatography technique. Higher N2O emissions were observed in the rice-vegetable and continuous vegetable systems, while lower N2O emissions were observed in the rice-rice and find pond systems. Compared to rice-rice system the cumulative N2O fluxes were on average twenty-fold higher in the rice-vegetable and continuous vegetable systems but significantly lower (75%) in the fish pond. Overall the net CO2 sinks were observed in the rice-rice system while other three land uses of rice-vegetable, continuous vegetable and fish pond acted as the net CO2 sources. The rice-rice and fish pond showed net CH4 emissions while variations of CH4 emissions (i.e. shifting between sources and sinks) along variations of soil moisture and temperature were observed in rice-vegetable and continuous vegetable systems. Compared to rice-rice system, the cumulative CH4 fluxes were significantly decreased by 100% for continuous vegetable system, 94% for rice-vegetable system and 89% for fish pond. Overall, the data suggest that conversion of traditional rice-rice paddy system to rice-vegetable, continuous vegetable system and find pond, which are currently undergoing driven by the economical requests and environmental changes (e.g., salinity intrusion) in this delta region, could alter CH4, CO2 and N2O emissions.

  3. Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2017-06-01

    The study was intended to investigate heavy metal contamination levels in the rice grown in the vicinity of the mining areas of Singhbhum Copper Belt, India. The concentrations of the metals were below the Indian maximum allowable concentrations for food except for Pb, Ni, and Zn at some locations. Principal component analysis extracted three factors explaining 79.1% of the data variability. The extracted factors suggested that the sources of metals in the rice can be attributed to soil, irrigating water, and atmospheric dust deposition. High potential health risks of metal exposure from rice consumption were illustrated based on estimated daily intake (EDI) and target hazard quotient (THQ). The daily intakes of heavy metals for local adults were higher than the tolerable daily intakes provided by WHO in some samples for Cr, Fe, Ni, and V. Considering the geometric mean of the metals in rice samples of the study area, the hazard index (HI) for adult was above unity (3.09). Pb, Cu, and Cr were the key components contributing to potential non-carcinogenic risk. The HI varied from 2.24 to 12.7 among the locations indicating an appreciable heath risk to the consumers of the locally grown rice around the mining areas.

  4. Soil to rice transfer factors for (226)Ra, (228)Ra, (210)Pb, (40)K and (137)Cs: a study on rice grown in India.

    PubMed

    Karunakara, N; Rao, Chetan; Ujwal, P; Yashodhara, I; Kumara, Sudeep; Ravi, P M

    2013-04-01

    India is the second largest producer of rice (Oryza sativa L.) in the world and rice is an essential component of the diet for a majority of the population in India. However, detailed studies aimed at the evaluation of radionuclide transfer factors (F(v)) for the rice grown in India are almost non-existent. This paper presents the soil to rice transfer factors for natural ((226)Ra, (228)Ra, (40)K, and (210)Pb) and artificial ((137)Cs) radionuclides for rice grown in natural field conditions on the West Coast of India. A rice field was developed very close to the Kaiga nuclear power plant and the water required for this field was drawn from the cooling water discharge canal of the power plant. For a comparative study of the radionuclide transfer factors, rice samples were also collected from the rice fields of nearby villages. The study showed that the (226)Ra and (228)Ra activity concentrations were below detection levels in different organs of the rice plant. The soil to un-hulled rice grain (40)K transfer factor varied in the range of 6.5 × 10(-1) to 2.9 with a mean of 0.15 × 10(1), and of (210)Pb varied in the range of <1.2 × 10(-2) to 8.1 × 10(-1) with a mean of 1.4 × 10(-1), and of (137)Cs varied in the range of 6.6 × 10(-2) to 3.4 × 10(-1) with a mean of 2.1 × 10(-1). The mean values of un-hulled grain to white rice processing retention factors (F(r)) were 0.12 for (40)K, 0.03 for (210)Pb, and 0.14 for (137)Cs. Using these processing retention factors, the soil to white rice transfer factors were estimated and these were found to have mean values of 1.8 × 10(-1), 4.2 × 10(-3), and 3.0 × 10(-2) for (40)K, (210)Pb, and (137)Cs, respectively. The study has shown that the transfer of (40)K was higher for above the ground organs than for the root, but (210)Pb and (137)Cs were retained in the root and their transfer to above the ground organs of the rice plant is significantly lower. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Characteristics of paddy field nitrogen leakage and runoff in rice-duck farming system].

    PubMed

    Yu, Xiang; Wang, Qiang-sheng; Wang, Shao-hua; Liu, Zheng-hui; Wang, Xia-wen; Ding, Yan-feng

    2009-01-01

    A field experiment was conducted to study the characteristics of paddy field nitrogen (N) leakage and runoff under rice-duck farming (MRD), conventional farming (MR), and conventional farming with flooding (CK). Comparing with that under MR, the paddy field under MRD had a notable decrease of N (especially NO3- -N) concentration in its leaked liquid; but this concentration was tended to be increased, compared with that under CK. After 7-9 days of fertilization, the NH4+ -N and NO3- -N concentrations in paddy field surface water were higher under MRD than under MR. However, owing to the no draining and the higher band, the paddy field under MRD had a notable reduction of drainage, resulting in a marked decrease of N runoff than that under MR. Comparing with MR, the paddy field under MRD had an addition of nitrogen supply from duck dung, a reduction of N leakage and runoff, a lesser application of chemical nitrogen fertilizer, and more nitrogen uptake by rice plant. Both the reduction of N input and that of N output in rice-duck farming system were nearly equal in quantity.

  6. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil.

    PubMed

    Lai, Yu-Cheng; Syu, Chien-Hui; Wang, Pin-Jie; Lee, Dar-Yuan; Fan, Chihhao; Juang, Kai-Wei

    2018-01-01

    Paddy rice (Oryza sativa L.) is a major staple crop in Asia. However, heavy metal accumulation in paddy soil poses a health risk for rice consumption. Although plant uptake of Pb is usually low, Pb concentrations in rice plants have been increasing with Pb contamination in paddy fields. It is known that iron oxide deposits in the rhizosphere influence the absorption of soil Pb by rice plants. In this study, 14 rice cultivars bred in Taiwan, including ten japonica cultivars (HL21, KH145, TC192, TK9, TK14, TK16, TN11, TNG71, TNG84, and TY3) and four indica cultivars (TCS10, TCS17, TCSW2, and TNGS22), were used in a field experiment. We investigated the genotypic variation in rice plant Pb in relation to iron oxides deposited in the rhizosphere, as seen in a suspiciously contaminated site in central Taiwan. The results showed that the cultivars TCSW2, TN11, TNG71, and TNG84 accumulated brown rice Pb exceeding the tolerable level of 0.2mgkg -1 . In contrast, the cultivars TNGS22, TK9, TK14, and TY3 accumulated much lower brown rice Pb (<0.1mgkg -1 ); therefore, they should be prioritized as safe cultivars for sites with potential contamination. Moreover, the iron oxides deposited on the rhizosphere soil show stronger affinity to soil-available Pb than those on the root surface to form iron plaque. The relative tendency of Pb sequestration toward rhizosphere soil was negatively correlated with the Pb concentrations in brown rice. The iron oxides deposited on the rhizosphere soil but not on the root surface to form iron plaque dominate Pb sequestration in the rhizosphere. Therefore, the enhancement of iron oxide deposits on the rhizosphere soil could serve as a barrier preventing soil Pb on the root surface and result in reduced Pb accumulation in brown rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enzyme dynamics in paddy soils of the rice district (NE Italy) under different cropping patterns

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Fornasier, Flavio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    The recent widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice: R-R-R; soya-rice-rice: S-R-R; fallow-rice: F-R; pea-soya-rice: P-S-R) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that enzyme activities varied with rotation systems and growth stages in paddy soil. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of fallow-rice), and chitinase activities in all rotations, while compared with drained soil, early waterlogging (in month of June) significantly decreased (P moist soil> late waterlogged>early waterlogged. There was an inhibitory effect of waterlogging (except P-S-R rotation) for both alkaline and acid phosphatases due to high pH and redox conditions. However, the response of enzymes to waterlogging differed with the chemical species and the cropping pattern. The best rotation system for chitinase, leucine aminopeptidase and β-glucosidase activity (C and N cycles) proved R-R-R, while for arylsulfatase, alkaline and acid phosphatases (P and S cycles) it was the S-R-R. Key Words: enzyme activity, paddy soil, Crop Rotation System, Italy __ Corresponding Author: Mandana Nadimi-Goki, Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  8. Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice.

    PubMed

    Diedhiou, Abdala Gamby; Mbaye, Fatou Kine; Mbodj, Daouda; Faye, Mathieu Ndigue; Pignoly, Sarah; Ndoye, Ibrahima; Djaman, Koffi; Gaye, Souleymane; Kane, Aboubacry; Laplaze, Laurent; Manneh, Baboucarr; Champion, Antony

    2016-01-01

    The overuse of agricultural chemicals such as fertilizer and pesticides aimed at increasing crop yield results in environmental damage, particularly in the Sahelian zone where soils are fragile. Crop inoculation with beneficial soil microbes appears as a good alternative for reducing agricultural chemical needs, especially for small farmers. This, however, requires selecting optimal combinations of crop varieties and beneficial microbes tested in field conditions. In this study, we investigated the response of rice plants to inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) under screenhouse and field conditions in two consecutive seasons in Senegal. Evaluation of single and mixed inoculations with AMF and PGPB was conducted on rice (Oryza sativa) variety Sahel 202, on sterile soil under screenhouse conditions. We observed that inoculated plants, especially plants treated with AMF, grew taller, matured earlier and had higher grain yield than the non-inoculated plants. Mixed inoculation trials with two AMF strains were then conducted under irrigated field conditions with four O. sativa varieties, two O. glaberrima varieties and two interspecific NERICA varieties, belonging to 3 ecotypes (upland, irrigated, and rainfed lowland). We observed that the upland varieties had the best responses to inoculation, especially with regards to grain yield, harvest index and spikelet fertility. These results show the potential of using AMF to improve rice production with less chemical fertilizers and present new opportunities for the genetic improvement in rice to transfer the ability of forming beneficial rice-microbe associations into high yielding varieties in order to increase further rice yield potentials.

  9. Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice

    PubMed Central

    Diedhiou, Abdala Gamby; Mbaye, Fatou Kine; Mbodj, Daouda; Faye, Mathieu Ndigue; Pignoly, Sarah; Ndoye, Ibrahima; Djaman, Koffi; Gaye, Souleymane; Kane, Aboubacry; Laplaze, Laurent; Manneh, Baboucarr; Champion, Antony

    2016-01-01

    The overuse of agricultural chemicals such as fertilizer and pesticides aimed at increasing crop yield results in environmental damage, particularly in the Sahelian zone where soils are fragile. Crop inoculation with beneficial soil microbes appears as a good alternative for reducing agricultural chemical needs, especially for small farmers. This, however, requires selecting optimal combinations of crop varieties and beneficial microbes tested in field conditions. In this study, we investigated the response of rice plants to inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) under screenhouse and field conditions in two consecutive seasons in Senegal. Evaluation of single and mixed inoculations with AMF and PGPB was conducted on rice (Oryza sativa) variety Sahel 202, on sterile soil under screenhouse conditions. We observed that inoculated plants, especially plants treated with AMF, grew taller, matured earlier and had higher grain yield than the non-inoculated plants. Mixed inoculation trials with two AMF strains were then conducted under irrigated field conditions with four O. sativa varieties, two O. glaberrima varieties and two interspecific NERICA varieties, belonging to 3 ecotypes (upland, irrigated, and rainfed lowland). We observed that the upland varieties had the best responses to inoculation, especially with regards to grain yield, harvest index and spikelet fertility. These results show the potential of using AMF to improve rice production with less chemical fertilizers and present new opportunities for the genetic improvement in rice to transfer the ability of forming beneficial rice-microbe associations into high yielding varieties in order to increase further rice yield potentials. PMID:27907023

  10. Interference of allelopathic rice with penoxsulam-resistant barnyardgrass.

    PubMed

    Yang, Xue-Fang; Kong, Chui-Hua; Yang, Xia; Li, Yong-Feng

    2017-11-01

    Despite increasing knowledge of allelopathic rice interference with barnyardgrass, relatively little is known about its action on herbicide-resistant barnyardgrass. The incidence of herbicide-resistant barnyardgrass is escalating in paddy fields. Knowledge of the interference of allelopathic rice with herbicide-resistant barnyardgrass and the potential mechanisms involved is warranted. Penoxsulam-resistant and -susceptible barnyardgrass biotypes were identified and segregated from a putative penoxsulam-resistant population occurring in paddy fields in China. Allelopathic rice inhibited the growth of barnyardgrass roots more than shoots, regardless of biotype. In particular, there was a stronger inhibition for resistant barnyardgrass than for susceptible barnyardgrass. Allelopathic rice significantly reduced total root length, total root area, maximum root amplitude and maximum root depth in barnyardgrass. Furthermore, the rice allelochemicals tricin and momilactone B inhibited the growth of both resistant and susceptible barnyardgrass. Compared with root contact, root segregation significantly increased inhibition of barnyardgrass with an increase in rice allelochemicals. Root exudates from barnyardgrass induced the production of rice allelochemicals, but the effect of susceptible barnyardgrass was much stronger than that of resistant barnyardgrass. Allelopathic rice can interfere with the growth of penoxsulam-resistant barnyardgrass through allelochemical-mediated root interactions. This type of allelopathic interference may provide a non-herbicidal alternative for herbicide-resistant weed management in paddy systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Variation among conventional cultivars could be used as a criterion for environmental safety assessment of Bt rice on nontarget arthropods

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Dang, Cong; Chang, Xuefei; Tian, Junce; Lu, Zengbin; Chen, Yang; Ye, Gongyin

    2017-02-01

    The current difficulty facing risk evaluations of Bacillus thuringiensis (Bt) crops on nontarget arthropods (NTAs) is the lack of criteria for determining what represents unacceptable risk. In this study, we investigated the biological parameters in the laboratory and field population abundance of Nilaparvata lugens (Hemiptera: Delphacidae) on two Bt rice lines and the non-Bt parent, together with 14 other conventional rice cultivars. Significant difference were found in nymphal duration and fecundity of N. lugens fed on Bt rice KMD2, as well as field population density on 12 October, compared with non-Bt parent. However, compared with the variation among conventional rice cultivars, the variation of each parameter between Bt rice and the non-Bt parent was much smaller, which can be easily seen from low-high bar graphs and also the coefficient of variation value (C.V). The variation among conventional cultivars is proposed to be used as a criterion for the safety assessment of Bt rice on NTAs, particularly when statistically significant differences in several parameters are found between Bt rice and its non-Bt parent. Coefficient of variation is suggested as a promising parameter for ecological risk judgement of IRGM rice on NTAs.

  12. Genetic, chemical, and field management strategies for reducing accumulation of arsenic in rice grains

    USDA-ARS?s Scientific Manuscript database

    There is public concern over amounts of arsenic contained in rice grains and foods. The World Health Organization (WHO) has set a CODEX limit of 0.2 ppm inorganic arsenic (iAs) in milled white rice, and a lower limit of 0.1 ppm for baby food products. Arsenic is of greater concern in rice than oth...

  13. Integrated Emergy, Energy and Economic Evaluation of Rice and Vegetable Production Systems in Alluvial Paddy Fields: Implications for Agricultural Policy in China

    EPA Science Inventory

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation...

  14. Sulfide Generated by Sulfate Reduction is a Primary Controller of the Occurrence of Wild Rice (Zizania palustris) in Shallow Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Swain, E. B.; Engstrom, D. R.; Coleman Wasik, J.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.; Blaha, G.

    2017-11-01

    Field observations suggest that surface water sulfate concentrations control the distribution of wild rice, an aquatic grass (Zizania palustris). However, hydroponic studies show that sulfate is not toxic to wild rice at even unrealistically high concentrations. To determine how sulfate might directly or indirectly affect wild rice, potential wild rice habitat was characterized for 64 chemical and physical variables in over 100 sites spanning a relatively steep climatic and geological gradient in Minnesota. Habitat suitability was assessed by comparing the occurrence of wild rice with the field variables, through binary logistic regression. This analysis demonstrated that sulfide in sediment pore water, generated by the microbial reduction of sulfate that diffuses or advects into the sediment, is the primary control of wild rice occurrence. Water temperature and water transparency independently control the suitability of habitat for wild rice. In addition to generating phytotoxic sulfide, sulfate reduction also supports anaerobic decomposition of organic matter, releasing nutrients that can compound the harm of direct sulfide toxicity. These results are important because they show that increases in sulfate loading to surface water can have multiple negative consequences for ecosystems, even though sulfate itself is relatively benign.

  15. Analysis of potential flooding in the education Jatinangor based approach morphology, land cover, and geology

    NASA Astrophysics Data System (ADS)

    Rifai, Achmad; Hadian, Sapari Dwi; Mufti, Iqbal Jabbari; Fathoni, Azmi Rizqi; Azy, Fikri Noor; Jihadi, Lutfan Harisan

    2017-07-01

    Jatinangor formerly an agricultural area dominated by rice field. Water in Jatinangor comes from a spring located in north Jatinangor or proximal region of Manglayang mountain to flow to the south and southwest Jatinangor up to Citarum River. Jatinangor plain that was once almost all the rice fields, but now become a land settlement that grew very rapidly since its founding colleges. Flow and puddle were originally be used for agricultural land, but now turned into a disaster risks for humans. The research method using qualitative methods with the weighing factor, scoring, and overlay maps. The cause of the flood is distinguished into two: the first is the natural factors such as the condition of landform, lithology, river flow patterns, and annual rainfall. The second is non-natural factors such as land cover of settlement, irrigation, and land use. The amount of flood risks using probability Gilbert White frequency, magnitude and duration of existing events then correlated with these factors. Based on the results of the study, were divided into 3 zones Jatinangor disaster-prone (high, medium, and safe). High flood zone is located in the South Jatinangor which covers an area Cikeruh Village, Sayang Village, Cipacing village, Mekargalih village, Cintamulya village, west of Jatimukti village, and South Hegarmanah village, has a dominant causative factor is the use of solid land, poor drainage, lithology lacustrine conditions with low permeability, and flat topography. Medium flood zone was located in the central and western regions covering Cibeusi village, Cileles village, south of Cilayung village, Hegarmanah village and Padjadjaran Region, has a dominant causative factor is rather dense land use, lithology breccias and Tuffaceous Sand with moderate permeability, topography is moderately steep. Safe flood zone is located in the east Jatinangor covering Jatiroke village, Cisepur village, east Hegarmanah village, has a dominant factor in the form of a rather steep topography, lithology breccias and lava with moderate permeability, land use rather dense, but there is a dense natural drainage.

