Sample records for rice husk ash-synthesized

  1. Removal of copper (II) ion from aqueous solution using zeolite Y synthesized from rice husk ash: Equilibrium and kinetic study

    NASA Astrophysics Data System (ADS)

    Tuyen, Nguyen Thi Kim; Nhan, Do Nguyen Thanh; Nhat, Trieu Thi; An, Ngo Thanh; Long, Nguyen Quang

    2017-09-01

    Zeolite Y was synthesized from silica of rice-husk ash using hydrothermal process. The crystalline structure FAU of zeolite Y was characterized by X-ray diffraction (XRD). Surface's area of the catalyst was determined by physic-adsorption method using BET model. The zeolite was examined for possibility of Cu2+ adsorbent by an ion-exchange mechanism. Various adsorption isotherm models, such as Langmuir, Freundlich and Dubinin-Radushkevich were tested for equilibrium study. The integration method was applied to find out the possible kinetic equation of the Cu2+ adsorption on the zeolite Y which obtained from cheap and locally available rice husk ash.

  2. Physical characteristics of chitosan-silica composite of rice husk ash

    NASA Astrophysics Data System (ADS)

    Sumarni, Woro; Sri Iswari, Retno; Marwoto, Putut; Rahayu, Endah F.

    2016-02-01

    Some previous studies showed that the characteristics of chitosan membranes have a very rigid and non-porous structure so that its utilization is not maximized, particularly in the filtration process. Hence, it needs modification to improve the quality of the chitosan membranes. Adding the silica into the chitosan membranes is one of the offered solutions to overcome the problems of physical and mechanical properties of chitosan. This study aims to investigate the effect of variations in the silica composition to the physical characteristics of the chitosan-silica membranes of rice husk ash that were synthesized. The chitosan used is derived from the chitin of Vannamei shrimps’ shell with 82% degree of de-acetylation, while the silica was synthesized from rice husk ash with rendering of silica (SiO2) by 5% and the results of XRD analysis showed an amorphous phase. Membrane synthesis was performed using the phase inversion method with chitosan-silica mass ratios of rice husk ash, which were 1:0.0; 1:0.5; 1:1.0; 1:1.5 and 1:2.0. The results showed that the addition of silica increases the swelling index and the membrane permeability. The results of the analysis, FTIR spectra, obtained a new functional group after the addition of silica, they are Si-OH, Si-O-Si, and CO- NH2. The morphology test using CCD Microscope MS-804 results in the very tight chitosan membranes without the silica surface, it has no pores, smooth and homogeneous, while the chitosan-silica composite membrane of rice husk ash obviously has cracks and small cavities that seemed to spread out.

  3. Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash

    NASA Astrophysics Data System (ADS)

    Thang, Nguyen Hoc; Hoa, Nguyen Ngoc; Quyen, Pham Vo Thi Ha; Tuyen, Nguyen Ngoc Kim; Anh, Tran Vu Thao; Kien, Pham Trung

    2018-04-01

    Geopolymer technology was developed by Joseph Davidovits in 1970s based on reactions among alumino-silicate resources in high alkaline conditions. Geopolymer has been recently gaining attention as an alternative binder for Ordinary Portland cement (OPC) due to its low energy and CO2 burden. The raw materials used for geopolymerization normally contain high SiO2 and Al2O3 in the chemical compositions such as meta-kaoline, rice husk ash, fly ash, bottom ash, blast furnace slag, red mud, and others. Moreover, in this paper, coal bottom ash (CBA) and rice husk ash (RHA), which are industrial and agricultural wastes, respectively, were used as raw materials with high alumino-silicate resources. Both CBA and RHA were mixed with sodium hydroxide (NaOH) solution for 20 minutes to obtain the geopolymer pastes. The pastes were filled in 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room condition for hardening of the geopolymer specimens. After 24 hours, the specimens were removed out of the molds and continuously cured at room condition for 27 days. The geopolymer-based materials were then tested for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). Results indicated that the material can be considered lightweight with volumetric weight from 1192 to 1425 kg/m3; compressive strength at 28 days is in the range of 12.38 to 37.41 MPa; and water absorption is under 189.92 kg/m3.

  4. Leachability of heavy metals in geopolymer-based materials synthesized from red mud and rice husk ash

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoc Thang; Pham, Vo Thi Ha Quyen; Dang, Thanh Phong; Dao, Thanh Khe

    2018-04-01

    Red mud is an industrial waste generated during aluminum production from bauxite whereas rice husk ash is an agricultural waste from burning of rice husk that could cause negative impact on the environment if not properly managed. This study demonstrates the utilization of red mud in combination with rice husk ash to form a geopolymer-based material which can be used as bricks or replacement for traditional cement materials. The focus of this study is on the leachability of heavy metals in the raw materials and the geopolymer as this would be significant in assessing the environmental impact of the product. Leachability of metals such as Cu, Zn, Cd, Pb, Fe, and Cr was evaluated based on European (EN 124572-2 EU CEN TC292/ CEN TC 308) standard with pH value 7. Results indicate that the leachability of these metals in the geopolymer matrix is lower than that of the raw materials.

  5. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  6. Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications

    NASA Astrophysics Data System (ADS)

    Malhotra, Chetan; Patil, Rajshree; Kausley, Shankar; Ahmad, Dilshad

    2013-06-01

    Rice-husk-ash is used as the base material for developing novel compositions to deal with the challenge of purifying drinking water in low-income households in India. For example, rice-husk-ash cast in a matrix of cement and pebbles can be formed into a filtration bed which can trap up to 95% of turbidity and bacteria present in water. This innovation was proliferated in villages across India as a do-it-yourself rural water filter. Another innovation involves embedding silver nanoparticles within the rice husk ash matrix to create a bactericidal filtration bed which has now been commercialized in India as a low-cost for-profit household water purifier. Other innovations include the impregnation of rice-husk-ash with iron hydroxide for the removal of arsenic from water and the impregnation of rice-husk ash with aluminum hydroxide for the removal of fluoride ions from water which together have the potential to benefit over 100 million people across India who are suffering from the health effects of drinking groundwater contaminated with arsenic and fluoride.

  7. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    NASA Astrophysics Data System (ADS)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  8. Characteristics of silica rice husk ash from Mojogedang Karanganyar Indonesia

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Iriani, Y.; Nurosyid, F.; Fasquelle, D.

    2018-05-01

    Indonesia is one of the countries in the world as the most abundant rice producer. Many researchers have demonstrated that the highest composition in the rice husk ash (RHA) is silica. Some of the advantages in utilizing silica as the raw material is the manufacture of ceramics, zeolite synthesis, fabrication of glass, electronic insulator materials, and as a catalyst. The amount of silica from rice husk ash is different for each region. Therefore, the study of silica from RHA is still promising, especially rice organic fertilizers. In this study, the rice came from Mojogedang Karanganyar Indonesia. Rice husk was dried under the solar radiation. Then the rice husk was heated in two steps: the first step at a temperature of 300°C and the second step at a temperature of 1200°C with a holding time at 2 h and 1 h, respectively. Furthermore, the temperature of the second step was varied at 1400 °C and 1600 °C. This heating process produced RHA. The content of RHA was observed on the EDAX spectrums while the morphology was observed from SEM images. The crystal structure of RHA was determined from XRD spectrums. The EDAX spectrums showed that RHA composition was dominated by elements Si and O for all the heating temperature. SEM images showed an agglomeration towards larger domains as heating temperatures increase. Analysis of XRD spectra is polycrystalline silica formed with the significant crystal orientation at 101, 102 and 200. The intensity of 101 increases significantly with increasing temperature. It is concluded that the crystal growth in the direction of 101 is preferred.

  9. Mechanical performance of porous concrete pavement containing nano black rice husk ash

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan

    2018-01-01

    This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.

  10. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    PubMed Central

    Ziegler, Daniele; Formia, Alessandra; Tulliani, Jean-Marc; Palmero, Paola

    2016-01-01

    This paper assesses the feasibility of two industrial wastes, fly ash (FA) and rice husk ash (RHA), as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i) halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S); (ii) halloysite activated with rice husk ash dissolved into KOH solution (HL-R); (iii) FA activated with the alkaline solution realized with the rice husk ash (FA-R). Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP) was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation. PMID:28773587

  11. Effect of rice husk ash mass on sustainability pyrolysis zone of fixed bed downdraft gasifier with capacity of 10 kg/hour

    NASA Astrophysics Data System (ADS)

    Surjosatyo, Adi; Haq, Imaduddin; Dafiqurrohman, Hafif; Gibran, Felly Rihlat

    2017-03-01

    The formation of pyrolysis sustainability (Sustainable Pyrolysis) is the objective of the gasification process. Pyrolysis zone in the gasification process is the result of the endothermic reaction that get heat from oxidation (combustion) of the fuel with oxygen, where cracking biomass rice husk result of such as charcoal, water vapor, steam tar, and gas - gas (CO, H 2, CH 4, CO 2 and N 2) and must be maintained at a pyrolysis temperature to obtain results plentiful gas (producer gas) or syngas (synthetic gas). Obtaining continuously syngas is indicated by flow rate (discharge) producer gas well and the consistency of the flame on the gas burner, it is highly influenced by the gasification process and the operation of the gasifier and the mass balance (mass balance) between the feeding rate of rice husk with the disposal of ash (ash removal). In experiments conducted is using fixed bed gasifier type downdraft capacity of 10 kg/h. Besides setting the mass of rice husks into the gasifier and disposal arrangements rice husk ash may affect the sustainability of the pyrolysis process, but tar produced during the gasification process causes sticky rice husk ash in the plenum gasifier. Modifications disposal system rice husk ash can facilitate the arrangement of ash disposal then could control the temperature pyrolysis with pyrolysis at temperatures between 500-750 ° C. The experimental study was conducted to determine the effect of mass quantities of rice husk ash issued against sustainability pyrolysis temperature which is obtained at each time disposal of rice husk ash to produce 60-90 grams of ash issued. From some experimental phenomena is expected to be seen pyrolysis and its effect on the flow rate of syngas and the stability of the flame on the gas burner so that this research can find a correlation to obtain performance (performance) gasifier optimal.

  12. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator.

    PubMed

    Benassi, L; Bosio, A; Dalipi, R; Borgese, L; Rodella, N; Pasquali, M; Depero, L E; Bergese, P; Bontempi, E

    2015-08-15

    The Stabilization of heavy metals from municipal solid waste incineration (MSWI) fly ash by rice husk ash (RHA) is under intense study as an effective strategy to recover and reuse industrial and agricultural waste together. We compare the metal entrapment performances of RHA from different Asian rice sources – namely from Japonica rice grown in Italy and Indica rice grown in India – Physicochemical and morphological characterization of the final stabilized material show that the same thermal treatment may result in marked structural differences in the silica contained in the two RHA. Remarkably, one of them displays a crystalline silica content, although obtained by a thermal treatment below 800 °C. We also find that the presence of an alkali metal ion (potassium) in the rice husk plays a crucial role in the attainment of the final silica phase. These physicochemical differences are mirrored by different stabilization yields by the two RHA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization of upgraded hydrogel biochar from blended rice husk with coal fly ash

    NASA Astrophysics Data System (ADS)

    Ahmad, Nurul Farhana; Alias, Azil Bahari; Talib, Norhayati; Rashid, Zulkifli Abd; Ghani, Wan Azlina Wan Ab Karim

    2017-12-01

    Rice husk biochar (RB) blended with coal fly ash (CFA) is used as a material to develop hydrogel for heavy metal removal. This combination, namely hydrogel rice husk biochar-coal fly ash (HRB-CFA) composite is synthesized by embedding the biochar into acrylamide (AAM) as monomer, with N,N'-Methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. While activated carbon (AC) remains an expensive material, HRB-CFA is attracting great interest for its use in the absorption of organic contaminants due to its low material cost and importance as renewable source for securing future energy supply in the environmental system. Although the CFA does not have the surface area as high as AC, certain metallic components that are naturally present in the CFA can play the catalytic role in the removal of heavy metal from wastewater. The percentage of heavy metal removal is depends on the parameters that influence the sorption process; the effect of pH solution, dosage of adsorbent, initial concentration of solution, and contact time. The aim of this study is to characterize HRB-CFA by performing several analyses such as the Brunauer-Emmett-Teller (BET), thermogravimetric (TGA) and field emission scanning electron microscopy (FESEM) methods. The results obtained revealed that the best hydrogel ratio is 0.5:0.5 of blended RB and CFA, as proven by BET surface area, pore volume and pore size of 3.5392 m2/g, 0.00849 cm3/g and 90.566 Å, and the surface morphology showed an increase in porosity size.

  14. Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating.

    PubMed

    Shinohara, Yasushi; Kohyama, Norihiko

    2004-04-01

    The quantities of two forms of crystalline silica, tridymite and cristobalite, in heated rice husk ash (RHA) samples were determined by X-ray diffraction (XRD) and chemical methods. Two RHA samples, containing 93% SiO2 and 2-3% K2O, were prepared from charcoaled rice husk products and heated to above 900 degrees C. The crystalline silica made up over 60-80% of the total silica in the heated RHA samples based on the XRD analysis. The crystalline phases in the two samples were somewhat different: The sample heated in the temperature range of 900 to 1,200 degrees C contained 52-62% cristobalite and 10-17% tridymite, but the other sample heated at a comparable temperature, above 1,100 degrees C, contained 46-66% tridymite and 37-16% cristobalite. Based on a correlation of lower tridymite crystallization temperature with higher potassium content, it was concluded that higher potassium levels were responsible for this difference. The pyrophosphoric acid analysis did not give exact results in the evaluation of total crystalline silica content in these RHA samples. As the combustion of rice husk was considered to cover the demands for energy and silica resource in Asian countries, cristobalite and tridymite crystallized in RHA by burning of rice husk should be assessed precisely by XRD analysis and the airborne dust in relevant workplace be controlled.

  15. Evaluation of rice husk ash as filler in tread compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, M. R. S.; Furtado, C. R. G.; de Sousa, A. M. F.

    2014-05-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety).

  16. Evaluation of rice husk ash as filler in tread compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, M. R. S., E-mail: monica.fernandes@lanxess.com; Furtado, C. R. G., E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de, E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same timemore » better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)« less

  17. Synthesis of ZSM-5 zeolite from coal fly ash and rice husk: characterization and application for partial oxidation of methane to methanol

    NASA Astrophysics Data System (ADS)

    Krisnandi, Y. K.; Yanti, F. M.; Murti, S. D. S.

    2017-04-01

    Indonesian fly ash (SiO2/Al2O3 mole ratio = 3.59) was used together with rice husk (SiO2 92%) as raw material for mesoporous ZSM-5 zeolite synthesis. Prior being used, coal fly ash and rice husk were subjected to pre-treatment in order to extract silicate (SiO4 4-) and aluminate (AlO4 5-) and to remove the impurities. Then the ZSM-5 zeolite were synthesized through hydrothermal treatment using two types of templates (TPAOH and PDDA). The as-synthesized ZSM-5 was characterized using FTIR, XRD, SEM-EDX, and BET. The result of FTIR showed peaks at 1250-950 cm-1 (v asymetric T-O), 820-650 cm-1 (v symetric T-O), and at 650-500 cm-1 confirming the presence of the five number ring of the pentasil structure. The result of XRD showed the appearance of certain peaks in the position 2 theta between 7-9° and 22-25° indicative of ZSM-5 structure, but also showed the pattern of low intensity magnetite and hematite. The SEM image showed the rough surface of hexagonal crystals from ZSM-5 structure, indicative of mesoporosity in the structure. EDX result showed Si/Al ratio of 20, while surface area analysis gave SA of 43.16. The ZSM-5 zeolites then was modified with cobalt oxide through impregnation method. The catalytic activity as heterogeneous catalysts in partial oxidation of methane was tested. The result showed that hence the catalytic activity of ZSM-5 and Co/ZSM-5 from fly ash and rice husk were still inferior compared to the pro-analysis sourced-counterpart, they were potential to be used as catalyst in the partial oxidation of methane to methanol.

  18. Hydrothermal carbonization of rice husk for fuel upgrading

    NASA Astrophysics Data System (ADS)

    Suteerawattananonda, N.; Kongkaew, N.; Patumsawad, S.

    2018-01-01

    The biomass is popularly used as renewable energy. In Thailand rice is the most consume agricultural products. Agricultural residues from rice husk can be an energy resource. However, alkali and alkali earth materials (AAEMs) in biomass ash are the causes of corrosion and erosion problem in the heat exchanger equipment, while the acidity of ash affects the slagging agglomeration problem. Reduction of alkali and alkali earth materials can minimize the problem. In order to challenge the reduction of alkali and alkali earth materials in biomass ash, hydrothermal carbonization process was selected. Thai rice husk was used as sample to compare the result of treatment. The rice husk was heated under the condition of different temperature ranged from 180°C to 250°C, at operate pressure ranges from 12 bar to 42 bar with residence holding reaction time 1 hour. The results of proximate analysis show that the percentage by mass of fixed carbon are increased 2 times, but volatile matter is decreased by 40% and ash content is decreased by 11% due to the increment of temperature. Meanwhile, the X-Ray fluorescence (XRF) analysis results show the decreasing of alkali and alkali earth materials are reduced.

  19. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    PubMed Central

    Benassi, Laura; Franchi, Federica; Catina, Daniele; Cioffi, Flavio; Rodella, Nicola; Borgese, Laura; Pasquali, Michela; Depero, Laura E.; Bontempi, Elza

    2015-01-01

    A new technology was recently developed for municipal solid waste incineration (MSWI) fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA), an agricultural byproduct material (COSMOS-RICE project). The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC) was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste. PMID:28793605

  20. Rice husk (RH) as additive in fly ash based geopolymer mortar

    NASA Astrophysics Data System (ADS)

    Yahya, Zarina; Razak, Rafiza Abd; Abdullah, Mohd Mustafa Al Bakri; Rahim, Mohd Azrin Adzhar; Nasri, Armia

    2017-09-01

    In recent year, the Ordinary Portland Cement (OPC) concrete is vastly used as main binder in construction industry which lead to depletion of natural resources in order to manufacture large amount of OPC. Nevertheless, with the introduction of geopolymer as an alternative binder which is more environmental friendly due to less emission of carbon dioxide (CO2) and utilized waste materials can overcome the problems. Rice husk (RH) is an agricultural residue which can be found easily in large quantity due to production of paddy in Malaysia and it's usually disposed in landfill. This paper investigated the effect of rice husk (RH) content on the strength development of fly ash based geopolymer mortar. The fly ash is replaced with RH by 0%, 5%, 10%, 15% and 20% where the sodium silicate and sodium hydroxide was used as alkaline activator. A total of 45 cubes were casted and their compressive strength, density and water absorption were evaluated at 1, 3, and 7 days. The result showed compressive strength decreased when the percentage of RH increased. At 5% replacement of RH, the maximum strength of 17.1MPa was recorded at day 7. The geopolymer has lowest rate of water absorption (1.69%) at 20% replacement of RH. The density of the sample can be classified as lightweight geopolymer concrete.

  1. Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiliang; He, Wenxiu; Zheng, Jianzhong; Wang, Guangquan; Ji, Jianbing

    2016-11-01

    Nanofluids, colloidal suspensions consisting of base fluids and nanoparticles, are a new generation of engineering working fluids. Nanofluids have shown great potential in heat/mass transfer applications. However, their practical applications are limited by the high production cost and low stability. In this study, a low-cost agricultural waste, rice husk ash (RHA), was used as a silicon source to the synthesis of silica nanofluids. First, silica nanoparticles with an average size of 47 nm were synthesized. Next, by dispersing the silica nanoparticles in water with ultrasonic vibration, silica nanofluids were formed. The results indicated that the dispersibility and stability of nanofluids were highly dependent on sonication time and power, dispersant types and concentrations, as well as pH; an optimal experiment condition could result in the highest stability of silica nanofluid. After 7 days storage, the nanofluid showed no sedimentation, unchanged particle size, and zeta potential. The results of this study demonstrated that there is a great potential for the use of RHA as a low-cost renewable resource for the production of stable silica nanofluids.

  2. Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash.

    PubMed

    Ganvir, Vivek; Das, Kalyan

    2011-01-30

    Fluoride content in groundwater that is greater than the WHO limit of 1.5mg/L, causes dental and skeletal fluorosis. In India, several states are affected with excess fluoride in groundwater. The problem is aggravated due to the lack of appropriate and user friendly defluoridation technology. Several fluoride removal techniques are reported in the literature amongst which the Nalgonda technique and use of activated alumina have been studied extensively. However a simple, efficient and cost effective technology is not available for widespread use in many affected regions. In this paper, we present a novel cost effective defluoridation method that is based on surface modification of rice husk ash (RHA) by coating aluminum hydroxide. RHA is obtained by burning rice/paddy husk which is an abundantly available and is an inexpensive raw material. The results showed excellent fluoride removal efficiency and the adsorption capacity was found to be between 9 and 10mg/g. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Effect of forging on mechanical properties of rice husk ash-silicon carbide reinforced Al1100 hybrid composites

    NASA Astrophysics Data System (ADS)

    Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.

    2018-04-01

    During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.

  4. Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor

    NASA Astrophysics Data System (ADS)

    Saloma, Hanafiah, Elysandi, Debby Orjina; Meykan, Della Garnesia

    2017-11-01

    Geopolymer concrete is an eco-friendly concrete that can reduce carbon emissions on the earth surface because it used industrial waste material such as fly ash, rice husk ash, bagasse ash, and palm oil fuel. Geopolymer is semi-crystalline amorphous materials which has irregular chemical bonds structure. The material is produced by geosynthesis of aluminosilicates and alkali-silicates which produce the Si-O-Al polymer structure. This research used the ratio of fly ash and rice husk ash as precursors e.g. 100:0, 75:25, 50:50, and 25:75. NaOH solutions of 14 M and Na2SiO3 solutions with the variation e.g. 2.5, 2.75, 3.00, and 3.25 were used as activators on mortar geopolymer mixture. The tests of fresh mortar were slump flow and setting time. The optimum compressive strength is 68.36 MPa for 28 days resulted from mixture using 100% fly ash and Na2SiO3 and NaOH with ratio 2.75. The largest value of slump flow test resulted from mixture using Na2SiO3 and NaOH with ratio 2.50 is 17.25 cm. Based on SEM test results, mortar geopolymer microstructure with mixture RHA 0% has less pores and denser CSH structure.

  5. Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay

    NASA Astrophysics Data System (ADS)

    Ortiz, A. V.; Teixeira, J. G.; Gomes, M. G.; Oliveira, R. R.; Díaz, F. R. V.; Moura, E. A. B.

    2014-08-01

    This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol-gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material.

  6. Synthesis of zeolite from rice husk ash waste of brick industries as hydrophobic adsorbent for fuel grade ethanol purification

    NASA Astrophysics Data System (ADS)

    Purnomo, A.; Alhanif, M.; Khotimah, C.; Zuhra, UA; Putri, BR; Kumoro, AC

    2017-11-01

    A lot of researchers have devoted on ethanol utilization as renewable energy to substitute petroleum based gasoline. When ethanol is being used as a new fuel candidate, it should have at least of 99.5% purity. Usually produced via sugar fermentation process, further purification of ethanol from other components in fermentation broth to obtain its fuel grade is a crucial step. The purpose of this research is to produce synthetic zeolite as hydrophobic adsorbent from rice husk ash for ethanol-water separation and to investigate the influence of weight, adsorption time and initial ethanol concentration on zeolite adsorption capacity. This research consisted of rice husk silica extraction, preparation of hydrophobic zeolite adsorbent, physical characterization using SEM, EDX and adsorption test for an ethanol-water solution. Zeolite with highest adsorption capacity was obtained with 15: 1 alumina silica composition. The best adsorption condition was achieved when 4-gram hydrophobic zeolite applied for adsorption of 100 mL of 10% (v/v) ethanol-water solution for 120 minutes, which resulted in ethanol with 98.93% (v/v) purity. The hydrophobic zeolite from rice husk ash is a potential candidate as an efficient adsorbent to purify raw ethanol into fuel grade ethanol. Implementation of this new adsorbent for ethanol production in commercial scale may reduce the energy consumption of that usually used for the distillation processes.

  7. Synthesis of geopolymer from rice husk ash for biodiesel production of Calophyllum inophyllum seed oil

    NASA Astrophysics Data System (ADS)

    Saputra, E.; Nugraha, M. W.; Helwani, Z.; Olivia, M.; Wang, S.

    2018-04-01

    In this work, geopolymer was prepared from rice husk ash (RHA) made into sodium silicate then synthesized by reacting metakaolin, NaOH, and water. The catalyst was characterized using Scanning Electron Microscopy (SEM), Energy-dispersive X-Ray analysis (EDX), Brunaeur Emmet Teller (BET), and basic strength. Then, the catalyst used for transesterification of Calophyllum inophyllum seed oil in order to produce biodiesel. The variation of process variables conducted to assess the effect on the yield of biodiesel. The highest yield obtained 87.68% biodiesel with alkyl ester content 99.29%, density 866 kg/m3, viscosity 4.13 mm2/s, the acid number of 0.42 mg-KOH/g biodiesel and the flash point 140 °C. Generally, variations of %w/w catalyst provides a dominant influence on the yield response of biodiesel. The physicochemical properties of the produced biodiesel comply with ASTM standard specifications.

  8. Reuse of Coconut Shell, Rice Husk, and Coal Ash Blends in Geopolymer Synthesis

    NASA Astrophysics Data System (ADS)

    Walmiki Samadhi, Tjokorde; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Rizki Fernando, Muhammad

    2017-10-01

    Mixtures of biomass and coal ashes are likely to be produced in increasing volume as biomass-based energy production is gaining importance in Indonesia. This work highlights the reuse of coconut shell ash (CSA), rice husk ash (RHA), and coal fly ash (FA) for geopolymer synthesis by an activator solution containing concentrated KOH and Na2SiO3. Ash blend compositions are varied according to a simplex-centroid mixture experimental design. Activator to ash mass ratios are varied from 0.8 to 2.0, the higher value being applied for ash compositions with higher Si/Al ratio. The impact of ash blend composition on early strength is adequately modeled by an incomplete quadratic mixture model. Overall, the ashes can produce geopolymer mortars with an early strength exceeding the Indonesian SNI 15-2049-2004 standard minimum value of 2.0 MPa. Good workability of the geopolymer is indicated by their initial setting times which are longer than the minimum value of 45 mins. Geopolymers composed predominantly of RHA composition exhibit poor strength and excessive setting time. FTIR spectroscopy confirms the geopolymerization of the ashes by the shift of the Si-O-Si/Al asymmetric stretching vibrational mode. Overall, these results point to the feasibility of geopolymerization as a reuse pathway for biomass combustion waste.

  9. Pozzolanic Characterization Of Waste Rice Husk Ash (RHA) From Muar, Malaysia

    NASA Astrophysics Data System (ADS)

    Hadipramana, J.; Riza, F. V.; Rahman, I. A.; Loon, L. Y.; Adnan, S. H.; Zaidi, A. M. A.

    2016-11-01

    Investigation of Rice Husk Ash (RHA) thoroughly under controlled burning is regular issue to obtain result to produce the amorphous silica that has high pozzolanic reactivity characteristic. This paper offered an observation about characteristic of ground and un-ground of un-controlled burning temperature RHA that were taken from rice millings in Muar, Johor Malaysia. Such tests as X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analysis and Specific Area Surface, Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron microscope (SEM) were conducted in this investigation to carry out the characteristic of RHA samples. The results show that the RHA was consist approximately 89.90% of silica and the RHA possessed the amorphous particle were dominant than its crystalline part. This proves that the RHA has a big potential as a pozzolanic material considering the silica content and porous structure. In addition, particle size analysis decides whether the pozzolanic reactivity can be increased by grinding process.

  10. Synthesis of adsorbent with zeolite structure from red mud and rice husk ash and its properties

    NASA Astrophysics Data System (ADS)

    Quyen, Dinh Thi Ngoc; Loc, Luu Cam; Ha, Huynh Ky Phuong; Nga, Dang Thi Hang; Tri, Nguyen; Van, Nguyen Thi Thuy

    2017-09-01

    There are many researches in the modification of red mud as adsorbent for treatment of wastewater or waste gases. Yet, most of them have to face up with a thorny problem caused by remaining alkali in red mud. In this study, the material with zeolite structure was synthesized by fusion method using red mud with the remaining alkali and rice husk ash as raw materials. It comprised alkaline fusion followed by hydrothermal treatment with step - change of synthesis temperature. The synthesized materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), BET and CO2 adsorption capacity. The influences on the quality of these materialswere investigated under various calcination temperatures, calcination times and the ratios of raw materials (based on SiO2/Al2O3 ratio). The optimum reaction parameters were determined. The results depicted that the sample treated at 600 °C for 2 hours with the ratio of SiO2/Al2O3 of 1.8 had the best adsorption capacity and total specific surface area compared with the others.

  11. Development of heat resistant geopolymer-based materials from red mud and rice husk ash

    NASA Astrophysics Data System (ADS)

    Thang, Nguyen Hoc; Nhung, Le Thuy; Quyen, Pham Vo Thi Ha; Phong, Dang Thanh; Khe, Dao Thanh; Van Phuc, Nguyen

    2018-04-01

    Geopolymer is an inorganic polymer composite developed by Joseph Davidovits in 1970s. Such material has potentials to replace Ordinary Portland Cement (OPC)-based materials in the future because of its lower energy consumption, minimal CO2 emissions and lower production cost as it utilizes industrial waste resources. Hence, geopolymerization and the process to produce geopolymers for various applications like building materials can be considered as green industry. Moreover, in this study, red mud and rice husk ash were used as raw materials for geopolymeric production, which are aluminum industrial and agricultural wastes that need to be managed to reduce their negative impact to the environment. The red mud and rice husk ash were mixed with sodium silicate (water glass) solution to form geopolymer paste. The geopolymer paste was filled into 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room temperature for 28 days. These products were then tested for compressive strength and volumetric weight. Results indicated that the material can be considered lightweight with a compressive strength at 28 days that are in the range of 6.8 to 15.5 MPa. Moreover, the geopolymer specimens were also tested for heat resistance at a temperature of 1000oC for 2 hours. Results suggest high heat resistance with an increase of compressive strength from 262% to 417% after exposed at high temperature.

  12. Durability of conventional concretes containing black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Performance of rice husk ash produced using a new technology as a mineral admixture in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nehdi, M.; Duquette, J.; El Damatty, A

    2003-08-01

    This article investigates the use of a new technique for the controlled combustion of Egyptian rice husk to mitigate the environmental concerns associated with its uncontrolled burning and provide a supplementary cementing material for the local construction industry. The reactor used provides efficient combustion of rice husk in a short residency time via the suspension of processed particles by jets of a process air stream that is forced though stationary angled blades at high velocity. Investigations on the rice husk ash (RHA) thus produced included oxide analysis, X-ray diffraction, carbon content, grindability, water demand, pozzolanic activity index, surface area, andmore » particle size distribution measurements. In addition, concrete mixtures incorporating various proportions of silica fume (SF) and Egyptian RHA (EG-RHA) produced at different combustion temperatures were made and compared. The workability, superplasticizer and air-entraining admixture requirements, and compressive strength at various ages of these concrete mixtures were evaluated, and their resistance to rapid chloride penetrability and deicing salt surface scaling were examined. Test results indicate that contrary to RHA produced using existing technology, the superplasticizer and air-entraining agent requirements did not increase drastically when the RHA developed in this study was used. Compressive strengths achieved by concrete mixtures incorporating the new RHA exceeded those of concretes containing similar proportions of SF. The resistance to surface scaling of RHA concrete was better than that of concrete containing similar proportions of SF. While the chloride penetrability was substantially decreased by RHA, it remained slightly higher than that achieved by SF concrete.« less

  14. Experimental Study on Rise Husk Ash & Fly Ash Based Geo-Polymer Concrete Using M-Sand

    NASA Astrophysics Data System (ADS)

    Nanda Kishore, G.; Gayathri, B.

    2017-08-01

    Serious environmental problems by means of increasing the production of Ordinary Portland cement (OPC), which is conventionally used as the primary binder to produce cement concrete. An attempt has been made to reduce the use of ordinary Portland cement in cement concrete. There is no standard mix design of geo-polymer concrete, an effort has been made to know the physical, chemical properties and optimum mix of geo-polymer concrete mix design. Concrete cubes of 100 x 100 x 100 mm were prepared and cured under steam curing for about 24 hours at temperature range of 40°C to 60°C. Fly ash is replaced partially with rice husk ash at percentage of 10%, 15% and 25%. Sodium hydroxide and sodium silicate are of used as alkaline activators with 5 Molar and 10 Molar NaOH solutions. Natural sand is replaced with manufacture sand. Test results were compared with controlled concrete mix of grade M30. The results shows that as the percentage of rice husk ash and water content increases, compressive strength will be decreases and as molarity of the alkaline solution increases, strength will be increases.

  15. Upgrading of bio-oil from the pyrolysis of biomass over the rice husk ash catalysts

    NASA Astrophysics Data System (ADS)

    Sutrisno, B.; Hidayat, A.

    2016-11-01

    The pyrolysis oils are complex mixtures of organic compounds that exhibit a wide spectrum of chemical functionality, and generally contain some water. Their direct use as fuels may present some difficulties due to their high viscosity, poor heating value, corrosiveness and instability. For possible future use as replacements for hydrocarbon chemical feedstocks and fuels, the liquids will require considerable upgrading to improve its characteristics. By esterification of the bio oil as the upgrading method, the properties of the bio-oil could be improved. In the paper, the upgrading of a bio-oil obtained by pyrolysis was studied over rice husk ash catalysts. The raw bio-oil was produced by pyrolysis of rice husk.From the experiment results, it can be concluded that the densities of upgraded bio-oil were reduced from 1.24 to 0.95 g.cm-3, and the higherheating value increased from 16.0 to 27.2 MJ/kg and the acidity of upgraded bio-oil was also alleviated from 2.3 to 4.4. The results of gas chromatography-mass spectrometry (GC-MS) and FT-IR analysis showed that the ester compounds in the upgraded bio-oil increased. It is possible to improve the properties of bio-oil by esterifying the raw bio-oil.

  16. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    PubMed

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  17. Comparison on the Surface Structure Properties along with Fe(II) and Mn(II) Removal Characteristics of Rice Husk Ash, Inactive Saccharomyces cerevisiae Powder, and Rice Husk

    PubMed Central

    Jiang, Zhao; Cao, Bo; Su, Guangxia; Lu, Yan; Zhao, Jiaying; Shan, Dexin; Zhang, Xiuyuan; Wang, Ziyi

    2016-01-01

    This study selected solid wastes, such as rice husk ash (RHA), inactive Saccharomyces cerevisiae powder (ISP), and rice husk (RH), as the potential adsorbents for the removal of Fe(II) and Mn(II) in aqueous solution. The structural characteristics, functional groups, and elemental compositions were determined by scanning electron microscope (SEM) and Fourier translation infrared spectrum (FT-IR) analyses, respectively. Then the influence on the Fe(II) and Mn(II) removing efficiency by the factors, such as pH, adsorbent dosage, initial Fe(II) and Mn(II) concentration, and contact time, was investigated by the static batch test. The adsorption isotherm study results show that Langmuir equation can better fit the Fe(II) and Mn(II) adsorption process by the three adsorbents. The maximum adsorption amounts for Fe(II) were 6.211 mg/g, 4.464 mg/g, and 4.049 mg/g by RHA, ISP, and RH and for Mn(II) were 3.016 mg/g, 2.229 mg/g, and 1.889 mg/g, respectively. The adsorption kinetics results show that the pseudo-second-order kinetic model can better fit the Fe(II) and Mn(II) adsorption process. D-R model and thermodynamic parameters hint that the adsorption processes of Fe(II) and Mn(II) on the three adsorbents took place physically and the processes were feasible, spontaneous, and exothermic. PMID:28042571

  18. Effect of Commercial SiO2 and SiO2 from rice husk ash loading on biodegradation of Poly (lactic acid) and crosslinked Poly (lactic acid)

    NASA Astrophysics Data System (ADS)

    Prapruddivongs, C.; Apichartsitporn, M.; Wongpreedee, T.

    2017-09-01

    In this work, biodegradation behavior of poly (lactic acid) (PLA) and crosslinked PLA filled with two types of SiO2, precipitated SiO2 (commercial SiO2) and SiO2 from rice husk ash, were studied. Rice husks were first treated with 2 molar hydrochloric acid (HCl) to produce high purity SiO2, before burnt in a furnace at 800°C for 6 hours. All components were melted bending by an internal mixer then hot pressed using compression molder to form tested specimens. FTIR spectra of SiO2 and PLA samples were investigated. The results showed the lack of silanol group (Si-OH) of rice husk ash after steric acid surface modification, while the addition of particles can affect the crosslinking of the PLA. For biodegradation test by evaluating total amount of carbon dioxide (CO2) evolved during 60 days incubation at a controlled temperature of 58±2°C, the results showed that the biodegradation of crosslinked PLA occurred slower than the neat PLA. However, SiO2 incorporation enhanced the degree of biodegradation In particular, introducing commercial SiO2 in PLA and crosslinked PLA tended to clearly increase the degree of biodegradation as a consequence of the more accelerated hydrolysis degradation.

  19. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.

    2016-07-01

    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  20. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.

    PubMed

    Loy, Adrian Chun Minh; Gan, Darren Kin Wai; Yusup, Suzana; Chin, Bridgid Lai Fui; Lam, Man Kee; Shahbaz, Muhammad; Unrean, Pornkamol; Acda, Menandro N; Rianawati, Elisabeth

    2018-08-01

    The thermal degradation behaviour and kinetic parameter of non-catalytic and catalytic pyrolysis of rice husk (RH) using rice hull ash (RHA) as catalyst were investigated using thermogravimetric analysis at four different heating rates of 10, 20, 50 and 100 K/min. Four different iso conversional kinetic models such as Kissinger, Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were applied in this study to calculate the activation energy (E A ) and pre-exponential value (A) of the system. The E A of non-catalytic and catalytic pyrolysis was found to be in the range of 152-190 kJ/mol and 146-153 kJ/mol, respectively. The results showed that the catalytic pyrolysis of RH had resulted in a lower E A as compared to non-catalytic pyrolysis of RH and other biomass in literature. Furthermore, the high Gibb's free energy obtained in RH implied that it has the potential to serve as a source of bioenergy production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  2. Recycling rice husks for high-capacity lithium battery anodes.

