Science.gov

Sample records for rice gbr reduces

  1. Germinated brown rice (GBR) reduces the incidence of aberrant crypt foci with the involvement of beta-catenin and COX-2 in azoxymethane-induced colon cancer in rats.

    PubMed

    Latifah, Saiful Yazan; Armania, Nurdin; Tze, Tan Hern; Azhar, Yaacob; Nordiana, Abdul Hadi; Norazalina, Saad; Hairuszah, Ithnin; Saidi, Moin; Maznah, Ismail

    2010-03-26

    Chemoprevention has become an important area in cancer research due to the failure of current therapeutic modalities. Epidemiological and preclinical studies have demonstrated that nutrition plays a vital role in the etiology of cancer. This study was conducted to determine the chemopreventive effects of germinated brown rice (GBR) in rats induced with colon cancer. GBR is brown rice that has been claimed to be richer in nutrients compared to the common white rice. The male Sprague Dawley rats (6 weeks of age) were randomly divided into 5 groups: (G1) positive control (with colon cancer, unfed with GBR), (G2) fed with 2.5 g/kg of GBR (GBR (g)/weight of rat (kg)), (G3) fed with 5 g/kg of GBR, (G4) fed with 10 g/kg of GBR and (G5) negative control (without colon cancer, unfed with GBR). GBR was administered orally once daily via gavage after injection of 15 mg/kg of body weight of azoxymethane (AOM) once a week for two weeks, intraperitonially. After 8 weeks of treatment, animals were sacrificed and colons were removed. Colonic aberrant crypt foci (ACF) were evaluated histopathologically. Total number of ACF and AC, and multicrypt of ACF, and the expression of beta-catenin and COX-2 reduced significantly (p < 0.05) in all the groups treated with GBR (G2, G3 and G4) compared to the control group (G1). Spearman rank correlation test showed significant positive linear relationship between total beta-catenin and COX-2 score (Spearman's rho = 0.616, p = 0.0001). It is demonstrated that GBR inhibits the development of total number of ACF and AC, and multicrypt of ACF, reduces the expression of beta-catenin and COX-2, and thus can be a promising dietary supplement in prevention of colon cancer.

  2. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits.

    PubMed

    Mohd Esa, Norhaizan; Abdul Kadir, Khairul-Kamilah; Amom, Zulkhairi; Azlan, Azrina

    2013-11-15

    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Germinated brown rice ameliorates obesity in high-fat diet induced obese rats.

    PubMed

    Lim, See Meng; Goh, Yong Meng; Mohtarrudin, Norhafizah; Loh, Su Peng

    2016-05-23

    Germinated brown rice (GBR) is a novel functional food that is high in fiber and bioactive compounds with health-promoting properties. This study aims to evaluate anti-obesity effects of GBR in obese rats fed high-fat diet (HFD). Male Sprague-Dawley rats were fed HFD for 8 weeks to induce obesity. The rats were then administrated with GBR where the source of dietary carbohydrate of HFD was replaced by either 25 % GBR, 50 % GBR or 100 % GBR for another 8 weeks. Changes in anthropometry, dietary status, biochemical parameters and histopathology of liver and adipose tissue were measured. Rats fed with HFD were showed elevation in body weight gain and in white adipose tissue mass compared with rats consumed commercial diet. The GBR administration in 50 % GBR and 100 % GBR were significantly decreased body weight gains and food intakes as well as improved lipid profiles in obese rats. In addition, the administration of GBR  had reduced adiposity by showing declination in white adipose tissue mass, adipocytes size and leptin level concomitantly with a higher ratio of fat excretion into feces. Micro- and macrovesicular steatosis were evidently attenuated in obese rats fed GBR. These findings demonstrated that GBR exhibited anti-obesity effects through suppression of body weight gain and food intake, improvement of lipid profiles and reduction of leptin level and white adipose tissue mass in obese rats fed HFD.

  4. Nutrigenomic effects of germinated brown rice and its bioactives on hepatic gluconeogenic genes in type 2 diabetic rats and HEPG2 cells.

    PubMed

    Imam, Mustapha Umar; Ismail, Maznah

    2013-03-01

    Chronic sustained hyperglycemia underlies the symptomatology and complications of type 2 diabetes mellitus, and dietary components contribute to it. Germinated brown rice (GBR) improves glycemic control but the mechanisms involved are still the subject of debate. We now show one mechanism by which GBR lowers blood glucose. Effects of GBR, brown rice, and white rice (WR) on fasting plasma glucose and selected genes were studied in type 2 diabetic rats. GBR reduced plasma glucose and weight more than metformin, while WR worsened glycemia over 4 weeks of intervention. Through nutrigenomic suppression, GBR downregulated gluconeogenic genes (Fbp1 and Pck1) in a manner similar to, but more potently than, metformin, while WR upregulated the same genes. Bioactives (gamma-amino butyric acid, acylated steryl glycoside, oryzanol, and phenolics) were involved in GBR's downregulation of both genes. Plasma glucose, Fbp1 and Pck1 changes significantly affected the weight of rats (p = 0.0001). The fact that GBR downregulates gluconeogenic genes similar to metformin, but produces better glycemic control in type 2 diabetic rats, suggests other mechanisms are involved in GBR's antihyperglycemic properties. GBR as a staple could potentially provide enhanced glycemic control in type 2 diabetes mellitus better than metformin. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characteristics of the ambulation-increasing effect of GBR-12909, a selective dopamine uptake inhibitor, in mice.

    PubMed

    Hirate, K; Kuribara, H

    1991-04-01

    Behavioral effects of a dopamine uptake inhibitor, GBR-12909 (GBR), were evaluated by ambulatory activity in mice. The single administration of over 10 mg/kg of GBR, i.p. and p.o., significantly increased the ambulatory activity. The repeated administration of GBR, at only 10 mg/kg, produced a reverse tolerance to its ambulation-increasing effect. However, a cross-reverse tolerance was induced between GBR (10 and 20 mg/kg) and methamphetamine (2 mg/kg) in both directions. Furthermore, 5 mg/kg of GBR significantly enhanced the effects of methamphetamine, cocaine, imipramine, morphine, scopolamine and caffeine. R-THBP, a coenzyme of tyrosine hydroxylase, also enhanced the effect of GBR. In contrast, the ambulation-increasing effect of 10 mg/kg of GBR was markedly reduced by haloperidol, chlorpromazine, tetrabenazine, oxypertine, reserpine and alpha-methyl-p-tyrosine. On the other hand, the effect of GBR was only slightly and/or scarcely modified by apomorphine, caerulein, physostigmine, pilocarpine, N6-(L-2-phenylisopropyl)-adenosine and naloxone. The neurochemical experiment in rats, not in mice, revealed that GBR possessed more dominant action on dopaminergic systems than noradrenergic or serotonergic systems. However, the behavioral characteristics of GBR are similar to those of methamphetamine and cocaine, which possess less selective action than GBR on dopaminergic and noradrenergic systems.

  6. Impact of germination on the structures and in vitro digestibility of starch from waxy brown rice.

    PubMed

    You, Su-Yeon; Oh, Sea-Gwan; Han, Hye Min; Jun, Wujin; Hong, Young-Shick; Chung, Hyun-Jung

    2016-01-01

    The in vitro digestibility as well as the molecular and crystalline structures of waxy rice starches isolated from brown rice, germinated brown rice (GBR), ultrasonicated GBR, and heat-moisture treated GBR were investigated. The germinated brown rice starch (GBRS) had a lower average molecular weight and a higher proportion of DP 6-12 in amylopectin than brown rice starch (BRS). The relative crystallinity, intensity ratio of the band at 1,047 cm(-1) and 1,022 cm(-1), gelatinization temperature and pasting temperature of waxy rice starch were reduced by germination. However, the ultrasonication and heat-moisture treatment of GBRS increased the relative crystallinity and gelatinization temperature. The digestibility of starch from brown waxy rice was increased by germination. The rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) contents were 50.5%, 42.4%, and 7.1% in BRS, and 69.0%, 27.9% and 3.1% in GBRS, respectively. The ultrasonication and heat-moisture treatment of GBRS reduced RDS content and increased RS content in raw and gelatinized starches. The decrease in starch digestibility of cooked GBR was more pronounced after heat-moisture treatment than after ultrasonication. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice.

    PubMed

    Chen, Yanshan; Han, Yong-He; Cao, Yue; Zhu, Yong-Guan; Rathinasabapathi, Bala; Ma, Lena Q

    2017-01-01

    Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice.

  8. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

    PubMed Central

    Chen, Yanshan; Han, Yong-He; Cao, Yue; Zhu, Yong-Guan; Rathinasabapathi, Bala; Ma, Lena Q.

    2017-01-01

    Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice. PMID:28298917

  9. Eating glutinous brown rice for one day improves glycemic control in Japanese patients with type 2 diabetes assessed by continuous glucose monitoring.

    PubMed

    Terashima, Yuko; Nagai, Yoshio; Kato, Hiroyuki; Ohta, Akio; Tanaka, Yasushi

    2017-05-01

    We investigated whether intake of non-glutinous brown rice (BR) or glutinous brown rice (GBR) for 1 day had an influence on the daily glucose profile measured by continuous glucose monitoring (CGM) when compared with intake of non-glutinous white rice (WR). A total of 37 inpatients with type 2 diabetes mellitus (T2DM) were recruited for a 3-day randomized triple cross-over trial in which they ate WR, BR, or GBR for 1 day each. One of the three types of rice was eaten at breakfast, lunch, and dinner on the first day, before switching to the other types on the second and third days. Each meal had the same energy content and the same side dishes. The main outcome measures were the blood glucose profile determined by continuous glucose monitoring (CGM) and the profile of serum C-peptide (CPR) for 3 hours after breakfast. A self-administered questionnaire was used to assess the palatability of each type of rice. According to the CGM data, the mean 24-hour glucose concentration was lowest with GBR (p<0.01). Serum Cpeptide showed no significant differences among the three diets. Regarding palatability, BR was assigned significantly lower scores than WR and GBR (p<0.05), while there was no difference between WR and GBR. GBR intake suppressed the whole-day glucose profile of patients with T2DM, mainly by reducing postprandial glucose excursion, and GBR was preferred over BR with respect to palatability. GBR may be worth adding to the diet of patients with T2DM.

  10. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley

    PubMed Central

    Zheng, Yunfei; Crawford, Gary W.; Jiang, Leping; Chen, Xugao

    2016-01-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000–7700 BP), Tianluoshan (7000–6500 BP), Majiabang (6300–6000 BP), and Liangzhu (5300–4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice. PMID:27324699

  11. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley

    NASA Astrophysics Data System (ADS)

    Zheng, Yunfei; Crawford, Gary W.; Jiang, Leping; Chen, Xugao

    2016-06-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000-7700 BP), Tianluoshan (7000-6500 BP), Majiabang (6300-6000 BP), and Liangzhu (5300-4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice.

  12. Neuroprotective effects of germinated brown rice against hydrogen peroxide induced cell death in human SH-SY5Y cells.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  13. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    PubMed Central

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H2O2) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis. PMID:22949825

  14. Effects of germination on the nutritive value and bioactive compounds of brown rice breads.

    PubMed

    Cornejo, Fabiola; Caceres, Patricio J; Martínez-Villaluenga, Cristina; Rosell, Cristina M; Frias, Juana

    2015-04-15

    The effect of germination conditions on the nutritional benefits of germinated brown rice flour (GBR) bread has been determined. The proximate composition, phytic acid, in vitro protein digestibility and in vitro enzymatic hydrolysis of starch, glucose and starch content, as well as the most relevant bioactive compounds (GABA, γ-oryzanol and total phenolic compounds) and antioxidant activity of breads prepared with GBR at different germination conditions was determined. When comparing different germination times (0 h, 12 h, 24 h and 48 h), germination for 48 h provides GBR bread with nutritionally superior quality on the basis of its higher content of protein, lipids and bioactive compounds (GABA and polyphenols), increased antioxidant activity and reduced phytic acid content and glycaemic index, although a slight decrease in in vitro protein digestibility was detected. Overall, germination seems to be a natural and sustainable way to improving the nutritional quality of gluten-free rice breads.

  15. Processing Conditions, Rice Properties, Health and Environment

    PubMed Central

    Roy, Poritosh; Orikasa, Takahiro; Okadome, Hiroshi; Nakamura, Nobutaka; Shiina, Takeo

    2011-01-01

    Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR), germinated brown rice (GBR) and partially-milled rice (PMR) contains more health beneficial food components compared to the well milled rice (WMR). Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR) seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled), and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society. PMID:21776212

  16. Biochar amendment reduced methylmercury accumulation in rice plants.

    PubMed

    Shu, Rui; Wang, Yongjie; Zhong, Huan

    2016-08-05

    There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1-4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49-92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35-79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment.

  17. Germinated brown rice as a value added rice product: A review.

    PubMed

    Patil, Swati Bhauso; Khan, Md Khalid

    2011-12-01

    Rice is a staple food for over half of the world's population. Germinated brown rice (GBR) is considered whole food because only the outermost layer i.e. the hull of the rice kernel is removed which causes least damage to its nutritional value. Brown rice can be soaked in water at 30 °C for specified hours for germination to get GBR. Soaking for 3 h and sprouting for 21 h has been found to be optimum for getting the highest gamma-aminobutyric acid (GABA) content in GBR, which is the main reason behind the popularity of GBR. The intake of GBR instead of white rice ameliorates the hyperglycemia, boosts the immune system, lowers blood pressure, inhibits development of cancer cells and assists the treatment of anxiety disorders. Germination process could be used as enzymatic modification of starch that affects pasting properties of GBR flour. GBR would improve the bread quality when substituted for wheat flour. It is concluded that GBR has potential to become innovative rice by preserving all nutrients in the rice grain for human consumption in order to create the highest value from rice.

  18. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice

    PubMed Central

    Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue

    2015-01-01

    This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives. PMID:25861637

  19. Use of iron-fortified rice reduces anemia in infants.

    PubMed

    Nogueira Arcanjo, Francisco Plácido; Santos, Paulo Roberto; Arcanjo, Caio Plácido Costa; Amancio, Olga Maria Silverio; Braga, Josefina Aparecida Pellegrini

    2012-12-01

    Food fortification is advocated to tackle iron deficiency in anemic populations. Our objective was to evaluate the impact of iron-fortified rice (Ultrarice(®)) weekly on hemoglobin and anemia levels compared with standard rice (control). This cluster-randomized study deals with infants (10-23 months) from two public child day care centers in Brazil, n = 216, in an 18 week intervention. The intervention group received individual portions of fortified rice (50 g) provided 56.4 mg elemental/Fe. For intervention center: baseline mean hemoglobin was 11.44 ± 1.07 g/dl, and after intervention 11.67 ± 0.96 g/dl, p < 0.029; for control: baseline mean hemoglobin value was 11.35 ± 4.01 g/dl, and after intervention 11.36 ± 2.10 g/dl, p = 0.986. Anemia prevalence for intervention center was 31.25% at baseline, and 18.75% at end of study, p = 0.045; for control 43.50% were anemic at baseline, and 37.1% at the end of study, p = 0.22. Number Needed to Treat was 7. Iron-fortified rice was effective in increasing hemoglobin levels and reducing anemia in infants.

  20. Mechanical intervention for reducing dust concentration in traditional rice mills

    PubMed Central

    PRANAV, Prabhanjan K.; BISWAS, Mrinmoy

    2016-01-01

    A huge number of workers are employed in traditional rice mills where they are potentially exposed to dust. In this study a dust collection system was developed to capture the airborne dust in the rice mill. The feeding and sieving section of the mill was identified as major dust creating zone. The dust was captured by creating suitable air stream at feeding and sieving sections of the mill and collected in cyclone dust collector. The air stream was created by blower which was selected on the basis to get minimum air speed of 0.5 m/s in the working zones of workers. It was observed that the developed system is successfully collects the significant amount of dust and able to reduce the dust concentration up to 58%. Further, the respirable dust concentration reduced to below 5 mg/m3 throughout the mill which is within the recommended limit of dust exposure. PMID:26829976

  1. Reducing GHG emissions in rice systems: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Linquist, B.

    2014-12-01

    Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions has higher greenhouse gas (GHG) emissions than most crops. This is primarily due to high methane emissions. In this talk I will focus on recent work and reviews on efforts to reduce GHG emissions from rice systems while at the same time maintaining or increasing the productivity of these systems. Specifically, the role of water, straw and nutrient management will be discussed. A great deal of research has gone into evaluating alternate-wetting and drying (AWD) irrigation management. AWD has tremendous potential to reduce GHG emissions; however I will examine how it needs to be practiced to achieve these goals, as well as limitations to its use such as where it can be practiced and possible effects on soil C. Straw management is critical as it provides a key carbon source for methanogens. Straw, however, is difficult to manage and has limited alternative uses. Various forms of nutrient management have also been proposed to reduced GHG emissions in rice systems. I will provide an overview of these and discuss their potential.

  2. Antioxidative Effects of Germinated Brown Rice-Derived Extracts on H2O2-Induced Oxidative Stress in HepG2 Cells

    PubMed Central

    Md Zamri, Nur Diyana; Imam, Mustapha Umar; Abd Ghafar, Siti Aisyah; Ismail, Maznah

    2014-01-01

    The antioxidant properties of germinated brown rice (GBR) are likely mediated by multiple bioactives. To test this hypothesis, HepG2 cells pretreated with GBR extracts, rich in acylated steryl glycoside (ASG), gamma amino butyric acid GABA), phenolics or oryzanol, were incubated with hydrogen peroxide (H2O2) and their hydroxyl radical (OH•) scavenging capacities and thiobarbituric acid-reactive substances (TBARS) generation were evaluated. Results showed that GBR-extracts increased OH• scavenging activities in both cell-free medium and posttreatment culture media, suggesting that the extracts were both direct- and indirect-acting against OH•. The levels of TBARS in the culture medium after treatment were also reduced by all the extracts. In addition, H2O2 produced transcriptional changes in p53, JNK, p38 MAPK, AKT, BAX, and CDK4 that were inclined towards apoptosis, while GBR-extracts showed some transcriptional changes (upregulation of BAX and p53) that suggested an inclination for apoptosis although other changes (upregulation of antioxidant genes, AKT, JNK, and p38 MAPK) suggested that GBR-extracts favored survival of the HepG2 cells. Our findings show that GBR bioactive-rich extracts reduce oxidative stress through improvement in antioxidant capacity, partly mediated through transcriptional regulation of antioxidant and prosurvival genes. PMID:25431609

  3. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    PubMed

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched.

  4. Reducing arsenic accumulation in rice grain through iron oxide amendment.

    PubMed

    Farrow, Eric M; Wang, Jianmin; Burken, Joel G; Shi, Honglan; Yan, Wengui; Yang, John; Hua, Bin; Deng, Baolin

    2015-08-01

    Effects of soil-arsenic (As), phosphorus and iron oxide on As accumulation in rice grain were investigated. Cultivars that have significantly different sensitivity to As, straighthead-resistant Zhe 733 and straighthead-susceptible Cocodrie, were used to represent different cultivar varieties. The grain accumulation of other elements of concern, selenium (Se), molybdenum (Mo), and cadmium (Cd) was also monitored. Results demonstrated that high soil-As not only resulted in high grain-As, but could also result in high grain-Se, and Zhe 733 had significantly less grain-As than Cocodrie did. However, soil-As did not impact grain-Mo and Cd. Among all elements monitored, iron oxide amendment significantly reduced grain-As for both cultivars, while the phosphate application only reduced grain-Se for Zhe 733. Results also indicated that cultivar type significantly impacted grain accumulation of all monitored trace elements. Therefore, applying iron oxide to As-contaminated land, in addition to choosing appropriate rice cultivar, can effectively reduce the grain accumulation of As.

  5. Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles.

    PubMed

    Dutta, Nalok; Mukhopadhyay, Arka; Dasgupta, Anjan Kr; Chakrabarti, Krishanu

    2014-02-01

    Purified bacterial cellulase and xylanase were activated in the presence of calcium hydroxyapatite nanoparticles (NP) with concomitant increase in thermostability about 35% increment in production of d-xylose and reducing sugars from rice husk and rice straw was obtained at 80°C by the sequential treatment of xylanase and cellulase enzymes in the presence of NP compared to the untreated enzyme sets. Our findings suggested that if the rice husk and the rice straw samples were pre-treated with xylanase prior to treatment with cellulase, the percentage increase of reducing sugar per 100g of substrate (starting material) was enhanced by about 29% and 41%, respectively. These findings can be utilized for the extraction of reducing sugars from cellulose and xylan containing waste material. The purely enzymatic extraction procedure can be substituted for the harsh and bio-adverse chemical methods.

  6. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    PubMed Central

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2016-01-01

    Background Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance. Design Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis. PMID:26842399

  7. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice.

    PubMed

    Cáceres, Patricio J; Martínez-Villaluenga, Cristina; Amigo, Lourdes; Frias, Juana

    2014-09-01

    Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.

  8. Killing Two Birds with One Stone: Natural Rice Rhizospheric Microbes Reduce Arsenic Uptake and Blast Infections in Rice.

    PubMed

    Lakshmanan, Venkatachalam; Cottone, Jonathon; Bais, Harsh P

    2016-01-01

    Our recent work has shown that a rice thizospheric natural isolate, a Pantoea sp (hereafter EA106) attenuates Arsenic (As) uptake in rice. In parallel, yet another natural rice rhizospheric isolate, a Pseudomonas chlororaphis (hereafter EA105), was shown to inhibit rice blast pathogen Magnaporthe oryzae. Considering the above, we envisaged to evaluate the importance of mixed stress regime in rice plants subjected to both As toxicity and blast infections. Plants subjected to As regime showed increased susceptibility to blast infections compared to As-untreated plants. Rice blast pathogen M. oryzae showed significant resistance against As toxicity compared to other non-host fungal pathogens. Interestingly, plants treated with EA106 showed reduced susceptibility against blast infections in plants pre-treated with As. This data also corresponded with lower As uptake in plants primed with EA106. In addition, we also evaluated the expression of defense related genes in host plants subjected to As treatment. The data showed that plants primed with EA106 upregulated defense-related genes with or without As treatment. The data shows the first evidence of how rice plants cope with mixed stress regimes. Our work highlights the importance of natural association of plant microbiome which determines the efficacy of benign microbes to promote the development of beneficial traits in plants.

  9. Killing Two Birds with One Stone: Natural Rice Rhizospheric Microbes Reduce Arsenic Uptake and Blast Infections in Rice

    PubMed Central

    Lakshmanan, Venkatachalam; Cottone, Jonathon; Bais, Harsh P.

    2016-01-01

    Our recent work has shown that a rice thizospheric natural isolate, a Pantoea sp (hereafter EA106) attenuates Arsenic (As) uptake in rice. In parallel, yet another natural rice rhizospheric isolate, a Pseudomonas chlororaphis (hereafter EA105), was shown to inhibit rice blast pathogen Magnaporthe oryzae. Considering the above, we envisaged to evaluate the importance of mixed stress regime in rice plants subjected to both As toxicity and blast infections. Plants subjected to As regime showed increased susceptibility to blast infections compared to As-untreated plants. Rice blast pathogen M. oryzae showed significant resistance against As toxicity compared to other non-host fungal pathogens. Interestingly, plants treated with EA106 showed reduced susceptibility against blast infections in plants pre-treated with As. This data also corresponded with lower As uptake in plants primed with EA106. In addition, we also evaluated the expression of defense related genes in host plants subjected to As treatment. The data showed that plants primed with EA106 upregulated defense-related genes with or without As treatment. The data shows the first evidence of how rice plants cope with mixed stress regimes. Our work highlights the importance of natural association of plant microbiome which determines the efficacy of benign microbes to promote the development of beneficial traits in plants. PMID:27790229

  10. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage.

    PubMed

    Gayen, Dipak; Ali, Nusrat; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2015-07-01

    Down-regulation of lipoxygenase enzyme activity reduces degradation of carotenoids of bio-fortified rice seeds which would be an effective tool to reduce huge post-harvest and economic losses of bio-fortified rice seeds during storage. Bio-fortified provitamin A-enriched rice line (golden rice) expressing higher amounts of β-carotene in the rice endosperm provides vitamin A for human health. However, it is already reported that degradation of carotenoids during storage is a major problem. The gene responsible for degradation of carotenoids during storage has remained largely unexplored till now. In our previous study, it has been shown that r9-LOX1 gene is responsible for rice seed quality deterioration. In the present study, we attempted to investigate if r9-LOX1 gene has any role in degradation of carotenoids in rice seeds during storage. To establish our hypothesis, the endogenous lipoxygenase (LOX) activity of high-carotenoid golden indica rice seed was silenced by RNAi technology using aleurone layer and embryo-specific Oleosin-18 promoter. To check the storage stability, LOX enzyme down-regulated high-carotenoid T3 transgenic rice seeds were subjected to artificial aging treatment. The results obtained from biochemical assays (MDA, ROS) also indicated that after artificial aging, the deterioration of LOX-RNAi lines was considerably lower compared to β-carotene-enriched transgenic rice which had higher LOX activity in comparison to LOX-RNAi lines. Furthermore, it was also observed by HPLC analysis that down-regulation of LOX gene activity decreases co-oxidation of β-carotene in LOX-RNAi golden rice seeds as compared to the β-carotene-enriched transgenic rice, after artificial aging treatment. Therefore, our study substantially establishes and verifies that LOX is a key enzyme for catalyzing co-oxidation of β-carotene and has a significant role in deterioration of β-carotene levels in the carotenoid-enriched golden rice.

  11. Controlled-release urea commingled with rice seeds reduced emission of ammonia and nitrous oxide in rice paddy soil.

    PubMed

    Yang, Yuechao; Zhang, Min; Li, Yuncong; Fan, Xiaohui; Geng, Yuqing

    2013-11-01

    Reduction of ammonia (NH) and nitrous oxide (NO) emission and enhanced nitrogen (N) fertilizer use efficiency have been investigated with different N fertilizer management and application methods for irrigated rice production. Few studies have examined NH and NO emissions from rice paddy soil when commingling controlled release urea with rice seeds. The objective of this study was to assess NH volatilization and NO emission from a novel controlled-release urea formulation (CRU-180) when commingled at the full application rate with seeds in a single application during the preparation of plant plugs at the nursery stage. The experiment was conducted as a factorial design with two fertilizer sources (conventional urea and CRU-180), four rates (0, 100, 200, and 300 kg N ha), and three replicates. The entire amount of CRU-180 was incorporated into each plug with germinated seed. The conventional urea was split into four applications based on the standard practice for fertilizer application. The CRU-180 treatments reduced the NH and NO concentration in the paddy flood water and paddy soil solution as compared with the conventional urea treatments. The percentage of applied N fertilizer emitted as NH volatilization and NO emission in the CRU-180 treatments was only about 10% of that from the conventional urea treatments at the same N application rate. The application of CRU-180 with seeds offers a novel N fertilizer management technique, a method to reduce environmental impacts associated with rice production and the cost of rice production.

  12. Germinated Brown Rice Alters Aβ(1-42) Aggregation and Modulates Alzheimer's Disease-Related Genes in Differentiated Human SH-SY5Y Cells

    PubMed Central

    Azmi, Nur Hanisah; Ismail, Maznah; Ismail, Norsharina; Imam, Mustapha Umar; Alitheen, Noorjahan Banu Mohammed; Abdullah, Maizaton Atmadini

    2015-01-01

    The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further. PMID:26858770

  13. Germinated Brown Rice Alters Aβ(1-42) Aggregation and Modulates Alzheimer's Disease-Related Genes in Differentiated Human SH-SY5Y Cells.

    PubMed

    Azmi, Nur Hanisah; Ismail, Maznah; Ismail, Norsharina; Imam, Mustapha Umar; Alitheen, Noorjahan Banu Mohammed; Abdullah, Maizaton Atmadini

    2015-01-01

    The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.

  14. GBR 12909 administration as an animal model of bipolar mania: time course of behavioral, brain oxidative alterations and effect of mood stabilizing drugs.

    PubMed

    Queiroz, Ana Isabelle G; de Araújo, Maíra Moraes; da Silva Araújo, Tatiane; de Souza, Greicy Coelho; Cavalcante, Lígia Menezes; de Jesus Souza Machado, Michel; de Lucena, David Freitas; Quevedo, João; Macêdo, Danielle

    2015-10-01

    Polymorphisms in the human dopamine transporter (DAT) are associated with bipolar endophenotype. Based on this, the acute inhibition of DAT using GBR12909 causes behavioral alterations that are prevented by valproate (VAL), being related to a mania-like model. Herein our first aim was to analyze behavioral and brain oxidative alterations during a 24 h period post-GBR12909 to better characterize this model. Our second aim was to determine the preventive effects of lithium (Li) or VAL 2 h post-GBR12909. For this, adult male mice received GBR12909 or saline being evaluated at 2, 4, 8, 12 or 24 h post-administration. Hyperlocomotion, levels of reduced glutathione (GSH) and lipid peroxidation in brain areas were assessed at all these time-points. GBR12909 caused hyperlocomotion at 2 and 24 h. Rearing behavior increased only at 2 h. GSH levels decreased in the hippocampus and striatum at the time points of 2, 4, 8 and 12 h. Increased lipid peroxidation was detected at the time-points of 2 and 12 h in all brain areas studied. At the time-point of 2 h post-GBR12909 Li prevented the hyperlocomotion and rearing alterations, while VAL prevented only rearing alterations. Both drugs prevented pro-oxidative changes. In conclusion, we observed that the main behavioral and oxidative alterations took place at the time-period of 2 h post-GBR12909, what points to this time-period as the best for the assessment of alterations in this model. Furthermore, the present study expands the predictive validity of the model by the determination of the preventive effects of Li.

  15. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    PubMed

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies.

  16. Same, same but different: symbiotic bacterial associations in GBR sponges.

    PubMed

    Webster, N S; Luter, H M; Soo, R M; Botté, E S; Simister, R L; Abdo, D; Whalan, S

    2012-01-01

    Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR) sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65-100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira, and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs) common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral) specific sequence clusters (SC). These SC spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira, and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0 to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental perturbation.

  17. Surgical Approaches Based on Biological Objectives: GTR versus GBR Techniques

    PubMed Central

    Pagni, Giorgio; Rasperini, Giulio

    2013-01-01

    Guided tissue regenerative (GTR) therapies are performed to regenerate the previously lost tooth supporting structure, thus maintaining the aesthetics and masticatory function of the available dentition. Alveolar ridge augmentation procedures (GBR) intend to regain the alveolar bone lost following tooth extraction and/or periodontal disease. Several biomaterials and surgical approaches have been proposed. In this paper we report biomaterials and surgical techniques used for periodontal and bone regenerative procedures. Particular attention will be adopted to highlight the biological basis for the different therapeutic approaches. PMID:23843792

  18. Reducing arsenic accumulation in rice grain through iron oxide amendment

    USDA-ARS?s Scientific Manuscript database

    In this research, we investigated the accumulation of arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd) in rice grain under different soil conditions in standard straighthead-resistant and straighthead-susceptible cultivars, Zhe 733 and Cocodrie, respectively. Results demonstrated that,...

  19. Antidiabetic properties of germinated brown rice: a systematic review.

    PubMed

    Imam, Mustapha Umar; Azmi, Nur Hanisah; Bhanger, Muhammad Iqbal; Ismail, Norsharina; Ismail, Maznah

    2012-01-01

    Diet is an important variable in the course of type 2 diabetes, which has generated interest in dietary options like germinated brown rice (GBR) for effective management of the disease among rice-consuming populations. In vitro data and animal experiments show that GBR has potentials as a functional diet for managing this disease, and short-term clinical studies indicate encouraging results. Mechanisms for antidiabetic effects of GBR due to bioactive compounds like γ-aminobutyric acid (GABA), γ-oryzanol, dietary fibre, phenolics, vitamins, acylated steryl β-glucoside, and minerals include antihyperglycemia, low insulin index, antioxidative effect, antithrombosis, antihypertensive effect, hypocholesterolemia, and neuroprotective effects. The evidence so far suggests that there may be enormous benefits for diabetics in rice-consuming populations if white rice is replaced with GBR. However, long-term clinical studies are still needed to verify these findings on antidiabetic effects of GBR. Thus, we present a review on the antidiabetic properties of GBR from relevant preclinical and clinical studies, in order to provide detailed information on this subject for researchers to review the potential of GBR in combating this disease.

  20. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder.

    PubMed

    Siriamornpun, Sirithon; Tangkhawanit, Ekkarat; Kaewseejan, Niwat

    2016-06-15

    Green and ripe mango peel powders (MPP) were added to normal rice flour (NRF) and glutinous rice flour (GRF) at three levels (400, 800 and 1200 ppm) and their effects on physicochemical properties and lipid oxidation inhibition were investigated. Overall, MPP increased the breakdown viscosity and reduced the final viscosity in rice flours when compared to the control. Decreasing in retrogradation was observed in both NRF and GRF with MPP added of all levels. MPP addition also significantly inhibited the lipid oxidation of all flours during storage (30 days). Retrogradation values were strongly negatively correlated with total phenolic and flavonoid contents, but not with fiber content. The hydrogen bonds and hydrophilic interactions between phenolic compounds with amylopectin molecule may be involved the decrease of starch retrogradation, especially GRF. We suggest that the addition of MPP not only reduced the retrogradation but also inhibited the lipid oxidation of rice flour.

  1. Post traumatic immediate GBR: alveolar ridge preservation after a comminuted fracture of the anterior maxilla.

    PubMed

    Kim, Yongsoo; Leem, Dae Ho

    2015-04-01

    Without a proper intervention, a crushed alveolar process fracture can cause significant dimensional changes on affected hard and soft tissue that lead to difficult circumstances for post traumatic bone augmentation and dental implant placement. We present herein the cases of immediate guided bone regeneration (GBR) for the maxillary anterior alveolar process with comminuted fracture. Shortly after the hospital visit, guided bone regeneration was conducted for three patients using only xenograft material and bone fragments from traumatic site, without an additional donor site. Resorbable collagen membrane was used on the bone graft site, and titanium mesh was also used if significant bone loss were expected. Radiographic evaluation 6 months after GBR confirmed that all three cases had sufficiently preserved alveolar bone which is clinically required for implant placement. Dental implant installation was carried out for two patients and no specific findings were noted in follow-up after the placement. In this method, additional operation sites for bone collection are not necessary and the number of surgical steps before implant placement can be reduced. Furthermore, this immediate intervention can effectively minimize the alveolar ridge shrinkage of anterior maxilla after injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains.

    PubMed

    Li, H; Chen, X W; Wong, M H

    2016-02-01

    Arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices was inoculated to rice to investigate its effects on arsenic (As) uptake, grain As speciation, and rhizospheric As concentration of six rice cultivars grown in As-amended soil (60 mg As kg(-1) soil). The AMF inoculation induced either positive, neutral or negative responses in rice grown in As contaminated soil, suggesting that functional diversity may exist in AMF symbiosis when As is taken up and transferred. The ratios of inorganic/organic As concentrations in rice grains of all cultivars were significantly reduced by AMF, that involved the transformation of inorganic As into less toxic organic form dimethylarsinic acid (DMA) in rice. AMF decreased significantly total As and inorganic As concentrations in rice grains of Handao 3. Positive correlations (R(2) = 0.30-0.56, P < 0.05) between As in the rhizospheric soil solution and As in rice grain at different periods were observed. This inferred that the As survey of soil solution can be an effective measure for evaluating As in grains.

  3. Mechanism and capacities of reducing ecological cost through rice-duck cultivation.

    PubMed

    Long, Pan; Huang, Huang; Liao, Xiaolan; Fu, Zhiqiang; Zheng, Huabin; Chen, Aiwu; Chen, Can

    2013-09-01

    Rice-duck cultivation is the essence of Chinese traditional agriculture. A scientific assessment of the mechanism and its capacity is of theoretical significance and practical value in improving modern agricultural technology. The duck's secretions, excreta and their treading, pecking and predation decrease the occurrence of plant diseases, pests and weeds, enrich species diversity and improve the field environment. The rice-duck intergrowth system effectively prevents rice planthoppers and rice leafhoppers. The control effects can be up to 98.47% and 100% respectively; it also has effects on the control of Chilo suppressalis, Tryporyza incertulas and the rice leafrollers. Notable control results are found on sheath blight, while the effects on other diseases are about 50%. Harm from weeds is placed under primary control; prevention of weeds is sequenced by broadleaf weeds > sedge weeds > Gramineae weeds. Contents of soil organic matter, N, P and K are improved by the system; nutrient utilization is accelerated, resulting in decreased fertilizer application. Greenhouse gas emissions are reduced by 1-2% and duck fodder is saved in this system. There is also an obvious economic benefit. Compared to conventional rice cultivation, rice-duck cultivation shows great benefits to ecologic cost and economic income. © 2013 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  4. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses.

    PubMed

    Tang, Wenli; Dang, Fei; Evans, Douglas; Zhong, Huan; Xiao, Lin

    2017-02-01

    Selenium (Se) has recently been demonstrated to reduce inorganic mercury (IHg) accumulation in rice plants, while its mechanism is far from clear. Here, we aimed at exploring the potential effects of Se application routes (soil or foliar application with Se), speciation (selenite and selenate), and doses on IHg-Se antagonistic interactions in soil-rice systems. Results of our pot experiments indicated that soil application but not foliar application could evidently reduce tissue IHg concentrations (root: 0-48%, straw: 15-58%, and brown rice: 26-74%), although both application routes resulted in comparable Se accumulation in aboveground tissues. Meanwhile, IHg distribution in root generally increased with amended Se doses in soil, suggesting antagonistic interactions between IHg and Se in root. These results provided initial evidence that IHg-Se interactions in the rhizosphere (i.e., soil or rice root), instead of those in the aboveground tissues, could probably be more responsible for the reduced IHg bioaccumulation following Se application. Furthermore, Se dose rather than Se speciation was found to be more important in controlling IHg accumulation in rice. Our findings regarding the importance of IHg-Se interactions in the rhizosphere, together with the systematic investigation of key factors affecting IHg-Se antagonism and IHg bioaccumulation, advance our understanding of Hg dynamics in soil-rice systems.

  5. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups

    PubMed Central

    Dar, Manzoor H.; de Janvry, Alain; Emerick, Kyle; Raitzer, David; Sadoulet, Elisabeth

    2013-01-01

    Approximately 30% of the cultivated rice area in India is prone to crop damage from prolonged flooding. We use a randomized field experiment in 128 villages of Orissa India to show that Swarna-Sub1, a recently released submergence-tolerant rice variety, has significant positive impacts on rice yield when fields are submerged for 7 to 14 days with no yield penalty without flooding. We estimate that Swarna-Sub1 offers an approximate 45% increase in yields over the current popular variety when fields are submerged for 10 days. We show additionally that low-lying areas prone to flooding tend to be more heavily occupied by people belonging to lower caste social groups. Thus, a policy relevant implication of our findings is that flood-tolerant rice can deliver both efficiency gains, through reduced yield variability and higher expected yield, and equity gains in disproportionately benefiting the most marginal group of farmers. PMID:24263095

  6. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-08-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment.

  7. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    PubMed Central

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-01-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment. PMID:27530495

  8. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars.

    PubMed

    Potumarthi, Ravichandra; Baadhe, Rama Raju; Nayak, Priyanka; Jetty, Annapurna

    2013-01-01

    Phanerochete chrysosporium, the white-rot fungus, (a best source for lignolytic enzymes system) was used in the biological pretreatment of rice husk for reducing sugars production. Usually reducing sugar production through biochemical process involves two steps: solid state fermentation (SSF) of fungal pretreatment for delignification, subsequently pretreated biomass subjected to enzymatic hydrolysis. During the fungal pretreatment of rice husk for reducing sugar production along with cellulase and xylanse, the activities of lignin degradation-related enzymes such as lignin peroxidases (LiP), GLOX (glyoxidase), and aryl alcohol oxidases (AAO), were observed. The fungal pretreated rice husk produced highest (895.9 mg/ml/2g of rise husk) reducing sugars on 18th day of fungal treatment. This method may be good alternative to avoid operational costs associated with washing and the removal of inhibitors during the conventional pretreatment methods.

  9. Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management.

    PubMed

    Cao, Yansheng; Sun, Huifeng; Liu, Yaqin; Fu, Zishi; Chen, Guifa; Zou, Guoyan; Zhou, Sheng

    2017-02-01

    To better understand N runoff losses from rice-wheat rotation and demonstrate the effectiveness of improved fertilizer management in reducing N runoff losses, a field study was conducted for three consecutive rice-wheat rotations. Nitrogen losses through surface runoff were measured for five treatments, including CK without N application, C200, C300 simulating the conventional practices, CO200, and CO300. Optimum N rate was applied for C200 and CO200, and 30% of chemical fertilizer was substituted with organic fertilizer for CO200 and CO300 with respect to C200 and C300, respectively. Rice season had higher runoff coefficients than wheat season. Approximately 52% of total N was lost as NH4(+)-N in rice season, ranging from 21 to 83%, and in wheat season, the proportion of NO3(-)-N in total N averaged 53% with a variation from 38 to 67%. The N treatments lost less total N in rice season (1.67-10.7 kg N ha(-1)) than in wheat season (1.72-17.1 kg N ha(-1)). These suggested that a key to controlling N runoff losses from rice-wheat rotation was to limit NO3(-)-N accumulation in wheat season. In both seasons, N runoff losses for C200 and CO300 were lower than those for C300. CO200 better cut N losses than C200 and CO300, with 64 and 57% less N in rice and wheat seasons than C300, respectively. Compared with the conventional practices, optimum N inputs integrated with co-application of organic and chemical fertilizers could reduce N runoff losses with a better N balance under rice-wheat rotation.

  10. [Application of Microbial Fuel Cells in Reducing Methane Emission from Rice Paddy].

    PubMed

    Deng, Huan; Cai, Lü-cheng; Jiang, Yun-bin; Zhong, Wen-hui

    2016-01-15

    We aimed to study whether the methane emission from rice paddy with straw return can be alleviated in microbial fuel cells (MFCs). In our study, the soil mixed with 0. 5% ( mass fraction) rice straw was packed into MFCs reactors, then flooded with excess of sterilized water and transplanted with rice seedlings followed by the operation of MFCs. The MFCs were operated for 98 days covering five stages of seeding, tillering, mid-season aeration, rice filling, and ripening. The voltage data were recorded continuously and in real time during the MFCs operation and the methane emitted was collected once a week using the static chamber method and the methane emission flux was determined by gas chromatography. The results showed that the MFCs current increased and reached the peak value in the seeding and tillering stages and the operation of MFCs significantly reduced the accumulative methane emission in these two stages. The possible reason could be that the electrogens competed with methanogens for organic substrates. The height, the above and below ground biomass, and the productivity of rice plants were not significantly affected by the 98-day operation of MFCs. Our study provides a potential green and sustainable technology for the reduction of CH, emission from rice paddy fields.

  11. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    USDA-ARS?s Scientific Manuscript database

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  12. Effect of reduced plant height on drought tolerance in rice.

    PubMed

    Ahmadikhah, Asadollah; Marufinia, Amir

    2016-12-01

    Drought stress due to water deficit is a major problem of rice cultivation as a most drought-sensitive crop plant. A rice mutant line (MT58) was developed after mutagenesis of cv. Neda by ethyl methane sulfonate (EMS) and selected for dwarfism (18 cm shorter than Neda). The extent of its molecular changes relative to parental cultivar was assessed by SSR and ISSR markers, and the response of the line along with parental cultivar and another mutant line (MTA) to mild and severe water deficit, was evaluated in a field experiment. A molecular assessment using 41 SSR markers showed that dwarf line MT58 had significant molecular difference with two other lines. ISSR assay also proved the considerable mutational effect of EMS on two mutant lines compared with the original wild line. Field experiments revealed that limited irrigation caused mild-to-severe decrease in all the studied traits, including chlorophyll contents. In mild water-stress mutant line, MT58 showed a low (3 %) yield loss as compared with cultivar Neda with a high (14 %) yield loss. Interestingly, in severe water-stress mutant line, MT58 showed a low (19 %) yield loss as compared with mutant line MTA and cv. Neda with high (33 and 31 %, respectively) yield loss. In severe stress, mutant MT58 had the highest values of panicle length, total kernels per panicle, fertile kernels, and chlorophyll contents, while cv. Neda had the highest values of plant height, tiller number, and plant yield, and reduction in chlorophyll content at drought stress condition was correlated with yield loss (0.64 and 0.697 for chl.a and chl.b, respectively). The results of this research obviously confirm that mutant line MT58 despite of its stunt figure shows a low yield loss due to drought stress and hence is a promising line for cultivation under drought condition.

  13. Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido sup 3 H GBR-12935

    SciTech Connect

    Berger, S.P.; Martenson, R.E.; Laing, P.; Thurkauf, A.; Decosta, B.; Rice, K.C.; Paul, S.M. )

    1991-04-01

    A high affinity tritiated azido-diphenylpiperazine derivative, 3-azido {sup 3}H GBR-12935, was synthesized as a potential photoaffinity probe of the dopamine transporter. Initially, the reversible binding of 3-azido {sup 3}H GBR-12935 to crude synaptosomal membranes from the rat striatum was characterized. Specific binding was sodium dependent and inhibited by a variety of drugs that are known to potently inhibit dopamine uptake. Other neurotransmitter uptake inhibitors, as well as cis-flupenthixol, a potent inhibitor of {sup 3}H GBR-12935 binding to piperazine binding sites, failed to inhibit specific binding at concentrations of less than or equal to 10 microM. A good correlation was observed between the relative potencies of these drugs in inhibiting dopamine uptake into synaptosomes and in inhibiting specific 3-azido {sup 3}H GBR-12935 binding to rat striatal membranes. These data suggest that 3-azido {sup 3}H GBR-12935, like other diphenylpiperazines such as {sup 3}H GBR-12935 and {sup 3}H GBR-12909, binds primarily to the dopamine transporter under defined assay conditions. After UV photolysis of crude synaptosomal membranes preincubated with 3-azido {sup 3}H GBR-12935 (1-2 nM), a single radiolabeled polypeptide with an apparent molecular mass of 80 kDa was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Photoincorporation of 3-azido {sup 3}H GBR-12935 into this polypeptide was inhibited selectively by compounds that inhibit the uptake of dopamine and was completely dependent on the presence of Na+. No photolabeled proteins were observed when cerebellar membranes were substituted for striatal membranes. Essentially complete adsorption of the radiolabeled 80-kDa polypeptide to wheat germ agglutinin and elution with N-acetyl-D-glucosamine strongly suggest that the dopamine transporter polypeptide photolabeled by 3-azido {sup 3}H GBR-12935 is glycosylated.

  14. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films

    PubMed Central

    Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-01-01

    In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (−64%) and resulted in less total CH4 and N2O emissions (−54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint. PMID:28054647

  15. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films

    NASA Astrophysics Data System (ADS)

    Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-01-01

    In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (-64%) and resulted in less total CH4 and N2O emissions (-54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint.

  16. Effect of GBR and fixture installation on gingiva and bone levels at adjacent teeth.

    PubMed

    Van der Zee, Erwin; Oosterveld, Paul; Van Waas, Marinus A J

    2004-02-01

    Guided bone regeneration (GBR) is frequently used in oral implantology. It is unclear to what extent GBR affects the periodontium of adjacent teeth. Therefore, the present study quantifies changes in the proximal gingiva and bone levels at these teeth in 30 patients. Staged surgery involved a standard GBR treatment, randomly using resorbable membranes with a bone substitute or non-resorbable membranes with or without a bone substitute, followed by fixture installation at 6 months and abutment connection a further 6 months later. The data were sampled at each surgery and analysed using MANOVA. Twelve months after GBR, there was on average a small but statistically significant amount of proximal gingival recession (0.75 mm) and bone resorption (0.34 mm) observed, of which 50% was the result of GBR surgery. No significant differences were found between the different GBR treatment modalities. It is concluded that GBR treatment may have a small negative effect on the levels of the free gingival margin and alveolar bone at adjacent teeth, which is in most patients not clinically relevant.

  17. The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in African rice fields.

    PubMed

    Keiser, Jennifer; Utzinger, Jürg; Singer, Burton H

    2002-12-01

    Rice production in sub-Saharan Africa has more than doubled in the last 3 decades and the potential to further develop rice-harvested areas is considerable. Several studies have demonstrated that the transformation of arable land into rice irrigation might create suitable habitats for large populations of disease vectors. Prominent among those are anopheline mosquitoes responsible for transmission of malaria. The method of irrigation on an intermittent basis during the rice-cropping calendar has gained renewed interest as a potentially effective malaria control strategy since the early 1980s. We review the experiences of the past 80 years with intermittent irrigation in the cultivation of rice. This method has been shown to reduce significantly the density of malaria vectors by curtailing their larval development. Furthermore, reduced methane emissions and water savings with at least equal yields were achieved in intermittently irrigated rice fields. We explore and discuss under what conditions intermittent irrigation might be beneficial in new rice-growing areas and identify steps that have to be taken to expand such programs in the future.

  18. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-07-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.

  19. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    PubMed Central

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-01-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions. PMID:27378420

  20. Identification and isolation of active N2O reducers in rice paddy soil.

    PubMed

    Ishii, Satoshi; Ohno, Hiroki; Tsuboi, Masahiro; Otsuka, Shigeto; Senoo, Keishi

    2011-12-01

    Dissolved N(2)O is occasionally detected in surface and ground water in rice paddy fields, whereas little or no N(2)O is emitted to the atmosphere above these fields. This indicates the occurrence of N(2)O reduction in rice paddy fields; however, identity of the N(2)O reducers is largely unknown. In this study, we employed both culture-dependent and culture-independent approaches to identify N(2)O reducers in rice paddy soil. In a soil microcosm, N(2)O and succinate were added as the electron acceptor and donor, respectively, for N(2)O reduction. For the stable isotope probing (SIP) experiment, (13)C-labeled succinate was used to identify succinate-assimilating microbes under N(2)O-reducing conditions. DNA was extracted 24  h after incubation, and heavy and light DNA fractions were separated by density gradient ultracentrifugation. Denaturing gradient gel electrophoresis and clone library analysis targeting the 16S rRNA and the N(2)O reductase gene were performed. For culture-dependent analysis, the microbes that elongated under N(2)O-reducing conditions in the presence of cell-division inhibitors were individually captured by a micromanipulator and transferred to a low-nutrient medium. The N(2)O-reducing ability of these strains was examined by gas chromatography/mass spectrometry. Results of the SIP analysis suggested that Burkholderiales and Rhodospirillales bacteria dominated the population under N(2)O-reducing conditions, in contrast to the control sample (soil incubated with only (13)C-succinate). Results of the single-cell isolation technique also indicated that the majority of the N(2)O-reducing strains belonged to the genera Herbaspirillum (Burkholderiales) and Azospirillum (Rhodospirillales). In addition, Herbaspirillum strains reduced N(2)O faster than Azospirillum strains. These results suggest that Herbaspirillum spp. may have an important role in N(2)O reduction in rice paddy soils.