  16. Shorebird habitat availability assessment of agricultural fields using a digital aerial video system

    Treesearch

    Clinton W. Jeske; Scott Wilson; Paul C. Chadwick; Wylie Barrow

    2005-01-01

    Field and wetland conditions in the rice prairies of Louisiana and Texas are highly dynamic habitats. Rice prairies are important habitat for many species of migratory birds, including shorebirds, wading birds, and waterfowl. Ground sampling a variety of fields to assess habitat availability is very labor intensive, and accessibility to private lands makes statistical...

  17. Influence of harvester and weather conditions on field loss and milling quality of rough rice

    USDA-ARS?s Scientific Manuscript database

    A better understanding of factors affecting field losses and milling quality during harvest is needed to improve the economic value of rice. The main objective of this study was to evaluate the impact of harvester header, harvester type, and weather conditions on field loss and milling quality of ro...

  18. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  19. Labor efficiency and intensity of land use in rice production: an example from Kalimantan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padoch, C.

    1986-09-01

    The ''Boserup hypothesis'' contends that land-intensive systems of agriculture will be adopted only when high population density precludes the use of land-extensive methods. In the Kerayan District of East Kalimantan (Indonesia) the Lun Dayeh practice permanent-field rice cultivation despite very low human densities. An examination of the relative labor efficiencies of shifting and permanent-field agriculture in the Kerayan, as well as of local environmental and historical variables, explains why this ''anomalous'' situation exists. It is argued that since relative success in production of rice by shifting- and permanent-field irrigated methods depends on many natural and social conditions other than levelsmore » of population density, the ''environment-free'' Boserup hypothesis cannot adequately explain or predict the occurrence of particular forms of rice agriculture.« less

  20. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar.

    PubMed

    Yan-Bing, He; Dao-You, Huang; Qi-Hong, Zhu; Shuai, Wang; Shou-Long, Liu; Hai-Bo, He; Han-Hua, Zhu; Chao, Xu

    2017-02-01

    To mitigate the serious problem of Cd-contaminated paddy soil, we investigated the remediation potential of combining in-situ immobilization with a low-Cd-accumulation rice cultivar. A three-season field experiment compared the soil pH, available Cd and absorption of Cd by three rice cultivars with different Cd accumulation abilities grown in Cd-contaminated paddy soil amended with lime (L), slag (S), and bagasse (B) alone or in combination. The three amendments applied alone and in combination significantly increased soil pH, reduced available Cd and absorption of Cd by rice with no effect on grain yield. Among these, the LS and LSB treatments reduced the brown rice Cd content by 38.3-69.1% and 58.3-70.9%, respectively, during the three seasons. Combined with planting of a low-Cd-accumulation rice cultivar (Xiang Zaoxian 32) resulted in a Cd content in brown rice that met the contaminant limit (≤0.2mgkg -1 ). However, the grain yield of the low-Cd-accumulation rice cultivar was approximately 30% lower than the other two rice cultivars. Applying LS or LSB as amendments combined with planting a low-Cd-accumulation rice cultivar is recommended for the remediation of Cd-contaminated paddy soil. The selection and breeding of low-Cd-accumulation rice cultivars with high grain production requires further research. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Testing climate-smart irrigation strategies to reduce methane emissions from rice fields

    NASA Astrophysics Data System (ADS)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Approximately 11% of the global 308 Tg CH4 anthropogenic emissions are currently attributed to rice cultivation. In this study, the impact of water conservation practices on rice field CH4 emissions was evaluated in Arkansas, the leading state in US rice cultivation. While conserving water, the Alternate Wetting and Drying (AWD) irrigation practice can also reduce CH4 emissions through the deliberate, periodic introduction of aerobic conditions. Seasonal CH4emissions from a pair of adjacent, production-sized rice fields were estimated and compared during the 2015 to 2017 growing seasons using the eddy covariance method on each field. The fields were alternately treated with continuous flood (CF) and AWD irrigation. In 2015, the seasonal cumulative carbon losses by CH4 emission were 30.3 ± 6.3 and 141.9 ± 8.6 kg CH4-C ha-1 for the AWD and CF treatments, respectively. Data from 2016 and 2017 will be analyzed and shown within this presentation; an initial view demonstrates consistent findings to 2015. When accounting for differences in field conditions and soils, the AWD practice is attributable to a 36-51% reduction in seasonal emissions. The substantial decrease in CH4 emissions by AWD supports previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in Arkansas rice production. The AWD practice has enabled the sale of credits for carbon offsets trading and this new market could encourage CH4 emissions reductions on a national scale. These eddy covariance towers are being placed into a regional perspective including crop and forest land in the three states comprising the Mississippi Delta: Arkansas, Mississippi, and Louisiana.

  2. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  3. White rice sold in Hawaii, Guam, and Saipan often lacks nutrient enrichment

    PubMed Central

    Gebhardt, Susan E.; Holden, Joanne; Kretsch, Mary J.; Todd, Karen; Novotny, Rachel; Murphy, Suzanne P.

    2009-01-01

    Rice is a commonly consumed food staple for many Asian and Pacific cultures; thus nutrient enrichment of rice has the potential to increase nutrient intakes for these populations. The objective of this study was to determine the levels of enrichment nutrients (thiamin, niacin, iron, and folic acid) in white rice found in Guam, Saipan (CNMI), and Oahu (Hawaii). The proportion of white rice that was labeled enriched varied by type, bag size, and location. Most long-grain rice was labeled enriched, while most medium-grain rice was not. Bags of either type weighing over 10 pounds were seldom labeled enriched in Hawaii or Saipan. Samples of various types of rice were collected on these three islands (n=19, 12 of which were labeled enriched) and analyzed for their content of the enrichment nutrients. Rice that was labeled enriched in Hawaii and Guam seldom met the minimum enrichment standards for the US. For comparison, three samples of enriched rice from California were also analyzed, and all met the enrichment standards. Nutritionists who are planning or evaluating the diets of these Pacific island populations cannot assume that rice is enriched. PMID:19782173

  4. White rice sold in Hawaii, Guam, and Saipan often lacks nutrient enrichment.

    PubMed

    Leon Guerrero, Rachael T; Gebhardt, Susan E; Holden, Joanne; Kretsch, Mary J; Todd, Karen; Novotny, Rachel; Murphy, Suzanne P

    2009-10-01

    Rice is a commonly consumed food staple for many Asian and Pacific cultures thus, nutrient enrichment of rice has the potential to increase nutrient intakes for these populations. The objective of this study was to determine the levels of enrichment nutrients (ie, thiamin, niacin, iron, and folic acid) in white rice found in Guam, Saipan (Commonwealth of the Northern Mariana Islands), and Oahu (Hawaii). The proportion of white rice that was labeled "enriched" varied by type, bag size, and location. Most long-grain rice was labeled as enriched and most medium-grain rice was not. Bags of either type weighing >10 lb were seldom labeled as enriched in Hawaii or Saipan. Samples of various types of rice were collected on these three islands (n=19; 12 of which were labeled as enriched) and analyzed for their content of enrichment nutrients. Rice that was labeled as enriched in Hawaii and Guam seldom met the minimum enrichment standards for the United States. For comparison, three samples of enriched rice from California were also analyzed, and all met the enrichment standards. Food and nutrition professionals who are planning or evaluating diets of these Pacific island populations cannot assume that rice is enriched.

  5. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  6. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Growth response to temperature and irradiance in Nostoc spongiaeforme

    USDA-ARS?s Scientific Manuscript database

    California water-seeded rice fields are typically shallow and have high nutrient levels, which are ideal growing conditions for algae and cyanobacteria. Nostoc spongiaeforme is problematic in California rice fields because floating mats may dislodge seedlings or smother them when the mats accumulat...

  8. [Effects of rice cleaning and cooking process on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice].

    PubMed

    Satoh, Motoaki; Sakaguchi, Masayuki; Kobata, Masakazu; Sakaguchi, Yoko; Tanizawa, Haruna; Miura, Yuri; Sasano, Ryoichi; Nakanishi, Yutaka

    2003-02-01

    We studied the effect of cleaning and cooking on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice. The rice had been sprayed in a paddy field in Wakayama city, with 3 kinds of pesticide application protocols: spraying once at the usual concentration of pesticides, repeated spraying (3 times) with the usual concentration of pesticides and spraying once with 3 times the usual concentration of pesticides. The residue levels of pesticide decreased during the rice cleaning process. Silafluofen, which has a higher log Pow value, remained in the hull of the rice. Fenobucarb, which has a lower log Pow value, penetrated inside the rice. The residue concentration of pesticide in polished rice was higher than that in pre-washed rice processed ready for cooking. During the cooking procedure, the reduction of pesticides in polished rice was higher than that in brown rice.

  9. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition.

    PubMed

    Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh

    2016-12-01

    The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.

  10. Speciation and monitoring test for inorganic arsenic in white rice flour.

    PubMed

    Narukawa, Tomohiro; Hioki, Akiharu; Chiba, Koichi

    2012-02-01

    A monitoring test for arsenic species in white rice flour was developed and applied to flours made from 20 samples of polished rice collected from locations all over Japan. The arsenic species in white rice flour made from five samples each of four types of rice were analyzed by HPLC-ICP-MS after a heat-assisted aqueous extraction. The total arsenic and major and minor element concentrations in the white rice flours were measured by ICP-MS and ICP-OES after microwave-assisted digestion. 91 ± 1% of the arsenic in the flours was extractable. Concentrations of arsenite [As(III)], arsenate [As(V)], and dimethylarsinic acid (DMAA) were closely positively correlated with the total arsenic concentrations. The total arsenic concentration in flours made from rice collected around Japan was 0.15 ± 0.07 mg kg(-1) (highest, 0.32 mg kg(-1)), which is very low. It was thus confirmed that the white rice flour samples collected in this experiment were not suffered from noticeable As contamination.

  11. RISC-interacting clearing 3'- 5' exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana.

    PubMed

    Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren

    2017-05-02

    RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5' products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.

  12. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    PubMed

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    NASA Astrophysics Data System (ADS)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  14. The use of Chironomus riparius larvae to assess effects of pesticides from rice fields in adjacent freshwater ecosystems.

    PubMed

    Faria, Mafalda S; Nogueira, António J A; Soares, Amadeu M V M

    2007-06-01

    A bioassay with Chironomus riparius larvae, using larval development and growth as endpoints, was carried out inside a rice field and in the adjacent wetland channel in Portugal, during pesticide treatments (molinate, endosulfan and propanil) to determine impact caused by pesticide contamination in freshwater ecosystems. The bioassay was also performed under laboratory conditions, to assess whether in situ and laboratory bioassays demonstrated comparable results. Growth was inhibited by concentrations of endosulfan (2.3 and 1.9 microgL(-1) averages) in water from rice field in both the field and laboratory, and by concentrations of endosulfan (0.55 and 0.76 microgL(-1) averages) in water from the wetland channel in the laboratory bioassay, while development was not affected. C. riparius larvae were not affected by molinate and propanil concentrations. The results indicate that endosulfan treatments in rice fields may cause an ecological impairment in adjacent freshwater ecosystems. The results also indicate that laboratory testing can be used to assess in situ toxicity caused by pesticide contamination.

  15. Seed deterioration in flooded agricultural fields during winter

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.

    1996-01-01

    We determined rate of seed deterioration for 3 crops (corn, rice, and soybean) and 8 weeds commonly found in agricultural fields and moist-soil management units in the Mississippi Alluvial Valley (MAV). The weeds were broadleaf signalgrass (Brachiaria platyphylla), junglerice barnyardgrass (Echinochloa colonum), morningglory (Ipomoea sp.), panic grass (Panicum sp.), bull paspalum (Paspalum boscianum), red rice (Oryza sativa), hemp sesbania (Sesbania exaltata), and bristlegrass (Setaria sp.). Weed seeds, except morningglory, deteriorated slower than corn and soybean, whereas rice decomposed slower than all weed seeds except red rice and bull paspalum. For land managers desiring to provide plant food for wintering waterfowl, rice is clearly the most persistent small grain crop in the MAV. Persistence of weed seeds under flooded conditions throughout winter makes them a cost-effective alternative to traditional crops on land managed for waterfowl.

  16. A mathematical model of transmission of rice tungro disease by Nephotettix Virescens

    NASA Astrophysics Data System (ADS)

    Blas, Nikki T.; Addawe, Joel M.; David, Guido

    2016-11-01

    One of the major threats in rice agriculture is the Tungro virus, which is transmitted semi-persistently to rice plants via green rice leafhoppers called Nephotettix Virescens. Tungro is polycyclic and complex disease of rice associated by dual infection with Rice Tungro Bacilliform Virus (RTBV) and Rice Tungro Spherical Virus (RTSV). Interaction of the two viruses results in the degeneration of the host. In this paper, we used a plant-vector system of ordinary differential equations to model the spread of the disease in a model rice field. Parameter values were obtained from studies on the entomology of Nephotettix Virescens and infection rates of RTSV and RTBV. The system was analyzed for equilibrium solutions, and solved numerically for susceptible rice varieties (Taichung Native 1).

  17. Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam.

    PubMed

    Lasko, Kristofer; Vadrevu, Krishna

    2018-05-01

    In Southeast Asia and Vietnam, rice residues are routinely burned after the harvest to prepare fields for the next season. Specific to Vietnam, the two prevalent burning practices include: a). piling the residues after hand harvesting; b). burning the residues without piling, after machine harvesting. In this study, we synthesized field and laboratory studies from the literature on rice residue burning emission factors for PM 2.5 . We found significant differences in the resulting burning-practice specific emission factors, with 16.9 g kg -2 (±6.9) for pile burning and 8.8 g kg -2 (±3.5) for non-pile burning. We calculated burning-practice specific emissions based on rice area data, region-specific fuel-loading factors, combined emission factors, and estimates of burning from the literature. Our results for year 2015 estimate 180 Gg of PM 2.5 result from the pile burning method and 130 Gg result from non-pile burning method, with the most-likely current emission scenario of 150 Gg PM 2.5 emissions for Vietnam. For comparison purposes, we calculated emissions using generalized agricultural emission factors employed in global biomass burning studies. These results estimate 80 Gg PM 2.5 , which is only 44% of the pile burning-based estimates, suggesting underestimation in previous studies. We compare our emissions to an existing all-combustion sources inventory, results show emissions account for 14-18% of Vietnam's total PM 2.5 depending on burning practice. Within the highly-urbanized and cloud-covered Hanoi Capital region (HCR), we use rice area from Sentinel-1A to derive spatially-explicit emissions and indirectly estimate residue burning dates. Results from HYSPLIT back-trajectory analysis stratified by season show autumn has most emission trajectories originating in the North, while spring has most originating in the South, suggesting the latter may have bigger impact on air quality. From these results, we highlight locations where emission mitigation efforts could be focused and suggest measures for pollutant mitigation. Our study demonstrates the need to account for emissions variation due to different burning practices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Effects of marshland reclamation on evapotranspiration in the Sanjiang Plain].

    PubMed

    Jia, Zhi-jun; Zhang, Wen; Huang, Yao; Zhao, Xiao-song; Song, Chang-chun

    2010-04-01

    Extensive reclamation of marshland into cropland has had tremendous effects on the ecological environment in the Sanjiang Plain. Observations over marshland, rice paddy and soybean field were made with eddy covariance measuring systems from May to October in 2005, 2006 and 2007. The objective of this study was to identify the effects of the conversion of marshland to cropland on evapotranspiration in the Sanjiang Plain. The results showed that the diurnal variation curves of latent heat flux were single peaked in marshland, rice paddy and soybean field. The daily maximum latent heat flux increased by 14%-130% in rice paddy in the three measuring years, however, in soybean field, it increased by 3%-77% in 2006 but decreased by 25%-40% in 2005 and 2007 by comparison with that in marshland. This difference was due to the change of leaf area index when marshland was reclaimed into cropland. Seasonal change of latent heat flux was identical for the three land use types. Daily averaged latent heat flux of rice paddy, from May to October, showed 38%-53% increase compared with that of marshland, which resulted from the increase in net radiation and leaf area index. When marshland was reclaimed into soybean field, the variation of daily averaged latent heat flux depended primarily on precipitation. Precipitation was the main factor that controlled evapotranspiration over soybean field which was usually in condition of soil water deficit. Drought caused 11%-17% decrease of daily averaged latent heat flux over soybean field in 2005 and 2007, while sufficient precipitation caused 22% increase in 2006, comparing to marshland. Similarly, during the growing season from June to September, total evapotranspiration of rice paddy increased by 24%-51% compared with that of marshland, and the total evapotranspiration of soybean field decreased by 19%-23% in 2005 and 2007 and increased by 19% in 2006. It is concluded that the evapotranspiration changes significantly when the marshland was reclaimed into rice paddy or soybean field in the Sanjiang Plain. Compared to marshland, the evapotranspiration is higher in rice paddy and soybean filed with sufficient precipitation, while lower in soybean field under drought. These changes are found to be highly related to the variations of net radiation, leaf area index and precipitation.

  19. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene.