    PubMed

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  3. Preparation of TiO2/MCM-41 photocatalyst using rice husk ash as silica source

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Sopia, Lusi

    2017-03-01

    This work aimed to prepare TiO2/MCM-41 from rice husk ash (RHA) agricultural waste and its application as photocatalyst in dye degradation. The preparation was conducted by two main steps; preparation of MCM-41 and titanium immobilization onto MCM-41. Sol gel method using CTMABr as templating agent was applied in MCM-41 synthesis and as TiO2 precursor, titanium isopropoxide was utilized. The study of physicochemical character change was performed by by X-ray diffraction, IR spectroscopy, BET method and thermogravimetric analysis (TGA). Photocatalytic activity of material was tested in methylene blue photodegradation system. According to the results, it is found that TiO2/MCM-41 has been successfully prepared and shows photocatalytic activity. Kinetic study of the reaction is discussed in this paper.

  4. Effect of black rice husk ash on the physical and rheological properties of bitumen

    NASA Astrophysics Data System (ADS)

    Romastarika, Raissa; Jaya, Ramadhansyah Putra; Yaacob, Haryati; Nazri, Fadzli Mohamed; Agussabti, Ichwana, Jayanti, Dewi Sri

    2017-08-01

    Black rice husk ash (BRHA) waste product is inexpensive and can be obtained from rice mills. Reuse of waste product is ideal to reduce pollution, because disposal is decreased or eliminated. The commercial value of BRHA has increased, and it is suitable for use in road construction. In this study, BRHA waste was ground using a grinding ball mill for 120 min to form fine powder. BRHA was then sieved to less than 75 µm. At the laboratory, BRHA was mixed with bitumen to replace 2%, 4%, and 6% of the total weight, whereas 0% represented the control sample. The penetration, softening point, dynamic shear rheometer (DSR) and rolling thin film oven (RTFO) were investigated in this study. Results showed that bitumen became harder, whereas the rate of penetration decreased when the replacement amount of BRHA increased. Softening point test of bitumen also revealed an increase. The short-term aging test revealed that modification of bitumen could relieve the effect of aging. BRHA waste added into bitumen improved the performance of bitumen. Therefore, the usage of BRHA could help improve the performance of road pavement and reduce the rutting effect.

  5. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    NASA Astrophysics Data System (ADS)

    Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc

    2018-03-01

    The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  6. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.

  7. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    NASA Astrophysics Data System (ADS)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  8. Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition.

    PubMed

    Das, Archana M; Ali, Abdul A; Hazarika, Manash P

    2014-11-04

    Cellulose acetate was synthesized from rice husk by using a simple, efficient, cost-effective and solvent-free method. Cellulose was isolated from rice husk (RH) using standard pretreatment method with dilute alkaline and acid solutions and bleaching with 2% H2O2. Cellulose acetate (CA) was synthesized successfully with the yield of 66% in presence of acetic anhydride and iodine as a catalyst in eco-friendly solvent-free conditions. The reaction parameters were standardized at 80 °C for 300 min and the optimum results were taken for further study. The extent of acetylation was evaluated from % yield and the degree of substitution (DS), which was determined by (1)H NMR and titrimetrically. The synthesized products were characterized with the help modern analytical techniques like FT-IR, (1)H NMR, XRD, etc. and the thermal behavior was evaluated by TGA and DSC thermograms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Nano filter from sintered rice husk silica membrane.

    PubMed

    Lee, Soo Young; Han, Chong Soo

    2006-11-01

    A nano filter showing the Knudsen flow was demonstrated by a modification of a membrane constructed from rice husk silica. The membrane was prepared by pressing and sintering micron sized rice husk silica with 4 nm pores. The membrane showed a permeability of 5.2 x 10(-8) mol m(-1) sec(-1) Pa(-1) for H2 and ratios of gas permeability 2.1 and 3.2 for k(H2)/k(CH4) and k(H2)/k(CO2), respectively. When the membrane was treated by filtration of approximately 100 nm sized rice husk silica particles, the permeability decreased to 4.9 x 10(-8) mol m(-1) sec(-1) Pa(-1) and the ratios increased to 2.2 and 3.4. In the case of the membrane after treatments with the dispersion and chemical deposition of tetraethylorthosilicate (TEOS), the corresponding permeability and ratios of the membrane were 1.8 x 10(-8) mol m(-1) sec(-1) Pa(-1), and 2.9 and 4.5, respectively. From the change of the ratio of gas permeability for the membrane with modifications, it is suggested that approximately 100 nm sized rice husk silica particles pack the large pores among the micron sized rice husk silica particles while the chemical deposition of tetraethylorthosilicate (TEOS) reveals the gas flow through 4 nm pores in the rice husk silica by blocking large pores.

  10. Strength Performance of Blended Ash Based Geopolymer Mortar

    NASA Astrophysics Data System (ADS)

    Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.

    2018-03-01

    Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.

  11. Nanostructured silicon nitride from wheat and rice husks

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.

    2016-04-01

    Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.

  12. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application.

    PubMed

    Shaban, Mohamed; Abukhadra, Mostafa R; Hamd, Ahmed; Amin, Ragab R; Abdel Khalek, Ahmed

    2017-12-15

    MCM-48 mesoporous silica was successfully synthesized from silica gel extracted from rice husk ash and loaded by nickel oxide (Ni 2 O 3 ). The resulted composite was characterized using X-ray diffraction, scanning electron microscope, and UV-vis spectrophotometer. The role of MCM-48 as catalyst support in enhancing the photocatalytic properties of nickel oxide was evaluated through the photocatalytic degradation of Congo red dye under visible light source. MCM-48 as catalyst support for Ni 2 O 3 shows considerable enhancement in the adsorption capacity by 17% and 29% higher than the adsorption capacity of MCM-48 and Ni 2 O 3 , respectively. Additionally, the photocatalytic degradation percentage increased by about 64% relative to the degradation percentage using Ni 2 O 3 as a single component. The adsorption mechanism of MCM-48/Ni 2 O 3 is chemisorption process of multilayer form. The using of MCM-48 as catalyst support for Ni 2 O 3 enhanced the adsorption capacity and the photocatalytic degradation through increasing the surface area and prevents the nickel oxide particles from agglomeration. This was done through fixing nickel oxide particles throughout the porous structure which providing more exposed active adsorption sites and active photocatalyst sites for the incident photons. Based on the obtained results, supporting of nickel oxide particles onto MCM-48 are promising active centers for the degradation of Congo red dye molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption.

    PubMed

    Hsu, Shih-Tong; Chen, Lung-Chuan; Lee, Cheng-Chieh; Pan, Ting-Chung; You, Bing-Xuan; Yan, Qi-Feng

    2009-11-15

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state (13)C NMR spectroscopy.

  14. Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar

    PubMed Central

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2 and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete. PMID:25506063

  15. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar.

    PubMed

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu; Kwon, Seung-Jun

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.

  16. Stability studies of immobilized lipase on rice husk and eggshell membrane

    NASA Astrophysics Data System (ADS)

    Abdulla, R.; Sanny, S. A.; Derman, E.

    2017-06-01

    Lipase immobilization for biodiesel production is gaining importance day by day. In this study, lipase from Burkholderia cepacia was immobilized on activated support materials namely rice husk and egg shell membrane. Both rice husk and eggshell membrane are natural wastes that holds a lot of potential as immobilization matrix. Rice husk and eggshell membrane were activated with glutaraldehyde. Lipase was immobilized on the glutaraldehyde-activated support material through adsorption. Immobilization efficiency together with enzyme activity was observed to choose the highest enzyme loading for further stability studies. Immobilization efficiency of lipase on rice husk was 81 as compared to an immobilization efficiency of 87 on eggshell membrane. Immobilized lipase on eggshell membrane exhibited higher enzyme activity as compared to immobilized lipase on rice husk. Eggshell membrane also reported higher stability than rice husk as immobilization matrix. Both types of immobilized lipase retatined its activity after ten cycles of reuse. In short, eggshell membrane showed to be a better immobilization platform for lipase as compared to rice husk. However, with further improvement in technique of immobilization, the stability of both types of immobilized lipase can be improved to a greater extent.

  17. Characterization of materials formed by rice husk for construction

    NASA Astrophysics Data System (ADS)

    Portillo-Rodríguez, A. M.

    2013-11-01

    This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc.

  18. Sustainable energy development of bio briquettes based on rice husk blended materials: an alternative energy source

    NASA Astrophysics Data System (ADS)

    Suryaningsih, S.; Nurhilal, O.

    2018-05-01

    Rice husk as an abundant waste of biomass up to 21 million tons/year, it is unfortunate if it is not utilized. By converting it into bio briquettes, the value of rice husk bio briquettes in some studies before obtaining a relatively low value of 3,221-3,350 cal/g. The purpose of this research is to increase the calorific value of rice husk bio briquettes by mixing with coconut shell charcoal or corncob charcoal at various composition ratios of 50:50 and 80:20, to reach the optimal value that the industrial sector needed. Carbonization process was carried out at a temperature of 250-350 °C for 1.5 hours. From the results of the proximate analysis test using selected carbonization temperature at 300 °C, it can be seen that the best briquette value is made by mixing rice husk and coconut shell charcoal at composition ratio of 50:50, resulting 47.92% fixed carbon, 8.52% moisture content, 23.40% volatile matter and 20.16% ash content. The highest calorific value of 4,886 cal/g at ratio composition of 50:50, is slightly higher than the East Kalimantan coal standard of 4,828 cal/g. Hence, this bio briquettes are suitable for small scale industry application and household community use.

  19. Evaluation of Mechanical Properties and Morphological Studies of Rice Husk (Treated/Untreated)-CaCO3 Reinforced Epoxy Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Joshi, Garvit; Gupta, Ayush

    2016-10-01

    Natural fiber reinforced composites are a very popular area of research because of the easy availability and biodegradability of these fibers. The manufacturing of natural fiber composite is done by reinforcing fibers in the particulate form, fiber form or in woven mat form. Natural fiber composites also utilize industrial wastes as a secondary reinforcements like fly ash, sludge etc. By keeping all these point of views in the present investigation the effect of rice husk flour (chemically treated/untreated) and micro sized calcium carbonate with epoxy resin have been evaluated. The diameter of rice husk flour was maintained at 600 µm through mechanical sieving machine. The husk flour was chemically treated with NaOH (5 % w/v). Mechanical properties like hardness, flexural impact and compression strength were evaluated and found to be superior in modified or chemically treated flour as compared to unmodified or untreated flour reinforced composites. Scanning electron microscopy (SEM) study was also undertaken for the developed composites. SEM study shows the distribution of the rice husk flour and calcium carbonate over the matrix.

  20. Strength and fracture energy of foamed concrete incorporating rice husk ash and polypropylene mega-mesh 55

    NASA Astrophysics Data System (ADS)

    Jaini, Z. M.; Rum, R. H. M.; Boon, K. H.

    2017-10-01

    This paper presents the utilization of rice husk ash (RHA) as sand replacement and polypropylene mega-mesh 55 (PMM) as fiber reinforcement in foamed concrete. High pozzolanic reaction and the ability to become filler make RHA as a strategic material to enhance the strength and durability of foamed concrete. Furthermore, the presence of PMM optimizes the toughness of foamed concrete in resisting shrinkage and cracking. In this experimental study, cube and cylinder specimens were prepared for the compression and splitting-tensile tests. Meanwhile, notched beam specimens were cast for the three-point bending test. It was found that 40% RHA and 9kg/m3 PMM contribute to the highest strength and fracture energy. The compressive, tensile and flexural strengths are 32MPa, 2.88MPa and 6.68MPa respectively, while the fracture energy achieves 42.19N/m. The results indicate high potential of RHA and PMM in enhancing the mechanical properties of foamed concrete.

  1. Rice husk grafted PMAA by ATRP in aqueous phase and its adsorption for Ce3+

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Luo, Wenjun; Chen, Jindong; Zhou, Qi

    2017-12-01

    A monolithic biomass adsorbent, rice husk grafted poly (methyl acrylic acid) (RH-g-PMAA), was successfully synthesized via surface-initiated atom transfer radical polymerization (ATRP) through heterogeneous reactions in aqueous phase. Its adsorption capacity for Ce3+ reaches 122.51 mg g-1, which is about 12 times higher than that of raw rice husk. The experimental result on desorption and reusability shows that the adsorption capacity is still higher than 100 mg g-1 after six cycles and the desorption rate is almost 100% in every cycle. RH-g-PMAA can be separated from water easily because of its integrity.

  2. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    NASA Astrophysics Data System (ADS)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  3. Rice husk-originating silicon-graphite composites for advanced lithium ion battery anodes.

    PubMed

    Kim, Hye Jin; Choi, Jin Hyeok; Choi, Jang Wook

    2017-01-01

    Rice husk is produced in a massive amount worldwide as a byproduct of rice cultivation. Rice husk contains approximately 20 wt% of mesoporous SiO 2 . We produce mesoporous silicon (Si) by reducing the rice husk-originating SiO 2 using a magnesio-milling process. Taking advantage of meso-porosity and large available quantity, we apply rice husk-originating Si to lithium ion battery anodes in a composite form with commercial graphite. By varying the mass ratio between these two components, trade-off relation between specific capacity and cycle life was observed. A controllable pre-lithiation scheme was adopted to increase the initial Coulombic efficiency and energy density. The series of electrochemical results suggest that rice husk-originating Si-graphite composites are promising candidates for high capacity lithium ion battery anodes, with the prominent advantages in battery performance and scalability.

  4. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash.

    PubMed

    Mane, Venkat S; Deo Mall, Indra; Chandra Srivastava, Vimal

    2007-09-01

    The present study deals with the adsorption of Brilliant Green (BG) on rice husk ash (RHA). RHA is a solid waste obtained from the particulate collection equipment attached to the flue gas lines of rice husk fired boilers. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of BG. Optimum conditions for BG removal were found to be pH0 approximately 3.0, adsorbent dose approximately 6 g L(-1) of solution and equilibrium time approximately 5 h for the C0 range of 50-300 mg L(-1). Adsorption of BG followed pseudo-second-order kinetics. Intra-particle diffusion does not seem to control the BG removal process. Equilibrium isotherms for the adsorption of BG on RHA were analyzed by Freundlich, Langmuir, Redlich-Peterson (R-P), Dubnin-Radushkevich (D-R), and Temkin isotherm models using a non-linear regression technique. Langmuir and R-P isotherms were found to best represent the data for BG adsorption onto RHA. Adsorption of BG on RHA is favourably influenced by an increase in the temperature of the operation. Values of the change in entropy (DeltaS0) and heat of adsorption (DeltaH0) for BG adsorption on RHA were positive. The high negative value of change in Gibbs free energy (DeltaG0) indicates the feasible and spontaneous adsorption of BG on RHA.

  5. Briquettes of rice husk, polyethylene terephthalate (PET), and dried leaves as implementation of wastes recycling

    NASA Astrophysics Data System (ADS)

    Hariyanto, Sucipto; Usman, Mohammad Nurdianfajar; Citrasari, Nita

    2017-06-01

    This research aim is to determine the best briquettes as implementation of wastes recycle based on scoring method, main component composition, compressive strength, caloric value, water content, vollatile content, and ash content, also the suitability with SNI 01-6235-2000. Main component that used are rice husk, 2mm and 6 mm PET, and dried leaves. Composition variation in this research are marked as K1, K2, K3, K4, and K5 with 2 mm PET plastic and K1, K2, K3, K4, and K5 with 6 mm PET plastic. The total weight of the briquettes is 100 g and divided into 90% main components and 10% tapioca as binder. The compressive strength, caloric value, water content, vollatile content, and ash content were tested according to ASTM D 5865-04, ASTM D 3173-03, ASTM D 3175-02, ASTM D 3174-02. The tested results were used to determine the best briquette by scoring method, and the chosen briquettes is K2 with 6 mm PET plastic. The composition is 70% rice husk, 20% 6 mm PET plastic, and 10% dried leaves with the compressive strength, caloric value, water content, vollatile content, and ash content value is 51,55 kg/cm2; 5123 kal/g; 3,049%; 31,823%, dan 12,869%. The suitable value that meet the criteria according to SNI 01-6235-2000 is compressive strength, caloric value, water content, and ash content.

  6. Fabrication and characterization of rice husk charcoal bio briquettes

    NASA Astrophysics Data System (ADS)

    Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Salsabila, E.

    2018-02-01

    Rice husk is the outermost part of the rice seed which is a hard layer and a waste material from rice milling. Rice husk includes biomass that can be exploited for various requirements such as industrial raw materials as well as energy sources or fuel but only a small group of people use it. This research is conducted utilizing the rice husk as an alternative fuel by making it as a charcoal briquette. To make the treatment easy, firstly the rice husk biomass was converted into charcoal powder by carbonization method using two kinds of furnace which have different heating behavior. The best carbonization results are obtained from the furnace, which has a constant temperature heating behavior. The process of making briquettes is prepared by adding tapioca starch of 6% concentration by weight as charcoal adhesive and then printed with the aid of pressing tools using loads at 1,000 kg/cm2. The resulting briquette has a calorific value about 3.126 cal/g, mass density is 0.86 g/cm3 and compressive strength is about 2.02 kg/cm2, so that the bio-briquette of charcoal produced can be used as alternative energy to replace the fossil fuel for domestic or household purposes.

  7. Sorption kinetics of Zn (II) ion by thermally treated rice husk

    NASA Astrophysics Data System (ADS)

    Ong, K. K.; Tarmizi, A. F. A.; Wan Yunus W. M., Z.; Safidin, K. M.; Fitrianto, A.; Hussin, A. G. A.; Azmi, F. M.

    2015-05-01

    Agricultural wastes such as orange peels, tea leave waste, rice husk and corn cobs have been widely studied as sorbents for heavy metal ion removal from various wastewaters. In order to understand their sorption mechanism, the adsorption kinetics is studied. This report describes the kinetics study of a thermally treated rice husk to adsorb Zn (II) ion from an aqueous solution. The adsorbent was obtained by heating the rice husk in a furnace at 500°C for two hours. Increase the contact period improved percentage of the removal of Zn (II) ion until an equilibrium was reached. The data obtained showed that the adsorption of Zn (II) ion by thermally treated rice husk obeyed pseudo-second order kinetics model, which is in agreement with chemisorption as the rate limiting mechanism.

  8. Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk.

    PubMed

    Li, W C; Law, F Y; Chan, Y H M

    2017-04-01

    This study investigated the adsorption and removal behaviour of copper (Cu) (II) and cadmium (Cd) (II) ions using rice husk and rice straw in aqueous solutions. Different parameters were used to investigate their adsorption performance in saline conditions and the optimal level of biosorption at different pH levels. The main parameters were pH (3, 6 and 9), initial concentration level of heavy metals (Cu (II) 5, 10, 20, 40 and 60 mg/L and Cd (II) 0.5, 1, 2, 4 and 8 mg/L, respectively), salinity (0, 50 and 100 mM NaCl) and contact time (ranging from 3 to 60 min). Langmuir and Freundlich isotherm models were applied to analyse the removal efficiency and sorption capacity of the pretreated rice husk and rice straw. The removal efficiency and adsorption capacity generally increased with the pH and reached a plateau in alkaline conditions. The percentage removal of Cu (II) by rice husk reached 97 % at pH 9 and 95 % by rice straw at pH 6. Biosorption performance increased in the absence of NaCl. Kinetic studies for both metals revealed that the biosorption of Cu (II) and Cd (II) onto rice straw and husk was pseudo-second order.

  9. The Characteristic and Activation of Mixed Andisol Soil/Bayat Clays/Rice Husk Ash as Adsorbent of Heavy Metal Chromium (Cr)

    NASA Astrophysics Data System (ADS)

    Pranoto; Sajidan; Suprapto, A.

    2017-02-01

    Chromium (Cr) concentration in water can be reduced by adsorption. This study aimed to determine the effect of Andisol soil composition/Bayat clay/husk ash, activation temperature and contact time of the adsorption capacity of Cr in the model solution; the optimum adsorption conditions and the effectiveness of ceramic filters and purifiers to reduce contaminant of Cr in the water. The mixture of Andisol soil, Bayat clay, and husk ash is used as adsorbent of metal ion of Cr(III) using batch method. The identification and characterisation of adsorbent was done with NaF test, infrared spectroscopy (FTIR), X-ray diffraction (XRD). Cr metal concentrations were analyzed by atomic absorption spectroscopy. Sorption isotherms determined by Freundlich equation and Langmuir. The optimum conditions of sorption were achieved at 150°C activation temperature, contact time of 30 minutes and a composition Andisol soil / Bayat clay / husk ash by comparison 80/10/10. The results show a ceramic filter effectively reduces total dissolved solids (TDS) and Chromium in the water with the percentage decrease respectively by 75.91% and 9.44%.

  10. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.

    PubMed

    Tabata, Takamitsu; Yoshiba, Yusuke; Takashina, Tomonori; Hieda, Kazuo; Shimizu, Norio

    2017-03-01

    Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.

  11. Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties

    NASA Astrophysics Data System (ADS)

    Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq

    2018-02-01

    This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.

  12. Electrical properties of Al-, Cu-, Zn- rice husk charcoal junctions

    NASA Astrophysics Data System (ADS)

    Dahonog, L. A.; Tapia, A. K. G.

    2017-04-01

    Rice husk in the Philippines is considered as an agricultural waste. In order to utilize the material, one common technique is to carbonize these rice husks to produce charcoal briquettes. These materials are porous in nature exhibiting electrical properties from carbon structures. In this study, rice husk charcoals (RHC) were deposited on different metal substrates (Al, Cu, Zn) via a simple solution casting method. The deposited RHC on metal substrates was observed using Scanning Electron Microscopy (SEM). The films were characterized using two-point probe technique and the I-V curves were plotted. Al-RHC films appear to deviate from an ohmic behaviour while Zn-RHC and Cu-RHC showed diode-like behaviours.

  13. Energy potential from rice husk through direct combustion and fast pyrolysis: A review.

    PubMed

    Quispe, Isabel; Navia, Rodrigo; Kahhat, Ramzy

    2017-01-01

    Rapid population growth and consumption of goods and services imply that demand for energy and resources increases continuously. Energy consumption linked to non-renewable resources contributes to greenhouse gas emissions and enhances resource depletion. In this context, the use of agricultural solid residues such as rice husk, coffee husk, wheat straw, sugar cane bagasse, among others, has been widely studied as an alternative energy source in order to decrease the use of fossil fuels. However, rice husk is among those agricultural residues that are least used to obtain energy in developing countries. Approximately 134 million tonnes of rice husk are produced annually in the world, of which over 90% are burned in open air or discharged into rivers and oceans in order to dispose of them. This review examines the energetic potential of agricultural residues, focused on rice husk. The review describes direct combustion and fast pyrolysis technologies to transform rice husk into energy considering its physical and chemical properties. In addition, a review of existing studies analyzing these technologies from an environmental life cycle thinking perspective, contributing to their sustainable use, is performed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash

    PubMed Central

    Zhao, Jiaying; Jiang, Zhao; Shan, Dexin; Lu, Yan

    2014-01-01

    Rice husk ash (RHA), an agricultural waste, was used as biosorbent for the removal of Iron(II) and Manganese(II) ions from aqueous solutions. The structural and morphological characteristics of RHA and its elemental compositions before and after adsorption of Fe(II) and Mn(II) were determined by scanning electron microscopic (SEM) and X-ray fluorescence (XRF) analyses. Batch experiments were carried out to determine the influence of initial pH, contact time, adsorbent dosage, and initial concentration on the removal of Fe(II) and Mn(II) ions. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by RHA. The correlation coefficient (R 2) of Langmuir and Freundlich isotherm models equals 0.995 and 0.901 for Fe(II), 0.9862 and 0.8924 for Mn(II), respectively, so the Langmuir model fitted the equilibrium data better than the Freundlich isotherm model. The mean free energy values evaluated from the D-R model indicated that the biosorption of Fe(II) and Mn(II) onto RHA was physical in nature. Experimental data also showed that the biosorption processes of both metal ions complied with the pseudo-second-order kinetics. PMID:24982918

  15. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  16. Removal of arsenic from drinking water using rice husk

    NASA Astrophysics Data System (ADS)

    Asif, Zunaira; Chen, Zhi

    2017-06-01

    Rice husk adsorption column method has proved to be a promising solution for arsenic (As) removal over the other conventional methods. The present work investigates the potential of raw rice husk as an adsorbent for the removal of arsenic [As(V)] from drinking water. Effects of various operating parameters such as diameter of column, bed height, flow rate, initial arsenic feed concentration and particle size were investigated using continuous fixed bed column to check the removal efficiency of arsenic. This method shows maximum removal of As, i.e., 90.7 % under the following conditions: rice husk amount 42.5 g; 7 mL/min flow rate in 5 cm diameter column at the bed height of 28 cm for 15 ppb inlet feed concentration. Removal efficiency was increased from 83.4 to 90.7 % by reducing the particle size from 1.18 mm to 710 µm for 15 ppb concentration. Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior. The effect of different operating parameters on the column adsorption was determined using breakthrough curves. In the present study, three kinetic models Adam-Bohart, Thomas and Yoon-Nelson were applied to find out the saturated concentration, fixed bed adsorption capacity and time required for 50 % adsorbate breakthrough, respectively. At the end, solidification was done for disposal of rice husk.

  17. Numerical study of rice husk and coal co-combustion characteristics in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Zuomin; Li, Jiuru

    2018-02-01

    This paper discussed the rationality of coal and rice husk co-combustion. Using ICEM software, a two-dimensional model of the riser has been established for circulating fluidized bed experimental table. Using Fluent software, numerical simulation has been made for the combustion reaction of different proportions of rice husk mixed with coal. The results show that, with the increase of rice husk ratio, both the combustion temperature and the amount of nitrogen oxides decrease and the effect is gradually reduced. In this simulation, the rice husks occupying about 30% is a reasonable proportion.

  18. How Rice (Oryza sativa L.) Responds to Elevated As under Different Si-Rich Soil Amendments.

    PubMed

    Teasley, William A; Limmer, Matthew A; Seyfferth, Angelia L

    2017-09-19

    Several strategies exist to mitigate As impacts on rice and each has its set of trade-offs with respect to yield, inorganic As content in grain, and CH 4 emissions. The addition of Si to paddy soil can decrease As uptake by rice but how rice will respond to elevated As when soil is amended with Si-rich materials is unresolved. Here, we evaluated yield impacts and grain As content and speciation in rice exposed to elevated As in response to different Si-rich soil amendments including rice husk, rice husk ash, and CaSiO 3 in a pot study. We found that As-induced yield losses were alleviated by Husk amendment, partially alleviated by Ash amendment, and not affected by CaSiO 3 amendment. Furthermore, Husk was the only tested Si-amendment to significantly decrease grain As concentrations. Husk amendment was likely effective at decreasing grain As and improving yield because it provided more plant-available Si, particularly during the reproductive and ripening phases. Both Husk and Ash provided K, which also played a role in yield improvement. This study demonstrates that while Si-rich amendments can affect rice uptake of As, the kinetics of Si dissolution and nutrient availability can also affect As uptake and toxicity in rice.

  19. Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses

    PubMed Central

    2012-01-01

    Background In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure. Results From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling. Conclusions The structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments. PMID:22958710

  20. Structural characterization and antioxidant activity evaluation of lignins from rice husk.

    PubMed

    Salanti, Anika; Zoia, Luca; Orlandi, Marco; Zanini, Fabiana; Elegir, Graziano

    2010-09-22

    In recent years, lignin and extractives from herbaceous plants and crops are receiving increasing attention for their renewability and large annual biomass stock. It is worth noting that only a few studies deal with the chemical characterization of rice husk, a side product of one of the most important crops with regard to human nutrition. Thus, in this study lignin from rice husk was isolated and characterized. Two different extraction procedures were optimized and tested: acidolysis and alkaline enzymatic (AE). The different lignins isolated were fully characterized by means of gravimetric, chromatographic (GPC), and spectroscopic (31P NMR, 2D-HSQC-NMR) analyses with the aim to compare yields, sample purity, and chemical properties, recognized as key parameters for future development. Notwithstanding the extraction procedure, the results highlighted that rice husk lignin is mainly formed by guaiacyl and p-hydroxyphenyl units. The acidolytic approach showed an appreciable lignin recovery and high purity, whereas the AE lignin sample was found to be rich in residual polysaccharides and oxidized functionalities. Moreover, different rice husk extracts, along with acidolysis lignin and AE lignin specimens, were assayed for their antioxidant activity by means of a DPPH radical scavenging test.

  1. A preliminary study on the reduction of limonite ore by using rice husk as a reducing agent

    NASA Astrophysics Data System (ADS)

    Maksum, Ahmad; Husein, Michael Kelvin E.; Permana, Sulaksana; Rustandi, Andi; Wahyuadi Soedarsono, Johny

    2018-03-01

    The abundant of rice husk in Indonesia has encouraged researchers to study the feasibility of rice husk for substituting material that is more expensive or dangerous. In previous study, silica with a purity of 99.9% has been obtained from rice husk with calcinations process. Nevertheless, the gases resulting from the process were not used and left useless. Therefore, in this study, those gases derived from rice husk calcinations process were used as reducing agents during the ferronickel (Fe-Ni) production through a direct reduction process. The objective of this study was to investigate the effect of the amount of rice husk in the pellets on the increase of nickel content in the limonite reduction process. The limonite ore were crushed to the size of less than 150 mesh using disc-mill, and then were mixed with rice husk powder (10, 20, 30 in wt % mass) before being pelletized using bentonite as a binder. The resulted pellets were roasted at 500°C for 60 minutes and then quenched in water media. After drying process, the reduction process of 40g pellets was conducted at 1000°C for 90 minutes with 20g rice husk in furnace. The effects of additional rice husk on the direct reduction of limonite ore pellets were qualitatively analyzed by using X-ray powder diffraction (XRD) and quantitatively by Atomic absorption spectroscopy (AAS). Both analysis results showed that the reduction process followed the reaction scheme: Fe2O3→Fe3O4→FeO and NiO phase was detected in the sample with 20% rice husk addition. The optimum concentration of Ni 1.23% was obtained for 20% rice husk addition.

  2. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk.

    PubMed

    Collazo-Bigliardi, Sofía; Ortega-Toro, Rodrigo; Chiralt Boix, Amparo

    2018-07-01

    Cellulosic material from coffee husk has not been previously studied despite being a potential source of reinforcing agents for different applications. This material has been extracted and characterised from coffee husk, in parallel with previously studied rice husk. Samples have been analysed as to their ability to obtain cellulosic fibres and cellulose nanocrystals (CNC) by applying alkali and bleaching treatments and final sulphuric acid hydrolysis. Microstructural changes were analysed after treatments, and the size and aspect ratio of CNCs were determined. Crystallinity and thermal stability of both materials progressed in line with the enrichment in cellulosic compounds. The CNC aspect ratio was higher than 10, which confers good reinforcing properties. These were tested in thermoplastic starch films, whose elastic modulus increased by 186 and 121% when 1 wt% of CNCs from rice and coffee husks, respectively, was incorporated into the matrix. Coffee husk represents an interesting source of cellulosic reinforcing materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effect of Rice Husk Ash Insulation Powder on the Reoxidation Behavior of Molten Steel in Continuous Casting Tundish

    NASA Astrophysics Data System (ADS)

    Kim, Tae Sung; Chung, Yongsug; Holappa, Lauri; Park, Joo Hyun

    2017-06-01

    Rice husk ash (RHA) has been widely used as an insulation powder in steel casting tundish. Its effect on the reoxidation of molten steel in tundish as well as on the corrosion of magnesia refractory was investigated. The reoxidation of the steel, indicated by an oxygen pickup, was progressed by increasing the ratio of RHA to the sum of RHA and carryover ladle slag ( R ratio) greater than about 0.2. The increase of the silica activity in the slag layer promoted the self-dissociation of SiO2 from the slag layer into the molten steel, resulting in the silicon and oxygen pickup as the R ratio increased. The total number of reoxidation inclusions dramatically increased and the relative fraction of Al2O3-rich inclusions increased by increasing the R ratio. Hence, the reoxidation of molten steel in tundish might become more serious due to the formation of alumina-rich inclusions as the casting sequence increases. MgO in the refractory directly dissolved into the molten slag layer without forming any intermediate compound layer ( e.g., spinel), which is a completely different situation from the general slag-refractory interfacial reaction. A flow was possibly induced by the bursting of gas bubbles at the ash-slag (-refractory) interface, since the silica in the RHA powder continuously dissolved into the molten slag pool. Thus, the RHA insulation powder has a negative effect on the corrosion of MgO refractory.

  4. Development of briquette fuel from cashew shells and rice husk mixture

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Arijanto, Kalyana, Ivan Edgar; Lazuardi, Andy

    2017-01-01

    In Indonesia, a large amount of biomasses are available from cashew plantations and rice fields and constitute one of the raw material sources for thermal energy. Annually, 130.052 tons of whole cashews can produce cashew shells with a total energy content of 4,933x109 kcal. In addition, 49 million tons of rice is produced annually in Indonesia. From this sum, 7.5-10 million tons of rice husks are obtained with a total energy content of 2.64x1013 kcal. The purpose of this research is to review the briquette of biomass made from a mixture of cashew shells and rice husks with polyvinyl acetate (PVA) as the adhesive. The mixture ratio of cashew shells and rice husks is varied with a range of 75:25, 50:50, and 25:75 % weight. Briquettes are made in a cylinder mold and pressed using a hydraulic press machine. The pressing pressure varies from 2.500, 5.000, and 7.500 kg/m2. Results show that a briquette with a mixture ratio of 75:25 % shows good pressure tenacity. A model is used to relate density with briquetting pressure. This model shows that the briquette has low compressibility at 0.13. Enhancement of the heating value for the briquettes is also carried out using the torrefaction treatment. The torrefaction process produces biomass briquettes made from a mixture of cashew shells and rice husks with a heating value on par to sub-bituminous coal according to the ASTM D 388 standard classification with a heating value of 6.712 kcal/kg.

  5. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2009-07-30

    In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter).

  6. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    PubMed

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Clay stabilization by using gypsum and paddy husk ash with reference to UCT and CBR value

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Hastuty, I. P.; Dianty, W. O.

    2018-02-01

    Clays that have low shear strength need to be stabilized in order to meet the technical requirements to serve as a subgrade material. One of the usual soil stabilization methods is by adding chemicals such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and paddy husk ash. The research goals were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% paddy husk ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT value of original soil was 1.41 kg/cm2. While the CBR soaked and unsoaked values of original soil were 4.41% and 6.23% respectively. The research results showed the addition of paddy husk ash decreased the value of unconfined compressive strength as well as CBR. The stabilized soil by 2% gypsum and 0% paddy husk ash gave maximum UCT value of 1.67 kg/cm2, while the maximum value of CBR were found 6.71% for CBR soaked and 8.00% for CBR unsoaked. The addition of paddy husk ash did not alter the soil classification according to AASHTO or USCS, even degrade the engineering properties of original soil.

  8. Use of bean husk as an easily digestible fiber source for activating the fibrolytic rumen bacterium Fibrobacter succinogenes and rice straw digestion.

    PubMed

    Fuma, Ryosuke; Oyaizu, Shinya; Nukui, Yoko; Ngwe, Tin; Shinkai, Takumi; Koike, Satoshi; Kobayashi, Yasuo

    2012-10-01

    A series of in sacco and in vitro studies were carried out to evaluate bean husks for activation of fibrolytic rumen bacteria and rice straw digestion. First, lablab bean husk, chickpea husk and rice straw were suspended in the rumen of sheep to analyze the bacterial consortium developed on each fiber source. Known members of fiber-associating bacteria were found on both lablab bean husk and rice straw, but some of these bacteria were lacking on chickpea husk. Second, a pure culture study was carried out using six strains of Fibrobacter succinogenes. Both husks stimulated the growth of all tested strains, including a strain that did not grow on rice straw. The strain OS128 that showed the highest growth on rice straw displayed even higher growth on lablab bean husk without a time lag. Finally, two-step incubations were carried out to determine whether prior incubation of rumen fluid with husks stimulates subsequent rice straw digestion. Higher digestibility of rice straw was recorded in the second-round incubation following the first incubation with bean husks. These results suggest that the tested bean husks improve the digestion of rice straw by activating fibrolytic F. succinogenes and other associated bacteria. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  9. Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash

    NASA Astrophysics Data System (ADS)

    Adekola, F. A.; Hodonou, D. S. S.; Adegoke, H. I.

    2016-11-01

    The adsorption behavior of rice husk ash with respect to manganese and iron has been studied by batch methods to consider its application for water and waste water treatment. The optimum conditions of adsorption were determined by investigating the effect of initial metal ion concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. Adsorption equilibrium time was observed at 120 min. The adsorption efficiencies were found to be pH dependent. The equilibrium adsorption experimental data were found to fit the Langmuir, Freundlich and Temkin isotherms for iron, but fitted only Langmuir isotherm for manganese. The pseudo-second order kinetic model was found to describe the manganese and iron kinetics more effectively. The thermodynamic experiment revealed that the adsorption processes involving both metals were exothermic. The adsorbent was finally applied to typical raw water with initial manganese and iron concentrations of 3.38 mg/l for Fe and 6.28 mg/l, respectively, and the removal efficiency was 100 % for Mn and 70 % for Fe. The metal ions were desorbed from the adsorbent using 0.01 M HCl, it was found to quantitatively remove 67 and 86 % of Mn and Fe, respectively, within 2 h. The results revealed that manganese and iron are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  10. Effect of Rice Husk Ash and Fly Ash on the workability of concrete mixture in the High-Rise Construction

    NASA Astrophysics Data System (ADS)

    Van Tang, Lam; Bulgakov, Boris; Bazhenova, Sofia; Aleksandrova, Olga; Pham, Anh Ngoc; Dinh Vu, Tho

    2018-03-01

    The dense development of high-rise construction in urban areas requires a creation of new concretes with essential properties and innovative technologies for preparing concrete mixtures. Besides, it is necessary to develop new ways of presenting concrete mixture and keeping their mobility. This research uses the mathematical method of two-factors rotatable central compositional planning to imitate the effect of amount of rice husk (RHA) and fly ash of thermal power plants (FA) on the workability of high-mobility concrete mixtures. The results of this study displays regression equation of the second order dependence of the objective functions - slump cone and loss of concrete mixture mobility due to the input factors - the amounts RHA (x1) and FA (x2), as well as the surface expression image of these regression equations. An analysis of the regression equations also shows that the amount of RHA and FA had a significant influence on the concrete mixtures mobility. In fact, the particles of RHA and FA will play the role as peculiar "sliding bearings" between the grains of cement leading to the dispersion of cement in the concrete mixture. Therefore, it is possible to regulate the concrete mixture mobility when transporting fresh concrete to the formwork during the high-rise buildings construction in the hot and humid climate of Vietnam. Although the average value of slump test of freshly mixed concrete, measured 60 minutes later after the mixing completion, decreased from 18.2 to 10.52 cm, this value still remained within the allowable range to maintain the mixing and and the delivery of concrete mixture by pumping.