  1. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain

    PubMed Central

    Song, Won-Yong; Yamaki, Tomohiro; Yamaji, Naoki; Ko, Donghwi; Jung, Ki-Hong; Fujii-Kashino, Miho; An, Gynheung; Martinoia, Enrico; Lee, Youngsook; Ma, Jian Feng

    2014-01-01

    Arsenic (As) is a chronic poison that causes severe skin lesions and cancer. Rice (Oryza sativa L.) is a major dietary source of As; therefore, reducing As accumulation in the rice grain and thereby diminishing the amount of As that enters the food chain is of critical importance. Here, we report that a member of the Oryza sativa C-type ATP-binding cassette (ABC) transporter (OsABCC) family, OsABCC1, is involved in the detoxification and reduction of As in rice grains. We found that OsABCC1 was expressed in many organs, including the roots, leaves, nodes, peduncle, and rachis. Expression was not affected when plants were exposed to low levels of As but was up-regulated in response to high levels of As. In both the basal nodes and upper nodes, which are connected to the panicle, OsABCC1 was localized to the phloem region of vascular bundles. Furthermore, OsABCC1 was localized to the tonoplast and conferred phytochelatin-dependent As resistance in yeast. Knockout of OsABCC1 in rice resulted in decreased tolerance to As, but did not affect cadmium toxicity. At the reproductive growth stage, the As content was higher in the nodes and in other tissues of wild-type rice than in those of OsABCC1 knockout mutants, but was significantly lower in the grain. Taken together, our results indicate that OsABCC1 limits As transport to the grains by sequestering As in the vacuoles of the phloem companion cells of the nodes in rice. PMID:25331872

  2. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain.

    PubMed

    Song, Won-Yong; Yamaki, Tomohiro; Yamaji, Naoki; Ko, Donghwi; Jung, Ki-Hong; Fujii-Kashino, Miho; An, Gynheung; Martinoia, Enrico; Lee, Youngsook; Ma, Jian Feng

    2014-11-04

    Arsenic (As) is a chronic poison that causes severe skin lesions and cancer. Rice (Oryza sativa L.) is a major dietary source of As; therefore, reducing As accumulation in the rice grain and thereby diminishing the amount of As that enters the food chain is of critical importance. Here, we report that a member of the Oryza sativa C-type ATP-binding cassette (ABC) transporter (OsABCC) family, OsABCC1, is involved in the detoxification and reduction of As in rice grains. We found that OsABCC1 was expressed in many organs, including the roots, leaves, nodes, peduncle, and rachis. Expression was not affected when plants were exposed to low levels of As but was up-regulated in response to high levels of As. In both the basal nodes and upper nodes, which are connected to the panicle, OsABCC1 was localized to the phloem region of vascular bundles. Furthermore, OsABCC1 was localized to the tonoplast and conferred phytochelatin-dependent As resistance in yeast. Knockout of OsABCC1 in rice resulted in decreased tolerance to As, but did not affect cadmium toxicity. At the reproductive growth stage, the As content was higher in the nodes and in other tissues of wild-type rice than in those of OsABCC1 knockout mutants, but was significantly lower in the grain. Taken together, our results indicate that OsABCC1 limits As transport to the grains by sequestering As in the vacuoles of the phloem companion cells of the nodes in rice.

  3. Effects of Germinated Brown Rice Addition on the Flavor and Functionality of Yogurt.

    PubMed

    Kim, Mi-Hye; Ahn, Sung-Il; Lim, Chan-Mook; Jhoo, Jin-Woo; Kim, Gur-Yoo

    2016-01-01

    This study aimed to investigate the functional and physicochemical properties of yogurt, supplemented with germinated brown rice (GBR) containing γ-aminobutyric acid (GABA), during storage. GBR was produced by soaking brown rice at 30℃, and saccharified germinated brown rice (SGBR) was produced by treating brown rice with α- and β-amylase for 1 h, at 80℃ and 60℃, respectively. Yogurt was manufactured using a commercial starter (YC-X11, CHR. Hansen, Denmark) at 37℃ for 12 h. The fatty acids and GABA contents were analyzed using GC and HPLC, respectively. The fatty acids in the cereal samples consisted of oleic, linoleic, and palmitic acid. The portion of oleic acid was the highest, at 35.65% in GBR, and 32.16% in SGBR. During germination, the oleic acid content increased, whereas linolenic and palmitic acid contents from GBR tended to decrease. Although the portion of saturated fatty acids, such as stearic and myristic acid, decreased significantly (p<0.05), that of unsaturated fatty acids, such as oleic and linoleic acid, increased with an increase in supplementation of BR, GBR, or SGBR in the yogurt. The yogurt, supplemented with cereal samples, showed a tendency of an increase in the concentration of GABA with an increase in the supplementation of the cereal samples. However, yogurt supplemented with GBR showed the highest concentration of GABA, regardless of the supplementation of the cereal samples. These results indicated that yogurt supplemented with BR, GBR, or SGBR could be a promising dairy product.

  4. Alternate Wetting and Drying as an Effective Management Practice to Reduce Methane in Arkansas Rice Production

    NASA Astrophysics Data System (ADS)

    Runkle, B.; Smith, S. F.; Suvocarev, K.; Reba, M. L.

    2015-12-01

    Approximately 15% of the global 308 Tg CH4 emitted by anthropogenic sources is currently attributed to rice cultivation. Arkansas, the leading state in rice cultivation, produces over 42% of the total rice and represents over 43% of total land planted to rice in the US. Although rice production is generally water-intensive, some rice producers have adopted a conservation practice, 'Alternate Wetting and Drying' (AWD), in which the flood is released periodically during the growing season. In addition, implementing AWD can reduce CH4 emissions though the introduction of aerobic conditions. To assess the magnitude of this reduction, conventionally flooded (CONV) and AWD fields were identically instrumented for the 2015 season and fluxes of CH4 were measured with an open path IRGA. Other biophysical variables were monitored to determine the relative dominance of potential drivers. Half-hourly CH4 fluxes from the AWD and CONV fields during their similar initial flood (DOY 138-161) were well correlated (R2 = 0.762), indicating similar mechanisms controlling CH4 emissions in both fields. After the initial drydown event in the AWD field (162 DOY), daily median CH4 fluxes continued to rise to 7.80 mg CH4 m-2 h-1 on 163 DOY before subsiding to a local minimum of 0.162 mg CH4 m-2 h-1 on 171 DOY. Daily median CH4 fluxes between 9.24 and 16.0 mg CH4 m-2 h-1 were observed in the CONV field during this same period. Cumulative emissions from both fields following the drydown event and prior to rewetting demonstrated a reduction in CH4 emissions by the AWD treatment by 82%. The substantial decrease in CH4 emissions by AWD in the early growing season supports and expands upon previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in AR rice production. The presentation will also assess the latter portion of the growing season, currently underway, and will provide process-based relationships between biophysical parameters and CH

  5. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node.

    PubMed

    Yamaji, Naoki; Takemoto, Yuma; Miyaji, Takaaki; Mitani-Ueno, Namiki; Yoshida, Kaoru T; Ma, Jian Feng

    2017-01-05

    Phosphorus is an important nutrient for crop productivity. More than 60% of the total phosphorus in cereal crops is finally allocated into the grains and is therefore removed at harvest. This removal accounts for 85% of the phosphorus fertilizers applied to the field each year. However, because humans and non-ruminants such as poultry, swine and fish cannot digest phytate, the major form of phosphorus in the grains, the excreted phosphorus causes eutrophication of waterways. A reduction in phosphorus accumulation in the grain would contribute to sustainable and environmentally friendly agriculture. Here we describe a rice transporter, SULTR-like phosphorus distribution transporter (SPDT), that controls the allocation of phosphorus to the grain. SPDT is expressed in the xylem region of both enlarged- and diffuse-vascular bundles of the nodes, and encodes a plasma-membrane-localized transporter for phosphorus. Knockout of this gene in rice (Oryza sativa) altered the distribution of phosphorus, with decreased phosphorus in the grains but increased levels in the leaves. Total phosphorus and phytate in the brown de-husked rice were 20-30% lower in the knockout lines, whereas yield, seed germination and seedling vigour were not affected. These results indicate that SPDT functions in the rice node as a switch to allocate phosphorus preferentially to the grains. This finding provides a potential strategy to reduce the removal of phosphorus from the field and lower the risk of eutrophication of waterways.

  6. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium.

    PubMed

    Moreno-Jiménez, Eduardo; Meharg, Andrew A; Smolders, Erik; Manzano, Rebeca; Becerra, Daniel; Sánchez-Llerena, Javier; Albarrán, Ángel; López-Piñero, Antonio

    2014-07-01

    Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding. Both irrigation techniques resulted in similar grain yields (~3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinkler systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result.

  7. Comparison of oxidized and reduced glutathione in the bread-making qualities of rice batter.

    PubMed

    Yano, Hiroyuki

    2012-02-01

    The demand for gluten-free bread is growing as the recognition of celiac disease and wheat allergy has increased worldwide. In our previous study, reduced glutathione (GSH) was found to improve the gas-retaining properties of rice batter used for gluten-free bread. In this article, oxidized glutathione (GSSG) was shown to have the same effect. Moreover, sensory tests revealed that GSSG bread had a significantly reduced sulfurous odor. Analyses by a gas chromatography-flame photometric detector demonstrated the presence of hydrogen sulfide and methyl mercaptan in the headspace of GSH bread, and also their significant reduction in GSSG bread. The viscoelastic properties and microstructures of GSSG and GSH bread did not noticeably differ. These observations suggest the usefulness of GSSG in making gluten-free rice bread and extend our knowledge of the use of glutathione in food processing. Practical Application: Glutathione, a widely-distributed peptide in cells, improves the bread-making quality of gluten-free rice batter. While both the reduced (GSH) and oxidized (GSSG) glutathione are effective, GSSG-bread has significantly reduced sulfurous odor compared to GSH-bread. © 2012 Institute of Food Technologists®

  8. Cryptochrome and Phytochrome Cooperatively but Independently Reduce Active Gibberellin Content in Rice Seedlings under Light Irradiation

    PubMed Central

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-01-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4–OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants. PMID:22764280

  9. Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves.

    PubMed

    Yu, Chia Chi; Hung, Kuo Tung; Kao, Ching Huei

    2005-12-01

    Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important antioxidant. Here we investigated the protective effect of NO against the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4 (10mmol L(-1)). It was found that free radical scavengers (sodium benzoate, thiourea, and reduced glutathione) reduced the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4. NO donor sodium nitroprusside (SNP) was also effective in reducing CuSO4-induced toxicity and NH4+ accumulation in rice leaves. The protective effect of SNP on the toxicity and NH4+ accumulation can be reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that the protective effect of SNP is attributable to NO released. Results obtained in the present study suggest that reduction of CuSO4-induced toxicity and NH4+ accumulation by SNP is most likely mediated through its ability to scavenge active oxygen species.

  10. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.

    PubMed

    Wang, Xun; Ye, Zhihong; Li, Bing; Huang, Linan; Meng, Mei; Shi, Jianbo; Jiang, Guibin

    2014-01-01

    Rice consumption represents a major route of mercury (Hg) and methylmercury (MeHg) exposure for those living in certain areas of inland China. In this study we investigated the effects of water management on bioavailable Hg, MeHg, and sulfate-reducing bacteria (SRB, abundance and community composition) in rhizosphere soil, and total Hg (THg) and MeHg in rice plants grown under glasshouse and paddy field conditions. Aerobic conditions greatly decreased the amount of THg and MeHg taken up by rice plants and affected their distribution in different plant tissues. There were positive correlations between bioavailable Hg and THg in brown rice and roots and between numbers of SRB and MeHg in brown rice, roots, and rhizosphere soil. Furthermore, the community composition of SRB was dramatically influenced by the water management regimes. Our results demonstrate that the greatly reduced bioavailability of Hg and production of MeHg are due to decreased SRB numbers and proportion of Hg methylators in the rhizosphere under aerobic conditions. These are the main reasons for the reduced Hg and MeHg accumulation in aerobically grown rice. Water management is indicated as an effective measure that can be used to reduce Hg and MeHg uptake by rice plants from Hg-contaminated paddy fields.

  11. Structure and functional interaction of the extracellular domain of human GABA[subscript B] receptor GBR2

    SciTech Connect

    Geng, Yong; Xiong, Dazhi; Mosyak, Lidia; Malito, David L.; Kniazeff, Julie; Chen, Yan; Burmakina, Svetlana; Quick, Matthias; Bush, Martin; Javitch, Jonathan A.; Pin, Jean-Philippe; Fan, Qing R.

    2012-10-24

    Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimeric interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.

  12. Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats.

    PubMed

    Ishikawa, Yuki; Hira, Tohru; Inoue, Daisuke; Harada, Yukikazu; Hashimoto, Hiroyuki; Fujii, Mikio; Kadowaki, Motoni; Hara, Hiroshi

    2015-08-01

    Rice has historically been consumed in Asia as a major source of carbohydrates, however, little is known regarding the functional roles of rice proteins as dietary factors. In the present study, we investigated whether peptides derived from rice proteins could stimulate GLP-1 secretion, which results in reducing glycemia via the incretin effect in normal rats. Hydrolysates were prepared from the protein fraction of rice endosperm or rice bran, and the effects of these hydrolysates on GLP-1 secretion were examined in a murine enteroendocrine cell line GLUTag. Plasma was collected after oral administration of the rice protein hydrolysates, under anesthesia, or during glucose tolerance tests in rats. In anesthetized rats, plasma dipeptidyl peptidase-IV (DPP-IV) activity was measured after ileal administration of the rice protein hydrolysates. GLP-1 secretion from GLUTag cells was potently stimulated by the rice protein hydrolysates, especially by the peptic digest of rice endosperm protein (REPH) and that of rice bran protein (RBPH). Oral administration of REPH or RBPH elevated plasma GLP-1 concentrations, which resulted in the reduction of glycemia under the intraperitoneal glucose tolerance test. In addition, the plasma DPP-IV activity was attenuated after ileal administration of REPH or RBPH, which resulted in a higher ratio of intact (active) GLP-1 to total GLP-1 in the plasma. These results demonstrate that rice proteins exert potent stimulatory effects on GLP-1 secretion, which could contribute to the reduction of postprandial glycemia. The inhibitory effect of these peptides on the plasma DPP-IV activity may potentiate the incretin effect of GLP-1.

  13. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    PubMed

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  14. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management

    PubMed Central

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  15. Reducing CH4 emission from rice paddy fields by altering water management

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2010-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is urgently required. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is extended on intermittent drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the results in two years of this study. 'Nakaboshi' (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was extended, the lesser CH4 emitted even after when Nakaboshi period lasted, as a whole. In some cases, for example in Kagoshima, exceptional phenomena of that significant high emission were

  16. Dopamine transporter; solubilization and characterization of ( sup 3 H) GBR-12935 binding in canine caudate

    SciTech Connect

    Sallee, F.R.

    1988-01-01

    The dopamine (DA) transporter protein, as indexed by ({sup 3}H)GBR-12935 binding, was solubilized from canine striatal membranes with the detergent digitonin. This solubilized protein retained the same pharmacological characteristics as membrane attached uptake sites. The binding of ({sup 3}H)GBR-12935 to solubilized preparations was specific, saturable and reversible with an equilibrium dissociation constant of approximately 3 nM and a maximum ligand binding (B{sub max}) of 3.4 pmol/mg protein. ({sup 3}H)GBR-12935 also bound to solubilized sites in a sodium-independent manner with a K{sub D} of approximately 6 nM and a B{sub max} of 1.2 {plus minus} 0.2 pmol/mg protein. Dopamine uptake inhibitors and substrates of DA uptake inhibited ({sup 3}H)GBR-12935 binding in a stereoselective and concentration dependent manner. For these compounds rank order of potency for inhibition of ({sup 3}H)GBR-12935 binding correlated with their potency for inhibition of dopamine uptake. K{sub D} values for DA uptake inhibitors in solubilized preparations correlated with those obtained on ({sup 3}H)GBR-12935 binding in the native state. The dopamine transporter appears to be a transmembrane glycoprotein by virtue of its absorption and specific elution from wheat germ agglutinin (WGA)-lectin column. Solubilization of the putative dopamine transporter with full retention of binding activity now allows for the purification and biochemical characterization of this important membrane protein.

  17. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India.

    PubMed

    Auffhammer, Maximilian; Ramanathan, V; Vincent, Jeffrey R

    2006-12-26

    Previous studies have found that atmospheric brown clouds partially offset the warming effects of greenhouse gases. This finding suggests a tradeoff between the impacts of reducing emissions of aerosols and greenhouse gases. Results from a statistical model of historical rice harvests in India, coupled with regional climate scenarios from a parallel climate model, indicate that joint reductions in brown clouds and greenhouse gases would in fact have complementary, positive impacts on harvests. The results also imply that adverse climate changes due to brown clouds and greenhouse gases contributed to the slowdown in harvest growth that occurred during the past two decades.

  18. Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice.

    PubMed

    Li, Wen-Xu; Zhao, Hai-Jun; Pang, Wei-Qin; Cui, Hai-Rui; Poirier, Yves; Shu, Qing-Yao

    2014-08-01

    Phytic acid (PA) is poorly digested by humans and monogastric animals and negatively affects human/animal nutrition and the environment. Rice mutants with reduced PA content have been developed but are often associated with reduced seed weight and viability, lacking breeding value. In the present study, a new approach was explored to reduce seed PA while attaining competitive yield. The OsMRP5 gene, of which mutations are known to reduce seed PA as well as seed yield and viability, was down-regulated specifically in rice seeds by using an artificial microRNA driven by the rice seed specific promoter Ole18. Seed PA contents were reduced by 35.8-71.9% in brown rice grains of transgenic plants compared to their respective null plants (non-transgenic plants derived from the same event). No consistent significant differences of plant height or number of tillers per plant were observed, but significantly lower seed weights (up to 17.8% reduction) were detected in all transgenic lines compared to null plants, accompanied by reductions of seed germination and seedling emergence. It was observed that the silencing of the OsMRP5 gene increased the inorganic P (Pi) levels (up to 7.5 times) in amounts more than the reduction of PA-P in brown rice. This indicates a reduction in P content in other cellular compounds, such as lipids and nucleic acids, which may affect overall seed development. Put together, the present study demonstrated that seed specific silencing of OsMRP5 could significantly reduce the PA content and increase Pi levels in seeds; however, it also significantly lowers seed weight in rice. Discussions were made regarding future directions towards producing agronomically competitive and nutritionally valuable low PA rice.

  19. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms.

    PubMed

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-12-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development.

  20. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer.

    PubMed

    Kasai, Atsushi; Hayashi, Takehiko I; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-03-16

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields.

  1. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer

    PubMed Central

    Kasai, Atsushi; Hayashi, Takehiko I.; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-01-01

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields. PMID:26979488

  2. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems.

    PubMed

    Linquist, Bruce A; Anders, Merle M; Adviento-Borbe, Maria Arlene A; Chaney, Rufus L; Nalley, L Lanier; da Rosa, Eliete F F; van Kessel, Chris

    2015-01-01

    Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD--flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice. Various treatments ranging in frequency and duration of AWD practices were evaluated at three locations over 2 years. Relative to the flooded control treatment and depending on the AWD treatment, yields were reduced by <1-13%; water-use efficiency was improved by 18-63%, global warming potential (GWP of CH4 and N2 O emissions) reduced by 45-90%, and grain As concentrations reduced by up to 64%. In general, as the severity of AWD increased by allowing the soil to dry out more between flood events, yields declined while the other benefits increased. The reduction in GWP was mostly attributed to a reduction in CH4 emissions as changes in N2 O emissions were minimal among treatments. When AWD was practiced early in the growing season followed by flooding for remainder of season, similar yields as the flooded control were obtained but reduced water use (18%), GWP (45%) and yield-scaled GWP (45%); although grain As concentrations were similar or higher. This highlights that multiple environmental benefits can be realized without sacrificing yield but there may be trade-offs to consider. Importantly, adoption of these practices will require that they are economically attractive and can be adapted to field scales. © 2014 John Wiley & Sons Ltd.

  3. Reducing arsenic in rice grain using novel germplasm and water management practices

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) is the staple food for about half of the world’s population. Arsenic (As) is harmful for both animals and human beings. Total dietary studies in Europe and the United States have indicated that rice is the primary source of arsenic in a non-seafood based diet. Recently, rice p...

  4. Reducing water use for rice production with remote monitoring and control

    USDA-ARS?s Scientific Manuscript database

    Rice is an important food crop worldwide and farmers in the Lower Mississippi Water Resource Area of the U.S. grew 68% of the total U.S. crop. U.S.-produced rice is grown almost exclusively in a flooded culture and the water applied to rice has resulted in high energy costs and water shortages in so...

  5. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain.

    PubMed

    Jeong, Seung Tak; Kim, Gil Won; Hwang, Hyun Young; Kim, Pil Joo; Kim, Sang Yoon

    2017-09-11

    Livestock manure application can stimulate greenhouse gas (GHG) emissions, especially methane (CH4) in rice paddy. The stabilized organic matter (OM) is recommended to suppress CH4 emission without counting the additional GHG emission during the composting process. To evaluate the effect of compost utilization on the net global warming potential (GWP) of a rice cropping system, the fluxes of GHGs from composting to land application were calculated by a life cycle assessment (LCA) method. The model framework was composed of GHG fluxes from industrial activities and biogenic GHG fluxes from the composting and rice cultivation processes. Fresh manure emitted 30MgCO2-eq.ha(-1), 90% and 10% of which were contributed by CH4 and nitrous oxide (N2O) fluxes, respectively, during rice cultivation. Compost utilization decreased net GWP by 25% over that of the fresh manure during the whole process. The composting process increased the GWP of the industrial processes by 35%, but the 60% reduction in CH4 emissions from the rice paddy mainly influenced the reduction of GWP during the overall process. Therefore, compost application could be a good management strategy to reduce GHG emissions from rice paddy systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots.

    PubMed

    Wang, Wei; Zhao, Xue Qiang; Chen, Rong Fu; Dong, Xiao Ying; Lan, Ping; Ma, Jian Feng; Shen, Ren Fang

    2015-07-01

    The phytotoxicity of aluminium (Al) ions can be alleviated by ammonium (NH4(+)) in rice and this effect has been attributed to the decreased Al accumulation in the roots. Here, the effects of different nitrogen forms on cell wall properties were compared in two rice cultivars differing in Al tolerance. An in vitro Al-binding assay revealed that neither NH4(+) nor NO3(-) altered the Al-binding capacity of cell walls, which were extracted from plants not previously exposed to N sources. However, cell walls extracted from NH4(+)-supplied roots displayed lower Al-binding capacity than those from NO3(-)-supplied roots when grown in non-buffered solutions. Fourier-transform infrared microspectroscopy analysis revealed that, compared with NO3(-)-supplied roots, NH4(+)-supplied roots possessed fewer Al-binding groups (-OH and COO-) and lower contents of pectin and hemicellulose. However, when grown in pH-buffered solutions, these differences in the cell wall properties were not observed. Further analysis showed that the Al-binding capacity and properties of cell walls were also altered by pHs alone. Taken together, our results indicate that the NH4(+)-reduced Al accumulation was attributed to the altered cell wall properties triggered by pH decrease due to NH4(+) uptake rather than direct competition for the cell wall binding sites between Al(3+) and NH4(+). © 2014 John Wiley & Sons Ltd.

  7. Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice.

    PubMed

    Chern, Mawsheng; Bai, Wei; Chen, Xuewei; Canlas, Patrick E; Ronald, Pamela C

    2013-01-01

    Glycolate oxidase (GLO) is a key enzyme in photorespiration, catalyzing the oxidation of glycolate to glyoxylate. Arabidopsis GLO is required for nonhost defense responses to Pseudomonas syringae and for tobacco Pto/AvrPto-mediated defense responses. We previously described identification of rice GLO1 that interacts with a glutaredoxin protein, which in turn interacts with TGA transcription factors. TGA transcription factors are well known to participate in NPR1/NH1-mediated defense signaling, which is crucial to systemic acquired resistance in plants. Here we demonstrate that reduction of rice GLO1 expression leads to enhanced resistance to Xanthomonas oryzae pv oryzae (Xoo). Constitutive silencing of GLO1 leads to programmed cell death, resulting in a lesion-mimic phenotype and lethality or reduced plant growth and development, consistent with previous reports. Inducible silencing of GLO1, employing a dexamethasone-GVG (Gal4 DNA binding domain-VP16 activation domain-glucocorticoid receptor fusion) inducible system, alleviates these detrimental effects. Silencing of GLO1 results in enhanced resistance to Xoo, increased expression of defense regulators NH1, NH3, and WRKY45, and activation of PR1 expression.

  8. Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.

    PubMed

    Kubo, Fumika Clara; Yasui, Yukiko; Kumamaru, Toshihiro; Sato, Yutaka; Hirano, Hiro-Yuki

    2017-03-17

    Leaves are a major site for photosynthesis and a key determinant of plant architecture. Rice produces thin and slender leaves, which consist of the leaf blade and leaf sheath separated by the lamina joint. Two types of vasculature, the large and small vascular bundles, run in parallel, together with a strong structure, the midrib. In this paper, we examined the function of four genes that regulate the width of the leaf blade and the vein number: NARROW LEAF1 (NAL1), NAL2, NAL3 and NAL7. We backcrossed original mutants of these genes with the standard wild-type rice, Taichung 65. We then compared the effect of each mutation on similar genetic backgrounds and examined genetic interactions of these genes. The nal1 single mutation and the nal2 nal3 double mutation showed a severe effect on leaf width, resulting in very narrow leaves. Although vein number was also reduced in the nal1 and nal2 nal3 mutants, the small vein number was more strongly reduced than the large vein number. In contrast, the nal7 mutation showed a milder effect on leaf width and vein number, and both the large and small veins were similarly affected. Thus, the genes responsible for narrow leaf phenotype seem to play distinct roles. The nal7 mutation showed additive effects on both leaf width and vein number, when combined with the nal1 single or the nal2 nal3 double mutation. In addition, observations of inner tissues revealed that cell differentiation was partially compromised in the nal2 nal3 nal7 mutant, consistent with the severe reduction in leaf width in this triple mutant.

  9. Triacontanol Reduces Transplanting Shock in Machine-Transplanted Rice by Improving the Growth and Antioxidant Systems.

    PubMed

    Li, Xiaochun; Zhong, Qiuyi; Li, Yuxiang; Li, Ganghua; Ding, Yanfeng; Wang, Shaohua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Chen, Lin

    2016-01-01

    Machine transplantation results in serious transplant shock in seedlings and results in a longer recover stage, which negatively impacts the growth of low-position tillers and the yield of machine-transplanted rice. A barrel experiment was conducted to examine the effect of the foliar application of triacontanol (TRIA) on machine-transplanted rice during the recovery stage. TRIA (0, 1, 5, and 10 μM) was sprayed over leaves 2 days before transplanting. The chlorophyll content, sucrose content, oxidative damage, antioxidant enzyme levels, glutathione (GSH), and ascorbate (ASA) redox states, tiller dynamics and yield components of the plants were investigated. The results show that foliar-applied TRIA significantly alleviates the growth inhibition and oxidative damage caused by transplant shock. Furthermore, the application of TRIA increased the chlorophyll and sucrose contents of the plants. Importantly, TRIA not only significantly improved the activity of catalase (CAT) and guaiacol peroxidase (POD), demonstrating that POD can play an important role in scavenging H2O2 during the recovery stage, but it also enhanced the redox states of ASA and GSH by regulating the activities of enzymes involved in the ASA-GSH cycle, such as ascorbate peroxidase (APX) and glutathione reductase (GR). A dose of 10 μM TRIA was the most efficient in reducing the negative effects of transplant shock, increasing the panicles, grain filling, and grain yield per hill by 17.80, 5.86, and 16.49%, respectively. These results suggest that TRIA acts to reduce transplant shock in association with the regulation of the redox states of ASA and GSH and antioxidant enzymes and serves as an effective antioxidant to maintain photosynthetic capacity and promote the occurrence of low tillers.

  10. Triacontanol Reduces Transplanting Shock in Machine-Transplanted Rice by Improving the Growth and Antioxidant Systems

    PubMed Central

    Li, Xiaochun; Zhong, Qiuyi; Li, Yuxiang; Li, Ganghua; Ding, Yanfeng; Wang, Shaohua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Chen, Lin

    2016-01-01

    Machine transplantation results in serious transplant shock in seedlings and results in a longer recover stage, which negatively impacts the growth of low-position tillers and the yield of machine-transplanted rice. A barrel experiment was conducted to examine the effect of the foliar application of triacontanol (TRIA) on machine-transplanted rice during the recovery stage. TRIA (0, 1, 5, and 10 μM) was sprayed over leaves 2 days before transplanting. The chlorophyll content, sucrose content, oxidative damage, antioxidant enzyme levels, glutathione (GSH), and ascorbate (ASA) redox states, tiller dynamics and yield components of the plants were investigated. The results show that foliar-applied TRIA significantly alleviates the growth inhibition and oxidative damage caused by transplant shock. Furthermore, the application of TRIA increased the chlorophyll and sucrose contents of the plants. Importantly, TRIA not only significantly improved the activity of catalase (CAT) and guaiacol peroxidase (POD), demonstrating that POD can play an important role in scavenging H2O2 during the recovery stage, but it also enhanced the redox states of ASA and GSH by regulating the activities of enzymes involved in the ASA–GSH cycle, such as ascorbate peroxidase (APX) and glutathione reductase (GR). A dose of 10 μM TRIA was the most efficient in reducing the negative effects of transplant shock, increasing the panicles, grain filling, and grain yield per hill by 17.80, 5.86, and 16.49%, respectively. These results suggest that TRIA acts to reduce transplant shock in association with the regulation of the redox states of ASA and GSH and antioxidant enzymes and serves as an effective antioxidant to maintain photosynthetic capacity and promote the occurrence of low tillers. PMID:27379149

  11. Eating glutinous brown rice twice a day for 8 weeks improves glycemic control in Japanese patients with diabetes mellitus.

    PubMed

    Nakayama, T; Nagai, Y; Uehara, Y; Nakamura, Y; Ishii, S; Kato, H; Tanaka, Y

    2017-05-08

    We recently reported that eating glutinous brown rice (GBR) for 1 day improved the whole-day glucose profile and postprandial plasma glucose level compared with eating white rice (WR) or standard brown rice. However, it was unknown whether eating GBR could maintain improvement of glycemic control for a longer period. Therefore, we evaluated the effect of GBR intake for 8 weeks on glycemic control in outpatients with diabetes mellitus. This was an open-label randomized crossover study in outpatients with type 2 diabetes. Among the 18 subjects registered in this study, 2 were excluded from analysis. After a 1-week observation period while eating WR twice a day, the patients were randomly assigned to two groups. One group ate GBR as a staple food twice a day for 8 weeks and then switched to WR for the next 8 weeks, while the other group ate WR first and then switched to GBR. A mixed meal tolerance test was performed at baseline and after 8 and 16 weeks of dietary intervention to evaluate plasma glucose and serum C-peptide. None of the subjects failed to complete the study because of disliking the taste of GBR. Hemoglobin A1c (7.5-7.2%, P=0.014) and glycoalbumin (20.4-19.4%, P=0.029) both decreased significantly when the patients were eating GBR. Additionally, the 30-min postprandial plasma glucose level (194-172 mg dl(-1), P=0.031) and the incremental area under the concentration vs time curve of serum C-peptide (31.3-22.1 ng min ml(-1), P=0.023) during the mixed meal tolerance test were also decreased significantly by intake of GBR. In contrast, there were no changes of glycemic control during the WR period. We confirmed that GBR was well tolerated for 8 weeks and improved glycemic control in patients with type 2 diabetes.

  12. Rice fortified with iron given weekly increases hemoglobin levels and reduces anemia in infants: a community intervention trial.

    PubMed

    Nogueira Arcanjo, Francisco Plácido; Roberto Santos, Paulo; Madeiro Leite, Alvaro Jorge; Bastos Mota, Francisco Sulivan; Duarte Segall, Sérgio

    2013-01-01

    More than two billion people suffer from anemia worldwide, and it is estimated that more than 50 % of cases are caused by iron deficiency. In this community intervention trial, we evaluated infants aged 10 to 23 months of age (n = 171) from two public child day-care centers. Intervention lasted 18 weeks. The 50-g individual portion (uncooked) of fortified rice provided 56.4 mg of elemental iron as ferric pyrophosphate. Capillary blood samples to test for anemia were taken at baseline and at endpoint. The objective of this study was to evaluate the impact of rice fortified with iron (Ultrarice®) on hemoglobin and anemia prevalence compared with standard household rice. For the fortified rice center, baseline mean hemoglobin was 113.7 ± 9.2 g/L, and at endpoint 119.5 ± 7.7 g/L, p < 0.0001; for the standard rice center, baseline mean hemoglobin value was 113.5 ± 40.7 g/L, and at endpoint 113.6 ± 21.0, p = 0.99. Anemia prevalence for the fortified rice center was 27.8 % (20/72) at baseline, and 11.1 % (8/72) at endpoint, p = 0.012; for the control center, 47.1 % (33/70) were anemic at baseline, and 37.1 % (26/70) at the end of the study, p = 0.23. The Number Needed to Treat (NNT) was 4. In this intervention, rice fortified with iron given weekly was effective in increasing hemoglobin levels and reducing anemia in infants.

  13. Identification of Genomic Regions and the Isoamylase Gene for Reduced Grain Chalkiness in Rice

    PubMed Central

    Sun, Wenqian; Zhou, Qiaoling; Yao, Yue; Qiu, Xianjin; Xie, Kun; Yu, Sibin

    2015-01-01

    Grain chalkiness is an important grain quality related to starch granules in the endosperm. A high percentage of grain chalkiness is a major problem because it diminishes grain quality in rice. Here, we report quantitative trait loci identification for grain chalkiness using high-throughput single nucleotide polymorphism genotyping of a chromosomal segment substitution line population in which each line carried one or a few introduced japonica cultivar Nipponbare segments in the genetic background of the indica cultivar ZS97. Ten quantitative trait loci regions were commonly identified for the percentage of grain chalkiness and the degree of endosperm chalkiness. The allelic effects at nine of these quantitative trait loci reduced grain chalkiness. Furthermore, a quantitative trait locus (qPGC8-2) on chromosome 8 was validated in a chromosomal segment substitution line–derived segregation population, and had a stable effect on chalkiness in a multiple-environment evaluation of the near-isogenic lines. Residing on the qPGC8-2 region, the isoamylase gene (ISA1) was preferentially expressed in the endosperm and revealed some nucleotide polymorphisms between two varieties, Nipponbare and ZS97. Transgenic lines with suppression of ISA1 by RNA interference produced grains with 20% more chalkiness than the control. The results support that the gene may underlie qPGC8-2 for grain chalkiness. The multiple-environment trials of the near-isogenic lines also show that combination of the favorable alleles such as the ISA1 gene for low chalkiness and the GS3 gene for long grains considerably improved grain quality of ZS97, which proves useful for grain quality improvement in rice breeding programs. PMID:25790260

  14. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains.

    PubMed

    Hayashi, Shimpei; Kuramata, Masato; Abe, Tadashi; Takagi, Hiroki; Ozawa, Kenjirou; Ishikawa, Satoru

    2017-09-01

    Reduction of the level of arsenic (As) in rice grains is an important challenge for agriculture. A recent study reported that the OsABCC1 transporter prevents the accumulation of As in grains by sequestering As-phytochelatin complexes into vacuoles in the upper nodes. However, how phytochelatins are provided in response to As remains unclear. Here, we show that the phytochelatin synthase OsPCS1 plays a crucial role in reducing As levels in rice grains. Using a forward genetic approach, we isolated two rice mutants (has1 and has2) in which As levels were much higher in grains but significantly lower in node I compared with the wild type. Map-based cloning identified the genes responsible as OsABCC1 in has1 and OsPCS1 in has2. The levels of As in grains and node I were similar between the two mutants, suggesting that OsABCC1 preferentially cooperates with OsPCS1 to sequester As, although rice has another phytochelatin synthase, OsPCS2. An in vitro phytochelatin synthesis assay indicated that OsPCS1 was more sensitive to activation by As than by cadmium, whereas OsPCS2 was more weakly activated by As than by cadmium. Transgenic plants highly expressing OsPCS1 showed significantly lower As levels in grains than did wild-type plants. Our results provide new knowledge of the relative contribution of rice PCS paralogs to As sequestration and suggest a good candidate tool to reduce As levels in rice grains. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Germinated brown rice and its bioactives modulate the activity of uterine cells in oophorectomised rats as evidenced by gross cytohistological and immunohistochemical changes

    PubMed Central

    2013-01-01

    Background Germinated brown rice (GBR) is gaining momentum in the area of biomedical research due to its increased use as a nutraceutical for the management of diseases. The effect of GBR on the reproductive organs of oophorectomised rats was studied using the gross, cytological, histological and immunohistochemical changes, with the aim of reducing atrophy and dryness of the genital organs in menopause. Methods Experimental rats were divided into eight groups of six rats per group. Groups 1, 2 and 3 (sham-operated (SH), oophorectomised without treatment (OVX) and oophorectomised treated with 0.2 mg/kg oestrogen, respectively) served as the controls. The groups 4,5,6,7 and 8 were treated with 20 mg/kg Remifemin, 200 mg/kg of GBR, ASG, oryzanol and GABA, respectively. All treatments were administered orally, once daily for 8 weeks. Vaginal smear cytology was done at the 7th week on all the rats. The weight and dimensions of the uterus and vagina were determined after sacrifice of the rats. Uterine and vaginal tissues were taken for histology and Immunohistochemical examinations. Results GBR and its bioactives treated groups significantly increased the weight and length of both the uterus and the vagina when compared to Oophorectomised non-treated group (OVX-non-treated) (p < 0.05). Significant changes were observed in the ratio of cornified epithelial cells and number of leucocytes in the vaginal cytology between the oophorectomised non-treated and treated groups. There was also an increase in the luminal and glandular epithelial cells activity in the treated compared with the untreated groups histologically. Immunohistochemical staining showed specific proliferating cell nuclear antigen (PCNA) in the luminal and glandular epithelium of the treated groups, which was absent in the OVX-non-treated group. GBR improved the length and weight of the uterus and also increased the number of glandular and luminal cells epithelia of the vagina. Conclusion GBR and its

  16. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults.

    PubMed

    Wang, Yuanyuan; Dai, Pingli; Chen, Xiuping; Romeis, Jörg; Shi, Jianrong; Peng, Yufa; Li, Yunhe

    2016-10-07

    Because of its ecological and economic importance, the honey bee Apis mellifera is commonly used to assess the environmental risk of insect-resistant, genetically modified plants. In the current laboratory study, feeding-exposure experiments were used to determine whether pollen from transgenic rice harms A. mellifera worker bee. In one experiment, the survival and mean acinus diameter of hypopharyngeal glands of adult bees were similar when bees were fed on pollen from Bt rice lines or from a non-Bt rice line, but bee survival was significantly reduced when they received pollen that was mixed with potassium arsenate as a positive control. In a second experiment, bee survival and hypopharyngeal gland development were not reduced when adult bees were fed on non-Bt pollen and a sucrose solution supplemented with Cry2A at 400 µg/g, Cry1C at 50 µg/g, or bovine serum albumin (BSA) at 400 µg/g diet, but bee survival and hypopharyngeal gland development were reduced when the diet was supplemented with soybean trypsin inhibitor (SBTI) as a positive control. In both experiments, the uptake of Cry proteins by adult bees was confirmed. Overall, the results indicate that the planting of Bt rice lines expressing Cry2A or Cry1C protein poses a negligible risk to A. mellifera worker bees. This article is protected by copyright. All rights reserved.

  17. Hierarchical clustering analysis of flexible GBR 12909 dialkyl piperazine and piperidine analogs

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Venanzi, Carol A.

    2006-04-01

    Pharmacophore modeling of large, drug-like molecules, such as the dopamine reuptake inhibitor GBR 12909, is complicated by their flexibility. A comprehensive hierarchical clustering study of two GBR 12909 analogs was performed to identify representative conformers for input to three-dimensional quantitative structure-activity relationship studies of closely-related analogs. Two data sets of more than 700 conformers each produced by random search conformational analysis of a piperazine and a piperidine GBR 12909 analog were studied. Several clustering studies were carried out based on different feature sets that include the important pharmacophore elements. The distance maps, the plot of the effective number of clusters versus actual number of clusters, and the novel derived clustering statistic, percentage change in the effective number of clusters, were shown to be useful in determining the appropriate clustering level. Six clusters were chosen for each analog, each representing a different region of the torsional angle space that determines the relative orientation of the pharmacophore elements. Conformers of each cluster that are representative of these regions were identified and compared for each analog. This study illustrates the utility of using hierarchical clustering for the classification of conformers of highly flexible molecules in terms of the three-dimensional spatial orientation of key pharmacophore elements.

  18. Reducing rice field algae and cyanobacteria abundance by altering phosphorus fertilizer applications

    USDA-ARS?s Scientific Manuscript database

    In California’s water seeded rice systems algal/cyanobacterial biomass can be a problem during rice establishment. Algal/cyanobacterial growth may be stimulated by phosphorus (P) additions in freshwater habitats, so we set up experiments to evaluate the effects of fertilizer P management on algal/cy...

  19. Biocontrol-based sheath blight management to reduce fungicide use on rice

    USDA-ARS?s Scientific Manuscript database

    Sheath blight (ShB) caused by Rhizoctonia solani is one of the most important rice diseases in Texas, Arkansas, Mississippi, and other southern states. The lack of complete ShB resistance in the most commonly planted varieties and the severity of this disease results in southern U.S. rice farmers ap...

  20. Identification of genes and physiological factors that reduce accumulation of arsenic in rice grain

    USDA-ARS?s Scientific Manuscript database

    The arsenic (As) levels in rice grains and food products can reach toxic levels when produced under certain growing conditions. The World Health Organization (WHO) recently set a CODEX limit of 0.2 ppm inorganic As in milled white rice, and lower limits may be set for baby food products. While studi...

  1. Foliar application of two silica sols reduced cadmium accumulation in rice grains.

    PubMed

    Liu, Chuanping; Li, Fangbai; Luo, Chunling; Liu, Xinming; Wang, Shihua; Liu, Tongxu; Li, Xiangdong

    2009-01-30

    In the present study, pot experiments were conducted to investigate the effects of foliar application of two silica (Si) sols on the alleviation of cadmium (Cd) toxicity in contaminated soil to rice. Results showed that the foliar application of Si sols significantly increased the dry weight of grains (without husk) and shoots in rice grown in Cd contaminated soil, whereas the Cd concentration in the grains and shoots decreased obviously. The total accumulation of Cd in rice grains also decreased with the application of both of the Si sols, but no significant effect was found on the Cd accumulation in the shoots. For the optimal effect, Si-sol-B should be foliar applied at the tillering-stage during rice growth. The mechanism of Si foliar application to alleviate the toxicity and accumulation of Cd in grains of rice may be related to the probable Cd sequestration in the shoot cell walls.

  2. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    NASA Astrophysics Data System (ADS)

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (<10-6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH4), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0-5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0-5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH4 emission (r = -0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  3. Rice Bran Extract Reduces the Risk of Atherosclerosis in Post-Menopausal Vietnamese Women.

    PubMed

    Nhung, Bui Thi; Tuyen, Le Danh; Linh, Vu Anh; Anh, Nguyen Do Van; Nga, Tran Thuy; Thuc, Vu Thi Minh; Yui, Kei; Ito, Yukihiko; Nakashima, Yuri; Yamamoto, Shigeru

    2016-01-01

    We investigated whether pre-germinated brown rice bran extract containing acylated steryl glucosides (PSG) reduces the risk of atherosclerosis in post-menopausal Vietnamese women. A total of 60 post-menopausal Vietnamese women (45-65 y old) with high LDL cholesterol levels (over 140 mg/dL) were randomly divided into PSG (n=30) and placebo (n=30) groups. The subjects in the PSG group were assigned a daily intake of 6 capsules containing 50 mg PSG, and the subjects in the placebo group were assigned a daily intake of 6 capsules containing corn oil for 6 mo. Before baseline and after month 2, month 4, and month 6 of the intervention, we conducted anthropometric measurements, blood biochemical examinations, a nutrition survey, and physical activity, flow-mediated dilation (FMD), and cardio-ankle vascular index (CAVI) measurements. Serum LDL cholesterol concentrations were significantly reduced from 163.6±25.3 (mg/dL) to 135.9±26.8 (mg/dL) compared to the placebo group (p<0.001). FMD values of the placebo group were significantly reduced from 6.6±5.1 (%) to 4.7±2.6 (%) compared to the PSG group (p<0.05). Tumor necrosis factor (TNF)-α concentrations in the PSG group were significantly reduced from 19.8±11 (pg/mL) to 10.6±5.5 (pg/mL) compared to the placebo group (p<0.05). The findings suggest that PSG may improve LDL cholesterol, TNF-α levels, and FMD values. PSG might be considered in reducing the risk of atherosclerosis in post-menopausal Vietnamese women with high LDL cholesterol.

  4. Effects of Germinated Brown Rice Addition on the Flavor and Functionality of Yogurt

    PubMed Central

    2016-01-01

    This study aimed to investigate the functional and physicochemical properties of yogurt, supplemented with germinated brown rice (GBR) containing γ-aminobutyric acid (GABA), during storage. GBR was produced by soaking brown rice at 30℃, and saccharified germinated brown rice (SGBR) was produced by treating brown rice with α- and β-amylase for 1 h, at 80℃ and 60℃, respectively. Yogurt was manufactured using a commercial starter (YC-X11, CHR. Hansen, Denmark) at 37℃ for 12 h. The fatty acids and GABA contents were analyzed using GC and HPLC, respectively. The fatty acids in the cereal samples consisted of oleic, linoleic, and palmitic acid. The portion of oleic acid was the highest, at 35.65% in GBR, and 32.16% in SGBR. During germination, the oleic acid content increased, whereas linolenic and palmitic acid contents from GBR tended to decrease. Although the portion of saturated fatty acids, such as stearic and myristic acid, decreased significantly (p<0.05), that of unsaturated fatty acids, such as oleic and linoleic acid, increased with an increase in supplementation of BR, GBR, or SGBR in the yogurt. The yogurt, supplemented with cereal samples, showed a tendency of an increase in the concentration of GABA with an increase in the supplementation of the cereal samples. However, yogurt supplemented with GBR showed the highest concentration of GABA, regardless of the supplementation of the cereal samples. These results indicated that yogurt supplemented with BR, GBR, or SGBR could be a promising dairy product. PMID:27621692

  5. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice fields in Vietnam

    NASA Astrophysics Data System (ADS)

    Pandey, A.

    2014-12-01

    The reduction of CH4 and N2O emissions from rice paddies is of utmost importance in minimizing the impact of rice production on global warming. A field experiment was therefore conducted in farmers' field in Hanoi, Vietnam to examine whether the use of straw compost or straw biochar, in combination with the safe alternate wetting and drying (AWD) has the potential to suppress both CH4 and N2O emissions from rice paddies while maintaining the rice yield. The study compared the proposed strategies with local farmers' practice of permanent flooding (PF) and farmyard manure (FYM) incorporation, respectively. A control treatment without organic matter incorporation in both AWD and PF water regimes was also included in the study; all treatments received equal amounts of mineral fertilizer. Gas emissions were monitored using the closed chamber method at seven-day intervals during the first 50 days and at 15-day intervals thereafter. Addition of FYM, straw compost and biochar increased CH4 emissions by 230 %, 150 % and 38 %, respectively, when compared with the control treatments in both the AWD and PF water regimes. Within AWD, FYM increased N2O emissions by 30 %, straw compost and biochar displayed similar amount of N2O emissions as the control treatment. Within PF, N2O emissions under FYM and straw compost were 40 % and 35 % higher than the control treatment, respectively, and biochar once again displayed similar amount of N2O emissions as the control treatment. Yield difference was not significant (P > 0.05) between any of the treatments. These results indicated that the straw compost incorporation might not reduce the global warming potential (GWP) and yield-scaled GWP of rice production, whereas biochar in combination with AWD has the potential to maintain the GWP and yield-scaled GWP of rice production at lower level than the farmers' practice.

  6. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings.

    PubMed

    Hu, Zheng-Yi; Zhu, Yong-Guan; Li, Min; Zhang, Li-Gan; Cao, Zhi-Hong; Smith, F Andrew

    2007-05-01

    The effects of two sulfur (S) sources (SO(4)(2-), S(0)), and three rates of S application (0, 30, 120 mgS/kg) on the formation of iron plaque in the rhizosphere, and on the root surface of rice, and As (arsenic) uptake into rice (Oryza sativa L.) were studied in a combined soil-sand culture experiment. Significant differences in As uptake into rice between +S and -S treatments were observed in relation to S sources, and rates of S application. Concentrations of As in rice shoots decreased with increasing rates of S application. The mechanism could be ascribed to sulfur, induced the formation of iron plaque, since concentrations of Fe in iron plaque on quartz sands in the rhizosphere, and on the root surface of rice increased with increasing rates of S application. The results suggest that sulfur fertilization may be important for the development approaches to reducing As accumulation in rice.

  7. Studies, using in vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3,4-methylenedioxymethamphetamine ('ecstasy')-induced dopamine release and free radical formation in the mouse striatum.

    PubMed

    Camarero, Jorge; Sanchez, Veronica; O'Shea, Esther; Green, A Richard; Colado, M Isabel

    2002-06-01

    The present study examined the mechanisms by which 3,4-methylenedioxymethamphetamine (MDMA) produces long-term neurotoxicity of striatal dopamine neurones in mice and the protective action of the dopamine uptake inhibitor GBR 12909. MDMA (30 mg/kg, i.p.), given three times at 3-h intervals, produced a rapid increase in striatal dopamine release measured by in vivo microdialysis (maximum increase to 380 +/- 64% of baseline). This increase was enhanced to 576 +/- 109% of baseline by GBR 12909 (10 mg/kg, i.p.) administered 30 min before each dose of MDMA, supporting the contention that MDMA enters the terminal by diffusion and not via the dopamine uptake site. This, in addition to the fact that perfusion of the probe with a low Ca(2+) medium inhibited the MDMA-induced increase in extracellular dopamine, indicates that the neurotransmitter may be released by a Ca(2+) -dependent mechanism not related to the dopamine transporter. MDMA (30 mg/kg x 3) increased the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) from salicylic acid perfused through a probe implanted in the striatum, indicating that MDMA increased free radical formation. GBR 12909 pre-treatment attenuated the MDMA-induced increase in 2,3-DHBA formation by approximately 50%, but had no significant intrinsic radical trapping activity. MDMA administration increased lipid peroxidation in striatal synaptosomes, an effect reduced by approximately 60% by GBR 12909 pre-treatment. GBR 12909 did not modify the MDMA-induced changes in body temperature. These data suggest that MDMA-induced toxicity of dopamine neurones in mice results from free radical formation which in turn induces an oxidative stress process. The data also indicate that the free radical formation is probably not associated with the MDMA-induced dopamine release and that MDMA does not induce dopamine release via an action at the dopamine transporter.