    PubMed

    Yang, Haiyuan; Ren, Xiang; Weng, Qingmei; Zhu, Lili; He, Guangcun

    2002-01-01

    The brown planthopper (BPH), Nilaparvata lugens Stål, is a serious insect pest of rice (Oryza saliva L.). We have determined the chromosomal location of a BPH resistance gene in rice using SSR and RFLP techniques. A rice line 'B14', derived from the wild rice Oryza latifolia, showed high resistance to BPH. For tagging the resistance gene in 'B14X', an F2 population and a recombinant inbred (RI) population from a cross between Taichung Native 1 and 'B14' were developed and evaluated for BPH resistance. The results showed that a single dominant gene controlled the resistance of 'B14' to BPH. Bulked segregant SSR analysis was employed for identification of DNA markers linked to the resistance gene. From the survey of 302 SSR primer pairs, three SSR (RM335, RM261, RM185) markers linked to the resistance gene were identified. The closest SSR marker RM261 was linked to the resistance gene at a distance of 1.8 cM. Regions surrounding the resistance gene and the SSR markers were examined with additional RFLP markers on chromosome 4 to define the location of the resistance gene. Linkage of RFLP markers C820, R288, C946 with the resistance gene further confirmed its location on the short arm of chromosome 4. Closely linked DNA markers will facilitate selection for resistant lines in breeding programs and provide the basis for map-based cloning of this resistance gene.

  20. Focal species candidates for pesticide risk assessment in European rice fields: A review.

    PubMed

    Vallon, Martin; Dietzen, Christian; Laucht, Silke; Ludwigs, Jan-Dieter

    2018-04-25

    An assessment of potential risks of pesticides on wildlife is required during the process of product registration within Europe because of the importance of agricultural landscapes as wildlife habitats. Despite their peculiarity and their specific role as artificial wetlands, rice paddies are to date pooled with cereals in guidance documents on how to conduct risk assessments for birds and mammals in Europe. Hence, the focal species currently considered in risk assessments for rice paddies are those known from cereal fields and can therefore be expected to differ significantly from the species actually occurring in the wet environments of rice paddies. We present results of a comprehensive review on bird and mammal species regularly occurring in rice paddies during a time of potential pesticide exposure to identify appropriate focal species candidates for ecotoxicological pesticide risk assessment according to the European Food Safety Authority (EFSA). In addition, we present data on rice cultivation areas and agricultural practices in Europe to give background information supporting the species selection process. Our literature search identified a general scarcity of relevant data, particularly for mammals, which highlights the need for crop-specific focal species studies. However, our results clearly indicate that the relevant bird and mammal species in rice fields indeed differ strongly from the focal species used for the cereal risk assessment. They can thus be used as a baseline for more realistic wildlife risk assessments specific to rice and the development of a revised guidance document to bridge the gap for regulatory decision makers. Integr Environ Assess Manag 2018;00:000-000. © 2018 SETAC. © 2018 SETAC.

  1. [Effect of different organic fertilizers on bioavailability of soil Cd and Zn].

    PubMed

    Xie, Yun-he; Ji, Xiong-hui; Wu, Jia-mei; Huang, Juan; Guan, Di; Zhu, Jian

    2015-03-01

    The active effect of soil Cd and Zn and their interaction was studied in typical paddy field in south China by monitoring the contents of Cd and Zn in soil and rice in rice fields applied with pig manure, chicken manure or rice straw for 4 years continuously. The results showed that applying pig manure, chicken manure or rice straw had no significant impact on the soil total Cd content, soil available Cd content and soil Cd activity, but tended to increase the soil total Cd content and increased the soil total Zn content, soil available Zn content and Zn activity significantly. Applications of pig manure, chicken manure and rice straw all reduced the Cd content of brown rice, in order of pig manure > chicken manure > rice straw. The Cd contents of brown rice, stem and leaf in the treatment applied with pig manure were lower than in the control by 37.5%, 44.0% and 36.4%, respectively; the Cd contents of brown rice, stem and leaf in the treatment applied with chicken manure were lower than in the control by 22.5%, 33.8%, and 22.7%, respectively; the Cd content of brown rice in the treatment applied with rice straw was lower than in the control by 7.5% but its contents in stem and leaf increased by 8.2% and 22.7% , respectively. The reduction in the brown rice Cd content was mainly due to the reduction of Cd enrichment from soil to brown rice after application of pig or chicken manure, but mainly due to the reduction of Cd transportation from stem to brown rice after straw application. Applications of pig manure, chicken manure and rice straw increased Zn contents in rice stem by 53.4%, 53.4% and 13.9%, respectively, but all had no significant effect on brown rice and leaf' s Zn contents. Zn and Cd had the significant antagonistic effects in the soil and rice stem. The increase of Zn content in soil and rice stem inhibited the adsorption and accumulation of Cd in the brown rice, stem and leaf significantly, and with the increase of the proportion of Zn/Cd, the competitive absorption between Cd and Zn by rice was the main control factor affecting the Cd absorption by rice than their competitive adsorption by soil.

  2. Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China

    NASA Astrophysics Data System (ADS)

    Jiang, Changsheng; Wang, Yuesi; Zheng, Xunhua; Zhu, Bo; Huang, Yao; Hao, Qingju

    2006-05-01

    To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm-2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm-2 yr-1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P<0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PF≫RR≈RW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW and RR, respectively. These results suggest that changing PF to RW and RR can substantially reduce not only CH4 emission but also the total GWP of the CH4 and N2O emissions.

  3. Understanding ecosystem services provided by rice fields

    USDA-ARS?s Scientific Manuscript database

    While the concept of ecosystem services is not new, there is revived interest in how these services should be measured, monitored, and valued. Focused research over the last four years has provided insight into the mitigation capabilities of rice fields in the lower Mississippi River Valley of the ...

  4. Agronomic and environmental aspects of diazotrophic bacteria in irrigated rice fields

    USDA-ARS?s Scientific Manuscript database

    This article provides an overview of the free-living and plant-associated nitrogen-fixing bacterial communities in irrigated rice fields, with a focus on describing the drivers affecting community assemblages in this soil-water-plant-atmosphere system. Theoretical and technical advances in non-legu...

  5. Mapping Changes in Area and the Cropping Season of Irrigated Rice in Senegal and Mauritania between 2003 and 2014 Using the PhenoRice Algorithm and MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Zwart, S.; Busetto, L.; Diagne, M.; Boschetti, M.; Nelson, A.

    2017-12-01

    Government policies have resulted in rapid expansion of irrigated rice area in Mauritania and Senegal through private and public investments. Farmers switch rice cultivation from the wet to the dry season to achieve higher production while rice double cropping is increasingly practiced. As a result Senegal is close to attaining self-sufficiency in the coming years. However, tools to monitor those changes are absent and this inhibits assessments on for example its impact on wetlands located in the delta area, increased water demands and climate induced risks to farmers. In this study we aimed to map changes in irrigated rice area in the wet and dry seasons. We applied the PhenoRice algorithm on a combined time-series of MODIS Aqua and Terra images obtained between 2003 and 2016 to map pixels dominated by rice and determine the start, end and length of the growing season from sowing/transplanting to maturity. Between 2002 and 2010 researchers from the Africa Rice Center interviewed annually around 100 rice farmers located in two irrigation schemes in Senegal. We extracted the reported sowing/transplanting and harvest dates from the data base and used these to validate the estimates obtained by PhenoRice. We also compared the obtained rice areas with official statistics provided by the Senegalese Ministry of Agriculture. Analysis of PhenoRice results highlighted that starting 2008, rice farmers cultivate also during the dry season; the area is steadily increasing from 2008 onwards and in the recent years approximately almost equals that of the wet season. This was confirmed by official statistics, though the total area estimated by PhenoRice is smaller than reported, most likely due to the mismatch between pixel size and the small cultivated areas. However, the algorithm was able to detect the overall trends and inter-annual variations observed in the wet (r2=0.57) and dry season rice cultivated area (r2=0.91). The start of the season, that varied maximally 4 weeks between years, was captured with high accuracy. No significant changes in the onset of the growing season were detected. However, the length of the growing season was found to be steadily decreasing from 121 days in 2003 to 114 days in 2016 (r2 = 0.67). This is likely due to varietal improvement and preference of farmers for short duration varieties to allow double cropping.

  6. Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution

    PubMed Central

    Dong, Yanhan; Li, Ying; Zhao, Miaomiao; Jing, Maofeng; Liu, Xinyu; Liu, Muxing; Guo, Xianxian; Zhang, Xing; Chen, Yue; Liu, Yongfeng; Liu, Yanhong; Ye, Wenwu; Zhang, Haifeng; Wang, Yuanchao; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2015-01-01

    Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. PMID:25837042

  7. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    PubMed

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  8. Rice rhizosphere soil and root surface bacterial community response to water management changes

    USDA-ARS?s Scientific Manuscript database

    Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...

  9. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes. Conclusions Our current genomic analysis, for the first time, presents fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, we were able to create supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family. The present study provides a platform for the selection of candidate genes for further detailed functional study. PMID:22793791

  10. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control

    PubMed Central

    Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe

    2016-01-01

    Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice (Chilo suppressalis, Scirpophaga incertulas, and Cnaphalocrocis medinalis) and maize (Ostrinia furnacalis), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field. PMID:27763554

  11. Development of Bt Rice and Bt Maize in China and Their Efficacy in Target Pest Control.

    PubMed

    Liu, Qingsong; Hallerman, Eric; Peng, Yufa; Li, Yunhe

    2016-10-18

    Rice and maize are important cereal crops that serve as staple foods, feed, and industrial material in China. Multiple factors constrain the production of both crops, among which insect pests are an important one. Lepidopteran pests cause enormous yield losses for the crops annually. In order to control these pests, China plays an active role in development and application of genetic engineering (GE) to crops, and dozens of GE rice and GE maize lines expressing insecticidal proteins from the soil bacterium Bacillus thuringiensis ( Bt ) have been developed. Many lines have entered environmental release, field testing, and preproduction testing, and laboratory and field experiments have shown that most of the Bt rice and Bt maize lines developed in China exhibited effective control of major target lepidopteran pests on rice ( Chilo suppressalis , Scirpophaga incertulas , and Cnaphalocrocis medinalis ) and maize ( Ostrinia furnacalis ), demonstrating bright prospects for application. However, none of these Bt lines has yet been commercially planted through this writing in 2016. Challenges and perspectives for development and application of Bt rice and maize in China are discussed. This article provides a general context for colleagues to learn about research and development of Bt crops in China, and may shed light on future work in this field.

  12. A Study toward the Evaluation of ALOS Images for LAI Estimation in Rice Fields

    NASA Astrophysics Data System (ADS)

    Sharifi Hashjin, Sh.; Darvishzadeh, R.; Khandan, R.

    2013-10-01

    For expanding and managing agricultural sources, satellite data have a key role in determining required information about different factors in plants Including Leaf Area Index (LAI).This paper has studied the potential of spectral indices in estimating rice canopy LAI in Amol city as one of the main sources of rice production in Iran. Due to its importance in provision of food and calorie of a major portion of population, rice product was chosen for study. A field campaign was conducted when rice was in the max growth stage (late of June). Also, two satellite images from ALOS-AVNIR-2 were used (simultaneous with conducted field works) to extract and determine vegetation indices. Then the Regression between measured data and vegetation indices, derived from combination of different bands, was evaluated and after that suitable vegetation indices were realized. Finally, statistics and calculations for introduction of a suitable model were presented. After examination of models, the results showed that RDVI and SAVI2, by determination coefficient and RMSE of 0.12-0.59 and 0.24-0.62, have more accuracy in LAI estimation. Results of present study demonstrated the potential of ALOS images, for LAI estimation and their significant role in monitoring and managing the rice plant.

  13. Distribution of chlorpyrifos in rice paddy environment and its potential dietary risk.

    PubMed

    Fu, Yan; Liu, Feifei; Zhao, Chenglin; Zhao, Ying; Liu, Yihua; Zhu, Guonian

    2015-09-01

    Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9-3.8days (field) and 2.8-10.3days (laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of water

  14. Dynamics of the Methanogenic Archaeal Community during Plant Residue Decomposition in an Anoxic Rice Field Soil ▿

    PubMed Central

    Peng, Jingjing; Lü, Zhe; Rui, Junpeng; Lu, Yahai

    2008-01-01

    Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH4 production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15°C, 30°C, and 45°C). More CH4 was produced in the straw treatment than root treatment. Increasing the temperature from 15°C to 45°C enhanced CH4 production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15°C and 30°C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45°C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H2) seems to be the key factor that regulates the shift of methanogenic community. PMID:18344350

  15. Testing estimation of water surface in Italian rice district from MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Ranghetti, Luigi; Busetto, Lorenzo; Crema, Alberto; Fasola, Mauro; Cardarelli, Elisa; Boschetti, Mirco

    2016-10-01

    Recent changes in rice crop management within Northern Italy rice district led to a reduction of seeding in flooding condition, which may have an impact on reservoir water management and on the animal and plant communities that depend on the flooded paddies. Therefore, monitoring and quantifying the spatial and temporal variability of water presence in paddy fields is becoming important. In this study we present a method to estimate dynamics of presence of standing water (i.e. fraction of flooded area) in rice fields using MODIS data. First, we produced high resolution water presence maps from Landsat by thresholding the Normalised Difference Flood Index (NDFI) made: we made it by comparing five Landsat 8 images with field-obtained information about rice field status and water presence. Using these data we developed an empirical model to estimate the flooding fraction of each MODIS cell. Finally we validated the MODIS-based flooding maps with both Landsat and ground information. Results showed a good predictability of water surface from Landsat (OA = 92%) and a robust usability of MODIS data to predict water fraction (R2 = 0.73, EF = 0.57, RMSE = 0.13 at 1 × 1 km resolution). Analysis showed that the predictive ability of the model decreases with the greening up of rice, so we used NDVI to automatically discriminate estimations for inaccurate cells in order to provide the water maps with a reliability flag. Results demonstrate that it is possible to monitor water dynamics in rice paddies using moderate resolution multispectral satellite data. The achievement is a proof of concept for the analysis of MODIS archives to investigate irrigation dynamics in the last 15 years to retrieve information for ecological and hydrological studies.

  16. Influence of transgenic rice expressing a fused Cry1Ab/1Ac protein on frogs in paddy fields.

    PubMed

    Wang, Jia-Mei; Chen, Xiu-Ping; Liang, Yu-Yong; Zhu, Hao-Jun; Ding, Jia-Tong; Peng, Yu-Fa

    2014-11-01

    As genetic engineering in plants is increasingly used to control agricultural pests, it is important to determine whether such transgenic plants adversely affect non-target organisms within and around cultivated fields. The cry1Ab/1Ac fusion gene from Bacillus thuringiensis (Bt) has insecticidal activity and has been introduced into rice line Minghui 63 (MH63). We evaluated the effect of transgenic cry1Ab/1Ac rice (Huahui 1, HH1) on paddy frogs by comparing HH1 and MH63 rice paddies with and without pesticide treatment. The density of tadpoles in rice fields was surveyed at regular intervals, and Cry1Ab/1Ac protein levels were determined in tissues of tadpoles and froglets collected from the paddy fields. In addition, Rana nigromaculata froglets were raised in purse nets placed within these experimental plots. The survival, body weight, feeding habits, and histological characteristics of the digestive tract of these froglets were analyzed. We found that the tadpole density was significantly decreased immediately after pesticide application, and the weight of R. nigromaculata froglets of pesticide groups was significantly reduced compared with no pesticide treatment, but we found no differences between Bt and non-Bt rice groups. Moreover, no Cry1Ab/1Ac protein was detected in tissue samples collected from 192 tadpoles and froglets representing all four experimental groups. In addition, R. nigromaculata froglets raised in purse seines fed primarily on stem borer and non-target insects, and showed no obvious abnormality in the microstructure of their digestive tracts. Based on these results, we conclude that cultivation of transgenic cry1Ab/1Ac rice does not adversely affect paddy frogs.

  17. Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing.

    PubMed

    Pareja, Lucía; Colazzo, Marcos; Pérez-Parada, Andrés; Besil, Natalia; Heinzen, Horacio; Böcking, Bernardo; Cesio, Verónica; Fernández-Alba, Amadeo R

    2012-05-09

    The results of an experiment to study the occurrence and distribution of pesticide residues during rice cropping and processing are reported. Four herbicides, nine fungicides, and two insecticides (azoxystrobin, byspiribac-sodium, carbendazim, clomazone, difenoconazole, epoxiconazole, isoprothiolane, kresoxim-methyl, propanil, quinclorac, tebuconazole, thiamethoxam, tricyclazole, trifloxystrobin, λ-cyhalotrin) were applied to an isolated rice-crop plot under controlled conditions, during the 2009-2010 cropping season in Uruguay. Paddy rice was harvested and industrially processed to brown rice, white rice, and rice bran, which were analyzed for pesticide residues using the original QuEChERS methodology and its citrate variation by LC-MS/MS and GC-MS. The distribution of pesticide residues was uneven among the different matrices. Ten different pesticide residues were found in paddy rice, seven in brown rice, and eight in rice bran. The highest concentrations were detected in paddy rice. These results provide information regarding the fate of pesticides in the rice food chain and its safety for consumers.

  18. Can the co-cultivation of rice and fish help sustain rice production?

    NASA Astrophysics Data System (ADS)

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-06-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability.

  19. Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene

    PubMed Central

    Dong, Yufeng; Jin, Xi; Tang, Qiaoling; Zhang, Xin; Yang, Jiangtao; Liu, Xiaojing; Cai, Junfeng; Zhang, Xiaobing; Wang, Xujing; Wang, Zhixing

    2017-01-01

    Glyphosate is a widely used herbicide, due to its broad spectrum, low cost, low toxicity, high efficiency, and non-selective characteristics. Rice farmers rarely use glyphosate as a herbicide, because the crop is sensitive to this chemical. The development of transgenic glyphosate-tolerant rice could greatly improve the economics of rice production. Here, we transformed the Pseudomonas fluorescens G2 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene G2-EPSPS, which conferred tolerance to glyphosate herbicide into a widely used japonica rice cultivar, Zhonghua 11 (ZH11), to develop two highly glyphosate-tolerant transgenic rice lines, G2-6 and G2-7, with one exogenous gene integration. Seed germination tests and glyphosate-tolerance assays of plants grown in a greenhouse showed that the two transgenic lines could greatly improve glyphosate-tolerance compared with the wild-type; The glyphosate-tolerance field test indicated that both transgenic lines could grow at concentrations of 20,000 ppm glyphosate, which is more than 20-times the recommended concentration in the field. Isolation of the flanking sequence of transgenic rice G2-6 indicated that the 5′-terminal of T-DNA was inserted into chromosome 8 of the rice genome. An event-specific PCR test system was established and the limit of detection of the primers reached five copies. Overall, the G2-EPSPS gene significantly improved glyphosate-tolerance in transgenic rice; furthermore, it is a useful candidate gene for the future development of commercial transgenic rice. PMID:28611804

  20. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields.