  11. A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite

    NASA Astrophysics Data System (ADS)

    Rassiah, K.; Sin, T. W.; Ismail, M. Z.

    2016-10-01

    This work is to study the effects of rice husk (RH)/E-Glass (EG)/polypropylene (PP) hybrid composites in terms of flexural and water absorption properties. The tests conducted are the flexural test and also the water absorption test using two types of water: distilled and sea water. The hybrid composites are prepared with various ratios of fibre weight fractions and the rice husk is treated using 2% Sodium Hydroxide (NaOH) to improve interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibres. It was found that the content of rice husk/E-Glass fillers affected the structural integrity and flexural properties of hybrid composites. In addition, a higher ratio of rice husk contributes to higher water absorption in the hybrid composites.

  12. Analysis and probabilistic risk assessment of bioaccessible arsenic in polished and husked jasmine rice sold in Bangkok.

    PubMed

    Hensawang, Supanad; Chanpiwat, Penradee

    2018-09-01

    Food is one of the major sources of arsenic (As) exposure in humans. The objectives of this study were to determine the bioaccessible concentration of As in rice grain sold in Bangkok and to evaluate the potential health risks associated with rice consumption. Polished (n = 32) and husked (n = 17) jasmine rice were collected from local markets. In vitro digestion was performed to determine the bioaccessible As concentrations, which were used for probabilistic health risk assessments in different age groups of the population. Approximately 43.0% and 44.4% of the total As in the grain of polished and husked rice, respectively, was in the form of bioaccessible As. Significantly higher bioaccessible As concentrations were found in husked rice than in polished rice (1.5-3.8 times greater). The concentrations of bioaccessible As in polished and husked rice were lower than the Codex standard for As in rice. The average daily dose of As via rice consumption is equivalent to the daily ingestion of 2 L of water containing approximately 3.2-7.2 μg L -1 of As. Approximately 0.2%-13.7% and 10.7%-55.3% of the population may experience non-carcinogenic effects from polished and husked rice consumption, respectively. Approximately 1%-11.6% of children and 74.1%-99.8% of adults were at risk of cancer. The maximum cancer probabilities were 3 children and 6 adults in 10,000 individuals. The probabilistic risk results indicated that children and adults were at risk of both non-carcinogenic and carcinogenic effects from both types of rice consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Characterization of H3PO4-Treated Rice Husk Adsorbent and Adsorption of Copper(II) from Aqueous Solution

    PubMed Central

    Zheng, Ru; Zhao, Jiaying; Ma, Fang; Zhang, Yingchao; Meng, Qingjuan

    2014-01-01

    Rice husk, a surplus agricultural byproduct, was applied to the sorption of copper from aqueous solutions. Chemical modifications by treating rice husk with H3PO4 increased the sorption ability of rice husk for Cu(II). This work investigated the sorption characteristics for Cu(II) and examined the optimum conditions of the sorption processes. The elemental compositions of native rice husk and H3PO4-treated rice husk were determined by X-ray fluorescence (XRF) analysis. The scanning electron microscopic (SEM) analysis was carried out for structural and morphological characteristics of H3PO4-treated rice husk. The surface functional groups (i.e., carbonyl, carboxyl, and hydroxyl) of adsorbent were examined by Fourier Transform Infrared Technique (FT-IR) and contributed to the adsorption for Cu(II). Adsorption isotherm experiments were carried out at room temperature and the data obtained from batch studies fitted well with the Langmuir and Freundlich models with R 2 of 0.999 and 0.9303, respectively. The maximum sorption amount was 17.0358 mg/g at a dosage of 2 g/L after 180 min. The results showed that optimum pH was attained at pH 4.0. The equilibrium data was well represented by the pseudo-second-order kinetics. The percentage removal for Cu(II) approached equilibrium at 180 min with 88.9% removal. PMID:24678507

  14. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk.

    PubMed

    Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia

    2011-10-26

    A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  15. Effect of inorganic species on torrefaction process and product properties of rice husk.

    PubMed

    Zhang, Shuping; Su, Yinhai; Ding, Kuan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi; Xiong, Yuanquan

    2018-06-20

    The objective of this study was to evaluate the effect of inorganic species on torrefaction process and product properties. Torrefaction process of raw and leached rice husk was performed at different temperatures between 210 and 270 °C. Inorganic species have significant effect on the torrefaction process and properties of torrefaction products. The results indicated that solid yield increased, gas yield decreased and liquid yield remained unchanged for leached rice husk when compared to raw rice husk. Gas products from torrefaction process mainly contained CO 2 and CO, and leaching process slightly reduced the volume concentration of CO 2 . Removal of inorganic species slightly decreased water content and increased organic component content in liquid products. Acetic acid, furfural, 2,3-dihydrobenzofuran and levoglucosan were the dominant components in liquid product. Inorganic species enhanced the effect of deoxygenation and dehydrogenation during torrefaction process, resulting in the enrichment of C component in solid products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Utilization of rice-husk and coconut shell carbons for water disinfection.

    PubMed

    Carmalin Sophia, A; Catherine, D; Bhalambaal, V M

    2013-01-01

    In the present study, experiments were conducted to investigate the feasibility of using carbon derived from rice husk and coconut shell for the decontamination of water containing Escherichia coli (E. coli). The effects of silver impregnation on these agro-waste carbons were also investigated. All the carbons showed >99% removal of E coli. Among the four carbons studied, rice husk based carbon (RHC) showed better removal than the other carbons investigated. However, silver impregnated carbons showed only marginal increase in the decontamination experiments. SEM and BET results reveal that the carbons were mesoporous in nature. FTIR shows the presence of functional groups viz. C=O and -OH that might be responsible.for adsorption of E. coli on the carbon.

  17. Formation of Nanodimensional 3C-SiC Structures from Rice Husks

    NASA Astrophysics Data System (ADS)

    Gorzkowski, E. P.; Qadri, S. B.; Rath, B. B.; Goswami, R.; Caldwell, J. D.

    2013-05-01

    We have demonstrated that large quantities of β-SiC nanostructures can be obtained from rice husk agricultural waste by using controlled conditions in a thermogravimetric setup. This simple and inexpensive method of producing these structures on a large scale is critical for applications in nanoelectronics, nanosensors, and biotechnology. The temperature and atmosphere are two critical elements in forming either α-cristobalite (SiO2) or β-SiC. Using different characterization methods (x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy), we have shown that pyrolysis of rice husks in argon atmosphere at 1375°C results in simultaneous formation of carbon nanotubes, β-SiC nanowires/nanorods, and β-SiC powder.

  18. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    NASA Astrophysics Data System (ADS)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  19. Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre

    NASA Astrophysics Data System (ADS)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.

    2017-11-01

    In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.

  20. Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application

    NASA Astrophysics Data System (ADS)

    Zulpadrianto, Z.; Yohandri, Y.; Putra, A.

    2018-04-01

    The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.

  1. Enhancement of polyethersulfone (PES) membrane performance by modification with rice husk nanosilica for removal of organic matter in water

    NASA Astrophysics Data System (ADS)

    Mulyati, S.; Armando, M. A.; Mawardi, H.; Azmi, F. A.; Pratiwi, W. P.; Fadzlina, A.; Akbar, R.; Syawaliah

    2018-03-01

    This paper reports the effects of rice husk nanosilica addition on the performance of polyethersulfone (PES) membrane. Polyethersulfone membrane (PES) was fabricated by using N-methyl-2-pyrolidone (NMP) as a solvent and rice husk nanosilica as a modifying agent. The influence of the rice husk nanosilica additive on the characteristics and performance of the membrane has been studied. Scanning Electron Microscopy (SEM) analysis confirmed that the manufactured membrane has an asymmetric morphological structure consisting of two layers. The upper part of the membrane is a thin layer, meanwhile in the bottom side is a porous layer. The addition of 5% nanosilica resulting a PES membrane to have a bigger porous than that of pristine PES. The pure water flux of nanosilica-modified membranes were greater in comparison to the pure water flux of unmodified PES membrane. The performance of all membranes were evaluated on humic acid removal. The highest selectivity was showcased by pure PES membrane. The introduction of rice husk nanosilica additive to the membrane declined the selectivity of the membrane to humic acid in the feed solution. This is caused by the pores enlargement and enhanced hydrophilicity of the membrane after modification with rice husk biosilica.

  2. Separation of polysaccharides from rice husk and wheat bran using solvent system consisting of BMIMOAc and DMI.

    PubMed

    Hou, Qidong; Li, Weizun; Ju, Meiting; Liu, Le; Chen, Yu; Yang, Qian; Wang, Jingyu

    2015-11-20

    A solvent system consisting of 1,3-dimethyl-2-imidazolidinone (DMI), and ionic liquid 1-butyl-3-methylimidazolium acetate (BMIMOAc) was used to separate polysaccharides from rice husk and wheat bran. The effects of the DMI/BMIMOAc ratios, temperature, and time on the dissolution of rice husk and wheat bran were investigated, and the influence of anti-solvents on the regeneration of polysaccharides-rich material was evaluated. We found that the solvent system is more powerful to dissolve rice husk and wheat bran than pure BMIMOAc, and that polysaccharides-rich material can be effectively separated from the biomass solution. The polysaccharides content of regenerated material from wheat bran can reach as high as 94.4% when ethanol was used as anti-solvents. Under optimized conditions, the extraction rate of polysaccharides for wheat bran can reach as high as 71.8% at merely 50°C. The recycled solvent system exhibited constant ability to separate polysaccharides from rice husk and wheat bran. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Feasibility of CO₂/SO₂ uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation.

    PubMed

    Chen, Huichao; Zhao, Changsui; Ren, Qiangqiang

    2012-01-01

    The calcination/carbonation cycle using calcium-based sorbents appears to be a viable method for carbon dioxide (CO₂) capture from combustion gases. Recent attempts to improve the CO₂/SO₂ uptake of a calcium-based sorbent modified by using rice husk ash (RHA) in the hydration process have succeeded in enhancing its effectiveness. The optimal mole ratio of RHA to calcined limestone (M(Si/Ca)) was adjusted to 0.2. The cyclic CO₂ capture characteristics and the SO₂ uptake activity of the modified sorbent were evaluated in a calcination/pressurized carbonation reactor system. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) spectrum of the sorbent were also taken to supplement the study. The results showed that the carbonation conversion was greatly increased for the sorbent with M(Si/Ca) ratio of 0.2. For this sorbent formulation the optimal operating conditions were 700-750 °C and 0.5-0.7 MPa. CO₂ absorption was not proportional to CO₂ concentration in the carbonation atmosphere, but was directly related to reaction time. The CO₂ uptake decreased in the presence of SO₂. SO₂ uptake increased, and the total calcium utilization was maintained over multiple cycles. Analysis has shown that the silicate component is evenly or well distributed, and this serves as a framework to prevent sintering, thus preserving the available microstructure for reaction. The sorbent also displayed high activity to SO₂ absorption and could be used to capture CO₂ and SO₂ simultaneously. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of supplementation with rice husk powder and rice bran on inflammatory factors in overweight and obese adults following an energy-restricted diet: a randomized controlled trial.

    PubMed

    Edrisi, Fahimeh; Salehi, Mousa; Ahmadi, Afsane; Fararoei, Mohamad; Rusta, Fatemeh; Mahmoodianfard, Salma

    2018-03-01

    Overweight and obesity are major public health concerns worldwide which are associated with a low-grade chronic inflammation. Dietary fiber as an important component of diet could be effective in controlling weight and inflammatory factors. The present study aimed to compare the effects of rice husk powder and rice bran on inflammatory factors along with an energy-restricted diet in overweight and obese adults. In this randomized trial, 105 eligible individuals were assigned to one of the three energy-restricted diet groups receiving; rice bran (n = 35), rice husk powder (n = 35), and control group (n = 35) for 12 weeks. Demographic data, dietary intake, anthropometric indices and inflammatory factors (serum levels of IL-6 and hs-CRP) were measured at baseline and at the end of the study. Weight, BMI and waist circumference reduced significantly in all groups after 12 weeks of study (P < 0.01 for all). However, pre- and post-measure differences between groups were not significant. Moreover, serum levels of hs-CRP and IL-6 were not significantly different between participants in the rice bran or rice husk groups. However, the reduction in serum levels of hs-CRP in rice husk (mean change = - 0.14 ± 0.05 µg/ml) and rice bran (mean change = - 0.13 ± 0.03 µg/ml) was significantly higher when compared to the control group (mean change = - 0.03 ± 0.02 µg/ml) (P < 0.05 for both groups). The same pattern was found when changes in IL-6 serum levels of participants in rice husk (mean change = - 0.48 ± 0.11 pg/ml) and rice bran (mean change = - 0.57 ± 0.13 pg/ml) groups were compared to the control group (mean change= - 0.19 ± 0.07 pg/ml) (P < 0.05 for both groups). The results of this study showed positive effects of rice bran and rice husk powder supplementation, combined with an energy-restricted diet, on inflammatory markers among overweight and obese adults.

  6. Production of activated carbon from rice husk Vietnam

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  7. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    NASA Astrophysics Data System (ADS)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  8. Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Farhana, N.; Marini, C. D.

    2018-03-01

    Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.

  9. Determination of Pb2+ metal ion level in liquid waste from adsorption process by combination adsorbent of rice husk and water hyacinth charcoal using solid-phase spectrophotometry (sps)

    NASA Astrophysics Data System (ADS)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Hidayah, AN

    2018-03-01

    This research are to find out the influence of adsorbent composition between rice husk and water hyacinth in decreasing of Pb2+ ion in simulation liquid waste; the optimumcomposition of combination adsorbent of rice husk and water hyacinth charcoal on Pb2+ ion adsorption; and theeffectivenessof SPS as a method to determine the decreasing level of Pb2+ ion in simulation liquid waste by combination adsorbent of rice husk and water hyacinth charcoal in µg/L level. Rice husk and water hyacinth carbonization using muffle furnace at 350°C for 1 hour. Rice husk charcoal activation in a 2 N NaOH solution and water hyacinth charcoal activated in a 5 M HCl solution. Contacting the combination adsorbent of rice husk and water hyacinth charcoal with a Pb2+ solution with variation of mass composition, 1:0 ; 0:1 ; 1:1 ; 1:2 and 2:1. Analysis of the Pb2+ ion level using SPS method. Characterization of rice husk and water hyacinth charcoal using the FTIR. The results showed that the combination adsorbent composition of rice husk and water hyacinth charcoal have an impact on decreasing Pb2+ ion level. The optimum composition of combination adsorbent of rice husk and water hyacinth charcoal on the adsorption Pb2+ ion is 1:2. SPS is an effective method to determine the decreasing Pb2+ ion in simulation liquid waste from the adsorption process by combination adsorbent of rice husk and water hyacinth in µg/L, with Limit of Detection (LOD) was 0,06 µg/L.

  10. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    NASA Astrophysics Data System (ADS)

    Syafrudin; Nugraha, Winardi Dwi; Agnesia, Shandy Sarima; Matin, Hashfi Hawali Abdul; Budiyono

    2018-02-01

    Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide) and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD). Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  11. Combination of sawdust from teak wood and rice husk activated carbon as adsorbent of Pb(II) ion and its analysis using solid-phase spectrophotometry (sps)

    NASA Astrophysics Data System (ADS)

    Saputro, S.; Mahardiani, L.; Wulandari, D. A.

    2018-03-01

    This research aimed to know the usage of sawdust of teak wood and rice husk waste as Pb (II) ion adsorbents in simulated liquid waste, the combined optimum mass required adsorbent to adsorb Pb(II) ion, the sensitivity of the solid-phase spectrophotometry (sps) method in determining the decrease of Pb (II) metal ion levels in the μg/L level. This research was conducted by experimental method in laboratory. Adsorbents used in this study were charcoal of sawdust sawdust activated using 15% ZnCl2 solution and activated rice husk using 2 N NaOH solution. The adsorption processes of sawdust and rice husk with Pb(II) solution was done by variation of mass combination with a ratio of 1: 0; 0: 1; 1: 1; 1: 2; and 2: 1. Analysis of Pb(II) ion concentration using SPS and characterization of sawdust and rice husk adsorbent ads using FTIR. The results showed that activated charcoal from sawdust of teak wood and rice husks can be used as Pb (II) metal ion adsorbents with adsorption capacity of 0.86 μg/L, charcoal from sawdust of teak wood and rice husk adsorbent with a combination of optimum mass contact of sawdust and rice husk is 2:1 as much as 3 grams can adsorb 42.80 μg/L. Solid-phase spectophotometry is a sensitive method for analysis of concentration decreasing levels of Pb(II) ion, after it was absorbed by sawdust of teak wood and rice husk with high sensitivity and has the limit of detection (LOD) of 0.06 μg/L.

  12. Adsorption Behavior of Trinitrotoluene by Rice Husk Carbon

    NASA Astrophysics Data System (ADS)

    Fu, Dan

    2018-03-01

    Trinitrotoluene could be adsorbed by many materials. The adsorption properties of Trinitrotoluene were studied in this paper by Rice husk carbon (RHC). The influence factors of pH value of Trinitrotoluene wastewater, adsorbent dosage and the ratio of dilution to wastewater were examined. The results of TG–DTA analysis showed that the main temperature ranges of thermal decomposition for the RHC was 324-467°C. The study indicates that RHC can be used in wastewater to removal Trinitrotoluene.

  13. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    NASA Astrophysics Data System (ADS)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  14. Fabrication and characterization of rice husk and coconut shell charcoal based bio-briquettes as alternative energy source

    NASA Astrophysics Data System (ADS)

    Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K.

    2017-05-01

    Rice husk and coconut shell have been disposed or burned as waste. As biomass, both of materials are the potential sources of carbon which can be utilized as alternative energy sources. The energy content can be exploited more intensively when packaged in a brief and convenient. In this work, the mixtures of rice husks and coconut shells charcoal were prepared as briquettes. After going through the carbonization process, several measurements have been taken to find out the factors that determine the value of heat energy contains by each component of the charcoals. The basic ingredients briquettes prepared from rice husk and coconut shell charcoal with varying composition and addition of tapioca starch gradually as adhesive material to obtain briquettes in solid with the maximum heat energy content. After going through pressing and drying process, the briquettes with 50:50 percent of composition and the 6% addition of adhesive was found has the highest heat energy content, equal to 4966 cal/g.

  15. Characterization of Polycaprolactone and Rice Husk Silica Composite (PCL-SiO2) by E-Spinning to Apply Supporter for Drug Release

    NASA Astrophysics Data System (ADS)

    Song, Sinae; Hilonga, Askwar; Taik Kim, Hee

    2018-03-01

    Polycaprolactone (PCL) is an interesting material to apply biomedical field owing to its biodegradability and biocompatibility which is suitable for a specific site with longer healing times. Blending the polymer with other materials has degradation property improved with the effective and economic method. This study was conducted to fabricate supporter based on Polycaprolactone and Rice husk silica (PCL-SiO2) by using electrospinning. Nano-porous silica in the composite was synthesized from rice husk having properties of economic, eco-friendly and high surface area. It drew to enhance the amount of drug loading in the carrier. Electrospinning technique is used to fabricate fibrous component by optimization condition obtained from previous mechanical properties experiments. Release experiment was carried out by the degree of dye absorbance at 544nm by ultraviolet–visible spectroscopy, the RhB in SiO2 alternative drug for modelling of drug release was released for 1 ~ 20 days at 37°C in phosphate buffer. Furthermore, the Mechanical property was confirmed by DSC, TGA. Morphology and degree of biodegradation were shown as SEM images and EDS.

  16. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    PubMed Central

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  17. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-04-01

    Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    PubMed

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.

  19. Analysis of Chemical and Physical Properties of Biochar from Rice Husk Biomass

    NASA Astrophysics Data System (ADS)

    Armynah, Bidayatul; Atika; Djafar, Zuryati; Piarah, Wahyu H.; Tahir, Dahlang

    2018-03-01

    Chemical and physical properties of Rice Husk as a potential energy resource were analyzed by means Fourier transform infrared (FTIR), x-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse spectroscopy (EDS). Rice husk is heated with varied temperature of 250°C, 350°C, 450°C and 30, 60, 90 minutes respectively combine with time variation. The results show that the calorific value decreases whenever the temperature and time increase. The heating time of 30 minutes at 250 °C of temperature gives calorific value of 10.4 MJ/Kg. While at the 450°C of temperature, the calorific value decrease to 4.7 MJ/Kg. The EDS shows that the time of heating is an important parameter where carbon and nitrogen were decreasing with the increment of the heating time while the oxygen increase when the heating time increase. The XRD shows that the broad (002) reflections between 20° and 30° indicate carbon disordered with small domains of coherent and parallel stacking of the graphene sheets, which consists of surface morphology from SEM. FTIR shows that the O-H stretching pronounced at around 3452 cm-1 and 3412 cm-1 and pronounced clearly at the highest temperature. The aromatic group from lignin gives rise to C=C asymmetric stretching at cm-1 as a G band corresponds to the sp2-hybradization bonding of carbon atoms and C-H bending modes at 2927 at 796 cm-1. This results of the characteristic of chemical and physical properties of the rice husk examination provide the prominent source of useful energy that can eventually replace the fossil fuel.

  20. Conversion of rice husk into fermentable sugar by two stage hydrolysis

    NASA Astrophysics Data System (ADS)

    Salimi, M. N.; Lim, S. E.; Yusoff, A. H. M.; Jamlos, M. F.

    2017-10-01

    Rice husks, a complex lignocellulosic biomass which comprised of high cellulose content (38-50%), hemicellulose (23-32%) and lignin (15-25%) possesses the potential to pursue as low cost feedstock for production of ethanol. Dilute sulfuric acid at concentration of 1, 2, 3 (%, v/v) were used for pretreatments at varied hydrolysis time (15-60 min) and enzymatic saccharification at range of 45-60˚C and pH 4.5-6.0 were evaluated for conversion of rice husk’s cellulose and hemicellulose to fermentable sugars. The maximum yield of fermentable sugars from rice husks by dilute sulfuric acid (2%, 60 minutes) was 0.0751 g/l. Total fermentable sugar was identified using dinitrosalicylic acid (DNS) method and expressed in g/l. Enzymatic hydrolysis for conversion of cellulose to fermentable sugar has been studied by applying response surface methodology (RSM) and Analysis of Variance (ANOVA). Two independent variables namely initial pH and incubation temperature were considered using Central Composite Design (CCD). The determination coefficient, R2 obtained was 0.9848. This indicates that 98.48% capriciousness in the respond could be clarified by the ANOVA. Based on the data shown by Design Expert software, the optimum condition for total sugar production was at pH 6.0 and temperature 45˚C as it produced 0.5086 g/l of total sugar.

  1. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  2. Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved

    PubMed Central

    Lindh, Markus V.; Pinhassi, Jarone; Welander, Ulrika

    2017-01-01

    Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as Dysgonomonas, and Pseudomonas and the presence of fungal phylotypes such as Gibberella and Fusarium. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments. PMID:28114377

  3. Adsorption of crude and engine oils from water using raw rice husk.

    PubMed

    Razavi, Zahra; Mirghaffari, Nourollah; Rezaei, Behzad

    2014-01-01

    The raw rice husk (RRH) was used as a low cost adsorbent to remove three oil compounds with different viscosities (crude oil, engine oil and spent engine oil) from an aqueous environment. Some of the sorbent specifications were characterized using a CHNSO analyzer, Fourier transform infrared, scanning electron microscope and inductively coupled plasma spectroscopy. With decreasing RRH particles size, the oil adsorption percentage was reduced for crude, spent and engine oils from 50 to 30%, 65 to 20% and 70 to 0.01%, respectively. This was probably due to damage of the microcavities. The removal percentage by sorbent at optimized conditions was 88, 80 and 55% for engine, spent and crude oils, respectively, corresponding to their descending viscosity. The adsorption of crude and spent oils on rice husk followed the Freundlich isotherm model, while the adsorption of engine oil was fitted by the Langmuir model. The maximum adsorption capacity (qmax), calculated from the Langmuir model for the adsorption of engine oil on RRH, was 1,250 mg/g.

  4. Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil.

    PubMed

    O'Connor, David; Peng, Tianyue; Li, Guanghe; Wang, Shuxiao; Duan, Lei; Mulder, Jan; Cornelissen, Gerard; Cheng, Zhenglin; Yang, Shengmao; Hou, Deyi

    2018-04-15

    Mercury (Hg) contamination of surface soils has increased by ~86Giga grams due to anthropogenic activities. There is an urgent need to find new, effective and preferably 'green' remediation technologies to protect human health and the environment. Sulfur-modification of sorbents can greatly enhance Hg sorption capacity - by forming low solubility HgS (cinnabar). However, S-modified sorbents are not considered suitable for soil remediation due to the economic cost and secondary environmental impacts of sorbents such as granulated activated carbon (GAC), and the toxicity of S-modifiers such as thiol compounds. It was previously found that if biochar is used as an alternative to GAC then the overall environmental impact can be significantly reduced. However, due to a lack of experimental evidence, the practicality of S-modified biochar remains uncertain. The present study was undertaken to provide a proof-of-concept for the 'green' remediation of Hg contaminated soils with rice husk biochar modified with non-toxic elemental S. It was found that the S modification process increased the biochar S content from 0.2% to 13.04% via surface deposition or volume pore filling. This increased the biochar's Hg 2+ adsorptive capacity (Q max ) by ~73%, to 67.11mg/g. To assess the performance of S-modified rice husk biochar for soil remediation it was applied to a high 1000mg/kg Hg 2+ contaminated soil. Treatment dosages of 1%, 2% and 5% (dry wt.) were found to reduce freely available Hg in TCLP (toxicity characterization leaching procedure) leachates by 95.4%, 97.4% and 99.3%, respectively, compared to untreated soil. In comparison, unmodified rice husk biochar reduced Hg concentrations by 94.9%, 94.9% and 95.2% when applied at the same treatment dosage rates, respectively. This study has revealed that S-modified rice husk biochar has potential to stabilize Hg as a 'green' method for the remediation of contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Microsized Porous SiOx@C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries.

    PubMed

    Cui, Jinlong; Cui, Yongfu; Li, Shaohui; Sun, Hongliang; Wen, Zhongsheng; Sun, Juncai

    2016-11-09

    Microsized porous SiO x @C composites used as anode for lithium-ion batteries (LIBs) are synthesized from rice husks (RHs) through low-temperature (700 °C) aluminothermic reduction. The resulting SiO x @C composite shows mesoporous irregular particle morphology with a high specific surface area of 597.06 m 2 /g under the optimized reduction time. This porous SiO x @C composite is constructed by SiO x nanoparticles uniformly dispersed in the C matrix. When tested as anode material for LIBs, it displays considerable specific capacity (1230 mAh/g at a current density of 0.1 A/g) and excellent cyclic stability with capacity fading of less than 0.5% after 200 cycles at 0.8 A/g. The dramatic volume change for the Si anode during lithium-ion (Li + ) insertion and extraction can be successfully buffered because of the formation of Li 2 O and Li 4 SiO 4 during initial lithiation process and carbon coating layer on the surface of SiO x . The porous structure could also mitigate the volume change and mechanical strains and shorten the Li + diffusion path length. These characteristics improve the cyclic stability of the electrode. This low-cost and environment-friendly SiO x @C composite anode material exhibits great potential as an alternative for traditional graphite anodes.

  6. Efficiency of a cleanup technology to remove mercury from natural waters by means of rice husk biowaste: ecotoxicological and chemical approach.

    PubMed

    Rocha, Luciana S; Lopes, I; Lopes, Cláudia B; Henriques, Bruno; Soares, Amadeu M V M; Duarte, Armando C; Pereira, Eduarda

    2014-01-01

    In the present work, the efficiency of rice husk to remove Hg(II) from river waters spiked with realistic environmental concentrations of this metal (μg L(-1) range) was evaluated. The residual levels of Hg(II) obtained after the remediation process were compared with the guideline values for effluents discharges and water for human consumption, and the ecotoxicological effects using organisms of different trophic levels were assessed. The rice husk sorbent proved to be useful in decreasing Hg(II) contamination in river waters, by reducing the levels of Hg(II) to values of ca. 8.0 and 34 μg L(-1), for an Hg(II) initial concentration of 50 and 500 μg L(-1), respectively. The remediation process with rice husk biowaste was extremely efficient in river waters spiked with lower levels of Hg(II), being able to eliminate the toxicity to the exposed organisms algae Pseudokirchneriella subcapitata and rotifer Brachionus calyciflorus and ensure the total survival of Daphnia magna species. For concentrations of Hg(II) tenfold higher (500 μg L(-1)), the remediation process was not adequate in the detoxification process, still, the rice husk material was able to reduce considerably the toxicity to the bacteria Vibrio fischeri, algae P. subcapitata and rotifer B. calyciflorus, whose responses where fully inhibited during its exposure to the non-remediated river water. The use of a battery of bioassays with organisms from different trophic levels and whose sensitivity revealed to be different and dependent on the levels of Hg(II) contamination proved to be much more accurate in predicting the ecotoxicological hazard assessment of the detoxification process by means of rice husk biowaste.

  7. Synthesis of biogenic silicon/silica (Si/SiO2) nanocomposites from rice husks and wheat bran through various microorganisms

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Pal Singh, Gurwinder; Kaur, Gurneet; Kaur, Sukhvir; Gill, Prabhjot Kaur

    2016-08-01

    Biosilification is an economically viable, energy saving and green approach for the commercial scale synthesis of oxide nanomaterials. The room temperature synthesis of oxide nanocomposites from cost effective agro-based waste is a particular example of biosilification. In this study, synthesis of Si/SiO2 nanocomposites from inexpensive agro-based waste material i.e. rice husks (RH) and wheat bran (WB) has been carried out by means of various eukaryotic microorganisms, i.e. Actinomycete, Fusarium oxysporum, Aspergillus niger, Trichoderma sp. and Penicillium sp., under ambient conditions. The XRD diffrectrograms represents that the synthesized nanomaterials exhibits silicon, amorphous silica and other crystal arrays such as cristobalite, trydimite and quartz, depending upon the type microorganism and time period used for extraction. All of the aforesaid microorganism bio transformed the naturally occurring amorphous silica to crystalline structures within the period of 24 h. However, the Actinomycete and Trichoderma sp. took 48 h in case of rice husks for biotransformation of naturally occurring plant silica to crystalline nanocomposite. While in case of wheat bran, Actinomycete and Trichoderma sp. took 24 h for biotransformation. The extracted nanocomposites exhibits band edge in the range 230-250 nm and blue emission. The procedure described in study can be used for commercial level production of Si/SiO2 nanocomposites from agro based waste materials.

  8. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    PubMed

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  9. Use of the rice husk as an alternative substrate for growing media on green walls drip irrigation

    NASA Astrophysics Data System (ADS)

    Andrey Rivas-Sánchez, Yair; Fátima Moreno-Pérez, María; Roldán Cañas, José

    2017-04-01

    In the last years, we have been looking for alternatives to traditional growing mediums for green walls. Commercially available systems for green walls are commonly made with Sphagnum, rock wool or polymers that are unsustainable materials. In the design of the green wall, local components such as agricultural by-products should be considered more often. The objective of this research is to use alternative materials available in Andalusia that are suitable for use as a growing medium in green walls, using organic residues generated by agriculture as in this case the rice husk, compared to conventional and used materials as a growing media in green walls such as coconut fiber and rock wool. The physical-chemical characteristics of the water were analyzed through the collection of excess irrigation water, after passing through the prototypes of green walls, installed in the Rabanales Campus of the University of Córdoba between April and July 2016 and thus observe the feasibility of using rice husk as an alternative material. The 16 mm diameter irrigation pipes are at the top and middle of each module, with 12 adjustable drippers of 4 l / h for each module, 72 drippers in the whole experimental green wall prototype installed at every 15 centimeters of tube. Two different species of plant material (Lampranthus spectabilis) and (Lavandula stoechas), were selected, taking into account the solar exposition of the place of establishment of the prototype of the green wall and the easy acquisition of these plants in the region. Water samples were collected every day twice a day for 10 weeks of the experiment, taking a sample of the surplus runoff water from six green wall prototypes.PH 40 - pH - conductivity - TDS - temperature, CRISON. Differences in pH, electrical conductivity, turbidity and total solids of the treatments were examined by ANOVA with the test of normality and homogeneity of variances. It was observed that the substrates used in the prototypes of the

  10. Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan; Liu, Xinzhi; Zhu, Shuguang

    2015-10-01

    The influences of water washing, torrefaction and combined water washing-torrefaction pretreatments on microwave pyrolysis of rice husk samples were investigated. The results indicated that the process of combined water washing-torrefaction pretreatment could effectively remove a large portion of inorganics and improve the fuel characteristics to a certain extent. The gas products were rich in combustible compositions and the syngas quality was improved by pretreatment process. The liquid products contained less moisture content, acids and furans, while more concentrated phenols and sugars from microwave pyrolysis of rice husk after pretreatments, especially after the combined water washing-torrefaction pretreatment. Biochar, produced in high yield, has the alkaline pH (pH 8.2-10.0) and high surface area (S(BET) 157.81-267.84 m(2)/g), they have the potential to be used as soil amendments. It is noteworthy that water washing increased the pore surface area of biochar, but torrefaction reduced the pore surface area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mechanical properties of epoxy composites with plasma-modified rice-husk-derived nanosilica

    NASA Astrophysics Data System (ADS)

    Hubilla, Fatima Athena D.; Panghulan, Glenson R.; Pechardo, Jason; Vasquez, Magdaleno R., Jr.

    2018-01-01

    In this study, we explored the use of rice-husk-derived nanosilica (nSiO2) as fillers in epoxy resins. The nSiO2 was irradiated with a capacitively coupled 13.56 MHz radio frequency (RF) plasma using an admixture of argon (Ar) and hexamethyldisiloxane (HMDSO) or 1,7-octadiene (OD) monomers. The plasma-polymerized nSiO2 was loaded at various concentrations (1-5%) into the epoxy matrix. Surface hydrophobicity of the plasma-treated nSiO2-filled composites increased, which is attributed to the attachment of functional groups from the monomer gases on the silica surface. Microhardness increased by at least 10% upon the inclusion of plasma-modified nSiO2 compared with pristine nSiO2-epoxy composites. Likewise, hardness increased with increasing loading volume, with the HMDSO-treated silica composite recording the highest increase. Elastic moduli of the composites also showed an increase of at least 14% compared with untreated nSiO2-filled composites. This work demonstrated the use of rice husk, an agricultural waste, as a nSiO2 source for epoxy resin fillers.

  12. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO{sub 2} from rice husk by solid state reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com

    Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less

  13. The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions

    NASA Astrophysics Data System (ADS)

    Arneli; Safitri, Z. F.; Pangestika, A. W.; Fauziah, F.; Wahyuningrum, V. N.; Astuti, Y.

    2017-02-01

    This research aims to study the influence of activating agents to produce rice husk based-carbon with high adsorption capacity and efficiency for either hazardous organic molecules or heavy metals which are unfriendly for the environment. Firstly, rice husk was burned by pyrolysis at different temperatures to produce rice husk-based carbon. To improve its ability as an adsorbent, carbon was treated with activating agents, namely, H3PO4 and KOH at room and high temperature (420 °C). The performance of carbon was then tested by contacting it with surfactant (SLS). Finally, the surfactant-modified active carbon was applied for chrome metal removal. The result shows that activation of carbon using phosphate acid (H3PO4) was more effective than potassium hydroxide (KOH) conducted at high temperature to adsorb sodium lauryl sulfate (SLS) and chrome metal with the adsorption capacity 1.50 mgg-1 and 0.375 mgg-1, respectively.

  14. Bioethanol production from rice husk using different pretreatments and fermentation conditions.

    PubMed

    Madu, Joshua Osuigwe; Agboola, Bolade Oyeyinka

    2018-01-01

    Bioethanol is an environmentally friendly alternative to petroleum energy sources. This study evaluated the effects of H 2 O, HCl, NaOH and FeCl 3 pretreated rice husk feedstocks on the production of bioethanol. The pretreatments were carried out using water, 0.1 M HCl, NaOH and FeCl 3 at 121 °C for 15 min, followed by simultaneous saccharification and fermentation (SSF) as well as separate hydrolysis and fermentation (SHF). The raw and pretreated lignocellulosic feedstocks were analyzed using Fourier transform infrared spectroscopy. Saccharification and fermentation were accomplished using Trichoderma reesei cellulase and Saccharomyces cerevisiae , respectively. The products obtained after saccharification and fermentation were collected and analyzed for reducing sugars and ethanol contents using 3,5-dinitrosalicylic acid and high-performance liquid chromatography, respectively. Enzyme hydrolysis of the FeCl 3 and HCl treated samples resulted in hydrolysates containing 3.845 and 3.402 mg/ml glucose equivalent, respectively. In all pretreatments, SSF for each pretreatment produced more ethanol than the SHF method; the FeCl 3 pretreatment gave the highest ethanol yield of 3.011 ± 0.034 and 3.802 ± 0.041% in the SHF and SSF methods, respectively. Utilization of FeCl 3 pretreatment of rice husk is a potential option for bioethanol production in the future.