  8. Reduced Dependence of Crested Ibis on Winter-Flooded Rice Fields: Implications for Their Conservation

    PubMed Central

    Sun, Yiwen; Skidmore, Andrew K.; Wang, Tiejun; van Gils, Hein A. M. J.; Wang, Qi; Qing, Baoping; Ding, Changqing

    2014-01-01

    The Crested Ibis Nipponia nippon was once thought to be extinct in the wild until seven birds were discovered in a remote mountain village in China in 1981. Studies suggested that winter-flooded rice fields play an essential role in nest site selection by the Crested Ibis and hence in their survival. Considerable efforts were therefore made to conserve the winter-flooded rice fields, but these have caused conflicts between the agricultural and conservation communities. The population and geographical range of the wild Crested Ibis has expanded greatly since 1981, but there is no spatial information on the winter-flooded rice fields, nor on the current association of nest sites and winter-flooded rice fields. We mapped winter-flooded rice fields across the entire current range of Crested Ibis using innovative remote sensing and geographical information systems (GIS) techniques. The spatial relationships between the nest site clusters and winter-flooded rice fields were quantified using Ward's hierarchical clustering method and Ripley's K-function. We show that both have significantly clumped distribution patterns and that they are positively associated. However, the dependence of Crested Ibis on the winter-flooded rice fields varied significantly among the nest site clusters and has decreased over the years, indicating the absence of winter-flooded rice fields is not constraining their recovery and population expansion. We therefore recommend that efforts should be made to protect the existing winter-flooded rice fields and to restore the functionality of natural and semi-natural wetlands, to encourage both in-situ conservation and the re-introduction of the Crested Ibis. In addition, we recommend that caution should be exercised when interpreting the habitat requirements of species with a narrow distribution, particularly when that interpretation is based only on their current habitat. PMID:24874870

  9. Reduced dependence of Crested Ibis on winter-flooded rice fields: implications for their conservation.

    PubMed

    Sun, Yiwen; Skidmore, Andrew K; Wang, Tiejun; van Gils, Hein A M J; Wang, Qi; Qing, Baoping; Ding, Changqing

    2014-01-01

    The Crested Ibis Nipponia nippon was once thought to be extinct in the wild until seven birds were discovered in a remote mountain village in China in 1981. Studies suggested that winter-flooded rice fields play an essential role in nest site selection by the Crested Ibis and hence in their survival. Considerable efforts were therefore made to conserve the winter-flooded rice fields, but these have caused conflicts between the agricultural and conservation communities. The population and geographical range of the wild Crested Ibis has expanded greatly since 1981, but there is no spatial information on the winter-flooded rice fields, nor on the current association of nest sites and winter-flooded rice fields. We mapped winter-flooded rice fields across the entire current range of Crested Ibis using innovative remote sensing and geographical information systems (GIS) techniques. The spatial relationships between the nest site clusters and winter-flooded rice fields were quantified using Ward's hierarchical clustering method and Ripley's K-function. We show that both have significantly clumped distribution patterns and that they are positively associated. However, the dependence of Crested Ibis on the winter-flooded rice fields varied significantly among the nest site clusters and has decreased over the years, indicating the absence of winter-flooded rice fields is not constraining their recovery and population expansion. We therefore recommend that efforts should be made to protect the existing winter-flooded rice fields and to restore the functionality of natural and semi-natural wetlands, to encourage both in-situ conservation and the re-introduction of the Crested Ibis. In addition, we recommend that caution should be exercised when interpreting the habitat requirements of species with a narrow distribution, particularly when that interpretation is based only on their current habitat.

  10. Biochar amendment reduces rice Cd uptake in polluted and unpolluted paddy soils: a long term field experiment

    NASA Astrophysics Data System (ADS)

    Bian, R.; Cui, L.; Pan, G.; Li, L.

    2012-04-01

    The bioavailability of Cd in agricultural soils has been a great health concern due to the potential risk through exposure of agro-food produced in Cd-contaminated fields. Yet, rice subject to Cd contamination appears to have expanded at the last decade due to irrigation with waste water and chemical fertilization in south china. This is supposed to raise the Cd accumulation of rice grain. Therefore, techniques to reduce Cd mobility and plant uptake have been a urgent demand for food safety in China.A field experiment was performed in a high-polluted (HP), mid-pollute (MP) and unpolluted (UP) paddy soil with biochar(BC) amendment in 2011. BC was applied in HP, MP and UP in 2008, 2009, 2009 with the rates of 0, 10, 20, 40t ha-1 in HP, MP and 0, 40t ha-1 in UP. The experiment was monitored in 2011. It was observed that BC amendment did not affect rice grain yield but significantly increased soil pH by 0.58-0.77, 1.30 units in MP, UP and there was no difference in HP. The Cacl2 extracted Cd in soil was decreased by 18.1%-28.9% in HP, 49.3%-67.5% in MP and 83.1% in UP, respectively. Meanwhile, H2O extractable Cd in soil was decreased by 20.0%-31.7% in HP, 32.7%-44.2% in MP and 25.0% in UP, respectively. With the BC treatment, rice grain Cd concentration was decreased 4.7%-17.6% in HP, 35.9%-53.4% in MP. Especially in UP field, the rice grain Cd concentration was decreased from 0.22mg kg-1 to 0.07mg kg-1 which was below National standard (0.20mg kg-1) in China. The straw and root Cd contents were also significantly decreased with BC application. Therefore, BC amendment in polluted and unpolluted fields can sustainably reduce rice Cd uptake and it may offer a basic option to reduce Cd levels in rice. Keywords: Biochar, Cd, bioavailability, paddy soil, food safety

  11. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-06-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions

  12. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  13. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Qi, Feng; Zhou, Junhu; Cen, Kefa

    2015-06-01

    The competitive reactions of reducing sugar production and degradation in the subcritical water hydrolysis of rice straw were investigated to optimise reducing sugar yield. The optimised conditions (280°C, 20 MPa, rice straw concentration of 5 wt.% and agitation speed of 200 rpm) resulted in a reducing sugar yield of 0.346 g/g rice straw because of the enhanced reducing sugar production and decreased sugar degradation. The sugar yield increased when the temperature increased from 250°C to 280°C, but it decreased when the temperature further increased to 300°C because of the degradation of monosaccharides (e.g. glucose and xylose) into by-products (e.g. 2-methyltetrahydrofuran and acetic acid). A first-order reaction model was developed to elucidate the competitive reaction kinetics of sugar production and degradation at various temperatures. The highest reducing sugar yield based on the model was achieved at 280°C with the highest production and lowest degradation rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission.

  15. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria.

    PubMed

    Li, Ya; Pang, Hai-Dong; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2017-04-01

    Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Rice protein improves adiposity, body weight and reduces lipids level in rats through modification of triglyceride metabolism

    PubMed Central

    2012-01-01

    Background To elucidate whether rice protein can possess a vital function in improving lipids level and adiposity, the effects of rice proteins extracted by alkaline (RP-A) and α-amylase (RP-E) on triglyceride metabolism were investigated in 7-week-old male Wistar rats fed cholesterol-enriched diets for 2 weeks, as compared with casein (CAS). Results Compared with CAS, plasma concentrations of glucose and lipids were significantly reduced by RP-feeding (P < 0.05), as well as hepatic accumulation of lipids (P < 0.05). RP-A and RP-E significantly depressed the hepatic activities of fatty acid synthase (FAS), glucose 6-phosphate dehydrogenase (G6PD) and malate dehydrogenase (MDH) (P < 0.05), whereas the activities of lipoprotein lipase (PL) and hepatic lipase (HL) were significantly stimulated (P < 0.05), as compared to CAS. Neither lipids level nor activities of enzymes were different between RP-A and RP-E (P > 0.05). There was a significant positive correlation between protein digestibility and deposit fat (r = 0.8567, P < 0.05), as well as the plasma TG concentration (r = 0.8627, P < 0.05). Conclusions The present study demonstrates that rice protein can modify triglyceride metabolism, leading to an improvement of body weight and adiposity. Results suggest that the triglyceride-lowering action as well as the potential of anti-adiposity induced by rice protein is attributed to upregulation of lipolysis and downregulation of lipogenesis, and the lower digestibility of rice protein may be the main modulator responsible for the lipid-lowering action. PMID:22330327

  18. GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans.

    PubMed

    Villemagne, V L; Wong, D F; Yokoi, F; Stephane, M; Rice, K C; Matecka, D; Clough, D J; Dannals, R F; Rothman, R B

    1999-09-15

    Major neurochemical effects of methamphetamine include release of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) via a carrier-mediated exchange mechanism. Preclinical research supports the hypothesis that elevations of mesolimbic DA mediate the addictive and reinforcing effects of methamphetamine and amphetamine. This hypothesis has not been adequately tested in humans. Previous in vivo rodent microdialysis demonstrated that the high affinity DA uptake inhibitor, GBR12909, attenuates cocaine- and amphetamine-induced increases in mesolimbic DA. The present study determined the ability of GBR12909 to attenuate amphetamine-induced increases in striatal DA as measured by [(11)C]raclopride continuous infusion positron emission tomography (PET) scans in two Papio anubis baboons. [(11)C]Raclopride was given in a continuous infusion paradigm resulting in a flat volume of distribution vs. time for up to 45 min postinjection. At that time, a 1.5 mg/kg amphetamine i.v. bolus was administered which caused a significant (30.3%) reduction in the volume of distribution (V(3)"). The percent reduction in the volume of distribution and, hence, a measure of the intrasynaptic DA release ranged between 22-41%. GBR12909 (1 mg/kg, slow i.v. infusion) was administered 90 min before the administration of the radiotracer. The comparison of the volume of distribution before and after administration of GBR12909 showed that GBR12909 inhibited amphetamine-induced DA release by 74%. These experiments suggest that GBR12909 is an important prototypical medication to test the hypothesis that stimulant-induced euphoria is mediated by DA and, if the DA hypothesis is correct, a potential treatment agent for cocaine and methamphetamine abuse. Furthermore, this quantitative approach demonstrates a way of testing various treatment medications, including other forms of GBR12909 such as a decanoate derivative.

  19. Germinated brown rice and its bio-functional compounds.

    PubMed

    Cho, Dong-Hwa; Lim, Seung-Taik

    2016-04-01

    Brown rice (BR) contains bran layers and embryo, where a variety of nutritional and biofunctional components, such as dietary fibers, γ-oryzanol, vitamins, and minerals, exist. However, BR is consumed less than white rice because it has an inferior eating texture when cooked. Germination is one of the techniques used to improve the texture of the cooked BR. In addition, it induces numerous changes in the composition and chemical structure of the bioactive components. Moreover, many studies reported that the germination could induce the formation of new bioactive compounds, such as gamma-aminobutyric acid (GABA). The consumption of germinated brown rice (GBR) is increasing in many Asian countries because of its improved eating quality and potential health-promoting functions. However, there is still a lack of studies on the compositional and functional changes of the bioactive components during germination. This review contains recent research findings, especially on the bioactive components in GBR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparative proteomics and protein profile related to phenolic compounds and antioxidant activity in germinated Oryza sativa 'KDML105' and Thai brown rice 'Mali Daeng' for better nutritional value.

    PubMed

    Maksup, Sarunyaporn; Pongpakpian, Sarintip; Roytrakul, Sittiruk; Cha-Um, Suriyan; Supaibulwatana, Kanyaratt

    2017-06-24

    Brown rice (BR) and germinated brown rice (GBR) are considered as prime sources of carbohydrate and bioactive compounds for more than half of the populations worldwide. Several studies have reported on the proteomics of BR and GBR; however, the proteomic profiles related to the synthesis of bioactive compounds are less well documented. In the present study, BR and GBR were used in a comparative analysis of the proteomic and bioactive compound profiles for two famous Thai rice varieties: Khao Dawk Mali 105 (KDML) and Mali Daeng (MD). The proteomes of KDML and MD revealed differences in the expression patterns of proteins after germination. Total phenolic compound content, anthocyanin contents and antioxidant activity of red rice MD was approximately 2.6-, 2.2- and 9.2-fold higher, respectively, compared to that of the white rice KDML. Moreover, GBR of MD showed higher total anthocyanin content and greater antioxidant activity, which is consistent with the increase expression of several proteins involved in the biosynthesis of phenolic compounds and protection against oxidative stress. Red rice MD exhibits higher nutrient values compared to white rice KDML and the appropriate germination of brown rice could represent a method for improving health-related benefits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Evaluation of the Effects of Iron Oxides on Soil Reducing Conditions and Methane Generation in Cambodian Wetland Rice Fields

    NASA Astrophysics Data System (ADS)

    Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.

    2007-12-01

    Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.

  2. SUPPLEMENTAL ULTRAVIOLET-B RADIATION DOES NOT REDUCE GROWTH OR GRAIN YIELD IN RICE

    EPA Science Inventory

    Negative effects of enhanced UV-B radiation have been demonstrated in plants, but impacts under realistic field conditions remain uncertain. Adverse impacts to major crops, such as rice (Oryza sativa L.), that are grown in areas with currently high ambient levels of UV-B, could h...

  3. Parboiled rice hull mulch in containers reduces liverwort and bittercress growth

    USDA-ARS?s Scientific Manuscript database

    Use of preemergence herbicides for weed control is not always possible; some crops and many enclosed production sites are not labeled for herbicide applications. The objective of this research was to determine the utility of parboiled rice hull mulch for controlling two of the most common weeds in ...

  4. Reducing greenhouse gas emissions, water use and grain arsenic levels in rice systems

    USDA-ARS?s Scientific Manuscript database

    Agriculture is faced with the challenge of providing healthy food for a growing population while minimizing environmental consequences. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhous...

  5. SUPPLEMENTAL ULTRAVIOLET-B RADIATION DOES NOT REDUCE GROWTH OR GRAIN YIELD IN RICE

    EPA Science Inventory

    Negative effects of enhanced UV-B radiation have been demonstrated in plants, but impacts under realistic field conditions remain uncertain. Adverse impacts to major crops, such as rice (Oryza sativa L.), that are grown in areas with currently high ambient levels of UV-B, could h...

  6. Combination of wet irrigation and nitrification inhibitor reduced nitrous oxide and methane emissions from a rice cropping system.

    PubMed

    Liu, Gang; Yu, Haiyang; Zhang, Guangbin; Xu, Hua; Ma, Jing

    2016-09-01

    To conserve water resources and guarantee food security, a new technology termed as "wet irrigation" is developed and practiced in rice fields; thus, its impact on radiative forcing derived from nitrous oxide (N2O) and methane (CH4) emissions merits serious attention. Dicyandiamide (DCD), a kind of nitrification inhibitor, is proposed as a viable means to mitigate greenhouse gas (GHG) emission while enhancing crop productivity. However, little is known about the response of GHG emission and grain yield to DCD application in a rice system under wet irrigation. In these regard, effects of water regime and DCD application on CH4 and N2O emissions, grain yield, global warming potential (GWP), and greenhouse gas intensity (GHGI) from rice fields were studied. For this study, a field experiment, designed: Treatment II (intermittent irrigation), Treatment WI (wet irrigation), Treatment IID (II plus DCD), and Treatment WID (WI plus DCD), was conducted in Jurong, Jiangsu Province, China, from 2011 to 2012. Relative to Treatment II, Treatment WI decreased CH4 emission significantly by 49-71 % while increasing N2O emission by 33-72 %. By integrating CH4 and N2O emissions and grain yield, Treatment WI was 20-28 and 11-15 % lower than Treatment II in GWP and GHGI, respectively. The use of DCD under wet irrigation reduced N2O emission significantly by 25-38 % (p < 0.05) and CH4 emission by 7-8 %, relative to Treatment WI, resulting in a decline of 18-30 % in GWP. Due to the increase in N use efficiency, maximal grain yield (6-7 %) and minimal GHGI (22-34 %) was observed in Treatment WID. These findings indicate that combined application of N fertilizer and DCD is a win-win strategy in water-saving high-yield rice production with less GHG emission.

  7. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China.

    PubMed

    Liu, Shuwei; Hu, Zhiqiang; Wu, Shuang; Li, Shuqing; Li, Zhaofu; Zou, Jianwen

    2016-01-19

    Aquaculture is an important source of atmospheric methane (CH4) and nitrous oxide (N2O), while few direct flux measurements are available for their regional and global source strength estimates. A parallel field experiment was performed to measure annual CH4 and N2O fluxes from rice paddies and rice paddy-converted inland crab-fish aquaculture wetlands in southeast China. Besides N2O fluxes dependent on water/sediment mineral N and CH4 fluxes related to water chemical oxygen demand, both CH4 and N2O fluxes from aquaculture were related to water/sediment temperature, sediment dissolved organic carbon, and water dissolved oxygen concentration. Annual CH4 and N2O fluxes from inland aquaculture averaged 0.37 mg m(-2) h(-1) and 48.1 μg m(-2) h(-1), yielding 32.57 kg ha(-1) and 2.69 kg N2O-N ha(-1), respectively. The conversion of rice paddies to aquaculture significantly reduced CH4 and N2O emissions by 48% and 56%, respectively. The emission factor for N2O was estimated to be 0.66% of total N input in the feed or 1.64 g N2O-N kg(-1) aquaculture production in aquaculture. The conversion of rice paddies to inland aquaculture would benefit for reconciling greenhouse gas mitigation and agricultural income increase as far as global warming potentials and net ecosystem economic profits are of concomitant concern. Some agricultural practices such as better aeration and feeding, and fallow season dredging would help to lower CH4 and N2O emissions from inland aquaculture. More field measurements from inland aquaculture are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.

  8. H2O2 pretreated rice seedlings specifically reduces arsenate not arsenite: difference in nutrient uptake and antioxidant defense response in a contrasting pair of rice cultivars.

    PubMed

    Mallick, Shekhar; Kumar, Navin; Sinha, Sarita; Dubey, Arvind Kumar; Tripathi, Rudra Deo; Srivastav, Vivek

    2014-10-01

    The study investigated the reduction in metalloid uptake at equimolar concentrations (~53.3 μM) of As(III) and As(V) in contrasting pair of rice seedlings by pretreating with H2O2 (1.0 μM) and SA (1.0 mM). Results obtained from the contrasting pair (arsenic tolerant vs. sensitive) of rice seedlings (cv. Pant Dhan 11 and MTU 7029, respectively) shows that pretreatment of H2O2 and H2O2 + SA reduces As(V) uptake significantly in both the cultivars, while no reduction in the As(III) uptake. The higher growth inhibition, higher H2O2 and TBARS content in sensitive cultivar against As(III) and As(V) treatments along with higher As accumulation (~1.2 mg g(-1) dw) than in cv. P11, unravels the fundamental difference in the response between the sensitive and tolerant cultivar. In the H2O2 pretreated plants, the translocation of As increased in tolerant cultivar against AsIII, whereas, it decreased in sensitive cultivar both against AsIII and AsV. In both the cultivars translocation of Mn increased in the H2O2 pretreated plants against As(III), whereas, the translocation of Cu increased against As(V). In tolerant cultivar the translocation of Fe increased against As(V) with H2O2 pretreatment whereas, it decreased in the sensitive cultivar. In both the cultivars, Zn translocation increased against As(III) and decreased against As(V). The higher level of H2O2 and SOD (EC 1.15.1.1) activity in sensitive cultivar whereas, higher, APX (EC 1.11.1.11), GR (EC 1.6.4.2) and GST (EC 1.6.4.2) activity in tolerant cultivar, also demonstrated the differential anti-oxidative defence responses between the contrasting rice cultivars.

  9. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    NASA Astrophysics Data System (ADS)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  10. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-11-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice-wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha-1 yr-1, 20% organic fertilizer), control-released urea treatment (CRU, 390 kg N ha-1 yr-1, 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha-1 yr-1, all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha-1 yr-1, all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha-1 yr-1, all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20-32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28-48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but decreased the ammonia volatilization loss. Soil

  11. Optimization of replacing pork back fat with grape seed oil and rice bran fiber for reduced-fat meat emulsion systems.

    PubMed

    Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Kim, Hyun-Wook; Lee, Ju-Woon; Chung, Hai-Jung; Kim, Cheon-Jei

    2010-01-01

    The effects of reducing pork fat levels from 30% to 20% and partially substituting the pork fat with a mix of grape seed oil (0%, 5%, 10% and 15%) and 2% rice bran fiber were investigated based on chemical composition, cooking characteristics, physicochemical and textural properties, and viscosity of reduced-fat meat batters. For reduced-fat meat batters containing grape seed oil and rice bran fiber the moisture and ash contents, uncooked and cooked pH values, yellowness, cohesiveness, gumminess, chewiness, and sarcoplasmic protein solubility were higher than in the control samples. The reduced-fat samples with increasing grape seed oil concentrations had lower cooking loss, emulsion stability, and apparent viscosity. The incorporation of grape seed oil and rice bran fiber successfully reduced the animal fat content in the final products while improving other characteristics.

  12. [Rapidly obtaining the markerless transgenic rice with reduced amylose content by co-transformation and anther culture].

    PubMed

    Shen, Ge-Zhi; Wang, Xin-Qi; Yin, Li-Qing; Cai, Xiu-Ling; Wang, Zong-Yang

    2004-12-01

    The plasmid p13W8 carrying antisense fragment of waxy gene and plasmid pCAMBIA1300 containing hpt gene were introduced into rice by Agrobacterium tumefaciens-mediated co-transformation, and 86 transgenic plants were obtained, 32 of them showed positive bands for antisense waxy gene by PCR analysis, the waxy-positive plant frequency is 37.2%. The segregation of antisense fragment of waxy gene and hpt gene was observed by PCR using hpt gene primers and waxy gene primers respectively in 29 T(1) population. One hundred and eighty-three plants containing only the antisense fragment of waxy gene were identified in 1 264 T(1) plants, the waxy-positive plant frequency is 14.4% (Table 1). The amylose content of seeds derived from transgenic plants with only the antisense fragment of waxy gene were determined, varying degrees of reduction in amylose content were found in some plants (Table 2). Four T(1) plants with reduced amylose content were selected through anther culture. Thirty-four anther culture plants seed normally, 23 of them were shown to contain only the antisense fragment of waxy gene (Table 3) by PCR analysis, and the amylose content was reduced to 5%-12% (Table 4). It took only one and half years to obtain the stably inherited markerless transgenic rice with reduced amylose content by co-transformation and anther culture technique.

  13. Spatial and temporal variation in coral predation by parrotfishes on the GBR: evidence from an inshore reef

    NASA Astrophysics Data System (ADS)

    Bonaldo, R. M.; Welsh, J. Q.; Bellwood, D. R.

    2012-03-01

    There have been few studies of coral predation by fishes on the Great Barrier Reef (GBR). However, these studies have indicated that it is an important factor that may shape coral demographics. Here, for the first time, we document the spatial and temporal variation in coral predation by parrotfishes on an inshore reef on the GBR. The densities of parrotfish feeding scars on massive Porites spp. were compared within core and non-core areas of three Chlorurus microrhinos home ranges. The density of parrotfish feeding scars on massive Porites is among the highest recorded on the GBR and elsewhere with a higher abundance of excavating feeding scars within core areas, reflecting the higher occupancy of these areas by C. microrhinos. Furthermore, excavating scars were more abundant in October than in April. This may be related to the higher nutritional quality of coral colonies in October, as coral spawning usually occurs in November at this study location. No spatial or temporal variation was noted in the abundance of feeding scars from scraping parrotfishes. The lack of temporal differences may be a result of the shallow scraping scars which would not be able to reach the gonads within coral polyps. The frequency of parrotfish predation on Porites and the spatial and temporal variation recorded herein highlight the potential importance of parrotfish corallivory on the GBR.

  14. Differential effects of amphetamine and GBR-12909 on orolingual motor function in young vs aged F344/BN rats

    PubMed Central

    Smittkamp, Susan; Spalding, Heather; Stanford, John A.

    2015-01-01

    Rationale Orolingual motor deficits, such as dysarthria and dysphagia, contribute to increased morbidity and mortality in the elderly. In preclinical studies we and others have reported age-related decreases in tongue motility in both F344 and F344/BN rats. The fact that these deficits are associated with nigrostriatal dopamine (DA) tissue measures suggests that increasing dopamine function might normalize tongue motility. Objective The purpose of the current study was to determine whether two indirect dopamine agonists with locomotor-enhancing effects, d-amphetamine (amphetamine; 1 & 2 mg/kg) and GBR-12909 (5, 10, and 20 mg/kg), can improve tongue motility in aged F344/BN rats. Methods Young (6 months) and aged (30 months) F344/BN rats licked water from an isometric force disc so that tongue motility (licks/second) and tongue force could be measured as a function of age and drug dose. Results Consistent with our previous studies, tongue force was greater and tongue motility was lower in the aged group. Tongue motility was increased by amphetamine but not by GBR-12909. Amphetamine decreased peak tongue force, primarily in the young group. GBR-12909 did not affect tongue force. GBR-12909 increased the number of licks/session in the young group but not in the aged group, while amphetamine increased this measure in both groups. Conclusion These results demonstrate differential effects of these drugs on orolingual motor function and suggest that blocking DA uptake is insufficient to increase tongue motility in aging. PMID:24923981

  15. Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system.

    PubMed

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production.

  16. Metabolic Engineering of the Regulators in Nitrogen Catabolite Repression To Reduce the Production of Ethyl Carbamate in a Model Rice Wine System

    PubMed Central

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production. PMID:24185848

  17. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice

    PubMed Central

    Wu, Chao; Cui, Kehui; Wang, Wencheng; Li, Qian; Fahad, Shah; Hu, Qiuqian; Huang, Jianliang; Nie, Lixiao; Peng, Shaobing

    2016-01-01

    Heat stress causes morphological and physiological changes and reduces crop yield in rice (Oryza sativa). To investigate changes in phytohormones and their relationships with yield and other attributes under heat stress, four rice varieties (Nagina22, Huanghuazhan, Liangyoupeijiu, and Shanyou 63) were grown in pots and subjected to three high temperature treatments plus control in temperature-controlled greenhouses for 15 d during the early reproductive phase. Yield reductions in Nagina22, Huanghuazhan, and Liangyoupeijiu were attributed to reductions in spikelet fertility, spikelets per panicle, and grain weight. The adverse effects of high temperature were alleviated by application of exogenous 6-benzylaminopurine (6-BA) in the heat-susceptible Liangyoupeijiu. High temperature stress reduced active cytokinins, gibberellin A1 (GA1), and indole-3-acetic acid (IAA), but increased abscisic acid (ABA) and bound cytokinins in young panicles. Correlation analyses and application of exogenous 6-BA revealed that high temperature-induced cytokinin changes may regulate yield components by modulating the differentiation and degradation of branches and spikelets, panicle exsertion, pollen vigor, anther dehiscence, and grain size. Heat-tolerant Shanyou 63 displayed minor changes in phytohormones, panicle formation, and grain yield under high temperature compared with those of the other three varieties. These results suggest that phytohormone changes are closely associated with yield formation, and a small reduction or stability in phytohormone content is required to avoid large yield losses under heat stress. PMID:27713528

  18. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    NASA Astrophysics Data System (ADS)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  19. A Bacillus paralicheniformis Iron-Containing Urease Reduces Urea Concentrations in Rice Wine.

    PubMed

    Liu, Qingtao; Chen, Yuqi; Yuan, Minglai; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-09-01

    Urease, a nickel-containing metalloenzyme, was the first enzyme to be crystallized and has a prominent position in the history of biochemistry. In the present study, we identified a nickel urease gene cluster, ureABCEFGDH, in Bacillus paralicheniformis ATCC 9945a and characterized it in Escherichia coli Enzymatic assays demonstrate that this oxygen-stable urease is also an iron-containing acid urease. Heterologous expression assays of UreH suggest that this accessory protein is involved in the transmembrane transportation of nickel and iron ions. Moreover, this iron-containing acid urease has a potential application in the degradation of urea in rice wine. The present study not only enhances our understanding of the mechanism of activation of urease but also provides insight into the evolution of metalloenzymes.IMPORTANCE An iron-containing, oxygen-stable acid urease from B. paralicheniformis ATCC 9945a with good enzymatic properties was characterized. This acid urease shows activities toward both urea and ethyl carbamate. After digestion with 6 U/ml urease, approximately 92% of the urea in rice wine was removed, suggesting that this urease has great potential in the food industry. Copyright © 2017 American Society for Microbiology.

  20. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of central Italy

    USDA-ARS?s Scientific Manuscript database

    Reducing CH4 and N2O emissions from rice cropping systems while sustaining production levels with less water requires a better understanding of the key processes involved. Alternate wetting and drying (AWD) irrigation is one promising practice that has been shown to reduce CH4 emissions. However, li...

  1. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    PubMed Central

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-01-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress. PMID:26552588

  2. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop-weed hybrids of rice.

    PubMed

    Yang, Xiao; Xia, Hui; Wang, Wei; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2011-09-01

    Gene flow from transgenic crops allows novel traits to spread to sexually compatible weeds. Traits such as resistance to insects may enhance the fitness of weeds, but few studies have tested for these effects under natural field conditions. We created F 2 and F 3 crop-weed hybrid lineages of genetically engineered rice (Oryza sativa) using lines with two transgene constructs, cowpea trypsin inhibitor (CpTI) and a Bt transgene linked to CpTI (Bt/CpTI). Experiments conducted in Fuzhou, China, demonstrated that CpTI alone did not significantly affect fecundity, although it reduced herbivory. In contrast, under certain conditions, Bt/CpTI conferred up to 79% less insect damage and 47% greater fecundity relative to nontransgenic controls, and a 44% increase in fecundity relative to the weedy parent. A small fitness cost was detected in F 3 progeny with Bt/CpTI when grown under low insect pressure and direct competition with transgene-negative controls. We conclude that Bt/CpTI transgenes may introgress into co-occurring weedy rice populations and contribute to greater seed production when target insects are abundant. However, the net fitness benefits that are associated with Bt/CpTI could be ephemeral if insect pressure is lacking, for example, because of widespread planting of Bt cultivars that suppress target insect populations.

  3. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.).

    PubMed

    Singh, Amit P; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K; Chakrabarty, Debasis; Tripathi, Rudra D

    2015-01-01

    Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (As(V)) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by As(V) and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (As(III)). SA also overcame As(V) induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity.

  4. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves.

    PubMed

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-10

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  5. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    NASA Astrophysics Data System (ADS)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  6. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop–weed hybrids of rice

    PubMed Central

    Yang, Xiao; Xia, Hui; Wang, Wei; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2011-01-01

    Gene flow from transgenic crops allows novel traits to spread to sexually compatible weeds. Traits such as resistance to insects may enhance the fitness of weeds, but few studies have tested for these effects under natural field conditions. We created F2 and F3 crop–weed hybrid lineages of genetically engineered rice (Oryza sativa) using lines with two transgene constructs, cowpea trypsin inhibitor (CpTI) and a Bt transgene linked to CpTI (Bt/CpTI). Experiments conducted in Fuzhou, China, demonstrated that CpTI alone did not significantly affect fecundity, although it reduced herbivory. In contrast, under certain conditions, Bt/CpTI conferred up to 79% less insect damage and 47% greater fecundity relative to nontransgenic controls, and a 44% increase in fecundity relative to the weedy parent. A small fitness cost was detected in F3 progeny with Bt/CpTI when grown under low insect pressure and direct competition with transgene-negative controls. We conclude that Bt/CpTI transgenes may introgress into co-occurring weedy rice populations and contribute to greater seed production when target insects are abundant. However, the net fitness benefits that are associated with Bt/CpTI could be ephemeral if insect pressure is lacking, for example, because of widespread planting of Bt cultivars that suppress target insect populations. PMID:25568014

  7. Development of reduced-fat mayonnaise using 4alphaGTase-modified rice starch and xanthan gum.

    PubMed

    Mun, Saehun; Kim, Young-Lim; Kang, Choon-Gil; Park, Kwan-Hwa; Shim, Jae-Yong; Kim, Yong-Ro

    2009-06-01

    In this study a disproportionating enzyme, 4-alpha-glucanotransferase (4alphaGTase), was used to modify the structural properties of rice starch to produce a suitable fat substitute in reduced-fat (RF) mayonnaise. The mayonnaise fat was partially substituted with the 4alphaGTase-treated starch paste at levels up to 50% in combination with xanthan gum and the physical and rheological properties of the modified RF mayonnaise samples were investigated. All mayonnaises prepared in this study exhibited shear thinning behavior and yield stress. Viscoelastic properties of mayonnaise were characterized using dynamic oscillatory shear test and it was observed that mayonnaises exhibited weak gel-like properties. The magnitude of elastic and loss moduli was also affected by 4alphaGTase-treated starch concentration and presence of xanthan gum. In relation to microstructure, RF mayonnaise prepared with 3.8 or 5.6 wt% of 4alphaGTase-treated starch and xanthan gum showed smaller droplets. The use of 5.6 wt% of 4alphaGTase-treated starch and 0.1 wt% of xanthan gum produced a RF mayonnaise with similar rheological properties and appearances as FF mayonnaise with gum. This study demonstrated a high feasibility for using 4alphaGTase-treated rice starch as a viable fat replacer in mayonnaise.

  8. Pigmented Rice Bran and Plant Sterol Combination Reduces Serum Lipids in Overweight and Obese Adults

    PubMed Central

    Hongu, Nobuko; Kitts, David D.; Zawistowski, Jerzy; Dossett, Cynthia M.; Kopeć, Aneta; Pope, Benjamin T.; Buchowski, Maciej S.

    2015-01-01

    Objective This study investigated the dietary effect of including pigmented rice bran with or without plant sterols on lipid profiles during energy restriction–induced weight loss in overweight and obese adults not taking cholesterol-lowering medication. In addition, the study examined the effect of intervention on biomarkers of oxidative stress and inflammation. Methods A group of 24 overweight and obese adults (age: 43 ± 6 years, body mass index 32 ± 1 kg/m2, 18 females) were randomized to a 25% calorie-restricted diet containing either pigmented rice bran (RB) or the RB with addition of plant sterols (RB + PS) snack bars for 8 weeks. The individualized nutrient-balanced diet contained ~70% of daily energy needs assessed from indirect calorimetry measured resting energy expenditure (EE) and physical activity-related EE assessed using accelerometry. Anthropometrics, blood pressure, blood lipids, glucose, urinary F2-isoprostanes, C-reactive protein, insulin, and leptin were measured at baseline and after 8 weeks of intervention. Results Participants lost approximately 4.7 ± 2.2 kg (p < 0.001). Weight loss was not significant between the RB + PS and RB group (p = 0.056). Changes in body fat corresponded to changes in body weight. Average decrease in total cholesterol was significantly higher in the RB + PS group than in the RB group (difference 36 ± 25 g/dL vs 7 ± 16 g/dL; p = 0.044). A similar pattern was observed for the decrease in low-density lipoprotein (LDL) cholesterol (difference 22.3 ± 25.2 g/dL vs 4.4 ± 18.9 g/dL; p = 0.062). Changes in systolic blood pressure, serum levels of leptin, and F2-isoprostanes were significant between baseline values and after 8 weeks on the diet in both groups (p < 0.05) but did not differ between the 2 groups. Conclusions A nutrient-balanced and energy-restricted diet supplemented with rice bran and plant sterols resulted in a significant decrease in total and LDL cholesterol in overweight and obese adults. PMID

  9. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation.

    PubMed

    Siripornadulsil, Surasak; Siripornadulsil, Wilailak

    2013-08-01

    We selected 24 bacterial isolates that could tolerate up to 2500 µM CdCl2 from the soil of rice fields downstream from a zinc-mineralized area contaminated with a high level of cadmium (Cd). In the presence of 500 µM CdCl2, all isolates grew slower and with a prolonged lag-phase compared to in the absence of Cd. Cd-binding capacity was high and ranged from 6.38 to 9.38 log[Cd(atom)]/cell. The stability of Cd complexes in bacteria was affected by 1mM EDTA. In 500 µM CdCl2, all isolates produced 0.7 to 4.8-fold more inorganic sulfide and 0.6 to 2.2-fold more thio-rich compounds containing SH groups. Out of 24 Cd-tolerant bacterial isolates, KKU2500-3, -8, -9 and -20 were able to promote the growth of Thai jasmine rice (Kao Hom Mali 105) seedlings in the presence of 200 µM CdCl2, and KKU2500-3 produced the highest numbers of fibrous root. Interestingly, these 4 isolates increased Cd tolerance and decreased the accumulation of Cd in rice by 61, 9, 6, and 17% when grown in the presence of 200 µM CdCl2. Of the 4 isolates, KKU2500-3 produced more inorganic sulfide when grown in CdCl2 at 500-2000 µM. XANES analyses indicated that this isolate precipitated a detectable amount of cadmium sulfide (CdS) when grown in 500 µM CdCl2. Thus, the isolate KKU2500-3 could possibly transform toxic, soluble CdCl2 into non-toxic, insoluble CdS. These 4Cd-tolerant bacterial isolates were identified via 16S rDNA sequencing and classified as Cupriavidus taiwanensis KKU2500-3 and Pseudomonas aeruginosa KKU2500-8, -9, and -20. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers

    PubMed Central

    Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md. Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2015-01-01

    The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition. PMID:26798635

  11. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers.

    PubMed

    Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2015-01-01

    The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.

  12. Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: a cross-over study

    PubMed Central

    2012-01-01

    Background Around the world, beans and rice are commonly consumed together as a meal. With type 2 diabetes increasing, the effect of this traditional diet pattern on glycemic response has not been studied fully. Methods We evaluated the glycemic response of bean and rice traditional meals compared to rice alone in adults with type 2 diabetes. Seventeen men and women with type 2 diabetes controlled by metformin (n = 14) or diet/exercise (n = 3) aged 35–70 years participated in the randomized 4 × 4 crossover trial. The white long grain rice control, pinto beans/rice, black beans/rice, red kidney beans/rice test meals, matched for 50 grams of available carbohydrate, were consumed at breakfast after a 12 hour fast. Capillary blood glucose concentrations at baseline and at 30 minute intervals up to 180 minutes postprandial were collected. MANOVA for repeated measures established glucose differences between treatments. Paired t tests identified differences between bean types and the rice control following a significant MANOVA. Results Postprandial net glucose values were significantly lower for the three bean/rice treatments in contrast to the rice control at 90, 120 and 150 minutes. Incremental area under the curve values were significantly lower for the pinto and black bean/rice meals compared to rice alone, but not for kidney beans. Conclusions Pinto, dark red kidney and black beans with rice attenuate the glycemic response compared to rice alone. Promotion of traditional foods may provide non-pharmaceutical management of type 2 diabetes and improve dietary adherence with cultural groups. Trial registration Clinical Trials number NCT01241253 PMID:22494488

  13. Effect of selenium enrichment on the quality of germinated brown rice during storage.

    PubMed

    Li, Yang; Liu, Kunlun; Chen, Fusheng

    2016-09-15

    Changes in the quality of selenized germinated brown rice (Se-GBR) and germinated brown rice (GBR) under controlled temperature storage were investigated. Samples were sealed in air-tight jars (75% RH) and stored at 15, 25, or 35 °C for 9 months. Fatty acid value (FAV), peroxide value (POV), and carbonyl value (CV) were determined every 45d. FAV, POV, and CV gradually increased with the storage period. Samples stored under low-temperature showed lower FAVs, POVs, and CVs than samples stored at higher temperatures. Compared with GBR, Se-GBR showed lower FAVs, POVs and CVs; this indicates Se exerted a positive effect on the preservation of rice quality. Over 100 volatile compounds were identified, and 15 volatile aldehydes were further studied. To determine the distribution pattern of volatile aldehydes, principal component analysis (PCA) was employed. The first two principal components determined from the PCA of volatile aldehydes explained 50.22% of the variance observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. In utero exposure to germinated brown rice and its oryzanol-rich extract attenuated high fat diet-induced insulin resistance in F1 generation of rats.

    PubMed

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2017-01-21

    The development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences. In this regard, high fat diet (HFD) feeding in pregnancy has been shown to increase risks of metabolic diseases. Thus, we investigated the effects of supplementation of HFD with germinated brown rice (GBR) and GBR-derived gamma oryzanol-rich extract (OE) on insulin resistance and its epigenetic implications in pregnant rats and their offsprings. Pregnant female Sprague dawley rats were fed with HFD alone, HFD + GBR or HFD + OE (100 or 200 mg/kg/day) throughout pregnancy and lactation. Their offsprings were weaned at 4 weeks post-delivery and were followed up until 8 weeks. Serum levels of adipokines were measured in dams and their offsprings, and global DNA methylation and histone acetylation patterns were estimated from the liver. The dams and offsprings of the GBR and OE groups had lower weight gain, glycemic response, 8-Iso prostaglandin, retinol binding protein 4 and fasting insulin, and elevated adiponectin levels compared with the HFD group. Fasting leptin levels were lower only in the GBR groups. Hepatic global DNA methylation was lower in the GBR groups while hepatic H4 acetylation was lower in both GBR and OE dams. In the offsprings, DNA methylation and H4 acetylation were only lower in the OE group. However, dams and offsprings of the GBR and OE groups had higher hepatic H3 acetylation. GBR and OE can be used as functional ingredients for the amelioration of HFD-induced epigeneticallymediated insulin resistance.

  15. Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters.

    PubMed

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Mishra, Seema; Dwivedi, Sanjay; Kumar, Smita; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2016-02-01

    Arsenic (As) contamination in rice is at alarming level as majority of rice growing regions are As contaminated such as South East Asia. Restricting the As in aerial parts of rice plant may be an effective strategy to reduce As contamination in food chain. Sulfur (S), an essential element for plant growth and development, plays a crucial role in diminishing heavy metal toxicity. Current study is designed to investigate the role of S to mitigate As toxicity in rice under different S regimes. High S (5 mM) treatment resulted in enhanced root As accumulation as well as prevented its entry in to shoot. Results of thiol metabolism indicate that As was complexed in plant roots through enhanced synthesis of phytochelatins. High S treatment also reduced the expression of OsLsi1 and OsLsi2, the potent transporters of As in rice. High S treatment enhanced the activities of antioxidant enzymes and mitigated the As induced oxidative stress. Thus from present study it is evident that proper supply of S nutrition may be helpful in prevention of As accumulation in aerial parts of plant as well as As induced toxicity.

  16. Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system.

    PubMed

    Yao, Zhisheng; Zheng, Xunhua; Zhang, Yanan; Liu, Chunyan; Wang, Rui; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-09-12

    Ground cover rice production system (GCRPS), i.e., paddy soils being covered by thin plastic films with soil moisture being maintained nearly saturated status, is a promising technology as increased yields are achieved with less irrigation water. However, increased soil aeration and temperature under GCRPS may cause pollution swapping in greenhouse gas (GHG) from CH4 to N2O emissions. A 2-year experiment was performed, taking traditional rice cultivation as a reference, to assess the impacts of N-fertilizer placement methods on CH4, N2O and NO emissions and rice yields under GCRPS. Averaging across all rice seasons and N-fertilizer treatments, the GHG emissions for GCRPS were 1973 kg CO2-eq ha(-1) (or 256 kg CO2-eq Mg(-1)), which is significantly lower than that of traditional cultivation (4186 kg CO2-eq ha(-1)or 646 kg CO2-eq Mg(-1)). Furthermore, if urea was placed at a 10-15 cm soil depth instead of broadcasting, the yield-scaled GHG emissions from GCRPS were further reduced from 377 to 222 kg CO2-eq Mg(-1), as N2O emissions greatly decreased while yields increased. Urea deep placement also reduced yield-scaled NO emissions by 54%. Therefore, GCRPS with urea deep placement is a climate- and environment-smart management, which allows for maximal rice yields at minimal GHG and NO emissions.

  17. Antimanic activity of minocycline in a GBR12909-induced model of mania in mice: Possible role of antioxidant and neurotrophic mechanisms.

    PubMed

    de Queiroz, Ana Isabelle G; Chaves Filho, Adriano José Maia; Araújo, Tatiane da Silva; Lima, Camila Nayane Carvalho; Machado, Michel de Jesus Souza; Carvalho, André F; Vasconcelos, Silvania Maria Mendes; de Lucena, David Freitas; Quevedo, João; Macedo, Danielle

    2018-01-01

    Mania/hypomania is the cardinal feature of bipolar disorder. Recently, single administration of the dopamine transporter (DAT) inhibitor, GBR12909, was related to mania-like alterations. In the present study we aimed at testing behavioral and brain oxidant/neurotrophic alterations induced by the repeated administration of GBR12909 and its prevention/reversal by the mood stabilizing drugs, lithium (Li) and valproate (VAL) as well as by the neuroprotective drug, minocycline (Mino). Adult Swiss mice were submitted to 14 days protocols namely prevention and reversal. In the reversal protocol mice were given GBR12909 or saline and between days 8 and 14 received Li, VAL, Mino (25 or 50mg/kg) or saline. In the prevention treatment, mice were pretreated with Li, VAL, Mino or saline prior to GBR12909. GBR12909 repeated administration induced hyperlocomotion and increased risk taking behavior that were prevented and reversed by the mood stabilizers and both doses of Mino. Li, VAL or Mino were more effective in the reversal of striatal GSH alterations induced by GBR12909. Regarding lipid peroxidation Mino was more effective in the prevention and reversal of lipid peroxidation in the hippocampus whereas Li and VAL prevented this alteration in the striatum and PFC. Li, VAL and Mino25 reversed the decrease in BDNF levels induced by GBR12909. GBR12909 repeated administration resembles manic phenotype. Similarly to classical mood-stabilizing agents, Mino prevented and reversed GBR12909 manic-like behavior in mice. Thus, our data provide preclinical support to the design of trials investigating Mino's possible antimanic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An efficient method using Gluconacetobacter europaeus to reduce an unfavorable flavor compound, acetoin, in rice vinegar production.

    PubMed

    Akasaka, Naoki; Sakoda, Hisao; Hidese, Ryota; Ishii, Yuri; Fujiwara, Shinsuke

    2013-12-01

    Gluconacetobacter europaeus, one of the microorganisms most commonly used for vinegar production, produces the unfavorable flavor compound acetoin. Since acetoin reduction is important for rice vinegar production, a genetic approach was attempted to reduce acetoin produced by G. europaeus KGMA0119 using specific gene knockout without introducing exogenous antibiotic resistance genes. A uracil-auxotrophic mutant with deletion of the orotate phosphoribosyltransferase gene (pyrE) was first isolated by positive selection using 5-fluoroorotic acid. The pyrE disruptant designated KGMA0704 (ΔpyrE) showed 5-fluoroorotic acid resistance. KGMA0704 and the pyrE gene were used for further gene disruption experiments as a host cell and a selectable marker, respectively. Targeted disruption of aldC or als, which encodes α-acetolactate decarboxylase or α-acetolactate synthase, was attempted in KGMA0704. The disruption of these genes was expected to result in a decrease in acetoin levels. A disruption vector harboring the pyrE marker within the targeted gene was constructed for double-crossover recombination. The cells of KGMA0704 were transformed with the exogenous DNA using electroporation, and genotypic analyses of the transformants revealed the unique occurrence of targeted aldC or als gene disruption. The aldC disruptant KGMA4004 and the als disruptant KGMA5315 were cultivated, and the amount of acetoin was monitored. The acetoin level in KGMA4004 culture was significantly reduced to 0.009% (wt/vol) compared with KGMA0119 (0.042% [wt/vol]), whereas that of KGMA5315 was not affected (0.037% [wt/vol]). This indicates that aldC disruption is critical for acetoin reduction. G. europaeus KGMA4004 has clear application potential in the production of rice vinegar with less unfavorable flavor.

  19. An Efficient Method Using Gluconacetobacter europaeus To Reduce an Unfavorable Flavor Compound, Acetoin, in Rice Vinegar Production

    PubMed Central

    Akasaka, Naoki; Sakoda, Hisao; Hidese, Ryota; Ishii, Yuri

    2013-01-01

    Gluconacetobacter europaeus, one of the microorganisms most commonly used for vinegar production, produces the unfavorable flavor compound acetoin. Since acetoin reduction is important for rice vinegar production, a genetic approach was attempted to reduce acetoin produced by G. europaeus KGMA0119 using specific gene knockout without introducing exogenous antibiotic resistance genes. A uracil-auxotrophic mutant with deletion of the orotate phosphoribosyltransferase gene (pyrE) was first isolated by positive selection using 5-fluoroorotic acid. The pyrE disruptant designated KGMA0704 (ΔpyrE) showed 5-fluoroorotic acid resistance. KGMA0704 and the pyrE gene were used for further gene disruption experiments as a host cell and a selectable marker, respectively. Targeted disruption of aldC or als, which encodes α-acetolactate decarboxylase or α-acetolactate synthase, was attempted in KGMA0704. The disruption of these genes was expected to result in a decrease in acetoin levels. A disruption vector harboring the pyrE marker within the targeted gene was constructed for double-crossover recombination. The cells of KGMA0704 were transformed with the exogenous DNA using electroporation, and genotypic analyses of the transformants revealed the unique occurrence of targeted aldC or als gene disruption. The aldC disruptant KGMA4004 and the als disruptant KGMA5315 were cultivated, and the amount of acetoin was monitored. The acetoin level in KGMA4004 culture was significantly reduced to 0.009% (wt/vol) compared with KGMA0119 (0.042% [wt/vol]), whereas that of KGMA5315 was not affected (0.037% [wt/vol]). This indicates that aldC disruption is critical for acetoin reduction. G. europaeus KGMA4004 has clear application potential in the production of rice vinegar with less unfavorable flavor. PMID:24056455

  20. Guided bone regeneration (GBR) using cortical bone pins in combination with leukocyte- and platelet-rich fibrin (L-PRF).

    PubMed

    Toffler, Michael

    2014-03-01

    Two of the fundamental requisites for guided bone regeneration (GBR) are space maintenance and primary soft-tissue closure. Allogeneic cortical bone pins measuring 2 mm in diameter in customized lengths can protect surrounding graft materials, support bioresorbable membrane barriers, and resist wound compression from the overlying soft tissues. In addition, a second-generation platelet concentrate, leukocyte- and platelet-rich fibrin (L-PRF), may be incorporated into the augmentation procedure to provide multiple growth factors, accelerate wound healing, and aid in the maintenance of primary closure over the grafted materials. Highlighting two case reports, this article features a GBR technique that uses bone pins in combination with L-PRF membranes to provide both horizontal and vertical ridge augmentation at severely compromised implant sites.

  1. Functional foods and the biomedicalisation of everyday life: a case of germinated brown rice.

    PubMed

    Kim, Hyomin

    2013-07-01

    Germinated brown rice (GBR) is a functional food, whose benefits for chronic diseases have been demonstrated by scientific research on a single constituent of GBR, gamma aminobutyric acid. This article examines the processes through which the emphasis on biomedical rationality made during the production and consumption of functional foods is embedded in the complicated social contexts of the post-1990s. In the case of GBR, the Korean government, food scientists, mass media and consumers have added cultural accounts to the biomedical understanding of foods. In particular, consumers have transformed their households and online communities into a place for surveillance medicine. Functional foods are embedded in multiple actors' perspectives on what healthy foods mean and how and where the risks of chronic diseases should be managed.

  2. Selective behavioral responses to male song are affected by the dopamine agonist GBR-12909 in female European starlings (Sturnus vulgaris).