    PubMed

    Wang, Hong-Yan; Wen, Shi-Lin; Chen, Peng; Zhang, Lu; Cen, Kuang; Sun, Guo-Xin

    2016-02-01

    A field experiment was established to support the hypothesis that application of different silicon (Si) fertilizers can simultaneously reduce cadmium (Cd) and arsenic (As) concentration in rice grain. The "semi-finished product of Si-potash fertilizer" treatment at the high application of 9000 kg/ha (NP+S-KSi9000) significantly reduced the As concentration in rice grain by up to 20.1%, compared with the control. Si fertilization reduces the Cd concentration in rice considerably more than the As concentration. All Si fertilizers apart from sodium metasilicate (Na2SiO3) exhibited a high ability to reduce Cd concentration in rice grain. The Si-calcium (CaSi) fertilizer is the most effective in the mitigation of Cd concentration in rice grain. The CaSi fertilizer applied at 9000 kg/ha (NPK+CaSi9000) and 900 kg/ha (NPK+CaSi900) reduced the Cd concentration in rice grain about 71.5 and 48.0%, respectively, while the Si-potash fertilizer at 900 kg/ha (NP+KSi900), the semi-finished product of Si-potash fertilizer at both 900 kg/ha (NP+S-KSi900) and 9000 kg/ha (NP+S-KSi9000), and the rice straw (NPK+RS) treatments reduced the Cd concentration in rice grain about 42, 26.5, 40.7, and 23.1%, respectively. The results of this investigation demonstrated the potential effects of Si fertilizers in reducing Cd and As concentrations in rice grain.

  1. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p < 0.01) in WSI rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p < 0.05) correlated with R n, air temperature ( T a), and air vapor pressure deficit ( D), and its partial correlation coefficients to R n and T a were slightly greater than D. Thus, R n, T a and D are important variables for understanding the spatial scale effect of rice ET in WSI fields, and for its cross scale conversion.

  2. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China

    NASA Astrophysics Data System (ADS)

    Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Yang, Yuting; Ma, Jing; Xu, Hua

    2016-09-01

    Traditional land management (no tillage, no drainage, NTND) during the winter fallow season results in substantial CH4 and N2O emissions from double-rice fields in China. A field experiment was conducted to investigate the effects of drainage and tillage during the winter fallow season on CH4 and N2O emissions and to develop mitigation options. The experiment had four treatments: NTND, NTD (drainage but no tillage), TND (tillage but no drainage), and TD (both drainage and tillage). The study was conducted from 2010 to 2014 in a Chinese double-rice field. During winter, total precipitation and mean daily temperature significantly affected CH4 emission. Compared to NTND, drainage and tillage decreased annual CH4 emissions in early- and late-rice seasons by 54 and 33 kg CH4 ha-1 yr-1, respectively. Drainage and tillage increased N2O emissions in the winter fallow season but reduced it in early- and late-rice seasons, resulting in no annual change in N2O emission. Global warming potentials of CH4 and N2O emissions were decreased by 1.49 and 0.92 t CO2 eq. ha-1 yr-1, respectively, and were reduced more by combining drainage with tillage, providing a mitigation potential of 1.96 t CO2 eq. ha-1 yr-1. A low total C content and high C / N ratio in rice residues showed that tillage in the winter fallow season reduced CH4 and N2O emissions in both early- and late-rice seasons. Drainage and tillage significantly decreased the abundance of methanogens in paddy soil, and this may explain the decrease of CH4 emissions. Greenhouse gas intensity was significantly decreased by drainage and tillage separately, and the reduction was greater by combining drainage with tillage, resulting in a reduction of 0.17 t CO2 eq. t-1. The results indicate that drainage combined with tillage during the winter fallow season is an effective strategy for mitigating greenhouse gas releases from double-rice fields.

  3. Biochar amendment reduces rice Cd uptake in polluted and unpolluted paddy soils: a long term field experiment

    NASA Astrophysics Data System (ADS)

    Bian, R.; Cui, L.; Pan, G.; Li, L.

    2012-04-01

    The bioavailability of Cd in agricultural soils has been a great health concern due to the potential risk through exposure of agro-food produced in Cd-contaminated fields. Yet, rice subject to Cd contamination appears to have expanded at the last decade due to irrigation with waste water and chemical fertilization in south china. This is supposed to raise the Cd accumulation of rice grain. Therefore, techniques to reduce Cd mobility and plant uptake have been a urgent demand for food safety in China.A field experiment was performed in a high-polluted (HP), mid-pollute (MP) and unpolluted (UP) paddy soil with biochar(BC) amendment in 2011. BC was applied in HP, MP and UP in 2008, 2009, 2009 with the rates of 0, 10, 20, 40t ha-1 in HP, MP and 0, 40t ha-1 in UP. The experiment was monitored in 2011. It was observed that BC amendment did not affect rice grain yield but significantly increased soil pH by 0.58-0.77, 1.30 units in MP, UP and there was no difference in HP. The Cacl2 extracted Cd in soil was decreased by 18.1%-28.9% in HP, 49.3%-67.5% in MP and 83.1% in UP, respectively. Meanwhile, H2O extractable Cd in soil was decreased by 20.0%-31.7% in HP, 32.7%-44.2% in MP and 25.0% in UP, respectively. With the BC treatment, rice grain Cd concentration was decreased 4.7%-17.6% in HP, 35.9%-53.4% in MP. Especially in UP field, the rice grain Cd concentration was decreased from 0.22mg kg-1 to 0.07mg kg-1 which was below National standard (0.20mg kg-1) in China. The straw and root Cd contents were also significantly decreased with BC application. Therefore, BC amendment in polluted and unpolluted fields can sustainably reduce rice Cd uptake and it may offer a basic option to reduce Cd levels in rice. Keywords: Biochar, Cd, bioavailability, paddy soil, food safety

  4. Single and fused transgenic Bacillus thuringiensis rice alter the species-specific responses of non-target planthoppers to elevated carbon dioxide and temperature.

    PubMed

    Wan, Guijun; Dang, Zhihao; Wu, Gang; Parajulee, Megha N; Ge, Feng; Chen, Fajun

    2014-05-01

    The approval of transgenic Bacillus thuringiensis (Bt) rice by China was momentous for biotech crops, although it has yet to be approved for commercial production. Non-target pest problems in rice paddies, such as the three ecologically similar species of planthoppers Nilaparvata lugens, Laodelphax striatellus and Sogatella furcifera, could become increasingly serious under global climate change. Fused (Cry1Ab/Cry1Ac) and single (Cry1Ab) transgenic Bt rice were evaluated for effects on species-specific responses of planthoppers to elevated carbon dioxide (CO2) and temperature. Transgenic Bt rice lines significantly modified species-specific responses of the planthoppers to elevated CO2 and temperature. High temperature appears to favour outbreaks of S. furcifera relative to N. lugens and L. striatellus when feeding upon fused transgenic Bt rice, especially at elevated CO2 . Elevated CO2 at high temperature appears to be a factor reducing S. furcifera occurrence when feeding upon single transgenic Bt rice. Different types of transgenic Bt rice alter the species-specific responses of non-target planthoppers to elevated CO2 and temperature. Compared with their non-transgenic parental lines, the single transgenic Bt rice shows better performance in controlling the non-target planthopper S. furcifera by comparison with the fused transgenic Bt rice under elevated CO2 and temperature. It is suggested that multitypes of transgenic Bt rice be used in the field simultaneously in order to take advantage of high transgenic diversity for optimal performance against all pests in paddy fields. © 2013 Society of Chemical Industry.

  5. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2007-09-01

    Arsenic-rich groundwater from shallow tube wells is widely used for the irrigation of boro rice in Bangladesh and West Bengal. In the long term this may lead to the accumulation of As in paddy soils and potentially have adverse effects on rice yield and quality. In the companion article in this issue, we have shown that As input into paddy fields with irrigation water is laterally heterogeneous. To assess the potential for As accumulation in soil, we investigated the lateral and vertical distribution of As in rice field soils near Sreenagar (Munshiganj, Bangladesh) and its changes over a 1 year cycle of irrigation and monsoon flooding. At the study site, 18 paddy fields are irrigated with water from a shallow tube well containing 397 +/- 7 microg L(-1) As. The analysis of soil samples collected before irrigation in December 2004 showed that soil As concentrations in paddy fields did not depend on the length of the irrigation channel between well and field inlet. Within individual fields, however, soil As contents decreased with increasing distance to the water inlet, leading to highly variable topsoil As contents (11-35 mg kg(-1), 0-10 cm). Soil As contents after irrigation (May 2005) showed that most As input occurred close to the water inlet and that most As was retained in the top few centimeters of soil. After monsoon flooding (December 2005), topsoil As contents were again close to levels measured before irrigation. Thus, As input during irrigation was at least partly counteracted by As mobilization during monsoon flooding. However, the persisting lateral As distribution suggests net arsenic accumulation over the past 15 years. More pronounced As accumulation may occur in regions with several rice crops per year, less intense monsoon flooding, or different irrigation schemes. The high lateral and vertical heterogeneity of soil As contents must be taken into account in future studies related to As accumulation in paddy soils and potential As transfer into rice.

  6. Variation in cooking and eating quality traits in Japanese rice germplasm accessions

    PubMed Central

    Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu

    2016-01-01

    The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan. PMID:27162502

  7. Variation in cooking and eating quality traits in Japanese rice germplasm accessions.

    PubMed

    Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu

    2016-03-01

    The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan.

  8. Elemental content of Vietnamese rice. Part 2. Multivariate data analysis.

    PubMed

    Kokot, S; Phuong, T D

    1999-04-01

    Rice samples were obtained from the Red River region and some other parts of Vietnam as well as from Yanco, Australia. These samples were analysed for 14 elements (P, K, Mg, Ca, Mn, Zn, Fe, Cu, Al, Na, Ni, As, Mo and Cd) by ICP-AES, ICP-MS and FAAS as described in Part 1. This data matrix was then submitted to multivariate data analysis by principal component analysis to investigate the influences of environmental and crop cultivation variables on the elemental content of rice. Results revealed that geographical location, grain variety, seasons and soil conditions are the most likely significant factors causing changes in the elemental content between the rice samples. To assess rice quality according to its elemental content and physio-biological properties, a multicriteria decision making method (PROMETHEE) was applied. With the Vietnamese rice, the sticky rice appeared to contain somewhat higher levels of nutritionally significant elements such as P, K and Mg than the non-sticky rice. Also, rice samples grown during the wet season have better levels of nutritionally significant mineral elements than those of the dry season, but in general, the wet season seemed to provide better overall elemental and physio-biological rice quality.

  9. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for irrigation water use can be reduced when adopting the SRI methodology in the future. The reducing of groundwater recharge could be supplemented by using 1,500 hectares of fallow paddy fields, located at proximal-fan region, as recharge pools in the wet season. The adoption of water-saving irrigation would be helpful for the relevant government agency to formulate the integral water resource management strategies in this region. Keywords:Groundwater recharge, SRI, FEMWATER, Field irrigation requirement

  10. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  11. Evaluating the non-rice host plant species of Sesamia inferens (Lepidoptera: Noctuidae) as natural refuges: resistance management of Bt rice.

    PubMed

    Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa

    2011-06-01

    Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea mays L.); tidalmarsh flatsedge (Cyperus serotinus Rottb.); and narrow-leaved cat-tail (Typha angustifolia Linn.) were identified as the primary host plant species of S. inferens. Greenhouse experiments further demonstrated that water oat, corn, and narrow-leaved cat-tail could support the survival and development of S. inferens. Interestingly, greenhouse experiments showed that S. inferens preferred to lay eggs on tidalmarsh flatsedge compared with the other three nonrice host species, although no pupae were found in the plants examined in field surveys. Few larvae were found to survive on tidalmarsh flatsedge in greenhouse bioassays, suggesting that tidalmarsh flatsedge could serve as a "dead-end" trap crop for S. inferens, but is not a candidate to serve as natural refuge to maintain susceptible S. inferens. Overall, these results suggest that water-oat, corn, and narrow-leaved cat-tail might serve as "natural refuge" for S. inferens in rice planting area of southern China when Bt rice varieties are planted.

  12. Cultural Resources Inventory of Lands Adjacent to Big Sandy Lake. Volume 1,

    DTIC Science & Technology

    1979-01-18

    population density. Late Prehistoric: 300 - 1640 A.D. Intensive wild rice -bison economic systems; St. Croix, Kathio, Clam River, Balckduck and Sandy...type are located on W- streams and near lake outlets that tend to be good wild rice harvesting .1. areas. Projectile points are either ososceles...triangular br side-notched points. The subsistence pattern of these people is that of hunting deer and smaller mammals and wild rice gathering. The time

  13. Field evaluation of four spatial repellent devices against Arkansas rice-land mosquitoes

    USDA-ARS?s Scientific Manuscript database

    Four commercially available spatial repellent devices were tested in a rice land habitat near Stuttgart, Arkansas after semi-field level assessments had been made at the Center for Medical, Agricultural, and Veterinary Entomology, ARS, USDA in Gainesville, FL. OFF! Clip-On® (a.i. metofluthrin, S.C....

  14. Taking transgenic rice drought screening to the field.

    PubMed

    Gaudin, Amélie C M; Henry, Amelia; Sparks, Adam H; Slamet-Loedin, Inez H

    2013-01-01

    Numerous transgenes have been reported to increase rice drought resistance, mostly in small-scale experiments under vegetative-stage drought stress, but few studies have included grain yield or field evaluations. Different definitions of drought resistance are currently in use for field-based and laboratory evaluations of transgenics, the former emphasizing plant responses that may not be linked to yield under drought. Although those fundamental studies use efficient protocols to uncover and validate gene functions, screening conditions differ greatly from field drought environments where the onset of drought stress symptoms is slow (2-3 weeks). Simplified screening methods, including severely stressed survival studies, are therefore not likely to identify transgenic events with better yield performance under drought in the target environment. As biosafety regulations are becoming established to allow field trials in some rice-producing countries, there is a need to develop relevant screening procedures that scale from preliminary event selection to greenhouse and field trials. Multilocation testing in a range of drought environments may reveal that different transgenes are necessary for different types of drought-prone field conditions. We describe here a pipeline to improve the selection efficiency and reproducibility of results across drought treatments and test the potential of transgenic rice for the development of drought-resistant material for agricultural purposes.

  15. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    PubMed

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  16. Reducing rice field algae and cyanobacteria abundance by altering phosphorus fertilizer applications

    USDA-ARS?s Scientific Manuscript database

    In California’s water seeded rice systems algal/cyanobacterial biomass can be a problem during rice establishment. Algal/cyanobacterial growth may be stimulated by phosphorus (P) additions in freshwater habitats, so we set up experiments to evaluate the effects of fertilizer P management on algal/cy...

  17. Coating of Prilled Urea with Neem (Azadirachta Indica Juss) Oil for Efficient Nitrogen Use in Rice

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Singh, S.; Saxena, V. S.; Devkumar, C.

    A field study made with rice at the Indian Agricultural Research Institute, New Delhi, showed that coating urea with neem oil, neem cake or neem oil microemulsion improved rice growth and resulted in more grain and straw than did commercial prilled urea.

  18. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field

    USDA-ARS?s Scientific Manuscript database

    Iron (Fe) and zinc (Zn) deficiencies are the most prevalent micronutrient malnutrition globally1. Fe in rice has proven efficacious in improving serum ferritin concentration and body Fe levels2. Rapid progress in biofortification demonstrates the feasibility to enhance Fe in polished rice by expre...

  19. Outbreak of Tagosodes orizicolus (Muir) in Texas rice

    USDA-ARS?s Scientific Manuscript database

    The rice planthopper, Tagosodes orizicolus, is reported for the first time in Texas, where it is superabundant in rice fields in four counties (Brazoria, Colorado, Harris, and Wharton). The species is a known vector of the viral disease hoja blanca, which can reduce yields up to 50%, and hopper burn...

  20. Evaluations of the Synergy of the Water-Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2017-12-01

    Analyses of the synergy and tradeoff of the water-energy-food nexus are keys to a sustainable society under the increasing demand for resources. Analyses of the water-energy-food nexus in Kumamoto, Japan showed that the paddy field for rice production, upstream of the basin with irrigated water from the river, had recharged the groundwater which is used as drinking water downstream in Kumamoto city without energy consumption for the transport of groundwater. National government regulations of "fallow rice fields" and urbanization after the 1970s caused the decrease in the groundwater recharge rate upstream in the paddy field area. This also lead to the decrease in water resources of groundwater downstream in Kumamoto city, which then required additional energy for water pumping. Therefore, the synergy of water-energy-food was lost after government regulations of rice production and urbanization which caused an impermeable layer for groundwater recharge. The nexus model has been established to analyze the synergy of water-energy-food, including cost-benefit analyses, food trade including rice with different scenarios of food self-sufficiency rates, water and energy consumption for food, and others. A decrease in rice consumption and production with the same self-sufficiency rate caused a decrease in water and energy consumption for rice production, and a decrease in carbon emissions. However, the cost of synergy loss in the water-energy-food nexus in Kumamoto did not outweigh the benefit of reductions in water and energy consumption for rice production.

  1. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.

    2013-12-01

    Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish. Linkages from plant biomass to fish Hg concentrations were less evident in non-agricultural wetlands (seasonal or permanent flooding), where aromatic DOC and physical controls (e.g. hydrology, photodemethylation) appeared to have a greater role. Winter rice straw management had no measurable impact on summer MeHg dynamics, but wetland data suggest that the inclusion of deepwater cells within fields may reduce MeHg exposure. As concern grows over MeHg concentrations in rice grains, research on cultivars and field management is expanding in China, but ecosystem-level studies remain rare. Broader global monitoring and research are needed to address these pathways of Hg exposure given the global expansion of rice agriculture and ongoing atmospheric Hg deposition. Dense root and canopy structure of California rice fields (Oryza sativa), August 2007

  2. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice

    PubMed Central

    Way, Michael O.; Pearson, Rebecca A.; Stout, Michael J.