  15. Superabsorbent nanocomposite synthesis of cellulose from rice husk grafted poly(acrylate acid-co-acrylamide)/bentonite

    NASA Astrophysics Data System (ADS)

    Helmiyati; Abbas, G. H.; Kurniawan, S.

    2017-04-01

    Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.

  16. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    PubMed

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars.

    PubMed

    Claoston, N; Samsuri, A W; Ahmad Husni, M H; Mohd Amran, M S

    2014-04-01

    Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.

  18. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk

    NASA Astrophysics Data System (ADS)

    Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

    2014-09-01

    Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

  19. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativa L.) and their antioxidant properties.

    PubMed

    Karimi, Ehsan; Mehrabanjoubani, Pooyan; Keshavarzian, Maryam; Oskoueian, Ehsan; Jaafar, Hawa Z E; Abdolzadeh, Ahmad

    2014-08-01

    Plant foods are rich sources of bioactive compounds that can act as antioxidants to prevent heart disease, reduce inflammation, reduce the incidence of cancers and diabetes. This study aimed to determine the phenolics and flavonoids profiling in three varieties of rice straw and five varieties of the seed husk of Iranian rice using high-performance liquid chromatography (HPLC). Furthermore, the antioxidant activities of the extracts were evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and nitric oxide assays. HPLC analyses showed that the gallic acid, pyrogallol, apigenin and rutin were the main phenolic and flavonoid compounds in all varieties of rice. In addition, the methanolic extracts of Hashemi and Ali Kazemi varieties showed the highest amounts of phenolic and flavonoid contents, respectively. Rice straw and husk of Iranian varieties showed considerable antioxidant activity and Hashemi indicated significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to the other varieties. The present study revealed that rice straw and seed husk of Iranian varieties shows high antioxidant activities and they contain various types of phenolic and flavonoid compounds that could be use in food and medical industries. © 2014 Society of Chemical Industry.

  1. Effect of rice husk biochar application to soil insect diversity on potato cultivation

    NASA Astrophysics Data System (ADS)

    Meilin, A.; Rubiana, R.

    2018-02-01

    High intensity of disease infection and the intensive use of fertilizers and pesticidescause saturated fertilizer and pesticide to the land. Remediation using biochar rice husk is one of the technology to decrease fertilizer and pesticide residue. The diversity of soil insects can be used as bioindicators because of their existence dependsg on soil structure and condition. This study was aimed to study the diversity and structure communities of soil insect in potatoes on difference husk rice biochar application. The sampling of soil insects was done on potato farmer’s land with four treatments i.e control (farmers’ technique), trichokompos without biochar, trichokompos + biochar with dose 1 ton/ha, and trichokompos + biochar with dose 2 ton / ha. At each point a single pitfall trap was installed for two nights and then it was taken for identification. The results showed that biochar application had significant effect on the number of soil insect species (P = 0.037). The soil insect species composition pattern also showed significant differences between the four treatments (R: 0.2306, Pvalue = 0.001). This mean that the application of biochar affects the number of insects species and plays a role in the formation of soil insect diversity beta patterns.

  2. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    NASA Astrophysics Data System (ADS)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  3. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    PubMed

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  4. Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent

    PubMed Central

    Cui, Jianghu; Liang, You; Yang, Desong; Liu, Yingliang

    2016-01-01

    Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10–50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass. PMID:26888152

  5. Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review.

    PubMed

    Shen, Yafei

    2017-02-08

    Silica-rich rice husk (RH) is an abundant and sustainable agricultural waste. The recovery of value-added products from RH or its ash to explore an economic way for the valorization of agricultural wastes has attracted wide attention. For instance, RH can be converted to biofuels and biochars simultaneously via thermochemical processes. In general, the applications of RH biochars include soil remediation, pollutant removal, silicon battery materials, and so forth. This review concludes recent progress in the synthesis of RH-derived silicon materials for lithium-ion battery (LIB) applications. Silica nanomaterials produced from RH are initially discussed. RH amorphous silica can also be fabricated to crystal silicon used for battery materials via widely used magnesiothermic reduction. However, the RH-derived Si nanoparticles suffer from a low Coulombic efficiency in the initial charge/discharge and limited cycle life as anode materials due to high surface reactions and low thermodynamic stability. The synthesis of Si materials with nano/microhierarchical structure would be an ideal way to improve their electrochemical performances. Embedding nano-Si into 3D conductive matrix is an effective way to improve the structural stability. Among the Si/carbon composite materials, carbon nanotubdes (CNTs) are a promising matrix due to the wired morphology, high electronic conductivity, and robust structure. Additionally, CNTs can easily form 3D cross-linked conducting networks, ensuring effective electron transportation among active particles. Si nanomaterials with microhierarchical structures in which CNTs are tightly intertwined between the RH-derived Si nanoparticles have been proven to be ideal LIB anode materials.

  6. Modifying Of Particle Boards From Rice Husk and Pinus Merkusii Sawdust And Using Soybean Waste Waters Based Adhesive.

    NASA Astrophysics Data System (ADS)

    Raya, Indah; Ramdani, Nurfika; Karim, Abd.; Muin, Musrizal

    2018-03-01

    Research of modifying particle board has been prepared by mixing of pinus merkusii sawdust and rice husk, where used of adhesive base on Boiled Soybean Water (BSW) has been done. The research utilize the rise husk and sawdust pines mixed, and used of a renewable and environmental adhesive to replace the toxic and carcinogenic one. The testing of adhesive included are; colour, pH, solid contain, gelatination time, density and viscosity. Result showed yellowish colour, 10 of pH, 44.70 % of solid contained, 56.29 minutes of gelatination time, and 1.1656 g/cm3 and 182.4387 cP of viscocity respectively. While the particle boards testing include are density, moisture, immersion, thickness, Modulus of Rapture (MOR) and Modulus of Elasticity (MOE). The particle board best ratio it was 1:4 (Rice husk: pinus merkusii sawdust). Result of each parameter are, 0.7735 g/cm3 of density, 5.79 % of moisture, however the immersion for 2 hours is 26.90 % and immersion for 24 hours is 39.77 %, 101.1592 kg/cm2 of MOR and 18,248.3063 kg/cm2of MOE. The summary, the adhesive based on SNI 06-4567-1998 and the particle board based on SNI 03-2105-1996

  7. Development of carbon dioxide adsorbent from rice husk char

    NASA Astrophysics Data System (ADS)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  8. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    PubMed

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fabrication of mesoporous silica nanoparticles by sol gel method followed various hydrothermal temperature

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah

    2018-04-01

    Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.

  10. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    NASA Astrophysics Data System (ADS)

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  11. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    PubMed

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  12. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    PubMed Central

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-01-01

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  13. Photoreduction of mercury metal (Hg) using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumiardi, Ade, E-mail: zulfasalmasaodah@gmail.com; Novi, Cory; Sukaesih, Esih

    Photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) is one of methods to reduce toxicity properties of the mercury metal in the society. The purpose of this research is to enhance photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) at various concentrations. Photoreduction process is carried out in a closed reactor equipped with UV light and magnetic stirrer. Analysis of the influence of oxalic acid is determined by adding 25 mL of Hg (II) 5 ppm without oxalic acid, 25 mL of Hg (II) 5 ppmmore » + 25 mL of oxalic acid 3 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 6 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 9 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 12 ppm and 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 15 ppm. All treatments are followed by centrifugation for 15 minutes, then the concentration of Hg residual in the solution is measured by mercury analyzer. The research results showed that addition of oxalic acid concentration from the cellulose of rice husks (Oryza sativa L.) can enhance photoreduction of mercury metal. Optimum concentration reduction of mercury metal with addition of oxalic acid is obtained as many as 9-12 ppm. It can reduce the concentration of mercury metal (II) by 68.8% to 88.6%.« less

  14. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    PubMed Central

    Ahmed, Khalil; Nizami, Shaikh Sirajuddin; Riza, Nudrat Zahid

    2013-01-01

    A research has been carried out to develop natural rubber (NR) hybrid composites reinforced with marble sludge (MS)/Silica and MS/rice husk derived silica (RHS). The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc. PMID:25685484

  15. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions

    NASA Astrophysics Data System (ADS)

    Fushimi, Akihiro; Saitoh, Katsumi; Hayashi, Kentaro; Ono, Keisuke; Fujitani, Yuji; Villalobos, Ana M.; Shelton, Brandon R.; Takami, Akinori; Tanabe, Kiyoshi; Schauer, James J.

    2017-08-01

    Open burning of crop residue is a major source of atmospheric fine particle emissions. We burned crop residues (rice straws, barley straws, wheat straws, and rice husks produced in Japan) in an outdoor chamber and measured particle mass, composition (elemental carbon: EC, organic carbon: OC, ions, elements, and organic species), and oxidative potential in the exhausts. The fine particulate emission factors from the literature were within the range of our values for rice straws but were 1.4-1.9 and 0.34-0.44 times higher than our measured values for barley straw and wheat straw, respectively. For rice husks and wheat straws, which typically lead to combustion conditions that are relatively mild, the EC content of the particles was less than 5%. Levoglucosan seems more suitable as a biomass burning marker than K+, since levoglucosan/OC ratios were more stable than K+/particulate mass ratios among crop species. Stigmasterol and β-sitosterol could also be used as markers of biomass burning with levoglucosan or instead of levoglucosan. Correlation analysis between chemical composition and combustion condition suggests that hot or flaming combustions enhance EC, K+, Cl- and polycyclic aromatic hydrocarbons emissions, while low-temperature or smoldering combustions enhance levoglucosan and water-soluble organic carbon emissions. Oxidative potential, measured with macrophage-based reactive oxygen species (ROS) assay and dithiothreitol (DTT) assay, of open burning fine particles per particulate mass as well as fine particulate emission factors were the highest for wheat straws and second highest for rice husks and rice straws. Oxidative potential per particulate mass was in the lower range of vehicle exhaust and atmosphere. These results suggest that the contribution of open burning is relatively small to the oxidative potential of atmospheric particles. In addition, oxidative potential (both ROS and DTT activities) correlated well with water-insoluble organic species

  16. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    NASA Astrophysics Data System (ADS)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  17. Use of Almond Shells and Rice Husk as Fillers of Poly(Methyl Methacrylate) (PMMA) Composites.

    PubMed

    Sabbatini, Alessandra; Lanari, Silvia; Santulli, Carlo; Pettinari, Claudio

    2017-07-28

    In recent years, wood fibres have often been applied as the reinforcement of thermoplastic materials, such as polypropylene, whereas their use in combination with thermosetting resin has been less widespread. This study concerns the production of PMMA-based composites by partly replacing alumina trihydrate (ATH) with wood waste fillers, namely rice husks and almond shells, which would otherwise be disposed by incineration. The amount of filler introduced was limited to 10% as regards rice husks and 10 or 15% almond shells, since indications provided by reactivity tests and viscosity measurements did not suggest the feasibility of total replacement of ATH. As a matter of fact, the introduction of these contents of wood waste filler in PMMA-based composite did not result in any significant deterioration of its mechanical properties (Charpy impact, Rockwell M hardness and flexural performance). Some reduction of these properties was only observed in the case of introduction of 15% almond shells. A further issue concerned the yellowing of the organic filler under exposure to UV light. On the other hand, a very limited amount of water was absorbed, never exceeding values around 0.6%, despite the significant porosity revealed by the filler's microscopic evaluation. These results are particularly interesting in view of the application envisaged for these composites, i.e., wood replacement boards.

  18. Use of Almond Shells and Rice Husk as Fillers of Poly(Methyl Methacrylate) (PMMA) Composites

    PubMed Central

    Sabbatini, Alessandra; Lanari, Silvia; Santulli, Carlo

    2017-01-01

    In recent years, wood fibres have often been applied as the reinforcement of thermoplastic materials, such as polypropylene, whereas their use in combination with thermosetting resin has been less widespread. This study concerns the production of PMMA-based composites by partly replacing alumina trihydrate (ATH) with wood waste fillers, namely rice husks and almond shells, which would otherwise be disposed by incineration. The amount of filler introduced was limited to 10% as regards rice husks and 10 or 15% almond shells, since indications provided by reactivity tests and viscosity measurements did not suggest the feasibility of total replacement of ATH. As a matter of fact, the introduction of these contents of wood waste filler in PMMA-based composite did not result in any significant deterioration of its mechanical properties (Charpy impact, Rockwell M hardness and flexural performance). Some reduction of these properties was only observed in the case of introduction of 15% almond shells. A further issue concerned the yellowing of the organic filler under exposure to UV light. On the other hand, a very limited amount of water was absorbed, never exceeding values around 0.6%, despite the significant porosity revealed by the filler’s microscopic evaluation. These results are particularly interesting in view of the application envisaged for these composites, i.e., wood replacement boards. PMID:28773234

  19. [Husk of Venezuelan cocoa as raw material of infusions].

    PubMed

    Sangronis, Elba; José Soto, María; Valero, Yolmar; Buscema, Ignacio

    2014-06-01

    In the cocoa bean industry, some by-products go underutilized. Some of these components could provide other innovative products, and such is the case with the husk of the cocoa bean. Previous studies have attributed the husk with a high antioxidant capacity, which added to its relative low cost, makes it an attractive ingredient for the production of infusions. However, prior to promoting it as such, its quality needs to be guaranteed. This study evaluated the chemical composition of the husk of cocoa, its microbiologic quality and other parameters in order to be considered raw material in the preparation of infusions. The cocoa was cultivated in two different states in Venezuela. Moisture, protein, fat, ash, carbohydrates, microbiologic quality and ochratoxin A as well antioxidant properties, content of foreign matter, insoluble ash in HCL and aqueous extract were evaluated in the husk of cocoa seeds. Applied methods were in compliance with national and international norms. Significant differences were determined between the samples through the ANOVA application. A low level in moisture content, but high in ash, along with a microbiologic quality that met the norm, and an absence of ochratoxin A were observed in the totality of the analyzed samples. Low levels of foreign matter, the high value of its aqueous extract and high phenolic compounds content with antioxidant activity allow for the recommendation of the husk of cocoa as raw material for the preparation of infusions.

  20. Utilization of rice husks modified by organomultiphosphonic acids as low-cost biosorbents for enhanced adsorption of heavy metal ions.

    PubMed

    Xu, Mingyu; Yin, Ping; Liu, Xiguang; Tang, Qinghua; Qu, Rongjun; Xu, Qiang

    2013-12-01

    Novel biosorbent materials (RH-2 and RH-3) obtained from agricultural waste materials rice husks (RH-1) were successfully developed through fast and facile esterification reactions with hydroxylethylidenediphosphonic acid and nitrilotrimethylenetriphosphonic acid, respectively. The present paper reported the feasibility of using RH-1, RH-2 and RH-3 for removal of heavy metals from simulated wastewater, the results revealed that the adsorption property of functionalized rice husks with organotriphosphonic acid RH-3 for Au(III) was very excellent, especially for gold ions. The combined effect of initial solution pH, RH-3 dosage and initial Au(III) concentration was investigated using response surface methodology (RSM), the results showed that initial Au(III) concentration exerted stronger influence on Au(III) uptake than initial pH and biomass dosage. The analysis of variance (ANOVA) of the quadratic model demonstrated that the model was highly significant, and under the optimum process conditions, the maximum adsorption capacity could reach 3.25 ± 0.07 mmol/g that is higher than other reported adsorbents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice.

    PubMed

    Bisoi, Sidhanta Sekhar; Mishra, Swati S; Barik, Jijnasa; Panda, Debabrata

    2017-05-04

    The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.

  2. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.

    PubMed

    He, Xiaojun; Zhang, Hebao; Xie, Kang; Xia, Youyi; Zhao, Zhigang; Wang, Xiaoting

    2016-03-01

    High-performance mesoporous carbons (MCs) for supercapacitors were made from rice husk by one-step microwave-assisted ZnCl2 activation. The microstructures of MCs as-made were characterized by field emission scanning electron microscopy and transmission electron microscopy. The pore structure parameters of MCs were obtained by N2 adsorption technique. The electrochemical properties of MC electrodes were studied by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy in different electrolytes. The results showed that the specific surface area of MC4 made at the ZnCl2/rice husk mass of 4:1 reached 1737 m2 g(-1). The specific capacitance and energy density of the electrodes fabricated from the mixture of MC4 and microporous carbon increased with the mass percentage of MC4, reaching 157 F g(-1) and 84 Wh kg(-1) at 0.05 A g(-1), and showed good cycle stability in 1-butyl-3-methylimidazolium hexafluorophosphate electrolyte. Compared to the often-used aqueous and organic electrolytes, MC4 capacitor exhibited extremely high energy density in ionic liquid electrolyte, remaining at 28 Wh kg(-1) at 1684 W kg(-1). This work paves a new way to produce cost-effective MCs from biomass for supercapacitors with extremely high energy density in ionic liquid electrolytes.

  3. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production.

    PubMed

    Haider, Muhammad Rizwan; Zeshan; Yousaf, Sohail; Malik, Riffat Naseem; Visvanathan, Chettiyappan

    2015-08-01

    Aim of this study was to find out suitable mixing ratio of food waste and rice husk for their co-digestion in order to overcome VFA accumulation in digestion of food waste alone. Four mixing ratios of food waste and rice husk with C/N ratios of 20, 25, 30 and 35 were subjected to a lab scale anaerobic batch experiment under mesophilic conditions. Highest specific biogas yield of 584L/kgVS was obtained from feedstock with C/N ratio of 20. Biogas yield decreased with decrease in food waste proportion. Further, fresh cow dung was used as inoculum to investigate optimum S/I ratio with the selected feedstock. In experiment 2, feedstock with C/N ratio 20 was subjected to anaerobic digestion at five S/I ratios of 0.25, 0.5, 1.0, 1.5 and 2.0. Specific biogas yield of 557L/kgVS was obtained at S/I ratio of 0.25. However, VFA accumulation occurred at higher S/I ratios due to higher organic loadings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Kinetic and equilibrium studies on the removal of Cd2+ ions from water using polyacrylamide grafted rice (Oryza sativa) husk and (Tectona grandis) saw dust.

    PubMed

    Sharma, Neeta; Kaur, Kulwinder; Kaur, Sumanjit

    2009-04-30

    The increase in the use of heavy metals has resulted in an increased flux of metallic substances into the aquatic environment which poses a danger to human health. The present work relates to the removal of cadmium ions by treatment with polyacrylamide grafted rice (Oryza sativa) husk/saguan (Tectona grandis) saw dust. The drinking water guideline value recommended by WHO for cadmium is 0.005 ppm.The adsorbent has been prepared by treatment of rice husk/saw dust with acrylamide. Removal has been studied at various pH values for different times of contact and adsorbate concentrations and is found to be pH-dependent, maximum removal occurs at pH 9 and at a contact time of 180 min for both the adsorbents. The results were found to be consistent with both the Langmuir and Freundlich isotherm models. The value of n (rate constant) determined at pH 9 has been found to be 1 (within experimental limits). This is further substantiated by applying the Lagergren model. The intra-particle diffusion constants were determined by the Morris-Weber model. Continuous flow column studies have also been undertaken and the breakthrough characteristics were determined. Desorption has been affected with 0.5M HCl. The results suggest that both polyacrylamide grafted rice husk/saw dust can be used as efficient and cost effective adsorbents for cadmium ion removal.

  5. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    NASA Astrophysics Data System (ADS)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  6. Characterization of hydrogenated amorphous silicon films obtained from rice husk

    NASA Astrophysics Data System (ADS)

    Nandi, K. C.; Mukherjee, D.; Biswas, A. K.; Acharya, H. N.

    1991-08-01

    Hydrogenated amorphous silicon ( a-Si: H) films were prepared by chemical vapour deposition (CVD) of silanes generated by the acid hydrolysis of magnesium silicide (Mg 2Si) obtained from rice husk. The films were deposited at various substrate temperatures ( Ts) ranging from 430 to 520°C. The results show that the films have room temperature (294 K) dark conductivity (σ d) of the order of 10 -8 - 10 -10 (ohm-cm) -1 with single activation energy (Δ Ed) and the photoconductivity (σ ph) decreases with increase of Ts. Optical band gap ( Eopt) lies between 1.60-1.73 eV and hydrogen content ( CH) in the films is at best 8.3 at %. Au/ a-Si: H junction shows that it acts as a rectifier contact with Schottky barrier height ( VB) 0.69 eV. The films are contaminated by traces of impurities like Na, K, Al, Cl and O as revealed by secondary ion mass spectrometric (SIMS) analysis.

  7. Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk.

    PubMed

    Jha, Pankaj; Das, Arup Jyoti; Deka, Sankar Chandra

    2017-11-01

    Phenolic compounds were extracted from the husk of milled black rice (cv. Poireton) by using a combination of ultrasound assisted extraction and microwave assisted extraction. Extraction parameters were optimized by response surface methodology according to a three levels, five variables Box-Behnken design. The appropriate process variables (extraction temperature and extraction time) to maximize the ethanolic extraction of total phenolic compounds, flavonoids, anthocyanins and antioxidant activity of the extracts were obtained. Extraction of functional components with varying ethanol concentration and microwave time were significantly affected by the process variables. The best possible conditions obtained by RSM for all the factors included 10.02 min sonication time, 49.46 °C sonication temperature, 1:40.79 (w/v) solute solvent ratio, 67.34% ethanol concentration, and 31.11 s microwave time. Under the given solutions, the maximum extraction of phenolics (1.65 mg/g GAE), flavonoids (3.04 mg/100 g), anthocyanins (3.39 mg/100 g) and antioxidants (100%) were predicted, while the experimental values included 1.72 mg/g GAE of total phenolics, 3.01 mg/100 g of flavonoids, 3.36 mg/100 g of anthocyanins and 100% antioxidant activity. The overall results indicated positive impact of co-application of microwave and ultrasound assisted extractions of phenolic compounds from black rice husk.

  8. Injuries to children caused by burning rice husk.

    PubMed

    Raveendran, Sherine Subodhini

    2002-02-01

    A case study of injury to the feet of children from Sri Lanka due to burning husk is discussed. The hot husk causes deep burns on the dorsum of the feet and spares the plantar surface. The contractures caused by the burns lead to severe deformity, and are very resistant to treatment. These burn injuries need to be treated early, in specialized centers, to avoid long term complications. Health education of the public plays an important role in the prevention of these injuries.

  9. Properties of CoO doped in Glasses Prepared from Rice Hush Fly Ash in Thailand

    NASA Astrophysics Data System (ADS)

    Ruangtaweep, Y.; Kaewkhao, J.; Kirdsiri, K.; Kedkaew, C.; Limsuwan, P.

    2011-10-01

    In this work, properties of glass from local rice husk ash (RHA) in Thailand have been investigated. RHA was sintered in different temperature. Compositions and phases of RHA were analyzed by energy dispersive x-ray fluorescence spectrometer (EDXRF) and X-ray diffractometer (XRD). The glasses were melt from RHA in formula 20 Na2O : 1.0 Al2O3 : 13 B2O3 : 6.3 CaO : 0.2 Sb2O3 : 4.5 BaO : 55SiO2 (using RHA as a SiO2 source) The density values of all RHA glasses are comparable and larger than glass from pure SiO2 under same glass formula and preparing condition. These results are corresponding with refractive index values. The RHA glasses showing colorless with absorption edge in ultraviolet region were obtained. The dark blue color glasses were melted from RHA with different CoO concentration. From this part, not found to be the relation of density and refractive index of glass with CoO concentration in glass matrix. From absorption spectra, the absorption peak were appeared around 600 nm, and peak intensity are increased, with increase CoO, correspond to 4A2(4F) → 4T1(4P) state of Co2+ in tetrahedral symmetry.

  10. Synthesis of geopolymer from biomass-coal ash blends

    NASA Astrophysics Data System (ADS)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  11. Tracing remobilization of nutrients and toxic elements after application of rice straw or derived ash / biochar in paddy soils

    NASA Astrophysics Data System (ADS)

    Schaller, Jörg; Wang, Jiajia; Planer-Friedrich, Britta

    2017-04-01

    More than 600 million tons of rice straw are produced each year as byproduct of rice grain production. As an increasing application, besides e.g. composting or fodder for animals, the straw remains on the field for decomposition and nutrient supply. A central concern during rice cultivation is accumulation of arsenic, but it is currently unclear how the application of rice straw or derived ash or biochar to paddy soils will influence arsenic uptake by the next generation of rice plants. Consequently, we assessed the element mobilization via soil microcosm incubations with straw or derived ash or biochar or without those amendments under flooding (40 days) and subsequent drainage (14 days). We focused on elements potentially influencing the uptake of arsenic by the next generation of rice plants (e.g. silicon, phosphorus, iron), or which are nutrients but toxic themselves at higher levels (sulfur, sulfide, iron, iron(II), manganese, copper, and zinc). We found significant differences in the release of arsenic, iron(II), sulfide, total sulfur, DOC, manganese, copper, and zinc . For example highest pore water Mn and As concentrations were found for soil amended with straw, whereas the straw amendment reduced S mobilization, possibly due to sulfate reduction by straw decomposing microbes. For P, we found highest pore water concentrations for straw, followed by biochar, ash and control. In summary, application of rice straw or derived ash or biochar strongly affect the element availability in paddy soil.

  12. The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield

    NASA Astrophysics Data System (ADS)

    Suciaty, T.; Purnomo, D.; Sakya, A. T.; Supriyadi

    2018-03-01

    Agriculture is facing a number of challenges included limited water supply, low nutrient use efficiency, etc affected by climate change. Nano-silica is a product of nanotechnology, the frontier technologies to enhance crop productivity under climate change threats. The purpose of the research was to investigate the effects of nano silica concentration and rice hull ash on growth and yield of soybean. The experiment was conducted at Gagasari village, Cirebon, West Java from March until June 2017. The treatments were arranged by using factorial completely randomized block design with two factors. The first factor was a concentration of nano silica fertilizer consisted of four levels i.e., 0, 1.75, 2.5, and 3.75 ml.l‑1. The second factor was doses of rice hull ash consisted of four levels i.e., 0, 1, 2, and 3 ton.ha‑1. Each treatment combinations was repeated three times. The result showed that concentration of nano silica individually affected the number of leaves and number of branches, NAR and RGR, productive branches at 21, 30-45, and 35 daps, respectively. It also affected the seed dry weight plant‑1 and plot‑1. Meanwhile, doses of rice hull ash affected LAI, NAR, and RGR, 15-30, and 30-45 dap, respectively. Dry seed weight plot‑1 was also affected by doses of rice hull ash. There was an interaction effect between nano-silica concentration and doses of rice hull ash on number pods.plant‑1. Combinations of 2.5 ml.l‑1 nano-silica and 3 ton.ha‑1 of rice hull ash gave the highest number pods.plant‑1.

  13. Agricultural waste as household fuel: techno-economic assessment of a new rice-husk cookstove for developing countries.

    PubMed

    Vitali, Francesco; Parmigiani, Simone; Vaccari, Mentore; Collivignarelli, Carlo

    2013-12-01

    In many rural contexts of the developing world, agricultural residues and the organic fraction of waste are often burned in open-air to clear the lands or just to dispose them. This is a common practice which generates uncontrolled emissions, while wasting a potential energy resource. This is the case of rice husk in the Logone Valley (Chad/Cameroon). In such a context household energy supply is a further critical issue. Modern liquid fuel use is limited and traditional solid fuels (mainly wood) are used for daily cooking in rudimentary devices like 3-stone fires, resulting in low efficiency fuel use, huge health impacts, increasing exploitation stress for the local natural resources. Rice husk may be an alternative fuel to wood for household energy supply. In order to recover such a biomass, the authors are testing a proper stove with an original design. Its lay-out (featuring a metal-net basket to contain the fuel and a chimney to force a natural air draft) allows a mix of combustion/gasification of the biomass occurring in a completely burning fire, appropriate for cooking tasks. According to results obtained with rigorous test protocols (Water Boiling Test), different lay-outs have been designed to improve the performance of the stove. Technical and economic issues have been addressed in the development of such a model; building materials have been chosen in order to guarantee a cost as low as possible, using locally available items. The feasibility of the introduction of the stove in the studied context was assessed through an economic model that keeps into account not only the technology and fuel costs, but also the energy performance. According to the model, the threshold for the trade-off of the stove is the use of rice husk to cover 10-15% of the household energy needs both with traditional fireplaces or with improved efficiency cookstoves. The use of the technology proposed in combination with improved woodstove would provide householders with an

  14. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis.

    PubMed

    Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke

    2017-01-05

    Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Preparation and characterization compatible pellets for immobilization of colloidal sulphur nanoparticles

    NASA Astrophysics Data System (ADS)

    Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.

    2018-03-01

    Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.

  16. Compressive strength and interfacial transition zone of sugar cane bagasse ash concrete: A comparison to the established pozzolans

    NASA Astrophysics Data System (ADS)

    Hussein, Asma Abd Elhameed; Shafiq, Nasir; Nuruddin, Muhd Fadhil

    2015-05-01

    Agricultural and industrial by-products are commonly used in concrete production as cement replacement materials (CRMs) or as admixtures to enhance both fresh and hardened properties of concrete as well as to save the environment from the negative effects caused by their disposal. Sugar Cane Bagasse Ash (SCBA) is one of the promising CRMs, it is used as a partial replacement of cement for producing concrete; properties of such concrete depend on the chemical composition, fineness, and burning temperature of SCBA. Approximately 1500 Million tons of sugarcane are annually produced over all the world which leave about 40-45% bagasse after juice crushing for sugar industry giving an average annual production of about 600 Million tons of bagasse as a waste material. This paper presents some findings on the effect of SCBA on workability, compressive strength and microstructure of interfacial zone of concrete and its performance is compared to some of the established CRMs namely Densified Silica Fume, Fly Ash and Microwave Incinerated Rice Husk Ash.

  17. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    PubMed

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  18. Preparation of Si and O co-solution strengthened Ti alloys by using rice husks as SiO2 resource and quantitative descriptions on their strengthening effects

    NASA Astrophysics Data System (ADS)

    Jia, Lei; Chen, Jiang-xian; Lu, Zhen-lin; Li, Shu-feng; Umeda, Junko; Kondoh, Katsuyoshi

    2018-04-01

    Ti alloys strengthened by both Si and O solutes were prepared by powder metallurgy method from pure Ti and amorphous SiO2 powder obtained by combusting rice husks. At the same time, Ti alloys singly strengthened by Si or O were also prepared for studying the strengthening effect of Si and O solutes. Results showed that amorphous SiO2 powder originated from rice husks could almost fully dissolve into pure Ti matrix when the content was not higher than 1.0 wt%, while higher content of SiO2 addition resulted in the formation of Ti5Si3 intermetallics. Si and O elements leaded to negative and positive distortion of Ti lattice, and the influencing degrees were ‑0.02 and +0.014 Å/wt% for lattice constant a, while ‑0.05 and +0.046 Å/wt% for constant c, respectively. Solid solution of Si and O would also result in the increase of hardness, which was 98.5 and 209.43 HV/wt%, respectively. When Si and O were co-exsited in Ti matrix, the negative and positive distortion cancelled each other, while the strengthening effect did not cancel but enhance each other.

  19. Synthesis and characterization of LTA nanozeolite using barley husk silica: Mercury removal from standard and real solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizi, Seyed Naser, E-mail: azizi@umz.ac.ir; Dehnavi, Ahmad Roozbehani, E-mail: Roozbehanisulfur@yahoo.com; Joorabdoozha, Amir

    2013-05-15

    Highlights: ► Silica extraction from barley husk with high purity for the synthesis of A nanozeolite. ► Free template A nanozeolite synthesized via new source of silica at low temperature. ► Optimization of SiO{sub 2}/Al{sub 2}O{sub 3}, Na{sub 2}O/SiO{sub 2} ratios, temperature and time of the synthesis. ► Utilizing of synthesized A nanozeolite for mercury removal from aqueous solutions. ► Mercury removal at optimized pH, contact time and adsorbent dose from real solution. - Abstract: In this study, synthesized Lined Type A (LTA) nanozeolite from barley husk silica (BHS) was used for mercury removal from standard and real aqueous solutions.more » The BHS in amorphous phase with 80% purity was extracted from barley husk ash (BHA), and used effectively as a new source of silica for the synthesis of NaA nanozeolite. The NaA nanocrystal in pure phase has been synthesized at low temperature, without adding any organic additives. The effects of heating time, reaction temperature, SiO{sub 2}/Al{sub 2}O{sub 3}, and Na{sub 2}O/SiO{sub 2} mole ratios on the crystallization of NaA nanozeolite were studied. The adsorption capacity of mercury (II) was studied as a function of pH, contact time, and amount of adsorbent. The crystallization of NaA nanozeolite from BHS was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET), and FTIR techniques. Moreover, concentration of Hg{sup 2+} ions in the aqueous solutions was analyzed by hydride generation atomic absorption spectroscopy method (HG-AAS). The standard and real samples analysis showed that NaA nanozeolite is capable of Hg{sup 2+} ions removal from the aqueous solutions. Efficiency of mercury (II) adsorption from real solutions onto the nano-sized NaA zeolite was 98%.« less

  20. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    NASA Astrophysics Data System (ADS)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  1. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites.

    NASA Astrophysics Data System (ADS)

    K, Kanimozhi; Sethuraman, K.; V, Selvaraj; Alagar, Muthukaruppan

    2014-09-01

    Abstract Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix.

  2. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites

    PubMed Central

    Kanimozhi, K.; Sethuraman, K.; Selvaraj, V.; Alagar, M.

    2014-01-01

    Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix. PMID:25279372

  3. Preliminary study of raw material for calcium silicate/PVA coating on Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Azam, Farah Atiqah bt Abdul; Shamsudin, Roslinda

    2015-09-01

    Calcium silicate bioceramic was prepared from the rice husk and limestone resources using the sol gel method. The preparations of CaSiO3 formulation were differ from the previous study due CaO/SiO2 amount with 45:55 ratio. X-Ray Fluorescence analysis was carried out to clarify the amount of SiO2 and CaO content in the limestone and rice husk ash. The high amount of CaO was found in the limestone with the percentages of 97.22%, whereby 89% of SiO2 content of the rice husk ash. Several milling time were studied to obtain the optimized milling ti me and speed in progress to obtain nano size particle. The particle size analysis result confirms that increase in milling time does not certainly reduce the size of particle. The addition of 0.05% polyvinyl alcohol as a binder did not change the phases or composition of calcium silicates after examined by X-Ray diffraction analysis which make it suitable to be used as a binder for calcium silicate coating without changing the chemical structure.

  4. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis.

    PubMed

    Mallick, Debarshi; Poddar, Maneesh Kumar; Mahanta, Pinakeswar; Moholkar, Vijayanand S

    2018-08-01

    This study reports pyrolysis kinetics of biomass blends using isoconversional methods, viz. Friedman, FWO and KAS. Blends of three biomasses, viz. saw dust, bamboo dust and rice husk, were used. Extractives and volatiles in biomass and minerals in ash had marked influence on enhancement of reaction kinetics during co-pyrolysis, as indicated by reduction in activation energy and increase in decomposition intensity. Pyrolysis kinetics of saw dust and rice husk accelerated (positive synergy), while that of bamboo dust decelerated after blending (negative synergy). Predominant reaction mechanism of all biomass blends was 3-D diffusion in lower conversion range (α ≤ 0.5), while for α ≥ 0.5 pyrolysis followed random nucleation (or nucleation and growth mechanism). Higher reaction order for pyrolysis of blends of rice husk with saw dust and bamboo dust was attributed to catalytic effect of minerals in ash. Positive ΔH and ΔG was obtained for pyrolysis of all biomass blends. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  6. The effect of green synthesized gold nanoparticles on rice germination and roots

    NASA Astrophysics Data System (ADS)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  7. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain.

    PubMed

    Azizur Rahman, M; Hasegawa, H; Mahfuzur Rahman, M; Mazid Miah, M A; Tasmin, A

    2008-02-01

    Although human exposure to arsenic is thought to be caused mainly through arsenic-contaminated underground drinking water, the use of this water for irrigation enhances the possibility of arsenic uptake into crop plants. Rice is the staple food grain in Bangladesh. Arsenic content in straw, grain and husk of rice is especially important since paddy fields are extensively irrigated with underground water having high level of arsenic concentration. However, straw and husk are widely used as cattle feed. Arsenic concentration in rice grain was 0.5+/-0.02 mg kg(-1) with the highest concentrations being in grains grown on soil treated with 40 mg As kg(-1) soil. With the average rice consumption between 400 and 650 g/day by typical adults in the arsenic-affected areas of Bangladesh, the intake of arsenic through rice stood at 0.20-0.35 mg/day. With a daily consumption of 4 L drinking water, arsenic intake through drinking water stands at 0.2mg/day. Moreover, when the rice plant was grown in 60 mg of As kg(-1) soil, arsenic concentrations in rice straw were 20.6+/-0.52 at panicle initiation stage and 23.7+/-0.44 at maturity stage, whereas it was 1.6+/-0.20 mg kg(-1) in husk. Cattle drink a considerable amount of water. So alike human beings, arsenic gets deposited into cattle body through rice straw and husk as well as from drinking water which in turn finds a route into the human body. Arsenic intake in human body from rice and cattle could be potentially important and it exists in addition to that from drinking water. Therefore, a hypothesis has been put forward elucidating the possible food chain pathways through which arsenic may enter into human body.

  8. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride.