    PubMed

    Pawlisch, Benjamin A; Riters, Lauren V

    2010-09-24

    Female songbirds use attributes of male song to select mates. Different types of male song differ in incentive value (or the ability to attract females). Dopamine plays a role in incentive value and reward; however, little is known about its role in selective female behavioral responses to male courtship signals. We examined the effects of the indirect dopamine agonist (dopamine reuptake inhibitor) GBR-12909 on female songbird responses to male song stimuli. Female European starlings were played recordings of long starling song (presumed high incentive value), short starling song (presumed lower incentive value), or purple martin song (lowest incentive value). Vehicle-treated females investigated nest boxes playing starling song more than purple martin song. However, GBR-12909 disrupted preferential responses to the starling song stimuli. GBR-12909 also increased cFOS immunolabeling in the ventromedial nucleus of the hypothalamus (VMH) at the same dose that disrupted female selective responses to male starling song. The results suggest that dopamine receptors play an important role in female selective responses to biologically meaningful stimuli and that the VMH may be influenced by dopamine to alter female responses to male song. Published by Elsevier B.V.

  3. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker ( sup 3 H)GBR-12935

    SciTech Connect

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.; Inaba, T. )

    1990-02-26

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with ({sup 3}H)GBR-12935; 1-(2-(diphenylmethoxy) ethyl)-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity ({approximately}7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL) are both competitive inhibitors of P450IID6 activity and were found to inhibit ({sup 3}H)GBR-12935 binding. K{sub i} values of twelve compounds (known to interact with the DA transporter or P450IID6) for ({sup 3}H)GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with ({sup 3}H)GBR-12935.

  4. Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars.

    PubMed

    Lü, Jiliang; Zhou, Peijiang

    2011-07-01

    In this study, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize microwave-assisted FeCl(3) pretreatment conditions of rice straw with respect to FeCl(3) concentration, microwave intensity, irradiation time and substrate concentration. When rice straw was pretreated at the optimal conditions of FeCl(3) concentration, 0.14 mol/L; microwave intensity, 160°C; irradiation time, 19 min; substrate concentration, 109 g/L; and inoculated with Trichoderma viride and Bacillus pumilus, the production of reducing sugars was 6.62 g/L. This yield was 2.9 times higher than that obtained with untreated rice straw. The microorganisms degraded 37.8% of pretreated rice straw after 72 h. The structural characteristic analyses suggest that microwave-assisted FeCl(3) pretreatment damaged the silicified waxy surface of rice straw, disrupted almost all the ether linkages between lignin and carbohydrates, and removed lignin.

  5. Overexpression of the oil palm (Elaeis guineensis Jacq.) TAPETUM DEVELOPMENT1-like Eg707 in rice affects cell division and differentiation and reduces fertility.

    PubMed

    Thuc, Le Vinh; Geelen, Danny; Ky, Huynh; Ooi, Siew-Eng; Napis, Suhaimi B; Sinniah, Uma Rani; Namasivayam, Parameswari

    2013-02-01

    The functional analysis of the TAPETUM DEVELOPMENT1-like analog Eg707 of oil palm was carried out in rice by over-expressing Eg707 under the control of a double cauliflower mosaic virus 35S promoter. Ectopic expression of Eg707 in rice induced dark green and matured compact brownish calli compared to pale wild type and negative control calli. Regenerated transgenic rice plants exhibited a reduction in organ size and plant height, rolled, erect leaves, less tillers, increased chlorophyll content, and reduced fertility with smaller green seeds. At the molecular level Eg707 overexpression caused an increase in the transcription of SAPK9, a SnRK2 protein kinase family member that is activated by ABA and hyperosmotic stress. Together, the results show that ectopic Eg707 expression influences cell division and differentiation, presumably via altered hormone homeostasis.

  6. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.)

    PubMed Central

    Singh, Amit P.; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K.; Chakrabarty, Debasis; Tripathi, Rudra D.

    2015-01-01

    Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (AsV) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by AsV and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (AsIII). SA also overcame AsV induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity. PMID:26042132

  7. Use of rice straw biochar simultaneously as the sustained release carrier of herbicides and soil amendment for their reduced leaching.

    PubMed

    Lü, Jinhong; Li, Jianfa; Li, Yimin; Chen, Baozhu; Bao, Zhangfeng

    2012-07-04

    The sustained release and reduced leaching of herbicides is expected for enhancing their efficacy and minimizing their pollution. For this purpose, the rice straw biochar made at a relatively low temperature (350 °C) (RS350) was used simultaneously as the carrier for incorporating herbicides besides as the soil amendment. In this way, the sustained release of herbicides acetochlor and 2,4-D was obtained in the release experiments, due to the high and reversible sorption by RS350 biochar. Besides, the RS350 biochar significantly reduced the leached amount of herbicides by 25.4%-40.7% for acetochlor, and by 30.2%-45.5% for 2,4-D, depending on the depth (50 or 100 mm) of biochar-amended soil horizon. The high retention of both herbicides in the biochar-amended topsoil makes it possible to extend their efficacy. The results suggest a potential way of using low temperature biochars to reduce the leaching of herbicides without impacting their efficacy.

  8. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    PubMed

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity.

  9. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea.

    PubMed

    Li, Pengfei; Lu, Jianwei; Hou, Wenfeng; Pan, Yonghui; Wang, Yang; Khan, Muhammad Rizwan; Ren, Tao; Cong, Rihuan; Li, Xiaokun

    2017-04-01

    Controlled release fertilizer can reduce nitrogen losses to the environment while increasing grain yield and improving apparent nitrogen recovery (ANR) of rice. However, few studies have evaluated the comparative efficacy of different polymer-coated urea products on nitrogen (N) losses, ANR, and N uptake of rice. A 2-year field experiment was conducted to compare the effects of three different types of polymer-coated urea fertilizer on nitrogen losses through NH3 volatilization and surface runoff to the environment, ANR, grain yield, and N uptake as compared to conventional urea of rice. Six treatments including (1) control with 0 kg N ha(-1) (CK), (2) basal application of urea (Ub), (3) split application (Us) of urea (50% at transplanting, 25% at tillering, and 25% at panicle stages), (4) CRU-1 (polyurethane-coated urea), (5) CRU-2 (degradable polymer-coated urea), and (6) CRU-3 (water-based polymer-coated urea) all applied at 165 kg N ha(-1). It was found that CRU-2 resulted in the highest grain yield and panicle numbers among the N fertilization treatments in 2013 and 2014. Applying CRU could help increase N uptake in rice, reduce N losses through NH3 volatilization and surface runoff, and hence improve ANR. Its single dose can meet the nutrient demand of the rice plant. Controlled release urea could be adopted as an effective mitigation alternative to retard N losses through NH3 volatilization and surface runoff while improving ANR of double cropping of late rice.

  10. SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef

    PubMed Central

    2013-01-01

    Background The algal endosymbionts (genus Symbiodinium) associated with scleractinian corals (and other reef invertebrates) have received a lot of research attention in the past decade, particularly as certain host-symbiont associations appear more affected by increasing seawater temperatures than others. With the rapid accumulation of information on the diversity of Symbiodinium, it is becoming increasingly difficult to compare newly acquired Symbiodinium data with existing data to detect patterns of host-symbiont specificity on broader spatial scales. The lack of a general consensus on the classification of Symbiodinium species coupled with the variety of different markers used to identify the genus Symbiodinium (ITS1, ITS2, LSU D1/D2, chloroplast 23S rDNA and psbA minicircle) further complicate direct comparison. Description The SymbioGBR database compiles all currently available Symbiodinium sequences and associated host information of data collected from the Great Barrier Reef into a single relational database that is accessible via a user-friendly, searchable web-based application (http://www.SymbioGBR.org). SymbioGBR allows users to query Symbiodinium types or sequences sourced from various genetic markers (e.g. ITS1, ITS2, LSU D1/D2 and chloroplast 23S) and invertebrate host species to explore their reported associations. In addition, as the database includes sequence information of multiple genetic markers, it allows cross-referencing between conventional (e.g. ITS2 region) and novel markers that exhibit low intragenomic variability (e.g. psbA region). Finally, the database is based on the collection details of individual specimens. Such host-symbiont associations can be assessed quantitatively and viewed in relation to their environmental and geographic context. Conclusions The SymbioGBR database provides a comprehensive overview of Symbiodinium diversity and host-associations on the Great Barrier Reef. It provides a quick, user-friendly means to compare

  11. Milk protein-based infant formula containing rice starch and low lactose reduces common regurgitation in healthy term infants: a randomized, blinded, and prospective trial.

    PubMed

    Lasekan, John B; Linke, Hawley K; Oliver, Jeffery S; Carver, Jane D; Blatter, Mark M; Kuchan, Matthew J; Cramer, Jenna M; Pollack, Paul F

    2014-01-01

    Spit-up (regurgitation) reduction with prethickened milk protein-based infant formulas containing rice starch has been clinically demonstrated in infants with heavy spit-ups but not in otherwise healthy normal infants with common spit-ups. The objective of this study was to evaluate growth, gastrointestinal tolerance, and efficacy to reduce common spit-up in normal, healthy term infants fed an investigational rice starch prethickened lactose-free milk protein-based infant formula. This double-blind, randomized, parallel study evaluated the investigational rice starch prethickened lactose-free (low lactose < 100 mg/L) milk protein-based infant formula compared to a standard, commercially available, iso-nutrient, lactose-containing (100% of carbohydrate) milk-based infant formula (control) for growth and gastrointestinal tolerance in healthy term infants (n = 132/group) fed from 14 ± 3 days to 112 days of age. Data were classified and analyzed as evaluable (EV; subjects completing study per protocol) or intent-to-treat data (ITT; all subjects with available data). Growth as indicated by weight gain (primary variable) and formula intake were not significantly different (p > 0.05) between feeding groups (EV or ITT). Though both formulas were well tolerated, spit-up frequency was significantly lower (p < 0.05) in the rice versus control group by 53% at 28 days of age, 54% at 56 days, 48% at 84 days, and 32% at 112 days (EV). Importantly, infants in the rice group were 1.6 to 1.8 times more likely to report zero spit-up than infants in the control group. The rice group also had higher percentages of soft and yellow stools. The rice starch prethickened lactose-free milk protein-based formula (rice) supported normal growth and safe use as the sole source of feeding for normal infants over the first 4 months of life. The rice formula was efficacious in providing a clinically relevant reduction of spit-up frequency in otherwise healthy term infants.

  12. 76 FR 78610 - Notice of Intent To Reduce the Frequency of Rice and Potato Stocks Surveys and All Associated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... of Rice and Potato Stocks Surveys and All Associated Reports AGENCY: National Agricultural Statistics... approved information collections for rice and potato stocks that are currently approved under OMB 0535-0007. Under the current OMB approval the Potato Stocks Survey is conducted on a monthly basis from...

  13. Differentiation of weedy traits in ALS-resistant red rice

    USDA-ARS?s Scientific Manuscript database

    Red rice is a weedy form of cultivated rice (Oryza sativa) that competes aggressively with rice in the southern U.S., reduces yields and contaminates rice grains. The introduction of ClearfieldTM rice, a nontransgenic, herbicide-resistant rice cultivar a decade ago has led to increased use of imazet...

  14. Effects of implementing organic rice-duck integrated farming on reducing agricultural diffuse pollution around Dianshan Lake in the western suburbs of Shanghai

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Teng, Qing

    2017-04-01

    Located in the western suburbs of Shanghai, Dianshan Lake is a major source of Huangpu River, a mother river flowing through the metropolitan area. To protect the drinking water source areas, the development of any industries and livestock breeding is forbidden around the lake since the early time. However, the lake is still under a eutrophic state throughout the year. In 2013, for example, total N and total P in the lake water were 2.98 mg L-1 and 0.17 mg L-1 on average, respectively. It is believed that 72.2% of N and 73.1% of P in the lake come from agricultural diffuse pollution. The areas surrounding the lake include six towns and are all low-lying in landform. There are 5975 ha paddy fields at the six towns, making up 33.1% of total farming land in the areas. According to our questionnaires to local farmers at Jinze Town, one of the six towns, for the consecutive five years, the amounts of N and P2O5 applied within the rice growing season under the conventional rice farming are 336.6 kg ha-1 and 76.9 kg ha-1 on average, respectively, and those lost through leaching and runoff are 15.42 kg ha-1 and 3.55 kg ha-1 on average, respectively. Further study estimated that the total amounts of N and P2O5 applied around the lake within the rice growing season are 2.01×106 kg year-1 and 4.59×105 kg year-1, respectively; those lost through leaching and runoff are 0.99×105 kg year-1 and 0.23×105 kg year-1, respectively; those discharged from the fields into the lake are 0.99×104 kg year-1 and 0.23×104 kg year-1, respectively. Our study also indicated that the amount of pesticides and herbicides discharged from the paddy fields at the six towns into the lake is approximately 1.67×104 kg year-1. Appreciately, the agricultural diffuse pollution from the paddy fields surrounding the lake have posed severe threat to the lake. The field experiments indicated that raising ducks in the paddy fields within the rice growing season can not only highly reduce weed hazards and

  15. Purple rice extract supplemented diet reduces DMH- induced aberrant crypt foci in the rat colon by inhibition of bacterial β-glucuronidase.

    PubMed

    Summart, Ratasark; Chewonarin, Teera

    2014-01-01

    Purple rice has become a natural product of interest which is widely used for health promotion. This study investigated the preventive effect of purple rice extract (PRE) mixed diet on DMH initiation of colon carcinogenesis. Rats were fed with PRE mixed diet one week before injection of DMH (40 mg/kg of body weight once a week for 2 weeks). They were killed 12 hrs after a second DMH injection to measure the level of O6-methylguanine and xenobiotic metabolizing enzyme activities. In rats that received PRE, guanine methylation was reduced in the colonic mucosa, but not in the liver, whereas PRE did not affect xenobiotic conjugation, with reference to glutathione-S-transferase or UDP-glucuronyl transferase. After 5 weeks, rats that received PRE with DMH injection had fewer ACF in the colon than those treated with DMH alone. Interestingly, a PRE mixed diet inhibited the activity of bacterial β-glucuronidase in rat feces, a critical enzyme for free methylazoxymethanol (MAM) release in the rat colon. These results indicated that purple rice extract inhibited β-glucuronidase activity in the colonic lumen, causing a reduction of MAM-induced colonic mucosa DNA methylation, leaded to decelerated formation of aberrant crypt foci in the rat colon. The supplemented purple rice extract might thus prevent colon carcinogenesis by the alteration of the colonic environment, and thus could be further developed for neutraceutical products for colon cancer prevention.

  16. Application of herbicides is likely to reduce greenhouse gas (N2O and CH4) emissions from rice-wheat cropping systems

    NASA Astrophysics Data System (ADS)

    Jiang, Jingyan; Chen, Linmei; Sun, Qing; Sang, Mengmeng; Huang, Yao

    2015-04-01

    Herbicides have been widely used to control weeds in croplands; however, their effects on greenhouse gas emissions remain unclear. The effects of three wheat herbicides (acetochlor, AC; tribenuron-methyl, TBM; fenoxaprop-p-ethyl, FE) and two rice herbicides (butachlor, BC; bensulfuron-methyl, BSM) on N2O and CH4 emissions were investigated in this study. In the wheat growing season, applications of AC and FE + TBM significantly reduced N2O emissions by 31% compared with no herbicide use (p = 0.001). In the rice growing season, the application of BC significantly reduced CH4 emissions by 58% (p = 0.022), and BSM significantly reduced N2O emissions by 27% (p = 0.040); however, no significant difference among treatments with regard to the aggregate emissions of N2O and CH4 in the CO2 equivalent for the 100-year horizon was observed (p > 0.05). Relative to control plots, which were not treated with herbicides, the combined application of the herbicides FE and TBM in the wheat season led to a significant decrease in greenhouse gas intensity (GHGI) by ∼41% (p = 0.002), and the application of BC together with BSM reduced GHGI by 22% in the rice season, although this reduction was not statistically significant (p = 0.158). Further investigation suggested that the inhibitory effect of herbicides on N2O emissions in the wheat field could be ascribed to low soil ammonium nitrogen and less abundance of denitrifying bacteria. The inhibitory effects of separate applications of BC on CH4 emissions in rice fields, in contrast, were linked to high soil nitrate nitrogen and urease activity.

  17. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    PubMed

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.

  18. Effects of replacing pork back fat with vegetable oils and rice bran fiber on the quality of reduced-fat frankfurters.

    PubMed

    Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Jeong, Jong-Youn; Chung, Hai-Jung; Kim, Cheon-Jei

    2010-03-01

    The effects of substituting olive, grape seed, corn, canola, or soybean oil and rice bran fiber on the chemical composition, cooking characteristics, fatty acid composition, and sensory properties of low-fat frankfurters were investigated. Ten percent of the total fat content of frankfurters with a total fat content of 30% (control) was partially replaced by one of the vegetable oils to reduce the pork fat content by 10%. The moisture and ash content of low-fat frankfurters with vegetable oil and rice bran fiber were all higher than the control (P<0.05). Low-fat frankfurters had reduced-fat content, energy values, cholesterol and trans-fat levels, and increased pH, cooking yield and TBA values compared to the controls (P<0.05). Low-fat frankfurters with reduced-fat content plus rice bran fiber had sensory properties similar to control frankfurters containing pork fat. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  19. Rice bran enzymatic extract restores endothelial function and vascular contractility in obese rats by reducing vascular inflammation and oxidative stress.

    PubMed

    Justo, Maria Luisa; Candiracci, Manila; Dantas, Ana Paula; de Sotomayor, Maria Alvarez; Parrado, Juan; Vila, Elisabet; Herrera, Maria Dolores; Rodriguez-Rodriguez, Rosalia

    2013-08-01

    Rice bran enzymatic extract (RBEE) used in this study has shown beneficial activities against dyslipidemia, hyperinsulinemia and hypertension. Our aim was to investigate the effects of a diet supplemented with RBEE in vascular impairment developed in obese Zucker rats and to evaluate the main mechanisms mediating this action. Obese Zucker rats were fed a 1% and 5% RBEE-supplemented diet (O1% and O5%). Obese and their lean littermates fed a standard diet were used as controls (OC and LC, respectively). Vascular function was evaluated in aortic rings in organ baths. The role of nitric oxide (NO) was investigated by using NO synthase (NOS) inhibitors. Aortic expression of endothelial NOS (eNOS), inducible NOS (iNOS), tumor necrosis factor (TNF)-α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and superoxide production in arterial wall were determined. Endothelial dysfunction and vascular hyperreactivity to phenylephrine in obese rats were ameliorated by RBEE treatment, particularly with 1% RBEE. Up-regulation of eNOS protein expression in RBEE-treated aortas should contribute to this activity. RBEE attenuated vascular inflammation by reducing aortic iNOS and TNF-α expression. Aortas from RBEE-treated groups showed a significant decrease of superoxide production and down-regulation of NADPH oxidase subunits. RBEE treatment restored endothelial function and vascular contractility in obese Zucker rats through a reduction of vascular inflammation and oxidative stress. These results show the nutraceutical potential of RBEE to prevent obesity-related vascular complications. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats.

    PubMed

    Chompoopong, Supin; Jarungjitaree, Sunit; Punbanlaem, Tideeporn; Rungruang, Thanaporn; Chongthammakun, Sukumal; Kettawan, Aikkarach; Taechowisan, Thongchai

    2016-09-01

    The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD.

  1. Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes.

    PubMed

    Chakrabarti, Shumon; Dicke, Christiane; Kalderis, Dimitrios; Kern, Jürgen

    2015-08-01

    Currently, char substrates gain a lot of interest since soils amended with such substrates are being discussed to increase in fertility and productivity, water retention, and mitigation of greenhouse gases. Char substrates can be produced by carbonization of organic matter. Among different process conditions, temperature is the main factor controlling the occurrence of organic and inorganic contaminants such as phenols and furfurals, which may affect target and non-target organisms. The hydrochar produced at 200 °C contained both furfural and phenol with concentrations of 282 and 324 mg kg(-1) in contrast to the 300 °C hydrochar, which contained only phenol with a concentration of 666 mg kg(-1). By washing with acetone and water, these concentrations were significantly reduced. In this study, the potential toxic effects of hydrochars on the free-living nematode Caenorhabditis elegans were investigated via gene transcription studies using the following four matrices: (i) raw rice husk, (ii) unwashed rice char, (iii) acetone/water washed rice char, and (iv) the wash water of the two rice chars produced at 200 and 300 °C via hydrothermal carbonization (HTC). Furthermore, genetically modified strains, where the green fluorescent protein (GFP) gene sequence is linked to a reporter gene central in specific anti-stress regulations, were also exposed to these matrices. Transgenic worms exposed to hydrochars showed very weak, if any, fluorescence, and expression of the associated RNAs related to stress response and biotransformation genes was surprisingly downregulated. Similar patterns were also found for the raw rice husk. It is hypothesized that an unidentified chemical trigger exists in the rice husk, which is not destroyed during the HTC process. Therefore, the use of GFP transgenic nematode strains cannot be recommended as a general rapid monitoring tool for farmers treating their fields with artificial char. However, it is hypothesized that the observed reduced

  2. Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China.

    PubMed

    Zhang, Li'e; Mo, Zhaoyu; Qin, Jian; Li, Qin; Wei, Yanhong; Ma, Shuyan; Xiong, Yuxia; Liang, Guiqiang; Qing, Li; Chen, Zhiming; Yang, Xiaobo; Zhang, Zhiyong; Zou, Yunfeng

    2015-10-15

    This study evaluates the effect of water source change on heavy metal concentrations in water, paddy soil, and rice, as well as the health risks to residents of three riverine communities in South China. The results show that after substituting the sources of drinking water, heavy metal levels (except for Pb at Tangjun) in drinking water were below WHO guideline values and the potential risk from drinking water may be negligible. The As (46.2-66.8%), Pb (65.7-82.6%), Cd (50.8-55.0%), and Hg (28.3-32.6%) concentrations in paddy soils in Sanhe and Lasha significantly (p<0.05) decreased with a change of irrigation water sources compared to Tangjun, without change of irrigation water source. Similarly, the Cd (39.1-81.3%) and Hg (60.0-75.0%) concentrations in rice grown at Sanhe and Lasha significantly (p<0.05) decreased compared to those at Tangjun. Consequently, replacing irrigation water source significantly (p<0.05) reduced the hazard quotient (HQ) and cancer risk for the corresponding single metal via soil ingestion and rice consumption. Despite that total non-carcinogenic and carcinogenic risks at Sanhe and Lasha were significantly decreased, they still exceeded the maximum acceptable limits recommended by US EPA, indicating that residents of these two communities remain at high risks of both non-cancer and cancer effects.

  3. Heat-Induced Cytokinin Transportation and Degradation Are Associated with Reduced Panicle Cytokinin Expression and Fewer Spikelets per Panicle in Rice

    PubMed Central

    Wu, Chao; Cui, Kehui; Wang, Wencheng; Li, Qian; Fahad, Shah; Hu, Qiuqian; Huang, Jianliang; Nie, Lixiao; Mohapatra, Pravat K.; Peng, Shaobing

    2017-01-01

    Cytokinins (CTKs) regulate panicle size and mediate heat tolerance in crops. To investigate the effect of high temperature on panicle CTK expression and the role of such expression in panicle differentiation in rice, four rice varieties (Nagina22, N22; Huanghuazhan, HHZ; Liangyoupeijiu, LYPJ; and Shanyou63, SY63) were grown under normal conditions and subjected to three high temperature treatments and one control treatment in temperature-controlled greenhouses for 15 days during the early reproductive stage. The high temperature treatments significantly reduced panicle CTK abundance in heat-susceptible LYPJ, HHZ, and N22 varieties, which showed fewer spikelets per panicle in comparison with control plants. Exogenous 6-benzylaminopurine application mitigated the effect of heat injury on the number of spikelets per panicle. The high temperature treatments significantly decreased the xylem sap flow rate and CTK transportation rate, but enhanced cytokinin oxidase/dehydrogenase (CKX) activity in heat-susceptible varieties. In comparison with the heat-susceptible varieties, heat-tolerant variety SY63 showed less reduction in panicle CTK abundance, an enhanced xylem sap flow rate, an improved CTK transport rate, and stable CKX activity under the high temperature treatments. Enzymes involved in CTK synthesis (isopentenyltransferase, LONELY GUY, and cytochrome P450 monooxygenase) were inhibited by the high temperature treatments. Heat-induced changes in CTK transportation from root to shoot through xylem sap flow and panicle CTK degradation via CKX were closely associated with the effects of heat on panicle CTK abundance and panicle size. Heat-tolerant variety SY63 showed stable panicle size under the high temperature treatments because of enhanced transport of root-derived CTKs and stable panicle CKX activity. Our results provide insight into rice heat tolerance that will facilitate the development of rice varieties with tolerance to high temperature. PMID:28367158

  4. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    PubMed

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  5. Heat-Induced Cytokinin Transportation and Degradation Are Associated with Reduced Panicle Cytokinin Expression and Fewer Spikelets per Panicle in Rice.

    PubMed

    Wu, Chao; Cui, Kehui; Wang, Wencheng; Li, Qian; Fahad, Shah; Hu, Qiuqian; Huang, Jianliang; Nie, Lixiao; Mohapatra, Pravat K; Peng, Shaobing

    2017-01-01

    Cytokinins (CTKs) regulate panicle size and mediate heat tolerance in crops. To investigate the effect of high temperature on panicle CTK expression and the role of such expression in panicle differentiation in rice, four rice varieties (Nagina22, N22; Huanghuazhan, HHZ; Liangyoupeijiu, LYPJ; and Shanyou63, SY63) were grown under normal conditions and subjected to three high temperature treatments and one control treatment in temperature-controlled greenhouses for 15 days during the early reproductive stage. The high temperature treatments significantly reduced panicle CTK abundance in heat-susceptible LYPJ, HHZ, and N22 varieties, which showed fewer spikelets per panicle in comparison with control plants. Exogenous 6-benzylaminopurine application mitigated the effect of heat injury on the number of spikelets per panicle. The high temperature treatments significantly decreased the xylem sap flow rate and CTK transportation rate, but enhanced cytokinin oxidase/dehydrogenase (CKX) activity in heat-susceptible varieties. In comparison with the heat-susceptible varieties, heat-tolerant variety SY63 showed less reduction in panicle CTK abundance, an enhanced xylem sap flow rate, an improved CTK transport rate, and stable CKX activity under the high temperature treatments. Enzymes involved in CTK synthesis (isopentenyltransferase, LONELY GUY, and cytochrome P450 monooxygenase) were inhibited by the high temperature treatments. Heat-induced changes in CTK transportation from root to shoot through xylem sap flow and panicle CTK degradation via CKX were closely associated with the effects of heat on panicle CTK abundance and panicle size. Heat-tolerant variety SY63 showed stable panicle size under the high temperature treatments because of enhanced transport of root-derived CTKs and stable panicle CKX activity. Our results provide insight into rice heat tolerance that will facilitate the development of rice varieties with tolerance to high temperature.

  6. Rheological properties of rice-blackgram batter while replacing white rice with brown rice.

    PubMed

    Manickavasagan, Annamalai; Al-Marhubi, Insaaf Mohd; Dev, Satyanarayan

    2014-06-01

    Rice-blackgram batter is a raw material for many traditional convenience foods in Asia. Reformulation of traditional convenience food by replacing white rice with whole rice (brown rice) is a novel method to reduce the consumption of refined grain and increase the intake of whole grain in our diet. In this study, rheological properties of rice-blackgram batter was investigated while replacing white rice with brown rice at five levels (T1--0% replacement (control), T2--25% replacement, T3--50% replacement, T4--75% replacement, and T5--100% replacement). The shear stress versus shear rate plot indicates that the rice-blackgram batter exhibited non-Newtonian fluid behavior (shear thinning property) even after 100% replacement of white rice with brown rice. The rheological characteristics of rice-blackgram batters fitted reasonably well in Cassan (r2 = 0.8521-0.9856) and power law (r2 = 0.8042-0.9823) models. Brown rice replacement at all levels did not affect the flow behavior index, yield stress, consistency coefficient, and apparent viscosity of batter at 25 degrees C. However, at higher temperature, the viscosity was greater for T4 and T5 (no difference between them) than T1, T2, and T3 (no difference between them) batters. Further research is required to determine the sensory attributes and acceptability of the cooked products with brown rice-blended batter.

  7. Optimization production of acid urease by Enterobacter sp. in an approach to reduce urea in Chinese rice wine.

    PubMed

    Liu, Jun; Xu, Yan; Nie, Yao; Zhao, Guang-ao

    2012-05-01

    Urea in alcoholic beverages is a precursor of ethyl carbamate, which is carcinogenic. Acid urease (EC 3.5.1.5) is regarded as a good approach to scavenge the urea. The acid urease of Enterobacter sp. R-SYB082, with lower optimum pH than the widely used commercial acid urease, exhibited a urea removal rate of 66.5% in Chinese rice wine, which was higher than that of the commercial acid urease (58.9%). The production of the acid urease was optimized from 1,100 to 2,504 U L(-1) by an approach which includes the optimization of initial glucose concentration, the elevation of anaerobic level of the reactor by charging CO(2) and in vitro natural activation of the target enzyme by simple cold storage (4°C). These would open up the possibility for developing industrial application of this acid urease for producing high-quality Chinese rice wine.

  8. Insights into molecular mechanism of blast resistance in weedy rice

    USDA-ARS?s Scientific Manuscript database

    Weedy rice is a serious pest in direct-seeded rice fields in the U.S. and worldwide. Under suitable conditions, weedy rice can reduce crop yields up to 70%. However, weedy rice may carry novel disease resistance genes. Rice blast disease caused by the fungus Magnaporthe oryzae is a major disease wo...

  9. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.

    PubMed

    Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei

    2017-01-01

    Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Correlation between (/sup 3/H)dopamine specific uptake and (/sup 3/H)GBR 12783 specific binding during the maturation of rat striatum

    SciTech Connect

    Bonnet, J.J.; Costentin, J.

    1989-01-01

    The development of the specific uptake of dopamine in the rat striatum during the early postnatal period is compared with the ontogenetic changes of the specific binding of (/sup 3/H)GBR 12783 to the site of uptake inhibition. During maturation, the increase in the specific binding of (/sup 3/H)GBR 12783 parallels the increase in the specific uptake of dopamine. (/sup 3/H)GBR 12783 specific binding sites increase in number from day 1 postpartum until 40 days, when they reach the adult level. In 40 day-old rats, the weight of the striatum represents 80% of adult values. The affinity of (/sup 3/H)GBR 12783 for the inhibition site is similar in membrane preparations obtained from 6 day-old pups and adults; this results in a same ability of the inhibitor to block the specific uptake of dopamine into synaptosomes obtained from pups or adult rats. These data support the hypothesis of the existence of a single molecular entity including both the inhibition site and the carrier itself.

  11. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.): A field study.

    PubMed

    Zhang, Youchi; Chen, Tingting; Liao, Yongkai; Reid, Brian J; Chi, Haifeng; Hou, Yanwei; Cai, Chao

    2016-09-01

    Much research has considered the influence of biochars on the availability and phytoaccumulation of potentially toxic elements (PTEs) from soil. However, the vast majority of these studies use, what are arguably, unrealistic and unpractical amounts of biochar (10, 50 and even up to 100 t/ha). To offer a more realistic insight into the influence of biochar on PTE partitioning and phytoaccumulation, a field study, using modest rates of biochar application (1.5, 3.0 t/ha), was undertaken. Specifically, the research investigated the influence of sewage sludge biochar (SSBC) on the accumulation of Cd into rice (Oryza sativa L.) grown in Cd contaminated (0.82 ± 0.07 mg/kg) paddy soil. Results indicated, Cd concentrations in rice grains to significantly (p < 0.05) decrease from 1.35 ± 0.09 mg/kg in the control to 0.82 ± 0.07 mg/kg and 0.80 ± 0.21 mg/kg in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Accordingly, the hazardous quotient (HQ) indices for Cd, associated with rice grain consumption, were also reduced by ∼40%. SSBC amendment significantly (p < 0.05) increased grain yields from 1.90 ± 0.08 g/plant in the control to 2.17 ± 0.30 g/plant and 3.40 ± 0.27 g/plant in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Thus, the amendment of SSBC to contaminated paddy soils, even at low application rates, could be an effective approach to mitigate Cd accumulation into rice plants, to improve rice grain yields, and to thereby improve food security and protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency.

    PubMed

    Xiong, Yujiang; Peng, Shizhang; Luo, Yufeng; Xu, Junzeng; Yang, Shihong

    2015-03-01

    Non-point source (NPS) pollution from agricultural drainage has aroused widespread concerns throughout the world due to its contribution to eutrophication of water bodies. To remove nitrogen (N) and phosphorus (P) from agricultural drainage in situ, a Paddy Eco-ditch and Wetland System (PEDWS) was designed and built based on the characteristics of the irrigated rice district. A 2-year (2012-2013) field experiment was conducted to evaluate the performance of this system in Gaoyou Irrigation District in Eastern China. The results showed that the reduction in water input in paddy field of the PEDWS enabled the maintenance of high rice yield; it significantly increased irrigation water productivity (WPI), gross water productivity (WPG), and evapotranspiration water productivity (WPET) by 109.2, 67.1, and 17.6%, respectively. The PEDWS dramatically decreased N and P losses from paddy field. Compared with conventional irrigation and drainage system (CIDS), the amount of drainage water from PEDWS was significantly reduced by 56.2%, the total nitrogen (TN) concentration in drainage was reduced by 42.6%, and thus the TN and total phosphorus (TP) losses were reduced by 87.8 and 70.4%. PEDWS is technologically feasible and applicable to treat nutrient losses from paddy fields in situ and can be used in similar areas.

  13. Germinated brown rice extract inhibits adipogenesis through the down-regulation of adipogenic genes in 3T3-L1 adipocytes.

    PubMed

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2013-09-01

    The aim of this study was to examine the anti-adipogenic effect of germinated brown rice methanol extract (GBR) in 3T3-L1 adipocytes. The GBR inhibited adipocyte differentiation was measured by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner without initiating any cytotoxicity. The mRNA levels of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBPα), proliferator-activated receptorγ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), and adipogenic genes, such as fatty acid synthase (FAS), adipocyte fatty acid-binding protein (aP2), and lipoprotein lipase (LPL), were significantly down-regulated by treatment with GBR when compared to that of untreated control cells. Moreover, tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) mRNA expressions were attenuated by GBR in mature adipocytes. These data suggest that GBR exhibits an anti-adipogenic effect through the suppression of adipogenesis in 3T3-L1 adipocytes.

  14. A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length

    PubMed Central

    Tanabe, Sumiyo; Ashikari, Motoyuki; Fujioka, Shozo; Takatsuto, Suguru; Yoshida, Shigeo; Yano, Masahiro; Yoshimura, Atsushi; Kitano, Hidemi; Matsuoka, Makoto; Fujisawa, Yukiko; Kato, Hisaharu; Iwasaki, Yukimoto

    2005-01-01

    We have characterized a rice (Oryza sativa) dwarf mutant, dwarf11 (d11), that bears seeds of reduced length. To understand the mechanism by which seed length is regulated, the D11 gene was isolated by a map-based cloning method. The gene was found to encode a novel cytochrome P450 (CYP724B1), which showed homology to enzymes involved in brassinosteroid (BR) biosynthesis. The dwarf phenotype of d11 mutants was restored by the application of the brassinolide (BL). Compared with wild-type plants, the aberrant D11 mRNA accumulated at higher levels in d11 mutants and was dramatically reduced by treatment with BL, implying that the gene is feedback-regulated by BL. Precise determination of the defective step(s) in BR synthesis in d11 mutants proved intractable because of tissue specificity and the complex control of BR accumulation in plants. However, 6-deoxotyphasterol (6-DeoxoTY) and typhasterol (TY), but not any upstream intermediates before these compounds, effectively restored BR response in d11 mutants in a lamina joint bending assay. Multiple lines of evidence together suggest that the D11/CYP724B1 gene plays a role in BR synthesis and may be involved in the supply of 6-DeoxoTY and TY in the BR biosynthesis network in rice. PMID:15705958

  15. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length.

    PubMed

    Tanabe, Sumiyo; Ashikari, Motoyuki; Fujioka, Shozo; Takatsuto, Suguru; Yoshida, Shigeo; Yano, Masahiro; Yoshimura, Atsushi; Kitano, Hidemi; Matsuoka, Makoto; Fujisawa, Yukiko; Kato, Hisaharu; Iwasaki, Yukimoto

    2005-03-01

    We have characterized a rice (Oryza sativa) dwarf mutant, dwarf11 (d11), that bears seeds of reduced length. To understand the mechanism by which seed length is regulated, the D11 gene was isolated by a map-based cloning method. The gene was found to encode a novel cytochrome P450 (CYP724B1), which showed homology to enzymes involved in brassinosteroid (BR) biosynthesis. The dwarf phenotype of d11 mutants was restored by the application of the brassinolide (BL). Compared with wild-type plants, the aberrant D11 mRNA accumulated at higher levels in d11 mutants and was dramatically reduced by treatment with BL, implying that the gene is feedback-regulated by BL. Precise determination of the defective step(s) in BR synthesis in d11 mutants proved intractable because of tissue specificity and the complex control of BR accumulation in plants. However, 6-deoxotyphasterol (6-DeoxoTY) and typhasterol (TY), but not any upstream intermediates before these compounds, effectively restored BR response in d11 mutants in a lamina joint bending assay. Multiple lines of evidence together suggest that the D11/CYP724B1 gene plays a role in BR synthesis and may be involved in the supply of 6-DeoxoTY and TY in the BR biosynthesis network in rice.

  16. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition.

    PubMed

    Joshi, Rohit; Sahoo, Khirod Kumar; Tripathi, Amit Kumar; Kumar, Ritesh; Gupta, Brijesh Kumar; Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2017-03-24

    Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions. © 2017 John Wiley & Sons Ltd.

  17. Rice-Straw Mulch Reduces the Green Peach Aphid, Myzus persicae (Hemiptera: Aphididae) Populations on Kale, Brassica oleracea var. acephala (Brassicaceae) Plants

    PubMed Central

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21–36°C and to 18–32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants. PMID:24714367

  18. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants.

    PubMed

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  19. Rice stripe virus counters reduced fecundity in its insect vector by modifying insect physiology, primary endosymbionts and feeding behavior

    PubMed Central

    Wan, Guijun; Jiang, Shoulin; Wang, Wenjing; Li, Guoqing; Tao, Xiaorong; Pan, Weidong; Sword, Gregory A.; Chen, Fajun

    2015-01-01

    Virus-vector relationships can be complex and diverse as a result of long-term coevolution. Understanding these interactions is crucial for disease and vector management. Rice stripe virus (RSV) is known to be transovarially transmitted within its vector, Laodelphax striatellus, and causes serious rice stripe disease. In RSV-infected L. striatellus, we found contrasting changes in vector fecundity, physiology, primary endosymbionts (i.e. yeast-like symbionts, YLS) and feeding behavior that can interact to affect the spread of RSV. RSV-infected L. striatellus exhibited a significant decrease in fecundity that could lead a reduction of viruliferous individuals in populations. As a potential response to this loss, RSV infection also significantly shortened nymphal stage duration, which can strengthen RSV vertical circulation in L. striatellus populations and promote RSV spreading by adult migration and dispersal. Down-regulated JHAMT and up-regulated CYP307A1 in the juvenile hormone and ecdysteroid pathways, respectively, were linked to accelerated development. RSV-infected adults were also found to have higher body weight in conjunction with increased YLS abundance. Furthermore, prolonged host plant phloem exposure to salivation by RSV-infected adults should further enhance RSV horizontal transmission. Our study highlights potential strategies of RSV in enhancing its transmission, and provides new insights into the complexity of virus-vector interactions. PMID:26211618

  20. Introgression of resistance-conferring ALS mutations in herbicide-resistant weedy rice

    USDA-ARS?s Scientific Manuscript database

    Weedy red rice (Oryza sativa) competes aggressively with rice, reducing yields and grain quality. Clearfield™ rice, a nontransgenic, herbicide-resistant (HR) rice introduced in 2002 to control weedy rice, has resulted in some ALS-resistant weedy rice apparently due to gene flow. Studies were conduct...

  1. The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5.

    PubMed

    Funabiki, Atsushi; Takano, Sho; Matsuda, Shuichi; Tokuji, Yoshihiko; Takamure, Itsuro; Kato, Kiyoaki

    2013-10-01

    Low temperature tolerance during vegetative growth is an important objective in rice (Oryza sativa L.) breeding programs. We isolated a novel reduced culm number mutant, designated reduced culm number11 (rcn11), by screening under low-temperature condition in a paddy fields. Since the shoot architecture of the rcn11 was very similar to that of the rcn1, we examined whether RCN11 is involved in RCN1/OsABCG5-associated vegetative growth control. The rcn11 mutant has no mutation in the RCN1/OsABCG5 gene and rcn11 has no effect on RCN1/OsABCG5 gene expression. In the rcn1 mutant, RCN1/OsABCG5 was upregulated showing that RCN1/OsABCG5 is controlled by negative feedback regulation. Absence of an effect of rcn11 on RCN1/OsABCG5 feedback regulation supported that RCN11 is not involved in the RCN1/OsABCG5-associated transport system. A genetic allelism test and molecular mapping study showed that rcn11 is independent of rcn1 on rice chromosome 3 and located on chromosome 8. The rcn1 rcn11 phenotype suggests that RCN11 acts on vegetative growth independent of RCN1/OsABCG5. A root development comparison between rcn1 and rcn11 in young seedlings represented that rcn11 reduced crown root number and elongation, whereas rcn1 reduced lateral root density and elongation. Thus, rcn11 will shed new light on vegetative growth control under low temperature.

  2. Isolation and characterization of urethanase from Penicillium variabile and its application to reduce ethyl carbamate contamination in Chinese rice wine.

    PubMed

    Zhou, Nan-di; Gu, Xiao-lei; Tian, Ya-ping

    2013-06-01

    A strain with urethanase activity was isolated from mouse gastrointestine. By combination of morphological characterization of the colony, hyphae, and spore and the sequence analysis of its rDNA ITS, the strain was determined as Penicillium variabile and named as P. variabile JN-A525. The enzymatic properties of urethanase from P. variabile JN-A525 were further studied. The optimum temperature and pH value of urethanase are of 50 °C and 6.0, respectively. The enzyme maintains stability when the temperature is below 50 °C and the pH is in the range of 7.0-10.0. The enzyme also exhibits ethanol tolerance. It can remove ethyl carbamate from Chinese rice wine without the change of flavor substances in the wine.

  3. Adolescent GBR12909 exposure induces oxidative stress, disrupts parvalbumin-positive interneurons, and leads to hyperactivity and impulsivity in adult mice.

    PubMed

    Khan, Asma; de Jong, Loek A W; Kamenski, Mary E; Higa, Kerin K; Lucero, Jacinta D; Young, Jared W; Behrens, M Margarita; Powell, Susan B

    2017-03-14

    The adolescent period in mammals is a critical period of brain maturation and thus represents a time of susceptibility to environmental insult, e.g. psychosocial stress and/or drugs of abuse, which may cause lasting impairments in brain function and behavior and even precipitate symptoms in at-risk individuals. One likely effect of these environmental insults is to increase oxidative stress in the developing adolescent brain. Indeed, there is increasing evidence that redox dysregulation plays an important role in the development of schizophrenia and other neuropsychiatric disorders and that GABA interneurons are particularly susceptible to alterations in oxidative stress. The current study sought to model this adolescent neurochemical "stress" by exposing mice to the dopamine transporter inhibitor GBR12909 (5mg/kg; IP) during adolescence (postnatal day 35-44) and measuring the resultant effect on locomotor behavior and probabilistic reversal learning as well as GABAergic interneurons and oxidative stress in adulthood. C57BL6/J mice exposed to GBR12909 showed increased activity in a novel environment and increased impulsivity as measured by premature responding in the probabilistic reversal learning task. Adolescent GBR12909-exposed mice also showed decreased parvalbumin (PV) immunoreactivity in the prefrontal cortex, which was accompanied by increased oxidative stress in PV+ neurons. These findings indicate that adolescent exposure to a dopamine transporter inhibitor results in loss of PV in GABAergic interneurons, elevations in markers of oxidative stress, and alterations in behavior in adulthood. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Overexpression of Rice Glutaredoxin OsGrx_C7 and OsGrx_C2.1 Reduces Intracellular Arsenic Accumulation and Increases Tolerance in Arabidopsis thaliana

    PubMed Central

    Verma, Pankaj K.; Verma, Shikha; Pande, Veena; Mallick, Shekhar; Deo Tripathi, Rudra; Dhankher, Om P.; Chakrabarty, Debasis

    2016-01-01

    Glutaredoxins (Grxs) are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice), the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As) tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops. PMID:27313586

  5. Improved production of reducing sugars from rice straw using crude cellulase activated with Fe₃O₄/alginate nanocomposite.

    PubMed

    Srivastava, Neha; Singh, Jay; Ramteke, Pramod W; Mishra, P K; Srivastava, Manish

    2015-05-01

    Effect of Fe3O4 nanoparticles (NPs) and Fe3O4/Alginate nanocomposites (NCs) have been investigated on production and thermostability of crude cellulase enzyme system obtained by newly isolated thermotolerant Aspergillus fumigatus AA001. Fe3O4 NPs and Fe3O4/Alginate NCs have been synthesized by co-precipitation method and characterized through various techniques. In presence of Fe3O4 NPs and Fe3O4/Alginate NCs, filter paper activity of crude cellulase was increased about 35% and 40%, respectively in 72 h as compared to control. Fe3O4/Alginate NCs treated crude enzyme was thermally stable up to 8h at 70°C and retained 56% of its relative activity whereas; control samples could retain only 19%. Further, the hydrolysis of 1.0% alkali treated rice straw using Fe3O4/Alginate NCs treated cellulase gave much higher sugar productivity than control at optimal condition. These findings may be utilized in the area of biofuels and biowaste management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Interference of allelopathic rice cultivars on barnyardgrass under different water irrigation and rice plant density].

    PubMed

    Xu, Zhenghao; He, Yong; Wang, Yiping; Yu, Gusong

    2004-09-01

    Pot culture experiments were conducted to examine the effects of water irrigation and rice plant density on the interference of allelopathic rice on barnyardgrass (Echinochloa crus-galli). The results showed that under water irrigations, allelopathic rice cultivars Xiayitiao, Gumei 2 and Zhong 156 significantly reduced the plant height of barnyardgrass than non-allelopathic rice cultivars Xiushui 63 and Chunjiang 11. Barnyardgrass plants grew shorter as rice plant density increased. Allelopathic rice cultivars Jizaoxian and Gumei 2 interfered with barnyardgrass, even at their densities as low as 4 plants per pot, and the interference reduced plant height of barnyardgrass significantly compared with the non-rice control. Allelopathic rice cultivars Xiayitiao, Jizaoxian, PI312777, TN1, Gumei 2 and Zhong 156 at 32 rice plants per pot inhibited the growth of barnyardgrass significantly than Chunjiang 11.

  7. Amended final report on the safety assessment of Oryza Sativa (rice) Bran Oil, Oryza Sativa (rice) Germ Oil, Rice Bran Acid,Oryza Sativa (rice) Bran Wax, Hydrogenated Rice Bran Wax, Oryza Sativa (rice)Bran Extract, Oryza Sativa (rice) Extract, Oryza Sativa (rice) Germ Powder, Oryza Sativa (rice) Starch, Oryza Sativa (rice) Bran, Hydrolyzed Rice Bran Extract, Hydrolyzed Rice Bran Protein, Hydrolyzed Rice Extract, and Hydrolyzed Rice Protein.

    PubMed

    2006-01-01

    as a skin-conditioning agent--miscellaneous, is used in two product categories. Use concentrations are in the 1% to 2% range. Rice Bran Extract is comprised of proteins, lipids, carbohydrates, mineral ash, and water. The content includes palmitic, stearic, oleic, and linoleic acids. Other components include antioxidants such as tocopherols. Rice Extract reduced the cytotoxicity of sodium chloride in male rats. Bran, Starch and Powder: Rice Bran (identified as rice hulls) is an abrasive and bulking agent in one formulation. Rice Starch is an absorbent and bulking agent in 51 formulations across a wide range of product categories. Rice Germ Powder is an abrasive and one manufacturer described an exfoliant use, but it was not reported to be used in 2002. Oral carcinogenicity studies done on components of Rice Bran (phytic acid and gamma-oryzanol) were negative. Rice Bran did not have an anticarcinogenic effect on 1,2-dimethylhydrazine-induced large bowel tumors. In cocarcinogenicity studies done using 1,2-dimethylhydrazine and other agents, with Rice Bran Oil and Rice Bran-derived hemicellulose and saccharide, tumor inhibition was observed; gamma-oryzanol did not inhibit the development of neoplasms. A decrease in cutaneous lesions in atopic dermatitis patients was reported following bathing with a Rice Bran preparation. Proteins: Hydrolyzed Rice Bran Protein and Hydrolyzed Rice Protein function as conditioning agents (hair or skin), but only the latter was reported to be used in a few products. An in vitro phototoxicity assay using UVA light found no photochemical toxicity. Rice bran protein hydrolysates are not acutely toxic, are not skin or ocular irritants in animals, are not skin sensitizers in guinea pig maximization tests, and are not irritating or sensitizing in clinical tests. Isolated cases of allergy to raw rice have been reported, but rice, in general, is considered non allergenic. The Cosmetic Ingredient Review (CIR) Expert Panel considered that safety test

  8. Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights

    PubMed Central

    Marciani, L; Pritchard, S E; Hellier-Woods, C; Costigan, C; Hoad, C L; Gowland, P A; Spiller, R C

    2013-01-01

    Background/Objectives: Postprandial bloating is a common symptom in patients with functional gastrointestinal (GI) diseases. Whole meal bread (WMB) often aggravates such symptoms though the mechanisms are unclear. We used magnetic resonance imaging (MRI) to monitor the intragastric fate of a WMB meal (11% bran) compared with a rice pudding (RP) meal. Subjects/Methods: Twelve healthy volunteers completed this randomised crossover study. They fasted overnight and after an initial MRI scan consumed a glass of orange juice with a 2267 kJ WMB or an equicaloric RP meal. Subjects underwent serial MRI scans every 45 min up to 270 min to assess gastric volumes and small bowel water content, and completed a GI symptom questionnaire. Results: The MRI intragastric appearance of the two meals was markedly different. The WMB meal formed a homogeneous dark bolus with brighter liquid signal surrounding it. The RP meal separated into an upper liquid layer and a lower particulate layer allowing more rapid emptying of the liquid compared with solid phase (sieving). The WMB meal had longer gastric half-emptying times (132±8 min) compared with the RP meal (104±7 min), P<0.008. The WMB meal was associated with markedly reduced MRI-visible small bowel free mobile water content compared with the RP meal, P<0.0001. Conclusions: WMB bread forms a homogeneous bolus in the stomach, which inhibits gastric sieving and hence empties slower than the equicaloric rice meal. These properties may explain why wheat causes postprandial bloating and could be exploited to design foods that prolong satiation. PMID:23594839

  9. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice

    DOE PAGES

    Li, Fengcheng; Xie, Guosheng; Huang, Jiangfeng; ...