    2017-01-01

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety. PMID:28805707

  3. Biogeochemical cycling in Rice Agroecosystems Resulting From Water and Si management: Implications for As abatement and Sustainable Rice Production

    NASA Astrophysics Data System (ADS)

    Seyfferth, A.; Limmer, M. A.; Amaral, D.; Teasley, W.

    2017-12-01

    Flooded rice agroecosystems favor geochemical conditions that mobilize soil-bound arsenic (As) and produce methane (CH4). These negative outcomes of flooded rice may lead to As exposure upon As-laden rice grain consumption and enhanced greenhouse gas emissions. Periodic draining of fields (e.g., alternate wetting and drying) is effective at minimizing these negative outcomes, but may reduce rice yield, increase toxic Cd in grain, and increase nitrous oxide (N2O) emissions. Because 3 of the 4 dominant chemical form of As in flooded paddy soil share the efficient Si uptake pathway, increasing plant-available Si can decrease toxic As in grain and boost yield, particularly when plants are stressed with As. We used combined pot and field studies to examine the biogeochemical cycling of As, Fe, Si, and C when plants are grown with water and/or Si management, the latter of which under both low and high As conditions. We show that increasing plant-available Si can be used alone or in conjunction with water management to improve rice yields depending on the edaphic conditions. These processes and findings will be discussed in the larger context of global food security.

  4. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice.

    PubMed

    Villegas, James M; Way, Michael O; Pearson, Rebecca A; Stout, Michael J

    2017-08-13

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.

  5. Assessment and genetic analysis of heavy metal content in rice grain using an Oryza sativa × O. rufipogon backcross inbred line population.

    PubMed

    Huang, De-Run; Fan, Ye-Yang; Hu, Biao-Lin; Xiao, Ye-Qing; Chen, Da-Zhou; Zhuang, Jie-Yun

    2018-03-01

    Heavy metal accumulation in rice is a growing concern for public health. Backcross inbred lines derived from an interspecific cross of Oryza sativa × O. rufipogon were grown in two distinct ecological locations (Hangzhou and Lingshui, China). The objective of this study was to characterise the contents of heavy metal in rice grains, and to identify quantitative trait loci (QTLs) for heavy metal contents. The contents of Ni, As, Pb, Cr and Hg in milled rice showed a significant decline as compared with those in brown rice, whereas the content of Cd showed little change. The concentration of heavy metal in rice grain varied greatly between the two environments. A total of 24 QTLs responsible for heavy metal contents were detected, including two for both the brown and milled rice, 13 for brown rice only, and nine for milled rice only. All the QTLs except two had the enhancing alleles derived from O. rufipogon. Sixteen QTLs were clustered in six chromosomal regions. Environmental variation plays an important role in the heavy metal contents in rice grain. QTLs detected in this study might be useful for breeding rice varieties with low heavy metal content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Taste of Super-Dwarf Rice Cultured in Space

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki

    2016-07-01

    The interest of food production for lunar base and manned Mars mission has increased recently. So far, plants cultured long duration in space were leafy vegetables, arabidopsis, wheat, barley and so on. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. Rice symbolizes the rice-eating culture of Japan, is extremely useful as a specific cultured plant candidate of Japan in space. In the previous report, 'Kozo-no-sumika' found from seedlings in raising of seedling was introduced as a super-dwarf rice to culture in space. Considering this rice as food in space, we investigate the taste characteristics of this rice. At present, waxy 'Kozo-no-sumika' and nonwaxy 'Hosetsu dwarf' of super-dwarf rice and 'Nipponbare' of previous standard rice for sensory test are cultured in paddy field. Hereafter, we will harvest rice, investigate yield, evaluate taste.

  7. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    PubMed

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  8. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice

    PubMed Central

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E.; Qiang, Sheng

    2015-01-01

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China. PMID:26012494

  9. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    PubMed

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  10. Populations of Rice Grain Bug, Paraeuscosmetus pallicomis, (Hemiptera: Lygaeidae) in Weed-free Paddy Field, Weedy Paddy Field and Paddy Dykes.

    PubMed

    Abdullah, Tamrin; Nasruddin, Andi; Agus, Nurariaty

    2017-07-01

    Research on the populations of rice grain bug Paraeuscosmetus pallicomis Dallas (Hemiptera: Lygaeidae) in paddy field ecosystems was performed with the aim to determine the populations of rice grain bug in weed-free paddy field, weedy paddy field, and paddy dykes. Experiment was carried out in the village of Paccellekang in the district of Patallasang of Gowa Regency in South Sulawesi, Indonesia. Observations were performed during the milky grain stage (85 days after planting), the mature grain stage (105 days after planting), and one day after harvest (115 days after transplanting). Results showed that 85 days after the transplanting, the populations of rice grain bug was significantly higher in the weedy paddy field compared to weed-free field and paddy dykes with total numbers of 1.75, 3.53, and 0.31 insects per 2 hills, respectively. Similarly, 105 days after the transplanting, 2.53, 5.53, and 0.11 insects per hill, respectively. However, one day after the harvest (115 days after transplanting) the number of insects in weed-free field decreased, while in the dykes increased, and the weedy plot still had the highest number of insects per 2 hills. Our results suggested that weeds played an important role in regulating the bug population by providing alternative shelter and foods for the insect.

  11. Populations of Rice Grain Bug, Paraeuscosmetus pallicomis, (Hemiptera: Lygaeidae) in Weed-free Paddy Field, Weedy Paddy Field and Paddy Dykes

    PubMed Central

    Abdullah, Tamrin; Nasruddin, Andi; Agus, Nurariaty

    2017-01-01

    Research on the populations of rice grain bug Paraeuscosmetus pallicomis Dallas (Hemiptera: Lygaeidae) in paddy field ecosystems was performed with the aim to determine the populations of rice grain bug in weed-free paddy field, weedy paddy field, and paddy dykes. Experiment was carried out in the village of Paccellekang in the district of Patallasang of Gowa Regency in South Sulawesi, Indonesia. Observations were performed during the milky grain stage (85 days after planting), the mature grain stage (105 days after planting), and one day after harvest (115 days after transplanting). Results showed that 85 days after the transplanting, the populations of rice grain bug was significantly higher in the weedy paddy field compared to weed-free field and paddy dykes with total numbers of 1.75, 3.53, and 0.31 insects per 2 hills, respectively. Similarly, 105 days after the transplanting, 2.53, 5.53, and 0.11 insects per hill, respectively. However, one day after the harvest (115 days after transplanting) the number of insects in weed-free field decreased, while in the dykes increased, and the weedy plot still had the highest number of insects per 2 hills. Our results suggested that weeds played an important role in regulating the bug population by providing alternative shelter and foods for the insect. PMID:28890757

  12. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals.

    PubMed

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2016-12-01

    Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha -1 ) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5-91.2 % and the concentrations of Cd and Pb in brown rice by 20.9-50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha -1 ) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.

  13. Divergent Functions of orthologous NAC Transcription Factors in Wheat and Rice

    PubMed Central

    Distelfeld, Assaf; Pearce, Stephen P.; Avni, Raz; Scherer, Beatrice; Uauy, Cristobal; Piston, Fernando; Slade, Ann; Zhao, Rongrong; Dubcovsky, Jorge

    2016-01-01

    The wheat GPC-B1 gene located on chromosome 6B is an early regulator of senescence and affects remobilization of protein and minerals to the grain. GPC-B1 is a NAC transcription factor and has a paralogous copy on chromosome 2B in tetraploid wheat, GPC-B2. The closest rice homolog to both wheat GPC genes is Os07g37920 which is located on rice chromosome 2 and is colinear with GPC-B2. Since rice is a diploid species with a sequenced genome, we initiated the study of Os07g37920 to develop a simpler model to study senescence and mineral remobilization in cereals. We developed eleven independent RNA interference transgenic rice lines (Os07g37920-RNAi) and 10 over-expressing transgenic lines (Os07g37920-OE), but none of them showed differences in senescence. Transgenic Os07g37920-RNAi rice plants had reduced proportions of viable pollen grains and were male-sterile, but were able to produce seeds by cross pollination. Analysis of the flower morphology of the transgenic rice plants showed that anthers failed to dehisce. Transgenic Os07g37920-OE lines showed no sterility or anther dehiscence problems. Os07g37920 transcript levels were higher in stamens compared to leaves and significantly reduced in the transgenic Os07g37920-RNAi plants. Wheat GPC genes showed the opposite transcription profile (higher transcript levels in leaves than in flowers) and plants carrying knock-out mutations of all GPC-1 and GPC-2 genes exhibited delayed senescence but normal anther dehiscence and fertility. These results indicate a functional divergence of the homologous wheat and rice NAC genes and suggest the need for separate studies of the function and targets of these transcription factors in wheat and rice. PMID:22278768

  14. Phytochemical Profile of Brown Rice and Its Nutrigenomic Implications.

    PubMed

    Ravichanthiran, Keneswary; Ma, Zheng Feei; Zhang, Hongxia; Cao, Yang; Wang, Chee Woon; Muhammad, Shahzad; Aglago, Elom K; Zhang, Yihe; Jin, Yifan; Pan, Binyu

    2018-05-23

    Whole grain foods have been promoted to be included as one of the important components of a healthy diet because of the relationship between the regular consumption of whole-grain foods and reduced risk of chronic diseases. Rice is a staple food, which has been widely consumed for centuries by many Asian countries. Studies have suggested that brown rice is associated with a wide spectrum of nutrigenomic implications such as anti-diabetic, anti-cholesterol, cardioprotective and antioxidant. This is because of the presence of various phytochemicals that are mainly located in bran layers of brown rice. Therefore, this paper is a review of publications that focuses on the bioactive compounds and nutrigenomic implications of brown rice. Although current evidence supports the fact that the consumption of brown rice is beneficial for health, these studies are heterogeneous in terms of their brown rice samples used and population groups, which cause the evaluation to be difficult. Future clinical studies should focus on the screening of individual bioactive compounds in brown rice with reference to their nutrigenomic implications.

  15. Cointegration analysis for rice production in the states of Perlis and Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Shitan, Mahendran; Ng, Yung Lerd; Karmokar, Provash Kumar

    2015-02-01

    Rice is ranked the third most important crop in Malaysia after rubber and palm oil in terms of production. Unlike the industrial crops, although its contribution to Malaysia's economy is minimal, it plays a pivotal role in the country's food security as rice is consumed by almost everyone in Malaysia. Rice production is influenced by factors such as geographical location, temperature, rainfall, soil fertility, farming practices, etc. and hence the productivity of rice may differ in different state. In this study, our particular interest is to investigate the interrelationship between the rice production of Perlis and Johor. Data collected from Department of Agriculture, Government of Malaysia are tested for unit roots by Augmented Dickey-Fuller (ADF) unit root test while Engle-Granger (EG) procedure is used in the cointegration analysis. Our study shows that cointegrating relationship exists among the rice production in both states. The speed of adjustment coefficient of the error correction model (ECM) of Perlis is 0.611 indicating that approximately 61.1% of any deviation from the long-run path is corrected within a year by the production of rice in Johor.

  16. RISC-interacting clearing 3’- 5’ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana

    PubMed Central

    Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren

    2017-01-01

    RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC. DOI: http://dx.doi.org/10.7554/eLife.24466.001 PMID:28463111

  17. Nitrogen cycling under alternate wetting and drying cycles in Arkansas rice

    USDA-ARS?s Scientific Manuscript database

    Alternate wetting and drying (AWD) cycles offer potential savings in water use for paddy rice production while reducing both greenhouse gas emissions and lowering grain arsenic content. In a three-year (2011-2013) field study near Stuttgart, AR, one-third of a field previously grown to soybean was b...

  18. The effect of water regime and soil management on methane (CH4) emission of rice field

    NASA Astrophysics Data System (ADS)

    Naharia, O.; Setyanto, P.; Arsyad, M.; Burhan, H.; Aswad, M.

    2018-05-01

    Mitigation of CH4 emission of rice field is becoming a serious issue. The Agricultural Environment Preservation Research Station in Central Java conducted a field study to investigate the effect of water regime and soil tillage on CH4 emission from paddy fields. Treatments consisted of two factors. The first factor was water regime, e.g., 1) continuously flooded 5 cm, 2) intermittent irrigation and 3) saturated water condition at 0-1 cm water level. The second factor was soil management, e.g., 1) normal tillage, 2) zero tillage + 3 sulfosate ha-1 and 3) zero tillage + 3 L paraquat ha-1. Most of treatments gave a significant reduction of total CH4 emission between 34 – 85% during the wet season crop as compared to normal rice cropping practice, while in the dry season the CH4 reduction ranged between 16 – 92%. No-tillage with non-selective herbicides combined with intermittent/saturated irrigation system significantly reduced methane emission without significantly affecting rice productivity as compared to normal tillage with continuous flooding (farmers practice)

  19. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Purification of contaminated paddy fields by clean water irrigation over two decades.

    PubMed

    Tai, Yiping; Lu, Huanping; Li, Zhian; Zhuang, Ping; Zou, Bi; Xia, Hanping; Wang, Faming; Wang, Gang; Duan, Jun; Zhang, Jianxia

    2013-10-01

    Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg−1 of Pb and 810.3 mg kg−1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg−1 of Pb and 525.4 mg kg−1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulting from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.

  1. Effect of water management variation on As and Cd accumulation or rice grain

    USDA-ARS?s Scientific Manuscript database

    Because of the current interest in As accumulation in rice, we examined rice grain As and Cd levels from a field test evaluating the effect of irrigation water management. The original study was conducted to test water saving production methods because limitation on water supply is constraining prod...

  2. Identification of major blast resistance genes in the southern US

    USDA-ARS?s Scientific Manuscript database

    Resistance (R) genes in rice play important roles in preventing infections of rice blast fungus, Magnaporthe oryzae. In order to identify more R genes for different rice growing areas in the Southern US, an extensive field survey of the blast fungus was performed from 2012 to 2013. A total of 500 is...

  3. Biofuel vs. Biodiversity? Integrated Emergy and Economic Cost-Benefit Evaluation of Rice-Ethanol Production in Japan

    EPA Science Inventory

    Energy analysis results confirmed that abandoned rice fields provide a good opportunity for Japan to fulfill its E-3 target by producing ethanol from high-yield rice feedstock. However, to be a viable alternative, a biofuel should not only provide a net energy gain and reduce the...

  4. Changes of Field Incurred Chlorpyrifos and Its Toxic Metabolite Residues in Rice during Food Processing from-RAC-to-Consumption

    PubMed Central

    Zhang, Zhiyong; Jiang, Wayne W.; Jian, Qiu; Song, Wencheng; Zheng, Zuntao; Wang, Donglan; Liu, Xianjin

    2015-01-01

    The objectives of this study were to determine the effects of food processing on field incurred residues levels of chlorpyrifos and its metabolite 3,5,6-Trichloro-2-pyridinol (TCP) in rice. The chlorpyrifos and TCP were found to be 1.27 and 0.093 mg kg-1 in straw and 0.41 and 0.073 mg kg-1 in grain, respectively. It is observed that the sunlight for 2 hours does not decrease the chlorpyrifos and TCP residues in grain significantly. Their residues in rice were reduced by up to 50% by hulling. The cooking reduced the chlorpyrifos and TCP in rice to undetectable level (below 0.01 mg kg-1). Processing factors (PFs) of chlorpyrifos and TCP residues in rice during food processing were similar. Various factors have impacts on the fates of chlorpyrifos and TCP residues and the important steps to reduce their residues in rice were hulling and cooking. The results can contribute to assure the consumer of a safe wholesome food supply. PMID:25608031

  5. Effects of Colonization of the Roots of Domestic Rice (Oryza sativa L. cv. Amaroo) by Burkholderia pseudomallei

    PubMed Central

    Constantinoiu, Constantin; Gardiner, Christopher; Warner, Jeffrey

    2015-01-01

    Burkholderia pseudomallei is a saprophytic bacterium that causes melioidosis and is often isolated from rice fields in Southeast Asia, where the infection incidence is high among rice field workers. The aim of this study was to investigate the relationship between this bacterium and rice through growth experiments where the effect of colonization of domestic rice (Oryza sativa L. cv Amaroo) roots by B. pseudomallei could be observed. When B. pseudomallei was exposed to surface-sterilized seeds, the growth of both the root and the aerosphere was retarded compared to that in controls. The organism was found to localize in the root hairs and endodermis of the plant. A biofilm formed around the root and root structures that were colonized. Growth experiments with a wild rice species (Oryza meridionalis) produced similar retardation of growth, while another domestic cultivar (O. sativa L. cv Koshihikari) did not show retarded growth. Here we report B. pseudomallei infection and inhibition of O. sativa L. cv Amaroo, which might provide insights into plant interactions with this important human pathogen. PMID:25911477

  6. Genome-Wide Association of Rice Blast Disease Resistance and Yield-Related Components of Rice.

    PubMed

    Wang, Xueyan; Jia, Melissa H; Ghai, Pooja; Lee, Fleet N; Jia, Yulin

    2015-12-01

    Robust disease resistance may require an expenditure of energy that may limit crop yield potential. In the present study, a subset of a United States Department of Agriculture rice core collection consisting of 151 accessions was selected using a major blast resistance (R) gene, Pi-ta, marker and was genotyped with 156 simple sequence repeat (SSR) markers. Disease reactions to Magnaporthe oryzae, the causal agent of rice blast disease, were evaluated under greenhouse and field conditions, and heading date, plant height, paddy and brown seed weight in two field environments were analyzed, using an association mapping approach. A total of 21 SSR markers distributed among rice chromosomes 2 to 12 were associated with blast resistance, and 16 SSR markers were associated with seed weight, heading date, and plant height. Most noticeably, shorter plants were significantly correlated with resistance to blast, rice genomes with Pi-ta were associated with lighter seed weights, and the susceptible alleles of RM171 and RM6544 were associated with heavier seed weight. These findings unraveled a complex relationship between disease resistance and yield-related components.

  7. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    PubMed

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  8. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    PubMed Central

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  9. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere.

    PubMed

    Venkatachalam, S; Ranjan, K; Prasanna, R; Ramakrishnan, B; Thapa, S; Kanchan, A

    2016-07-01

    The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.