    PubMed

    Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying

    2016-04-01

    Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. Copyright © 2016. Published by Elsevier Ltd.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, Farah 'Atiqah bt Abdul; Shamsudin, Roslinda, E-mail: linda@ukm.edu.my

    Calcium silicate bioceramic was prepared from the rice husk and limestone resources using the sol gel method. The preparations of CaSiO{sub 3} formulation were differ from the previous study due CaO/SiO{sub 2} amount with 45:55 ratio. X-Ray Fluorescence analysis was carried out to clarify the amount of SiO{sub 2} and CaO content in the limestone and rice husk ash. The high amount of CaO was found in the limestone with the percentages of 97.22%, whereby 89% of SiO{sub 2} content of the rice husk ash. Several milling time were studied to obtain the optimized milling ti me and speed inmore » progress to obtain nano size particle. The particle size analysis result confirms that increase in milling time does not certainly reduce the size of particle. The addition of 0.05% polyvinyl alcohol as a binder did not change the phases or composition of calcium silicates after examined by X-Ray diffraction analysis which make it suitable to be used as a binder for calcium silicate coating without changing the chemical structure.« less

  10. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

    PubMed Central

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T.; Zhao, Jie; Cui, Yi

    2013-01-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10–40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g−1, seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible. PMID:23715238

  11. Nanotubes, nanobelts, nanowires, and nanorods of silicon carbide from the wheat husks

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Feng, J.; Qadri, S. N.; Caldwell, J. D.

    2015-09-01

    Nanotubes, nanowires, nanobelts, and nanorods of SiC were synthesized from the thermal treatment of wheat husks at temperatures in excess of 1450 °C. From the analysis based on x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, it has been found that the processed samples of wheat husk consisted of 2H and 3C polytypes of SiC exhibiting the nanostructure shapes. These nanostructures of silicon carbide formed from wheat husks are of technological importance for designing advance composites, applications in biotechnology, and electro-optics. The thermodynamics of the formation of SiC is discussed in terms of the rapid solid state reaction between hydrocarbons and silica on the molecular scale, which is inherently present in the wheat husks.

  12. Reuse of aluminosilicate waste materials to synthesize geopolymer

    NASA Astrophysics Data System (ADS)

    Walmiki Samadhi, Tjokorde; Wibowo, Nanda Tri; Athaya, Hana

    2017-08-01

    Geopolymer, a solid alkali-aluminosilicate bonding phase produced by reactions between aluminosilicate solids and concentrated alkali solution, is a potential substitute for ordinary Portland cement (OPC). Geopolymer offers environmental advantages since it can be prepared from various inorganic waste materials, and that its synthesis may be undertaken in mild conditions. This research studies the mechanical and physical characteristics of three-component geopolymer mortars prepared from coal fly ash (FA), rice husk ash (RHA), and metakaolin or calcined kaolin (MK). The ternary aluminosilicate blend formulations are varied according to an extreme vertices mixture experimental design with the RHA content limited to 15% mass. Temperature for initial heat curing of the mortars is combined into the experimental design as a 2-level process variable (30 °C and 60 °C). Compressive strengths of the mortars are measured after setting periods of 7 and 14 d. Higher heat curing temperature increases the strength of the mortar. Compositional shift towards RHA from either MK or FA reduces the strength. The highest strength is exhibited by FA-dominated composition (15.1 MPa), surpassing that of OPC mortar. The compressive strengths at 7 and 14 d are represented by a linear mixture model with a synergistic interaction between FA content and heat curing temperature. Geopolymer with the highest strength contains only FA heat-cured at 60 °C. Further studies are needed to be undertaken to confirm the relationship between biomass ash amorphosity and oxide composition to its geopolymerization reactivity, and to optimize the curing conditions.

  13. Nanotubes, nanobelts, nanowires, and nanorods of silicon carbide from the wheat husks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.

    2015-09-14

    Nanotubes, nanowires, nanobelts, and nanorods of SiC were synthesized from the thermal treatment of wheat husks at temperatures in excess of 1450 °C. From the analysis based on x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, it has been found that the processed samples of wheat husk consisted of 2H and 3C polytypes of SiC exhibiting the nanostructure shapes. These nanostructures of silicon carbide formed from wheat husks are of technological importance for designing advance composites, applications in biotechnology, and electro-optics. The thermodynamics of the formation of SiC is discussed in terms of the rapid solid state reactionmore » between hydrocarbons and silica on the molecular scale, which is inherently present in the wheat husks.« less

  14. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash.

    PubMed

    Wu, Deyi; Sui, Yanming; He, Shengbing; Wang, Xinze; Li, Chunjie; Kong, Hainan

    2008-07-15

    The capability of 14 zeolites synthesized from different fly ashes (ZFAs) to sequestrate Cr(III) from aqueous solutions was investigated in a batch mode. The influence of pH on the sorption of Cr(III) was examined. ZFAs had a much greater ability than fly ash to remove Cr(III), due to the high cation exchange capacity (CEC) and the high acid neutralizing capacity (ANC) of ZFAs. The mechanism of Cr(III) removal by ZFAs involved ion exchange and precipitation. A high-calcium content in both the fly ashes and ZFAs resulted in a high ANC value and, as a result, a high immobilization capacity for Cr(III). The pH strongly influenced Cr(III) removal by ZFAs. Inside the solubility range, removal of chromium increased with increasing pH. Hydroxysodalite made from a high-calcium fly ash had a higher sorptive capacity for Cr(III) than the NaP1 zeolite from medium- and low-calcium fly ashes. On the other hand, at pH values above the solubility range, the efficiency of chromium removal by the ZFAs approached 100% due to the precipitation of Cr(OH)3 on the sorbent surfaces. It is concluded that ZFAs and high-calcium fly ashes may be promising materials for the purification of Cr(III) from water/wastewater.

  15. Comparative studies of Titanium Dioxide and Zinc Oxide as a potential filler in Polypropylene reinforced rice husk composite

    NASA Astrophysics Data System (ADS)

    Awang, M.; Mohd, W. R. Wan

    2018-04-01

    Arising global environmental issues have triggered the search of new products and processes that are compatible with the environment while maintaining novel properties of materials. In this work, green composites containing rice husk (RH), polypropylene (PP), and incorporated with two different fillers namely titanium dioxide (TiO2) and zinc oxide (ZnO) were prepared using an internal mixer and were injected into desired specimen by using an injection molding method. Mechanical properties of the composite were studied using Instron universal testing machine with load cell of 30kN capacity. Morphological of tensile fractured surface of composites was observed using scanning electron microscopy (SEM). The results show that the composites with the addition of TiO2 gave an excellent mechanical properties than the composites filled with ZnO. Furthermore, morphological image of PP/RH/TiO2 also shows a good interaction occurred between polymer matrix and RH particles as compared to that of PP/RH/ZnO.

  16. Composition of liquid rice hull smoke and anti-inflamatory effects in mice

    USDA-ARS?s Scientific Manuscript database

    Antioxidative, antiallergic, and antiinflammatory activities of a new liquid rice hull (husk) smoke extract prepared by pyrolysis of rice hulls followed by liquefaction of the resulting smoke were assessed in vitro and in vivo. At pH 5, the liquid smoke extract inhibited 1-diphenyl-2-picrylhydrazyl ...

  17. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: fate and environmental risk of heavy metals.

    PubMed

    Shi, Wansheng; Liu, Chunguang; Shu, Youju; Feng, Chuanping; Lei, Zhongfang; Zhang, Zhenya

    2013-12-01

    Hydrothermal treatment (HTT) at 200°C was applied to immobilize heavy metals (HMs) and the effect of rice husk (RH) addition was investigated based on total HMs concentration, fractionation and leaching tests. The results indicated that a synergistic effect of RH addition and HTT could be achieved on reducing the risk of HMs from medium and low risk to no risk. Metals were redistributed and transformed from weakly bounded state to stable state during the HTT process under RH addition. Notably at a RH/sludge ratio of 1/1.75 (d.w.), all the HMs showed no eco-toxicity and no leaching toxicity, with the concentrations of leachable Cr, Ni, Cu and Cd decreased by 17%, 89%, 95% and 93%, respectively. This synergistic effect of RH addition and HTT on the risk reduction of HMs implies that HTT process with RH addition could be a promising and safe disposal technology for sewage sludge treatment in practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.

    Rice husk was thermally decomposed to yield powder composed of silica (SiO{sub 2}). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO{sub 2}) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO{sub 2}) and Amorphous Rice Husk Silica (A-RHSiO{sub 2}). Moreover, it was found that SS-SiO{sub 2} was ofmore » Quartz phase, C-RHSiO{sub 2} was of Trydimite and Cristobalite. Through XRF detection, the highest SiO{sub 2} purity was detected in SS-SiO{sub 2} followed by C-RHSiO{sub 2} and A-RHSiO{sub 2} with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO{sub 2}) bonding 1056, 1064, 1047, 777, 790 and 798 cm{sup −1}) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO{sub 2} at the wavelength of 620 cm{sup −1}. Morphological features as observed by FESEM analyses confirmed that, SS-SiO{sub 2} and C-RH SiO{sub 2} showed prominent coarse granular morphology.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} formore » a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.« less

  20. Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate

    NASA Astrophysics Data System (ADS)

    Giro-Paloma, J.; Ribas-Manero, V.; Maldonado-Alameda, A.; Formosa, J.; Chimenos, J. M.

    2017-10-01

    Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2 - 3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0 - 5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested

  1. Adsorption of Crystal Violet Dye Using Zeolite A Synthesized From Coal Fly Ash

    NASA Astrophysics Data System (ADS)

    Jumaeri; Kusumastuti, E.; Santosa, S. J.; Sutarno

    2017-02-01

    Adsorption of Crystal Violet (CV) dye using zeolite A synthesized from coal fly ash (ZA) has been done. Effect of pH, contact time, and the initial concentration of dye adsorption was studied in this adsorption. Model experimental of adsorption isotherms and adsorption kinetics were also studied. The adsorption is done in a batch reactor at room temperature. A total of 0.01 g of zeolite A was added to the Erlenmeyer flask 50 mL containing 20 mL of the dye solution of Crystal Violet in a variety of conditions of pH, contact time and initial concentration. Furthermore, Erlenmeyer flask and its contents were shaken using an orbital shaker at a speed of 200 rpm. After a specified period of adsorption, the solution was centrifuged for 2 minutes so that the solids separated from the solution. The concentration of the dye after adsorption determined using Genesis-20 Spectrophotometer. The results showed that the Zeolite A synthesized from coal fly ash could be used as an effective adsorbent for Crystal Violet dye. The optimum adsorption occurs at pH 6, and contact time 45 minutes. At the initial concentration of 2 to 6 mg/L, adsorption is reduced from 79 to 62.8%. Crystal Violet dye adsorption in zeolite A fulfilled kinetic model of pseudo-order 2 and model of Freundlich adsorption isotherm.

  2. A study on modification of nanoporous rice husk silica for hydrophobic nano filter.

    PubMed

    Kim, Hee Jin; So, Soo Jeong; Han, Chong Soo

    2010-05-01

    Nanoporous rice husk silica (RHS) was modified with alkylsilylation reagents, hexamethyldisilazane, diethoxydiphenylsilane, dichlorodimethylsilane and n-octodecyltrimethoxysilane. The silica samples were characterized with Raman spectrometer, thermal gravimetric analyzer, scanning electron microscope, nitrogen adsorption measurement and solid state nuclear magnetic resonance spectrometer. Raman spectra of the modified silica showed growth of the peaks of C-H stretching and CH3 bending at approximateluy 3000 cm(-1) and approximately 1500 cm(-1), respectively. Weight losses of 3 approximately 5% were observed in thermo gravimetric profiles of the modified silica. The microscopic shape of RHS, approximately 20 nm primary particles and their aggregates was almost not changed by the modification but there were colligations of the silica particles in the sample treated with dichlorodimethylsilane or diethoxydiphenylsilane. BET adsorption experiment showed the modification significantly decreased the mean pore size of the silica from approximately 5 nm to approximately 4 nm as well as the pore volume from 0.5 cm3/g to 0.4 cm3/g except the case of treatment with n-octodecyltrimethoxysilane. 29Si Solid NMR Spectra of the silica samples showed that there were decrease in the relative intensities of Q2 and Q3 peaks and large increments in Q4 after the modification except for the case of bulky n-octodecyltrimethoxysilane. From the results, it was concluded that the alkylsilylation reagents reacted with hydroxyl groups on the silica particles as well as in the nano pores while the size of the reagent molecule affected its diffusion and reaction with the hydroxyl groups in the pores.

  3. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.

    PubMed

    Qian, Yangyang; Zhang, Jie; Wang, Jie

    2014-12-01

    The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time". Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Determination and Uncertainty Analysis of Inorganic Arsenic in Husked Rice by Solid Phase Extraction and Atomic Absorption Spectrometry with Hydride Generation.

    PubMed

    Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K

    2017-05-01

    This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.

  5. Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization.

    PubMed

    Shahabazuddin, Md; Sarat Chandra, T; Meena, S; Sukumaran, R K; Shetty, N P; Mudliar, S N

    2018-04-21

    Thermal assisted alkaline pretreatment (TAAP) of rice husk (RH) was investigated to facilitate enzymatic saccharification by enhancing the enzyme accessibility to cellulosic components. Statistically guided experiments based on the Box-Behnken design involving four factors viz. biomass loading, particle size, NaOH loading and reaction time was considered for optimization. The maximum sugar yield of 371 mg g -1 biomass was obtained at optimized pretreatment condition [biomass loading (10% w/w), particle size (0.25-0.625 mm), NaOH loading (2% w/w), and reaction time (40 min)]. The TAAP of RH resulted in the efficient removal of lignin (14.9-54% (w/w)) with low hemicellulose solubilization [10.7-33.1% (w/w)] and with a simultaneous increase in cellulose concentration [32.65-51.65% (w/w)]. The SEM analysis indicated increased porosity and biomass disruption during TAAP. The FTIR analysis showed progressive removal of noncellulosic constituents, and XRD analysis revealed an increase in cellulose crystallinity post-TAAP indicating the effectiveness of pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin.

    PubMed

    Lu, Yao; Wei, Xian-Yong; Cao, Jing-Pei; Li, Peng; Liu, Fang-Jing; Zhao, Yun-Peng; Fan, Xing; Zhao, Wei; Rong, Liang-Ce; Wei, Yan-Bin; Wang, Shou-Ze; Zhou, Jun; Zong, Zhi-Min

    2012-07-01

    Detailed compositional analysis of a bio-oil (BO) from pyrolysis of rice husk was carried out. The BO was extracted sequentially with n-hexane, CCl(4), CS(2), benzene and CH(2)Cl(2). In total, 167 organic species were identified with GC/MS in the extracts and classified into alkanes, alcohols, hydroxybenzenes, alkoxybenzenes, dioxolanes, aldehydes, ketones, carboxylic acids, esters, nitrogen-containing organic compounds and other species. The benzene ring-containing species (BRCCs) were attributed to the degradation of lignin while most of the rests were derived from the degradation of cellulose and hemicellulose. Along with guaiacyl and p-hydroxyphenyl units as the main components, a new type of linkage was suggested, i.e., C(ar)-CH(2)-C(ar) in 4,4'-methylenebis(2,6-dimethoxyphenol). Based on the species identified, a possible macromolecular structure of the lignin and the mechanism for its pyrolysis are proposed. The BO was also extracted with petroleum ether in ca. 17.8% of the extract yield and about 82.1% of the extracted components are BRCCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. ZrO2/bamboo leaves ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Taushiyah, Ana; Badriatun Najah, Fitri; Azmi, Ulil

    2018-04-01

    Preparation, characterization and catalytic activity of ZrO2/bamboo leaves ash (BLA) catalyst for conversion of rice bran oil to biodiesel have been investigated. The catalyst was prepared by impregnation method of ZrOCl2 as ZrO2 precursor with BLA at a theoretical content of 20% wt. followed by calcination. The physicochemical properties of the catalyst material were characterized by x-ray diffraction (XRD), FTIR and surface acidity measurement. Activity test of materials in biodiesel conversion of rice bran oil was used by reflux method and microwave (MW) assisted method. Reaction variables studied in the investigation were the effect of catalyst weight and time of MW irradiation compared with the use reflux method. The results showed that ZrO2/BLA catalyst exhibited competitively effective and efficient processes for the production of biodiesel. The reflux method demonstrated an higher conversion (%) compared to MW method, however MW method showed the better reusable properties.

  8. Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon

    NASA Astrophysics Data System (ADS)

    Fona, Z.; Habibah, U.

    2018-04-01

    Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.

  9. Effect of water washing on the thermal behavior of rice straw.

    PubMed

    Said, N; Bishara, T; García-Maraver, A; Zamorano, M

    2013-11-01

    Rice straw can be used as a renewable fuel for heat and power generation. It is a viable mean of replacing fossil fuels and preventing pollution caused by open burning, especially in the areas where this residual biomass is generated. Nevertheless, the thermal conversion of rice straw can cause some operating problems such as slag formation, which negatively affects thermal conversion systems. So, the main objective of this research is studying the combustion behavior of rice straw samples collected from various regions by applying thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In addition, the thermal behavior of ashes from rice straw was also analyzed in order to detect their melting points, and ash sintering was detected at different temperatures within the range between 550 and 1000°C. Since washing rice straw with water could reduce the content of undesirable inorganic compounds related to the ash fusibility, samples of washed rice straw were analyzed under combustion conditions to investigate its differences regarding the thermal behavior of rice straw. The results showed that rice straw washing led to a significant improvement in its thermal behavior, since it reduced the ash contents and sintering formation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    PubMed

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Sieverts Nielsen, Per; Pedro Nunes, Clemente

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor.

    PubMed

    Wei, Lan; Huang, Yufen; Li, Yanliang; Huang, Lianxi; Mar, Nyo Nyo; Huang, Qing; Liu, Zhongzhen

    2017-02-01

    Rice husk biochar (RHBC) was prepared for use as adsorbents for the herbicide metolachlor. The characteristics and sorption properties of metolachlor adsorbed by the RHBC prepared at different pyrolysis temperatures were determined by analysis of physico-chemical characteristics, Fourier transform infrared spectroscopy (FTIR), Boehm titration, scanning electron microscopy (SEM), and thermodynamics and kinetics adsorption. With increasing pyrolysis temperature, the RHBC surface area greatly increased (from 2.57 to 53.08 m 2  g -1 ). RHBC produced at the highest temperature (750 °C) had the greatest surface area; SEM also showed the formation of a porous surface on RH-750 biochar. The sorption capacity of RHBC also increased significantly with increasing pyrolysis temperature and was characterized by the Freundlich constant K f for the adsorption capacity increasing from 125.17-269.46 (pyrolysis at 300 °C) to 339.94-765.24 (pyrolysis at 750 °C). The results indicated that the surface area and pore diameter of RHBC produced with high pyrolysis temperature (i.e., 750 °C) had the greatest impact on the adsorption of metolachlor. The FTIR, Boehm titration, and SEM analysis showed that the greatest number of surface groups were on RHBC produced at the lowest temperature (300 °C). The biochars produced at different pyrolysis temperatures had different mechanisms of adsorbing metolachlor, which exhibited a transition from hydrogen bonds dominant at low pyrolytic temperature to pore-filling dominant at higher pyrolytic temperature.

  12. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk.

    PubMed

    Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir

    2017-05-01

    The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.

  13. Water-saving technologies affect the grain characteristics and recovery of fine-grain rice cultivars in semi-arid environment.

    PubMed

    Jabran, Khawar; Riaz, Muhammad; Hussain, Mubshar; Nasim, Wajid; Zaman, Umar; Fahad, Shah; Chauhan, Bhagirath Singh

    2017-05-01

    Growing rice with less water is direly needed due to declining water sources worldwide, but using methods that require less water inputs can have an impact on grain characteristics and recovery. A 2-year field study was conducted to evaluate the impact of conventionally sown flooded rice and low-water-input rice systems on the grain characteristics and recovery of fine rice. Three fine grain rice cultivars-Super Basmati, Basmati 2000, and Shaheen Basmati-were grown under conventional flooded transplanted rice (CFTR), alternate wetting and drying (AWD), and aerobic rice systems. Grain characteristics and rice recovery were significantly influenced by different water regimes (production systems). Poor milling, including the lowest percentage of brown (head) rice (65.3%) and polished (white) rice (64.2-66.9%) and the highest percentage of broken brown rice (10.2%), husk (24.5%-26.3%), polished broken rice (24.7%), and bran (11.0-12.5%), were recorded in the aerobic rice system sown with Shaheen Basmati. With a few exceptions, cultivars sown in CFTR were found to possess a higher percentage of brown (head) and polished (white) rice and they had incurred the least losses in the form of brown broken rice, husk, polished broken rice, and bran. In conclusion, better grain quality and recovery of rice can be attained by growing Super Basmati under the CFTR system. Growing Shaheen Basmati under low-water-input systems, the aerobic rice system in particular, resulted in poor grain characteristics tied with less rice recovery.

  14. Optimizing Extraction Conditions of Free and Bound Phenolic Compounds from Rice By-Products and Their Antioxidant Effects.

    PubMed

    Irakli, Maria; Kleisiaris, Fotis; Kadoglidou, Kalliopi; Katsantonis, Dimitrios

    2018-06-13

    Rice by-products are extensively abundant agricultural wastes from the rice industry. This study was designed to optimize experimental conditions for maximum recovery of free and bound phenolic compounds from rice by-products. Optimized conditions were determined using response surface methodology based on total phenolic content (TPC), ABTS radical scavenging activity and ferric reducing power (FRAP). A Box-Behnken design was used to investigate the effects of ethanol concentration, extraction time and temperature, and NaOH concentration, hydrolysis time and temperature for free and bound fractions, respectively. The optimal conditions for the free phenolics were 41⁻56%, 40 °C, 10 min, whereas for bound phenolics were 2.5⁻3.6 M, 80 °C, 120 min. Under these conditions free TPC, ABTS and FRAP values in the bran were approximately 2-times higher than in the husk. However, bound TPC and FRAP values in the husk were 1.9- and 1.2-times higher than those in the bran, respectively, while bran fraction observed the highest ABTS value. Ferulic acid was most evident in the bran, whereas p -coumaric acid was mostly found in the husk. Findings from this study demonstrates that rice by-products could be exploited as valuable sources of bioactive components that could be used as ingredients of functional food and nutraceuticals.

  15. Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film

    NASA Astrophysics Data System (ADS)

    Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee

    2018-03-01

    The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).

  16. Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants.

    PubMed

    Sun, Lijuan; Yang, Jianjun; Fang, Huaxiang; Xu, Chen; Peng, Cheng; Huang, Haomin; Lu, Lingli; Duan, Dechao; Zhang, Xiangzhi; Shi, Jiyan

    2017-07-01

    Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S 0 , Na 2 SO 4 ) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks.

    PubMed

    Meng, Xingyao; Liu, Bin; Xi, Chen; Luo, Xiaosha; Yuan, Xufeng; Wang, Xiaofen; Zhu, Wanbin; Wang, Hongliang; Cui, Zongjun

    2018-03-01

    In this study, the impact of pig manure on the maturity of compost consisting of spent mushroom substrate and rice husks was accessed. The results showed that the addition of pig manure (SMS-PM) reached 50°C 5days earlier and lasted 15days longer than without pig manure (SMS). Furthermore, the addition of pig manure improved nutrition and germination index. High-throughput 16S rRNA pyrosequencing was used to evaluate the bacterial and fungal composition during the composting process of SMS-PM compared to SMS alone. The SMS treatment showed a relatively higher abundance of carbon-degrading microbes (Bacillaceae and Thermomyces) and plant pathogenic fungi (Sordariomycetes_unclassified) at the end of the compost. In contrast, the SMS-PM showed an increased bacterial diversity with anti-pathogen (Pseudomonas). The results indicated that the addition of pig manure improved the decomposition of refractory carbon from the spent mushroom substrate and promoted the maturity and nutritional content of the compost product. Copyright © 2017. Published by Elsevier Ltd.

  18. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    NASA Astrophysics Data System (ADS)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  19. Removal of oil droplets from water using carbonized rice husk: enhancement by surface modification using polyethylenimine.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Chen, Shen-Yi

    2015-06-01

    Carbonized rice husk (CRH) is a promising material to separate oil from water owing to its abundance, low-cost, and environmentally benign characteristics. However, CRH's performance is somewhat limited by its similar surface charge to that of oil, leading to repulsive interactions. To improve the separation efficiency of CRH, CRH was modified via impregnation with a cationic biocompatible polymer, polyethlyenimine (PEI) to form PEI-CRH. The modified sample exhibits a remarkably higher (10-50 times) oil/water (O/W) separation efficiency than that of the unmodified one. Small PEI-CRH particles (about 64 μm) are found to adsorb oil droplets faster and larger quantities than bigger particles (about 113 and 288 μm). PEI-CRH exhibits higher separation efficiency at high temperatures owing to the destabilization of the emulsion. It is also found that the oil adsorption mechanism involves a chemical interaction between PEI-CRH and oil droplets. The addition of NaCl considerably improves the separation efficiency, while the addition of a cationic surfactant has the opposite effect. In acidic emulsions, PEI-CRH adsorbs more oil than in neutral or basic conditions owing to favorable attractive forces between oil droplets and the surface of PEI-CRH. PEI-CRH can be easily regenerated by washing with ethanol. These promising features of PEI-CRH indicate that PEI-CRH could be an efficient and low-cost adsorbent for the O/W separation applications.

  20. UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites

    PubMed Central

    Rajendran Royan, Nishata Royan; Sulong, Abu Bakar; Yuhana, Nor Yuliana; Ab Ghani, Mohd Hafizuddin; Ahmad, Sahrim

    2018-01-01

    The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix. PMID:29847568

  1. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    PubMed

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p < 0.05) decreased As concentrations in husk, straw, and root in soils added with 70 mg kg(-1) As. The present results suggest that AM fungi are able to mitigate the adverse effects with enhancing rice production when growing in As-contaminated soils.

  2. Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology.

    PubMed

    Kausar, Abida; Bhatti, Haq Nawaz; Iqbal, Munawar; Ashraf, Aisha

    2017-09-01

    Batch and column adsorption modes were compared for the adsorption of U(VI) ions using rice husk waste biomass (RHWB). Response surface methodology was employed for the optimization of process variables, i.e., (pH (A), adsorbent dose (B), initial ion concentration (C)) in batch mode. The B, C and C 2 affected the U(VI) adsorption significantly in batch mode. The developed quadratic model was found to be validated on the basis of regression coefficient as well as analysis of variance. The predicted and actual values were found to be correlated well, with negligible residual value, and B, C and C 2 were significant terms. The column study was performed considering bed height, flow rate and initial metal ion concentration, and adsorption efficiency was evaluated through breakthrough curves and bed depth service time and Thomas models. Adsorption was found to be dependent on bed height and initial U(VI) ion concentration, and flow rate decreased the adsorption capacity. Thomas models fitted well to the U(VI) adsorption onto RHWB. Results revealed that RHWB has potential to remove U(VI) ions and batch adsorption was found to be efficient versus column mode.

  3. [Quality of pastas supplemented with rice bran].

    PubMed

    Sangronis, E; Rebolledo, M A

    1997-06-01

    The objective of this research was to investigate the potential of using rice bran as an ingredient in pastas spaghetti type. Two of the pastas were made with semolina from durum as raw material, supplemented with 10 and 20% rice bran. The other two were made with granular flour and the same percentage of rice bran. Proximate composition of raw material was analyzed. Pastas were elaborated in a local industry. Composition, proximal, color, texture, and sensorial quality of pastas were determined. Protein content (13.9-15.0%), ash (1.47-3.09%) and dietary fiber (6.71-8.45%) of pastas increased according to the percentage of rice bran added. The hardest pastas were those elaborated with semolina from durum wheat and with a 10% of substitution. Also, they were the most yellow. The sensory panel found differences in quality among the pastas evaluated. Pastas with 10% rice bran had the best quality. The results demonstrated that is possible to elaborate pastas with 20% as maximum of rice bran resulting products with high protein, ash and dietetic fiber content, but some undesirable characteristics were given by the rice bran as white spots, wrinkles and color changes.

  4. In situ generation of a hydroxyl radical by nanoporous activated carbon derived from rice husk for environmental applications: kinetic and thermodynamic constants.

    PubMed

    Karthikeyan, S; Sekaran, G

    2014-03-07

    The objective of this investigation is to evaluate the hydroxyl radical (˙OH) generation using nanoporous activated carbon (NPAC), derived from rice husk, and dissolved oxygen in water. The in situ production of the ˙OH radical was confirmed through the DMPO spin trapping method in EPR spectroscopy and quantitative determination by a deoxyribose assay procedure. NPAC served as a heterogeneous catalyst to degrade 2-deoxy-d-ribose (a reference compound) using hydroxyl radical generated from dissolved oxygen in water at temperatures in the range 313-373 K and pH 6, with first order rate constants (k = 9.2 × 10(-2) min(-1), k = 1.2 × 10(-1) min(-1), k = 1.3 × 10(-1) min(-1) and k = 1.68 × 10(-1) min(-1)). The thermodynamic constants for the generation of hydroxyl radicals by NPAC and dissolved oxygen in water were ΔG -1.36 kJ mol(-1) at 313 K, ΔH 17.73 kJ mol(-1) and ΔS 61.01 J mol(-1) K(-1).

  5. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneouslymore » in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.« less

  6. EXTRACTING LIGNOCELLULOSE AND SYNTHESIZING SILICA NANOPARTICLES FROM RICE HUSKS

    EPA Science Inventory

    At the end of this project, we will have the demonstration package including lignocellulose fibers and silica nanoparticles (with microscope images), and a chart illustrating the optimized process. We will also submit a conference abstract and a journal manuscript for national...

  7. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    PubMed Central

    2010-01-01

    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure. PMID:20802789

  8. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.

  9. Equine poisoning by coffee husk (Coffea arabica L.).

    PubMed

    Delfiol, Diego Jose Z; Oliveira-Filho, Jose P; Casalecchi, Fernanda L; Kievitsbosch, Thatiane; Hussni, Carlos A; Riet-Correa, Franklin; Araujo, João P; Borges, Alexandre S

    2012-01-12

    In Brazil, coffee (Coffea arabica) husks are reused in several ways due to their abundance, including as stall bedding. However, field veterinarians have reported that horses become intoxicated after ingesting the coffee husks that are used as bedding. The objective of this study was to evaluate whether coffee husk consumption causes intoxication in horses. Six horses fed coast cross hay ad libitum were given access to coffee husks and excitability, restlessness, involuntary muscle tremors, chewing movements and constant tremors of the lips and tongue, excessive sweating and increased respiration and heart rates were the most evident clinical signs. Caffeine levels were measured in the plasma and urine of these horses on two occasions: immediately before the coffee husks were made available to the animals (T0) and at the time of the clinical presentation of intoxication, 56 h after the animals started to consume the husks (T56). The concentrations of caffeine in the plasma (p < 0.001) and urine (p < 0.001) of these animals were significantly greater at T56 than at T0. It was concluded that consumption of coffee husks was toxic to horses due to the high levels of caffeine present in their composition. Therefore, coffee husks pose a risk when used as bedding or as feed for horses.

  10. Rice Bran Oil: A Versatile Source for Edible and Industrial Applications.

    PubMed

    Pal, Yogita P; Pratap, Amit P

    2017-01-01

    Rice bran oil (RBO) is healthy gift generously given by nature to mankind. RBO is obtained from rice husk, a byproduct of rice milling industry and is gaining lot of importance as cooking oil due to presence of important micronutrient, gamma oryzanol. Its high smoke point is beneficial for its use for frying and deep frying of food stuff. It is popular because of balanced fatty acid profile (most ideal ratio of saturated, monounsaturated and polyunsaturated fatty acids), antioxidant capacity, and cholesterollowering abilities. Rice bran wax which is secondary by-product obtained as tank settling from RBO is used as a substitute for carnauba wax in cosmetics, confectionery, shoe creams etc. It can be also used as a source for fatty acid and fatty alcohol. The article is intended to highlight for the importance of RBO and its applications.

  11. Equine poisoning by coffee husk (Coffea arabica L.)

    PubMed Central

    2012-01-01

    Background In Brazil, coffee (Coffea arabica) husks are reused in several ways due to their abundance, including as stall bedding. However, field veterinarians have reported that horses become intoxicated after ingesting the coffee husks that are used as bedding. The objective of this study was to evaluate whether coffee husk consumption causes intoxication in horses. Results Six horses fed coast cross hay ad libitum were given access to coffee husks and excitability, restlessness, involuntary muscle tremors, chewing movements and constant tremors of the lips and tongue, excessive sweating and increased respiration and heart rates were the most evident clinical signs. Caffeine levels were measured in the plasma and urine of these horses on two occasions: immediately before the coffee husks were made available to the animals (T0) and at the time of the clinical presentation of intoxication, 56 h after the animals started to consume the husks (T56). The concentrations of caffeine in the plasma (p < 0.001) and urine (p < 0.001) of these animals were significantly greater at T56 than at T0. Conclusions It was concluded that consumption of coffee husks was toxic to horses due to the high levels of caffeine present in their composition. Therefore, coffee husks pose a risk when used as bedding or as feed for horses. PMID:22239973

  12. Dissipation and residues of monosultap in rice plant and environment.

    PubMed

    Zhang, Fengzu; Wang, Lei; Zhou, Li; Pan, Canping

    2012-03-01

    A modified method for the analysis of monosultap residue in rice plant and environment was developed and validated. Monosultap residue dynamics and final residues in supervised field trials at GAP conditions were studied. At fortification levels of 0.05, 0.5 and 1 mg kg(-1), it was shown that recoveries ranged from 75.0% to 109.2% with RSDs of 1.2-5.1% (n = 5). The dissipation experiments showed the half-lives (T(1/2)) of monosultap in water, soil and rice plants were 1.1-1.9, 1.4-2.1 and 1.3-2.1 days, respectively. At pre-harvest intervals (PHI) of 21 and 30 days, monosultap residue were 0.01-0.06 mg kg(-1) in soil, 0.01-0.19 mg kg(-1) in rice plants, and 0.01-0.09 mg kg(-1) in husked rice.

  13. Cocoa husks in diets of Italian heavy pigs.

    PubMed

    Magistrelli, D; Malagutti, L; Galassi, G; Rosi, F

    2012-12-01

    The aim of the present study was to evaluate the effect of cocoa husks feeding on liver composition of the Italian heavy pig. Cocoa husks are by-products derived from chocolate production and have a high content of proteins, lipids, and NDF. Cocoa husks are also rich in antioxidants, polyphenols in particular. Eight finishing pigs were divided into 2 groups: control group fed a traditional diet, based on cereals, and treatment group fed a diet obtained by substitution of 10% of the control diet with coarsely ground cocoa husks. The trial was conducted during the hot season and lasted 6 wk, at the end of which all the pigs were slaughtered. Cocoa husks diet reduced dry matter intake (P < 0.01) and energy intake (P < 0.01) but neither body weight nor backfat thickness was affected by cocoa husks diet. Treatment did not influence carcass weight and hot dressing percentage but reduced liver weight (P < 0.05), liver dry matter percentage (P < 0.01), DNA (P = 0.01), and glycogen content (P = 0.01). By contrast, cocoa husks increased liver ether extract (P = 0.05) without affecting cholesterol content. Liver weight loss, reduction of protein synthesis, and a shift toward glycogen use instead of fat oxidation are considered metabolic strategies to reduce heat production under hot conditions. It is possible, therefore, that cocoa husks feeding promoted the process of acclimation because pigs needed less feeding to reach similar body and carcass weight as control pigs.

  14. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    PubMed

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Functional Analysis of Corn Husk Photosynthesis[W][OA

    PubMed Central

    Pengelly, Jasper J.L.; Kwasny, Scott; Bala, Soumi; Evans, John R.; Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Furbank, Robert T.; von Caemmerer, Susanne

    2011-01-01

    The husk surrounding the ear of corn/maize (Zea mays) has widely spaced veins with a number of interveinal mesophyll (M) cells and has been described as operating a partial C3 photosynthetic pathway, in contrast to its leaves, which use the C4 photosynthetic pathway. Here, we characterized photosynthesis in maize husk and leaf by measuring combined gas exchange and carbon isotope discrimination, the oxygen dependence of the CO2 compensation point, and photosynthetic enzyme activity and localization together with anatomy. The CO2 assimilation rate in the husk was less than that in the leaves and did not saturate at high CO2, indicating CO2 diffusion limitations. However, maximal photosynthetic rates were similar between the leaf and husk when expressed on a chlorophyll basis. The CO2 compensation points of the husk were high compared with the leaf but did not vary with oxygen concentration. This and the low carbon isotope discrimination measured concurrently with gas exchange in the husk and leaf suggested C4-like photosynthesis in the husk. However, both Rubisco activity and the ratio of phosphoenolpyruvate carboxylase to Rubisco activity were reduced in the husk. Immunolocalization studies showed that phosphoenolpyruvate carboxylase is specifically localized in the layer of M cells surrounding the bundle sheath cells, while Rubisco and glycine decarboxylase were enriched in bundle sheath cells but also present in M cells. We conclude that maize husk operates C4 photosynthesis dispersed around the widely spaced veins (analogous to leaves) in a diffusion-limited manner due to low M surface area exposed to intercellular air space, with the functional role of Rubisco and glycine decarboxylase in distant M yet to be explained. PMID:21511990

  16. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance

    NASA Astrophysics Data System (ADS)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-06-01

    Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.

  17. Development of low thermal conductivity brick using rice husk, corn cob and waste tea in clay brick manufacturing

    NASA Astrophysics Data System (ADS)

    Saman, Nor Sarwani Mat; Deraman, Rafikullah; Hamzah, Mohamad Hazmi

    2017-12-01

    The consumption of energy for cooling the indoor environment of buildings in Malaysia is high and mostly related to poor thermal performance of the building envelope. It is evident that reducing energy consumption of buildings has become vital, taking into considerations the limitation of conventional energy resources and the adverse effects associated with the use of such type of energy on the environment. Therefore, selecting the proper thermal properties of a building envelope play a major role in determining the energy consumption patterns and comfort conditions in enclosed spaces. The objective of this study is to investigate the potential application of rice husk (RH), corn cob (CC) and waste tea (WT) as an additive agent in a fired clay brick manufacturing to produce an improved thermal conductivity of final brick product. In the execution of this study, these agricultural wastes were mixed together with clay soil in different percentages, ranging from 0 %, 2.5 %, 5 %, 7.5 % and 10 % by weight. Physical and mechanical properties including soil physical properties, density, shrinkage, water absorption, compressive strength as well as thermal conductivity were measured, reported and discussed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985, MS 76: 1972: Part 2 and ASTM C 518. The results show that RH at 7.5 % is the most effective combination to achieve low thermal conductivity of fired clay brick. This finding suggests that RH waste is a potentially good additive material to be used for thermal properties enhancement of the building envelope.