    2017-03-15

    Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Several dozen CESA mutants have been reported since cellulose synthase (CESA) gene was first identified, but almost all mutants exhibit the defective phenotypes in plant growth and development. Here, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cellmore » walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%–42%. Our study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.« less

  10. Crop performance and weed suppression by weed-suppressive rice cultivars in furrow- and flood-irrigated systems under reduced herbicide inputs

    USDA-ARS?s Scientific Manuscript database

    Weed control in rice is challenging, particularly in light of increased resistance to herbicides in weed populations and diminishing availability of irrigation water. Certain indica rice cultivars can produce high yields and suppress weeds in conventional flood-irrigated, drill-seeded systems in the...

  11. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values.

    PubMed

    Kaur, Bhupinder; Ranawana, Viren; Henry, Jeyakumar

    2016-01-01

    Rice is the principle staple and energy source for nearly half the world's population and therefore has significant nutrition and health implications. Rice is generally considered a high glycemic index (GI) food, however, this depends on varietal, compositional, processing, and accompaniment factors. Being a major contributor to the glycemic load in rice eating populations, there is increasing concern that the rising prevalence of insulin resistance is as a result of the consumption of large amounts of rice. Devising ways and means of reducing the glycemic impact of rice is therefore imperative. This review gathers studies examining the GI of rice and rice products and provides a critical overview of the current state of the art. A table collating published GI values for rice and rice products is also included.

  12. Occupational noise in rice mills.

    PubMed

    Prasanna Kumar, G V; Dewangan, K N; Sarkar, Amaresh; Kumari, Amrita; Kar, Banani

    2008-01-01

    A major occupational hazard for the workers in rice mills is the noise during the operation of various machines. A noise survey was conducted in the workrooms of eight renowned rice mills of the north-eastern region of India established during the period between 1980 and 1985. The rice mills were selected on the basis of the outcome of a walk-through noise survey involving several rice mills of the region. A noise survey map of each rice mill was drawn to identify the predominant noise sources and the causes of high noise in the workrooms of the rice mill. The sound-pressure level (SPL) in the workrooms of the rice mill varied from 78 to 92 dBA. The paddy cleaner, rubber roll sheller, compartment separator, rice cleaner, auxiliary sieve shaker and an electric motor without enclosure were found to be the predominant noise sources in the workrooms of the mill. The causes of high noise in the rice mills may be attributed to the use of a long flat belt drive, crank-and-pitman mechanism, absence of an electric motor enclosure, poor machine maintenance and inadequate acoustic design of the workroom of the rice mill. About 26% of the total labourers were found to be exposed to higher levels of noise than 85 dBA. Subjective response indicated that about 26% of the total labourers felt noise interferes in their work and about 49% labourers were of opinion that noise interferes with their conversation. Noise from machines in the rice mills was found to be the major occupational hazard for the rice mill workers. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level. To identify the predominant noise sources and their distributions in rice mills, to study the causes of high levels of noise in rice mills and to examine the response of the workers towards noise. A noise survey was conducted in eight renowned rice mills of the north-eastern region of India. The mills were

  13. JMJ704 positively regulates rice defense response against Xanthomonas oryzae pv. oryzae infection via reducing H3K4me2/3 associated with negative disease resistance regulators.

    PubMed

    Hou, Yuxuan; Wang, Liyuan; Wang, Ling; Liu, Lianmeng; Li, Lu; Sun, Lei; Rao, Qiong; Zhang, Jian; Huang, Shiwen

    2015-12-09

    Jumonji C (JmjC) domain-containing proteins are a group of functionally conserved histone lysine demethylases in Eukaryotes. Growing evidences have shown that JmjCs epigenetically regulate various biological processes in plants. However, their roles in plant biotic stress, especially in rice bacterial blight resistance have been barely studied so far. In this study, we found that the global di- and tri-methylation levels on multiple lysine sites of histone three were dramatically altered after being infected by bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Xoo infection induced the transcription of 15 JmjCs, suggesting these JmjCs are involved in rice bacterial blight defense. Further functional characterization of JmjC mutants revealed that JMJ704 is a positive regulator of rice bacterial blight resistance as the jmj704 became more susceptible to Xoo than the wild-type. In jmj704, the H3K4me2/3 levels were significantly increased; suggesting JMJ704 may be involved in H3K4me2/3 demethylation. Moreover, JMJ704 suppressed the transcription of the rice defense negative regulator genes, such as NRR, OsWRKY62 and Os-11N3, by reducing the activation marks H3K4me2/3 on them. JMJ704 may be a universal switch controlling multiple genes of the bacterial blight resistance pathway. JMJ704 positively regulates rice defense by epigenetically suppressing master negative defense regulators, presenting a novel mechanism distinct from its homolog JMJ705 which also positively regulates rice defense but via activating positive defense regulators.

  14. INTERACTION OF COCAINE-, BENZTROPINE-, AND GBR12909-LIKE COMPOUNDS WITH WILDTYPE AND MUTANT HUMAN DOPAMINE TRANSPORTERS: MOLECULAR FEATURES THAT DIFFERENTIALLY DETERMINE ANTAGONIST BINDING PROPERTIES

    PubMed Central

    Schmitt, Kyle C.; Zhen, Juan; Kharkar, Prashant; Mishra, Manoj; Chen, Nianhang; Dutta, Aloke K.; Reith, Maarten E.A.

    2009-01-01

    The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine’s behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [3H]CFT binding to wildtype, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3α stereochemistry tended to exhibit benztropine-like binding, whereas those with 3β stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features—most notably the presence of a diphenylmethoxy moiety—in determining a compound’s binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility. PMID:18786172

  15. In utero Exposure to Germinated Brown Rice and Its GABA Extract Attenuates High-Fat-Diet-Induced Insulin Resistance in Rat Offspring.

    PubMed

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Der-Jiun, Ooi; Ismail, Maznah

    2017-01-01

    Numerous studies have reported on the influence of diet on insulin resistance. Our study provides insight into the effect of germinated brown rice (GBR) and γ-aminobutyric acid (GABA) on early environment-driven programming and susceptibility to insulin resistance in rat offspring. Male rat offspring from female Sprague-Dawley rats fed with a high-fat diet (HFD) alone, HFD + GBR, or HFD + GABA extract throughout pregnancy and lactation were weaned 4 weeks after delivery and followed up for 8 weeks. A biochemical analysis and an assessment of the hepatic expression of insulin signaling genes were performed. The results showed that intrauterine exposure to HFD caused metabolic perturbations in rat offspring which gravitated towards insulin resistance even though the rat offspring did not consume an HFD. GBR and GABA attenuated the HFD-induced changes by underlying regulation of the insulin signaling genes. The results suggest that intake of GBR and GABA during pregnancy and lactation can influence the programming of genes in rat offspring, thereby enhancing insulin sensitivity. © 2017 S. Karger AG, Basel.

  16. Effects of germinated brown rice and its bioactive compounds on the expression of the peroxisome proliferator-activated receptor gamma gene.

    PubMed

    Imam, Mustapha Umar; Ismail, Maznah; Ithnin, Hairuszah; Tubesha, Zaki; Omar, Abdul Rahman

    2013-02-06

    Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR) is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol) after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR's antiobesity effects. These potentials are worth studying further.

  17. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Impacts of seeding rate on interactions between rice and rice water weevils.

    PubMed

    Stout, M J; Harrell, D; Tindall, K V; Bond, J

    2009-10-01

    The rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the most widely distributed and destructive early season insect pest of rice, Oryza sativa L., in the United States. Economic losses result primarily from feeding by the larval stage of this insect on the roots of flooded rice plants. Prior studies suggest that infestations of rice water weevil larvae are more severe at low plant densities. Moreover, because feeding by the rice water weevil reduces rice plant tillering, a process particularly important to yield at low seeding rates, infestations by weevil larvae may have a greater impact on rice yields when rice is seeded at low rates. In total, six experiments were conducted over a 3-yr period in Louisiana and Missouri to investigate the impacts of rice seeding rate on levels of infestations by, and yield losses from, the rice water weevil. An inverse relationship between seeding rate and densities of rice water weevil larvae and pupae on a per area basis was found in two of the six experiments. Furthermore, in two of the three experiments conducted with 'Bengal' (a susceptible cultivar) in Louisiana, percentages of yield loss were significantly higher at lower seeding rates than at higher seeding rates. Overall, these results indicate that rice sown at low rates is more vulnerable to infestation by rice water weevils and more susceptible to yield losses from weevil injury. The significance of these findings in light of recent trends toward the use of lower seeding rates in drill-seeded rice is discussed.

  19. Rice fissure resistance QTLs from ‘Saber’ complement those from ‘Cypress’

    USDA-ARS?s Scientific Manuscript database

    The economic value of broken rice is about half that of whole milled rice, so one goal of producers, millers, and rice breeders is to reduce grain breakage during the dehusking and milling processes. One of the primary causes of rice breakage is fissuring, or cracking, of the rice before it enters ...

  20. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice.

    PubMed

    Li, Fengcheng; Xie, Guosheng; Huang, Jiangfeng; Zhang, Ran; Li, Yu; Zhang, Miaomiao; Wang, Yanting; Li, Ao; Li, Xukai; Xia, Tao; Qu, Chengcheng; Hu, Fan; Ragauskas, Arthur J; Peng, Liangcai

    2017-09-01

    Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%-41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%-42%. This study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton.

    PubMed

    Liu, Guanze; Li, Xuelin; Jin, Shuangxia; Liu, Xuyan; Zhu, Longfu; Nie, Yichun; Zhang, Xianlong

    2014-01-01

    The SNAC1 gene belongs to the stress-related NAC superfamily of transcription factors. It was identified from rice and overexpressed in cotton cultivar YZ1 by Agrobacterium tumefaciens-mediated transformation. SNAC1-overexpressing cotton plants showed more vigorous growth, especially in terms of root development, than the wild-type plants in the presence of 250 mM NaCl under hydroponic growth conditions. The content of proline was enhanced but the MDA content was decreased in the transgenic cotton seedlings under drought and salt treatments compared to the wild-type. Furthermore, SNAC1-overexpressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in the greenhouse. The performances of the SNAC1-overexpressing lines under drought and salt stress were significantly better than those of the wild-type in terms of the boll number. During the drought and salt treatments, the transpiration rate of transgenic plants significantly decreased in comparison to the wild-type, but the photosynthesis rate maintained the same at the flowering stage in the transgenic plants. These results suggested that overexpression of SNAC1 improve more tolerance to drought and salt in cotton through enhanced root development and reduced transpiration rates.

  2. Influence of adsorption versus coprecipitation on the retention of rice straw-derived dissolved organic carbon and subsequent reducibility of Fe-DOC systems

    NASA Astrophysics Data System (ADS)

    Sodano, Marcella; Lerda, Cristina; Martin, Maria; Celi, Luisella; Said-Pullicino, Daniel

    2016-04-01

    The dissimilatory reduction of Fe oxides is the main organic C-consuming process in paddy soils under anoxic conditions. The contribution of Fe(III) reduction to anaerobic C mineralization depends on many factors, but most importantly on the bioavailability of labile organic matter and a reducible Fe pool as electron donors and acceptors, respectively. On the other hand, the strong affinity of these minerals for organic matter and their capability of protecting it against microbial decomposition is well known. Natural Fe oxides in these soils may therefore play a key role in determining the C source/sink functions of these agro-ecosystems. Apart from contributing to C stabilization, the interaction between Fe oxides and dissolved organic C (DOC) may influence the structure and reactivity of these natural oxides, and selectively influence the chemical properties of DOC. Indeed, Fe-DOC associations may not only reduce the availability of DOC, but may also limit the microbial reduction of Fe oxides under anoxic conditions. In fact, the accessibility of these minerals to microorganisms, extracellular enzymes, redox active shuttling compound or reducing agents may be impeded by the presence of sorbed organic matter. In soils that are regularly subjected to fluctuations in redox conditions the interaction between DOC and Fe oxides may not only involve organic coatings on mineral surfaces, but also Fe-DOC coprecipitates that form during the rapid oxidation of soil solutions containing important amounts of DOC and Fe(II). However, little is known on how these processes influence DOC retention, and the structure and subsequent reducibility of these Fe-DOC associations. We hypothesized that the nature and extent of the interaction between DOC and Fe oxides may influence the accessibility of the bioavailable Fe pool and consequently its reducibility. We tested this hypothesis by synthesizing a series of Fe-DOC systems with increasing C:Fe ratios prepared by either surface

  3. Effect of polishing and cooking on the antioxidant activities of local rice

    NASA Astrophysics Data System (ADS)

    Rosnaini, Rahmah Mastura; Abdullah, Aminah

    2016-11-01

    The effect of polishing and cooking on the antioxidant activities of local rice was studied. Brown rice was polished to 2%, 4% and 6% of polishing degree using embryo rice machine to produce three levels of embryo rice. All rice sample (brown rice, embryo rice 1 (2%), embryo rice 2 (4%), embryo rice 3 (6%) and white rice) were cooked using electric rice cooker. The raw and cooked rice samples were analyzed for antioxidant by total phenolic content (TPC), ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Polishing degree and cooking treatment showed significant (p≤ 0.05) effects on both antioxidant activities (TPC, FRAP and DPPH radical scavenging values) of the raw and cooked rice samples. Results showed that raw brown rice and raw embryo rice 1 were significantly higher than the other type of rice samples for TPC and FRAP values. In DPPH radical scavenging activities, raw brown rice had the highest value while white rice indicated the otherwise. Cooked brown rice demonstrated significantly higher of FRAP values (p≤ 0.05) than embryo rice 1, followed by embryo rice 2, embryo rice 3 and white rice. No significant differences were observed either between TPC values of cooked brown rice and cooked embryo rice 1 or between the DPPH radical scavenging values of cooked embryo rice 2 and cooked embryo rice 3. High positive correlations were determined between TPC, FRAP and DPPH assays (R2 > 0.70) of the samples. In overall, moderate level of antioxidant activities were detected in the raw and cooked rice samples.

  4. [Clinical study on the treatment of abnormal blood lipids complicated with carotid atherosclerosis with lipid-reducing red rice minute powder: a randomized controlled trial].

    PubMed

    Liu, Long-tao; Wu, Min; Wang, Hong-xia

    2011-09-01

    To observe the clinical effects of lipid-reducing red rice minute powder (LRRMP) on the levels of blood lipids, carotid artery intima-media thickness (IMT), and the plaque integral of hyperlipidemia patients complicated with carotid atherosclerosis. This study was conducted from April 2005 to April 2006 according to inclusion criteria. Sixty hyperlipidemia patients complicated with carotid atherosclerosis were randomly assigned to the treatment group (20 cases), the Chinese medicine control group (CM control group, 20 cases), and the Western medicine control group (WM control group, 20 cases). They were recruited from the community of secondary machine tool factory of Jinan. Patients in the treatment group took LRRMP (175 mg/pill), one pill each time, twice daily. Patients in the CM control group took Xuezhikang Capsule (300 mg/pill), 2 pills each time, twice daily. Patients in the WM control group took Lovastatin Tablet (20 mg/tablet), 1 tablet each time, once daily. The course of treatment was 6 successive months for all. They avoided taking any lipid-regulating or anti-atherosclerotic drugs during the therapeutic course. The changes of Chinese medicine symptom scores, serum TC, TG, LDL-C, and HDL-C levels, IMT of the carotid artery, and the plaque integral before and after treatment were observed. After 6 months of treatment the Chinese medicine symptom scores reduced in each group ( P<0.05 or P<0.01), and the treatment group was superior to WM control group (P<0.05). Serum TC, TG and LDL-C levels were significantly lowered (P<0.05 or P<0.01), showing no significant difference in inter-group comparison (P>0.05). There was no statistical significance of the serum HDL-C level in each group (P>0.05). The IMT and the plaque integral significantly reduced (P<0.05, P<0.01), showing no statistical difference among all groups. One patient in the WM control group dropped out because of transaminase elevation. No serious adverse reaction correlated with the drugs occurred

  5. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  6. Heat and Mass Transfer Modeling of Rough Rice Under Convective and Infrared Drying

    USDA-ARS?s Scientific Manuscript database

    Infrared drying of rice can reduce drying time, perform disinfestations and reduce rice fissuring compared to traditional hot air drying method. Fissures in the rice kernels are caused by high moisture content gradients within the kernels. To understand the moisture distributions within a rice ker...

  7. Invariance of the density of dopamine uptake sites and dopamine metabolism in the rat brain after a chronic treatment with the dopamine uptake inhibitor GBR 12783.

    PubMed

    Boulay, D; Leroux-Nicollet, I; Duterte-Boucher, D; Naudon, L; Costentin, J

    1994-01-01

    A chronic treatment (10 mg/kg, twice daily during 9 days) with the dopamine uptake inhibitor GBR 12783 was performed in rats at a dose increasing their locomotor activity. Forty-eight hours after the last administration, animals were sacrificed and 3H mazindol binding was performed on brain slices. Autoradiographic analysis revealed no change in this binding relatively to control animals in regions with high dopamine contents: striatum, nucleus accumbens, olfactory tubercle, substantia nigra and ventral tegmentum area. The treatment did not either modify the levels of dopamine (DA) and metabolites (HVA, DOPAC) both in the striatum and the nucleus accumbens. Thus, early after the end of the treatment, the chronic blockade of the dopamine uptake complex regulates neither the dopamine uptake complex nor the dopamine metabolism.

  8. Triple-fortified rice containing vitamin A reduced marginal vitamin A deficiency and increased vitamin A liver stores in school-aged Thai children.

    PubMed

    Pinkaew, Siwaporn; Wegmuller, Rita; Wasantwisut, Emorn; Winichagoon, Pattanee; Hurrell, Richard F; Tanumihardjo, Sherry A

    2014-04-01

    Vitamin A (VA)-fortified rice is a potential intervention strategy to prevent VA deficiency in at-risk populations. Hot-extruded, triple-fortified rice grains with added VA, zinc, and iron were produced by hot extrusion technology and their ability to improve VA status was tested in Thai schoolchildren. The fortification levels were 10 mg of iron, 9 mg of zinc, and 1.05 mg of VA/g extruded rice. A paired stable isotope dilution technique with labeled ¹³C₂-retinyl acetate (¹³C-RID) was used to quantify VA pool size at the beginning and end of the feeding period. Fifty healthy schoolchildren with a serum retinol (SR) concentration of >0.7 μmol/L were randomly assigned to 2 groups to receive either triple-fortified rice (n = 25) or natural rice (n = 25) for 2 mo as part of the daily school meal. The fortified grains, mixed 1:50 with regular rice, were estimated to provide an extra 890 μg of VA/d, 5 d/wk. ¹³C₂-retinyl acetate (1.0 μmol) was administered orally to each child before and at the end of the feeding period to estimate total body reserves (TBRs) of VA, which increased significantly (P < 0.05) in the intervention group from 153 ± 66 μmol retinol at baseline to 269 ± 148 μmol retinol after 2 mo of feeding. There was no change in the TBRs of VA in the control group (108 ± 67 vs. 124 ± 89 μmol retinol) (P = 0.22). Serum retinol remained unchanged in both groups. We conclude that VA-fortified, hot-extruded rice is an efficacious vehicle to provide additional VA to at-risk populations, and that the efficacy of VA-fortified foods can be usefully monitored by the ¹³C-RID measurement of TBRs of VA but not by changes in SR concentration.

  9. Anti-oxidant and anti-inflammatory activities of Inonotus obliquus and germinated brown rice extracts.

    PubMed

    Debnath, Trishna; Park, Sa Ra; Kim, Da Hye; Jo, Jeong Eun; Lim, Beong Ou

    2013-08-02

    Inonotus obliquus (IO) is parasitic mushroom that grows on birch and other trees in Russia, Korea, Europe and United States. However, IO is not readily available for consumption due to its high cost and difficult growth. In this regard, IO was inoculated on germinated brown rice (GBR) in the present study and the antioxidant and anti-inflammatory activities of the IO grown on germinated brown rice (IOGBR) extracts were evaluated extensively and compared with those for IO and GBR. IOGBR showed highest antioxidant activities with scavenging total intracellular ROS and MDA levels as well as increasing the antioxidant enzymes activity in the H₂O₂-stimulated mice liver. It also exhibited best inflammatory activities by suppressing the proinflammatory mediators such as NO, PGE₂, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in an LPS-stimulated RAW 264.7 cell line. This study provides a comparative approach to find out an excellent natural source of antioxidants and anti-inflammatory agent as a dietary supplement.

  10. Branching in rice.

    PubMed

    Wang, Yonghong; Li, Jiayang

    2011-02-01

    Rice branching, including the formation of tillers and panicle branches, has been well investigated over the past several years because of its agronomic importance. A major breakthrough in elucidating rice tillering in the recent years was the discovery of strigolactones, a specific group of terpenoid lactones that can inhibit axillary bud outgrowth. Since that discovery, new tillering mutants, that is, dwarf 27 (d27) or dwarf14 (d14, also reported as d88 or htd2), have been identified with reduced strigolactone levels or strigolactone response. DWARF27 (D27) and DWARF14 (D14) probably act on strigolactone biosynthesis and signal transduction, respectively. Additionally, several genes controlling panicle branches have been identified recently. DEP1 and IPA1/WFP are essential dominant/semidominant regulators that determine rice panicle branches and thus affect the grain yields. More importantly, dep1 and ipa1 alleles have been shown to be applicable for the improvement of rice grain yields in molecular breeding. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.

    PubMed

    Porcel, Rosa; Aroca, Ricardo; Azcon, Rosario; Ruiz-Lozano, Juan Manuel

    2016-10-01

    Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.

  12. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings.

    PubMed

    Mostofa, Mohammad Golam; Seraj, Zeba Islam; Fujita, Masayuki

    2014-11-01

    Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 (•-)) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 (•-), H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while

  13. Natural rice rhizospheric microbes suppress rice blast infections

    PubMed Central

    2014-01-01

    Background The natural interactions between plant roots and their rhizospheric microbiome are vital to plant fitness, modulating both growth promotion and disease suppression. In rice (Oryza sativa), a globally important food crop, as much as 30% of yields are lost due to blast disease caused by fungal pathogen Magnaporthe oryzae. Capitalizing on the abilities of naturally occurring rice soil bacteria to reduce M. oryzae infections could provide a sustainable solution to reduce the amount of crops lost to blast disease. Results Naturally occurring root-associated rhizospheric bacteria were isolated from California field grown rice plants (M-104), eleven of which were taxonomically identified by16S rRNA gene sequencing and fatty acid methyl ester (FAME) analysis. Bacterial isolates were tested for biocontrol activity against the devastating foliar rice fungal pathogen, M. oryzae pathovar 70–15. In vitro, a Pseudomonas isolate, EA105, displayed antibiosis through reducing appressoria formation by nearly 90% as well as directly inhibiting fungal growth by 76%. Although hydrogen cyanide (HCN) is a volatile commonly produced by biocontrol pseudomonads, the activity of EA105 seems to be independent of its HCN production. During in planta experiments, EA105 reduced the number of blast lesions formed by 33% and Pantoea agglomerans isolate, EA106 by 46%. Our data also show both EA105 and EA106 trigger jasmonic acid (JA) and ethylene (ET) dependent induced systemic resistance (ISR) response in rice. Conclusions Out of 11 bacteria isolated from rice soil, pseudomonad EA105 most effectively inhibited the growth and appressoria formation of M. oryzae through a mechanism that is independent of cyanide production. In addition to direct antagonism, EA105 also appears to trigger ISR in rice plants through a mechanism that is dependent on JA and ET signaling, ultimately resulting in fewer blast lesions. The application of native bacteria as biocontrol agents in combination with

  14. Arsenic in rice: a cause for concern.

    PubMed

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri; Campoy, Cristina; Colomb, Virginie; Decsi, Tamas; Domellöf, Magnus; Fewtrell, Mary; Mis, Nataša Fidler; Mihatsch, Walter; Molgaard, Christian; van Goudoever, Johannes

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure, we recommend avoidance of rice drinks for infants and young children. For all of the rice products, strict regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. Although rice protein-based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content should be declared and the potential risks should be considered when using these products.

  15. Oscillating Transcriptome during Rice-Magnaporthe Interaction.

    PubMed

    Sharma, T R; Das, Alok; Thakur, Shallu; Devanna, B N; Singh, Pankaj Kumar; Jain, Priyanka; Vijayan, Joshitha; Kumar, Shrawan

    2016-01-01

    Rice blast disease caused by the fungus, Magnaporthe oryzae, is one of the most devastating diseases of rice. Deciphering molecular mechanism of host-pathogen interactions is of great importance in devising disease management strategies. Transcription being the first step for gene regulation in eukaryotes, basic understanding of the transcriptome is sine qua non for devising effective management strategy. The availability of genome sequences of rice and M. oryzae has facilitated the process to a large extent. The current review summarizes recent understanding of rice-blast pathosystem, application of transcriptomics approaches to understand the interactions employing different platforms, major determinants in the interaction and possibility of using certain candidate for conditioning enhanced disease resistance (Effector Triggered Immunity and PAMP Triggered Immunity) and downstream signalling in rice. A better understanding of the interaction elements and effective strategies hold potential to reduce yield losses in rice caused by M. oryzae.

  16. The role of momilactones in rice allelopathy.

    PubMed

    Kato-Noguchi, Hisashi; Peters, Reuben J

    2013-02-01

    Large field screening programs and laboratory experiments in many countries have indicated that rice is allelopathic and releases allelochemical(s) into its environment. A number of compounds, such as phenolic acids, fatty acids, phenylalkanoic acids, hydroxamic acids, terpenes, and indoles, have been identified as potential rice allelochemicals. However, the studies reviewed here demonstrate that the labdane-related diterpenoid momilactones are the most important, with momilactone B playing a particularly critical role. Rice plants secrete momilactone B from their roots into the neighboring environments over their entire life cycle at phytotoxic levels, and momilactone B seems to account for the majority of the observed rice allelopathy. In addition, genetic studies have shown that selective removal of the momilactones only from the complex mixture found in rice root exudates significantly reduces allelopathy, demonstrating that these serve as allelochemicals, the importance of which is reflected in the presence of a dedicated momilactone biosynthetic gene cluster in the rice genome.

  17. Investigating the Potential for Rice Production with Sprinkler Irrigation

    USDA-ARS?s Scientific Manuscript database

    Almost all rice (Oryza sativa L.) produced in the US Mid-South is grown in a flooded culture that requires considerably more irrigation water than other crops grown in the region. One approach investigated for reducing the water requirements for rice involved producing rice with sprinkler irrigation...

  18. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: light exposure reduces needs for fermentation and extends survival during anaerobiosis.

    PubMed

    Mustroph, Angelika; Boamfa, Elena I; Laarhoven, Lucas J J; Harren, Frans J M; Pörs, Yvonne; Grimm, Bernhard

    2006-12-01

    Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO(2) deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport.

  19. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures.

    PubMed

    Li, Hui; Luo, Na; Li, Yan Wen; Cai, Quan Ying; Li, Hui Yuan; Mo, Ce Hui; Wong, Ming Hung

    2017-05-01

    Cadmium (Cd) accumulation in rice and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding of Cd transport processes and its management aiming to reduce Cd uptake and accumulation in rice may help to improve rice growth and grain quality. Moreover, a thorough understanding of the factors influencing Cd accumulation will be helpful to derive efficient strategies to minimize Cd in rice. In this article, we reviewed Cd transport mechanisms in rice, the factors affecting Cd uptake (including physicochemical characters of soil and ecophysiological features of rice) and discussed efficient measures to immobilize Cd in soil and reduce Cd uptake by rice (including agronomic practices, bioremediation and molecular biology techniques). These findings will contribute to ensuring food safety, and reducing Cd risk on human beings.

  20. A Rice Gene for Microbial Symbiosis, Oryza sativa CCaMK, Reduces CH4 Flux in a Paddy Field with Low Nitrogen Input

    PubMed Central

    Bao, Zhihua; Watanabe, Aya; Sasaki, Kazuhiro; Okubo, Takashi; Tokida, Takeshi; Liu, Dongyan; Ikeda, Seishi; Imaizumi-Anraku, Haruko; Asakawa, Susumu; Sato, Tadashi; Mitsui, Hisayuki

    2014-01-01

    Plants have mutualistic symbiotic relationships with rhizobia and fungi by the common symbiosis pathway, of which Ca2+/calmodulin-dependent protein kinase (encoded by CCaMK) is a central component. Although Oryza sativa CCaMK (OsCCaMK) is required for fungal accommodation in rice roots, little is known about the role of OsCCaMK in rice symbiosis with bacteria. Here, we report the effect of a Tos17-induced OsCCaMK mutant (NE1115) on CH4 flux in low-nitrogen (LN) and standard-nitrogen (SN) paddy fields compared with wild-type (WT) Nipponbare. The growth of NE1115 was significantly decreased compared with that of the WT, especially in the LN field. The CH4 flux of NE1115 in the LN field was significantly greater (156 to 407% in 2011 and 170 to 816% in 2012) than that of the WT, although no difference was observed in the SN field. The copy number of pmoA (encodes methane monooxygenase in methanotrophs) was significantly higher in the roots and rhizosphere soil of the WT than in those of NE1115. However, the mcrA (encodes methyl coenzyme M reductase in methanogens) copy number did not differ between the WT and NE1115. These results were supported by a 13C-labeled CH4-feeding experiment. In addition, the natural abundance of 15N in WT shoots (3.05‰) was significantly lower than in NE1115 shoots (3.45‰), suggesting greater N2 fixation in the WT because of dilution with atmospheric N2 (0.00‰). Thus, CH4 oxidation and N2 fixation were simultaneously activated in the root zone of WT rice in the LN field and both processes are likely controlled by OsCCaMK. PMID:24441161

  1. Bioethanol production from rice straw residues.

    PubMed

    Belal, Elsayed B

    2013-01-01

    A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 °C, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L(-1).

  2. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria.

    PubMed

    Chinma, Chiemela Enyinnaya; Anuonye, Julian Chukwuemeka; Simon, Omotade Comfort; Ohiare, Raliat Ozavize; Danbaba, Nahemiah

    2015-10-15

    This study determined the effect of germination (48 h) on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Local rice varieties (Jamila, Jeep and Kwandala) were evaluated and compared to an improved variety (MR 219). Physicochemical and antioxidant properties of flours were determined using standard methods. Protein, magnesium, phosphorus, potassium and antioxidant properties of rice flours increased after germination while phytic acid and total starch contents decreased. Foaming capacity and stability of rice flours increased after germination. Germination resulted to changes in pasting and thermal characteristics of rice flours. Germinated rice flours had better physicochemical and antioxidant properties with reduced phytic acid and starch contents compared to MR 219, which can be utilized as functional ingredients in the preparation of rice-based products.

  3. Can the co-cultivation of rice and fish help sustain rice production?

    PubMed Central

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-01-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability. PMID:27349875

  4. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression.

    PubMed

    Fang, Changxun; Zhuang, Yuee; Xu, Tiecheng; Li, Yingzhe; Li, Yue; Lin, Wenxiong

    2013-02-01

    Gene expression of phenylalanine ammonia-lyase (PAL) in allelopathic rice PI312777 was inhibited by RNA interference (RNAi). Transgenic rice showed lower levels of PAL gene expression and PAL activity than wild type rice (WT). The concentrations of phenolic compounds were lower in the root tissues and root exudates of transgenic rice than in those of wild type plants. When barndyardgrass (BYG) was used as the receiver plant, the allelopathic potential of transgenic rice was reduced. The sizes of the bacterial and fungal populations in rice rhizospheric soil at the 3-, 5-, and 7-leaf stages were estimated by using quantitative PCR (qPCR), which showed a decrease in both populations at all stages of leaf development analyzed. However, PI312777 had a larger microbial population than transgenic rice. In addition, in T-RFLP studies, 14 different groups of bacteria were detected in WT and only 6 were detected in transgenic rice. This indicates that there was less rhizospheric bacterial diversity associated with transgenic rice than with WT. These findings collectively suggest that PAL functions as a positive regulator of rice allelopathic potential.

  5. Can the co-cultivation of rice and fish help sustain rice production?

    NASA Astrophysics Data System (ADS)

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-06-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability.

  6. Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan.

    PubMed

    Naito, Shigehiro; Matsumoto, Eri; Shindoh, Kumiko; Nishimura, Tsutomu

    2015-02-01

    The effects of polishing, cooking, and storing on total arsenic (As) and As species concentrations in rice were studied adopting typical Japanese conditions. Total and inorganic As levels in three white rice samples polished by removing 10% of bran by weight were reduced to 61-66% and 51-70% of those in brown rice. The As levels in the white rice after three washings with deionized water were reduced to 81-84% and 71-83% of those in raw rice. Rinse-free rice, which requires no washing before cooking because bran remaining on the surface of the rice was removed previously, yielded an effect similar to that of reducing As in rice by washing. Low-volume cooking (water:rice 1.4-2.0:1) rice to dryness did not remove As. The As content of brown rice stored in grain form for one year was stable.

  7. Simulating rice response to climate change

    SciTech Connect

    Singh, U.; Padilla, J.L. |

    1995-12-31

    The response of rice (Oryza sativa L.) to elevated CO{sub 2} concentration and temperature increase was simulated using the CERES-rice model. CERES-rice belongs to the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) family of crop and nutrient dynamics models. Long-term historical data from the International Rice Research Institute (IRRI) wetland site was used to quantify the climatic change effects. The model simulated such beneficial effects of CO{sub 2} enrichment as increased grain yields, reduced transpiration, increased water use efficiency, improved use of intercepted radiation, reduced N losses, and higher N use efficiency. The trends were reversed for all of the above parameters with increase in temperature. CERES-rice simulated these negative trends in low input rice production as well. Based on the model`s prediction, some of the negative effects of temperature increase in warmer regions of the world could be offset by use of rice varieties that are tolerant to high temperature-induced spikelet sterility, and planting varieties with longer growth duration, particularly, longer grain filling duration. With improved varieties and good management future impact of climate change could be capitalized to have positive effects on rice production. Although the model has been extensively tested, it is critical to validate it with field data from extreme temperature and CO{sub 2} level studies. 33 refs., 13 figs., 3 tabs.

  8. Bone mass density estimation: Archimede’s principle versus automatic X-ray histogram and edge detection technique in ovariectomized rats treated with germinated brown rice bioactives

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Binti; Esmaile, Maher Faik; Zuki, Abu Bakar Zakaria

    2013-01-01

    Background Bone mass density is an important parameter used in the estimation of the severity and depth of lesions in osteoporosis. Estimation of bone density using existing methods in experimental models has its advantages as well as drawbacks. Materials and methods In this study, the X-ray histogram edge detection technique was used to estimate the bone mass density in ovariectomized rats treated orally with germinated brown rice (GBR) bioactives, and the results were compared with estimated results obtained using Archimede’s principle. New bone cell proliferation was assessed by histology and immunohistochemical reaction using polyclonal nuclear antigen. Additionally, serum alkaline phosphatase activity, serum and bone calcium and zinc concentrations were detected using a chemistry analyzer and atomic absorption spectroscopy. Rats were divided into groups of six as follows: sham (nonovariectomized, nontreated); ovariectomized, nontreated; and ovariectomized and treated with estrogen, or Remifemin®, GBR-phenolics, acylated steryl glucosides, gamma oryzanol, and gamma amino-butyric acid extracted from GBR at different doses. Results Our results indicate a significant increase in alkaline phosphatase activity, serum and bone calcium, and zinc and ash content in the treated groups compared with the ovariectomized nontreated group (P < 0.05). Bone density increased significantly (P < 0.05) in groups treated with estrogen, GBR, Remifemin®, and gamma oryzanol compared to the ovariectomized nontreated group. Histological sections revealed more osteoblasts in the treated groups when compared with the untreated groups. A polyclonal nuclear antigen reaction showing proliferating new cells was observed in groups treated with estrogen, Remifemin®, GBR, acylated steryl glucosides, and gamma oryzanol. There was a good correlation between bone mass densities estimated using Archimede’s principle and the edge detection technique between the treated groups (r2 = 0.737, P

  9. Bone mass density estimation: Archimede's principle versus automatic X-ray histogram and edge detection technique in ovariectomized rats treated with germinated brown rice bioactives.

    PubMed

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Binti; Esmaile, Maher Faik; Zuki, Abu Bakar Zakaria

    2013-01-01

    Bone mass density is an important parameter used in the estimation of the severity and depth of lesions in osteoporosis. Estimation of bone density using existing methods in experimental models has its advantages as well as drawbacks. In this study, the X-ray histogram edge detection technique was used to estimate the bone mass density in ovariectomized rats treated orally with germinated brown rice (GBR) bioactives, and the results were compared with estimated results obtained using Archimede's principle. New bone cell proliferation was assessed by histology and immunohistochemical reaction using polyclonal nuclear antigen. Additionally, serum alkaline phosphatase activity, serum and bone calcium and zinc concentrations were detected using a chemistry analyzer and atomic absorption spectroscopy. Rats were divided into groups of six as follows: sham (nonovariectomized, nontreated); ovariectomized, nontreated; and ovariectomized and treated with estrogen, or Remifemin®, GBR-phenolics, acylated steryl glucosides, gamma oryzanol, and gamma amino-butyric acid extracted from GBR at different doses. Our results indicate a significant increase in alkaline phosphatase activity, serum and bone calcium, and zinc and ash content in the treated groups compared with the ovariectomized nontreated group (P < 0.05). Bone density increased significantly (P < 0.05) in groups treated with estrogen, GBR, Remifemin®, and gamma oryzanol compared to the ovariectomized nontreated group. Histological sections revealed more osteoblasts in the treated groups when compared with the untreated groups. A polyclonal nuclear antigen reaction showing proliferating new cells was observed in groups treated with estrogen, Remifemin®, GBR, acylated steryl glucosides, and gamma oryzanol. There was a good correlation between bone mass densities estimated using Archimede's principle and the edge detection technique between the treated groups (r (2) = 0.737, P = 0.004). Our study shows that GBR

  10. Association of Rice and Rice-Product Consumption With Arsenic Exposure Early in Life.

    PubMed

    Karagas, Margaret R; Punshon, Tracy; Sayarath, Vicki; Jackson, Brian P; Folt, Carol L; Cottingham, Kathryn L

    2016-06-01

    that intake of rice cereal and other rice-containing foods, such as rice snacks, contribute to infants' As exposure and suggest that efforts should be made to reduce As exposure during this critical phase of development.

  11. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  12. Rice ( Oryza) hemoglobins.

    PubMed

    Arredondo-Peter, Raúl; Moran, Jose F; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.

  13. Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions

    PubMed Central

    Mishra, Neelam; Sun, Li; Zhu, Xunlu; Smith, Jennifer; Prakash Srivastava, Anurag; Yang, Xiaojie; Pehlivan, Necla; Esmaeili, Nardana; Luo, Hong; Shen, Guoxin; Jones, Don; Auld, Dick; Burke, John

    2017-01-01

    The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems. PMID:28340002

  14. Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Bastos de Carvalho, Fabíola; Aciole, Gilberth Tadeu S.; Aciole, Jouber Mateus S.; Silveira, Landulfo, Jr.; Nunes dos Santos, Jean; Pinheiro, Antônio L. B.

    2011-03-01

    The aim of this study was to evaluate, through Raman spectroscopy, the repair of complete tibial fracture in rabbits fixed with wire osteosynthesis - WO, treated or not with infrared laser light (λ 780nm, 50mW, CW) associated or not to the use of HATCP and GBR. Surgical fractures were created under general anesthesia (Ketamine 0.4ml/Kg IP and Xilazine 0.2ml/Kg IP), on the tibia of 15 rabbits that were divided into 5 groups and maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libidum. On groups II, III, IV and V the fracture was fixed with WO. Animals of groups III and V were grafted with hydroxyapatite + GBR technique. Animals of groups IV and V were irradiated at every other day during two weeks (16J/cm2, 4 x 4J/cm2). Observation time was that of 30 days. After animal death the specimens were kept in liquid nitrogen for further analysis by Raman spectroscopy. Raman spectroscopy showed significant differences between groups (p<0.001). It is concluded that IR laser light was able to accelerate fracture healing and the association with HATCP and GBR resulted on increased deposition of calcium hydroxyapatite.

  15. Silicon-Mediated Resistance in a Susceptible Rice Variety to the Rice Leaf Folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae)

    PubMed Central

    Han, Yongqiang; Lei, Wenbin; Wen, Lizhang; Hou, Maolin

    2015-01-01

    The rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most destructive rice pests in Asian countries. Rice varieties resistant to the rice leaf folder are generally characterized by high silicon content. In this study, silicon amendment, at 0.16 and 0.32 g Si/kg soil, enhanced resistance of a susceptible rice variety to the rice leaf folder. Silicon addition to rice plants at both the low and high rates significantly extended larval development and reduced larval survival rate and pupation rate in the rice leaf folder. When applied at the high rate, silicon amendment reduced third-instars’ weight gain and pupal weight. Altogether, intrinsic rate of increase, finite rate of increase and net reproduction rate of the rice leaf folder population were all reduced at both the low and high silicon addition rates. Although the third instars consumed more in silicon-amended treatments, C:N ratio in rice leaves was significantly increased and food conversion efficiencies were reduced due to increased silicon concentration in rice leaves. Our results indicate that reduced food quality and food conversion efficiencies resulted from silicon addition account for the enhanced resistance in the susceptible rice variety to the rice leaf folder. PMID:25837635

  16. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae).

    PubMed

    Han, Yongqiang; Lei, Wenbin; Wen, Lizhang; Hou, Maolin

    2015-01-01

    The rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most destructive rice pests in Asian countries. Rice varieties resistant to the rice leaf folder are generally characterized by high silicon content. In this study, silicon amendment, at 0.16 and 0.32 g Si/kg soil, enhanced resistance of a susceptible rice variety to the rice leaf folder. Silicon addition to rice plants at both the low and high rates significantly extended larval development and reduced larval survival rate and pupation rate in the rice leaf folder. When applied at the high rate, silicon amendment reduced third-instars' weight gain and pupal weight. Altogether, intrinsic rate of increase, finite rate of increase and net reproduction rate of the rice leaf folder population were all reduced at both the low and high silicon addition rates. Although the third instars consumed more in silicon-amended treatments, C:N ratio in rice leaves was significantly increased and food conversion efficiencies were reduced due to increased silicon concentration in rice leaves. Our results indicate that reduced food quality and food conversion efficiencies resulted from silicon addition account for the enhanced resistance in the susceptible rice variety to the rice leaf folder.

  17. Fermented Brown Rice Flour as Functional Food Ingredient.

    PubMed

    Ilowefah, Muna; Chinma, Chiemela; Bakar, Jamilah; Ghazali, Hasanah M; Muhammad, Kharidah; Makeri, Mohammad

    2014-02-12

    As fermentation could reduce the negative effects of bran on final cereal products, the utilization of whole-cereal flour is recommended, such as brown rice flour as a functional food ingredient. Therefore, this study aimed to investigate the effect of fermented brown rice flour on white rice flour, white rice batter and its steamed bread qualities. Brown rice batter was fermented using commercial baker's yeast (Eagle brand) according to the optimum conditions for moderate acidity (pH 5.5) to obtain fermented brown rice flour (FBRF). The FBRF was added to white rice flour at 0%, 10%, 20%, 30%, 40% and 50% levels to prepare steamed rice bread. Based on the sensory evaluation test, steamed rice bread containing 40% FBRF had the highest overall acceptability score. Thus, pasting properties of the composite rice flour, rheological properties of its batter, volume and texture properties of its steamed bread were determined. The results showed that peak viscosity of the rice flour containing 40% FBRF was significantly increased, whereas its breakdown, final viscosity and setback significantly decreased. Viscous, elastic and complex moduli of the batter having 40% FBRF were also significantly reduced. However, volume, specific volume, chewiness, resilience and cohesiveness of its steamed bread were significantly increased, while hardness and springiness significantly reduced in comparison to the control. These results established the effectiveness of yeast fermentation in reducing the detrimental effects of bran on the sensory properties of steamed white rice bread and encourage the usage of brown rice flour to enhance the quality of rice products.

  18. Fermented Brown Rice Flour as Functional Food Ingredient

    PubMed Central

    Ilowefah, Muna; Chinma, Chiemela; Bakar, Jamilah; Ghazali, Hasanah M.; Muhammad, Kharidah; Makeri, Mohammad

    2014-01-01

    As fermentation could reduce the negative effects of bran on final cereal products, the utilization of whole-cereal flour is recommended, such as brown rice flour as a functional food ingredient. Therefore, this study aimed to investigate the effect of fermented brown rice flour on white rice flour, white rice batter and its steamed bread qualities. Brown rice batter was fermented using commercial baker’s yeast (Eagle brand) according to the optimum conditions for moderate acidity (pH 5.5) to obtain fermented brown rice flour (FBRF). The FBRF was added to white rice flour at 0%, 10%, 20%, 30%, 40% and 50% levels to prepare steamed rice bread. Based on the sensory evaluation test, steamed rice bread containing 40% FBRF had the highest overall acceptability score. Thus, pasting properties of the composite rice flour, rheological properties of its batter, volume and texture properties of its steamed bread were determined. The results showed that peak viscosity of the rice flour containing 40% FBRF was significantly increased, whereas its breakdown, final viscosity and setback significantly decreased. Viscous, elastic and complex moduli of the batter having 40% FBRF were also significantly reduced. However, volume, specific volume, chewiness, resilience and cohesiveness of its steamed bread were significantly increased, while hardness and springiness significantly reduced in comparison to the control. These results established the effectiveness of yeast fermentation in reducing the detrimental effects of bran on the sensory properties of steamed white rice bread and encourage the usage of brown rice flour to enhance the quality of rice products. PMID:28234309

  19. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots

    PubMed Central

    Wang, Wei; Zhao, Xue Qiang; Hu, Zhen Min; Shao, Ji Feng; Che, Jing; Chen, Rong Fu; Dong, Xiao Ying; Shen, Ren Fang

    2015-01-01

    Background and Aims Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. Methods Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn2+ and Al3+ in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. Key Results In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn2+ activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. Conclusions The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots. PMID:26105187

  20. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots.

    PubMed

    Wang, Wei; Zhao, Xue Qiang; Hu, Zhen Min; Shao, Ji Feng; Che, Jing; Chen, Rong Fu; Dong, Xiao Ying; Shen, Ren Fang

    2015-08-01

    Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn(2+) activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.

    2016-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671

  2. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed.

    PubMed

    Adams, A; Gore, J; Musser, F; Cook, D; Catchot, A; Walker, T; Dobbins, C

    2016-02-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management.

  3. Association of Rice and Rice-Product Consumption With Arsenic Exposure Early in Life

    PubMed Central

    Karagas, Margaret R.; Punshon, Tracy; Sayarath, Vicki; Jackson, Brian P.; Folt, Carol L.; Cottingham, Kathryn L.

    2016-01-01

    snacks contained between 36 and 568 ng/g of As and 5 to 201 ng/g of inorganic As. CONCLUSIONS AND RELEVANCE Our findings indicate that intake of rice cereal and other rice-containing foods, such as rice snacks, contribute to infants’ As exposure and suggest that efforts should be made to reduce As exposure during this critical phase of development. PMID:27111102

  4. PhosphoRice: a meta-predictor of rice-specific phosphorylation sites

    PubMed Central

    2012-01-01

    Background As a result of the growing body of protein phosphorylation sites data, the number of phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to predict protein phosphorylation sites in rice. Results In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters selected by restricted grid search and conditional random search, performed the best at predicting phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC) and Accuracy (ACC) reached to 0.474 and 73.8%, respectively. Compared to the best individual element predictor (Disphos_default), PhosphoRice archieved a significant increase in MCC of 0.071 (P < 0.01), and an increase in ACC of 4.6%. Conclusions PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice. PMID:22305189

  5. [Effect of rice-duck mutualism on nutrition ecology of paddy field and rice quality].

    PubMed

    Wang, Qiangsheng; Huang, Pisheng; Zhen, Ruohong; Jing, Liuming; Tang, Hebao; Zhang, Chunyang

    2004-04-01

    The production of nuisanceless rice was conducted by the technique of rice-duck mutualism without applying any pesticide and chemical fertilizer. The results showed that compared to the control, the effect of eliminating weeds was over 99.4%, and the cardinal numbers of plant diseases and insect pests reduced obviously. Nutrients and dissolved oxygen in paddy water and rapidly available nutrients in soil increased, but after maturing stage, compared to basal fertility, rapidly available P and K decreased. The N, P, and K absorption amounts of rice plant, rice yield, setting panicles rate, filled grains and ripened rate increased. The milling, appearance, nutritional, cooking and eating quality of rice improved, especially in reducing chalkiness. The comprehensive benefits of paddy field enhanced obviously.

  6. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development

    PubMed Central

    Yu, Hongyang; Murchie, Erik H.; González-Carranza, Zinnia H.; Pyke, Kevin A.; Roberts, Jeremy A.

    2015-01-01

    The ERECT PANICLE 3 gene of rice encodes a peptide that exhibits more than 50% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Ectopic expression of the Os02g15950 coding sequence, driven by the HWS (At3g61950) promoter, rescued the hws-1 flower phenotype in Arabidopsis confirming that EP3 is a functional orthologue of HWS. In addition to displaying an erect inflorescence phenotype, loss-of-function mutants of Os02g15950 exhibited a decrease in leaf photosynthetic capacity and stomatal conductance. Analysis of a range of physiological and anatomical features related to leaf photosynthesis revealed no alteration in Rubisco content and no notable changes in mesophyll size or arrangement. However, both ep3 mutant plants and transgenic lines that have a T-DNA insertion within the Os02g15950 (EP3) gene exhibit smaller stomatal guard cells compared with their wild-type controls. This anatomical characteristic may account for the observed decrease in leaf photosynthesis and provides evidence that EP3 plays a role in regulating stomatal guard cell development. PMID:25582452

  7. Evaluation of the potential role of glufosinate-tolerant rice in integrated pest management programs for rice water weevil (Coleoptera: Curculionidae).

    PubMed

    Tindall, K V; Stout, M J; Williams, B J

    2004-12-01

    The impact of a herbicide-tolerant rice, Oryza sativa L., variety was assessed for its resistance to rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), and its place in current integrated pest management (IPM) programs. Greenhouse experiments were conducted to evaluate the resistance of a glufosinate-tolerant rice variety and its glufosinate-susceptible parent line Bengal to the rice water weevil in the presence and absence of glufosinate applications. The LC50 dose-response and behavioral effects of glufosinate on adult rice water weevils also were studied. Field studies investigated the impacts of glufosinate-tolerant rice on rice water weevil management in the presence and absence of glufosinate under early and delayed flood conditions. Greenhouse studies demonstrated that in the absence of glufosinate, oviposition was 30% higher on the glufosinate-tolerant rice line than on Bengal rice or on glufosinate-tolerant line treated with recommended rates of commercially formulated glufosinate. Applications of glufosinate to glufosinate-tolerant rice resulted in a 20% reduction in rice water weevil larval densities compared with nontreated glufosinate-tolerant rice. The LC50 of glufosinate against adult rice water weevil was nearly 2 times the concentration recommended for application to glufosinate-tolerant rice. There was no difference in the amount of leaf area consumed by adult rice water weevils on glufosinate-treated and nontreated foliage. The absence of direct toxicity of glufosinate to rice water weevil at recommended glufosinate use rates and lack of behavioral effects suggest that the reduction in rice water weevil densities observed after glufosinate applications resulted from herbicide-induced plant resistance. Field experiments showed that neither rice variety nor herbicide use affected larval densities; however, delaying flood and applying insecticide effectively reduced numbers of rice water weevil larvae.