    PubMed

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-04-26

    It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with the Nipponbare (O. sativa) complete genome without assembly of the DXWR genome. Based on the results from the comparative genomics analysis, structural variations (SVs) between DXWR and Nipponbare were determined to locate deleted genes which could have been acquired by Nipponbare during rice domestication. To overcome the limit of the SV detection, the DXWR transcriptome was also sequenced and compared with the Nipponbare transcriptome to discover the genes which could have been lost in DXWR during domestication. Both 1591 Nipponbare-acquired genes and 206 DXWR-lost transcripts were further analyzed using annotations from multiple sources. The NGS data are available in the NCBI SRA database with ID SRP070627. These results help better understanding the domestication from wild rice to cultivated rice at the whole genome level and provide a genomic data resource for rice genetic research or breeding. One finding confirmed transposable elements contribute greatly to the genome evolution from wild rice to cultivated rice. Another finding suggested the photophosphorylation and oxidative phosphorylation system in cultivated rice could have adapted to environmental changes simultaneously during domestication.

  11. The tiered-evaluation of the effects of transgenic cry1c rice on Cyrtorhinus lividipennis, a main predator of Nilaparvata lugens

    PubMed Central

    Han, Yu; Ma, Fugang; Nawaz, Muhammad; Wang, Yu; Cai, Wanlun; Zhao, Jing; He, Yueping; Hua, Hongxia; Zou, Yulan

    2017-01-01

    T1C-19, a newly developed transgenic cry1C rice line, expresses cry1C under the control of the maize ubiquitin promoter, and is highly resistant to lepidopteran pests of rice. Cyrtorhinus lividipennis is the major predator of the eggs and young nymphs of Nilaparvata lugens, which is the main non-target sap-sucking insect pest of Bt rice. C. lividipennis may be exposed to Cry1C protein, thus biosafety evaluations of transgenic cry1C rice on C. lividipennis should be conducted before the commercialization of T1C-19. In the current study, we tested the direct toxicity of elevated doses of Cry1C to C. lividipennis, effects of T1C-19 on the life-table parameters of C. lividipennis via preying planthoppers, and effects of T1C-19 on the population density and dynamics in rice fields. No detrimental effects on development, survival, female ratio and body weight of C. lividipennis were caused by direct exposure to elevated doses of the Cry1C protein or prey-mediated exposure to realistic doses of the protein. The population density and dynamics did not significantly differ between C. lividipennis in T1C-19 and non-transgenic rice fields. Thus, transgenic cry1C rice had no negative effects on C. lividipennis. This is the first report of the effects of transgenic cry1C rice on C. lividipennis. PMID:28205641

  12. The tiered-evaluation of the effects of transgenic cry1c rice on Cyrtorhinus lividipennis, a main predator of Nilaparvata lugens

    NASA Astrophysics Data System (ADS)

    Han, Yu; Ma, Fugang; Nawaz, Muhammad; Wang, Yu; Cai, Wanlun; Zhao, Jing; He, Yueping; Hua, Hongxia; Zou, Yulan

    2017-02-01

    T1C-19, a newly developed transgenic cry1C rice line, expresses cry1C under the control of the maize ubiquitin promoter, and is highly resistant to lepidopteran pests of rice. Cyrtorhinus lividipennis is the major predator of the eggs and young nymphs of Nilaparvata lugens, which is the main non-target sap-sucking insect pest of Bt rice. C. lividipennis may be exposed to Cry1C protein, thus biosafety evaluations of transgenic cry1C rice on C. lividipennis should be conducted before the commercialization of T1C-19. In the current study, we tested the direct toxicity of elevated doses of Cry1C to C. lividipennis, effects of T1C-19 on the life-table parameters of C. lividipennis via preying planthoppers, and effects of T1C-19 on the population density and dynamics in rice fields. No detrimental effects on development, survival, female ratio and body weight of C. lividipennis were caused by direct exposure to elevated doses of the Cry1C protein or prey-mediated exposure to realistic doses of the protein. The population density and dynamics did not significantly differ between C. lividipennis in T1C-19 and non-transgenic rice fields. Thus, transgenic cry1C rice had no negative effects on C. lividipennis. This is the first report of the effects of transgenic cry1C rice on C. lividipennis.

  13. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system to C-R, R-R and B-R rotation patterns had good effect in terms of improving total yield and economic benefits, and soil physical and chemical properties were improved.

  14. Design and analysis of radial imaging capsule endoscope (RICE) system.

    PubMed

    Ou-Yang, Mang; Jeng, Wei-De

    2011-02-28

    In this study, a radial imaging capsule endoscope (RICE) system is designed, which differs from a conventional front imaging capsule endoscope (FICE) system. To observe the wrinkled intima of the intestine, which spreads without folding around the circumference of the capsule when a capsule endoscope with a diameter that slightly exceeds that of the intestine passes through it, the RICE uses a cone mirror, a radial window shell, and a focus optical module that comprise the radial imaging system. This concept was demonstrated in a packaged optical simulator. The RICE optical model also has been established and verified by many simulations and experiments. In minimizing the sagittal and tangential aberrations, the optical module of the RICE has achieved an F-number of 4.2, a viewing angle of 65.08°, and an RMS radius of the 4th to 6th fields of less than 17 um. A comparison of these characteristics with those of the focus optical module that is used in FICE lenses reveals that the spot size is 50% larger for each field, and the modulation transfer function (MTF) is remarkably improved from 7% to 36% at 100 lp/mm on the 5th field of the sagittal plane.

  15. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems.

    PubMed

    Luo, Liang-Guo; Itoh, Sumio; Zhang, Qing-Wen; Yang, Shi-Qi; Zhang, Qing-Zhong; Yang, Zheng-Li

    2011-06-01

    The leaching behavior of nitrogen was studied in single rice paddy production ecosystems in Tsukuba, Japan after 75 years of consistent fertilization regimes (no fertilizer, ammonium sulfate, a combination of composted rice straw with soybean cake, and fresh clover). During the 75-year period, management was unchanged with respect to rice planting density, irrigation, and net N fertilization for each field to which an N-source was added. Percolation water was collected, from May 2001 to April 2002, using porous suction cups installed in the fields at depths of 15, 40, and 60 cm. All water samples were taken to the laboratory for the measurement of both NH(4) ( + )-N and NO(3) ( - )-N concentrations using a continuous-flow nitrogen analyzer. The result indicated that there were significant differences in N leaching losses between treatments during the rice growing season. Total N leaching was significantly lower with the application of composted rice straw plus soybean cake (0.58 kg N ha( - 1)) than with ammonium sulfate (2.41 kg N ha( - 1)), which resulted in N leaching at a similar level to that with the fresh clover treatment (no significant difference). The majority of this N leaching was not due to NO(3) ( - )-N loss, but to that of NH(4) ( + )-N. The mean N leaching for all fertilizer treatments during the entire rice growing season was 1.58 kg N ha( - 1). Composted rice straw plus soybean cake produced leaching losses which were 65-75% lower than those with the application of fresh clover and ammonium sulfate. N accumulation resulting from nitrification in the fallow season could be a key source of nitrate-N leaching when fields become re-flooded before rice transplanting in the following year; particular attention should be paid to this phenomenon.

  16. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    NASA Astrophysics Data System (ADS)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water input) were calculated for each treatment. The outcomes show that the water application efficiencies of all treatments were higher in 2013 than in 2012 (by 23%, 25% and 4% for FLD, 3L-FLD, and IRR respectively). These results could be ascribed to the higher groundwater level observed in 2013 (about 10-15 cm closer to the soil surface), likely due to the conversion of the field beyond the monitored plots from soybean to flooded rice. Moreover, a small increase of the water application efficiency of 3L-FLD was found if compared to FLD (3% on average), while the water application efficiency of IRR was, on average, higher by 67% compared to FLD. The good performance of IRR is related to lower percolation rates and a relevant contribution of capillary rise due to the shallow groundwater table maintained by the continuous submergence of the surrounding paddy fields. The performed experiment highlighted that significant improvement in the water use efficiency at the field scale can be achieved. However, a widespread adoption of water regimes different from continuous flooding should be carefully evaluated by a larger-scale approach since a consequent drop in the groundwater table depth could have repercussions on the potential gains themselves.

  17. Factors Affecting the Distribution of Wild Rice (Zizania palustris) and the Surrounding Macrophyte Community.

    NASA Astrophysics Data System (ADS)

    Pillsbury, R. W.; McGuire, M.

    2005-05-01

    A recent decline in wild rice wetlands is cause for concern due to its importance as a food source, refuge for wildlife, and cultural significance. Sixty wetlands in Wisconsin and Minnesota (USA) were sampled, with approximately equal numbers displaying dense, moderate and sparse wild rice production. Chemical, physical, and watershed parameters were measured as well as macrophyte densities. Data were analyzed using multivariate statistics (CCA). Moderate levels of phosphorus appear beneficial to the overall success of wild rice, while free-floating macrophytes show an overwhelming positive response to higher levels of P. The distribution of macrophytes bordering wild rice beds is correlated to pH,with Potamogeton robbinsii and filamentous green algae responding most strongly to its increase. Healthy stands of wild rice exhibit a narrow circum-neutral range of pH (6.1-8.0)which is significantly different from the greater range exhibited by sparse wild rice wetlands (6.5-8.5). This pattern was paralleled when considering depth which suggests that deeper wetlands may be more susceptible to wild rice loss. Management of existing wild rice wetlands should focus monitoring on pH, depth, phosphorus concentrations and shore development. We are currently using this data base to locate the best reintroduction sites for wild rice.

  18. Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market.

    PubMed

    Katsurayama, Aline M; Martins, Ligia M; Iamanaka, Beatriz T; Fungaro, Maria Helena P; Silva, Josué J; Frisvad, Jens C; Pitt, John I; Taniwaki, Marta H

    2018-02-02

    The guarantee of the high quality of rice is of utmost importance because any toxic contaminant may affect consumer health, especially in countries such as Brazil where rice is part of the daily diet. A total of 187 rice samples, from field, processing and market from two different production systems, wetland from the state of Rio Grande do Sul, dryland, from the state of Maranhão and market samples from the state of São Paulo, were analyzed for fungi belonging to Aspergillus section Flavi and the presence of aflatoxins. Twenty-three soil samples from wetland and dryland were also analyzed. A total of 383 Aspergillus section Flavi strains were isolated from rice and soil samples. Using a polyphasic approach, with phenotypic (morphology and extrolite profiles) and molecular data (beta-tubulin gene sequences), five species were identified: A. flavus, A. caelatus, A. novoparasiticus, A. arachidicola and A. pseudocaelatus. This is the first report of these last three species from rice and rice plantation soil. Only seven (17%) of the A. flavus isolates produced type B aflatoxins, but 95% produced kojic acid and 69% cyclopiazonic acid. Less than 14% of the rice samples were contaminated with aflatoxins, but two of the market samples were well above the maximum tolerable limit (5μg/kg), established by the Brazilian National Health Surveillance Agency. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Chlorpyrifos residual behaviors in field crops and transfers during duck pellet feed processing.

    PubMed

    Li, Rui; Wei, Wei; He, Liang; Hao, Lili; Ji, Xiaofeng; Zhou, Yu; Wang, Qiang

    2014-10-22

    Chlorpyrifos is a widely used organophosphorus pesticide in agricultural crops (including food) and animal feeds in China, resulting in heavy contamination. Many studies have focused on the food-processing effects on chlorpyrifos removal, but sufficient information is not observed for feed-processing steps. Here, chlorpyrifos residual behaviors in field crops and its transfers in duck pellet feed-processing steps were evaluated. In field trials, the highest residues for rice grain, shelled corn, and soybean seed were 12.0, 0.605, and 0.220 mg/kg, respectively. Residues of all rice grain and about half of shelled corn exceeded the maximum residue limits (MRLs) of China, and five soybean seeds exceeded the MRL of China. Chlorpyrifos residue was reduced 38.2% in brown rice after the raw rice grain was hulled. The residue in bran increased 71.2% after milling from brown rice. During the squashing step, the residue reduced 73.8% in soybean meal. The residues reduced significantly (23.7-36.8%) during the process of granulating for rice, maize, and soybean products. Comparatively, the grinding process showed only limited influence on chlorpyrifos removal (<10%). The residues of duck pellet feeds produced from highly contaminated raw materials of this study were 1.01 mg/kg (maize-soybean feed) and 3.20 mg/kg (rice-soybean feed), which were much higher than the generally accepted value (>0.1 mg/kg) for animal feeding. Chlorpyrifos residues were removed significantly by processing steps of pellet feeds, but the residue of raw materials was the determining factor for the safety of duck feeding.

  20. Population dynamics of Sesamia inferens on transgenic rice expressing Cry1Ac and CpTI in southern China.

    PubMed

    Han, Lanzhi; Liu, Peilei; Wu, Kongming; Peng, Yufa; Wang, Feng

    2008-10-01

    Genetically modified insect-resistant rice lines containing the cry1Ac gene from Bacillus thuringiensis (Bt) or the CpTI (cowpea trypsin inhibitor) gene developed for the management of lepidopterous pests are highly resistant to the major target pests, Chilo suppressalis (Walker), Cnaphalocrocis medinalis (Guenée), and Scirpophaga incertulas (Walker), in the main rice-growing areas of China. However, the effects of these transgenic lines on Sesamia inferens (Walker), an important lepidopterous rice pest, are currently unknown. Because different insect species have varying susceptibility to Bt insecticidal proteins that may affect population dynamics, research into the effects of these transgenic rice lines on the population dynamics of S. inferens was conducted in Fuzhou, southern China, in 2005 and 2006. The results of laboratory, field cage, and field plot experiments show that S. inferens has comparatively high susceptibility to the transgenic line during the early growing season, with significant differences observed in larval density and infestation levels between transgenic and control lines. Because of a decrease in Cry1Ac levels in the plant as it ages, the transgenic line provided only a low potential for population suppression late in the growing season. There is a correlation between the changing expression of Cry1Ac and the impact of transgenic rice on the population dynamics of S. inferens during the season. These results indicate that S. inferens may become a major pest in fields of prospective commercially released transgenic rice, and more attention should be paid to developing an effective alternative management strategy.

  1. A Phenology-based Approach for Rice Crop Mapping from Multi-temporal Sentinel-1A Data in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Chen, J. B.; Nguyen, S. T.; Chen, C. R.; Chiang, S. H.

    2016-12-01

    Rice is the most important food crop in Taiwan, accounting for approximately 5% (166,616 ha) of the total cultivated area. Besides its nutritional value, rice agriculture remains the primary source of livelihood for the majority of rural populations in the country. Rice monitoring is a crucial activity due to official initiatives to ensure the national food security. Because the size of rice fields in Taiwan is relatively small, rice monitoring is traditionally implemented through time-consuming and costly visual interpretation of aerial photos. The Sentinel-1A launched on 3 April 2014 provides the data that have sufficient spatial and temporal resolutions (i.e., 10 m resolution and 12-day revisit cycle) for monitoring small patches of rice fields in the country. This study aimed to develop a phenology-based approach to map rice-growing areas in Taiwan from multi-temporal descending Sentinel-1A VH and VV data. The data were processed for the second rice cropping season (July‒December) in 2015, consisting four main steps: (1) data pre-processing, including radiometric and geometric corrections, and speckle noise filtering of the VH and VV backscattering coefficient data, (2) normalization difference sigma-naught index (NDSI) calculation based on the sowing and heading periods obtained from the analysis of rice crop phenology in the region, (3) threshold-based rice classification using the expectation-maximization method, and (4) accuracy assessment of the mapping results. The mapping results compared with the ground reference data indicated that the overall accuracies and Kappa coefficients achieved for the VH data were 92.0% and 0.84, while the values for the VV data were 81.1% and 0.62, respectively. The mapping results further verified with the government's rice area statistics reaffirmed the consistency between these two datasets with the root mean square error (RMSE) less than 1%, in both cases. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop monitoring in Taiwan using information of rice crop phenology. The methods were thus proposed for rice monitoring in the country and other regions around the world.

  2. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome

    USDA-ARS?s Scientific Manuscript database

    The domestication of Asian rice (Oryza sativa) was a complex process and substantial ambiguity remains regarding the timing, number, and locations of domestication events. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests at least two independent domesticati...

  3. Internal aeration of paddy field rice (Oryza sativa) during complete submergence---importance of light and floodwater O2.

    PubMed

    Winkel, Anders; Colmer, Timothy D; Ismail, Abdelbagi M; Pedersen, Ole

    2013-03-01

    Flash floods can submerge paddy field rice (Oryza sativa), with adverse effects on internal aeration, sugar status and survival. Here, we investigated the in situ aeration of roots of rice during complete submergence, and elucidated how underwater photosynthesis and floodwater pO(2) influence root aeration in anoxic soil. In the field, root pO(2) was measured using microelectrodes during 2 d of complete submergence. Leaf gas films that formed on the superhydrophobic leaves were left intact, or experimentally removed, to elucidate their effect on internal aeration. In darkness, root pO(2) declined to very low concentrations (0.24 kPa) and was strongly correlated with floodwater pO(2). In light, root pO(2) was high (14 kPa) and primarily a function of the incident light determining the rates of underwater net photosynthesis. Plants with intact leaf gas films maintained higher underwater net photosynthesis relative to plants without gas films when the submerged shoots were in light. During complete submergence, internal aeration of rice in the field relies on underwater photosynthesis during the day and entry of O(2) from the floodwater during the night. Leaf gas films enhance photosynthesis during submergence leading to improved O(2) production and sugar status, and therefore contribute to the submergence tolerance of rice. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. Effect of lambda cyhalothrin on Calothrix sp. (GUEco 1001), an autochthonous cyanobacterium of rice fields of Brahmaputra floodplain.