  18. Production of bioethanol from multiple waste streams of rice milling.

    PubMed

    Favaro, Lorenzo; Cagnin, Lorenzo; Basaglia, Marina; Pizzocchero, Valentino; van Zyl, Willem Heber; Casella, Sergio

    2017-11-01

    This work describes the feasibility of using rice milling by-products as feedstock for bioethanol. Starch-rich residues (rice bran, broken, unripe and discolored rice) were individually fermented (20%w/v) through Consolidated Bioprocessing by two industrial engineered yeast secreting fungal amylases. Rice husk (20%w/v), mainly composed by lignocellulose, was pre-treated at 55°C with alkaline peroxide, saccharified through optimized dosages of commercial enzymes (Cellic® CTec2) and fermented by the recombinant strains. Finally, a blend of all the rice by-products, formulated as a mixture (20%w/v) according to their proportions at milling plants, were co-processed to ethanol by optimized pre-treatment, saccharification and fermentation by amylolytic strains. Fermenting efficiency for each by-product was high (above 88% of the theoretical) and further confirmed on the blend of residues (nearly 52g/L ethanol). These results demonstrated for the first time that the co-conversion of multiple waste streams is a promising option for second generation ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    PubMed

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  20. A Review of the Mechanical Properties of Concrete Containing Biofillers

    NASA Astrophysics Data System (ADS)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.

    2016-11-01

    Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.

  1. The utilization of alkali-treated melon husk by broilers.

    PubMed

    Abiola, S S; Amalime, A C; Akadiri, K C

    2002-09-01

    The effects of alkali treatment on chemical constituents of melon husk (MH) and performance characteristics of broilers fed alkali-treated MH (ATMH) diets were investigated. The chemical analysis showed that alkali treatment increased the ash content of MH (from 15.70% to 16.86%) and reduced the crude fibre content (from 29.00% to 14.00%). Result of feed intake was superior on 30% alkali diet with a value of 100.14 g/bird/day. Body weight gain decreased with increase in the level of ATMH in the diet. Highest dressing percentage of 66.33% and best meat/bone ratio of 2.57 were obtained on 10% and 20% alkali diets, respectively. Dietary treatments had significant effect (P < 0.05) on gizzard weight. Up to 20% of maize can be replaced with ATMH in broiler diets to produce good quality poultry carcases and chicken meat with favourable shelf life.

  2. Optimization of Methane Gas Formation Rate with The Addition of EM4 Starter-made from Tofu Liquid Waste and Husk Rice Waste Using Biogas Reactor-Fixed Dome in Langensari West Ungaran

    NASA Astrophysics Data System (ADS)

    Arifan, Fahmi; Muhammad, Fuad; Winarni, Sri; Rama Devara, Hafizh; Hanum, Latifah

    2018-02-01

    Indonesia is a country that has abundant energy resources, namely oil, gas, coal, geothermal, and so forth. Biogas is an alternative fuel that can be used as a substitute for primary fuel. The term biogas is already familiar to the people, it is because biogas has usefulness as a vehicle fuel, domestic (cooking), and generate electricity. Cow dung has a value of C / N ratio is large enough that 18. Rice husk has a C / N ratio is sufficient High temperatures of 38.9. EM-4 (effective microorganism) is a bacterial culture which is usually used as an activator. In the manufacture of biogas from waste fluids out and chaff has the advantage because the content of the C / N is high enough. The composition of the raw materials used are liquid wastes out of 5 kg and 1 kg of husk-em with the addition of 4500 ml and the resulting calorific value of 1047.9 A fermentation time for 9 days. Ph maintained in neutral or alkaline conditions, namely 7-7.5, because the effectiveness of the methane formation is highly dependent on pH wherein the microorganism will grow and thrive in neutral. The test results has been done is the color of the flame and the time at yield is good enough where the color of the flame produced at day to9 blue with time for 40 seconds.

  3. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE PAGES

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  4. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  5. Degradation of Al/SiCp composites produced with rice-hull ash and aluminum cans.

    PubMed

    Escalera-Lozano, R; Gutiérrez, C A; Pech-Canul, M A; Pech-Canul, M I

    2008-01-01

    The use of recycling aluminum from beverage containers and rice-hull ash (RHA) offers to be an attractive alternative for the economic production of Al/SiCp composites. However, corrosion phenomena in the composites represent technological barriers yet to be resolved before they can be exploited to their full potential. A simple methodology involving characterization by XRD, SEM, EDX, FTIR and ICP was designed in order to investigate the causes of the rapid degradation in a humid environment of Al/SiCp composites produced with RHA and aluminum cans. Results reveal that the use of RHA was beneficial to avoid degradation through the formation and subsequent hydration of the Al4C3 phase. However with condensed moisture acting as an electrolyte, localized corrosion took place with aggressive damage manifested by the disintegration of the composite into a powdery mixture. The relevant corrosion mechanism was mainly attributed to microgalvanic coupling between the Mg2Si intermetallic compound and the matrix (although other phases such as SiC, Si, MgAl2O4 could also work as microcathodes).

  6. Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk.

    PubMed

    Navya, P N; Pushpa, S Murthy

    2013-08-01

    Coffee cherry husk (CH) is one of the major by-products obtained from coffee processing industry and accounts to 43 ± 5.9% of cellulose. Screening of fungal organism for cellulase production was carried out and the potential organism was identified as Rhizopus stolonifer by internal transcribed spacer's (ITS)-5.8S rDNA analysis. A systematic study with response surface methodology (RSM) based on CCRD was used to study the interactions among the variables such as pH (3-7), moisture (40-80%) and progression duration (72-168 h) of the fermentation process to maximize the enzyme production. Under the optimized cultivation condition, R. stolonifer synthesized 22,109 U/gds. Model validations at optimum operating conditions showed excellent agreement between the experimental results and the predicted responses with a confidence level of 95%. Endoglucanase thus produced was utilized for ethanol production by simultaneous saccharification and fermentation and maximum of 65.5 g/L of ethanol was obtained. This fungal cellulase has also reported to be efficient detergent additives and promising for commercial use. The present study demonstrates coffee husk as a significant bioprocess substrate. Statistical optimization with major parameters for cellulase production can be highly applicable for industrial scale. Furthermore, value addition to coffee husk with sustainable waste management leading to environment conservation can be achieved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S.; Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHNmore » elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.« less

  8. Persistence behavior of metamifop and its metabolite in rice ecosystem.

    PubMed

    Barik, Suhrid Ranjan; Ganguly, Pritam; Patra, Sandip; Dutta, Swaraj Kumar; Goon, Arnab; Bhattacharyya, Anjan

    2018-02-01

    A field experiment was conducted to determine the persistence of metamifop in transplanted rice crop for two seasons. Metamifop 10% EC was applied at two doses: 100 g a.i. ha -1 and 200 g a.i. ha -1 at 2-3 leaf stage of Echinochloa crusgalli. The residues of metamifop along with its major metabolite, N-(2-fluorophenyl)-2-hydroxy-N-methylpropionamide (HFMPA), were estimated in rice plant, field water and soil using Liquid Chromatography Mass Spectrometry. Limit of detection and limit of quantification of the method for both the compounds were set at 0.003 μg g -1 and 0.010 μg g -1 respectively. Metamifop showed less persistence in field water and rice plant as compared to soil samples. Presence of HFMPA was recorded in rice plant and soil. Both the compounds were found below level of quantification in harvest samples of straw, grains, husk and soil. A safe waiting period of 52 d was suggested for harvesting of rice when metamifop was applied at 100 g a.i. ha -1 (recommended dose). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Anaerobic degradation of coconut husk leachate using UASB-reactor.

    PubMed

    Neena, C; Ambily, P S; Jisha, M S

    2007-07-01

    Reffing of coconut husk, the majorprocess in quality coir fibre extraction, causes serious pollution with brackish water lagoons of Kerala. An attempt is made to treat the coconut husk leachate by using a laboratory scale UASB-reactor The experiment was conducted with loading of leachate from 1 kg of fresh coconut husk. The anaerobic treatment was done continuously The parameters like VFA, pH, COD and polyphenols were analysed regularly during the evaluation of the reactor performance. The polyphenol, VFA and COD were diminished gradually with time. The pH of the reactor during the study was found to be in the range of 6-8. The biogas production was increased with loading and about 82% of the total COD/kg husk could be converted to biogas. The maximum polyphenol loading in the reactor was reached to about 298.51 mg/l of husk.

  10. Rice bran: a novel functional ingredient.

    PubMed

    Sharif, Mian Kamran; Butt, Masood Sadiq; Anjum, Faqir Muhammad; Khan, Saima Hafiz

    2014-01-01

    Rice (Oryza sativa) is the most important staple food for a large part of the world's human population, especially in East and South Asia, the Middle East, Latin America, and the West Indies. It provides more than one fifth of the calories consumed worldwide by the human. It is the second leading cereal crop and staple food of half of the world's population. It is grown in at least 114 countries with global production of 645 million tons; share of Asian farmers is about 90% of the total produce. Rice bran, brown outer layer of rice kernel, is mainly composed of pericarp, aleurone, subaleurone layer, and germ. It contains appreciable quantities of nutrients like protein, fat, and dietary fiber. Furthermore, it contains substantial amount of minerals like K, Ca, Mg, and Fe. Presence of antioxidants like tocopherols, tocotrienols, and γ-oryzanol also brighten prospects of rice bran utilization for humans as functional ingredient to mitigate the life-threatening disorders. Moreover, in the developing countries, budding dilemma of food crisis, arising due to lower crop yields and escalating population, needs to utilize each pent of available resources. To provide enough food to all people, there is the holistic approach of using the by-products generated during food processing and preparations. Rice is being processed in well-established industry, but the major apprehension is the utilization of its by-products; rice bran (5-8%) and polishing (2-3%) that are going as waste. Rice processing or milling produces several streams of materials including milled rice, bran, and husk. In developing countries, rice bran is considered as a by-product of the milling process and commonly used in animal feed or discarded as a waste. The potential of producing rice bran at the global level is 29.3 million tons annually, whereas the share of Pakistan is worked out to be 0.5 million tons. In present paper, attempt has been made to highlight the significance of these valuable but

  11. Strength characteristics of light weight concrete blocks using mineral admixtures

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, P.; Priyadharshini, U.; Gurucharan, S.; Mithunram, B.

    2017-07-01

    This paper presents an experimental study to investigate the characteristics of light weight concrete blocks. Cement was partially replaced with mineral admixtures like Fly ash (FA), limestone powder waste (LPW), Rice husk ash (RHA), sugarcane fiber waste (SCW) and Chrysopogonzizanioides (CZ). The maximum replacement level achieved was 25% by weight of cement and sand. Total of 56 cubes (150 mm x 150 mm x150 mm) and 18 cylinders (100mmφ and 50mm depth) were cast. The specimens being (FA, RHA, SCW, LPW, CZ, (FA-RHA), (FA-LPW), (FA-CZ), (LPW-CZ), (FA-SCW), (RHA-SCW)).Among the different combination, FA,FA-SCW,CZ,FA-CZ showed enhanced strength and durability, apart from achieving less density.

  12. Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate.

    PubMed

    Ramimoghadam, Donya; Bin Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin

    2013-01-01

    Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study. The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours. The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar. Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.

  13. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    NASA Astrophysics Data System (ADS)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  14. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar.

    PubMed

    Kosolsaksakul, Peerapat; Oliver, Ian W; Graham, Margaret C

    2018-06-01

    Cadmium (Cd) contaminated soils from the Mae Sot district in northwest Thailand, a region in which rice Cd concentrations often exceed health limits (0.4 mg/kg) set by the World Health Organisation, were examined for isotopically exchangeable Cd (Cd E values using a 111 Cd spike) to determine how this rates as a predictor of rice grain Cd in comparison with soil total Cd and solution extractable Cd (using the commonly applied BCR scheme and, in an attempt to distinguish carbonate bound forms, the Tessier soil sequential extraction scheme reagents). Step 1 of the BCR scheme (0.11 M CH 3 COOH) and step 1 of the Tessier scheme (1M MgCl 2 ) showed the highest R 2 values in regressions with rice Cd (91% and 90%, respectively), but all predictors were strongly linked to rice Cd (p < 0.001) and could be used for prediction purposes. One soil, of the six tested, was an exception to this, where all predictors over-estimated grain Cd by a factor of 2.5-5.7, suggesting that rice grain Cd had been restricted here by the differing flooding regime and subsequent changes to redox conditions. E values and Tessier step 1 extractions were closely related, indicating that these measurements access similar pools of soil Cd. Separately, the isotopic exchangeability (representing bioavailability) of Cd was also assessed in two soils amended with rice husk and miscanthus biochars (0, 1, 5, 10, 15 and 20% w/w) in order to assess the utility of the biochars as a soil amendment for immobilising Cd in situ. One soil showed significant reductions in Cd E value at 5% rice husk biochar addition and at 15% miscanthus biochar addition however, based on the E value-rice grain Cd regression relationship previously established, the E values in the amended soils still predicted for a rice Cd concentration above the health limit. In the second soil, neither of the biochars successfully reduced the Cd E value. This indicates that further work is needed to customise biochar properties to suit

  15. Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides.

    PubMed

    Yavari, Saba; Malakahmad, Amirhossein; Sapari, Nasiman B; Yavari, Sara

    2017-05-15

    Imidazolinones are a family of herbicides that are used to control a broad range of weeds. Their high persistence and leaching potential make them probable risk to the ecosystems. In this study, biochar, the biomass-derived solid material, was produced from oil palm empty fruit bunches (EFB) and rice husk (RH) through pyrolysis process. Feedstock and pyrolysis variables can control biochar sorption capacity. Therefore, the present study attempts to evaluate effects of three pyrolysis variables (temperature, heating rate and retention time) on abilities of biochars for removal of imazapic and imazapyr herbicides from soil. Response surface methodology (RSM) was used for optimizing the variables to achieve maximum sorption performance of the biochars. Experimental data were interpreted accurately by quadratic models. Based on the results, sorption capacities of both biochars raised when temperature decreased to 300 °C, mainly because of increased biochars effective functionality in sorption of polar molecules. Heating rate of 3°C/min provided optimum conditions to maximize the sorption capacities of both biochars. Retention time of about 1 h and 3 h were found to be the best for EFB and RH biochars, respectively. EFB biochar was more efficient in removal of the herbicides, especially imazapyr due to its chemical composition and higher polarity index (0.42) rather than RH biochar (0.39). Besides, higher cation exchange capacity (CEC) values of EFB biochar (83.90 cmol c /kg) in comparison with RH biochar (70.73 cmol c /kg) represented its higher surface polarity effective in sorption of the polar herbicides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Effects of arsenic from soil and irrigation-water on As accumulation on the root surfaces and in mature rice plants (Oryza sativa L.)].

    PubMed

    Liu, Wen-ju; Zhu, Yong-guan; Hu, Ying; Zhao, Quan-li

    2008-04-01

    A compartmented soil-glass bead culture system was used to investigate characteristics of arsenic accumulation in iron plaque and in mature rice plants irrigated using water with arsenic in greenhouse. Arsenic was supplied as a solution of Na3AsO4 * 12H2O at the following stages: tillering, stem elongation, booting, flowering and grain filling. The whole plant was separated into four parts and As concentrations were analyzed in DCB (dithionite-citrate-bicarbonate)-extraction, root, straw, rice husk and grain respectively. The results show that irrigation-water with arsenic has no significant effect on biomass of straw and grain. Arsenic concentrations are distributed in different components of mature rice with the ranking of iron plaque > root > straw > husk > grain. Arsenic in straw and grain just derive from soil in control, and derive from soil and irrigation-water in arsenic treatment. About 76.5% and 71.0% of total arsenic in rice straw are from soil for lines of YY-1 and 94D-64 respectively. There is no significant difference between two lines. However, about 33.6% of total arsenic in grain of YY-1 comes from irrigation-water with arsenic, and only 15.2% of total arsenic in grain of 94D1-64 is from irrigation-water with arsenic. There is a significant difference between YY-1 and 94D-64. Arsenic concentrations in rice grain are lower than the food safety limitation in China (0.7 mg x kg(-1)).

  17. Arsenic Concentrations in Rice and Associated Health Risks Along the Upper Mekong Delta, Cambodia

    NASA Astrophysics Data System (ADS)

    Barragan, L.; Seyfferth, A.; Fendorf, S.

    2011-12-01

    The consumption of arsenic contaminated food, such as rice, can be a significant portion of daily arsenic exposure, even for populations already exposed through drinking water. While arsenic contamination of rice grains has been documented in parts of Southern Asia, (e.g. Bangladesh), little research has been conducted on arsenic contamination of Cambodian-grown rice. We collected rice plant samples at various locations within the upper Mekong River Delta near Phnom Penh, Cambodia, and we analyzed total arsenic concentrations in plant digests of grains, husk, and straw. In addition, we used CaCl2-, DTPA-, and oxalate-extractable arsenic to define plant-available soil pools. We found variability of arsenic concentration in the plants, with grain arsenic ranging from 0.046 to 0.214 μg g-1; other researchers have shown that concentrations higher than 0.1 μg g-1 could be a concern for human health. Although more extensive sampling is needed to assess the risk of arsenic exposure from rice consumption on a country-wide basis, our work clearly illustrates the risk within regions of the Mekong Delta.

  18. Quantification of tocopherols, tocotrienols, and γ-oryzanol contents and their distribution in some commercial rice varieties in Taiwan.

    PubMed

    Huang, Shao-Hua; Ng, Lean-Teik

    2011-10-26

    The eight vitamin E isomers [α-, β-, γ-, and δ-tocopherols (T) and α-, β-, γ-, and δ-tocotrienols (T3)] and γ-oryzanol are known to possess diverse biological activities. This study examined the contents of these compounds and their distribution in 16 commercial rice varieties in Taiwan. Results showed that the order of vitamin E, total T, total T3, and γ-oryzanol contents was rice bran > brown rice > rice husk > polished rice. γ-T3 was the highest vitamin E isomer present in all rice samples, while β-T, β-T3, δ-T, and δ-T3 were present in trace amounts. The Japonica varieties contained a higher total T, total T3, and γ-oryzanol than the Indica varieties. They also have a higher level of α-T and α-T3 but a lower level of γ-T and γ-T3 than the Indica varieties. However, no obvious difference in total T, total T3, and γ-oryzanol content was noted between black- and red-colored rice varieties.

  19. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.

    PubMed

    Jeong, Chang Yoon; Dodla, Syam K; Wang, Jim J

    2016-01-01

    Biochar conversion of sugarcane and rice harvest residues provides an alternative for managing these crop residues that are traditionally burned in open field. Sugarcane leaves, bagasse, rice straw and husk were converted to biochar at four pyrolysis temperatures (PTs) of 450 °C, 550 °C, 650 °C, and 750 °C and evaluated for various elemental, molecular and surface properties. The carbon content of biochars was highest for those produced at 650-750 °C. Biochars produced at 550 °C showed the characteristics of biochar that are commonly interpreted as being stable in soil, with low H/C and O/C ratios and pyrolysis fingerprints dominated by aromatic and polyaromatic hydrocarbons. At 550 °C, all biochars also exhibited maximum CEC values with sugarcane leaves biochar (SLB) > sugarcane bagasse biochar (SBB) > rice straw biochar (RSB) > rice husk biochar (RHB). The pore size distribution of biochars was dominated by pores of 20 nm and high PT increased both smaller and larger than 50 nm pores. Water holding capacity of biochars increased with PT but the magnitude of the increase was limited by feedstock types, likely related to the hydrophobicity of biochars as evident by molecular composition, besides pore volume properties of biochars. Py-GC/MS analysis revealed a clear destruction of lignin with decarboxylation and demethoxylation at 450 °C and dehydroxylation at above 550 °C. Overall, biochar molecular compositions became similar as PT increased, and the biochars produced at 550 °C demonstrated characteristics that have potential benefit as soil amendment for improving both C sequestration and nutrient dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test.

    PubMed

    Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C

    2017-07-01

    Success and acceptability of the bio energy conversion technology to a large extent depend upon management of the inevitable by-products generated during the conversion process. By-products can be considered favourable as organic fertilizer as they retain nutrients with varying composition depending upon input biomass. However, characteristics of these heterogeneous resources with respect to feedstock and processing conditions have to be assessed to state on their agricultural and environmental benefits. Therefore, 3 types of anaerobic digestion by-products (digestate) from surplus biomass viz. cow dung, Ipomoea carnea:cow dung (60:40 dry weight basis) and rice straw:green gram stover:cow dung (30:30:40 dry weight basis) and one gasification by-product (biochar) from rice husk are considered to understand the fertilizer prospects. Considering 3 potential application options, digestate from each feedstock option was further processed as separated solid, separated liquid and ash from solid digestates. Thus, a total of 10 by-products were investigated for understanding their prospects as fertilizer using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X ray Spectroscopy (EDX) and phyto-toxicity test to have a broad insight in terms of their organic, mineral, elemental composition, morphological feature and potential phyto-toxicity. In general, irrespective of origin of feedstock, solid digestate, ash digestate and char showed similarity in terms of composition of functional groups with some degree of variation in relative content as reflected by FTIR analysis. Dominance of organic functional groups in separated solid digestates compared to liquid fraction indicated the former as favourable organic amendments. Quartz was the prevalent mineral phase in all separated solid, ash digestate and rice husk char. Digestates in ash phase represent more concentrated plant nutrient source with

  1. Organic acids associated with saccharification of cellulosic wastes during solid-state fermentation.

    PubMed

    El-Naggar, Noura El-Ahmady; El-Hersh, Mohammed Saad

    2011-02-01

    Saccharification of five cellulosic wastes, i.e. rice husks, wheat bran, corn cobs, wheat straw and rice straw by three cellulytic fungi, i.e. Aspergillus glaums MN1, Aspergillus oryzae MN2 and Penicillium purpurogenum MN3, during solid-state fermentation (SSF) was laboratory studied. Rice husks, wheat bran, and corn cobs were selected as inducers of glucose production in the tested fungi. An incubation interval of 10 days was optimal for glucose production. Maximal activities of the cellulases FP-ase, CMC-ase, and p-glucosidase were detected during SSF of rice husks by P. purpurogenum; however, a-amylase activity (7.2 U/g) was comparatively reduced. Meanwhile, the productivities of FP-ase, CMC-ase, and β-glucosidase were high during SSF of rice husks by A glaucus; however, they decreased during SSF of corn cobs by P. purpurogenum. Addition of rock phosphate (RP) (75 mg P(2)O(5)) decreased the pH of SSF media. (NH(4))(2)SO(4) was found to be less inducer of cellulytic enzymes, during SSF of rice husks by A. glaucus or A. oryzae; it also induced phytase production and solubilization of RP. The organic acids associated with saccharification of the wastes studied have also been investigated. The highest concentration of levulinic acid was detected (46.15 mg/g) during SSF of corn cobs by P. purpurogenum. Likewise, oxalic acid concentration was 43.20 mg/g during SSF of rice husks by P. purpurogenum.

  2. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages.

    PubMed

    Zhou, Hang; Zhu, Wei; Yang, Wen-Tao; Gu, Jiao-Feng; Gao, Zi-Xiang; Chen, Li-Wei; Du, Wen-Qi; Zhang, Ping; Peng, Pei-Qin; Liao, Bo-Han

    2018-05-15

    Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4μg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Preparation of RHA-silica/graphene oxide nanocomposite for removal of nickel ions from water

    NASA Astrophysics Data System (ADS)

    Tien, Tran Thi Thuy; Tu, Tran Hoang; Thao, Huynh Nguyen Phuong; Hieu, Nguyen Huu

    2017-09-01

    In this study, silica was synthesized from rice husk ash (RHA-SiO2) by precipitation method. Graphene oxide (GO) was prepared by modified Hummers method. RHA-SiO2/GO nanocomposite was fabricated by in-situ one-step method using 3-Aminopropyltriethoxysilane (APS) as a coupling agent. The nanocomposite was characterized by using X-ray Fluorescence, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and Brunauer-Emmett-Teller (BET) specific surface area. The adsorption of RHA-SiO2/GO for Ni2+ ions from water was investigated and compared with the precursors. Ultraviolet-visible (UV-Vis) spectroscopy was used to quantify the amount of the initial and the residual Ni2+ concentration. The maximum adsorption capacity of the nanocomposite for Ni2+ calculated from Langmuir isotherm model, which was 256.4 mg/g. In addition, the adsorption data were well-fitted to the pseudo-second-order kinetic equation. Accordingly, this study demonstrated that RHA-SiO2/GO could be used as a highly efficient adsorbent for removal Ni2+ ions from aqueous solution.

  4. A comparative evaluation of dried activated sludge and mixed dried activated sludge with rice husk silica to remove hydrogen sulfide

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048

  5. Characterisation of Pomegranate-Husk Polyphenols and Semi-Preparative Fractionation of Punicalagin.

    PubMed

    Aguilar-Zárate, Pedro; Wong-Paz, Jorge E; Michel, Mariela; Buenrostro-Figueroa, Juan; Díaz, Hugo R; Ascacio, Juan A; Contreras-Esquivel, Juan C; Gutiérrez-Sánchez, Gerardo; Aguilar, Cristóbal N

    2017-09-01

    Pomegranate-husk is the main by-product generated from the pomegranate industry. It is a potential source of compounds highly appreciated by different costumers. Punicalagin is the main compound present in pomegranate-husk. To characterise the pomegranate-husk total polyphenols by HPLC-ESI-MS and to establish a method for the recovery of punicalagin using a medium pressure liquid chromatography (MPLC) system. The characterisation of total pomegranate-husk polyphenols was carried out using liquid chromatography coupled to mass spectrometry. Thus, 200 mg of pomegranate-husk polyphenols were fractionated by MPLC. The isolated punicalagin was characterised by HPLC-MS and was tested as standard reagent for the measurement of its scavenging capacity reducing DPPH and ABTS radicals. Twenty peaks were identified by analytical HPLC-MS analysis from the pomegranate-husk polyphenols. The main compounds were the punicalagin anomers, punicalin and ellagic acid. The MPLC method allowed three fractions to be obtained. In fraction three 39.40 ± 8.06 mg of punicalagin anomers (purity > 97.9%) were recovered. The scavenging capacity of punicalagin showed an IC 50 of 109.53 and 151.50 μg/mL for DPPH and ABTS radicals, respectively. The MPLC system was an excellent tool for the separation of the main ellagitannins from pomegranate husk and for the isolation of punicalagin anomers. Fraction three was rich in high purity punicalagin anomers. The IC 50 was obtained for DPPH and ABTS radicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL).

    PubMed

    Wu, Chuan; Zou, Qi; Xue, Sheng-Guo; Pan, Wei-Song; Huang, Liu; Hartley, William; Mo, Jing-Yu; Wong, Ming-Hung

    2016-05-01

    Rice is one of the major pathways of arsenic (As) exposure in human food chain, threatening over half of the global population. Greenhouse pot experiments were conducted to examine the effects of Si application on iron (Fe) plaque formation, As uptake and rice grain As speciation in indica and hybrid rice genotypes with different radial oxygen loss (ROL) ability. The results demonstrated that Si significantly increased root and grain biomass. Indica genotypes with higher ROL induced greater Fe plaque formation, compared to hybrid genotypes and sequestered more As in Fe plaque. Silicon applications significantly increased Fe concentrations in iron plaque of different genotypes, but it decreased As concentrations in the roots, straws and husks by 28-35%, 15-35% and 32-57% respectively. In addition, it significantly reduced DMA accumulation in rice grains but not inorganic As accumulation. Rice of indica genotypes with higher ROL accumulated lower concentrations of inorganic As in grains than hybrid genotypes with lower ROL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Drug interactions with the dietary fiber Plantago ovata husk.

    PubMed

    Fernandez, Nelida; Lopez, Cristina; Díez, Raquel; Garcia, Juan J; Diez, Maria Jose; Sahagun, Ana; Sierra, Matilde

    2012-11-01

    Plantago ovata husk is a viscous water-soluble fiber obtained by milling the seed of Plantago ovata. The increased use of this compound for the treatment of diseases makes it necessary to know of its potential drug interactions. The present paper reviews the literature concerning interactions between drugs and the dietary fiber Plantago ovata husk. All publications which might describe interactions between the dietetic fiber Plantago ovata husk and other drugs were identified by searches using databases such as MEDLINE or EMBASE. Drug interactions have been the subject of numerous studies, but few of them have been carried out with dietary fiber and the results obtained have often been variable. The incidence and importance of interactions between fiber and drugs has increased due to a worldwide rise in the use of dietary fiber. Plantago ovata husk has the potential for producing both benefits and risks with both desirable and undesirable effects when coadministered with drugs. More clinical studies are justifiably needed to improve treatments and to better evaluate patient safety.

  8. Influence of silicon treatment on antimony uptake and translocation in rice genotypes with different radial oxygen loss.

    PubMed

    Zhang, Liping; Yang, Qianqian; Wang, Shiliang; Li, Wanting; Jiang, Shaoqing; Liu, Yan

    2017-10-01

    Antimony (Sb) pollution in soil may have a negative impact on the health of people consuming rice. This study investigated the effect of silicon (Si) application on rice biomass, iron plaque formation, and Sb uptake and speciation in rice plants with different radial oxygen loss (ROL) using pot experiments. The results demonstrated that Si addition increased the biomass of straw and grain, but had no obvious impact on the root biomass. Indica genotypes with higher ROL underwent greater iron plaque formation and exhibited more Sb sequestration in iron plaque. Silicon treatments increased iron levels in iron plaque from the different genotypes but decreased the total Sb concentration in root, straw, husk, and grain. In addition, Si treatment reduced the inorganic Sb concentrations but slightly increased the trimethylantimony (TMSb) concentrations in rice straw. Moreover, rice straw from hybrid genotypes accumulated higher concentrations of TMSb and inorganic Sb than that from indica genotypes. The conclusions from this study indicate that Sb contamination in rice can be efficiently reduced by applying Si treatment and selecting genotypes with high ROL. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice.

    PubMed

    Paiva, Flávia Fernandes; Vanier, Nathan Levien; Berrios, Jose De J; Pinto, Vânia Zanella; Wood, Delilah; Williams, Tina; Pan, James; Elias, Moacir Cardoso

    2016-01-15

    This study aims to evaluate the effects of polishing and parboiling on proximate composition, structure, phenolic compounds, antioxidant activity, cooking time and hardness of IAC-600 black rice cultivar and MPB-10 red rice lineage. Proximate analysis and light micrographs revealed higher migration of red rice proteins than black rice proteins to the endosperm as a result of parboiling. Parboiling reduced the ash content of red rice while no difference was determined in black rice. Gelatinized starch granules from both genotypes showed similar appearance. There was a decrease in relative crystallinity on both black and red rice subjected to parboiling, which was an indicative of crystallites disruption. Polishing removed more than 90% of free phenolics for both genotypes, while parboiling allowed the partial preservation of free phenolics content in polished rice. Parboiling induced an increase in the cooking time of red rice, but a decrease in the cooking time of black rice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bioconversion of rice straw into a soil-like substrate

    NASA Astrophysics Data System (ADS)

    Yu, Chengying; Liu, Hong; Xing, Yidong; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    To increase the closure of bioregenerative life support systems (BLSS), the bioconversion of rice straw into a soil-like substrate (SLS) by mushrooms and worms has been studied. The results showed that rice straw could be treated better by aerobic fermentation and succeeding growth of mushrooms Pleurotus ostreatus. In this process the total content of lignocellulose in the straw was removed by 37.74%. Furthermore, 46.68 g (fresh weight) of mushrooms could be produced from 100.0 g (dry weight) of rice straw. During the conversion of rice straw into a starting SLS by mushrooms and worms, the matter loss was 77.31%. The lettuce has been planted in the SLS and the yield when lettuce was cultivated on the SLS (8.77gm-2day-1) was comparable to the yield obtained on the nutrient solution. In addition, the silicon in the SLS ash can reach upto 32% and the circulation of it is expected during the growth of rice.

  11. Bioethanol produced from Moringa oleifera seeds husk

    NASA Astrophysics Data System (ADS)

    Ali, E. N.; Kemat, S. Z.

    2017-06-01

    This paper presents the potential of bioethanol production from Moringa oleifera seeds husk which contains lignocellulosic through Simultaneous Saccharification and Fermentation (SSF) process by using Saccharomyces cerevisiae. This paper investigates the parameters which produce optimum bioethanol yield. The husk was hydrolyzed using NaOH and fermented using Saccharomyces cerevisiae yeast. Batch fermentation was performed with different yeast dosage of 1, 3, and 5 g/L, pH value was 4.5, 5.0 and 5.5, and fermentation time of 3, 6, 9 and 12 hours. The temperature of fermentation process in incubator shaker is kept constant at 32ºC. The samples are then filtered using a 0.20 μm nylon filter syringe. The yield of bioethanol produced was analysed using High Performance Liquid Chromatography (HPLC). The results showed that the highest yield of 29.69 g/L was obtained at 3 hours of fermentation time at pH of 4.5 and using 1g/L yeast. This research work showed that Moringa oleifera seeds husk can be considered to produce bioethanol.

  12. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production.

    PubMed

    Shak, Katrina Pui Yee; Wu, Ta Yeong; Lim, Su Lin; Lee, Chieh Ai

    2014-01-01

    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio.

  13. Effect of dietary garlic bulb and husk on the physicochemical properties of chicken meat.

    PubMed

    Kim, Y J; Jin, S K; Yang, H S

    2009-02-01

    This study was carried out to compare the physicochemical and sensory properties of chicken thigh muscles from broilers fed different levels of garlic bulb (GB) and garlic husk (GH). Two hundred male Arbor Acre broiler chickens were fed either a control diet (based on corn and soybean meal) or the control diet supplemented with 2 and 4% of GB and GH powder for 5 wk. There were no differences among diets in moisture and ash contents. However, dietary supplementation with GB and GH resulted in significantly greater protein content and lower fat content in chicken thigh muscle compared with muscle from birds fed nonsupplemented diets (P<0.05). Increasing the level of garlic supplementation resulted in lower shear force and thiobarbituric acid reactive substances values (P<0.05). Dietary supplementation with garlic led to decreased total and low-density lipoprotein cholesterol levels in broiler blood, and the greatest level of garlic supplementation decreased saturated fatty acid and increased unsaturated fatty acid levels (%) in broiler thigh muscle (P<0.05). Sensory panelists recorded greater hardness and flavor scores to the samples with garlic dietary supplementation (P<0.05). These data suggest that supplementing broiler chicken diets with garlic can produce chicken meat with favorable lipid profiles and can enhance eating quality because sensory panels found that thigh meat from chickens fed a garlic-supplemented diet had better texture and flavor. Therefore, the treatment with the most significant effects in this study was that with the high level of garlic husk.

  14. Prevalence of respiratory symptoms and disorders among rice mill workers in India.

    PubMed

    Ghosh, Tirthankar; Gangopadhyay, Somnath; Das, Banibrata

    2014-05-01

    Lung function tests have become an integral part of assessment of pulmonary disease. Diseases of the respiratory system induced by occupational dusts are influenced by the duration of exposure. The aim of the study is to investigate the impairment of lung function and prevalence of respiratory symptoms among the rice mill workers. A total of 120 rice mill workers from three districts of Karnataka were included in this study. Fifty urban dwellers from the same socio-economic level were selected as controls. The study included clinical examination, assessment of respiratory symptoms, pulmonary function test, measurement of peak expiratory flow rate, absolute eosinophil count, ESR estimation, total IgE estimation and radiographic test. The present study has shown that the rice mill workers complained of several types of respiratory disorders like phlegm (40.8 %), dyspnea (44.2 %), chest tightness (26.7 %), cough (21.7 %), and nose irritation (27.5 %). Rice mill workers exposed to dust presented significantly (p < 0.05) lower levels of FVC (3.44 ± 0.11), FEV1 (2.73 ± 0.15) and PEFR (304.95 ± 28.79) than the controls. The rice mill workers are having significantly higher absolute eosinophil counts, total IgE and ESR than control groups. The hematological findings suggest that the harmful effects may be linked to both non-specific irritation and allergic responses to rice husk dust among rice mill workers. Dust exposure in the working environment affects the lung function values and increased the respiratory symptoms among the rice mill workers.

  15. Anaerobic co-digestion of coffee husks and microalgal biomass after thermal hydrolysis.

    PubMed

    Passos, Fabiana; Cordeiro, Paulo Henrique Miranda; Baeta, Bruno Eduardo Lobo; de Aquino, Sergio Francisco; Perez-Elvira, Sara Isabel

    2018-04-01

    Residual coffee husks after seed processing may be better profited if bioconverted into energy through anaerobic digestion. This process may be improved by implementing a pretreatment step and by co-digesting the coffee husks with a more liquid biomass. In this context, this study aimed at evaluating the anaerobic co-digestion of coffee husks with microalgal biomass. For this, both substrates were pretreated separately and in a mixture for attaining 15% of total solids (TS), which was demonstrated to be the minimum solid content for pretreatment of coffee husks. The results showed that the anaerobic co-digestion presented a synergistic effect, leading to 17% higher methane yield compared to the theoretical value of both substrates biodegraded separately. Furthermore, thermal hydrolysis pretreatment increased coffee husks anaerobic biodegradability. For co-digestion trials, the highest values were reached for pretreatment at 120 °C for 60 min, which led to 196 mLCH 4 /gVS and maximum methane production rate of 0.38 d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Speciation and distribution of arsenic and localization of nutrients in rice grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, E.; Scheckel, K.G.; Pallon, J.

    2012-09-05

    Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques ({mu}-XANES, {mu}-X-ray fluorescence ({mu}-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As andmore » localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.« less

  17. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil.

    PubMed

    Dwivedi, S; Tripathi, R D; Srivastava, S; Mishra, S; Shukla, M K; Tiwari, K K; Singh, R; Rai, U N

    2007-02-01

    The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52

  18. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    NASA Astrophysics Data System (ADS)

    Srisittipokakun, N.; Ruangtaweep, Y.; Rachniyom, W.; Boonin, K.; Kaewkhao, J.