  8. Iron biofortification of myanmar rice.

    PubMed

    Aung, May Sann; Masuda, Hiroshi; Kobayashi, Takanori; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K

    2013-01-01

    Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high-yields or high-qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high-Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II)-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs.

  9. Iron Biofortification of Myanmar Rice

    PubMed Central

    Aung, May Sann; Masuda, Hiroshi; Kobayashi, Takanori; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K.

    2013-01-01

    Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high-yields or high-qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high-Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II)-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs. PMID:23750162

  10. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    PubMed

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice.

  11. Rice Production and Marketing.

    ERIC Educational Resources Information Center

    Briers, Gary; Lee, Jasper S.

    This guide contains lesson plans for use in secondary programs of agricultural education in geographical areas in which rice is produced. Six units and 13 problem areas are organized into teaching plans that cover the broad nature of rice production. The six units are: (1) determining the importance and history of rice production; (2) determining…

  12. Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits.

    PubMed

    Moura, Jonas M L; Ferreira, Juliana F; Marques, Leonardo; Holgado, Leandro; Graeff, Carlos F O; Kinoshita, Angela

    2014-09-01

    This work assessed the performance of membranes made of natural latex extracted from Hevea brasiliensis prepared with three different methods: polymerized immediately after collection without the use of ammonia (L1); polymerized after preservation in ammonia solution (L2); and polymerized after storage in ammonia, followed by Soxhlet technique for the extraction of substances (L3). Polytetrafluoroethylene (PTFE) membrane was used as control. Two 10-mm diameter bone defects were surgically made in the calvaria of thirty adult male New Zealand rabbits. Defects (total n = 60) were treated with guided bone regeneration (GBR) using L1, L2, L3 or PTFE membranes (n = 15 for each membrane). Ten animals were euthanized after 7, 20 and 60 days postoperatively so that five samples (n = 5) of each treatment were collected at each time, and bone regeneration was assessed microscopically. The microscopic analysis revealed defects filled with blood clot and new bone formation at the margins of the defect in all 7-day samples, while 20-day defects were mainly filled with fibrous connective tissue. After 60 days defects covered with L1 membranes showed a significantly larger bone formation area in comparison to the other groups (P < 0.05, ANOVA, Tukey). Additionally, bone tissue hypersensitization for L1 and PTFE membranes was also investigated in six additional rabbits. The animals were subjected to the same surgical procedure for the confection of one 10-mm diameter bone defect that was treated with L1 (n = 3) or PTFE (n = 3). Fifty-three days later, a second surgery was performed to make a second defect, which was treated with the same type of membrane used in the first surgery. Seven days later, the animals were euthanized and samples analyzed. No differences among L1 and PTFE samples collected from sensitized and non-sensitized animals were found (P > 0.05, Kruskal-Wallis). Therefore, the results demonstrated that latex membranes presented performance

  13. Higher yields and lower methane emissions with new rice cultivars.

    PubMed

    Jiang, Yu; van Groenigen, Kees Jan; Huang, Shan; Hungate, Bruce A; van Kessel, Chris; Hu, Shuijin; Zhang, Jun; Wu, Lianhai; Yan, Xiaojun; Wang, Lili; Chen, Jin; Hang, Xiaoning; Zhang, Yi; Horwath, William R; Ye, Rongzhong; Linquist, Bruce A; Song, Zhenwei; Zheng, Chengyan; Deng, Aixing; Zhang, Weijian

    2017-11-01

    Breeding high-yielding rice cultivars through increasing biomass is a key strategy to meet rising global food demands. Yet, increasing rice growth can stimulate methane (CH4 ) emissions, exacerbating global climate change, as rice cultivation is a major source of this powerful greenhouse gas. Here, we show in a series of experiments that high-yielding rice cultivars actually reduce CH4 emissions from typical paddy soils. Averaged across 33 rice cultivars, a biomass increase of 10% resulted in a 10.3% decrease in CH4 emissions in a soil with a high carbon (C) content. Compared to a low-yielding cultivar, a high-yielding cultivar significantly increased root porosity and the abundance of methane-consuming microorganisms, suggesting that the larger and more porous root systems of high-yielding cultivars facilitated CH4 oxidation by promoting O2 transport to soils. Our results were further supported by a meta-analysis, showing that high-yielding rice cultivars strongly decrease CH4 emissions from paddy soils with high organic C contents. Based on our results, increasing rice biomass by 10% could reduce annual CH4 emissions from Chinese rice agriculture by 7.1%. Our findings suggest that modern rice breeding strategies for high-yielding cultivars can substantially mitigate paddy CH4 emission in China and other rice growing regions. © 2017 John Wiley & Sons Ltd.

  14. Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy.

    PubMed

    Busconi, M; Rossi, D; Lorenzoni, C; Baldi, G; Fogher, C

    2012-09-01

    The weedy relative of cultivated rice, red rice, can invade and severely infest rice fields, as reported by rice farmers throughout the world. Because of its close genetic relationship to commercial rice, red rice has proven difficult to control. Clearfield (Cl) varieties, which are resistant to the inhibiting herbicides in the chemical group AHAS (acetohydroxyacid synthase), provide a highly efficient opportunity to control red rice infestations. In order to reduce the risk of herbicide resistance spreading from cultivated rice to red rice, stewardship guidelines are regularly released. In Italy, the cultivation of Cl cultivars started in 2006. In 2010, surveillance of the possible escape of herbicide resistance was carried out; 168 red rice plants were sampled in 16 fields from six locations containing Cl and traditional cultivars. A first subsample of 119 plants was analysed after herbicide treatment and the resistance was found in 62 plants. Of these 119 plants, 78 plants were randomly selected and analysed at the level of the AHAS gene to search for the Cl mutation determining the resistant genotype: the Cl mutation was present in all the resistant plants. Nuclear and chloroplast microsatellite markers revealed a high correlation between genetic similarity and herbicide resistance. The results clearly show that Cl herbicide-resistant red rice plants are present in the field, having genetic relationships with the Cl variety. Finding plants homozygous for the mutation suggests that the crossing event occurred relatively recently and that these plants are in the F2 or later generations. These observations raise the possibility that Cl red rice is already within the cultivated rice seed supply.

  15. Arsenic contents in Spanish infant rice, pureed infant foods, and rice.

    PubMed

    Burló, Francisco; Ramírez-Gandolfo, Amanda; Signes-Pastor, Antonio J; Haris, Parvez I; Carbonell-Barrachina, Angel A

    2012-01-01

    It seems there is a positive correlation between rice content and arsenic level in foods. This is of extraordinary importance for infants below 1 y of age because their diet is very limited and in some cases is highly dependent on rice-based products; this is particularly true for infants with the celiac disease because they have no other option than consume gluten-free products, such as rice or corn. Arsenic contents were significantly higher (P < 0.001) in gluten-free infant rice (0.057 mg kg⁻¹) than in products with gluten, based on a mixture of cereals (0.024 mg kg⁻¹). Besides, especial precaution must be taken when preparing rice-based products at home, because arsenic content in Spanish rice was high, with levels being above 0.3 mg kg⁻¹ in some cases. From the data presented in this manuscript, it seems imperative that legislation on maximum residues of arsenic in food should be available as soon as possible to protect consumers worldwide. Research is needed to identify or breed rice cultivars with low accumulation of arsenic in the grain; otherwise the rice percentage in infant foods should be reduced. © 2011 Institute of Food Technologists®

  16. Biofortified β-carotene rice improves vitamin A intake and reduces the prevalence of inadequacy among women and young children in a simulated analysis in Bangladesh, Indonesia, and the Philippines1

    PubMed Central

    Angeles-Agdeppa, Imelda; Atmarita, Atmarita; Gironella, Glen M; Muslimatun, Siti; Carriquiry, Alicia

    2016-01-01

    Background: Vitamin A deficiency continues to be a major public health problem affecting developing countries where people eat mostly rice as a staple food. In Asia, rice provides up to 80% of the total daily energy intake. Objective: We used existing data sets from Bangladesh, Indonesia, and the Philippines, where dietary intakes have been quantified at the individual level to 1) determine the rice and vitamin A intake in nonpregnant, nonlactating women of reproductive age and in nonbreastfed children 1–3 y old and 2) simulate the amount of change that could be achieved in the prevalence of inadequate intake of vitamin A if rice biofortified with β-carotene were consumed instead of the rice consumed at present. Design: We considered a range of 4–20 parts per million (ppm) of β-carotene content and 10–70% substitution levels for the biofortified rice. Software was used to estimate usual rice and vitamin A intake for the simulation analyses. Results: In an analysis by country, the substitution of biofortified rice for white rice in the optimistic scenario (20 ppm and 70% substitution) decreased the prevalence of vitamin A inadequacy from baseline 78% in women and 71% in children in Bangladesh. In Indonesia and the Philippines, the prevalence of inadequacy fell by 55–60% in women and dropped by nearly 30% in children from baseline. Conclusions: The results of the simulation analysis were striking in that even low substitution levels and modest increases in the β-carotene of rice produced a meaningful decrease in the prevalence of inadequate intake of vitamin A. Increasing the substitution levels had a greater impact than increasing the β-carotene content by >12 ppm. PMID:27510534

  17. Biofortified β-carotene rice improves vitamin A intake and reduces the prevalence of inadequacy among women and young children in a simulated analysis in Bangladesh, Indonesia, and the Philippines.

    PubMed

    De Moura, Fabiana F; Moursi, Mourad; Donahue Angel, Moira; Angeles-Agdeppa, Imelda; Atmarita, Atmarita; Gironella, Glen M; Muslimatun, Siti; Carriquiry, Alicia

    2016-09-01

    Vitamin A deficiency continues to be a major public health problem affecting developing countries where people eat mostly rice as a staple food. In Asia, rice provides up to 80% of the total daily energy intake. We used existing data sets from Bangladesh, Indonesia, and the Philippines, where dietary intakes have been quantified at the individual level to 1) determine the rice and vitamin A intake in nonpregnant, nonlactating women of reproductive age and in nonbreastfed children 1-3 y old and 2) simulate the amount of change that could be achieved in the prevalence of inadequate intake of vitamin A if rice biofortified with β-carotene were consumed instead of the rice consumed at present. We considered a range of 4-20 parts per million (ppm) of β-carotene content and 10-70% substitution levels for the biofortified rice. Software was used to estimate usual rice and vitamin A intake for the simulation analyses. In an analysis by country, the substitution of biofortified rice for white rice in the optimistic scenario (20 ppm and 70% substitution) decreased the prevalence of vitamin A inadequacy from baseline 78% in women and 71% in children in Bangladesh. In Indonesia and the Philippines, the prevalence of inadequacy fell by 55-60% in women and dropped by nearly 30% in children from baseline. The results of the simulation analysis were striking in that even low substitution levels and modest increases in the β-carotene of rice produced a meaningful decrease in the prevalence of inadequate intake of vitamin A. Increasing the substitution levels had a greater impact than increasing the β-carotene content by >12 ppm.

  18. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  19. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    Our laboratory has reported that the hypolipidemic effect of rice bran oil (RBO) is not entirely explained by its fatty acid composition. Because RBO has a greater content of the unsaponifiables, which also lower cholesterol compared to most vegetable oils, we wanted to know whether oryzanol or ferulic acid, two major unsaponifiables in RBO, has a greater cholesterol-lowering activity. Forty-eight F(1)B Golden Syrian hamsters (Mesocricetus auratus) (BioBreeders, Watertown, MA) were group housed (three per cage) in cages with bedding in an air-conditioned facility maintained on a 12-h light/dark cycle. The hamsters were fed a chow-based hypercholesterolemic diet (HCD) containing 10% coconut oil and 0.1% cholesterol for 2 weeks, at which time they were bled after an overnight fast (16 h) and segregated into 4 groups of 12 with similar plasma cholesterol concentrations. Group 1 (control) continued on the HCD, group 2 was fed the HCD containing 10% RBO in place of coconut oil, group 3 was fed the HCD plus 0.5% ferulic acid and group 4 was fed the HCD plus 0.5% oryzanol for an additional 10 weeks. After 10 weeks on the diets, plasma total cholesterol (TC) and non-high-density lipoprotein cholesterol (HDL-C) (very low- and low-density lipoprotein) concentrations were significantly lower in the RBO (-64% and -70%, respectively), the ferulic acid (-22% and -24%, respectively) and the oryzanol (-70% and -77%, respectively) diets compared to control. Plasma TC and non-HDL-C concentrations were also significantly lower in the RBO (-53% and -61%, respectively) and oryzanol (-61% and -70%, respectively) diets compared to the ferulic acid. Compared to control and ferulic acid, plasma HDL-C concentrations were significantly higher in the RBO (10% and 20%, respectively) and oryzanol (13% and 24%, respectively) diets. The ferulic acid diet had significantly lower plasma HDL-C concentrations compared to the control (-9%). The RBO and oryzanol diets were significantly lower for

  20. Genome duplication improves rice root resistance to salt stress

    PubMed Central

    2014-01-01

    Background Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. Results Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased. Conclusions Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots. PMID:25184027

  1. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties.

  2. Fate of ochratoxin a during cooking of naturally contaminated polished rice.

    PubMed

    Park, Je Won; Chung, Soo-Hyun; Lee, Chan; Kim, Young-Bae

    2005-10-01

    Ochratoxin A (OTA), a mycotoxin widespread in cereals, occurs in polished rice that is consumed as cooked rice after washing and steaming. Cooking decreases OTA levels in food to varying extents, but little is known about how cooking changes the biological activity of this mycotoxin. We therefore evaluated the fate of OTA during rice cooking to determine the OTA residues and cytotoxic potential in vitro. Water-washed rice, ordinary cooked rice, and pressure-cooked rice were prepared from three polished rice lots naturally contaminated with OTA. Residual OTA in each sample was analyzed by high-performance liquid chromatography (HPLC), whereas in vitro cytotoxicity of OTA to C6 glioma cells, susceptible to low levels (nanograms per milliliter) of OTA, was used to confirm the chemical analysis. OTA concentration, as determined by HPLC analysis, in the cooked rice by both types of cookers was significantly lower than (59 to 75%) in the raw polished rice and water-washed rice. The cytotoxicity of the OTA that remained in the pressure-cooked rice from three lots was markedly decreased (approximately 20%, P < 0.05) when compared with other samples in respective lots. This confirms that cooking lowers OTA residues. Although washing polished rice with water had little effect on OTA levels, pressure steaming appeared to be the critical cooking step not only to reduce OTA residues in polished rice before reaching the consumer as the dietary staple of cooked rice, but also to diminish cytotoxicity of OTA.

  3. Integrated rice-duck farming mitigates the global warming potential in rice season.

    PubMed

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH4) and nitrous oxide (N2O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH4 emission by 8.80-16.68%, while increased the N2O emission by 4.23-15.20%, when compared to CF. Given that CH4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH4 and N2O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N2O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of Ozone Technology Rice Storage Systems (OTRISS) for Quality Improvement of Rice Production

    NASA Astrophysics Data System (ADS)

    Nur, M.; Kusdiyantini, E.; Wuryanti, W.; Winarni, T. A.; Widyanto, S. A.; Muharam, H.

    2015-06-01

    This research has been carried out by using ozone to address the rapidly declining quality of rice in storage. In the first year, research has focused on the rice storage with ozone technology for small capacity (e.g., household) and the medium capacity (e.g., dormitories, hospitals). Ozone was produced by an ozone generator with Dielectric Barrier Discharge Plasma (DBDP). Ozone technology rice storage system (OTRISS) is using ozone charateristic which is a strong oxidizer. Ozone have a short endurance of existence and then decompose, as a result produce oxygen and radicals of oxygen. These characteristics could kill microorganisms and pests, reduce air humidity and enrich oxygen. All components used in SPBTO assembled using raw materials available in the big cities in Indonesia. Provider of high voltage (High Voltage Power Supply, 40-70 kV, 23 KH, AC) is one of components that have been assembled and tested. Ozone generator is assembled with 7 reactors of Dielectric Barrier Discharge Plasma (DBDP). Rice container that have been prepared for OTRISS have adjusted so can be integrated with generator, power supply and blower to blow air. OTRISS with a capacity of 75 kg and 100 kg have been made and tested. The ability of ozone to eliminate bacteria and fungi have been tested and resulted in a decrease of microorganisms at 3 log CFU/g. Testing in food chemistry showed that ozone treatment of rice had not changed the chemical content that still meet the standard of chemical content and nutritional applicable to ISO standard milled rice. The results of this study are very likely to be used as an alternative to rice storage systems in warehouse. Test and scale-up is being carried out in a mini warehouse whose condition is mimicked to rice in National Rice Storage of Indonesia (Bulog) to ensure quality. Next adaptations would be installed in the rice storage system in the Bulog.

  5. Greenhouse gas emissions, irrigation water use, and arsenic concentrations; a common thread in rice water management

    USDA-ARS?s Scientific Manuscript database

    Rice has historically been grown as a flooded crop in the United States. As competition for water resources has grown, there is interest in reducing water use in rice production so as to maintain a viable and sustainable rice industry into the future. An irrigation study was established in 2011 at ...

  6. Outbreak of Tagosodes orizicolus (Muir) in Texas rice

    USDA-ARS?s Scientific Manuscript database

    The rice planthopper, Tagosodes orizicolus, is reported for the first time in Texas, where it is superabundant in rice fields in four counties (Brazoria, Colorado, Harris, and Wharton). The species is a known vector of the viral disease hoja blanca, which can reduce yields up to 50%, and hopper burn...

  7. Enhancing the health-beneficial qualities of whole grain rice

    USDA-ARS?s Scientific Manuscript database

    Various pre- and post-harvest approaches (i.e. pre-germination of whole grains and reduced milling degree) to enhancing the health beneficial compounds of whole grain and milled rice have been reported. A discussion of the results from our pre-harvest efforts is as follows. The majority of rice cons...

  8. Evaluating rice cultivars using subsurface drip irrigation (SDI)

    USDA-ARS?s Scientific Manuscript database

    Nearly 2.6 million acres of rice in the USA are produced using a flooded paddy system. However due to depletion of ground water, climate patterns that have resulted in reduced precipitation, and increasing competition with urban areas for water resources, the future of rice production in parts of th...

  9. Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice

    PubMed Central

    Tindall, Kelly V.; Bernhardt, John L.; Stout, Michael J.; Beighley, Donn H.

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus. PMID:23906324

  10. Effect of depth of flooding on the rice water weevil, Lissorhoptrus oryzophilus, and yield of rice.

    PubMed

    Tindall, Kelly V; Bernhardt, John L; Stout, Michael J; Beighley, Donn H

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0-20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.

  11. Determinants for grading Malaysian rice

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Yusoff, Nooraini; Ahmad, Norhayati

    2016-08-01

    Due to un-uniformity of rice grading practices in Malaysia, zones which actively producing rice in Malaysia are using their own way of grading rice. Rice grading is important in determining rice quality and its subsequent price in the market. It is an important process applied in the rice production industry with the purpose of ensuring that the rice produced for the market meets the quality requirements of consumer. Two important aspects that need to be considered in determining rice grades are grading technique and determinants to be used for grading (usually referred as rice attributes). This article proposes the list of determinants to be used in grading Malaysian rice. Determinants were explored through combination of extensive literature review and series of interview with the domain experts and practitioners. The proposed determinants are believed to be beneficial to BERNAS in improving the current Malaysian rice grading process.

  12. Mitigation of arsenic accumulation in rice with water management and silicon fertilization.

    PubMed

    Li, R Y; Stroud, J L; Ma, J F; McGrath, S P; Zhao, F J

    2009-05-15

    Rice represents a major route of As exposure in populations that depend on a rice diet. Practical measures are needed to mitigate the problem of excessive As accumulation in paddy rice. Two potential mitigation methods, management of the water regime and Si fertilization, were investigated under greenhouse conditions. Growing rice aerobically during the entire rice growth duration resulted in the leastAs accumulation. Maintaining aerobic conditions during either vegetative or reproductive stage of rice growth also decreased As accumulation in rice straw and grain significantly compared with rice grown under flooded conditions. The effect of water management regimes was consistent with the observed effect of flooding-induced arsenite mobilization in the soil solution. Aerobic treatments increased the percentage of inorganic As in grain, but the concentrations of inorganic As remained lower than in the flooded rice. Silicon fertilization decreased the total As concentration in straw and grain by 78 and 16%, respectively, even though Si addition increased As concentration in the soil solution. Silicon also significantly influenced As speciation in rice grain and husk by enhancing methylation. Silicon decreased the inorganic As concentration in grain by 59% while increasing the concentration of dimethylarsinic acid (DMA) by 33%. There were also significant differences between two rice genotypes in grain As speciation. This study demonstrated that water management Si fertilization, and selection of rice cultivars are effective measures that can be used to reduce As accumulation in rice.

  13. Red Yeast Rice Preparations: Are They Suitable Substitutions for Statins?

    PubMed

    Dujovne, Carlos A

    2017-10-01

    Red yeast rice, a commercially available food supplement known to reduce serum cholesterol, has been repeatedly advocated as alternative therapy for hypercholesterolemic patients that refuse statins, cannot tolerate statin therapy's side effects, or request a "naturopathic" medicine. Red yeast rice contains a fungus (Monascus purpureus), which was utilized in the original production of lovastatin (MEVACOR, Merck & Co, Whitehouse Station, NJ), the first marketed pharmaceutical statin, and is chemically identical to such product. Their identical properties account for the similarity in therapeutic and side effects of red yeast rice and lovastatin. The red yeast rice ingredient that blocks cholesterol production is monacolin K. Because red yeast rice preparations have large variability in monacolin K content, predicting or understanding dose-related efficacy and side-effect risks of red yeast rice is practically impossible. The lipid-regulating potency of red yeast rice in commercial preparations was found to be extensively different according to the number or concentration of monacolin K they possess. Furthermore, more than one type of monacolin was found in different preparations (or batches) of red yeast rice. Other ingredients found in red yeast rice are also known to be potentially toxic. The US Food and Drug Administration issued warnings to consumers in 2007 and in 2013 against taking red yeast rice products due to the lack of assurance about its efficacy, safety, and lack of standardized preparation methods. This article discusses my clinical trial results with red yeast rice, reviews the literature on its therapeutic and side effects, and discusses why red yeast rice is not an acceptable substitution for statins. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Balancing the Needs of China's Wetland Conservation and Rice Production.

    PubMed

    Chen, Hongjun; Wang, Guoping; Lu, Xianguo; Jiang, Ming; Mendelssohn, Irving A

    2015-06-02

    China's rice policy for protecting paddy fields and constructing rice production bases is in conflict with its wetland conservation strategy. The policy will increase the rice planting area, the loss of remaining wetlands, and environmental pollution, with intensive application of fertilizers and heavy use of pesticides. The key to resolving this conflict is to bring rice production in compliance with wetland conservation and sustainable agriculture. An operational, sound regulatory program is needed to improve China's wetland conservation. Using wetland conservation in the US as an example, we argue that more effective technical guidelines for wetland inventory and monitoring are necessary to support the implementation of the regulatory program. Agricultural conservation programs are also needed to stop further wetland loss from agricultural usages. An ecoagricultural strategy and practice should be adopted for rice production to reduce pollution and loss of remaining wetlands. Agroecological engineering tools can be used to reduce the impacts of nutrient- and pesticide-enriched agricultural runoff to wetlands.

  15. Relating raw rice color and composition to cooked rice color.

    USDA-ARS?s Scientific Manuscript database

    Traditionally, the color of milled rice is economically important. The whiter the rice the more it is preferred by consumers and the more value it has in the market place. Little attention has been given to relating raw rice color to cooked milled rice color and, specifically, to determining the i...

  16. Post-harvest field manipulations to conserve waste rice for waterfowl

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.; Kurtz, M.E.; Manley, S.W.

    2005-01-01

    Rice seeds escaping collection by combines during harvest (hereafter, waste rice) provide quality forage for migrating and wintering waterfowl in the Lower Mississippi Alluvial Valley (MAV) and other rice growing regions in the United States. Recent sample surveys across the MAV have revealed abundance of waste rice in fields declined an average of 71% between harvest and late autumn. Thus, we evaluated the ability of common post-harvest, field-management practices to conserve waste rice for waterfowl until early winter via controlled experiments in Mississippi rice test plots in 2001 and 2003 and analyses of data from MAV-wide surveys of waste rice in rice production fields in 2000-2002. Our experiments indicated test plots with burned rice stubble that were not flooded during autumn contained more waste rice than other treatments in 2001 (P?0.10). Waste-rice abundance in test plots did not differ among postharvest treatments in 2003 (P = 0.97). Our analyses of data from the MAV sample surveys did not detect differences in abundance of waste rice among fields burned, rolled, disked, or left in standing stubble post-harvest (P?0.04; Bonferroni corrected critical ( a= 0.017). Because results from test-plot experiments were inconclusive, we based our primary inference regarding best post-harvest treatments on patterns of rice abundance identified from the MAV surveys and previously documented environmental and agronomic benefits of managing harvested rice fields for wintering waterfowl. Therefore, we recommend leaving standing stubble in rice fields after harvest as a preliminary beneficial management practice. We suggest future research evaluate potential of postharvest practices to conserve waste rice for waterfowl and reduce straw in production rice fields managed for wintering waterfowl throughout the MAV.

  17. Rice (Oryza) hemoglobins

    USDA-ARS?s Scientific Manuscript database

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  18. Making rice even healthier!

    USDA-ARS?s Scientific Manuscript database

    Rice is a naturally healthy food, but what if it could be made even healthier? Would Americans eat more rice if it could be advertised to be a 'New and Improved' source of calcium to promote bone growth, or iron to prevent anemia? Grocery stores are full of foods that are vitamin enhanced to attract...

  19. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    PubMed

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.

  20. [Effect of transgenic insect-resistant rice on biodiversity].

    PubMed

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  1. Mercury cycling in a flooded rice paddy

    NASA Astrophysics Data System (ADS)

    Rothenberg, Sarah E.; Feng, Xinbin

    2012-09-01

    In 2008 and 2009, mercury (Hg) cycling was investigated in a flooded rice paddy in the Wanshan Hg mining region of eastern Guizhou, China, in the rice-planted (2008 and 2009) and fallow (2009) sections of the same paddy. In the rice-planted section, pore water was more acidic and pore water methylmercury (MeHg) concentrations were higher compared to the fallow section. However, iron (Fe) and sulfur (S) cycling differed in 2008 and 2009, with higher sediment Fe concentrations in 2009, when pore water MeHg and sulfate concentrations were more strongly correlated in the rice-planted section. We explored whether elevated sediment Fe contributed to S cycling and hence, Hg(II)-methylation. Critical pH values for formation of FeS(s) were estimated. Based on pore water pH collected in both sections of the paddy, the fallow section was more often a sink for FeS(s), while FeS(s) did not form in the rice-planted section, although sulfide concentrations were low in both sections in both years (i.e.,<10 μM). We hypothesized Fe(III) oxidized sulfide, and intermediate S species (e.g., polysulfides) were further oxidized to sulfate instead of forming FeS(s), thus prolonging sulfate reduction and promoting Hg(II)-methylation in the rice-planted section in 2009. Results suggested Fe(III) reduction increased electron acceptors for sulfate-reducing bacteria, which indirectly enhanced Hg(II)-methylation. Additionally, highest sediment MeHg concentrations were observed in the fallow section after the paddy was dried and re-wetted, indicating water-saving rice cultivation practices (e.g., alternating wetting and drying), may cause MeHg concentrations in paddy soil to spike, which should be further investigated.

  2. Environmental profile of paddy rice cultivation with different straw management.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; González-García, Sara; Vercesi, Annamaria; Bocchi, Stefano; Fiala, Marco

    2014-10-01

    Italy is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from

  3. Antimicrobial activity of rice bran extracts for diarrheal disease.

    PubMed

    Kondo, Sumalee; Teongtip, Rattana; Srichana, Darunee; Itharat, Arunporn

    2011-12-01

    Rice bran showed antioxidative, antimutagenic, carcinogenic and antibacterial activities in previous reports. The rice bran has been recently used as a natural source of health food for several diseases such as diabetes, atherosclerosis and cancer. Severe diarrheal disease due to food-borne contamination of bacteria resulted from the bacteria have become resistant to many antibiotics. Hence, early treatment of diarrhea using natural food containing antibacterial activity to prevent progression of severe symptoms will be beneficial. To investigate antimicrobial activity of rice bran extracts against bacteria causing diarrheal disease. Bacterial strains isolated from patients include Vibrio cholerae, Vibrio vulnificus, Salmonella spp, Shigella spp, Escherichia coli (ETEC, EHEC, EAEC, EPEC, EIEC) and Stahylococcus aureus. Rice bran was extracted by five different extraction techniques. The antimicrobial activity was performed by disk diffusion and broth dilution methods. The results showed that rice bran extracts using different techniques of extraction were able to inhibit the growth of test strains. Rice bran extracts exhibited the most effective antibacterial activity against V. cholerae O139 with MIC value of 0.976 mg/ml. Using ethanol and supercritical techniques, Sang-Yod rice bran showed better antibacterial activity than Jasmine rice bran. In the present study, the MIC values of rice bran extracts against all tested strains except V. cholerae O139 and S. aureus were between 7.812 to 31.25 mg/ml. The results of present study provide insighful basic knowledge which would lead to develop rice bran extracts for effective treatment of diarrheal disease causing by bacteria including resistant strains. The rice bran extracts used against bacterial infection will be an alternative remedy in order to reduce the incidence of antibiotic resistance in future.

  4. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    SciTech Connect

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, Georg C.; Wang, F.; Schnrer, Anna; Sun, Chuanxin

    2015-07-22

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane

  5. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice.

    PubMed

    Su, J; Hu, C; Yan, X; Jin, Y; Chen, Z; Guan, Q; Wang, Y; Zhong, D; Jansson, C; Wang, F; Schnürer, A; Sun, C

    2015-07-30

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  6. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    NASA Astrophysics Data System (ADS)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; Schnürer, A.; Sun, C.

    2015-07-01

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  7. Phytonutrients in rices of different bran color

    USDA-ARS?s Scientific Manuscript database

    The consumption of the whole grain has been linked to the reduced incidence of chronic (cancer, diabetes, cardiovascular disease) and various inflammatory diseases. The phytonutrients/antioxidants contained in the whole grain, specifically in the bran layer, contribute to these health benefits. Rice...

  8. Methane Emissions From Global Paddy Rice Agriculture - a New Estimate Based on DNDC Model Simulations

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.; Li, C.; Salas, W.; Ingraham, P.; Li, J.; Beach, R.; Frolking, S.

    2012-12-01

    Roughly one-quarter of global methane emissions to the atmosphere come from the agricultural sector. Agricultural emissions are dominated by livestock (ruminants) and paddy-rice agriculture. We report on a new estimate of global methane emissions from paddy rice c.2010, based on DNDC model simulations of rice cropping around the world. We first generated a global map of rice cropping at 0.5°-resolution, based on existing global crop maps and various other published data. For each 0.5° grid cell that has rice agriculture, we simulated all rice cropping systems that our mapping indicated to be occurring there - irrigated and/or rainfed; single-rice, double-rice, triple-rice, and/or rice-rotated with other upland crops - under local climate and soil conditions, with assumptions about crop management (e.g., fertilizer type and amount, irrigation, flooding frequency and duration, manure application, tillage, crop residue management). We estimate global paddy rice emissions at 23 Tg CH4/yr from 120 Mha of rice paddies (land area) and 160 Mha of rice cropping (harvested area) for the baseline management scenario. We also report on the spatial distribution of these emissions, and the impacts of various management alternatives (flooding methods, fertilizer types, crop residue incorporation etc.) on yield, soil carbon sequestration and emissions of methane and nitrous oxide. For example, simulations with continuous flooding on all paddies increased simulated global paddy rice emissions to 33 Tg CH4/yr, while simulations where all fertilizer was applied as ammonium sulfate reduced simulated global paddy rice emissions to about 19 Tg CH4/yr. Simulated global paddy rice yield was about 320 Tg C in grain.

  9. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment.

    PubMed

    Juhasz, Albert L; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2006-12-01

    Millions of people worldwide consume arsenic-contaminated rice; however, little is known about the uptake and bioavailability of arsenic species after arsenic-contaminated rice ingestion. In this study, we assessed arsenic speciation in greenhouse-grown and supermarket-bought rice, and determined arsenic bioavailability in cooked rice using an in vivo swine model. In supermarket-bought rice, arsenic was present entirely in the inorganic form compared to greenhouse-grown rice (using irrigation water contaminated with sodium arsenate), where most (approximately 86%) arsenic was present as dimethylarsinic acid (organic arsenic). Because of the low absolute bioavailability of dimethylarsinic acid and the high proportion of dimethylarsinic acid in greenhouse-grown rice, only 33 +/- 3% (mean +/- SD) of the total rice-bound arsenic was bioavailable. Conversely, in supermarket-bought rice cooked in water contaminated with sodium arsenate, arsenic was present entirely in the inorganic form, and bioavailability was high (89 +/- 9%). These results indicate that arsenic bioavailability in rice is highly dependent on arsenic speciation, which in turn can vary depending on rice cultivar, arsenic in irrigation water, and the presence and nature of arsenic speciation in cooking water. Arsenic speciation and bioavailability are therefore critical parameters for reducing uncertainties when estimating exposure from the consumption of rice grown and cooked using arsenic-contaminated water.

  10. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  11. In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment

    PubMed Central

    Juhasz, Albert L.; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2006-01-01

    Background Millions of people worldwide consume arsenic-contaminated rice; however, little is known about the uptake and bioavailability of arsenic species after arsenic-contaminated rice ingestion. Objectives In this study, we assessed arsenic speciation in greenhouse-grown and supermarket-bought rice, and determined arsenic bioavailability in cooked rice using an in vivo swine model. Results In supermarket-bought rice, arsenic was present entirely in the inorganic form compared to greenhouse-grown rice (using irrigation water contaminated with sodium arsenate), where most (~ 86%) arsenic was present as dimethylarsinic acid (organic arsenic). Because of the low absolute bioavailability of dimethylarsinic acid and the high proportion of dimethylarsinic acid in greenhouse-grown rice, only 33 ± 3% (mean ± SD) of the total rice-bound arsenic was bioavailable. Conversely, in supermarket-bought rice cooked in water contaminated with sodium arsenate, arsenic was present entirely in the inorganic form, and bioavailability was high (89 ± 9%). Conclusions These results indicate that arsenic bioavailability in rice is highly dependent on arsenic speciation, which in turn can vary depending on rice cultivar, arsenic in irrigation water, and the presence and nature of arsenic speciation in cooking water. Arsenic speciation and bioavailability are therefore critical parameters for reducing uncertainties when estimating exposure from the consumption of rice grown and cooked using arsenic-contaminated water. PMID:17185270

  12. Iron absorption from brown rice/brown rice-based meal and milled rice/milled rice-based meal.

    PubMed

    Trinidad, Trinidad P; Mallillin, Aida C; Sagum, Rosario S; Briones, Dave P; Encabo, Rosario R; Juliano, Bienvenido O

    2009-12-01

    Milled rice is the staple food among Filipinos and is mostly consumed three times a day. Rice as a source of iron could therefore have an important role in the existing 37% prevalence of iron-deficiency anemia in the country. Previous iron absorption studies in Filipinos from rice and rice-based meals were carried out on milled rice but no research was done on brown rice of the same variety. This leads to the hypothesis that brown rice may be better than milled rice in terms of iron content. To determine iron absorption from brown rice and brown rice-based meal, and from milled rice and milled rice-based meal of the same variety. The rice variety used in the study was F(2) seeds of PSB Rc72H. Iron absorption from brown/milled rice and brown/milled rice-based meals was determined in 12 healthy human subjects from the incorporation of radioisotopes of iron into erythrocytes 14 days after administration of the labeled rice/rice-based meals. The above samples were also analyzed for nutrient content, including dietary fiber, and iron. The iron content of brown rice was significantly higher (1.1 +/- 0.1 mg/100 g) than that of milled rice (0.6 +/- 0.1 mg/100 g). Brown rice has significantly greater amounts of total dietary fiber (5.4 +/- 0.4%) than milled rice (1.7 +/- 0.2%; P < 0.05). Both tannic acid and phytic acid contents in brown rice (56.9 +/- 3.2 mg/100 g and 290.1 +/- 18.0 mg/100 g, respectively) were significantly higher than those of milled rice (21.3 +/- 2.3 mg/100 g and 84.0 +/- 12.4 mg/100 g, respectively; P<0.05). The amount of iron absorbed from brown rice (0.13 +/- 0.02 mg) did not differ significantly from that from milled rice (0.14 +/- 0.02 mg). However, the amount from brown rice-based meal (0.36 +/- 0.04 mg) differed significantly from that from brown rice (P<0.05) as well as that from milled rice-based meal (0.35 +/- 0.03 mg) from that from milled rice (P<0.05). Moreover, brown rice-based meal did not differ significantly from milled rice-based meal

  13. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process.

    PubMed

    Wei, Xiao Lu; Liu, Shuang Ping; Yu, Jian Shen; Yu, Yong Jian; Zhu, Sheng Hu; Zhou, Zhi Lei; Hu, Jian; Mao, Jian

    2017-04-01

    As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol.

  14. Identification of rice blast resistance genes in the elite hybrid rice restorer line Yahui2115.

    PubMed

    Shi, Jun; Li, Deqiang; Li, Yan; Li, Xiaoyan; Guo, Xiaoyi; Luo, Yiwan; Lu, Yuangen; Zhang, Qin; Xu, Yongju; Fan, Jing; Huang, Fu; Wang, Wenming

    2015-03-01

    Rice blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most serious rice diseases worldwide. We previously developed an elite hybrid rice restorer line with high resistance to rice blast, Yahui2115 (YH2115). To identify the blast resistance genes in YH2115, we first performed expression profiling on previously reported blast resistance genes and disease assay on monogenic lines, and we found that Pi2, Pi9, and Pikm were the most likely resistance candidates in YH2115. Furthermore, RNA interference and linkage analysis demonstrated that silencing of Pi2 reduced the blast resistance of YH2115 and a Pi2 linkage marker was closely associated with blast resistance in an F2 population generated from YH2115. These data suggest that the broad-spectrum blast resistance gene Pi2 contributes greatly to the blast resistance of YH2115. Thus, YH2115 could be used as a new germplasm to facilitate rice blast resistance breeding in hybrid rice breeding programs.

  15. Strategies for developing Green Super Rice

    PubMed Central

    Zhang, Qifa

    2007-01-01

    From a global viewpoint, a number of challenges need to be met for sustainable rice production: (i) increasingly severe occurrence of insects and diseases and indiscriminate pesticide applications; (ii) high pressure for yield increase and overuse of fertilizers; (iii) water shortage and increasingly frequent occurrence of drought; and (iv) extensive cultivation in marginal lands. A combination of approaches based on the recent advances in genomic research has been formulated to address these challenges, with the long-term goal to develop rice cultivars referred to as Green Super Rice. On the premise of continued yield increase and quality improvement, Green Super Rice should possess resistances to multiple insects and diseases, high nutrient efficiency, and drought resistance, promising to greatly reduce the consumption of pesticides, chemical fertilizers, and water. Large efforts have been focused on identifying germplasms and discovering genes for resistance to diseases and insects, N- and P-use efficiency, drought resistance, grain quality, and yield. The approaches adopted include screening of germplasm collections and mutant libraries, gene discovery and identification, microarray analysis of differentially regulated genes under stressed conditions, and functional test of candidate genes by transgenic analysis. Genes for almost all of the traits have now been isolated in a global perspective and are gradually incorporated into genetic backgrounds of elite cultivars by molecular marker-assisted selection or transformation. It is anticipated that such strategies and efforts would eventually lead to the development of Green Super Rice. PMID:17923667

  16. Delivering golden rice to developing countries.

    PubMed

    Mayer, Jorge E

    2007-01-01

    Micronutrient deficiencies create a vicious circle of malnutrition, poverty, and economic dependency that we must strive to break. Golden Rice offers a sustainable solution to reduce the prevalence of vitamin A deficiency-related diseases and mortality, a problem that affects the health of millions of children in all developing countries. The technology is based on the reconstitution of the carotenoid biosynthetic pathway by addition of 2 transgenes. The outcome of this high-tech approach will be provided to end users as nutrient-dense rice varieties that are agronomically identical to their own, locally adapted varieties. This intervention has the potential to reach remote rural populations without access to fortification and supplementation programs. As part of our delivery strategy, we are partnering with government and nongovernment, national and international agricultural institutions to navigate through cumbersome and expensive regulatory regimes that affect the release of genetically modified crops, and to create local demand for the biofortified rice varieties.

  17. The Efficacy of Bacillus thuringiensis spp. galleriae Against Rice Water Weevil (Coleoptera: Curculionidae) for Integrated Pest Management in California Rice.

    PubMed

    Aghaee, Mohammad-Amir; Godfrey, Larry D

    2015-02-01

    Rice water weevil (Lissorhoptrus oryzophilus Kushel) is the most damaging insect pest of rice in the United States. Larval feeding on the roots stunt growth and reduce yield. Current pest management against the weevil in California relies heavily on pyrethroids that can be damaging to aquatic food webs. Examination of an environmentally friendly alternative biopesticide based on Bacillus thuringiensis spp. galleriae chemistry against rice water weevil larvae showed moderate levels of activity in pilot studies. We further examined the performance of different formulations of Bt.galleriae against the leading insecticide used in California rice, λ-cyhalothrin. The granular formulation performed as well as the λ-cyhalothrin in use in California in some of our greenhouse and field studies. This is the first reported use of B. thuringiensis spp. galleriae against rice water weevil.

  18. Deep phosphorus fertiliser placement and reduced irrigation methods for rice (Oryza sativa L.) combine to knock-out competition from its nemesis, barnyard grass (Echinochloa crus-galli (L.) P.Beauv)

    USDA-ARS?s Scientific Manuscript database

    Productivity of rice is increasingly being constrained by limitations in the quantity, quality, and cost of water and nutrients, and competition from weeds. This is a ‘commentary’ on the recent work of Weerarathne et al. (2015). They reported new discoveries from greenhouse experiments that showed...

  19. Linkage Mapping of Stem Saccharification Digestibility in Rice

    PubMed Central

    Hua, Cangmei; Sun, Lili; Ali, Imran; Huang, Linli; Yu, Chunyan; Simister, Rachael; Steele-King, Clare; Gan, Yinbo; McQueen-Mason, Simon J.

    2016-01-01

    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties. PMID:27415441

  20. [Phytoexclusion potential studies of Si fertilization modes on rice cadmium].

    PubMed

    Chen, Zhe; Tie, Bo-Qing; Lei, Ming; Liu, Xiao-Li; Ye, Chang-Cheng; Luo, Mei-Mei; Mao, Yi-De

    2014-07-01

    The research used serious situ multi-metal contaminated soils to explore Cd repair potential in rice by adding different kinds of fertilizers, based on the outdoor pot experiment. The experiment was consisted of four treatments including non-used fertilizers (CK), the silicon fertilizer applicated into soil (Tsi), the silicon fertilizer applicated as foliar spray (Ysi) and the silicon fertilizer applicated into soil combined with the foliar spray silicon fertilizer application( Tsi + Ysi). The research examined Cd concentrations in tissues of five key growth periods to reveal cadmium (Cd) migration rules, translocation coefficients, rice biomass and yields. The results showed that, compared to CK, different fertilization methods of Si had significant impacts on decreasing Cd in brown rice and polished rice, but not in rice yields; In addition, Tsi + Ysi had the best effects to decrease Cd in edible grains, which resulted in Cd concentrations of husk, brown rice and polished rice reduced by 62.59%, 58.33% and 65.83%, respectively, and the effects of applying Tsi and Ysi were the second. Therefore, Tsi, Ysi and Tsi + Ysi were confirmed to be potential Cd pollution control technologies to rice.

  1. Interference of allelopathic rice with penoxsulam-resistant barnyardgrass.

    PubMed

    Yang, Xue-Fang; Kong, Chui-Hua; Yang, Xia; Li, Yong-Feng

    2017-11-01

    Despite increasing knowledge of allelopathic rice interference with barnyardgrass, relatively little is known about its action on herbicide-resistant barnyardgrass. The incidence of herbicide-resistant barnyardgrass is escalating in paddy fields. Knowledge of the interference of allelopathic rice with herbicide-resistant barnyardgrass and the potential mechanisms involved is warranted. Penoxsulam-resistant and -susceptible barnyardgrass biotypes were identified and segregated from a putative penoxsulam-resistant population occurring in paddy fields in China. Allelopathic rice inhibited the growth of barnyardgrass roots more than shoots, regardless of biotype. In particular, there was a stronger inhibition for resistant barnyardgrass than for susceptible barnyardgrass. Allelopathic rice significantly reduced total root length, total root area, maximum root amplitude and maximum root depth in barnyardgrass. Furthermore, the rice allelochemicals tricin and momilactone B inhibited the growth of both resistant and susceptible barnyardgrass. Compared with root contact, root segregation significantly increased inhibition of barnyardgrass with an increase in rice allelochemicals. Root exudates from barnyardgrass induced the production of rice allelochemicals, but the effect of susceptible barnyardgrass was much stronger than that of resistant barnyardgrass. Allelopathic rice can interfere with the growth of penoxsulam-resistant barnyardgrass through allelochemical-mediated root interactions. This type of allelopathic interference may provide a non-herbicidal alternative for herbicide-resistant weed management in paddy systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Changes of fumonisin production in rice grain during ensiling.

    PubMed

    Uegaki, Ryuichi; Kobayashi, Hisami; Inoue, Hidehiko; Tohno, Masanori; Tsukiboshi, Takao

    2013-01-01

    We assessed fumonisin production during the ensiling of rice grain. Rice grain was harvested at the full-ripe stage and prepared as rough rice, crushed rough rice, brown rice or crushed brown rice. Each material was ensiled under six conditions: (1) no fungus, anaerobic; (2) no fungus, aerobic; (3) water added, anaerobic; (4) water and fumonisin-producing fungus added, anaerobic; (5) water and fumonisin-producing fungus added, aerobic; or (6) fumonisin-producing fungus added to autoclaved material, aerobic. After 40 days of ensilage, we analyzed the silage fermentative quality and fumonisin concentration. The fermentative quality of all materials was good in treatments (3) and (4) (pH < 4), reasonable in treatment (5) (pH = 5∼6) and unacceptable in treatments (1) and (2) (pH > 6.5). The fumonisin concentration was low in all materials in treatments (1) to (4), slightly increased in the three materials other than rough rice in treatment (5), and enormously increased in all materials in treatment (6). The results indicate that the fumonisin-producing fungus does not produce fumonisin in anaerobic conditions. It is important that an anaerobic condition be maintained during ensiling in order to reduce the fumonisin content in rice grain silage.

  3. Early generation selection for rice fissure resistance proves effective and indicates a fissure resistance gene on chromsome 1

    USDA-ARS?s Scientific Manuscript database

    Whole rice kernels have two to three times more market value than brokens, which means that any reduction in milling yield results in financial losses for both rice producers and millers. One of the leading causes of reduced milling yield is exposure of the rice kernels to severe moisture changes b...

  4. Red Yeast Rice

    PubMed Central

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  5. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability.

    PubMed

    Xiong, X Q; Liao, H D; Ma, J S; Liu, X M; Zhang, L Y; Shi, X W; Yang, X L; Lu, X N; Zhu, Y H

    2014-02-01

    This study focused on an endophytic bacterial strain, Pantoea sp. Sd-1, which can be used to degrade lignin and rice straw. This strain was isolated from rice seeds by an optimized surface sterilization method. Pantoea sp. Sd-1 showed exceptional ability to degrade rice straw and lignin. In rice straw or kraft lignin-containing medium supplemented with 1% glucose and 0.5% peptone, Pantoea sp. Sd-1 effectively reduced the rice straw mass weight by 54.5% after 6 days of treatment. The strain was also capable of reducing the lignin colour (52.4%) and content (69.1%) after 4 days of incubation. The findings suggested that the rice endophytic bacterium Pantoea sp. Sd-1 could be applied for the degradation of lignocellulose biomass, such as rice straw. Rice straw, an abundant agricultural by-product in China, is very difficult to degrade because of its high lignin content. Due to the immense environmental adaptability and biochemical versatility of bacteria, endophytic bacteria are useful resources for biodegradation. In this study, we screened for endophytic bacteria capable of biodegrading rice straw and lignin and obtained one strain, Pantoea sp. Sd-1, with suitable characteristics. Sd-1 could be used for degradation of rice straw and lignin, and may play an important role in biodegradation of this agricultural by-product. © 2013 The Society for Applied Microbiology.

  6. Reducing dissolved inorganic nitrogen in surface runoff water from sugarcane production systems.

    PubMed

    Webster, A J; Bartley, R; Armour, J D; Brodie, J E; Thorburn, P J

    2012-01-01

    Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Rice fortification: an emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide.

    PubMed

    Muthayya, Sumithra; Hall, Jessica; Bagriansky, Jack; Sugimoto, Jonathan; Gundry, Daniel; Matthias, Dipika; Prigge, Shane; Hindle, Peter; Moench-Pfanner, Regina; Maberly, Glen

    2012-12-01

    Vitamin and mineral deficiencies are ranked among the top causes of poor health and disability in the world. These deficiencies damage developing brains, impair learning ability, increase susceptibility to infections, and reduce the work productivity of nations. Food fortification is a sustainable, cost-effective approach to reducing vitamin and mineral deficiency. As the staple food for an estimated 3 billion people, rice has the potential to fill an obvious gap in current fortification programs. In recent years, new technologies have produced fortified rice kernels that are efficacious in reducing vitamin and mineral deficiency. There are opportunities to fortify a significant share of rice that comes from large mills supplying centralized markets and national welfare programs in major rice-growing countries. The rice export markets, which handle 30 million MT of rice annually, also present a key fortification opportunity. The cost of fortifying rice is only 1.5% to 3% of the current retail price of rice. Countries that mandate rice fortification have the strongest evidence for achieving wide coverage and impact. The Rice Fortification Resource Group (RiFoRG), a global network of public and private partners that offers technical and advocacy support for rice fortification, has a vision of promoting rice fortification worldwide. It has a targeted approach, engaging multisector partners in key countries where the opportunities are greatest and there is receptivity to early adoption of large-scale rice fortification. The challenges are real, the imperative to address them is powerful, and the opportunities to deliver the promise of rice fortification are clear.

  8. [Influence of weeds in Echinochloa on growth and yield of rice].