    PubMed

    Gupta, Kiran; Baruah, P P

    2015-12-01

    Pesticide contamination in the rice fields has manifested into a serious global environmental concern. Application of pesticides in the rice fields has deleterious effects on non-target organisms including nitrogen-fixing cyanobacteria which help to maintain the rice field fertility. In the present research endeavor, the effect of lambda cyhalothrin (5% EC), a synthetic pyrethroid insecticide, has been studied on the growth and pigments content of Calothrix sp. (GUEco 1001), an indigenous strain isolated from rice grown areas of Brahmaputra floodplain. To study the toxic effect of lambda cyhalothrin, the test organism was exposed to varying concentrations of the insecticide i.e., 20 ppm, 40 ppm, 80 ppm, and 160 ppm based upon the determination of LC50 for a period of 20 days. The result obtained in the laboratory showed a progressive decrease in the growth and pigments content by the test organism with increasing concentrations of the lambda cyhalothrin against time dose-dependent manner. At high dose (160 ppm), the test organism showed significant decrease in dry weight biomass (54.5%), chlorophyll-a (68%), carotenoids (38%), phycocyanin (80%), and nitrogen contents (55%) over the control. A little but insignificant stimulatory effect on growth and chlorophyll-a contents was recorded in 20 ppm treatment of the insecticide that, however, was reversed in case of carotenoids and phycocyanin contents.

  5. Euchromatic subdomains in rice centromeres are associated with genes and transcription.

    PubMed

    Wu, Yufeng; Kikuchi, Shinji; Yan, Huihuang; Zhang, Wenli; Rosenbaum, Heidi; Iniguez, A Leonardo; Jiang, Jiming

    2011-11-01

    The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.

  6. Dissipation of the Herbicide Benzobicyclon Hydrolysate in a Model California Rice Field Soil.

    PubMed

    Williams, Katryn L; Gladfelder, Joshua J; Quigley, Lindsay L; Ball, David B; Tjeerdema, Ronald S

    2017-10-25

    The herbicide benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has recently been approved for use on California rice fields by the United States Environmental Protection Agency (U.S. EPA). Hydrolysis of BZB rapidly forms the active compound, benzobicyclon hydrolysate (BH), whose fate is currently not well understood. A model California rice soil was used to determine BH soil dissipation. The pK a and aqueous solubility were also determined, as experimental values are not currently available. Sorption data indicate BH does not bind tightly, or irreversibly, with this soil. Flooding resulted in decreased BH loss, indicating anaerobic microbes are less likely to transform BH compared to aerobic microorganisms. Temperature increased dissipation, while autoclaving decreased BH loss. Overall, dissipation was slow regardless of treatment. Further investigation is needed to elucidate the exact routes of loss in soil, though BH is expected to dissipate slowly in flooded rice field soil.

  7. Wildlife hazards from Furadan 3G applications to rice in Texas

    USGS Publications Warehouse

    Flickinger, Edward L.; King, K.A.; Stout, W.F.; Mohn, M.M.

    1980-01-01

    Mortality of birds, fish, frogs, crayfish, earthworms, and nontarget insects occurred in rice fields after treatments of Furadan 3G granules in 3 Texas counties in 1970 and 1973-75. Three western sandpipers (Ereunetes mauri), 1 pectoral sandpiper (Erolia melanotos), and 2 red-winged blackbirds (Agelaius phoeniceus) were found dead or moribund between 17 and 24 hours after treatment. Cricket frogs (Acris crepitans blanchardi) were intoxicated 15 minutes post-treatment, and mosquito fish (Gambusia affinis) showed effects 1 hour post-treatment. Mortality of mosquito fish, Gulf menhaden (Brevoortia patronus), Atlantic croaker (Micropogon undulatus), and European carp (Cyprinus carpio) usually occurred between 24 and 28 hours after treatment. Mortality of frogs, crayfish, and nontarget insects generally occurred in rice field water between 1 and 45 hours after treatment. Mortality of earthworms in soil persisted for 52 hours. As a replacement for aldrin in Texas rice fields, Furadan 3G appeared to cause Iess mortality of birds than aldrin, but Furadan 3G was toxic to birds, fish, and invertebrates.

  8. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].

    PubMed

    Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin

    2013-09-01

    Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.

  9. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation.

    PubMed

    Watanabe, K; Hayano, K

    1993-07-01

    Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.

  10. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids.

    PubMed

    Shivrain, Vinod K; Burgos, Nilda R; Gealy, David R; Sales, Marites A; Smith, Kenneth L

    2009-10-01

    Gene transfer from weeds to crops could produce weedy individuals that might impact upon the evolutionary dynamics of weedy populations, the persistence of escaped genes in agroecosystems and approaches to weed management and containment of transgenic crops. The present aim was to quantify the gene flowrate from weedy red rice to cultivated rice, and evaluate the morphology, phenology and fecundity of resulting hybrids. Field experiments were conducted at Stuttgart and Rohwer, Arkansas, USA. Twelve red rice accessions and an imazethapyr-resistant rice (Imi-R; Clearfield) were used. Hybrids between Imi-R rice x red rice were 138-150 cm tall and flowered 1-5 days later than the rice parent, regardless of the red rice parent. Hybrids produced 20-50% more seed than the rice parent, but had equivalent seed production to the majority of red rice parents. Seeds of all hybrids were red, pubescent and dehisced at maturity. For the majority of hybrids, seed germination was higher than that of the red rice parent. The gene flowrate from red rice to rice was 0.01-0.2% and differed by red rice biotype. The hybrids had higher fecundity and potential competitive ability than the rice parent, and in some cases also the red rice parent. Red rice plants are vectors of gene flow back to cultivated rice and other weedy populations. The progeny of red rice hybrids from cultivated rice mother plants have higher chances of persistence than those from red rice mother plants. Gene flow mitigation strategies should consider this scenario. Copyright 2009 Society of Chemical Industry.

  11. Identification of large masses of citrus fruit and rice fields in eastern Spain

    NASA Technical Reports Server (NTRS)

    Desagredo, F. L.; Salinas, F. G.

    1973-01-01

    ERTS-1 imagery has been successfully used for the identification of large areas of citrus groves and rice fields in the Valencia region of Eastern Spain. Results are encouraging and will facilitate the elaboration of a land use map with a fair degree of definition once methods prove to be fully operational.

  12. Remote sensing of rice fields and sea pollution by SIR-B

    NASA Technical Reports Server (NTRS)

    Fugono, N.; Furuhama, Y.; Takasugi, T.; Okamoto, K.; Fujita, M.; Yoshikado, S.; Masuko, H.; Shinozuka, T.; Inomata, H.; Shiro, I.

    1984-01-01

    Sensor calibration, rice fields, and sea pollution are to be investigated with respect to shuttle imaging radar-B (SIR-B). It is planned that the resolution characteristics of the SIR-B be evaluated, the sidelobe characteristics of the SIR-B be investigated, and the relationship between backscatter cross section and image intensity be established. The microwave-scattering characteristics of rice fields are to be studied using SIR-B data. The possibility of classifying crops from SIR-B data is to be explored. The characteristics of the radar image of oil-like surface films under several sea surface conditions are to be determined. The absolute measurement capability of the sea surface scattering cross section is to be estimated using the SIR.

  13. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) cultivation is critically important for global food security, yet it also represents a significant fraction of agricultural greenhouse gas (GHG) emissions and water resource use. Alternate wetting and drying (AWD) of rice fields has been shown to reduce both methane (CH4) emis...

  14. The race shift of Magnaporthe oryzae occurred within 50 years in the U.S.A.

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease caused by Magnaporthe oryzae is one of the most destructive diseases of rice. Infection of the races of M. oryzae can be prevented by the corresponding major resistance (R) gene in rice. However, the races of M. oryzae in the commercial fields can rapidly change to overcome resis...

  15. Analysis of rice purchase decision on rice consumer in Bandung city

    NASA Astrophysics Data System (ADS)

    Kusno, K.; Imannurdin, A.; Syamsiyah, N.; Djuwendah, E.

    2018-03-01

    This study was conducted at three kinds of purchase location which were traditional market, rice kiosk, and supermarket in Bandung City, with survey data of 108 respondents which were selected by systematic random sampling. The aim of this study is to (1) identify consumer characteristics, (2) identify which atribute is considered by consumer in buying rice, and (3) analyze the relationship between purchase decision and income class. Data were analyzed by descriptive analysis and Chi Square test. The results showed most consumers in the traditional market were middle-educated and lower middle-income, at the rice kiosk, the consumer were generally middle-educated and middle-income, and in the supermarkets, the majority were high-educated and upper middle-income consumers. “Kepulenan” be the first priority of most consumers, but for the lower-middle class, the main priority was price. Thus, in case of scarcity and rice price increase, the government should immediately arrange market operations which targeting to lower-middle class consumers. There was a significant relationship between (1) the quality of rice consumed, (2) the frequency of rice purchase per month, and (3) attitudes toward rice price increase; each with the income class. Although the price of rice increase, consumers of middle and upper-middle were remain loyal to the quality of rice they consumed. This indicates rice market in Bandung city is an ideal market for premium rice so that traders and producers are expected to maintain the quality of rice, such as keep using superior seeds and applying good cultivation based on Good Agricultural Practice (GAP) rules.

  16. Antimicrobial Activity of Plant Extracts from Aloe Vera, Citrus Hystrix, Sabah Snake Grass and Zingiber Officinale against Pyricularia Oryzae that causes Rice Blast Disease in Paddy Plants

    NASA Astrophysics Data System (ADS)

    Uda, M. N. A.; Harzana Shaari, N.; Shamiera. Said, N.; Hulwani Ibrahim, Nur; Akhir, Maisara A. M.; Khairul Rabani Hashim, Mohd; Salimi, M. N.; Nuradibah, M. A.; Hashim, Uda; Gopinath, Subash C. B.

    2018-03-01

    Rice blast disease, caused by the fungus known as Pyricularia oryzae, has become an important and serious disease of rice worldwide. Around 50% of production may be lost in a field moderately affected by infection and each year the fungus destroys rice, which is enough to feed an estimated 60 million people. Therefore, use of herbal plants offer an alternative for the management of plant diseases. Herbal plant like Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale extracts can be used for controlling disease of rice blast. In this study, these four herbal plants were used for evaluating antimicrobial activity against rice plant fungus Pyricularia oryzae, which causes rice blast disease.

  17. Invertebrate mercury bioaccumulation in permanent, seasonal, and flooded rice wetlands within California's Central Valley

    USGS Publications Warehouse

    Ackerman, Joshua T.; Miles, A. Keith; Eagles-Smith, Collin A.

    2010-01-01

    We examined methylmercury (MeHg) bioavailability in four of the most predominant wetland habitats in California's Central Valley agricultural region during the spring and summer: white rice, wild rice, permanent wetlands, and shallowly-flooded fallow fields. We sampled MeHg and total mercury (THg) concentrations in two aquatic macroinvertebrate taxa at the inlets, centers, and outlets of four replicated wetland habitats (8 wetlands total) during two time periods bounding the rice growing season and corresponding to flood-up and pre-harvest (96 total samples). In general, THg concentrations (mean ± standard error) in Notonectidae (Notonecta, back swimmers; 1.18 ± 0.08 µg g− 1 dry weight [dw]) were higher than in Corixidae (Corisella, water boatmen; 0.89 ± 0.06 µg g− 1 dw, MeHg: 0.74 ± 0.05 µg g− 1 dw). MeHg concentrations were correlated with THg concentrations in Corixidae (R2 = 0.80) and 88% of THg was in the MeHg form. Wetland habitat type had an important influence on THg concentrations in aquatic invertebrates, but this effect depended on the sampling time period and taxa. In particular, THg concentrations in Notonectidae, but not Corixidae, were higher in permanent wetlands than in white rice, wild rice, or shallowly-flooded fallow fields. THg concentrations in Notonectidae were higher at the end of the rice growing season than near the time of flood-up, whereas THg concentrations in Corixidae did not differ between time periods. The effect of wetland habitat type was more prevalent near the end of the rice growing season, when Notonectidae THg concentrations were highest in permanent wetlands. Additionally, invertebrate THg concentrations were higher at water outlets than at inlets of wetlands. Our results indicate that although invertebrate THg concentrations increased from the time of flood-up to draw-down of wetlands, temporarily flooded habitats such as white rice, wild rice, and shallowly-flooded fallow fields did not have higher THg or MeHg concentrations in invertebrates than permanent wetlands.

  18. Root attributes affecting water uptake of rice (Oryza sativa) under drought

    PubMed Central

    Henry, Amelia

    2012-01-01

    Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp r) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function. PMID:22791828

  19. Root attributes affecting water uptake of rice (Oryza sativa) under drought.

    PubMed

    Henry, Amelia; Cal, Andrew J; Batoto, Tristram C; Torres, Rolando O; Serraj, Rachid

    2012-08-01

    Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lpr) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.

  20. Influence of rice black streaked dwarf virus on the ecological fitness of non-vector planthopper Nilaparvata lugens (Hemiptera: Delphacidae).

    PubMed

    Xu, Hong-Xing; He, Xiao-Chan; Zheng, Xu-Song; Yang, Ya-Jun; Lu, Zhong-Xian

    2014-08-01

    Rice black streak dwarf virus (RBSDV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Non-vector rice brown planthopper (BPH), Nilaparvata lugens (Stål), shares the same host rice plants with SBPH in paddy fields. The changes in nutritional composition of rice plants infected by RBSDV and the ecological fitness of BPH feeding on the infected plants were studied under both artificial climate chamber and field conditions. Contents of 16 detected amino acids and soluble sugar in RBSDV infected rice plants were higher than those in the healthy ones. On the diseased plants BPH had significantly higher nymphal survival rates, nymphal duration of the males, weight of the female adults, as well as egg hatchability compared to BPH being fed on healthy plants. However, there was no obvious difference in female nymph duration, longevity and fecundity. Defense enzymes (superoxidase dismutase, SOD and catalase, CAT) and detoxifying enzymes (carboxylesterase, CAE and glutathione S-transferase, GST) in BPH adults fed on diseased plants had markedly higher activities. The results indicate rice plants infected by RBSDV improved the ecological fitness of the brown planthopper, a serious pest but not a transmitter of the RBSDV virus. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  1. Genetic diversity of red-grained rice landraces in Hani's terraced fields based on phenotypic characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaomei; Zheng, Yun; Zhang, Tingting; Zhang, Xiaoqian; Ma, Mengli; Meng, Hengling; Wang, Tiantao; Lu, Bingyue

    2018-06-01

    In order to provide useful information for protection and utilization of red-grained rice landraces from Hani's terraced fields, the phenotypic diversity of 61 red-grained rice landraces were assessed based 20 quantitative traits. The results indicated that the phenotypic diversity was abundant in red-grained rice landraces. Coefficients of variation (CV) ranged from 4.878% to 72.878%, and the largest of CV was the panicle neck length, while grain width was smallest. Shannon-Weaver diversity index (H') of 20 traits ranged from 1.464 to 2.165, the largest and the smallest H' values were observed in filled grain number and chalkiness, respectively. Cluster analysis based on unweighted pair group method showed 61 red-grain rice landraces grouped into eight clusters at a cut-off value of 6.2631. The first cluster included 11 landraces, the main cluster II involved 42 landraces, and the cluster IV included 3 landraces. Laopinzhonghongmi, Chena2, Laojingnuo, Bianhao6 and Baimi were separated from the main clusters.

  2. A comparative approach expands the protein-protein interaction node of the immune receptor XA21 in wheat and rice

    PubMed Central

    Yang, Baoju; Ruan, Randy; Cantu, Dario; Wang, Xiaodong; Ji, Wanquan; Ronald, Pamela C; Dubcovsky, Jorge

    2016-01-01

    The rice (Oryza sativa) OsXA21 receptor kinase is a well-studied immune receptor that initiates a signal transduction pathway leading to resistance to Xanthomonas oryzae pv. oryzae. Two homologs of OsXA21 were identified in wheat (Triticum aestivum): TaXA21-like1 located in a syntenic region with OsXA21, and TaXA21-like2 located in a non-syntenic region. Proteins encoded by these two wheat genes interact with four wheat orthologs of known OsXA21 interactors. In this study, we screened a wheat yeast-two-hybrid (Y2H) library using the cytosolic portion of TaXA21-like1 as bait to identify additional interactors. Using full-length T. aestivum and T. monococcum proteins and Y2H assays we identified three novel TaXA21-like1 interactors (TaARG, TaPR2, TmSKL1) plus one previously known in rice (TaSGT1). An additional full-length wheat protein (TaCIPK14) interacted with TaXA21-like2 and OsXA21 but not with TaXA21-like1. The interactions of TaXA21-like1 with TmSKL1 and TaSGT1 were also observed in rice protoplasts using bimolecular fluorescence complementation (BiFC) assays. We then cloned the rice homologs of the novel wheat interactors and confirmed that they all interact with OsXA21. This last result suggests that inter-specific comparative interactome analyses can be used not only to transfer known interactions from rice to wheat, but also to identify novel interactions in rice. PMID:23957671

  3. Static Vented Chamber and Eddy Covariance Methane Flux Comparisons in Mid-South US Rice

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.; Suvocarev, K.; Rival, I.

    2017-12-01

    Rice cultivation contributes higher amounts of GHG emissions (CO2 and CH4) due to flooded field conditions. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. Rice GHG emissions originating from plot level chambers may not accurately describe the aggregate effects of all the soil and micrometeorological variations across a production field. Eddy covariance (EC) is a direct, integrated field measurement of field scale trace gases. Flux measurements were collected in NE Arkansas production size rice fields (16 ha, 40 ac) during the 2015 and 2016 production seasons (June-August) in continuous flood (CF) irrigation. The study objectives included quantifying the difference between chamber and EC measurements, and categorizing flux behavior to growth stage and field history. EC daily average emissions correlated with chamber measurements (R2=0.27-0.54) more than average from 09:00-12:00 which encompassed chamber measurement times (R2=0.23-0.32). Maximum methane emissions occurred in the late afternoon from 14:00-18:00 which corresponded with maximum soil heat flux and air temperature. The total emissions from the study fields ranged from 27-117 kg CH4-C ha-1 season-1. The emission profile was lower in 2015, most likely due to higher rainfall and cooler temperatures during the growing season compared to 2016. These findings improve our understanding of GHG emissions at the field scale under typical production practices and validity of chamber and EC flux measurement techniques.

  4. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.

    PubMed

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha(-1). Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35-91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69-80% and 72-80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization.