    In this research, glass productions from rice husk ash (RHA) and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g) due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration) in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm) and Fe2+ (1050 nm) ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction.

  19. Recovery of Platinum from Dilute Chloride Media Using Biosorbents

    NASA Astrophysics Data System (ADS)

    Zeytuncu, B.; Morcali, M. H.; Yucel, O.

    Pistachio nut shells and Rice husk, a biomass residue, were investigated as adsorbents for the platinum uptake from synthetically prepared dilute chloroplatinic acid solutions. The effects of the different uptake parameters on platinum uptake (%) were studied in detail on a batch sorption. Before the pistachio nut shell material was activated, platinum uptake (%) was poor compared with rice husk. However, after the pistachio nut shell material was activated at 1000°C under an argon atmosphere, the platinum uptake (%) increased two-fold. The pistachio nut shell (inactivated and activated) and rice husk were characterized by Attenuated Total Reflection-Fourier transform infrared spectroscopy (ATR-FTIR).

  20. Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124.

    PubMed

    de Brito, Aila Riany; Santos Reis, Nadabe Dos; Silva, Tatielle Pereira; Ferreira Bonomo, Renata Cristina; Trovatti Uetanabaro, Ana Paula; de Assis, Sandra Aparecida; da Silva, Erik Galvão Paranhos; Aguiar-Oliveira, Elizama; Oliveira, Julieta Rangel; Franco, Marcelo

    2017-11-26

    Endoglucanase production by Aspergillus oryzae ATCC 10124 cultivated in rice husks or peanut shells was optimized by experimental design as a function of humidity, time, and temperature. The optimum temperature for the endoglucanase activity was estimated by a univariate analysis (one factor at the time) as 50°C (rice husks) and 60°C (peanut shells), however, by a multivariate analysis (synergism of factors), it was determined a different temperature (56°C) for endoglucanase from peanut shells. For the optimum pH, values determined by univariate and multivariate analysis were 5 and 5.2 (rice husk) and 5 and 7.6 (peanut shells). In addition, the best half-lives were observed at 50°C as 22.8 hr (rice husks) and 7.3 hr (peanut shells), also, 80% of residual activities was obtained between 30 and 50°C for both substrates, and the pH stability was improved at 5-7 (rice hulls) and 6-9 (peanut shells). Both endoglucanases obtained presented different characteristics as a result of the versatility of fungi in different substrates.

  1. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran.

    PubMed

    Bagchi, Torit Baran; Sharma, Srigopal; Chattopadhyay, Krishnendu

    2016-01-15

    With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical treatments were identified for all components. Another set of 29 genotypes derived from the breeding programme were employed for the external validation of these calibration models. High accuracy of all these calibration and prediction models was ensured through pair t-test and correlation regression analysis between reference and predicted values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.

    PubMed

    Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J

    2012-10-01

    In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents.

    PubMed

    Paredes-Laverde, Marcela; Silva-Agredo, Javier; Torres-Palma, Ricardo A

    2018-05-01

    The removal of the widely used antibiotic norfloxacin (NOR), the presence of which has been reported in natural water, was evaluated using rice (RH) and coffee (CH) husk wastes as adsorbents. Low particle sizes and natural pH in distilled water favored NOR elimination in both materials. In order to investigate the type of adsorption, the data was adjusted to the Langmuir, Freundlich and Redlich-Peterson isotherms. The best fit for the Langmuir and Redlich-Peterson isotherms suggested a monolayer-type adsorption model. Kinetic models of pseudo first and second order were also evaluated, the latter being the most suitable to represent the NOR adsorption phenomenon. Meanwhile, the intraparticle diffusion model indicated that the adsorption of NOR occurs both at the surface and within the pores of the material. Studies performed on thermodynamic aspects such as activation energy (E a ), enthalpy change (ΔH˚) and Gibbs free energy change (ΔG˚) suggest that the physisorption of the pollutant takes place through a spontaneous endothermic process. Additionally, PZC determination, Boehm method, chemical composition, thermodynamic analysis, and FTIR spectra before and after the adsorption of the antibiotic suggest that in CH adsorbents this occurred mainly through electrostatic interactions, while in RH hydrogen bonds also contributed significantly. Finally, the efficiency of natural adsorbents for the removal of NOR was evaluated in synthetic matrices of municipal wastewater and urine, and promising results were obtained despite the complexity of these matrices. The results presented in this work show the potential application of RH and CH residues as a low-cost alternative for the removal of NOR even in complex matrices. However, despite the similarities between the materials, CH waste showed better properties for the removal of the tested NOR due to its higher surface area, lower PZC and higher number of acid groups. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Modification of dry grain processing for rice nutrition produced

    NASA Astrophysics Data System (ADS)

    Rahman, A. N. F.; Genisa, J.; Dirpan, A.; Badani, A. A.

    2018-05-01

    Rice is a staple food for people in Indonesia that provides high energy and nutrients of up to 360 calories per 100 g. Based on the research it was known that the nutrient content in rice will increased by soaking. This is suspected because the nutrient content in the aleurone layer adsorbed to the endosperm. The purpose of this research was to know the effect of dry grain immersion on the nutrition of rice produced. The method of this research was conducted through some stages: 1. Preparation of raw materials, 2. Grain immersion, 3. Grain drying, 4. Peeling chaff, 5. Testing the nutritional value of rice. The research was processed by using factorial randomized complete random design (RCRD) with three replications. The result showed that soaking the grain for 12 hours has the highest nutritional value increases compared to the control. Proximate test resulted from the best treatment were: protein content of 8.26%, ash content of 0.42% and thiamine content of 0.023%.

  5. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  6. Immobilization of Candida rugosa lipase by adsorption-crosslinking onto corn husk

    NASA Astrophysics Data System (ADS)

    Nuraliyah, A.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Corn husk is one of the agricutural waste that has not been used optimally. corn husk waste allows to be used as immobilized support for biocatalyst because it is easy to obtain, available abundant, renewable and easy to decompose. This research was conducted in two phases, namely the adsorption of enzyme immobilization on the support, followed by cross- linking between the enzyme and support through the addition of glutaraldehyde. The optimum conditions for cross-linked adsorption immobilization using support of corn husk were achieved at concentrations of 0,75 mg / ml at 4 hour reaction time. The biggest unit activity value is obtained at 2,37 U / g support through 0.5% glutaraldehyde addition.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.

    Nanoparticles, submicron-diameter tubes, and rods of Si{sub 3}N{sub 4} were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si{sub 3}N{sub 4} with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si{sub 3}N{sub 4}. In a two-step process, where pure SiC wasmore » produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si{sub 3}N{sub 4} combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.« less

  8. Comparison of the composting process using ear corn residue and three other conventional bulking agents during cow manure composting under high-moisture conditions.

    PubMed

    Hanajima, Dai

    2014-10-01

    To elucidate the characteristics of ear corn residue as a bulking agent, the composting process using this residue was compared with processes using three other conventional materials such as sawdust, wheat straw and rice husk, employing a bench-scale composting reactor. As evaluated via biochemical oxygen demand (BOD), ear corn residue contains 3.3 and 2.0 times more easily digestible materials than sawdust and rice husk, respectively. In addition, mixing ear corn residue with manure resulted in reduced bulk density, which was the same as that of wheat straw and was 0.58 and 0.67 times lower than that of sawdust and a rice husk mixture, respectively. To evaluate temperature generation during the composting process, the maximum temperature and area under the temperature curve (AUCTEMP) were compared among the mixed composts of four bulking agents. Maximum temperature (54.3°C) as well as AUCTEMP (7310°C●h) of ear corn residue were significantly higher than those of sawdust and rice husk (P<0.05), and they are similar to that of wheat straw mixed compost. Along with the value of AUCTEMP, the highest organic matter losses of 31.1% were observed in ear corn residue mixed compost, followed by wheat straw, saw dust and rice husk. © 2014 Japanese Society of Animal Science.

  9. Grain Unloading of Arsenic Species in Rice1[W

    PubMed Central

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A.

    2010-01-01

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a ± stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols. PMID:19880610

  10. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    NASA Astrophysics Data System (ADS)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  11. The impact of germination on the characteristics of brown rice flour and starch.

    PubMed

    Xu, Jie; Zhang, Hui; Guo, Xiaona; Qian, Haifeng

    2012-01-30

    In recent years, germinated brown rice as a functional food has received great attention with its improved sensory and nutritional properties. Particularly of interest are the high levels of γ-amino butyric acid (GABA) which can be obtained during germination. However, more studies are needed to fully understand the effect of germination on the physicochemical properties of brown rice. Germination altered the chemical composition of brown rice, resulting in an increase in reducing sugar and ash content, and a reduction in amylose. Solubility, paste viscosity, transition temperatures (T(o) , T(p) and T(c) ) and percentage of retrogradation (%Retrogradation) were decreased, while swelling power and turbidity were significantly increased. Scanning electron micrographs indicated that starch granules from germinated brown rice became smaller and less homogeneous. Moreover, germination shortened the chain length of amylopectin and amylose molecules. This investigation provides information on changes in the characteristics of rice flour and rice starch during germination, leading to a better understanding on the chemistry of brown rice germination. Copyright © 2011 Society of Chemical Industry.

  12. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants.

    PubMed

    Tripathi, R D; Dwivedi, S; Shukla, M K; Mishra, S; Srivastava, S; Singh, R; Rai, U N; Gupta, D K

    2008-02-01

    Rice is a major food crop throughout the world; however, accumulation of toxic metals and metalloids in grains in contaminated environments is a matter of growing concern. Field experiments were conducted to analyze the growth performance, elemental composition (Fe, Si, Zn, Mn, Cu, Ni, Cd and As) and yield of the rice plants (Oryza sativa L. cv. Saryu-52) grown under different doses of fly-ash (FA; applied @ 10 and 100 tha(-1) denoted as FA(10) and FA(100), respectively) mixed with garden soil (GS) in combination with nitrogen fertilizer (NF; applied @ 90 and 120 kg ha(-1) denoted as NF(90) and NF(120), respectively) and blue green algae biofertilizer (BGA; applied @ 12.5 kg ha(-1) denoted as BGA(12.5)). Significant enhancement of growth was observed in the plants growing on amended soils as compared to GS and best response was obtained in amendment of FA(10)+NF(90)+BGA(12.5). Accumulation of Si, Fe, Zn and Mn was higher than Cu, Cd, Ni and As. Arsenic accumulation was detected only in FA(100) and its amendments. Inoculation of BGA(12.5) caused slight reduction in Cd, Ni and As content of plants as compared to NF(120) amendment. The high levels of stress inducible non-protein thiols (NP-SH) and cysteine in FA(100) were decreased by application of NF and BGA indicating stress amelioration. Study suggests integrated use of FA, BGA and NF for improved growth, yield and mineral composition of the rice plants besides reducing the high demand of nitrogen fertilizers.

  13. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  14. Using cultural-historical activity theory to analyze social service practices evolving from the Norwegian HUSK projects.

    PubMed

    Foot, Kirsten

    2015-01-01

    The HUSK projects catalyzed innovation in the practices of providing social services that could yield useful insights both within and outside of Norway if analyzed in these two ways: (a) retrospective analysis of the development of individual HUSK projects in light of their cultural-historical contexts, and (b) comparative analysis of the efforts to advance multi-sector collaboration in some of the HUSK projects. Such analyses require a practice-based research approach that takes into account culture and history. In this article the author explains how cultural-historical activity theory provides such an approach, illustrated via several HUSK cases. The author suggests five questions for future analyses of the HUSK projects and argues that insights gleaned from such analyses could contribute significantly to research on-and the provision of-social services.

  15. Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests.

    PubMed

    Chakraborty, M; Reddy, P Sairam; Mustafa, G; Rajesh, G; Narasu, V M Laxmi; Udayasuriyan, V; Rana, Debashis

    2016-10-01

    A chimeric Bacillus thuringiensis toxin (Bt) gene, cry2AX1was cloned in a bi-selectable marker free binary vector construct. The cry2AX1 gene, driven by the Chrysanthemum rbcS1 promoter, was introduced into JK1044R, the restorer line (Oryza sativa L. ssp. Indica) of a notified commercially grown rice hybrid in India, by Agrobacterium-mediated transformation. Its effect against two major lepidopteran insect pests viz., yellow stem borer (YSB) Scirpophaga incertulas, rice leaf folder (RLF) Cnaphalocrocis medinalis and one minor insect pest, oriental army worm (OAW) Mythimna separata was demonstrated through bioassays of transgenic rice plants under laboratory and greenhouse conditions. The rbcS1 promoter with chloroplast signal peptide was used to avoid Cry2AX1 protein expression in rice seed endosperm tissue. A total of 37 independent transformants were generated, of which after preliminary molecular characterization and YSB bioassay screening, five events were selected for their protein expression and bioefficacy against all three rice insect. One elite transgenic rice line, BtE15, was identified with Cry2AX1 expression ranging from 0.68 to 1.34 µg g(-1) leaf fresh weight and with 80-92 % levels of resistance against rice pests at the vegetative and reproductive stages. Increase in Cry2AX1 protein concentration was also observed with crop maturity. The Cry2AX1protein concentration in the de-husked seeds was negligible (as low as 2.7-3.6 ng g(-1)). These results indicate the potential application of cry2AX1 gene in rice for protection against YSB, RLF and OAW.

  16. Cacao bean husk: an applicable bedding material in dairy free-stall barns

    PubMed Central

    Yajima, Akira; Owada, Hisashi; Kobayashi, Suguru; Komatsu, Natsumi; Takehara, Kazuaki; Ito, Maria; Matsuda, Kazuhide; Sato, Kan; Itabashi, Hisao; Sugimura, Satoshi; Kanda, Shuhei

    2017-01-01

    Objective The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Methods Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. Results The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Conclusion Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns. PMID:28002931

  17. Cacao bean husk: an applicable bedding material in dairy free-stall barns.

    PubMed

    Yajima, Akira; Owada, Hisashi; Kobayashi, Suguru; Komatsu, Natsumi; Takehara, Kazuaki; Ito, Maria; Matsuda, Kazuhide; Sato, Kan; Itabashi, Hisao; Sugimura, Satoshi; Kanda, Shuhei

    2017-07-01

    The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns.

  18. Assessment of the quality of bran and bran oil produced from some Egyptian rice varieties.

    PubMed

    Salem, Eglal G; El Hissewy, Ahmed; Agamy, Neveen F; Abd El Barry, Doaa

    2014-04-01

    Rice (Oryza sativa L.) is one of the leading food crops of the world, the staple food of over half the world's population. The bran, which is an important byproduct obtained during rice milling, constitutes about 1/10 of the weight of the rice grain. Rice bran is the outer brown layer including the rice germ that is removed during the milling process of brown grain. This milling byproduct is reported to be high in natural vitamins and minerals, particularly vitamin E. The present study was conducted to determine the chemical composition of bran and bran oil of 13 different rice varieties commonly produced in Egypt, to study the utilization of rice bran in bread production, and to assess the quality and acceptance of the rice bran edible oil produced. Rice bran was produced from 13 Egyptian varieties of recently harvested rice as well as from paddy rice stored for 1 year. The extracted bran was immediately stabilized then subjected to chemical analysis (such as moisture content, protein, fat, carbohydrates, fiber, and ash) as well as trace and heavy metals determination (P, K, Na, Ca, Fe, Zn, Cu, and Mg). Bread was produced by adding Giza172 rice bran at three different concentrations to wheat flour then subjected to chemical analysis, caloric content, and organoleptic examination. Bran oil was extracted from the different varieties of rice bran (recently harvested and stored) then subjected to chemical and organoleptic examinations as well as vitamin E and oryzanol determination. The percentage of rice bran of newly harvested Egyptian rice was 11.68% and was 10.97% in stored rice. The analysis showed mean values of 5.91 and 5.53% for moisture, 14.60 and 14.40% for crude protein, 14.83 and 15.20% for fat, 44.77 and 45.40% for carbohydrates, 6.55 and 7.06% for crude fiber, and 8.87 and 8.50% for ash for newly harvested and stored rice bran, respectively. Bread containing 15% rice bran showed the highest score percentages for organoleptic quality compared with the

  19. Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.).

    PubMed

    Rahaman, Sefaur; Sinha, Ashim Chandra; Mukhopadhyay, Dibyendu

    2011-01-01

    The arsenic contamination in soil-water-plant systems is a major concern of where, the groundwater is being contaminated with arsenic (above 0.01 mg/L) in the Indian subcontinent. The study was conducted with organic matter to find out the reducing effect on arsenic load to rice (cv. Khitish). It was observed that intermittent ponding reduced arsenic uptake (23.33% in root, 13.84% in shoot and 19.84% in leaf) at panicle initiation stage, instead of continuous ponding. A decreasing trend of arsenic accumulation (root > straw > husk > whole grain > milled grain) was observed in different plant parts at harvest. Combined applications of lathyrus + vermicompost + poultry manure reduced arsenic transport in plant parts (root, straw, husk, whole grains and milled grain) which was significantly at par (p > 0.05) with chopped rice straw (5 tons/ha) + lathyrus green manuring (5 tons/ha) in comparison to control and corresponding soils. A significant negative correlation of arsenic with phosphorus (grain P with arsenic in different parts R2= 0.627-0.726 at p > 0.01) was observed. Similarly, soil arsenic had a negative correlation with soil available phosphorus (R2 = 0.822 at p > 0.001) followed by soil nitrogen (R2 = 0.762 at p > 0.01) and soil potassium (R2 = 0.626 at p > 0.01). Hence, effective management of contaminated irrigation water along with organic matter could reduce the arsenic build up to plants and soil.

  20. Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues.

    PubMed

    Pattiya, Adisak; Suttibak, Suntorn

    2012-07-01

    This article reports experimental results of rapid or fast pyrolysis of rice straw (RS) and rice husk (RH) in a fluidised-bed reactor unit incorporated with a hot vapour filter. The objective of this research was to investigate the effects of pyrolysis temperatures and the use of glass wool hot vapour filtration on pyrolysis products. The results showed that the optimum pyrolysis temperatures for RS and RH were 405 and 452 °C, which gave maximum bio-oil yields of 54.1 and 57.1 wt.% on dry biomass basis, respectively. The use of the hot filter led to a reduction of 4-7 wt.% bio-oil yield. Nevertheless, the glass wool hot filtered bio-oils appeared to have better quality in terms of initial viscosity, solids content and ash content than the non-filtered ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Sorption Studies and Characterization of As (III) Adsorption over Developed Iron-Biochar Composites from Water.

    NASA Astrophysics Data System (ADS)

    Singh, P.; Mohan, D.

    2016-12-01

    Problem related to arsenic occurrence in groundwater has caused severe threat to human health in worldwide. Thus there is an increasing demand to find the chemistry and plausible mechanism of arsenic adsorption while remediating it from water. In present study iron-biochar composites are synthesised using agricultural waste materials. The rice husk iron-biochar composite (RIBC) and wheat husk iron-biochar composite (WIBC) were characterised and utilised for As (III) remediation from aqueous solution. The rice husk (RIBC) and wheat husk (WIBC) iron biochar composites were characterised. XPS, FT-IR, and XRD, were studied to analyse their elemental composition and functional group identification. While SEM, TEM, SEM-EDX were conducted to study their surface chemistry, mineralogy, porosity and crystallinity etc. Batch sorption studies were conducted for both rice husk (RIBC) and wheat husk (WIBC) iron-biochar composites to find sorption efficiency. Maximum As (III) adsorption was achieved in pH range 6-8 for both iron-biochar composites. Kinetic studies were conducted to establish the mechanism of As (III) adsorption at different dose and time. Optimum dose of 2g/L and 1g/L were reported for rice husk (RIBC) and wheat husk (WIBC) iron-biochar composites respectively. Electrostatic forces developed between arsenites and iron hydroxyl surface developed over the surface may have caused the removal of As (III). Significant amount of oxygen containing groups have been revealed through studies. Higher As (III) adsorption capacities were obtained for both iron-biochar composites to measure the amount of surface sites. Furthermore, various adsorption models are used to find the monolayer adsorption capacity. These findings suggest that developed iron-biochar composites may be used to remediate As (III) from contaminated water.

  2. Qualitative Analysis of Polyphenols in Macroporous Resin Pretreated Pomegranate Husk Extract by HPLC-QTOF-MS.

    PubMed

    Abdulla, Rahima; Mansur, Sanawar; Lai, Haizhong; Ubul, Ablikim; Sun, Guangying; Huang, Guozheng; Aisa, Haji Akber

    2017-09-01

    Pomegranate (Punica granatum L.) husk is a traditional herbal medicine abundant in phenolic compounds and plays some roles in the treatment of oxidative stress, bacterial and viral infection, diabetes mellitus, and acute and chronic inflammation. Identification and determination of polyphenols in macroporous resin pretreated pomegranate husk extract by high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The total polyphenols of pomegranate husk were prepared by ethanol extraction followed by pretreatment with HPD-300 macroporous resin. The polyphenolic compounds were qualitatively analysed by HPLC-QTOF-MS in negative electrospray ionisation (ESI) mode at different collision energy (CE) values. A total of 50 polyphenols were detected in the extract of pomegranate husk, including 35 hydrolysable tannins and 15 flavonoids with distinct retention time, fragmentation behaviours and characteristics, and the accurate mass-to-charge ratios at low, moderate and high CE values. Of these, we identified nine compounds for the first time in the pomegranate husk, including hexahydroxydiphenoyl-valoneoyl-glucoside (HHDP-valoneyl-glucoside), galloyl-O-punicalin, rutin, hyperoside, quercimeritrin, kaempferol-7-O-rhahmano-glucoside, luteolin-3'-O-arabinoside, luteolin-3'-O-glucoside, and luteolin-4'-O-glucoside. To validate the specificity and accuracy of mass spectrometry in the detection of polyphenols, as compared to the fragmentation pathways of granatin B in detail, including the HHDP-valoneyl- glucoside was first identified from pomegranate husk. The study provides evidence for the quality control and development of novel drugs based on polyphenols from the pomegranate husk. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Silicon Decreases Dimethylarsinic Acid Concentration in Rice Grain and Mitigates Straighthead Disorder.

    PubMed

    Limmer, Matthew Alan; Wise, Patrick; Dykes, Gretchen E; Seyfferth, Angelia L

    2018-04-17

    While root Si transporters play a role in the uptake of arsenite and organic As species dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in rice ( Oryza sativa L.), the impact of Si addition on the accumulation of DMA and MMA in reproductive tissues has not been directly evaluated, particularly in isolation from inorganic As species. Furthermore, DMA and MMA are suspected causal agents of straighthead disorder. We performed a hydroponic study to disentangle the impact of Si on accumulation of DMA and MMA in rice grain. At 5 μM, MMA was toxic to rice, regardless of Si addition, although Si significantly decreased root MMA concentrations. Plants dosed with 5 μM DMA grew well vegetatively but exhibited straighthead disorder at the lowest Si dose, and this DMA-induced yield loss reversed with increasing solution Si. Increasing Si also significantly decreased DMA concentrations in roots, straw, husk, and grain, particularly in mature plants. Si restricted grain DMA through competition for root uptake and downregulation of root Si transporters particularly at later stages of growth when Si uptake was greatest. Our finding that DMA causes straighthead disorder under low Si availability but not under high Si availability suggests Si as a straighthead management strategy.

  4. The properties of pellets from mixing bamboo and rice straw

    Treesearch

    Zhijia Liu; Xing' e Liu; Benhua Fei; Zehui Jiang; Zhiyong Cai; Yan Yu

    2013-01-01

    Rice straw pellets are the main type of biomass solid fuel and have great potential as a bioenergy resource of the future in China. But it also showed important problems because of its high content of ashes and its low gross calorific value, reducing the possibility to be used in domestic heating. It was certified that mixing different types of biomass materials was...

  5. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    NASA Astrophysics Data System (ADS)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  6. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    NASA Astrophysics Data System (ADS)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  7. Fly ash based zeolitic pigments for application in anticorrosive paints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Ruchi, E-mail: shawruchi1@gmail.com; Tiwari, Sangeeta, E-mail: stiwari2@amity.edu

    2016-04-13

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na{sup +} with Mg{sup 2+} and Ca{sup 2+} ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxymore » resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).« less

  8. Laser-induced artificial fulgurites

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Marsin Sanagi, Mohd; Farah, Mohammed; Naqiuddin Razali, M.; Khamis, Jamil

    2018-07-01

    Fulgurite is a natural glass created by lightning. Naturally it can be found at beaches or in deserts. Artificial fulgurite is created by immersing high-voltage electrodes in a tab of sand. Commonly, fulgurite is of interest among geoscientists, but its applications are still unknown. In the present paper, the concept of natural fulgurite generation is simulated to induce artificial fulgurite. Instead of lightning, a high-power laser beam is used as a source of transient heating. Syntactic sand from agrowaste is used as target material. Artificial fulgurite is generated after transient heating from a laser beam. The benefit of this finding can be used to extract silica from rice husk ash using laser technology.

  9. Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant.

    PubMed

    Pawar, Harshal; Varkhade, Chhaya

    2014-08-01

    Psyllium husk (Plantago ovata, Family: Plantaginaceae) contains a high proportion of hemicellulose, composed of a xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). Polysaccharide was isolated from Psyllium husk using solvent precipitation method. The isolated polysaccharide was evaluated for various physicochemical parameters. The rheological behavior of polysaccharide (1% w/v in water) was studied using Brookfield viscometer. Polysaccharide derived from the husk of P. ovata was investigated as superdisintegrant in the fast dissolving tablets. Valsartan, an antihypertensive drug, was selected as a model drug. The tablets of Valsartan were prepared separately using different concentrations (1, 2.5, 5, 7.5% w/w) of isolated Plantago ovata (P. ovata) husk polysaccharide (Natural) and crospovidone as a synthetic superdisintegrant by direct compression method. The prepared tablets were evaluated for various pre-compression and post-compression parameters. The drug excipient interactions were characterized by FTIR studies. The formulation F4 containing7.5% polysaccharide showed rapid wetting time and disintegration time as compared to formulation prepared using synthetic superdisintegrant at the same concentration level. Hence batch F4 was considered as optimized formulation. The stability studies were performed on formulation F4. The disintegration time and in vitro drug release of the optimized formulation was compared with the marketed formulation (Conventional tablets). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effects of Different Mineral Admixtures on the Properties of Fresh Concrete

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer. PMID:24701196

  11. Effects of different mineral admixtures on the properties of fresh concrete.

    PubMed

    Khan, Sadaqat Ullah; Nuruddin, Muhammad Fadhil; Ayub, Tehmina; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer.

  12. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    NASA Astrophysics Data System (ADS)

    Azura Zakarya, Irnis; Baya Khalib, Siti Noor; Ramzi, Norhasykin Mohd

    2018-03-01

    Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA) with food waste (FW) and effective microorganisms (EM) in term of the compost quality (pH, temperature, moisture content). RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, `tempe' and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C), RSA (400°C), RSA (500°C) and control (raw rice straw) with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  13. Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier.

    PubMed

    Wenzel, Jonathan; Storer Samaniego, Cheryl; Wang, Lihua; Burrows, Laron; Tucker, Evan; Dwarshuis, Nathan; Ammerman, Michelle; Zand, Ali

    2017-03-01

    The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.

  14. Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture.

    PubMed

    Flores, Camila Gomes; Schneider, Helena; Marcilio, Nilson Romeu; Ferret, Lizete; Oliveira, João Carlos Pinto

    2017-12-01

    Brazilian coal has an ash content ranging from 30 to 50% by weight. Consequently, its use in coal-fired thermoelectric for power production generates a lot of waste. The construction sector is the largest consumer of coal ash, but it cannot absorb the entire amount generated. Thus, other applications for coal ash should be studied in aim to optimize the use of this industrial waste. This research had as focus to synthesize potassic zeolite from of the coal ash into on potassium fertilizer for the grown wheat plant. In this work, it was used a subbituminous coal from Mina do Leão (RS, Brazil) presenting 48.7% ash content on a dry basis. Concerning the synthesis of potassic zeolite, it was adopted the conventional method of hydrothermal treatment with potassium hydroxide. A schedule of experiments was conducted in order to define the optimum condition of zeolite synthesis that was then used an alkaline solution of 5M KOH with a reaction time of 24h at 150°C. According to this procedure, it was obtained a zeolite with a single crystalline phase, identified through X-ray diffraction as Merlinoite. Subsequently, it was performed a set of tests using potassic zeolite asa fertilizer for plants in a greenhouse. The synthesized potassic zeolite showed a good potential for its use as fertilizer in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preparation of fly ash based zeolite for removal of fluoride from drinking water

    NASA Astrophysics Data System (ADS)

    Panda, Laxmidhar; Kar, Biswabandita; Dash, Subhakanta

    2018-05-01

    Fluoride contamination of drinking water is a worldwide phenomenon and scientists are working relentlessly to find ways to remove fluoride from drinking water. Out of the different methods employed for removal fluoride from drinking water adsorption process is the most suitable because in this process the adsorbent is regenerated and the process is cost effective. In the present study fly ash is used as the raw material, which is treated with alkali (NaOH) to form NaP1 zeolite. This zeolite is then subjected to characterization by standard procedures. It is found that the synthesized zeolite has more crystalline character than the raw fly ash and has also more voids and channels on its surface. The surface of the synthesized zeolite is modified with calcium chloride and the same is employed for removal of fluoride under varying pH, contact time, initial concentration of fluoride, temperature and adsorbent dose etc so as to assess the suitably or otherwise of the synthesized product.

  16. Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours.

    PubMed

    Markiewicz-Keszycka, Maria; Casado-Gavalda, Maria P; Cama-Moncunill, Xavier; Cama-Moncunill, Raquel; Dixit, Yash; Cullen, Patrick J; Sullivan, Carl

    2018-04-01

    Gluten free (GF) diets are prone to mineral deficiency, thus effective monitoring of the elemental composition of GF products is important to ensure a balanced micronutrient diet. The objective of this study was to test the potential of laser-induced breakdown spectroscopy (LIBS) analysis combined with chemometrics for at-line monitoring of ash, potassium and magnesium content of GF flours: tapioca, potato, maize, buckwheat, brown rice and a GF flour mixture. Concentrations of ash, potassium and magnesium were determined with reference methods and LIBS. PCA analysis was performed and presented the potential for discrimination of the six GF flours. For the quantification analysis PLSR models were developed; R 2 cal were 0.99 for magnesium and potassium and 0.97 for ash. The study revealed that LIBS combined with chemometrics is a convenient method to quantify concentrations of ash, potassium and magnesium and present the potential to classify different types of flours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Assessment of hazelnut husk as a lignocellulosic feedstock for the production of fermentable sugars and lignocellulolytic enzymes.

    PubMed

    Pinar, Orkun; Karaosmanoğlu, Kübra; Sayar, Nihat Alpagu; Kula, Ceyda; Kazan, Dilek; Sayar, Ahmet Alp

    2017-12-01

    The present work focuses firstly on the evaluation of the effect of laccase on enzymatic hydrolysis of hazelnut husk which is one of the most abundant lignocellulosic agricultural residues generated in Turkey. In this respect, the co-enzymatic treatment of hazelnut husk by cellulase and laccase, without a conventional pretreatment step is evaluated. Using 2.75 FPU/g substrate (40 g/L substrate) and a ratio of 131 laccase U/FPU achieved the highest reducing sugars concentration. Gas chromatography mass spectrometry confirmed that the hydrolysate was composed of glucose, xylose, mannose, arabinose and galactose. The inclusion of laccase in the enzyme mixture [carboxymethyl cellulase (CMCase) and β-glucosidase] increased the final glucose content of the reducing sugars from 20 to 50%. Therefore, a very significant increase in glucose content of the final reducing sugars concentration was obtained by laccase addition. Furthermore, the production of cellulases and laccase by Pycnoporus sanguineus DSM 3024 using hazelnut husk as substrate was also investigated. Among the hazelnut husk concentrations tested (1.5, 6, 12, 18 g/L), the highest CMCase concentration was obtained using 12 g/L husk concentration on the 10th day of fermentation. Besides CMCase, P. sanguineus DSM 3024 produced β-glucosidase and laccase using hazelnut husk as carbon source. In addition to CMCase and β-glucosidase, the highest laccase activity measured was 2240 ± 98 U/L (8.89 ± 0.39 U/mg). To the best of our knowledge, this is the first study to report hazelnut husk hydrolysis in the absence of pretreatment procedures.

  18. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays.

    PubMed

    Okokon, Jude E; Antia, Bassey S; Mohanakrishnan, Dinesh; Sahal, Dinkar

    2017-12-01

    Zea mays L. (Poacae) husk decoctions are traditionally used in the treatment of malaria by various tribes in Nigeria. To assess the antimalarial and antiplasmodial potentials of the husk extract and fractions on malaria parasites using in vivo and in vitro models. The ethanol husk extract and fractions (187-748 mg/kg, p.o.) of Zea mays were investigated for antimalarial activity against Plasmodium berghei using rodent (mice) malaria models and in vitro activity against chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using the SRBR green assay method. Median lethal dose and cytotoxic activities against HeLa and HEKS cells were also carried out. The GCMS analysis of the most active fraction was carried out. The husk extract (187-748 mg/kg, p.o.) with LD 50 of 1874.83 mg/kg was found to exert significant (p < 0.05-0.001) antimalarial activity against P. berghei infection in suppressive, prophylactive and curative tests. The crude extract and fractions also exerted prominent activity against both chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of P. falciparum with the ethyl acetate fraction exerting the highest activity with IC 50 values of 9.31 ± 0.46 μg/mL (Pf 3D7) and 3.69 ± 0.66 μg/mL (Pf INDO). The crude extract and fractions were not cytotoxic to the two cell lines tested with IC 50 values of >100 μg/mL against both HeLa and HEKS cell lines. These results suggest that the husk extract/fractions of Zea mays possesses antimalarial and antiplasmodial activities and these justify its use in ethnomedicine to treat malaria infections.

  19. A short review on the potential of coffee husk gasification for sustainable energy in Uganda.

    PubMed

    Miito, Gilbert John; Banadda, Noble

    2017-01-01

    Agricultural biomass is widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. Uganda, like other developing countries, has a high dependency (91%) on wood fuel, leading to environmental degradation. With a coffee production of 233 Metric Tonnes per annum, relating to 46.6 Mega Tonnes of coffee husks from processing, transforming these husks into syngas through gasification can contribute to resolving the existing energy challenges. The objective of this article is to briefly review the energy potential of coffee husks through gasification, and how the gasification process could increase energy recoveries for coffee farmers. Previous  findings indicate that the 46.6 Mega Tonnes per year of coffee husks generated in Uganda, with a heating value of 18.34 MJ/kg, is capable of generating 24 GWh of energy. This will address a 0.7% portion of the energy situation in Uganda, while protecting the environment.

  20. A short review on the potential of coffee husk gasification for sustainable energy in Uganda

    PubMed Central

    Miito, Gilbert John; Banadda, Noble

    2017-01-01

    Agricultural biomass is widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. Uganda, like other developing countries, has a high dependency (91%) on wood fuel, leading to environmental degradation. With a coffee production of 233 Metric Tonnes per annum, relating to 46.6 Mega Tonnes of coffee husks from processing, transforming these husks into syngas through gasification can contribute to resolving the existing energy challenges. The objective of this article is to briefly review the energy potential of coffee husks through gasification, and how the gasification process could increase energy recoveries for coffee farmers. Previous  findings indicate that the 46.6 Mega Tonnes per year of coffee husks generated in Uganda, with a heating value of 18.34 MJ/kg, is capable of generating 24 GWh of energy. This will address a 0.7% portion of the energy situation in Uganda, while protecting the environment. PMID:29259766

  1. Transgenic Bt Rice Does Not Challenge Host Preference of the Target Pest of Rice Leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Sun, Xiao; Zhou, Wen; Liu, Hao; Zhang, Aijun; Ai, Chao-Ren; Zhou, Shuang-Shuang; Zhou, Chang-Xiang; Wang, Man-Qun

    2013-01-01

    Background Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. Results The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. Conclusions There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior. PMID:24244410

  2. Batch technique to evaluate the efficiency of different natural adsorbents for defluoridation from groundwater

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Saraswat, Chitresh; Mishra, Binaya Kumar; Avtar, Ram; Patel, Hiral; Patel, Asha; Sharma, Tejal; Patel, Roshni

    2017-09-01

    Fluoride pollution (with concentration >1.0 mg/L) in groundwater has become a global threat in the recent past due to the lesser availability of potable groundwater resource. In between several defluoridation techniques discovered so far, the adsorption process proved to be most economic and efficient. This study is an effort to evaluate defluoridation efficiency of powdered rice husk, fine chopped rice husk and sawdust by the batch adsorption process. Optimum defluoridation capacity is achieved by optimizing various parameters, viz. dose of adsorbent, pH, contact time and initial concentration. It was found that all three materials can be employed for the defluoridation technique, but powdered rice husk is the best adsorbent in the midst of all three. Powdered rice husk showed fluoride removal efficiency ranging between 85 and 90 % in the contact period of 7 h only in conditions of all optimized parameter. Following this parameter optimization, adsorption efficiency was also evaluated at natural pH of groundwater to minimize the cost of defluoridation. No significant difference was found between fluoride adsorption at optimized pH (pH = 4) and natural one (pH = 7), which concludes that powdered rice husk can be efficiently used for the defluoridation technique at field scale. The adsorption isotherm using this adsorbent perfectly followed Langmuir isotherms. The value of calculated separation factor also suggests the favourable adsorption of fluoride onto this adsorbent under the conditions used for the experiments. The field application for defluoridation of groundwater using this adsorbent (based on pH of natural groundwater there and seasonal variation of temperature) showed the high success rate.

  3. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology.