    PubMed

    Zhang, Zi-Chang; Li, Yong-Feng; Zhang, Bin; Yang, Xia

    2014-11-01

    In order to investigate effects of different barnyardgrass species on growth and yiled of rice, two rice cultivars, Xinliangyou 6 hao (an indica hybrid cultivar) and Nanjing 46 (a japonica cultivar), were co-cultured with four barnyardgrass species grown at a density of six plants · m(-2) from 10 days after transplanting to maturity. The treatments were designed as follow: weed free (control), rice with Echinochloa crusgalli var. mitis (T1), rice with E. crusgalli (T2), rice with E. crusgali var. zelayensis (T3), and rice with E. colonum (T4). The result showed that barnyardgrass-induced reductions in grain yield of rice were obviously different among the four treatments. T1, T2 and T3 treatments reduced the grain yield of indicia cultivar by 19.2%, 10.8% and 21.9%, and the respective reductions in japonica cultivar were 39.7%, 25.3% and 47.3%, re- spectively. However, no significant difference was detected for T4 treatment. During rice co-culture with barnyardgrass, T1, T2 and T3 significantly reduced rice dry matter accumulation at maturity, flag leaf photosynthetic rate, root oxidation activity and the activity of adenosine triphosphate enzyme (ATPsse) in rice grains at the filling stage, and the magnitude of decrease was in the order of T3 > T1 > T2, while no significant difference was observed between T4 and CK. In addition, all treatments had no effects on the final tiller number and plant height of rice. It indicated that the negative effect of barnyardgrass on rice growth and yield differed among the four species of barnyardgrass, in the order of T3 > T1 > T2 > T4. Barnyardgrass reduced the flag leaf photosynthetic rate of rice, both root oxidation activity and ATPsse activity in grains, which resulted in the reduction in final productivity of rice when co-cultured with barnyardgrass.

  9. Innate immunity in rice

    PubMed Central

    Chen, Xuewei; Ronald, Pamela C.

    2011-01-01

    Advances in studies of rice innate immunity have led to the identification and characterization of host sensors encoding receptor kinases that perceive conserved microbial signatures. The non-RD domain, a newly recognized hallmark of these receptor kinases is highly expanded in rice (Oryza sativa) compared with Arabidopsis (Arabidopsis thaliana). Researchers have also identified a diverse array of microbial effectors from bacterial and fungal pathogens that triggers immune responses upon perception. These include both, effectors that indirectly target host Nucleotide binding site/Leucine rice repeat (NBS-LRR) proteins and transcription activator-like (TAL) effectors that directly bind promoters of host genes. Here we review the recognition and signaling events that govern rice innate immunity. PMID:21602092

  10. Improving Rice Zinc Biofortification Success Rates Through Genetic and Crop Management Approaches in a Changing Environment

    PubMed Central

    Nakandalage, Niluka; Nicolas, Marc; Norton, Robert M.; Hirotsu, Naoki; Milham, Paul J.; Seneweera, Saman

    2016-01-01

    Though rice is the predominant source of energy and micronutrients for more than half of the world population, it does not provide enough zinc (Zn) to match human nutritional requirements. Moreover, climate change, particularly rising atmospheric carbon dioxide concentration, reduces the grain Zn concentration. Therefore, rice biofortification has been recognized as a key target to increase the grain Zn concentration to address global Zn malnutrition. Major bottlenecks for Zn biofortification in rice are identified as low Zn uptake, transport and loading into the grain; however, environmental and genetic contributions to grain Zn accumulation in rice have not been fully explored. In this review, we critically analyze the key genetic, physiological and environmental factors that determine Zn uptake, transport and utilization in rice. We also explore the genetic diversity of rice germplasm to develop new genetic tools for Zn biofortification. Lastly, we discuss the strategic use of Zn fertilizer for developing biofortified rice. PMID:27375636

  11. Improving Rice Zinc Biofortification Success Rates Through Genetic and Crop Management Approaches in a Changing Environment.

    PubMed

    Nakandalage, Niluka; Nicolas, Marc; Norton, Robert M; Hirotsu, Naoki; Milham, Paul J; Seneweera, Saman

    2016-01-01

    Though rice is the predominant source of energy and micronutrients for more than half of the world population, it does not provide enough zinc (Zn) to match human nutritional requirements. Moreover, climate change, particularly rising atmospheric carbon dioxide concentration, reduces the grain Zn concentration. Therefore, rice biofortification has been recognized as a key target to increase the grain Zn concentration to address global Zn malnutrition. Major bottlenecks for Zn biofortification in rice are identified as low Zn uptake, transport and loading into the grain; however, environmental and genetic contributions to grain Zn accumulation in rice have not been fully explored. In this review, we critically analyze the key genetic, physiological and environmental factors that determine Zn uptake, transport and utilization in rice. We also explore the genetic diversity of rice germplasm to develop new genetic tools for Zn biofortification. Lastly, we discuss the strategic use of Zn fertilizer for developing biofortified rice.

  12. The influence of saturated fatty acids on complex index and in vitro digestibility of rice starch.

    PubMed

    Soong, Yean Yean; Goh, Hui Jen; Henry, C Jeya K

    2013-08-01

    In Asia, rice and rice products are the main sources of carbohydrate contributing to both dietary energy and glycaemic load. It is known that complexation of starch with lipids could potentially reduce the availability of starch to enzymatic degradation. The aim of this study was to investigate the effect of capric, lauric, myristic, palmitic and stearic acids, ranging from 0 to 2 mmol/g starch, on complexing index and in vitro digestibility of gelatinized rice starch. The results revealed that the ability of rice starch to complex with saturated fatty acids increased with increasing concentration; but reduced with increasing lipid chain length. The complexation of rice starch with capric, lauric, myristic and stearic acids did not reduce the in vitro starch digestibility, except rice starch-palmitic acid complexes.

  13. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    PubMed

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans.

  14. Phospholipids in rice: significance in grain quality and health benefits: a review.

    PubMed

    Liu, Lei; Waters, Daniel L E; Rose, Terry J; Bao, Jinsong; King, Graham J

    2013-08-15

    Phospholipids (PLs) are a major class of lipid in rice grain. Although PLs are only a minor nutrient compared to starch and protein, they may have both nutritional and functional significance. We have systemically reviewed the literature on the class, distribution and variation of PLs in rice, their relation to rice end-use quality and human health, as well as available methods for analytical profiling. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and their lyso forms are the major PLs in rice. The deterioration of PC in rice bran during storage was considered as a trigger for the degradation of rice lipids with associated rancid flavour in paddy and brown rice. The lyso forms in rice endosperm represent the major starch lipid, and may form inclusion complexes with amylose, affecting the physicochemical properties and digestibility of starch, and hence its cooking and eating quality. Dietary PLs have a positive impact on several human diseases and reduce the side-effects of some drugs. As rice has long been consumed as a staple food in many Asian countries, rice PLs may have significant health benefits for those populations. Rice PLs may be influenced both by genetic (G) and environmental (E) factors, and resolving G×E interactions may allow future exploitation of PL composition and content, thus boosting rice eating quality and health benefits for consumers. We have identified and summarised the different methods used for rice PL analysis, and discussed the consequences of variation in reported PL values due to inconsistencies between methods. This review enhances the understanding of the nature and importance of PLs in rice and outlines potential approaches for manipulating PLs to improve the quality of rice grain and other cereals.

  15. [Effects of phosphorus-containing substances on arsenic uptake by rice].

    PubMed

    Lei, Ming; Zeng, Min; Liao, Bo-Han; Hu, Li-Qiong; Zhou, Hang; Long, Shui-Bo

    2014-08-01

    The disodium hydrogen phosphate (DSP) and hydroxyapatite (HAP) were added into arsenic contaminated soil, then rice pot experiment was conducted to study the effects of phosphorus (P)-containing substances on arsenic (As) uptake by rice. The results showed that: DSP and HAP significantly increased soil pH and the contents of available P in soil (P < 0.05), activating soil arsenic. And DSP was stronger than HAP in improving the migration ability of As in soil. DSP and HAP treatments both significantly reduced the contents of total As in root, as well as total As and inorganic As in brown rice. But HAP significantly increased total As contents in stem. DSP and HAP treatments had better reducing effects on inorganic As than on total As in brown rice. And DSP had the same reducing effects as HAP on total As and inorganic As in brown rice. Analysis results showed that the contents of As in rice were affected by the antagonism between P and As and the increase of As bio-availability in soil. The antagonism played the major role in this study and it was clearly exhibited in both root and rice. Lower dosage (< or = 0.12 g x kg(-1)) of DSP and HAP increased total biomass of rice and brown rice yield, but with the increase of P addition, the two kinds of P-containing substances obviously inhibited the growth of rice, and inhibition by HAP was relatively light.

  16. CFD Analysis of Bubbling Fluidized Bed Using Rice Husk

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.

    Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.

  17. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States

    PubMed Central

    2016-01-01

    Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally—the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world’s population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production. PMID

  18. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States.

    PubMed

    Nalley, Lawton; Tsiboe, Francis; Durand-Morat, Alvaro; Shew, Aaron; Thoma, Greg

    2016-01-01

    Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production.

  19. Red Yeast Rice: An Introduction

    MedlinePlus

    ... help lower blood levels of cholesterol and related lipids. Red yeast rice products may not be safe; ... to lower blood levels of cholesterol and related lipids. Some red yeast rice products contain substances called ...

  20. Shaping a better rice plant.

    PubMed

    Springer, Nathan

    2010-06-01

    Two studies describe how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield. These studies support the possibility of improving rice yield through changing plant architecture.

  1. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  2. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  3. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  4. Estrogen receptor modulatory effects of germinated brown rice bioactives in the uterus of rats through the regulation of estrogen-induced genes

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Bint; Saeed, Mohammed Ibrahim; Imam, Mustapha Umar; Ishaka, Aminu

    2013-01-01

    Purpose The expression of genes regulated by estrogen in the uterus was studied in ovariectomized (OVX) rats treated with germinated brown rice (GBR) bioactives, and compared to Remifemin or estrogen at different doses to identify the regulation of these genes in the uterus and their molecular mechanisms. Methods Rats were treated orally with GBR bioactives (phenolics), acylated steryl glucosides (ASG), γ-amino butyric acid (GABA), and γ-oryzanol (ORZ) at 100 and 200 mg/kg, Remifemin (REM) at 10 mg/kg and 20 mg/kg, or estrogen (EST) at 0.2 mg/kg. Ribonucleic acid (RNA) was extracted from the uterus, and messenger (m)RNA expression of selected genes encoding estrogen receptor-beta (ER-β), calcium-binding protein (CaBP9k), complement protein (C3), heat shock protein 70 kDa (HSP70), and interleukin (IL)-4 receptor were quantified. Similarly, serum steroid hormone concentration was monitored at 2, 4, and 8 weeks after treatments. ER-β antibody binding to the uterus sections was also studied using immunohistochemistry. Results The group treated with EST (0.2 mg/kg) upregulated ER-β, C3, and IL-4 receptor genes compared to other groups (P<0.001). GBR phenolics (200 mg/kg) treatment upregulated the ER-β gene almost to the level of the sham non-treated group. The CaBP9k gene showed upregulation in groups treated with ASG (200 mg/kg), EST (0.2 mg/kg), and ORZ (200 mg/kg) (P<0.05). Estrogen levels increased in groups treated with EST, ASG, and ORZ (200 mg/kg) compared to the OVX untreated group (P<0.05), and there was a slight non-significant decrease (P>0.05) in the progesterone levels in the OVX untreated group compared to the sham and other treated groups. There was a significant increase at 8 weeks in the level of FSH (P<0.05) in the treated groups compared to the OVX untreated group. There was no significant difference (P>0.05) in serum luteinizing hormone (LH) between the OVX untreated group and other groups. The sham and GBR phenolics treated group showed ER

  5. Estimation of rice yield affected by drought and relation between rice yield and TVDI

    NASA Astrophysics Data System (ADS)

    Hongo, C.; Tamura, E.; Sigit, G.

    2016-12-01

    Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.

  6. Utilization of rice bran as nutrient source for fermentative lactic acid production.

    PubMed

    Gao, Min-Tian; Kaneko, Mio; Hirata, Makoto; Toorisaka, Eiichi; Hano, Tadashi

    2008-06-01

    To reduce nutrient cost for lactic acid production, rice bran, one of agricultural wastes, was chosen as a nutrient source in this study. Although rice bran is rich in protein and vitamins, the use of rice bran without any treatment was inefficient in lactic acid production. Rice bran was treated by acid-hydrolysis before it was put in experiment, when it was hydrolyzed at initial pH 1, 30 g/L rice bran could provide a productivity to that degree of about 8 g/L YE, showing such a desirable result that the use of rice bran as nutrient source would be a solution for reducing nutrient cost. However, the addition of hydrolyzed rice bran prolonged lag phase of fermentation, especially, in the fermentation with rice bran hydrolyzed at initial pH 0.5, a prolonged lag phase of about 40 h was observed. According to the quantitative determination of thiamine, pyridoxine, organic nitrogen and carbon, the prolongation of lag phase might be the result from the destruction of B vitamins and excessive hydrolysis of protein. To shorten the lag phase, combining hydrolyzed rice bran with yeast extract (YE) of small amount was considered to be a solution. When 3g/L YE was combined with 30 g/L rice bran hydrolyzed at initial pH 1, obtained was a productivity 1.6 times higher than that of the control fermentation with 15 g/L YE.

  7. Sugarcane rice residue biochars and their applications

    NASA Astrophysics Data System (ADS)

    Wang, J. J.

    2014-12-01

    Sugarcane production in U.S. involves either pre-harvest burning or after-harvest burning of the residue. Approximately 70-90% of the dry matter of harvested sugarcane trash is lost through open field burning. This practice has caused considerable concerns over air quality and soil sustainability. We propose an alternative conservation approach to convert the sugarcane residue to biochar and used as soil amendment to conserve carbon and potentially improve soil fertility. In this study, fundamental properties of biochars made from sugarcane residue along with rice residues were tested for agronomic and environmental benefits. Sugarcane and rice harvest residues and milling processing byproducts bagasse and rice husk were converted to biochars at different pyrolysis temperatures and characterized. In general, sugarcane leave biochar contained more P, K, Ca and Mg than sugarcane bagasse biochar. Rice straw biochar had more S, K Ca but less P than rice husk biochar. Both biochars had higher available fraction of total P than that of total K. Sugarcane leave biochar converted at 450oC was dominated with various lignin derived phenols as well as non-specific aromatic compounds whereas bagasse biochar was with both lignin derived phenol and poly aromatic hydrocarbon (PAH). Rice straw char was dominated with non-specific aromatic compounds. At 750oC, charred material was dominated with aromatic ethers while losing the aromatic C=C structures. These molecular and surface property differences likely contributed to the difference in water holding capacities observed with these biochars. On the other hand, rice straw biochars produced at different pyrolysis temperatures had no significant effect on rice germination. Soils treated with sugarcane leave/trash biochar significantly enhanced sugarcane growth especially the root length. Treating soil with either sugarcane leave or bagasse char also enhanced soil adsorption capacity of atrazine; a common herbicide used in sugarcane

  8. Teosinte Branched 1 modulates tillering in rice plants.

    PubMed

    Choi, Min-Seon; Woo, Mi-Ok; Koh, Eun-Byeol; Lee, Joohyun; Ham, Tae-Ho; Seo, Hak Soo; Koh, Hee-Jong

    2012-01-01

    Tillering is an important trait of cereal crops that optimizes plant architecture for maximum yield. Teosinte Branched 1 (TB1) is a negative regulator of lateral branching and an inducer of female inflorescence formation in Zea mays (maize). Recent studies indicate that TB1 homologs in Oryza sativa (rice), Sorghum bicolor and Arabidopsis thaliana act downstream of the auxin and MORE AUXILIARY GROWTH (MAX) pathways. However, the molecular mechanism by which rice produces tillers remains unknown. In this study, transgenic rice plants were produced that overexpress the maize TB1 (mTB1) or rice TB1 (OsTB1) genes and silence the OsTB1 gene through RNAi-mediated knockdown. Because lateral branching in rice is affected by the environmental conditions, the phenotypes of transgenic plants were observed in both the greenhouse and the paddy field. Compared to wild-type plants, the number of tillers and panicles was reduced and increased in overexpressed and RNAi-mediated knockdown OsTB1 rice plants, respectively, under both environmental conditions. However, the effect was small for plants grown in paddy fields. These results demonstrate that both mTB1 and OsTB1 moderately regulate the tiller development in rice.

  9. Methane emission from rice fields: The effect of floodwater management

    NASA Astrophysics Data System (ADS)

    Sass, R. L.; Fisher, F. M.; Wang, Y. B.; Turner, F. T.; Jund, M. F.

    1992-09-01

    Rice fields emit methane and are important contributors to the increasing atmospheric CH4 concentration. Manipulation of rice floodwater may offer a means of mitigating methane emission from rice fields without reducing rice yields. To test methods for reducing methane emission, we applied four water management methods to rice fields planted on silty-clay soils near Beaumont, Texas. The four water treatments investigated were: normal permanent flood (46 days post planting), normal flood with mid- season drainage aeration, normal flood with multiple drainage aeration, and late flood (76 days post planting). Methane emission rates varied markedly with water regime, showing the lowest seasonal total emission (1.2 g m-2) with a multiple-aeration treatment and the highest (14.9 g m-2) with a late flood. Although the multiple- aeration water management treatment emitted 88% less methane than the normal irrigation treatment and did not reduce rice yields, the multiple-aeration treatment did require 2.7 times more water than the 202 mm required by the normal floodwater treatment. A comparison of measured methane emission and production rates obtained from incubated soil cores indicated that, depending on time of season and flood condition, from zero to over 90% of the methane produced was oxidized. The average amount of methane which was oxidized during times of high emission was 73.1 ± 13.7 percent of that produced.

  10. Dewaxed Brown Rice Contains a Significant Amount of Lipopolysaccharide Pointing to Macrophage Activation via TLRs.

    PubMed

    Inagawa, Hiroyuki; Saika, Toshiyuki; Nisizawa, Takashi; Kohchi, Chie; Uenobe, Maya; Soma, Gen-Ichiro

    2016-07-01

    Oral ingestion of lipopolysaccharide (LPS) has been shown to be effective in diseases' prevention. Brown rice contains large amounts of LPS not actively consumed because of bad taste. Recently, a new type of brown rice with its wax layer removed has been produced. In this report, we measured the LPS content of this dewaxed rice and evaluated the function of innate immune activation on macrophages. Dewaxed brown rice and polished rice were prepared using the Saika-style rice polishing process. LPS content extracted using hot water from this sample was evaluated by the Limulus reaction and the activation of macrophage RAW246.7 cells was evaluated by nitric oxide (NO) production. In addition, toll-like receptors (TLRs) 2-, 4- and 9-induced human embryonic kidney (HEK) 293 cells were used for the confirmation of the activated pathway. Mean LPS content in the 15 types of dewaxed brown rice was found to be 6.4±2.6 μg/g, while that of brown rice was 10.9±4.3 μg/g. The extract of dewaxed brown rice induced significant amounts of NO by RAW246.7 cells, while production was reduced to 1/6 by adding polymyxin B. The macrophage activating effect of dewaxed brown rice was 79- and 51-times higher than that of polished rice in TLR4- and 2-induced HEK 293 cells. LPS content in dewaxed brown rice was found to be able to activate macrophages. This rice activated macrophages mainly via the TLR4 and, to a lesser extent, TLR2 pathways. It is suggested that dewaxed brown rice can be considered effective in allergy and cancer prevention. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Effect of rice variety and nutrient management on rice productivity in organic rice system

    USDA-ARS?s Scientific Manuscript database

    Demand for organic rice has been increasing for decades. However, the information on sustainable organic rice production systems is still lacking. The objective of this study was to investigate the effects of soil amendment products, nitrogen rate, and variety on rice grain yield, yield components, ...

  12. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process.

    PubMed

    Contreras, L M; Schelle, H; Sebrango, C R; Pereda, I

    2012-01-01

    Agricultural solid residues are a potential renewable energy source. Rice harvesting and production in Sancti Spíritus province, Cuba, currently generates residues without an environmentally sustainable disposal route. Rice residues (rice straw, rice husk and rice residues from the drying process) are potentially an important carbon source for anaerobic digestion. For this paper, rice residues were placed for 36 days retention time in anaerobic batch reactor environments at both mesophilic (37 °C) and thermophilic (55 °C) conditions. Biogas and methane yield were determined as well as biogas composition. The results showed that rice straw as well as rice residues from the drying process had the highest biogas and methane yield. Temperature played an important role in determining both biogas yield and kinetics. In all cases, rice straw produced the highest yields; under mesophilic conditions the biogas yield was 0.43 m(3) kg(VS)(-1), under thermophilic conditions biogas yield reached 0.52 m(3) kg(VS)(-1). In the case of the rice husk, the biodegradability was very low. Methane content in all batches was kept above 55% vol. All digested material had a high carbon:nitrogen (C:N) ratio, even though significant biodegradation was recorded with the exception of rice husk. A first-order model can be used to describe the rice crop residues fermentation effectively.

  13. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Strobbe, Simon; Kiekens, Filip; Storozhenko, Sergei; De Steur, Hans; Gellynck, Xavier; Lambert, Willy; Stove, Christophe; Van Der Straeten, Dominique

    2015-10-01

    Biofortification of staple crops could help to alleviate micronutrient deficiencies in humans. We show that folates in stored rice grains are unstable, which reduces the potential benefits of folate biofortification. We obtain folate concentrations that are up to 150 fold higher than those of wild-type rice by complexing folate to folate-binding proteins to improve folate stability, thereby enabling long-term storage of biofortified high-folate rice grains.

  14. Antioxidant activities and phenolic compounds of pigmented rice bran extracts.

    PubMed

    Jun, Hyun-Il; Song, Geun-Seoup; Yang, Eun-In; Youn, Young; Kim, Young-Soo

    2012-07-01

    This study was carried out to investigate the antioxidant activities and phenolic compounds of pigmented rice (black, red, and green rice) and brown rice brans. Antioxidant activity was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulfonic acid) (ABTS) radical cation assay, reducing power, and chelating ability. Phenolic compounds were measured by using HPLC. Pigmented rice brans were extracted by using aqueous mixtures of acetone, ethanol, and methanol to determine the most effective extraction solvent. Of all solvents examined, extract from 40:60 acetone-water mixtures (v/v) provided the highest DPPH radical assay as well as the highest total phenolic and flavonoid content. We finally selected 40% acetone as an extraction solvent for antioxidant study of pigmented rice bran. Antioxidant activities of 40% acetone extracts of pigmented rice bran, measured in the range of 0 to 1500 μg/mL. At 500 μg/mL concentration, red rice bran, which had the highest total phenolic (259.5 μg/mg) and total flavonoid (187.4 μg/mg) contents, showed the highest antioxidant activity: 83.6%, 71.5%, 1.2%, and 16.4% for DPPH radical assay, ABTS radical cation assay, reducing power, and chelating ability, respectively. Red rice bran showed a lower EC(50) value (112.6 μg/mL) than that of butylated hydroxytoluene (144.5 μg/mL) from the DPPH radical assay. The major phenolic acids of red rice bran were ferulic, vanillic and p-coumaric acids. The results indicated pigmented rice bran might be used as a natural antioxidant. The present study revealed black and red rice bran shows high antioxidant activities and they contain high amount of phenolic compounds. Indeed, black and red rice bran could be better raw materials for manufacturing the food with high antioxidant activity. © 2012 Institute of Food Technologists®

  15. Improvement Effect of Dewaxed Brown Rice on Constipation in Antibiotic-treated Mice.

    PubMed

    Inagawa, Hiroyuki; Saika, Toshiyuki; Nishiyama, Naoki; Nisizawa, Takashi; Kohchi, Chie; Uenobe, Maya; Soma, Gen-Ichiro

    2017-01-01

    A decrease in gastrointestinal motility causing weakened lipopolysaccharide (LPS) - toll-like receptor (TLR)4 signaling along with a decline in the number of enteric bacteria is known to be a cause of constipation due to the administration of antibiotics. A new type of brown rice with its wax layer removed, resulting in quick-cooking and tasty product, contains 100-times more LPS than polished white rice. In this study, the improvement effect on constipation due to intake of dewaxed brown rice was examined. Dewaxed brown rice was prepared at Toyo Rice from brown rice. Mice were given powdered feed to which powdered rice containing 0-50% of dewaxed brown rice was added. Antibiotics were administered for 10 or 27 days in drinking water containing vancomycin, metronidazole and neomycin. LPS, used as a control, was freely provided in drinking water. The defecation frequency, stool weight per hour and body weight were determined on the last day. Although the 10-day administration of antibiotics reduced the stool weight per hour to half, the dewaxed brown rice and LPS groups showed a trend towards improvement at a level comparable to the group receiving no antibiotics. The body weight significantly decreased after the 27-day administration of antibiotics but was improved in the 50% dewaxed brown rice group at a level comparable to the group receiving no antibiotics. Though the defecation frequency and wet and dry stool weights per hour were reduced by as much as 50% in the group receiving antibiotics, a significant improvement in constipation was observed in the 50% dewaxed brown rice group. As the improvement effect of dewaxed brown rice on body weight loss and constipation caused by the long-term administration of antibiotics has been confirmed in animal experimentation, the introduction of dewaxed brown rice as a staple food to patients under long-term antibiotic treatment may improve constipation. Copyright© 2017, International Institute of Anticancer Research (Dr

  16. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.

    PubMed

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha(-1). Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35-91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69-80% and 72-80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils.

  17. Rice cropping density and intensity lessened in southeast China during the twenty-first century.

    PubMed

    Qiu, Bingwen; Qi, Wen; Tang, Zhenghong; Chen, Chongcheng; Wang, Xiaoqin

    2016-01-01

    Accurate and updated time series maps of paddy rice distribution and planting intensity will greatly improve our knowledge. Unfortunately, spatiotemporal explicit information on rice fields is relatively limited, and considerable uncertainties still exist as regards to its inter-annual variations in China. In this study, an improved rice mapping methodology was proposed through combined consideration of vegetation phenology and surface moisture variations from different seasonal rice. This method was applied to southeast China based on 500 m 8 day composite Moderate Resolution Imaging Spectroradiometer (MODIS) Enhance Vegetation Indices with two bands (EVI2) during the period 2001-2013. Its efficiency was validated with 763 ground survey sites, with an overall accuracy of 95.02 % and the kappa index of 0.9217. Spatiotemporal analysis indicated that rice cropping density and intensity lessened in southeast China during the period 2001-2013. Particularly, the paddy rice-planted areas reduced by 30.09 %, changing from 231,005 to 161,484 km(2). Among them, the planted areas of double rice decreased by 49.34 %, changing from 34,215 to 17,335 km(2). Therefore, averaged rice cropping intensity in southeast China decreased from 1.148 to 1.107. The primary dynamic patterns were from single rice or a rotation of rice plus other crops to non-rice (93,386 km(2)) and double rice to non-double rice (24,132 km(2)). When analyzed at provincial and altitudinal gradient levels, it was obvious that areas with greater rice cropping density or intensity were associated with more remarkable reductions. Graphical abstract The left graph shows that the rice cropping density lessened in Hubei, Hunan, Guangdong, Jiangxi, Anhui, Jiangsu, Henan provinces and other three provincial-level administrative units (Zhejiang, Fujian and Shanghai) from 2001 to 2013. The middle graph indicates the movement of gravity center as well as the variations in the total planted areas of single rice, rice plus

  18. Effects of O/sub 2/ concentration on rice seedlings

    SciTech Connect

    Alpi, A.; Beevers, H.

    1983-01-01

    The ability of rice, wheat, and oat seedlings to germinate and grow as the O/sub 2/ concentration was lowered to zero was compared. The germination of rice was completely unaffected by O/sub 2/ supply, whereas that of oats and wheat was strongly retarded at levels below 5% O/sub 2/. In contrast to the coleoptiles of oats and wheat and to roots of all three species where growth was progressively diminished as the O/sub 2/ concentration was lowered, that of the rice coleoptile was progressively increased. However, the dry weight and content of protein, sugars, and cellulose were all depressed in the rice coleoptile in anoxia, and the levels of several respiratory enzymes, particularly those of mitochondria, were also much lower than those of the coleoptiles grown in air. In 1% O/sub 2/, the growth of the rice coleoptile was similar to that in air. The effect of ethanol concentration on germination and growth of rice was measured. Coleoptile growth was reduced when the ethanol concentration exceeded 40 millimolarity, and root growth was somewhat more sensitive. Coleoptiles of all three species grown in air were transferred to N/sub 2/ and ethanol accumulation was measured over 24 hours. The rate of ethanol accumulation in oats was close to that in rice, and in all three species the amounts of ethanol lost to the surrounding medium were those expected from simple diffusion from the tissue. The ability of the rice coleoptile to grow in anoxia is apparently not due to a particularly low rate of ethanol formation or to unusual ethanol tolerance. Any explanation of the success of rice in anoxia must encompass the much lower rate of ATP synthesis than that in air and account for the biochemical deficiencies of the coleoptile.

  19. Methane production, emission and possible control measures in the rice agriculture

    NASA Astrophysics Data System (ADS)

    Wang, Mingxing; Shangguan, Xingjian; Shen, Renxing; Reiner, Wassmann; Wolfgang, Seiler

    1993-09-01

    In the rice field methane is produced in the soil layer with depths of 2 25 cm. The vertical profile of methane production rate in the paddy soil during the water covering period differs from that in the paddy soil in dry phase. Only a small part, about 30%, of the produced methane is emitted to the atmosphere through rice plant, air bubbles, and molecular diffusion. Therefore, the methane emission rate from the rice field depends not only on the methane production rate in the soil, but also on the transport efficiency of the rice plant, air bubble formation that in turn depends on the production rate, and molecular diffusion. Field measurements show that methane emission rates from a particular rice field have very large diurnal, seasonal and interannual variations, which are related to soil characteristics, water regime, farming procedure, local climate, and rice growing activities. The relationship between the methane emission rate and the above mentioned factors is very complicated. The emission rates from different rice fields differ greatly not only in the absolute value, but also in the temporal variation patterns. Methane emission rate from the rice field may be significantly reduced by scientific management of fertilizer and irrigation. While the use of SO{4/2-} containing fertilizer and fermented organic fertilizer may reduce the methane emission significantly, the most promising measure for reducing methane emission from rice field is the frequent drainage irrigation procedure.

  20. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  1. Transcriptomic analyses of space-induced rice mutants with enhanced susceptibility to rice blast

    NASA Astrophysics Data System (ADS)

    Cheng, Zhenlong; Liu, Ming; Zhang, Meng; Hang, Xiaoming; Lei, Cailin; Sun, Yeqing

    Mutagenic factors of the space environment influence organisms in different aspects. To elucidate the transcriptomic effects of space flight, a space flight-induced rice mutant, 972-4, and its on-ground control, 972ck, were inoculated with rice blast pathogens. Compared to the control, the mutant exhibited reduced resistance to the rice blast pathogen CH45. Microarray technique was employed to analyze affected genes and revealed that 481 genes were expressed at higher levels in the mutant strain and 188 genes were expressed at higher levels in the control strain under normal growth conditions, indicating that transcriptomic changes of rice seeds are induced by the space environment. After inoculation with the rice blast pathogen CH45, however, 2680 genes were differentially expressed in 972ck and 1863 genes were differentially expressed in 972-4. In addition, disease evaluation indicated that the control strain 972ck is more resistant to the rice blast pathogen CH45 than mutant strain 972-4. In addition, genes in both strains that were co-regulated after blast inoculation account for only 36.8% and 53.3% of the genes expressed in 972ck and 972-4, respectively. A large percentage of blast-regulated genes were not consistently expressed in 972-4 and 972ck, and the mutant and control strains exhibit different gene expression patterns after blast inoculation. Interestingly, 84 genes constitutively expressed higher in 972ck were up-regulated by blast inoculation, and 105 genes that were expressed at constitutively higher levels in 972-4 were down-regulated by blast inoculation. Of the differentially expressed, 7 encoded genes associated with pathogen resistance. Taken together, our results suggest that gene expression patterns are different between a space flight-induced rice mutant and its on-ground control, and the differential expression of resistance genes may be a potential mechanism that modulates the resistance of 972-4 to rice blast. Our results also suggest

  2. Rice disease management under organic production

    USDA-ARS?s Scientific Manuscript database

    Interest in organic rice production has increased because of the increased market demand for organic rice. Texas organic rice acreage has constantly increased over the last decade, reaching 32,000 acres in 2012. Texas is now the leading state in organic rice production in the U.S. Organic rice is p...

  3. Organic Rice Production: Challenges and Opportunities

    USDA-ARS?s Scientific Manuscript database

    The market demand for organically produced rice has grown steadily with the majority of the acreage now being located in Texas and California. A wide range of organic products are marketed including conventional long and medium grain rice, aromatic or scented rice, rice with colored bran, and rice f...

  4. Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown planthoppers during early interaction.

    PubMed

    Zheng, Wenjing; Ma, Li; Zhao, Jiaming; Li, Zhiqiang; Sun, Fuyu; Lu, Xiaochun

    2013-01-01

    Rice stripe, a virus disease, transmitted by a small brown planthopper (SBPH), has greatly reduced production of japonica rice in East Asia, especially in China. Although we have made great progress in mapping resistance genes, little is known about the mechanism of resistance. By de novo transcriptome assembling, we gained sufficient transcript data to analyze changes in gene expression of early interaction in response to SBPH and RSV infection in rice. Respectively 648 and 937 DEGs were detected from the disease-resistant (Liaonong 979) and the susceptible (Fengjin) varieties, most of which were up-regulated. We found 37 genes related to insect resistance, which mainly included genes for jasmonate-induced protein, TIFY protein, lipoxygenase, as well as trypsin inhibitor genes and transcription factor genes. In the interaction process between RSV and rice, 87 genes were thought to be related to RSV resistance; these primarily included 12 peroxidase biosynthesis genes, 12 LRR receptor-like protein kinase genes, 6 genes coding pathogenesis-related proteins, 4 glycine-rich cell wall structural protein genes, 2 xyloglucan hydrolase genes and a cellulose synthase. The results indicate that the rice-pathogen interaction happened both in disease-resistant and susceptible varieties, and some genes related to JA biosynthesis played key roles in the interaction between SBPHs and rice. When rice was infected by RSV a hypersensitive reaction (HR) in the disease-resistant variety was suppressed, which resulted from an increase in peroxidase expression and down-regulation of LRR receptor-like protein kinase and pathogenesis-related proteins, while, the changes of peroxidase biosynthesis, glycine-rich cell wall structural protein, cellulose synthase and xyloglucan endotransglucosylase/hydrolase could lead to the strengthening of physical barriers of rice, which may be an important resistance mechanism to RSV in rice.

  5. [Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements].

    PubMed

    Zhang, Xue-Xia; Zhang, Xiao-Xia; Zheng, Yu-Ji; Wang, Rong-Ping; Chen, Neng-Chang; Lu, Pu-Xiang

    2013-07-01

    The interactions between the concentrations of sulfur, iron and cadmium in the rhizosphere and their uptakes in rice (Oryza sativa L. ) were studied using paddy soil which was contaminated by acid mine drainage under five water-management treatments of 60%, 80%, 100% field moisture capacity (FMC), flooded throughout the entire rice growth period and flooded followed by keeping 80% FMC after heading-flowering period. The water managements had no significant influence on the Fe and Cd concentrations in rhizosphere soil in maturity stage, although the concentration of Cd slightly increased with the increase of soil moisture in the tillering stage. However, the uptake of Fe and Cd in rice was obviously related to water managements. The increase of soil moisture enhanced the uptake of Fe, but decreased the uptake of Cd in different organs of rice (roots, stems and leaves, grains) except for Cd uptake of the root in the 60% FMC treatment. However, aerobic treatment after heading-flowering period enhanced Cd uptake in rice in all treatments, but did not influence the uptake of Fe in rice. On the other hand, the increase of soil moisture reduced the concentrations of total sulfur and available sulfur in the rhizosphere soil except for the 60% FMC treatment, which corresponded with the reduction of Cd uptake in rice. And the aerobic treatment promoted Cd uptake in rice, which was also positively related to the increase of total sulfur and available sulfur in rhizosphere soil. Therefore, it was concluded that the uptake and speciation of sulfur in rhizosphere soil other than the change of Fe concentration induced by water management could play an important role in Cd uptake of rice.

  6. A double built-in containment strategy for production of recombinant proteins in transgenic rice.

    PubMed

    Zhang, Xianwen; Wang, Dongfang; Zhao, Sinan; Shen, Zhicheng

    2014-01-01

    Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice.

  7. Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice.

    PubMed

    Duxbury, J M; Mayer, A B; Lauren, J G; Hassan, N

    2003-01-01

    The total arsenic content of 150 paddy rice samples collected from Barisal, Comilla, Dinajpur, Kaunia, and Rajshahi districts, and from the BRRI experimental station at Rajshahi city in the boro and aman seasons of 2000 was determined by hydride generation-inductively coupled plasma emission spectroscopy (ICP). Arsenic concentrations varied from 10 to 420 microg/kg at 14% moisture content. Rice yields and grain arsenic concentrations were 1.5 times higher in the boro (winter) than the summer (monsoon) season, consistent with the much greater use of groundwater for irrigation in the boro season. Mean values for the boro and aman season rices were 183 and 117 microg/kg, respectively. The variation in arsenic concentrations in rice was only partially consistent with the pattern of arsenic concentrations in drinking water tube wells. There was no evidence from yield or panicle sterility data of arsenic toxicity to rice. Processing of rice (parboiling and milling) reduced arsenic concentrations in rice by an average of 19% in 21 samples collected from households. Human exposure to arsenic through rice would be equivalent to half of that in water containing 50 microg/kg for 14% of the paddy rice samples at rice and water intake levels of 400 g and 4 L/cap/day, respectively.

  8. Rice bran fermented with saccharomyces boulardii generates novel metabolite profiles with bioactivity.

    PubMed

    Ryan, Elizabeth P; Heuberger, Adam L; Weir, Tiffany L; Barnett, Brittany; Broeckling, Corey D; Prenni, Jessica E

    2011-03-09

    Emerging evidence supporting chronic disease fighting properties of rice bran has advanced the development of stabilized rice bran for human use as a functional food and dietary supplement. A global and targeted metabolomic investigation of stabilized rice bran fermented with Saccharomyces boulardii was performed in three rice varieties. Metabolites from S. boulardii-fermented rice bran were detected by gas chromatography-mass spectrometry (GC-MS) and assessed for bioactivity compared to nonfermented rice bran in normal and malignant lymphocytes. Global metabolite profiling revealed significant differences in the metabolome that led to discovery of candidate compounds modulated by S. boulardii fermentation. Fermented rice bran extracts from three rice varieties reduced growth of human B lymphomas compared to each variety's nonfermented control and revealed that fermentation differentially altered bioactive compounds. These data support that integration of global and targeted metabolite analysis can be utilized for assessing health properties of rice bran phytochemicals that are enhanced by yeast fermentation and that differ across rice varieties.

  9. Rice Bran Fermented with Saccharomyces boulardii Generates Novel Metabolite Profiles with Bioactivity

    PubMed Central

    2011-01-01

    Emerging evidence supporting chronic disease fighting properties of rice bran has advanced the development of stabilized rice bran for human use as a functional food and dietary supplement. A global and targeted metabolomic investigation of stabilized rice bran fermented with Saccharomyces boulardii was performed in three rice varieties. Metabolites from S. boulardii-fermented rice bran were detected by gas chromatography−mass spectrometry (GC−MS) and assessed for bioactivity compared to nonfermented rice bran in normal and malignant lymphocytes. Global metabolite profiling revealed significant differences in the metabolome that led to discovery of candidate compounds modulated by S. boulardii fermentation. Fermented rice bran extracts from three rice varieties reduced growth of human B lymphomas compared to each variety’s nonfermented control and revealed that fermentation differentially altered bioactive compounds. These data support that integration of global and targeted metabolite analysis can be utilized for assessing health properties of rice bran phytochemicals that are enhanced by yeast fermentation and that differ across rice varieties. PMID:21306106

  10. Biodiesel production from rice bran by a two-step in-situ process.

    PubMed

    Shiu, Pei-Jing; Gunawan, Setiyo; Hsieh, Wen-Hao; Kasim, Novy S; Ju, Yi-Hsu

    2010-02-01

    The production of fatty acid methyl esters (FAMEs) by a two-step in-situ transesterification from two kinds of rice bran was investigated in this study. The method included an in-situ acid-catalyzed esterification followed by an in-situ base-catalyzed transesterification. Free fatty acids (FFAs) level was reduced to less than 1% for both rice bran A (initial FFAs content=3%) and rice bran B (initial FFAs content=30%) in the first step under the following conditions: 10 g rice bran, methanol to rice bran ratio 15 mL/g, H(2)SO(4) to rice bran mass ratio 0.18, 60 degrees C reaction temperature, 600 rpm stirring rate, 15 min reaction time. The organic phase of the first step product was collected and subjected to a second step reaction by adding 8 mL of 5N NaOH solution and allowing to react for 60 and 30 min for rice bran A and rice bran B, respectively. FAMEs yields of 96.8% and 97.4% were obtained for rice bran A and rice bran B, respectively, after this two-step in-situ reaction.

  11. A Double Built-In Containment Strategy for Production of Recombinant Proteins in Transgenic Rice

    PubMed Central

    Zhao, Sinan; Shen, Zhicheng

    2014-01-01

    Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice. PMID:25531447

  12. Evaluation of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal carcinogenesis

    PubMed Central

    Verschoyle, R D; Greaves, P; Cai, H; Edwards, R E; Steward, W P; Gescher, A J

    2007-01-01

    Brown rice is a staple dietary constituent in Asia, whereas rice consumed in the Western world is generally white, obtained from brown rice by removal of the bran. We tested the hypothesis that rice bran interferes with development of tumours in TAg, TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) or ApcMin mice, genetic models of mammary, prostate and intestinal carcinogenesis, respectively. Mice received rice bran (30%) in AIN-93G diet throughout their post-weaning lifespan. In TAg and TRAMP mice, rice bran did not affect carcinoma development. In TRAMP or wild-type C57Bl6/J mice, dietary rice bran increased kidney weight by 18 and 20%, respectively. Consumption of rice bran reduced numbers of intestinal adenomas in ApcMin mice by 51% (P<0.01), compared to mice on control diet. In parallel, dietary rice bran decreased intestinal haemorrhage in these mice, as reflected by increased haematocrit. At 10% in the diet, rice bran did not significantly retard ApcMin adenoma development. Likewise, low-fibre rice bran (30% in the diet) did not affect intestinal carcinogenesis, suggesting that the fibrous constituents of the bran mediate chemopreventive efficacy. The results suggest that rice bran might be beneficially evaluated as a putative chemopreventive intervention in humans with intestinal polyps. PMID:17211473

  13. Photodegradation of clothianidin under simulated California rice field conditions.

    PubMed

    Mulligan, Rebecca A; Redman, Zachary C; Keener, Megan R; Ball, David B; Tjeerdema, Ronald S

    2016-07-01

    Photodegradation can be a major route of dissipation for pesticides applied to shallow rice field water, leading to diminished persistence and reducing the risk of offsite transport. The objective of this study was to characterize the aqueous-phase photodegradation of clothianidin under simulated California rice field conditions. Photodegradation of clothianidin was characterized in deionized, Sacramento River and rice field water samples. Pseudo-first-order rate constants and DT50 values in rice field water (mean k = 0.0158 min(-1) ; mean DT50 = 18.0 equivalent days) were significantly slower than in deionized water (k = 0.0167 min(-1) ; DT50 = 14.7 equivalent days) and river water (k = 0.0146 min(-1) ; DT50 = 16.6 equivalent days) samples. Quantum yield ϕc values demonstrate that approximately 1 and 0.5% of the light energy absorbed results in photochemical transformation in pure and field water respectively. Concentrations of the photodegradation product thiazolymethylurea in aqueous photolysis samples were determined using liquid chromatography-tandem mass spectrometry and accounted for ≤17% in deionized water and ≤8% in natural water. Photodegradation rates of clothianidin in flooded rice fields will be controlled by turbidity and light attenuation. Aqueous-phase photodegradation may reduce the risk of offsite transport of clothianidin from flooded rice fields (via drainage) and mitigate exposure to non-target organisms. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Inorganic arsenic removal in rice bran by percolating cooking water.

    PubMed

    Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A

    2017-11-01

    Rice bran, a by-product of milling rice, is highly nutritious but contains very high levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations around 1mg/kg. This i-As content needs to be reduced to make rice bran a useful food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As content which is also suitable for its stabilization namely, cooking bran in percolating arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of rice bran products, with i-As removal related to the volume of cooking water used. This process reduced the copper, potassium, and phosphorus content, but had little effect on other trace- and macro-nutrient elements in the rice bran. There was little change in organic composition, as assayed by NIR, except for a decrease in the soluble sugar and an increase, due to biomass loss, in dietary fiber. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rice: chemistry and technology.

    USDA-ARS?s Scientific Manuscript database

    Rice has taken center stage this last decade, not only as an important provider of nourishment for the world’s population, but as a grain now recognized as having many unique nutritional and functional attributes with potential to be captured in a multitude of value-added food and non-food applicati...

  16. Exploring Japan through Rice.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    1998-01-01

    Explores the role of rice in Japanese culture by presenting historical background and teaching activities in a variety of categories, such as language, sociology, history, and contemporary politics. Suggests teachers create cross-cultural comparisons; for example, the role of corn in the United States. Provides a list of teacher resources. (CMK)

  17. Rice bran phytonutrients

    USDA-ARS?s Scientific Manuscript database

    The bran layer of the whole grain rice contains potential health-beneficial compounds. These include vitamin E homologs (tocopherols, tocotrienols), oryzanol fractions, simple phenolics and poly-phenolics. These are antioxidants that are believed to provide protection against diseases such as cancer...

  18. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice..., but any device or method which gives equivalent results may be used. 4 These limits do not apply to...

  19. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice..., but any device or method which gives equivalent results may be used. 4 These limits do not apply to...

  20. Herbicides implicated as the cause of severe mangrove dieback in the Mackay region, NE Australia: consequences for marine plant habitats of the GBR World Heritage Area.

    PubMed

    Duke, Norman C; Bell, Alicia M; Pederson, Dan K; Roelfsema, Chris M; Bengtson Nash, Susan

    2005-01-01

    Herbicides, particularly diuron, were correlated with severe and widespread dieback of the dominant mangrove, Avicennia marina (Forsk.) Vierh. var. eucalyptifolia (Val.) N.C. Duke (Avicenniaceae), its reduced canopy condition, and declines in seedling health within three neighbouring estuaries in the Mackay region of NE Australia. This unusual species-specific dieback, first observed in the early 1990s, had gotten notably worse by 2002 to affect >30 km(2) of mangroves in at least five adjacent estuaries in the region. Over the past century, agricultural production has responded well to the demands of increasing population with improvements in farm efficiency assisted by significant increases in the use of agricultural chemicals. However, with regular and episodic river flow events, these chemicals have sometimes found their way into estuarine and nearshore water and sediments where their effects on marine habitats have been largely unquantified. Investigations over the last three years in the Mackay region provide compelling evidence of diuron, and possibly other agricultural herbicides, as the most likely cause of the severe and widespread mangrove dieback. The likely consequences of such dieback included declines in coastal water quality with increased turbidity, nutrients and sediment deposition, as well as further dispersal of the toxic chemicals. The implications of such findings are immense since they describe not only the serious deterioration of protected and beneficial mangrove habitat but also the potential for significant direct and indirect effects on other highly-valued estuarine and marine habitats in the region, including seagrass beds and coral reefs of the Great Barrier Reef lagoon. This article reviews all key findings and observations to date and describes the essential correlative and causative evidence.

  1. Rice Glycosyltransferase (GT) Phylogenomic Database

    DOE Data Explorer

    Ronald, Pamela

    The Ronald Laboratory staff at the University of California-Davis has a primary research focus on the genes of the rice plant. They study the role that genetics plays in the way rice plants respond to their environment. They created the Rice GT Database in order to integrate functional genomic information for putative rice Glycosyltransferases (GTs). This database contains information on nearly 800 putative rice GTs (gene models) identified by sequence similarity searches based on the Carbohydrate Active enZymes (CAZy) database. The Rice GT Database provides a platform to display user-selected functional genomic data on a phylogenetic tree. This includes sequence information, mutant line information, expression data, etc. An interactive chromosomal map shows the position of all rice GTs, and links to rice annotation databases are included. The format is intended to "facilitate the comparison of closely related GTs within different families, as well as perform global comparisons between sets of related families." [From http://ricephylogenomics.ucdavis.edu/cellwalls/gt/genInfo.shtml] See also the primary paper discussing this work: Peijian Cao, Laura E. Bartley, Ki-Hong Jung and Pamela C. Ronalda. Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases. Molecular Plant, 2008, 1(5): 858-877.

  2. Rice husk-originating silicon-graphite composites for advanced lithium ion battery anodes.

    PubMed

    Kim, Hye Jin; Choi, Jin Hyeok; Choi, Jang Wook

    2017-01-01

    Rice husk is produced in a massive amount worldwide as a byproduct of rice cultivation. Rice husk contains approximately 20 wt% of mesoporous SiO2. We produce mesoporous silicon (Si) by reducing the rice husk-originating SiO2 using a magnesio-milling process. Taking advantage of meso-porosity and large available quantity, we apply rice husk-originating Si to lithium ion battery anodes in a composite form with commercial graphite. By varying the mass ratio between these two components, trade-off relation between specific capacity and cycle life was observed. A controllable pre-lithiation scheme was adopted to increase the initial Coulombic efficiency and energy density. The series of electrochemical results suggest that rice husk-originating Si-graphite composites are promising candidates for high capacity lithium ion battery anodes, with the prominent advantages in battery performance and scalability.

  3. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China

    NASA Astrophysics Data System (ADS)

    Zhang, He; Tao, Fulu; Xiao, Dengpan; Shi, Wenjiao; Liu, Fengshan; Zhang, Shuai; Liu, Yujie; Wang, Meng; Bai, Huizi

    2016-06-01

    The long-term field experiment data at four representative agro-meteorological stations, together with a crop simulation model, were used to disentangle the contributions of climate change, variety renewal, and fertilization management to rice yield change in the past three decades. We found that during 1981-2009 varieties renewal increased rice yield by 16%-52%, management improvement increased yield by 0-16%, and the contributions of climate change to rice yield varied from — 16% to 10%. Varieties renewal and management improvement offset the negative impacts of climate change on rice production. Among the major climate variables, decreases in solar radiation reduced rice yield on average by 0.1%per year. The impact of temperature change had an explicit spatial pattern. It increased yield by 0.04%-0.4% per year for single rice at Xinbin and Ganyu station and for late rice at Tongcheng station, by contrast reduced yield by 0.2%-0.4% per year for single rice at Mianyang station and early rice at Tongcheng station. During 1981-2009, rice varieties renewal was characterized by increases in thermal requirements, grain number per spike and harvest index. The new varieties were less sensitive to climate change than old ones. The development of high thermal requirements, high yield potential and heat tolerant rice varieties, together with improvement of agronomic management, should be encouraged to meet the challenges of climate change and increasing food demand in future.

  4. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw.