    PubMed

    Wu, Lei; Tang, Shuirong; He, Dongdong; Wu, Xian; Shaaban, Muhammad; Wang, Milan; Zhao, Jingsong; Khan, Imran; Zheng, Xunhua; Hu, Ronggui; Horwath, William R

    2017-04-01

    The conversion from rice to vegetable production widely occurs in China. However, the effects of this conversion on N 2 O emission and the underlying mechanisms are not well understood. In the present study, 12 rice paddies (R) were selected and half of them converted to vegetable fields (V) with the following treatments: rice paddies without N-fertilizer (R-CK), rice paddies with conventional N-fertilizer (R-CN), converted vegetable fields without N-fertilizer (V-CK), and converted vegetable fields with conventional N-fertilizer (V-CN) in a randomized block design with 3 replicates. N 2 O emissions were measured with static chambers from December 2012 to December 2015. Within each V-CN plot, a root exclusion subplot was established to measure soil heterotrophic respiration (CO 2 effluxes), a proxy for soil organic matter mineralization. Conversion of rice paddies to vegetable production dramatically increased N 2 O emissions. The three-year cumulative N 2 O emissions were 0.59, 1.90, 55.50 and 160.14kg N ha -1 for R-CK, R-CN, V-CK and V-CN, respectively. The annual N 2 O emissions from vegetable fields ranged between 5.99 and 113.45kg N ha -1 yr -1 , with substantially higher emissions in the first year. N 2 O fluxes from V-CN were significantly and positively related to CO 2 fluxes and inorganic N concentrations. The linear relationship between natural logarithms of N 2 O and CO 2 fluxes was stronger and the regression coefficient higher in the first year, showing the dependence of N 2 O on soil organic matter mineralization. These results suggest that soil organic matter and N mineralization contributes significantly to N 2 O emission following conversion of rice paddies to vegetable production. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Modelling the fate of pesticides in paddy rice-fish pond farming system in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Lamers, M.; Nguyen, N.; Streck, T.

    2012-04-01

    During the last decade rice production in Vietnam has tremendously increased due to the introduction of new high yield, short duration rice varieties and an increased application of pesticides. Since pesticides are toxic by design, there is a natural concern on the possible impacts of their presence in the environment on human health and environment quality. In North Vietnam, lowland and upland rice fields were identified to be a major non-point source of agrochemical pollution to surface and ground water, which are often directly used for domestic purposes. Field measurements, however, are time consuming, costly and logistical demanding. Hence, quantification, forecast and risk assessment studies are hampered by a limited amount of field data. One potential way to cope with this shortcoming is the use of process-based models. In the present study we developed a model for simulating short-term pesticide dynamics in combined paddy rice field - fish pond farming systems under the specific environmental conditions of south-east Asia. Basic approaches and algorithms to describe the key underlying biogeochemical processes were mainly adopted from the literature to assure that the model reflects the current standard of scientific knowledge and commonly accepted theoretical background. The model was calibrated by means of the Gauss-Marquardt-Levenberg algorithm and validated against measured pesticide concentrations (dimethoate and fenitrothion) during spring and summer rice crop season 2008, respectively, of a paddy field - fish pond system typical for northern Vietnam. First simulation results indicate that our model is capable to simulate the fate of pesticides in such paddy - fish pond farming systems. The model efficiency for the period of calibration, for example, was 0.97 and 0.95 for dimethoate and fenitrothion, respectively. For the period of validation, however, the modeling efficiency slightly decreased to 0.96 and 0.81 for dimethoate and fenitrothion, respectively. In our presentation we will picture key model features and algorithms and demonstrate that our model provides a useful and appropriate tool for analyzing and quantifying the transport and behavior of pesticides in paddy rice farming systems.

  7. The estimation of rice paddy yield with GRAMI crop model and Geostationary Ocean Color Imager (GOCI) image over South Korea

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.; Kim, H. O.

    2014-12-01

    In this study, we estimated the rice paddy yield with moderate geostationary satellite based vegetation products and GRAMI model over South Korea. Rice is the most popular staple food for Asian people. In addition, the effects of climate change are getting stronger especially in Asian region, where the most of rice are cultivated. Therefore, accurate and timely prediction of rice yield is one of the most important to accomplish food security and to prepare natural disasters such as crop defoliation, drought, and pest infestation. In the present study, GOCI, which is world first Geostationary Ocean Color Image, was used for estimating temporal vegetation indices of the rice paddy by adopting atmospheric correction BRDF modeling. For the atmospheric correction with LUT method based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S), MODIS atmospheric products such as MOD04, MOD05, MOD07 from NASA's Earth Observing System Data and Information System (EOSDIS) were used. In order to correct the surface anisotropy effect, Ross-Thick Li-Sparse Reciprocal (RTLSR) BRDF model was performed at daily basis with 16day composite period. The estimated multi-temporal vegetation images was used for crop classification by using high resolution satellite images such as Rapideye, KOMPSAT-2 and KOMPSAT-3 to extract the proportional rice paddy area in corresponding a pixel of GOCI. In the case of GRAMI crop model, initial conditions are determined by performing every 2 weeks field works at Chonnam National University, Gwangju, Korea. The corrected GOCI vegetation products were incorporated with GRAMI model to predict rice yield estimation. The predicted rice yield was compared with field measurement of rice yield.

  8. Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment.

    PubMed

    Ismail, Abdelbagi M; Johnson, David E; Ella, Evangelina S; Vergara, Georgina V; Baltazar, Aurora M

    2012-01-01

    Direct seeding of rice is being adopted in rainfed and irrigated lowland ecosystems because it reduces labour costs in addition to other benefits. However, early flooding due to uneven fields or rainfall slows down seed germination and hinders crop establishment. Conversely, early flooding helps suppress weeds and reduces the costs of manual weeding and/or dependence on herbicides; however, numerous weed species are adapted to lowlands and present challenges for the use of flooding to control weeds. Advancing knowledge on the mechanisms of tolerance of flooding during germination and early growth in rice and weeds could facilitate the development of improved rice varieties and effective weed management practices for direct-seeded rice. Rice genotypes with a greater ability to germinate and establish in flooded soils were identified, providing opportunities to develop varieties suitable for direct seeding in flooded soils. Tolerance of flooding in these genotypes was mostly attributed to traits associated with better ability to mobilize stored carbohydrates and anaerobic metabolism. Limited studies were undertaken in weeds associated with lowland rice systems. Remaining studies compared rice and weeds and related weed species such as Echinochloa crus-galli and E. colona or compared ecotypes of the same species of Cyperus rotundus adapted to either aerobic or flooded soils. Tolerant weeds and rice genotypes mostly developed similar adaptive traits that allow them to establish in flooded fields, including the ability to germinate and elongate faster under hypoxia, mobilize stored starch reserves and generate energy through fermentation pathways. Remarkably, some weeds developed additional traits such as larger storage tubers that enlarge further in deeper flooded soils (C. rotundus). Unravelling the mechanisms involved in adaptation to flooding will help design management options that will allow tolerant rice genotypes to adequately establish in flooded soils while simultaneously suppressing weeds.

  9. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management.

    PubMed

    Liu, Wei; Hussain, Saddam; Wu, Lishu; Qin, Ziguo; Li, Xiaokun; Lu, Jianwei; Khan, Fahad; Cao, Weidong; Geng, Mingjian

    2016-01-01

    Straw management during fallow season may influence crop productivity, soil quality, and greenhouse gas (GHG) emissions from rice field. A 3-year field experiment was carried out in central China to examine the influence of different fallow season straw management practices on rice yield, soil properties, and emissions of methane (CH4) and nitrous oxide (N2O) from a mono-rice cultivation system. The treatments comprised an unfertilized control (CK), inorganic fertilization (NPK), rice straw burning in situ (NPK + RSB), rice straw mulching (NPK + RSM), and rice straw strip mulching with green manuring (NPK + RSM + GM). The maximum rice yield, soil organic carbon, soil total nitrogen, and available potassium were observed in NPK + RSM + GM treatment. Compared with NPK, the NPK + RSM + GM recorded 9% higher grain yield averaged across 3 years. However, NPK + RSM and NPK + RSB were statistically similar with NPK regarding grain yield. The NPK + RSM and NPK + RSM + GM recorded significantly higher CH4 emission during rice growing season as well as winter fallow; however, the response of N2O emissions was variable. The NPK + RSM and NPK + RSM + GM were statistically similar for annual cumulative CH4 and N2O emissions. The NPK + RSM + GM recorded 103 and 72% higher straw-induced net economic benefits and soil organic carbon sequestration rate, and reduced net global warming potential by 27% as compared with NPK + RSM. Considering the benefits of soil fertility, higher crop productivity, and environmental safety, the NPK + RSM + GM could be the most feasible and sustainable option for mono-rice cultivation system in central China.

  10. [Control effects of rice-duck farming and other weed management strategies on weed communities in paddy fields].

    PubMed

    Wei, Shouhui; Qiang, Sheng; Ma, Bo; Wei, Jiguang; Chen, Jianwei; Wu, Jianqiang; Xie, Tongzhou; Shen, Xiaokun

    2005-06-01

    By the methods of community ecology, field studies were conducted to evaluate the control effects of three weed management strategies, i. e., rice-duck farming (RD), manual weeding (MW) and chemical weeding (CW), on the weed communities in paddy fields. The results showed that under rice-duck farming, the weed density in paddy fields decreased significantly, and the control effects on dominant weed species such as Monochoria vaginalis, Cyperus difformis, Sagittaria pygmaea were all above 95%, with an overall effect higher than CW and MW. Under RD, the species richness and Shannon-Wiener diversity indices decreased slightly, while Pielou community evenness indices increased markedly, indicating that the species composition of weed community was greatly improved, and the infestation of former dominant weed species was reduced. The structure of weed communities in paddy fields varied with different weed management strategies, e. g., under RD, Lindernia procumbens, Cyperus difformis and Fimbristylis miliacea constituted the major weed community, and the Whittaker index was significant higher than that of CW, MW and CK, which indicated that rice-duck farming had a greater effect on the structure of the weed communities. The same conclusion could be drawn from Sorensen's similarity indices and cluster analysis with Sorensen's index as the distance measurement.

  11. Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Trainer, M.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Daube, B. C.; Dlugokencky, E. J.; Fischer, M. L.; Goldstein, A. H.; Guha, A.; Karl, T.; Kofler, J.; Kosciuch, E.; Misztal, P. K.; Perring, A. E.; Pollack, I. B.; Santoni, G. W.; Schwarz, J. P.; Spackman, J. R.; Wofsy, S. C.; Parrish, D. D.

    2012-12-01

    Airborne measurements of methane (CH4) and carbon dioxide (CO2) were taken over the rice growing region of California's Sacramento Valley in the late spring of 2010 and 2011. From these and ancillary measurements, we show that CH4 mixing ratios were higher in the planetary boundary layer above the Sacramento Valley during the rice growing season than they were before it, which we attribute to emissions from rice paddies. We derive daytime emission fluxes of CH4 between 0.6 and 2.0% of the CO2 taken up by photosynthesis on a per carbon, or mole to mole, basis. We also use a mixing model to determine an average CH4/CO2 flux ratio of -0.6% for one day early in the growing season of 2010. We conclude the CH4/CO2 flux ratio estimates from a single rice field in a previous study are representative of rice fields in the Sacramento Valley. If generally true, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7 × 1010 g CH4/yr is approximately three times lower than the range of probable CH4 emissions (7.8-9.3 × 1010 g CH4/yr) from rice cultivation derived in this study. We attribute this difference to decreased burning of the residual rice crop since 1991, which leads to an increase in CH4 emissions from rice paddies in succeeding years, but which is not accounted for in the CARB inventory.

  12. Chinese Milk Vetch as Green Manure Mitigates Nitrous Oxide Emission from Monocropped Rice System in South China.

    PubMed

    Xie, Zhijian; Shah, Farooq; Tu, Shuxin; Xu, Changxu; Cao, Weidong

    2016-01-01

    Monocropped rice system is an important intensive cropping system for food security in China. Green manure (GM) as an alternative to fertilizer N (FN) is useful for improving soil quality. However, few studies have examined the effect of Chinese milk vetch (CMV) as GM on nitrous oxide (N2O) emission from monocropped rice field in south China. Therefore, a pot-culture experiment with four treatments (control, no FN and CMV; CMV as GM alone, M; fertilizer N alone, FN; integrating fertilizer N with CMV, NM) was performed to investigate the effect of incorporating CMV as GM on N2O emission using a closed chamber-gas chromatography (GC) technique during the rice growing periods. Under the same N rate, incorporating CMV as GM (the treatments of M and NM) mitigated N2O emission during the growing periods of rice plant, reduced the NO3- content and activities of nitrate and nitrite reductase as well as the population of nitrifying bacteria in top soil at maturity stage of rice plant versus FN pots. The global warming potential (GWP) and greenhouse gas intensity (GHGI) of N2O from monocropped rice field was ranked as M

  13. Some effects of aldrin-treated rice on Gulf Coast wildlife

    USGS Publications Warehouse

    Flickinger, Edward L.; King, K.A.

    1972-01-01

    Wildlife casualties from aldrin-dieldrin poisoning are associated with the planting of aldrin-treated rice seed along the Texas Gulf Coast. The fulvous tree duck (Dendrocygna bicolor), which depends on the rice field habitats and is highly susceptible to aldrin-dieldrin poisoning, is suffering a serious population decline in that area. Dead waterfowl, shorebirds, and passerines were collected on study areas in Wharton, Brazoria, and Chambers counties, Texas, from 1967 through 1971. Residues of aldrin or dieldrin were found in all samples of bird casualties and in all eggs, scavengers, predators, fish, frogs, invertebrates, and soils. Fulvous tree ducks appeared to be less resistant to aldrin than other ducks. Dieldrin residues in brains of dead fulvous tree ducks were low, but whole-body residues were as high as 16 ppm. Brains of other dead ducks and geese averaged 10 ppm dieldrin. Some dead birds were exposed by eating treated rice seed, but many dead birds with high dieldrin residues were species that feed largely on invertebrates. Although soil residues were low, snails and crayfish contained enough aldrin and dieldrin (average 9.5 ppm) to account for deaths in birds that fed heavily on these invertebrates over a period of time. When fulvous tree ducks were penned for 3 days in fields aerially planted with treated seed, 3 of 10 birds died with brain residues of 2.5, 2.9, and 6.8 ppm dieldrin, and others were intoxicated. None of eight died, and some gained weight, when penned in fields planted with untreated seed. This study adds further evidence for the suspected lethal effects of aldrin-treated rice seed on wild birds and other wildlife in rice field habitats.

  14. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field.

    PubMed

    Selvaraj, Michael Gomez; Ishizaki, Takuma; Valencia, Milton; Ogawa, Satoshi; Dedicova, Beata; Ogata, Takuya; Yoshiwara, Kyouko; Maruyama, Kyonoshin; Kusano, Miyako; Saito, Kazuki; Takahashi, Fuminori; Shinozaki, Kazuo; Nakashima, Kazuo; Ishitani, Manabu

    2017-11-01

    Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non-transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  16. Mapping Rice Cropping Patterns Using Multi-temporal Sentinel-1A Data

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Khin, L. V.

    2016-12-01

    Rice is the world's third largest crop behind maize and wheat, providing food for more than half of the world's population. Rice agriculture has been a key driver of socioeconomic development in Vietnam as it provides food for more than 90 million people and is considered as a main source of income for the majority of rural populations. Vietnam has approximately 7.5 million ha, annually producing roughly 39 million tons of grain rice making this nation become one of the largest rice suppliers on earth with approximately 7.4 million tons of grain rice exported annually. Thus, monitoring rice-growing areas to meet people's food needs while safeguarding the environment is important to developing strategies for national food security and rice grain exports. Previous studies of rice crop monitoring are often carried using coarse resolution optical satellite data such as MODIS data. Because rice fields in Vietnam are generally small and fragmental, the use of coarse resolution optical satellite data reveals disadvantages due to mixed-pixel issues and data contamination caused by cloud cover. The Sentinel-1A satellite launched on 3 April 2014 provides opportunities to collectively map small patches of rice fields at different scales owing to its high spatial resolution of 10 m and temporal resolution of 12 days. The main objective of this study is to develop an approach to map rice-cropping systems in An Giang and Dong Thap provinces, South Vietnam using multi-temporal Sentinel-1A VH data. We processed the data following four main steps: (1) data pre-processing, (2) constructing smooth time-series VH backscatter data, (3) rice crop classification using the support vector machines (SVM), and (4) accuracy assessment. The mapping results validated with the ground the ground reference data indicated that the overall accuracy and Kappa coefficient were 83.4% and 0.7, respectively. The mapping results also compared with the government's rice area statistics at the district level reaffirmed the consistency between these two datasets with the correlation coefficient (R2) of 0.93 and the relative error in area of 2.2%. This study demonstrates the potential application of time-series Sentinel-1A data for rice crop mapping and the methods are thus proposed for large-scale rice crop monitoring in the country.

  17. Response of rice cultivars to rates of nitrogen and potassium application in field and pot conditions.

    PubMed

    Bahmaniar, M A; Ranjbar, G A

    2007-05-01

    Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p < or = 0.05). Potassium application in field conditions has significantly affected on all characteristics but 1000 grain weight and leaf N and K contents. Simultaneous application of N and K have increasingly affected on grain yield, plant height, shoot dry matter and harvest index in field conditions and on plant height, length of flag leaf and shoot dry matter in pot conditions (p < or = 0.05).

  18. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    NASA Astrophysics Data System (ADS)

    Zhu, Shiming; Malmqvist, Elin; Li, Yiyun; Jansson, Samuel; Li, Wansha; Duan, Zheng; Fu, Wei; Svanberg, Katarina; Bood, Joakim; Feng, Hongqiang; Åkesson, Susanne; Song, Ziwei; Zhang, Baoxin; Zhao, Guangyu; Li, Dunsong; Brydegaard, Mikkel; Svanberg, Sune

    2018-04-01

    A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  19. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    USDA-ARS?s Scientific Manuscript database

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  20. Evaluation and first-year field testing of efficient vesicular arbuscular mycorrhizal fungi for inoculation of wetland rice seedlings.

    PubMed

    Secilia, J; Bagyaraj, D J

    1994-07-01

    Grain yields of the rice cultivar 'Prakash' were improved upon inoculation with Glomus intraradices and G. fasciculatum, by 11% and 8%, respectively, compared with an uninoculated control. The results indicate that the amount of phosphate fertilizer usually applied to rice may be decreased by 50%, without affecting yield, if G. intraradices is inoculated.

Top