    PubMed

    Wang, Shuai; Huang, Dao-You; Zhu, Qi-Hong; Zhu, Han-Hua; Liu, Shou-Long; Luo, Zun-Chang; Cao, Xiao-Ling; Wang, Ji-Yu; Rao, Zhong-Xiu; Shen, Xin

    2015-02-01

    When grown on Cd-contaminated soil, rice typically accumulates considerable Cd in straw, and which may return to the soil after harvest. This work was undertaken to assess the pollution risk of Cd associated to the Cd-contaminated rice straw after incorporating into an uncontaminated soil. With the Cd-contaminated rice straw added at 0, 1, 2, 3, 4 and 5 % (w/w), an incubation experiment (28 days) with non-planting and a followed pot experiment sequent with two planting (rice and Chinese cabbage, transplanted after 28-day incubation) were carried out to investigate the changes of soil Cd speciation and phytoavailability. The results indicated that the Cd-contaminated rice straw addition significantly increased soil pH and dissolved organic carbon during the 28-day incubation. For the high availability of Cd in contaminated rice straw, diethylenetriaminepentaacetic acid (DTPA) extractable Cd significantly increased, and the percentages of acetic acid extractable and reducible Cd in soil significantly enhanced after the addition of Cd-contaminated rice straw. However, the Cd-contaminated rice straw addition inhibited the rice growth and induced the decrease of Cd in rice grain and straw by 12.8 to 70.2 % and 39.3 to 57.3 %, respectively, whereas the Cd contents increased by 13.9 to 84.1 % in Chinese cabbage that planted after rice harvest. In conclusion, Cd associated with Cd-contaminated rice straw was highly available after incorporating into the soil, and thus the Cd pollution risk via the Cd-contaminated rice straw incorporation should be evaluated in the Cd-contaminated paddy region.

  5. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stationary RICE complying with the requirement to reduce CO emissions and using an oxidation catalyst; or... concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst; or 4SLB stationary... stationary RICE exhaust and using an oxidation catalyst a. maintain your catalyst so that the pressure...

  6. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stationary RICE complying with the requirement to reduce CO emissions and using an oxidation catalyst; or... concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst; or 4SLB stationary... stationary RICE exhaust and using an oxidation catalyst a. maintain your catalyst so that the pressure...

  7. Physicochemical, functional, and nutritional characteristics of stabilized rice bran form tarom cultivar.

    PubMed

    Rafe, Ali; Sadeghian, Alireza; Hoseini-Yazdi, Seyedeh Zohreh

    2017-05-01

    Extrusion is a multistep thermal process which has been utilized in a wide spectrum of food preparations. The effect of extrusion processing on the physicochemical, nutritional, and functional properties of Tarom cultivar rice bran was studied. However, the color of rice bran was improved by extrusion processing, but the protein content was reduced in the stabilized rice bran, which can be related to the denaturation of protein. Extrusion had also a reduction significant effect on the phytic acid as well as vitamin E in rice bran. However, the content of niacin, riboflavin, pantothenic acid, and folic acid remained unchanged, but the dietary fiber was enhanced which has beneficial health effect on human consumption. In comparison with unstabilized rice bran, water holding capacity was enhanced, but the oil absorption capacity was reduced. Foaming capacity and foaming stability of extruded rice bran was more than that of untreated rice bran, although they were less than that of rice bran protein concentrate/isolate. In general, the extrusion process improves some functional and nutritional properties of rice bran which are valuable to industrial applications and have potential as ingredient in food to improve consumer health.

  8. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    PubMed

    Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.

  9. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation

    PubMed Central

    Waghmode, Tatoba R.; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation. PMID:26562416

  10. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system.

    PubMed

    Xie, Jian; Hu, Liangliang; Tang, Jianjun; Wu, Xue; Li, Nana; Yuan, Yongge; Yang, Haishui; Zhang, Jiaen; Luo, Shiming; Chen, Xin

    2011-12-13

    For centuries, traditional agricultural systems have contributed to food and livelihood security throughout the world. Recognizing the ecological legacy in the traditional agricultural systems may help us develop novel sustainable agriculture. We examine how rice-fish coculture (RF), which has been designated a "globally important agricultural heritage system," has been maintained for over 1,200 y in south China. A field survey demonstrated that although rice yield and rice-yield stability are similar in RF and rice monoculture (RM), RF requires 68% less pesticide and 24% less chemical fertilizer than RM. A field experiment confirmed this result. We documented that a mutually beneficial relationship between rice and fish develops in RF: Fish reduce rice pests and rice favors fish by moderating the water environment. This positive relationship between rice and fish reduces the need for pesticides in RF. Our results also indicate a complementary use of nitrogen (N) between rice and fish in RF, resulting in low N fertilizer application and low N release into the environment. These findings provide unique insights into how positive interactions and complementary use of resource between species generate emergent ecosystem properties and how modern agricultural systems might be improved by exploiting synergies between species.

  11. Neglecting Rice Milling Yield and Quality Underestimates Economic Losses from High-Temperature Stress

    PubMed Central

    Lyman, Nathaniel B.; Jagadish, Krishna S. V.; Nalley, L. Lanier; Dixon, Bruce L.; Siebenmorgen, Terry

    2013-01-01

    Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable) rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1°C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers. PMID:23991056

  12. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    PubMed

    Lyman, Nathaniel B; Jagadish, Krishna S V; Nalley, L Lanier; Dixon, Bruce L; Siebenmorgen, Terry

    2013-01-01

    Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable) rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  13. Accelerated Solvent Extraction of Insecticides from Rice Hulls, Rice Bran, and Polished Rice Grains.

    PubMed

    Teló, Gustavo Mack; Senseman, Scott Allen; Marchesan, Enio; Camargo, Edinalvo Rabaioli; Carson, Katherine

    2017-03-01

    Analysis of pesticide residues in irrigated rice grains is important for food security. In this study, we analyzed accelerated solvent extraction (ASE) conditions for the extraction of thiamethoxam and chlorantraniliprole insecticides from rice hulls, rice bran, and polished rice grains. Several variables, including extraction solvent, extraction temperature, extraction pressure, cell size, static extraction time, and sample concentration, were investigated. The average recoveries of the three matrixes were between 89.7 and 109.7% at the fortification level of 0.75 mg/kg. The optimum ASE operating conditions were acetonitrile (100%) as extraction solvent, extraction temperature of 75°C for rice hulls and 100°C for rice bran and polished rice grains, extraction cell pressure of 10.3 MPa, 22 mL cell size, and two extraction cycles. The total extraction time was approximately 25 min. The extracted volume was evaporated to dryness and the residues were redissolved in 2 mL acetonitrile after 1 min of vortex-shaking. Thiamethoxam and chlorantraniliprole were analyzed by ultra-HPLC with tandem MS. In conclusion, ASE in rice hulls, rice bran, and polished rice grains offers the possibility of a fast and simple method for obtaining a quantitative extraction of the studied pesticides.

  14. Effective early-generation selection for rice resistant to kernel fissuring to hasten breeding efforts

    USDA-ARS?s Scientific Manuscript database

    Any reduction in milling yield will directly result in financial losses for both producers and millers because whole rice kernels have two to three times more market value than brokens. One of the leading causes of reduced milling yield is exposure of the rice kernels to severe moisture changes befo...

  15. A Benefit of High Temperature: Increased Effectiveness of a Rice Bacterial Blight Disease Resistance Gene

    USDA-ARS?s Scientific Manuscript database

    High temperatures promote development of many plant diseases and reduce effectiveness of disease resistance (R) genes. In many rice producing countries, two crops of rice are produced, with more disease occurring in the season with higher day/night temperatures. While studying the factors that influ...

  16. Influence of temperature regimes on resistance gene-mediated response to rice bacterial blight

    USDA-ARS?s Scientific Manuscript database

    Increasing temperatures could reduce yield growth rate of rice by 10% in several rice production areas. Similarly, higher temperatures are predicted to accelerate the breakdown of plant disease resistance through higher disease pressure or altered resistance (R) gene effectiveness in many host-path...

  17. Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication

    PubMed Central

    Zhu, Yongqing; Ellstrand, Norman C; Lu, Bao-Rong

    2012-01-01

    The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed-shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ∼26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering. PMID:23139871

  18. Field population abundance of leafhopper (Homoptera: Cicadelidae) and planthopper (Homoptera: Delphacidae) as affected by rice growth stages

    NASA Astrophysics Data System (ADS)

    Hafizal, M. M.; Idris, A. B.

    2013-11-01

    The leafhopper (Homoptera: Delphacidae) and planthopper (Homoptera: Cicadelidae) are considered as important rice pest in Asia including Malaysia. As phloem-feeders, they can cause loss to rice growth development and their population abundance is thought to be influenced by rice growth stages. This study was conducted to examine the population of Delphacidae and Cicadelidae between different rice growth stages, i.e. before and after rice planting periods. Monthly sampling was conducted in three sites in Kuala Selangor at before planting, vegetative, reproductive, maturing stages and post-harvest period using sweeping net and light traps. Population abundance of Delphacidae and Cicadelidae were found to be significantly different and positively correlated with different rice growth stages (p<0.05). Delphacidae was most abundance during maturing stages, while the abundance of Cicadelidae peaked during reproductive stage of rice growth. Differences in temporal abundance of the population of these two homopterans indicated adaptive feeding strategy to reduce food competition.

  19. D-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight.

    PubMed

    Kano, Akihito; Hosotani, Kouji; Gomi, Kenji; Yamasaki-Kokudo, Yumiko; Shirakawa, Chikage; Fukumoto, Takeshi; Ohtani, Kouhei; Tajima, Shigeyuki; Izumori, Ken; Tanaka, Keiji; Ishida, Yutaka; Nishizawa, Yoko; Ichimura, Kazuya; Tada, Yasuomi; Akimitsu, Kazuya

    2011-10-15

    We examined rice responses to a rare sugar, d-psicose. Rice growth was inhibited by d-psicose but not by common sugars. Microarray analysis revealed that d-psicose treatment caused an upregulation of many defense-related genes in rice, and dose-dependent upregulation of these genes was confirmed by quantitative reverse-transcription polymerase chain reaction. The level of upregulation of defense-related genes by d-psicose was low compared with that by d-allose, which is another rare sugar known to confer induction of resistance to rice bacterial blight in rice. Treatment with d-psicose conferred resistance to bacterial blight in rice in a dose-dependent manner, and the results indicate that d-psicose might be a candidate plant activator for reducing disease development in rice.

  20. Effect of succinylation on functional and morphological properties of starches from broken kernels of Pakistani Basmati and Irri rice cultivars.

    PubMed

    Moin, Abeera; Ali, Tahira Mohsin; Hasnain, Abid

    2016-01-15

    Starch extracted from broken kernels of Basmati and Irri rice varieties of Pakistani rice were subjected to modification by addition of succinic anhydride at levels of 2%, 4% and 5% based on dried weight of starch. The succinyl content of Irri rice starch increased with the concentration of succinic anhydride. Scanning electron micrographs revealed presence of dents and fusion of rice starch granules. Swelling power and water retention capacity (WRC) significantly improved after succinylation while on refrigerated storage percent decline in paste clarity of modified rice starches was stable as compared to native Basmati (BC) and Irri (IC) rice starches. Succinylation also reduced solubility, pasting temperature (PT) and gel hardness of starch gels. Improvement was observed in cold storage stability of rice starch succinates as evident from textural profile analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China.

    PubMed

    Lu, Ying; Dong, Fei; Deacon, Claire; Chen, Huo-Jun; Raab, Andrea; Meharg, Andrew A

    2010-05-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain.

  2. Improved antioxidant activity of BKOS Thai jasmine rice.

    PubMed

    Semsang, N; Kawaree, R; Cutler, R W; Chundet, R; Yu, L D; Anuntalabhochai, S

    2012-01-01

    Thai jasmine rice (Oryza sativa L. cv. KDML105) is highly valued due to its subtle aroma, robust seed characteristics and high nutritional quality. Low-energy ion-beam bombardment was chosen to improve the quality of jasmine rice by mutation induction. One mutated variety, named BKOS, was found to exhibit a deep purple colour due to an increased accumulation of anthocyanin. The total phenolic content and antioxidant activities of cooked and uncooked rice extracts were compared with KDML105, BKOS and other rice mutants created by a low-energy ion beam. The BKOS extracts showed the highest total phenol content (0.140 and 0.096 mg of gallic acid equivalent (GAE) g(-1) dry extract from uncooked and cooked rice, respectively). The BKOS extracts also had improved antioxidant activities, determined using three standard methods: 2,2'-diphenyl-1-picrylhdrazyl (DPPH) free radical scavenging, ABTS radical cation (ABTS•(+)) decolourisation and ferric-reducing antioxidant power assays. BKOS extracts showed 2-2.5-fold increased levels for each method. Interestingly, there was no significant difference between the antioxidant activities of the cooked and uncooked BKOS rice extracts. The increased quantity of antioxidants in this anthocyanin-based natural product could allow antioxidants to be consumed by a wider population than what is currently possible.

  3. Selection on grain shattering genes and rates of rice domestication.

    PubMed

    Zhang, Lin-Bin; Zhu, Qihui; Wu, Zhi-Qiang; Ross-Ibarra, Jeffrey; Gaut, Brandon S; Ge, Song; Sang, Tao

    2009-11-01

    Molecular cloning of major quantitative trait loci (QTLs) responsible for the reduction of rice grain shattering, a hallmark of cereal domestication, provided opportunities for in-depth investigation of domestication processes. Here, we studied nucleotide variation at the shattering loci, sh4 and qSH1, for cultivated rice, Oryza sativa ssp. indica and Oryza sativa ssp. japonica, and the wild progenitors, Oryza nivara andOryza rufipogon. The nonshattering sh4 allele was fixed in all rice cultivars, with levels of sequence polymorphism significantly reduced in both indica and japonica cultivars relative to the wild progenitors. The sh4 phylogeny together with the neutrality tests and coalescent simulations suggested that sh4 had a single origin and was fixed by artificial selection during the domestication of rice. Selection on qSH1 was not detected in indica and remained unclear in japonica. Selection on sh4 could be strong enough to have driven its fixation in a population of cultivated rice within a period of c. 100 yr. The slow fixation of the nonshattering phenotype observed at the archeological sites might be a result of relatively weak selection on mutations other than sh4 in early rice cultivation. The fixation of sh4 could have been achieved later through strong selection for the optimal phenotype.

  4. Phytochemical profiles and antioxidant activity of processed brown rice products.

    PubMed

    Gong, Er Sheng; Luo, Shunjing; Li, Tong; Liu, Chengmei; Zhang, Guowen; Chen, Jun; Zeng, Zicong; Liu, Rui Hai

    2017-10-01

    The phytochemical profiles and antioxidant activity of free, soluble-conjugated, and bound fractions of brown rice and its processed products (textured rice, cooked rice and rice noodle) were studied. Nineteen phenolic acids were identified. Trans-ferulic acid was the most abundant monomeric phenolic acid with trans-trans-8-O-4' diferulic acid being most abundant diferulic acid. Processing increased the content of free phenolic acids, but decreased the content of soluble-conjugated phenolic acids. The content of bound phenolic acids was increased by improved extrusion cooking technology and cooking, but not affected by rice noodle extrusion. The total phenolic contents and antioxidant activities of free and soluble-conjugated fractions were decreased after processing, whereas those of bound fraction were increased by improved extrusion cooking technology and cooking, but not affected by rice noodle extrusion. Results indicated that whole foods designed for reducing chronic disease risk need to consider the effects of processing on phytochemical profiles and antioxidant activity of whole grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Allele mining and enhanced genetic recombination for rice breeding.

    PubMed

    Leung, Hei; Raghavan, Chitra; Zhou, Bo; Oliva, Ricardo; Choi, Il Ryong; Lacorte, Vanica; Jubay, Mona Liza; Cruz, Casiana Vera; Gregorio, Glenn; Singh, Rakesh Kumar; Ulat, Victor Jun; Borja, Frances Nikki; Mauleon, Ramil; Alexandrov, Nickolai N; McNally, Kenneth L; Sackville Hamilton, Ruaraidh

    2015-12-01

    Traditional rice varieties harbour a large store of genetic diversity with potential to accelerate rice improvement. For a long time, this diversity maintained in the International Rice Genebank has not been fully used because of a lack of genome information. The publication of the first reference genome of Nipponbare by the International Rice Genome Sequencing Project (IRGSP) marked the beginning of a systematic exploration and use of rice diversity for genetic research and breeding. Since then, the Nipponbare genome has served as the reference for the assembly of many additional genomes. The recently completed 3000 Rice Genomes Project together with the public database (SNP-Seek) provides a new genomic and data resource that enables the identification of useful accessions for breeding. Using disease resistance traits as case studies, we demonstrated the power of allele mining in the 3,000 genomes for extracting accessions from the GeneBank for targeted phenotyping. Although potentially useful landraces can now be identified, their use in breeding is often hindered by unfavourable linkages. Efficient breeding designs are much needed to transfer the useful diversity to breeding. Multi-parent Advanced Generation InterCross (MAGIC) is a breeding design to produce highly recombined populations. The MAGIC approach can be used to generate pre-breeding populations with increased genotypic diversity and reduced linkage drag. Allele mining combined with a multi-parent breeding design can help convert useful diversity into breeding-ready genetic resources.

  6. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  7. Transgenic strategies to confer resistance against viruses in rice plants

    PubMed Central

    Sasaya, Takahide; Nakazono-Nagaoka, Eiko; Saika, Hiroaki; Aoki, Hideyuki; Hiraguri, Akihiro; Netsu, Osamu; Uehara-Ichiki, Tamaki; Onuki, Masatoshi; Toki, Seichi; Saito, Koji; Yatou, Osamu

    2014-01-01

    Rice (Oryza sativa L.) is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. Many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA interference (RNAi), also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral “Achilles’ heel” gene to target for RNAi attack when engineering plants. PMID:24454308

  8. Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice.

    PubMed

    Kumar, Ajay; Henderson, Angela; Forster, Genevieve M; Goodyear, Andrew W; Weir, Tiffany L; Leach, Jan E; Dow, Steven W; Ryan, Elizabeth P

    2012-07-04

    Dietary rice bran consists of many bioactive components with disease fighting properties; including the capacity to modulate the gut microbiota. Studies point to the important roles of the gut microbiota and the mucosal epithelium in the establishment of protection against enteric pathogens, such as Salmonella. The ability of rice bran to reduce the susceptibility of mice to a Salmonella infection has not been previously investigated. Therefore, we hypothesized that the incorporation of rice bran into the diet would inhibit the colonization of Salmonella in mice through the induction of protective mucosal responses. Mice were fed diets containing 0%, 10% and 20% rice bran for one week prior to being orally infected with Salmonella enterica serovar Typhimurium. We found that mice consuming the 10 and 20% rice bran diets exhibited a reduction in Salmonella fecal shedding for up to nine days post-infection as compared to control diet fed animals (p < 0.05). In addition, we observed decreased concentrations of the pro-inflammatory cytokines, TNF-alpha, IFN-gamma, and IL-12 (p < 0.05) as well as increased colonization of native Lactobacillus spp. in rice bran fed mice (p < 0.05). Furthermore, in vitro experiments revealed the ability of rice bran extracts to reduce Salmonella entry into mouse small intestinal epithelial cells. Increasing rice bran consumption represents a novel dietary means for reducing susceptibility to enteric infection with Salmonella and potentially via induction of native Lactobacillus spp.

  9. Ground-Based Radar (GBR): Environmental Assessment.

    DTIC Science & Technology

    1989-03-01

    OF REPORT 1 3b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 . PAGE COUNT FINAL FROM TO 1989 March 140 16. SUPPLEMENTARY NOTATION 17. COSATI... 15 1.4.3 Component/Assembly Tests...Surveillance and Tracking System (GSTS), and Battle Management/Command, Control, and Communications (BM/C 3 ) (14, 15 , 16, 17, 18, 19). EAs were

  10. Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China.

    PubMed

    Wang, Dengfeng; Wei, Zhiyuan; Tang, Shumei; Qi, Zhiping

    2014-09-01

    Rice, which is the staple food in East Asia, is a source of Selenium (Se) and Cadmium (Cd). The distribution of Se and Cd in soil-rice system is significant to human nutrition and public health. This study is to explore the distribution of Se and Cd in arable land soils and their distribution in polished rice and stalks of Se-rich area. A total of 63 soil samples and 126 rice samples (63 groups of rice grains and stalk samples) were collected from West Hainan Island to determine Se and Cd concentrations. The results suggested the concentration of Se in soil was higher than average level in China, and Cd content was lower than the agricultural land-use threshold of China. The distribution of Se and Cd in arable land soil was primarily determined by diagenesis and mineralization. Se and Cd were more inclined to accumulate in stalks than rice grains, and the contents in polished rice were correlated with that in stalk. Acidification of arable land soil will threaten human nutrition and health for the bioaccumulation factor of Se in polished rice decreased significantly with the decrease of soil pH, while that of Cd in polished rice increased significantly. Therefore, application of lime or alkaline fertilizers in arable land soil of Se-rich area can promote the accumulation of Se in polished rice but reduced the intake of Cd in rice crops.

  11. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.

    PubMed

    Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng

    2015-07-01

    Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

  12. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress.

    PubMed

    Sreenivasulu, Nese; Butardo, Vito M; Misra, Gopal; Cuevas, Rosa Paula; Anacleto, Roslen; Kavi Kishor, Polavarpu B

    2015-04-01

    To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural-functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality.

  13. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress

    PubMed Central

    Sreenivasulu, Nese; Butardo, Vito M.; Misra, Gopal; Cuevas, Rosa Paula; Anacleto, Roslen; Kavi Kishor, Polavarpu B.

    2015-01-01

    To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural–functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality. PMID:25662847

  14. Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in South China.

    PubMed

    Li, Junhui; Dong, Fei; Lu, Ying; Yan, Qiuyan; Shim, Hojae

    2014-01-01

    Foods produced on soils impacted by Pb-Zn mining activities are a potential health risk due to plant uptake of the arsenic (As) associated with such mining. A field survey was undertaken in two Pb-Zn mining-impacted paddy fields in Guangdong Province, China to assess As accumulation and translocation, as well as other factors influencing As in twelve commonly grown rice cultivars. The results showed that grain As concentrations in all the surveyed rice failed national food standards, irrespective of As speciation. Among the 12 rice cultivars, "SY-89" and "DY-162" had the least As in rice grain. No significant difference for As concentration in grain was observed between the rice grown in the two areas that differed significantly for soil As levels, suggesting that the amount of As contamination in the soil is not necessarily the overriding factor controlling the As content in the rice grain. The iron and manganese plaque on the root surface curtailed As accumulation in rice roots. Based on our results, the accumulation of As within rice plants was strongly associated with such soil properties such as silicon, phosphorus, organic matter, pH, and clay content. Understanding the factors and mechanisms controlling As uptake is important to develop mitigation measures that can reduce the amount of As accumulated in rice grains produced on contaminated soils.

  15. Impact of browning reactions and bran pigments on color of parboiled rice.

    PubMed

    Lamberts, Lieve; Brijs, Kristof; Mohamed, Rasty; Verhelst, Neelke; Delcour, Jan A

    2006-12-27

    Rice color changes from white to amber during parboiling (soaking and steaming). Color parameters indicated that, during soaking, yellow bran pigments leached out in the water. The levels of the Maillard precursors (i.e., reducing sugars (RS) and free alpha-amino nitrogen (FAN)) depended on soaking temperature and time: leaching of RS was compensated by enzymic formation for long soaking times (>60 min), while proteolytic activity was too low to compensate for FAN leaching. Rice soaking under nitrogen, oxygen, or ambient conditions and determination of polyphenol oxidase activity allowed us to conclude that the effect of enzymic color changes on the soaked rice color was rather small. Color measurements of brown and milled mildly, intermediately, and severely parboiled rice samples showed that both brown and milled rice samples were darker and more red and yellow after parboiling and that the effect depended on the severity of parboiling conditions. Furthermore, steaming affected the rice color more and in a way opposite to that observed in soaking. The changes in RS and the loss of FAN during parboiling suggested that Maillard type reactions occur during brown rice steaming. Analyses of furosine levels confirmed Maillard browning of outer bran layers and endosperm during steaming. The level of this Maillard indicator increased with the severity of parboiling conditions in both brown and milled parboiled rice. Measurements of the levels of bran pigments indicated that bran pigments diffuse into the endosperm during parboiling and contribute to the parboiled rice color.

  16. Iron-fortified rice is as efficacious as supplemental iron drops in infants and young children.

    PubMed

    Beinner, Mark A; Velasquez-Meléndez, Gustavo; Pessoa, Milene C; Greiner, Ted

    2010-01-01

    How to improve iron status among infants and young children is of continued concern in low- to middle-income countries, including Brazil. In a double blind, 5-mo, home-based, randomized trial in Brazil, we gave one group of mildly anemic 6- to 24-mo-old children (n = 175) rice fortified with micronized ferric pyrophosphate using the Ultra Rice technology and a placebo solution (URG) and another group identical nonfortified rice and iron drops. We instructed parents on the correct dosage of iron drops and to feed their children rice as they normally would. We measured serum ferritin (SF) and hemoglobin (Hb) concentrations at baseline and at 5 mo. At baseline, the prevalences of iron deficiency and anemia in the total sample were 73.1 and 100%, respectively. At 5 mo, SF and Hb increased in both groups, although the change in the URG was larger (P < 0.01). Adult participants were unable to distinguish cooked fortified rice from unfortified rice in terms of smell, color, or taste. As rice is normally consumed at home, MPF-fortified rice increased iron stores and reduced anemia in a group of mildly anemic children 6-24 mo old. In populations where young children are routinely fed approximately 100 g of cooked rice daily, fortifying it with iron may improve iron status at least as well as providing free iron drops.

  17. Mechanisms Controlling Arsenic Uptake in Rice Grown in Mining Impacted Regions in South China

    PubMed Central

    Lu, Ying; Yan, Qiuyan; Shim, Hojae

    2014-01-01

    Foods produced on soils impacted by Pb-Zn mining activities are a potential health risk due to plant uptake of the arsenic (As) associated with such mining. A field survey was undertaken in two Pb-Zn mining-impacted paddy fields in Guangdong Province, China to assess As accumulation and translocation, as well as other factors influencing As in twelve commonly grown rice cultivars. The results showed that grain As concentrations in all the surveyed rice failed national food standards, irrespective of As speciation. Among the 12 rice cultivars, “SY-89” and “DY-162” had the least As in rice grain. No significant difference for As concentration in grain was observed between the rice grown in the two areas that differed significantly for soil As levels, suggesting that the amount of As contamination in the soil is not necessarily the overriding factor controlling the As content in the rice grain. The iron and manganese plaque on the root surface curtailed As accumulation in rice roots. Based on our results, the accumulation of As within rice plants was strongly associated with such soil properties such as silicon, phosphorus, organic matter, pH, and clay content. Understanding the factors and mechanisms controlling As uptake is important to develop mitigation measures that can reduce the amount of As accumulated in rice grains produced on contaminated soils. PMID:25251438

  18. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    PubMed Central

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  19. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  20. Linking large-scale bean-rice rotation with increased rice yield in remote sensing experiment

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    In this study, the two different treatments are continuous rice and rice in rotation with bean, and the response is the normalized difference vegetation index (NDVI) of rice or the rice yield. This study is to determine whether the rice in rotation with bean results in a significant effect—increasing the rice yield. In this completely randomized experiment, we randomly assigned 40 samples to the continuous rice and 40 samples to the rice in rotation with bean. Then the rice NDVIs of all 80 samples were computed. Because the statistical significance of the rice NDVI of the rotation treatment was observed in the experiment, we can be confident in the conclusion that it was the difference in treatments that resulted in the difference in the rice yield. That is, we can be confident that a cause-and-effect relationship between the rice in rotation with bean and the rice yield increase has been found.

  1. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.

    PubMed

    Koga, Nobuhisa; Tajima, Ryosuke

    2011-03-01

    To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw

  2. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains.

  3. International Experience in Standards and Labeling Programs for Rice Cookers

    SciTech Connect

    Zhou, Nan; Zheng, Nina

    2008-05-01

    China has had an active program on energy efficiency standards for household appliances since the mid-1990s. Rice cooker is among the first to be subject to such mandatory regulation, since it is one of the most prevalent electric appliances in Chinese households. Since first introduced in 1989, the minimum energy efficiency standard for rice cookers has not been revised. Therefore, the potential for energy saving is considerable. Initial analysis from CNIS indicates that potential carbon savings is likely to reach 7.6 million tons of CO2 by the 10th year of the standard implementation. Since September 2007, CNIS has been working with various groups to develop the new standard for rice cookers. With The Energy Foundation's support, LBNL has assisted CNIS in the revision of the minimum energy efficiency standard for rice cookers that is expected to be effective in 2009. Specifically, work has been in the following areas: assistance in developing consumer survey on usage pattern of rice cookers, review of international standards, review of international test procedures, comparison of the international standards and test procedures, and assessment of technical options of reducing energy use. This report particularly summarizes the findings of reviewing international standards and technical options of reducing energy consumption. The report consists of an overview of rice cooker standards and labeling programs and testing procedures in Hong Kong, South Korea, Japan and Thailand, and Japan's case study in developing energy efficiency rice cooker technologies and rice cooker efficiency programs. The results from the analysis can be summarized as the follows: Hong Kong has a Voluntary Energy Efficiency Labeling scheme for electric rice cookers initiated in 2001, with revision implemented in 2007; South Korea has both MEPS and Mandatory Energy Efficiency Label targeting the same category of rice cookers as Hong Kong; Thailand's voluntary endorsement labeling program is

  4. Maximum outcrossing rate and genetic compatibility between red rice (Oryza sativa) biotypes and Clearfield™ rice

    USDA-ARS?s Scientific Manuscript database

    Although red rice can be selectively controlled with imazethapyr in ClearfieldTM (CL) rice, the transfer of the imazethapyr-resistant gene from CL rice to red rice is an ecological risk. Previous experiments indicated that flowering synchronization and genetic compatibility between cultivated rice a...

  5. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    USDA-ARS?s Scientific Manuscript database

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  6. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Luguang; Feng, Zhiming; Sheldon, Sage; Xiao, Xiangming

    2016-06-01

    Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is essential. In this study, the Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) was proposed based on two temporal windows in which the NDVI values of single and early (or late) rice display inverse changes, and then applied to discriminate rice cropping systems. The Poyang Lake Region (PLR), characterized by a typical cropping system of single cropping rice (SCR, or single rice) and double cropping rice (DCR, including early rice and late rice), was selected as a testing area. The results showed that NDVI data derived from Landsat time-series at eight to sixteen days captures the temporal development of paddy rice. There are two key phenological stages during the overlapping growth period in which the NDVI values of SCR and DCR change inversely, namely the ripening phase of early rice and the growing phase of single rice as well as the ripening stage of single rice and the growing stage of late rice. NDVI derived from scenes in two temporal windows, specifically early August and early October, was used to construct the RNDVI for discriminating rice cropping systems in the polder area of the PLR, China. Comparison with ground truth data indicates high classification accuracy. The RNDVI approach highlights the inverse variations of NDVI values due to the difference of rice growth between two temporal windows. This makes the discrimination of rice cropping systems straightforward as it only needs to distinguish whether the candidate rice type is in the period of growth (RNDVI<0) or senescence (RNDVI>0).

  7. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields.

    PubMed

    Wang, Hong-Yan; Wen, Shi-Lin; Chen, Peng; Zhang, Lu; Cen, Kuang; Sun, Guo-Xin

    2016-02-01

    A field experiment was established to support the hypothesis that application of different silicon (Si) fertilizers can simultaneously reduce cadmium (Cd) and arsenic (As) concentration in rice grain. The "semi-finished product of Si-potash fertilizer" treatment at the high application of 9000 kg/ha (NP+S-KSi9000) significantly reduced the As concentration in rice grain by up to 20.1%, compared with the control. Si fertilization reduces the Cd concentration in rice considerably more than the As concentration. All Si fertilizers apart from sodium metasilicate (Na2SiO3) exhibited a high ability to reduce Cd concentration in rice grain. The Si-calcium (CaSi) fertilizer is the most effective in the mitigation of Cd concentration in rice grain. The CaSi fertilizer applied at 9000 kg/ha (NPK+CaSi9000) and 900 kg/ha (NPK+CaSi900) reduced the Cd concentration in rice grain about 71.5 and 48.0%, respectively, while the Si-potash fertilizer at 900 kg/ha (NP+KSi900), the semi-finished product of Si-potash fertilizer at both 900 kg/ha (NP+S-KSi900) and 9000 kg/ha (NP+S-KSi9000), and the rice straw (NPK+RS) treatments reduced the Cd concentration in rice grain about 42, 26.5, 40.7, and 23.1%, respectively. The results of this investigation demonstrated the potential effects of Si fertilizers in reducing Cd and As concentrations in rice grain.

  8. Establishment of a rice-duck integrated farming system and its effects on soil fertility and rice disease control

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-Qing; Luo, Fan

    2015-04-01

    Rice-duck integrated farming is an ecological farming system newly established in some areas of southern China . It was reported that the ducks walking around the paddy fields is beneficial to control weed hazards and reduce rice pests and diseases. To study and evaluate the effects of the rice-duck integrated farming on soil fertility and rice disease control, a field experiment of rice cultivation was carried out in the suburb of Shanghai in 2014. It includes a treatment of raising ducks in the fields and a control without ducks. The treatment was implemented by building a duck coop nearby the experimental fields and driving 15 ducks into a plot at daytime since the early stage of rice growth. Each plot is 667 m2 in area. The treatment and control were replicated for three times. No any herbicides, pesticides, fungicides and chemical fertilizers were applied during the experiment to prevent any disturbance to duck growing and rice weed hazards and disease incidences from agrochemicals. The results are as follows: (1) The incidences of rice leaf rollers (Cnaphalocrocis medinalis) and stem borers treated with ducks, 0.45%and 1.18% on average, respectively, are lower than those of the control, 0.74% and 1.44% on average, respectively. At the late stage of rice growth, the incidence of rice sheath blight treated with ducks, 13.15% on average, is significantly lower than that of the control, 16.9% on average; and the incidence of rice planthoppers treated with ducks, 11.3 per hill on average, is also significantly lower than that of the control, 47.4 per hill on average. (2) The number of weeds in the plots treated with ducks, 8.3 per m2 on average, is significantly lower than that of the control, 87.5 m2 on average. (3) Raising ducks in the fields could also enhance soil enzyme activity and nutrient status. At the late stage of rice growth, the activities of urease, phosphatase, sucrase and catalase in the soils treated with ducks are 1.39 times, 1.40 times, 1

  9. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    PubMed

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Assessment of the quality of bran and bran oil produced from some Egyptian rice varieties.

    PubMed

    Salem, Eglal G; El Hissewy, Ahmed; Agamy, Neveen F; Abd El Barry, Doaa

    2014-04-01

    control (100% wheat flour). Rice bran oil showed higher scores of taste, smell, appearance, and texture than corn oil and sunflower oil. Rice bran contains high nutritional components as well as phytochemicals such as vitamin E (i.e. tocopherols and tocotrienols) and the γ-oryzanol fraction that have positive effects on human health. Storage of paddy rice before milling resulted in significant effect on all studied rice bran characters and rice bran oil characters under the present investigation except crude protein and carbohydrates characters. Substitution of wheat flour with rice bran by 15% in bread production to fortify the bread with vitamin E and to reduce the amount of imported flour is recommended.

  11. Marker-assisted backcrossing: a useful method for rice improvement.

    PubMed

    Hasan, Muhammad Mahmudul; Rafii, Mohd Y; Ismail, Mohd R; Mahmood, Maziah; Rahim, Harun A; Alam, Md Amirul; Ashkani, Sadegh; Malek, Md Abdul; Latif, Mohammad Abdul

    2015-03-04

    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.

  12. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  13. Arsenic uptake in organic rice production systems

    USDA-ARS?s Scientific Manuscript database

    Arsenic in rice is known to be a problem in some rice-producing countries that have high levels of inorganic arsenic naturally occurring in water resources. However, it was never considered an issue for USA produced rice until international market surveys were published, indicating some USA rice sam...

  14. Effect of water washing on the thermal behavior of rice straw.

    PubMed

    Said, N; Bishara, T; García-Maraver, A; Zamorano, M

    2013-11-01

    Rice straw can be used as a renewable fuel for heat and power generation. It is a viable mean of replacing fossil fuels and preventing pollution caused by open burning, especially in the areas where this residual biomass is generated. Nevertheless, the thermal conversion of rice straw can cause some operating problems such as slag formation, which negatively affects thermal conversion systems. So, the main objective of this research is studying the combustion behavior of rice straw samples collected from various regions by applying thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In addition, the thermal behavior of ashes from rice straw was also analyzed in order to detect their melting points, and ash sintering was detected at different temperatures within the range between 550 and 1000°C. Since washing rice straw with water could reduce the content of undesirable inorganic compounds related to the ash fusibility, samples of washed rice straw were analyzed under combustion conditions to investigate its differences regarding the thermal behavior of rice straw. The results showed that rice straw washing led to a significant improvement in its thermal behavior, since it reduced the ash contents and sintering formation.

  15. Increased greenhouse-gas intensity of rice production under future atmospheric conditions

    NASA Astrophysics Data System (ADS)

    van Groenigen, Kees Jan; van Kessel, Chris; Hungate, Bruce A.

    2013-03-01

    Increased atmospheric CO2 and rising temperatures are expected to affect rice yields and greenhouse-gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest human-induced sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. The need for meeting a growing global food demand argues for assessing GHG emissions from croplands on the basis of yield rather than land area, such that efforts to reduce GHG emissions take into consideration the consequences for food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Here we show, using meta-analysis, that increased atmospheric CO2 (ranging from 550 to 743ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Increased atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely owing to a decrease in yield. This analysis suggests that rising CO2 and warming will approximately double the GHG intensity of rice production by the end of the twenty-first century, stressing the need for management practices that optimize rice production while reducing its GHG intensity as the climate continues to change.

  16. Rice planting systems, global warming and outbreaks of Nilaparvata lugens (Stål).

    PubMed

    Hu, G; Cheng, X N; Qi, G J; Wang, F Y; Lu, F; Zhang, X X; Zhai, B P

    2011-04-01

    Brown Planthopper (BPH, Nilaparvata lugens (Stål)) is one of the most serious pests of rice in both temperate and tropical regions of East and South Asia and has become especially problematic over the past few years. In order to analyze the effect of the change of rice cropping system on the population dynamics of BPH, field surveys of the occurrence and distribution of BPH were performed and other relevant data, including light trap data and ovary dissection data were collected in nearly 40 Chinese counties encompassing six provinces (or municipalities), including Hainan, Guangxi, Anhui, Shanghai, Fujian and Guangdong from April to October in 2007.The mixed planting areas of single- and double-cropping rice in China include Hubei, South and Central Anhui, North Hunan, and North Jiangxi. In these areas, double-cropping rice has now been greatly reduced and single-cropping rice has been rapidly increasing since 1997. The surveys revealed that when the immigration peak of BPH occurred in June and July, the single-cropping rice was at the tillering to booting stage and fit for BPH, but early rice had already matured and most of late rice had not yet been transplanted. BPH immigrants from southern rice areas prefer to inhabit and breed in single-cropping rice paddies. Moreover, farming activities between early rice and late rice interrupted the continuous growth of BPH populations in double-cropping rice paddies. As a result, in comparison with data collected 30 years ago, the spatiotemporal dynamics and migration patterns of BPH have dramatically changed in the lower-middle reaches of the Yangtze River. In the mixed planting areas, due to their high suitability, the BPH population in single-cropping rice grew so quickly that it caused serious local damage and there was mass emigration of macropterous progeny to the Yangtze River Delta in late August and early September.Global warming may also affect BPH populations, where results suggest steadily warmer autumns have

  17. Physiological and morphological responses of Ischaemum rugosum Salisb. (wrinkled grass) to different nitrogen rates and rice seeding rates.

    PubMed

    Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C Sta

    2014-01-01

    Ischaemum rugosum is a competitive weed in direct-seeded rice systems. Developing integrated weed management strategies that promote the suppression of weeds by crop density, cultivar selection, and nutrition requires better understanding of the extent to which rice interferes with the growth of this weed and how it responds to resource limitation due to rice interference. The growth of I. rugosum was studied when grown with four rice seeding rates (0, 25, 50, and 100 kg ha(-1)) and four nitrogen (N) rates (0, 50, 100, and 150 kg ha(-1)). Compared to the weed plants grown alone, weed tiller number was reduced by 63-80%, leaf number by 68-77%, leaf area by 69-77%, leaf biomass by 72-84%, and inflorescence biomass by 81-93% at the rice seeding rates of 25-100 kg ha(-1). All these parameters increased with increasing rates of N from 0 to 150 kg ha(-1). At weed maturity, I. rugosum plants were 100% taller than rice at 0 kg N ha(-1), whereas, with added N, the weeds were only 50% taller than rice. Weed biomass increased by 82-160%, whereas rice biomass increased by 92-229%, with the application of 50-150 kg N ha(-1). Added N favored rice biomass production more than it did the weed. Rice interference reduced the height and biomass of I. rugosum, but did not suppress its growth completely. I. rugosum showed the ability to reduce the effects of rice interference by increasing leaf area, leaf weight ratio, and specific leaf area, and by decreasing the root-shoot weight ratio in comparison to the weed plants grown alone. The results suggest that rice crop interference alone may reduce I. rugosum growth but may not provide complete control of this weed. The need for integrated weed management practices to effectively control this weed species is highlighted.

  18. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice.

    PubMed

    Adhikari, T B; Joseph, C M; Yang, G; Phillips, D A; Nelson, L M

    2001-10-01

    Of 102 rhizoplane and endophytic bacteria isolated from rice roots and stems in California, 37% significantly (P < or = 0.05) inhibited the growth in vitro of two pathogens, Achlya klebsiana and Pythium spinosum, causing seedling disease of rice. Four endophytic strains were highly effective against seedling disease in growth pouch assays, and these were identified as Pseudomonas fluorescens (S3), Pseudomonas tolaasii (S20), Pseudomonas veronii (S21), and Sphingomonas trueperi (S12) by sequencing of amplified 16S rRNA genes. Strains S12, S20, and S21 contained the nitrogen fixation gene, nifD, but only S12 was able to reduce acetylene in pure culture. The four strains significantly enhanced plant growth in the absence of pathogens, as evidenced by increases in plant height and dry weight of inoculated rice seedlings relative to noninoculated rice. Three bacterial strains (S3, S20, and S21) were evaluated in pot bioassays and reduced disease incidence by 50%-73%. Strain S3 was as effective at suppressing disease at the lowest inoculum density (106 CFU/mL) as at higher density (10(8) CFU/mL or undiluted suspension). This study indicates that selected endophytic bacterial strains have potential for control of seedling disease of rice and for plant growth promotion.

  19. [Management of acute diarrheal disease with rice water].

    PubMed

    Tavarez, L A; Gomez, M; Mendoza, H R

    1991-01-01

    A prospective study was conducted in late 1990 of 60 children aged 3-35 months to compare management of light to moderate dehydration from acute diarrhea using World Health Organization oral rehydration solution (ORS) or rice water. Rice water, the liquid obtained by draining rice after cooking, has the nutritional advantage of providing more calories during rehydration than does ORS and the osmolar advantage that its carbohydrates are released gradually in the intestine. 30 children were rehydrated with rice water and 30 with ORS. The rice water was prepared in the manner typical of mothers in the Dominican Republic as revealed by a recent survey. Mildly dehydrated patients were given 50 ml/kg of either rice water or ORS and those with moderate dehydration were given 100 ml/kg. Patients were monitored during the 4-6 hours of treatment and returned 24 hours later for evaluation. Serum sodium levels were measured on admission and after 4 hours of treatment. The two groups of infants were similar in age, sex, duration and severity of diarrhea, and degree of dehydration. The ORS group had 3.07 stools on average during treatment, significantly more than the 1.58 of the rice water group. The consistency more frequently remained watery in the ORS group. The ORS group gained more weight on average, 0.31 kg vs. 0.20 kg in the rice water group, but the difference was not statistically significant. Serum sodium tended to decline slightly in both groups, with the decline of 1.69 in the ORS group and 0.26 in the rice water group not differing significantly. The results suggest that rice water can be used along with solid foods in the maintenance phase after rehydration with ORS in cases of mild to moderate dehydration, but it should not be used alone as a rehydrating solution. Its use should be evaluated in infants under four months old and in severely malnourished children, who may absorb the carbohydrates too slowly to be effective in reducing fecal losses.

  20. Rice-Map: a new-generation rice genome browser

    PubMed Central

    2011-01-01

    Background The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. Description More than one hundred annotation tracks (81 for japonica and 82 for indica) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Conclusions Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading. PMID:21450055

  1. Influence of rice bran stearin on stability, properties and encapsulation efficiency of polyglycerol polyricinoleate (PGPR)-stabilized water-in-rice bran oil emulsions.

    PubMed

    Prichapan, Nattapong; McClements, David Julian; Klinkesorn, Utai

    2017-03-01

    In the present study, rice bran stearin was used to improve the physical stability and encapsulation efficiency of water-in-oil (W/O) emulsions fabricated from rice bran oil and polyglycerol polyricinoleate ester (PGPR). In the absence of rice bran stearin, the emulsions were highly unstable to phase separation with an oil layer forming on their surfaces. Phase separation was delayed by increasing the PGPR concentration because this reduced the water droplet size. Phase separation could be completely inhibited by replacement of 30 to 45wt% of rice bran oil with rice bran stearin due to the formation of a semi-solid fat crystal network that prevented droplet movement. Moreover, addition of rice bran stearin delayed the release of ferrous sulfate from the W/O emulsions. These results demonstrate that rice bran stearin can be used to improve the stability and encapsulation efficiency of W/O emulsions and reduce the level of PGPR required to stabilize them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Long-term effect of rice-based farming systems on soil health.

    PubMed

    Bihari, Priyanka; Nayak, A K; Gautam, Priyanka; Lal, B; Shahid, M; Raja, R; Tripathi, R; Bhattacharyya, P; Panda, B B; Mohanty, S; Rao, K S

    2015-05-01

    Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively.

  3. Interference of allelopathic rice with paddy weeds at the root level.

    PubMed

    Yang, X-F; Kong, C-H

    2017-02-20

    Despite increasing knowledge of the involvement of allelopathy in negative interactions among plants, relatively little is known about its action at the root level. This study aims to enhance understanding of interactions of roots between a crop and associated weeds via allelopathy. Based on a series of experiments with window rhizoboxes and root segregation methods, we examined root placement patterns and root interactions between allelopathic rice and major paddy weeds Cyperus difformis, Echinochloa crus-galli, Eclipta prostrata, Leptochloa chinensis and Oryza sativa (weedy rice). Allelopathic rice inhibited growth of paddy weed roots more than shoots regardless of species. Furthermore, allelopathic rice significantly reduced total root length, total root area, maximum root width and maximum root depth of paddy weeds, while the weeds adjusted horizontal and vertical placement of their roots in response to the presence of allelopathic rice. With the exception of O. sativa (weedy rice), root growth of weeds avoided expanding towards allelopathic rice. Compared with root contact, root segregation significantly increased inhibition of E. crus-galli, E. prostrata and L. chinensis through an increase in rice allelochemicals. In particular, their root exudates induced production of rice allelochemicals. However, similar results were not observed in C. difformis and O. sativa (weedy rice) with either root segregation or root exudate application. The results demonstrate that allelopathic rice interferes with paddy weeds by altering root placement patterns and root interactions. This is the first case of a root behavioural strategy in crop-weed allelopathic interaction.

  4. Nitrogen fertilizer fate after introducing maize into a continuous paddy rice cropping system

    NASA Astrophysics Data System (ADS)

    Thiemann, Irabella; He, Yao; Siemens, Jan; Brüggemann, Nicolas; Lehndorf, Eva; Amelung, Wulf

    2017-04-01

    After introducing upland crops into permanent flooded cropping systems, soil conditions temporally change from anaerobic to aerobic, which profoundly impacts nitrogen (N) dynamics. In the framework of the DFG research unit 1701 ICON we applied a single 15N-urea pulse in a field experiment in the Philippines with three different crop rotations: continuous paddy rice, paddy rice-dry rice, and paddy rice-maize. Subsequently, we traced the fate of the labelled urea in bulk soil, rhizosphere, roots, biomass and microbial residues (amino sugars) within the following two years. 15N recovery in the first 5 cm of bulk soil was highest in the first dry season of continuous paddy rice cropping (37.8 % of applied 15N) and lowest in the paddy rice-maize rotation (19.2 %). While an accumulation over time could be observed in bulk soil in 5-20 cm depth of the continuous paddy rice system, the recoveries decreased over time within the following two years in the other cropping systems. Highest 15N-recovery in shoots and roots were found in the continuous paddy rice system in the first dry season (27.3 % in shoots, 3.2 % in roots) as well as in the following wet season (4.2 % in shoots, 0.3 % in roots). Lowest recoveries in biomass were found for the paddy rice-dry rice rotation. Long-term fixation of 15N in microbial biomass residues was observed in all cropping systems (2-3 % in the 3rd dry season). The results indicate that the introduction of maize into a continuous paddy rice cropping system can reduce the fertilizer N use efficiency especially in the first year, most likely due to nitrate leaching and gaseous losses to the atmosphere.

  5. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    NASA Astrophysics Data System (ADS)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4

  6. Differences in how rice plants processes arsenic in their cells

    USDA-ARS?s Scientific Manuscript database

    Arsenic (As), a carcinogenic heavy metal, is a problem in some drinking water and staple food supplies around the world. Rice plants readily uptake arsenic and transport a portion of it into the grain. Arsenic is also toxic to plants; therefore mechanisms that reduce toxicity or accumulation have ev...

  7. The properties of pellets from mixing bamboo and rice straw

    Treesearch

    Zhijia Liu; Xing' e Liu; Benhua Fei; Zehui Jiang; Zhiyong Cai; Yan Yu

    2013-01-01

    Rice straw pellets are the main type of biomass solid fuel and have great potential as a bioenergy resource of the future in China. But it also showed important problems because of its high content of ashes and its low gross calorific value, reducing the possibility to be used in domestic heating. It was certified that mixing different types of biomass materials was...

  8. A modified ferrous oxidation-xylenol orange assay for lipoxygenase activity in rice grains.

    PubMed

    Timabud, Tarinee; Sanitchon, Jirawat; Pongdontri, Paweena

    2013-12-01

    Ferrous oxidation-xylenol orange assay reagent was reformulated by using spectral analysis of ferric-xylenol orange complex to detect low concentrations of lipoxygenase rice grain products. Reducing the levels of ferrous sulphate and xylenol orange in the FOX reagent enabled the detection of low concentrations of hydroperoxy fatty acid derived from lipoxygenase activity in the range of 0.1-1.5 μM. Protein, substrate and time courses of the modified FOX assay were studied to determine lipoxygenase activity in rice grain. The assay was also applicable as a high throughput technique for comparisons of lipoxygenase activity from various rice varieties. This has important implications for rapid screening for low-lipoxygenase containing rice cultivars in rice breeding program and grain quality during storage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of iron plaque on antimony uptake by rice (Oryza sativa L.).

    PubMed

    Cui, Xiao-Dan; Wang, Yu-Ju