    PubMed

    Swarnam, T P; Velmurugan, A; Pandey, Sanjay Kumar; Dam Roy, S

    2016-05-01

    Vermicompost was prepared by five different treatments from relatively resistant coconut husk mixed with either pig slurry or poultry manure. The recovery of vermicompost varied from 35% to 43% and it resulted in significant increase in pH, microbial biomass carbon, macro and micro nutrients concentration. Among the treatments highest relative N (1.6) and K (1.3) recovery were observed for 20% feedstock substitution by pig slurry while poultry manure substitution recorded highest P recovery (2.4). Compost maturity parameters significantly differed and well correlated. The characteristics of different treatments established the maturity indices as C/N 15-20; Cw<1.8; Cw/Norg<0.55; Lignin<10-12; CHA/CFA>1.5 and HI>15.0. The manurial value of the coconut husk compost was improved by feedstock substitution with pig slurry (80:20). The results revealed the technical feasibility of converting coconut husk into valuable compost by feedstock substitution with pig slurry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Husk to caryopsis adhesion in barley is influenced by pre- and post-anthesis temperatures through changes in a cuticular cementing layer on the caryopsis.

    PubMed

    Brennan, M; Shepherd, T; Mitchell, S; Topp, C F E; Hoad, S P

    2017-10-23

    At ripeness, the outer husk of "covered" barley grains firmly adheres to the underlying caryopsis. A cuticular cementing layer on the caryopsis is required for husk adhesion, however the quality of adhesion varies significantly among cultivars which produce the cementing layer, resulting in the economically important malting defect, grain skinning. The composition of the cementing layer, and grain organ development have been hypothesised to influence the quality of husk adhesion. Plants of Hordeum vulgare 'Concerto' were grown at different temperatures pre- and post-anthesis to effect changes in the development of the husk, caryopsis and cuticular cementing layer, to determine how these variables influence the quality of husk-to-caryopsis adhesion. Warm conditions pre-anthesis decreased the quality of husk adhesion, and consequently increased the incidence of grain skinning. Cool post-anthesis conditions further decreased the quality of husk adhesion. The composition of the cementing layer, rather than its structure, differed with respect to husk adhesion quality. This cementing layer was produced at the late milk stage, occurring between nine and 29 days post-anthesis, conditional on the temperature-dependent growth rate. The compounds octadecanol, tritriacontane, campesterol and β-sitosterol were most abundant in caryopses with high-quality husk adhesion. The differences in adhesion quality were not due to incompatible husk and caryopsis dimensions affecting organ contact. This study shows that husk-to-caryopsis adhesion is dependent on cementing layer composition, and implies that this composition is regulated by temperature before, and during grain development. Understanding this regulation will be key to improving husk-to-caryopsis adhesion.

  5. Fusarium Species from Nepalese Rice and Production of Mycotoxins and Gibberellic Acid by Selected Species

    PubMed Central

    Desjardins, A. E.; Manandhar, H. K.; Plattner, R. D.; Manandhar, G. G.; Poling, S. M.; Maragos, C. M.

    2000-01-01

    Infection of cereal grains with Fusarium species can cause contamination with mycotoxins that affect human and animal health. To determine the potential for mycotoxin contamination, we isolated Fusarium species from samples of rice seeds that were collected in 1997 on farms in the foothills of the Nepal Himalaya. The predominant Fusarium species in surface-disinfested seeds with husks were species of the Gibberella fujikuroi complex, including G. fujikuroi mating population A (anamorph, Fusarium verticillioides), G. fujikuroi mating population C (anamorph, Fusarium fujikuroi), and G. fujikuroi mating population D (anamorph, Fusarium proliferatum). The widespread occurrence of mating population D suggests that its role in the complex symptoms of bakanae disease of rice may be significant. Other common species were Gibberella zeae (anamorph, Fusarium graminearum) and Fusarium semitectum, with Fusarium acuminatum, Fusarium anguioides, Fusarium avenaceum, Fusarium chlamydosporum, Fusarium equiseti, and Fusarium oxysporum occasionally present. Strains of mating population C produced beauvericin, moniliformin, and gibberellic acid, but little or no fumonisin, whereas strains of mating population D produced beauvericin, fumonisin, and, usually, moniliformin, but no gibberellic acid. Some strains of G. zeae produced the 8-ketotrichothecene nivalenol, whereas others produced deoxynivalenol. Despite the occurrence of fumonisin-producing strains of mating population D, and of 8-ketotrichothecene-producing strains of G. zeae, Nepalese rice showed no detectable contamination with these mycotoxins. Effective traditional practices for grain drying and storage may prevent contamination of Nepalese rice with Fusarium mycotoxins. PMID:10698766

  6. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  7. Impact of postharvest drying conditions on in vitro starch digestibility and estimated glycemic index of cooked non-waxy long-grain rice (Oryza sativa L.).

    PubMed

    Donlao, Natthawuddhi; Ogawa, Yukiharu

    2017-02-01

    Wet paddy needs to be dried to reduce its moisture content after harvesting. In this study, effects of postharvest drying condition on in vitro starch digestibility and estimated glycemic index of cooked rice (Oryza sativa L.) were investigated. Varying drying conditions, i.e. hot-air drying at 40, 65, 90 and 115 °C, and sun drying were applied to raw paddy. After husking and polishing, polished grains were cooked using an electric rice cooker. Cooked samples were analyzed for their moisture content and amount of resistant and total starch. Five samples in both intact grain and slurry were digested under simulated in vitro gastrointestinal digestion process. The in vitro starch digestion rate was measured and the hydrolysis index (HI) and estimated glycemic index (eGI) were calculated. Cooked rice obtained from hot-air drying showed relatively lower HI and eGI than that obtained from sun-drying. Among samples from hot-air drying treatment, eGI of cooked rice decreased with increasing drying temperature, except for the drying temperature of 115 °C. As a result, cooked rice from the hot-air drying at 90 °C showed lowest eGI. The results indicated that cooked rice digestibility was affected by postharvest drying conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits.

    PubMed

    Ogo, Yuko; Ozawa, Kenjiro; Ishimaru, Tsutomu; Murayama, Tsugiya; Takaiwa, Fumio

    2013-08-01

    Flavonoids possess diverse health-promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone-3-hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm-specific GluB-1 promoter or embryo- and aleurone-specific 18-kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB-II-type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Tofu wastewater treatment using vetiver grass ( Vetiveria zizanioides) and zeliac

    NASA Astrophysics Data System (ADS)

    Seroja, Romi; Effendi, Hefni; Hariyadi, Sigid

    2018-03-01

    Tofu production is a domestic industry, that most of it has no appropriate wastewater treatment facilities. Wastewater of tofu contains high organic matter which can decrease the water quality. This study aimed to analyze capability of Vetiveria zizanioides, L and zeliac in treating tofu wastewater industry. Zeliac is a new adsorbent, which consists of zeolite, activated carbon, limestone, rice husk ash and cement. Response surface methodology was applied to analyze the data, using central composite design with two factors, i.e., time (3, 9, and 15 days) and waste concentration (20, 40, and 60%). The optimum treatment occurred at the time of 15 days and 38.41% of tofu wastewater concentration decreasing up to 76% of COD, 71.78% of BOD, and 75.28% of TSS.

  10. Cost-effective imprinting combining macromolecular crowding and a dummy template for the fast purification of punicalagin from pomegranate husk extract.

    PubMed

    Sun, Guang-Ying; Wang, Chao; Luo, Yu-Qin; Zhao, Yong-Xin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber

    2016-05-01

    The combination of molecular crowding and virtual imprinting was employed to develop a cost-effective method to prepare molecularly imprinted polymers. By using linear polymer polystyrene as a macromolecular crowding agent, an imprinted polymer recognizable to punicalagin had been successfully synthesized with punicalin as the dummy template. The resulting punicalin-imprinted polymer presented a remarkable selectivity to punicalagin with an imprinting factor of 3.17 even at extremely low consumption of the template (template/monomer ratio of 1:782). In contrast, the imprinted polymer synthesized without crowding agent, did not show any imprinting effect at so low template amount. The imprinted polymers made by combination of molecular crowding and virtual imprinting can be utilized for the fast separation of punicalagin from pomegranate husk extract after optimizing the protocol of solid-phase extraction with the recovery of 85.3 ± 1.2%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer

    NASA Astrophysics Data System (ADS)

    Rattanasak, Ubolluk; Pankhet, Kanokwan; Chindaprasirt, Prinya

    2011-06-01

    Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geopolymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selected as admixtures based on concrete knowledge to improve the properties of the geopolymer. The setting time, compressive strength, and degree of reaction were recorded, and the microstructure was examined. The results show that calcium chloride significantly shortens both the initial and final setting times of the geopolymer paste. In addition, sucrose also delays the final setting time significantly. The degrees of reaction of fly ash in the geopolymer paste with the admixtures are all higher than those of the control paste. This contributes to the obvious increases in compressive strength.

  12. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Thirunarayanan, G.; Mayavel, P.; Thirumurthy, K.

    2012-06-01

    Some 2E aryl chalcones have been synthesized using greener catalyst Fly-ash:H2SO4 assisted solvent free environmentally benign Crossed-Aldol reaction. The yields of chalcones are more than 90%. The synthesized chalcones are characterized by their physical constants and spectral data.

  13. Partitioning of arsenic in soil-crop systems irrigated using groundwater: a case study of rice paddy soils in southwestern Taiwan.

    PubMed

    Hsu, Wen-Ming; Hsi, Hsing-Cheng; Huang, You-Tuan; Liao, Chien-Sen; Hseu, Zeng-Yei

    2012-02-01

    The accumulation of As in rice due to groundwater irrigation in paddy fields represents a serious health hazard in South and Southeast Asia. In Taiwan, the fate of As in long-term irrigated paddy fields is poorly understood. Groundwater, surface soil, and rice samples were collected from a paddy field that was irrigated with As-containing groundwater in southwestern Taiwan. The purpose of this study is to elucidate the source and sink of As in the paddy field by comparing the As fractions in the soils that were obtained by a sequential extraction procedure (SEP) with the As uptake of rice. The risks associated with eating rice from the field can thus be better understood. The concentration of As in groundwater varied with time throughout the growing seasons of rice, but always exceeded the permitted maximum (10 μg L(-1)) for drinking water by the WHO. The As concentration increased with the concentration of Fe in the groundwater, supporting the claim that a large amount of As was concentrated in the Fe flocs collected from the internal wall of the groundwater pump. The results of the SEP revealed that As bound with amorphous and crystalline hydrous oxides exhibited high availability in the soils. The root of rice accumulated the largest amount of As, followed by the straw, husk, and grain. Although the As concentration in the rice grain was less than 1.0 mg kg(-1), the estimated intake level was close to the maximum tolerable daily intake of As, as specified by the WHO. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Life cycle assessment of biochar application in Vietnam using two pyrolysis technologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Cowie, Annette; Mai, Thi Lan Anh; Anaya de la Rosa, Ruy; Kristiansen, Paul; Brandão, Miguel; Joseph, Stephen

    2016-04-01

    This study presents a comparative analysis of the environmental impacts of biochar systems in Vietnam using household scale and district scale pyrolysis technologies. At the household scale, pyrolytic cook-stoves were assumed to be used by households to produce biochar. The pyrolytic cook-stoves burn pyrolysis gases and use the heat for cooking. At the district scale, the BIGchar 2200 unit, a continuous operation system, is utilised to convert rice husk to biochar. This unit allows for easy capture of produced gases, which can be used to generate energy products, adding value to biochar production and decreasing environmental costs through the displacement of fossil fuels. The biochar produced from each system was assumed to be applied to paddy rice fields. Results from Life Cycle Assessment showed that biochar production at the both scales for application to the soil significantly improved environmental performance of 1 Mg of rice husk relative to the reference scenario (open burning of husk) across a range of impacts including climate change (CC), particulate matter and non-renewable energy (NRE) use. Net carbon abatement of biochar systems ranged from 355 to 427 kg CO2-eq Mg-1 of spring rice husk at the household scale and district scale, respectively. The district scale offered greater carbon abatement primarily due to the higher rate of LPG displaced by this unit.

  15. Protecting black ash from the emerald ash borer

    Treesearch

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  16. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    PubMed

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins.

  17. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: An agro-processing wastes.

    PubMed

    Gogoi, Debajeet; Bordoloi, Neonjyoti; Goswami, Ritusmita; Narzari, Rumi; Saikia, Ruprekha; Sut, Debashis; Gogoi, Lina; Kataki, Rupam

    2017-10-01

    In the present study, arecanut husk, an agro-processing waste of areca plam industry highly prevalent in the north-eastern region of India, was investigated for its suitability as a prospective bioenergy feedstock for thermo-chemical conversion. Pretreatment of areca husk using torrefaction was performed in a fixed bed reactor with varying reaction temperature (200, 225, 250 and 275°C). The torrefied areca husk was subsequently pyrolyzed from temperature range of 300-600°C with heating rate of 40°C/min to obtain biooil and biochar. The torrefied areca husk, pyrolysis products were characterized by using different techniques. The energy and mass yield of torrefied biomass were found to be decreased with an increase in the torrefaction temperature. Further, biochar were found to be effective in removal of As (V) from aqueous solutions but efficiency of removal was better in case of torrefied biochar. Chemical composition of bio-oil is also influenced by torrefaction process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 7 CFR 319.55-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Rice Rules and Regulations § 319.55-1 Definitions. (a) Seed or paddy rice. Unhusked rice in the form commonly used for seed purposes; the regulations in this subpart do not apply to husked or polished rice imported for food purposes. (b) Port of first arrival. The...

  19. 7 CFR 319.55-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Rice Rules and Regulations § 319.55-1 Definitions. (a) Seed or paddy rice. Unhusked rice in the form commonly used for seed purposes; the regulations in this subpart do not apply to husked or polished rice imported for food purposes. (b) Port of first arrival. The...

  20. Phenol Biodegradation by Free and Immobilized Candida tropicalis RETL-Crl on Coconut Husk and Loofah Packed in Biofilter Column

    NASA Astrophysics Data System (ADS)

    Shazryenna, D.; Ruzanna, R.; Jessica, M. S.; Piakong, M. T.

    2015-04-01

    Phenols and its derivatives are environmental pollutant commonly found in many industrial effluents. It is toxic in nature and causes various health hazards. However, they are poorly removed in conventional biological processes due to their toxicity. Immobilization of microbial cells has received increasing interest in the field of waste treatment and creates opportunities in a wide range of sectors including environmental pollution control. Live cells of phenol-degrading yeast, Candida tropicalis RETL-Crl, were immobilized on coconut husk and loofah by adsorption. The immobolized particle was packed into biofilter column which used for continuous treatment of a phenol with initial phenol concentration of 3mM. Both loofah and coconut husk have similar phenol biodegradation rate of 0.0188 gL-1h-1 within 15 hours to achieve a phenol removal efficiency of 100%. However loofah have lower biomass concentration of 4.22 gL-1 compared to biomass concentration on coconut husk, 4.39 gL-1. Coconut husk contain higher biomass concentration which makes it better support material than loofah. Fibrous matrices such as loofah and coconut husk provide adequate supporting surfaces for cell adsorption, due to their high specific surface area. Therefore, coconut husk and loofah being an agricultural waste product have the potential to be used as low-cost adsorbent and support matrix for microbial culture immobilization for the removal of organic pollutant from wastewater.

  1. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    PubMed Central

    Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon

    2015-01-01

    Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611

  2. Effect of Nano Silica on the Physical Property of Porous Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Yusak, Mohd Ibrahim Mohd; Ezree Abdullah, Mohd; Putra Jaya, Ramadhansyah; Rosli Hainin, Mohd; Ibrahim, Mohd Haziman Wan

    2017-08-01

    Rice husk can be categorized as an organic waste material from paddy industries. Silica is a major inorganic element of the rice husk. The aim of present study is to evaluate the effect of Nano silica on the physical properties of porous concrete pavement. Rice husk has been burned in the furnace (650°C for 6 hours) and ground for four different grinding times (33, 48, 63 and 81 hours). Five types of mixes were prepared to evaluate the different Nano silica grinding time. A Nano silica dosage of 10% by weight of binder was used throughout the experiments. The physical properties were examined through compressive strength, transmission electron microscopy and x-ray fluorescence. The experimental results indicate that the different Nano size gives a different effect to porous concrete strength. Based on the results obtained, Nano silica ground for 63 hours (65.84nm) gives the best result and performance to porous concrete pavement specimens.

  3. Handling Technique Development of Live Carp, Cyprinus carpio, In Cold Dry Styrofoam Box

    NASA Astrophysics Data System (ADS)

    Ketut Suwetja, I.; Salindeho, Netty; Gede Prabawa Suwetja, I.

    2017-10-01

    The study focused on several following aspects: temperature and time optimation for fainting, holding media optimation, temperature and time optimation for recovery, and their correlation with mortality rate of carp, Cyprinus carpio. Fainting occurred at the optimum time of 11 minutes and 03 seconds, temperature of 8°C, and holding time of 6 hours. Holding medium was rice husk. The fastest consciousness of the fish was found in 6 volt-aerated water medium. The fish consciousness after 6 hours of storing in the rice husk at the fainting temperature of 8°C was found faster (p < 0.05), 11 minutes and 15 seconds, than that added with 0.02% of clove oil, 25 minutes and 16 seconds. The fish mortality rate after 6 hours of storage in the rice husk at fainting temperature of 8°C was lower (p < 0.05), 46%, than that with addition of 0.02% of clove oil, 75%.

  4. 76 FR 78231 - Notice of Decision To Authorize the Importation of Fresh Cape Gooseberry Fruit With Husks From Chile

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... gooseberry fruit (Physalis peruviana L.) with husks from Chile. Based on the findings of a pest risk analysis... fresh Cape gooseberry fruit (Physalis peruviana L.) with husks from Chile. We solicited comments on the...

  5. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    PubMed

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Emerald ash borer infestation of ash stumps

    Treesearch

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Buprestidae), was first found in North America in 2002. Eradication efforts are currently underway for this insect in both Canada and the United States. As part of the eradication program, thousands of ash trees are cut and chipped. Ash trees are known to produce stump sprouts, and therefore...

  7. Effect of Different Proportions of Agrowaste on Cultivation Yield and Nutritional Composition of the Culinary-Medicinal Jelly Mushroom Auricularia polytricha (Higher Basidiomycetes).

    PubMed

    Wu, Chiu-Yeh; Liang, Chih-Hung; Wu, Kuan-Jzen; Shih, Hsin-Der; Liang, Zeng-Chin

    2017-01-01

    In this study, Auricularia polytricha was cultivated on a sawdust basal substrate supplemented with different proportions (30%, 45%, and 60%, respectively) of agrowastes-sugarcane bagasse (SB), rice straw (RS), and rice husk (RH)-to evaluate the alternative substrates. The mycelial growth rate, total colonization time, time to first primordia, biological efficiency, and chemical composition of the fruiting bodies were determined. Results indicated that the 60% SB substrate was the best substrate for mycelial growth of A. polytricha, with a corresponding total colonization period of 35.2 days, followed by the control (35.5 days) and 45% SB (36.2 days) substrates. The most suitable substrate with a high biological efficiency was 60% RS substrate (159.14%), followed by the 45% SB (128.45%), and 20% RH (124.47%) substrates. The nutrient values of fruiting bodies showed the largest amounts of ash, protein, fat, carbohydrates, and energy cultivated on 60% SB, 60% SB, 30% SB, 30% RH, and 30% RH/the control substrates, respectively. The results indicated that 60% RS was an appropriate substrate for A. polytricha cultivation.

  8. Effect of different types of litter material for rearing broilers.

    PubMed

    Swain, B K; Sundaram, R N

    2000-07-01

    1. Coir dust was evaluated as broiler litter in comparison with sawdust and rice husk using 135 commercial broilers. Forty-five broiler chicks were reared to 42 d on a 50 mm layer of each of these litters. 2. Birds reared on coir dust showed no difference in food consumption, body weight gain, food conversion efficiency production number and survivability in comparison to those reared on saw dust and rice husk. 3. It was concluded that coir dust is suitable as broiler litter when cheaply available.

  9. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Comparison of Translocation and Transformation from Soil to Rice and Metabolism in Rats for Four Arsenic Species.

    PubMed

    Wang, Xu; Geng, Anjing; Dong, Yan; Fu, Chongyun; Li, Hanmin; Zhao, Yarong; Li, Qing X; Wang, Fuhua

    2017-10-18

    Arsenic (As) is ubiquitously present in the environment. The toxicity of As is related to its forms. This study was designed to compare the translocation and transformation of four As species from soil to rice, and metabolism in rats for four arsenic species. A set of 26550 data was obtained from pot experiments of rice plants grown in soil fortified with four As species, and 4050 data were obtained from rat experiments in which 81 rats were administered with the four As species. The total As in grain from the methyl arsenate fortified soil was 6.1, 4.9, and 5.2 times that from As(III), As(V), and dimethyl arsenate fortified soil, respectively. The total As in husk was 1.2-7.8 times greater than that in grain. After oral administration of each As species to rats, 83-96% was accumulatively excreted via feces and urine, while 0.1-16% was detected in blood. The translocation, transformation, and metabolism of different forms of arsenic vary greatly.

  11. Synthesis of zeolite NaA membrane from fused fly ash extract.

    PubMed

    Ameh, Alechine E; Musyoka, Nicholas M; Fatoba, Ojo O; Syrtsova, Daria A; Teplyakov, Vladimir V; Petrik, Leslie F

    2016-01-01

    Zeolite-NaA membranes were synthesized from an extract of fused South African fly ash on a porous titanium support by a secondary growth method. The influence of the synthesis molar regime on the formation of zeolite NaA membrane layer was investigated. Two synthesis mixtures were generated by adding either aluminium hydroxide or sodium aluminate to the fused fly ash extract. The feedstock material and the synthesized membranes were characterized by X-diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). It was found by XRD and SEM that the cubic crystals of a typical zeolite NaA with a dense intergrown layer was formed on the porous Ti support. The study shows that the source of Al used had an effect on the membrane integrity as sodium aluminate provided the appropriate amount of Na(+) to form a coherent membrane of zeolite NaA, whereas aluminium hydroxide did not. Morphological, the single hydrothermal stage seeded support formed an interlocked array of zeolite NaA particles with neighbouring crystals. Also, a robust, continuous and well-intergrown zeolite NaA membrane was formed with neighbouring crystals of zeolite fused to each other after the multiple stage synthesis. The synthesized membrane was permeable to He (6.0 × 10(6) L m(-2)h(-1) atm(-1)) and CO2 (5.6 × 10(6) L m(-2)h(-1) atm(-1)), which indicate that the layer of the membrane was firmly attached to the porous Ti support. Membrane selectivity was maintained showing membrane integrity with permselectivity of 1.1, showing that a waste feedstock, fly ash, could be utilized for preparing robust zeolite NaA membranes on Ti support.

  12. Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera L.).

    PubMed

    Valadez-Carmona, Lourdes; Cortez-García, Rosa María; Plazola-Jacinto, Carla Patricia; Necoechea-Mondragón, Hugo; Ortiz-Moreno, Alicia

    2016-09-01

    The coconut ( Cocos nucifera L.) husk is basically composed by fiber and pith material and remained under-utilized. This is an important source of phenolic compounds that could be used as functional ingredients. The aim of this study was to determine the effect of: oven-drying (OD) and microwave drying (MD), on the water activity, color, phenolic compound content and antioxidant activity of coconut husk. The OD was performed at 60 °C for 12 h and MD was performed at 900 W for 10 min. The total phenolic content (TPC) in fresh coconut husk was 64.2 mg GAE/g dry wt and significant higher than observed after OD and MD of 35.8 and 45.5 mg GAE/g dry wt, respectively. Ten phenols were identified in fresh and dehydrated coconut husks. The husk MD showed an increase in the content of gallic, 4-hydroxybenzoic, ferulic and syringic acids and epicatechin compared with the fresh; while coconut husk OD and MD, showed a decrease in the content of vanillic acid, vanillin, catequin and kaempferol. The antioxidant activity decreased after both OD and MD. However, MD resulted in a better antioxidant activity in husk than OD. MD of husk resulted into better retention of preserved color, TPC and TFC than OD.

  13. Reduction of Escherichia Coli using ceramic disk filter decorated by nano-TiO2: A low-cost solution for household water purification.

    PubMed

    He, Yuan; Huang, Guohe; An, Chunjiang; Huang, Jing; Zhang, Peng; Chen, Xiujuan; Xin, Xiaying

    2018-03-01

    Lack of access to safe water is a challenge in many developing countries, especially in rural areas. It is urgent to develop cost-effective water purification technologies to guarantee drinking water safety in these areas. The present study investigated the reduction of Escherichia coli (E. coli) using ceramic disk filters (CDFs) decorated by nano-TiO 2. The production of CDFs coated with nano-TiO 2 in terms of rice-husk ratio, rice-husk particle size, heating hold time and nano-TiO 2 mass fraction was optimized. The results show that the optimum conditions for CDFs with nano-TiO 2 coating included rice-husk ratio of 29.03%, rice-husk particle size of 0.28mm, heating hold time of 1.41h and nano-TiO 2 mass fraction of 2.21%. Additionally, the morphological and crystal phase characteristics of CDFs were revealed after the decoration by nano-TiO 2 . The effects of temperature, influent E. coli concentration, lamp power and their interactions were explored via factorial analysis. Influent E. coli concentration and lamp power had significant effects on E. coli removal efficiency. This study provided the solid theoretical support for understanding the production and bacteria inactivation relevant to CDFs impregnated with nano-TiO 2 . The results have important implications for finding a safe and cost-effective approach to solve drinking water problems in developing countries. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions.

    PubMed

    Agrafioti, Evita; Kalderis, Dimitrios; Diamadopoulos, Evan

    2014-12-15

    This work investigated the production of Ca and Fe modified biochars in order to use them for the removal of arsenic As(V) and chromium Cr(VI) from aqueous solutions. Rice husk was impregnated with CaO at an impregnation ratio 0.114, while both rice husk and the organic fraction of municipal solid wastes were impregnated with Fe(0) and Fe(3+) at impregnation ratios 0.114 and 0.23. The modified biochars exhibited high As(V) removal capacity (>95%), except for the case of rice husk impregnated with Fe(0), whose removal capacity reached only 58%. All modified biochars exhibited much better As(V) removal capacity compared to the non-impregnated biochars. However, the Cr(VI) removal rates were not as high as the As(V) ones. The maximum Cr(VI) removal was observed in the case of rice husk biochar impregnated with 2.3% w/w Fe(3+), whereas the majority of impregnation agents examined did not manage to enhance the biochars' Cr(VI) removal ability. The equilibrium study showed that the Freundlich model can adequately describe the sorption process for the majority of samples examined. Analysis of the amount of Fe present in the equilibrium solutions suggested that the main mechanisms of As(V) and Cr(VI) removal were possibly metal precipitation and electrostatic interactions between the modified biochars and the adsorbate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing

    PubMed Central

    Mustafa, Ghulam; Arshad, Muhammad

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings. PMID:28367444

  16. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    PubMed

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  17. A study on biocomposite from local balinese areca catechu l. husk fibers as reinforced material

    NASA Astrophysics Data System (ADS)

    Kencanawati, C. I. P. K.; Suardana, N. P. G.; Sugita, I. K. G.; Suyasa, I. W. B.

    2017-05-01

    Untapped areca catechu l. husk fibers optimally can cause pollution to the environment. Therefore it is necessary to learn the characteristics of local balinese areca catechu l. husk fibers, such as physical, chemical, morphological, and mechanical. AHF testing the tensile strength with a single pull fiber test in accordance with ASTM D 3379 in the amount of 146-152 MPa. While the observation of the physical properties, of local balinese areca catechu l. husk fibers have a diameter and length variations of each 250-540 μm and 9.24 to 55.20 mm, with an aspect ratio of between 31.43 to 102.22, density ranges between 0:48 - 0.74 kg / cm3, absorption lower water (90-150%) when compared to AHF grows in other areas. From this study it appears that local Bali AHF can be used as reinforcement in composite replacement for synthetic fibers.

  18. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure

    PubMed Central

    Abdullah, Mohd Mustafa Al Bakri; Jamaludin, Liyana; Hussin, Kamarudin; Bnhussain, Mohamed; Ghazali, Che Mohd Ruzaidi; Ahmad, Mohd Izzat

    2012-01-01

    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure. PMID:22605984

  19. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    NASA Astrophysics Data System (ADS)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  20. Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to develop edible films based on pinhão flour reinforced with pinhão husk powder. For this, six formulations were developed using 5.0% pinhão flour with 1.5% glycerol base and adding 0.5, 1.0, 1.5, 2.0 and 2.5% of pinhão husk where the pure base served as the control. The ...

  1. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol.

    PubMed

    Cornelissen, Gerard; Jubaedah; Nurida, Neneng L; Hale, Sarah E; Martinsen, Vegard; Silvani, Ludovica; Mulder, Jan

    2018-09-01

    Low fertility limits crop production on acidic soils dominating much of the humid tropics. Biochar may be used as a soil enhancer, but little consensus exists on its effect on crop yield. Here we use a controlled, replicated and long-term field study in Sumatra, Indonesia, to investigate the longevity and mechanism of the effects of two contrasting biochars (produced from rice husk and cacao shell, and applied at dosages of 5 and 15tha -1 ) on maize production in a highly acidic Ultisol (pH KCl 3.6). Compared to rice husk biochar, cacao shell biochar exhibited a higher pH (9.8 vs. 8.4), CEC (197 vs. 20cmol c kg -1 ) and acid neutralizing capacity (217 vs. 45cmol c kg -1 ) and thus had a greater liming potential. Crop yield effects of cacao shell biochar (15tha -1 ) were also much stronger than those of rice husk biochar, and could be related to more favorable Ca/Al ratios in response to cacao shell biochar (1.0 to 1.5) compared to rice husk biochar (0.3 to 0.6) and nonamended plots (0.15 to 0.6). The maize yield obtained with the cacao shell biochar peaked in season 2, continued to have a good effect in seasons 3-4, and faded in season 5. The yield effect of the rice husk biochar was less pronounced and already faded from season 2 onwards. Crop yields were correlated with the pH-related parameters Ca/Al ratio, base saturation and exchangeable K. The positive effects of cocoa shell biochar on crop yield in this Ultisol were at least in part related to alleviation of soil acidity. The fading effectiveness after multiple growth seasons, possibly due to leaching of the biochar-associated alkalinity, indicates that 15tha -1 of cocoa shell biochar needs to be applied approximately every third season in order to maintain positive effects on yield. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. MSW fly ash stabilized with coal ash for geotechnical application.

    PubMed

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  3. Change in Localizations of Arsenic in Rice Grains After Cooking with High Arsenic Waters - µXRF and XANES studies

    NASA Astrophysics Data System (ADS)

    Datta, S.; Ryan, B.; Kumar, N.; Bortz, T.; Bolen, Z. T.

    2016-12-01

    Threats of Arsenic (As) through food uptake, via consumption of rice, is a potential pathway that presents a concern not only for the millions of inhabitants who reside in river valleys and irrigate their soil with contaminated water, but the global rice market as well. This study focuses on high As rice from India and Bangladesh grown in such soils, and the effect of boiling rice with As-contaminated water in preparation for dietary intake. Husked and unhusked rice grains were boiled with >500 µg/L As-bearing water from the field to simulate local cooking methods. The resulting cooked water was analyzed using iCAP low limit detection via ICP-MS to understand the changes in dissolved elemental concentrations before and after cooking, and HPLC was introduced to measure for changes in As speciation in the waters. Using spectroscopic methods such as µXRF mapping associated with µXANES, distribution/localization and speciation changes of As in rice grains were identified. Further, with Linear Combination Fitting (LCF) of XANES spectra utilizing relevant reference compounds (As-S, AsIII, AsV, MMA and DMA), organic and inorganic As species were able to be mapped within rice grains. The results for uncooked/raw grains showed that predominantly As-S combined with AsIII and AsV accounted for 90% of speciation in most samples, localized in areas such as the outer aleurone layer. When analyzing cooked rice grains, the speciation appears to be an unidentified As species while the best LCF shows between 63-93% of As as MMA. Arsenic was found less localized throughout the cooked grains but rather heterogeneously distributed when compared to the uncooked/raw samples. The analyses of boiled/cooked water resulted in a significant decrease in dissolved As post-cooking (90%), but a subsequent increase in elements such as K, La, Li, Mo, Na, Ni, and Zr was observed; As-V was shown to be the main in-As species in the cooked water. The impact that this study portrays is consuming rice

  4. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    NASA Astrophysics Data System (ADS)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  5. Synthesis and characterization of palm oil fuel ash (POFA) and metakaolin based geopolymer for possible application in nanocoating

    NASA Astrophysics Data System (ADS)

    Khan, Ihsan Ullah; Bhat, A. H.; Masset, Patrick J.; Khan, Farman Ullah; Rehman, Wajid Ur

    2016-11-01

    The main aim of this study was to synthesize and characterize highly amorphous geopolymer from palm oil fuel ash (POFA) and metakaolin, to be used as nanocoating. Geopolymers are man-made aluminosilicate materials that are amorphous analogues of zeolites. The geopolymers were made by condensing a mixture of raw materials metakaolin and palm oil fuel ash (POFA) with alkaline activator at a fixed ratio at room temperature. The kaolin type clay was calcined at 700 °C for 4hrs to transform it into amorphous metakaolin which is more reactive precursor for geopolymer formation. The characteristics of metakaolin and geopolymers (metakaolin and palm oil fuel ash based geopolymers) were analyzed by using x-ray fluorescence (XRF), Fourier transform infra-red spectrometry (FTIR), Thermogravimetric analysis (TG/DTA) and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDX). FTIR revealed the presence of Al-O and Si-O stretching vibrations of amorphous alumino-silicate structure for metakaolin, palm oil fuel ash and geopolymers. SEM-EDX images showed the presence of reaction product complementary to NASH (N = Na2O, A = Al2O3, S = SiO2, H = H2O) solid. The resulting geopolymers that were synthesized with NaOH/Na2SiO3 solution cured at 60 °C for 3 days. The results demonstrated the suitability of metakaolin and palm oil fuel ash (POFA) for synthesis of geopolymer at room temperatures.

  6. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  7. Anti-inflammatory effects of Zea mays L. husk extracts.

    PubMed

    Roh, Kyung-Baeg; Kim, Hyoyoung; Shin, Seungwoo; Kim, Young-Soo; Lee, Jung-A; Kim, Mi Ok; Jung, Eunsun; Lee, Jongsung; Park, Deokhoon

    2016-08-19

    Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.

  8. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves.

    PubMed

    Intani, Kiatkamjon; Latif, Sajid; Kabir, A K M Rafayatul; Müller, Joachim

    2016-10-01

    In this study, biochar was produced from maize residues (cobs, husks, leaves) in a lab-scale pyrolysis reactor without using a purging gas. The physicochemical properties of biomass and biochar were analysed. Box-Behnken design was used to optimise operational conditions for biochar yields. Multivariate correlations of biochar yields were established using reduced quadratic models with R(2)=0.9949, 0.9801 and 0.9876 for cobs, husks and leaves, respectively. Biochar yields were negatively correlated with the temperature, which was significantly influenced by the exothermic reactions during the pyrolysis of maize residues. The heating rate was found to have the least effect on biochar yields. Under optimal conditions, the maximum biochar yields from cobs, husks and leaves were 33.42, 30.69 and 37.91%, respectively. The highest biochar yield from maize leaves was obtained at a temperature of 300°C, a heating rate of 15°C/min and a holding time of 30min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Use of biomass sorbents for oil removal from gas station runoff.

    PubMed

    Khan, Eakalak; Virojnagud, Wanpen; Ratpukdi, Thunyalux

    2004-11-01

    The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse. Polyester fiber, a commercial synthetic sorbent, was also experimented for comparison purpose. Oil sorption and desorption tests were performed at a water flow rate of 20 lmin-1. In the oil sorption tests, a 50 mgl(-1) of used engine oil-water mixture was synthesized to simulate the gas station runoff. The mass of oil sorbed for all sorbents, except coconut husk and bagasse, was greater than 70%. Cattail fiber and polyester fiber were the sorbents that provided the least average effluent oil concentrations. Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability. The used sorbents from the sorption tests were employed in the desorption tests. Results indicated that oil leached out of all the sorbents tested. Polyester fiber released the highest amount of oil, approximately 4% (mass basis) of the oil sorbed. copyright 2004 Elsevier Ltd.

  10. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Gujral, Parth; Varshney, Swati; Dhawan, S. K.

    2016-06-01

    Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.

  11. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Treesearch

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  12. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    USDA-ARS?s Scientific Manuscript database

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  13. Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract.

    PubMed

    Esquenazi, Daniele; Wigg, Marcia D; Miranda, Mônica M F S; Rodrigues, Hugo M; Tostes, João B F; Rozental, Sonia; da Silva, Antonio J R; Alviano, Celuta S

    2002-12-01

    The decoction of Cocos nucifera L. husk fiber has been used in northeastern Brazil traditional medicine for treatment of diarrhea and arthritis. Water extract obtained from coconut husk fiber and fractions from adsorption chromatography revealed antimicrobial activity against Staphylococcus aureus. The crude extract and one of the fractions rich in catechin also showed inhibitory activity against acyclovir-resistant herpes simplex virus type 1 (HSV-1-ACVr). All fractions were inactive against the fungi Candida albicans, Fonsecaea pedrosoi and Cryptococcus neoformans. Catechin and epicatechin together with condensed tannins (B-type procyanidins) were demonstrated to be the components of the water extract.

  14. Effect of fly ash calcination in geopolymer synthesis

    NASA Astrophysics Data System (ADS)

    Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia

    2015-12-01

    Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.

  15. Simultaneous removal of aqueous Zn2+, Cu2+, Cd2+, and Pb2+ by zeolites synthesized from low-calcium and high-calcium fly ash.

    PubMed

    Ji, X D; Ma, Y Y; Peng, S H; Gong, Y Y; Zhang, F

    2017-10-01

    In this study, zeolites were synthesized from low-calcium (LCZ) and high-calcium (HCZ) fly ash, respectively. Subsequently, the zeolites were tested for their removal effectiveness for four aqueous cations, namely, Zn 2+ , Cu 2+ , Cd 2+ , and Pb 2+ , as a function of contact time, pH value, adsorbent dosage, and initial concentration of heavy metals. Both zeolites were characterized by X-ray diffraction, X-ray fluorescence spectrometry, scanning electron microscopy, specific surface area, and cation exchange capacity. The results show that HCZ mainly consists of an unnamed zeolite (Na 6 [AlSiO 4 ] 6 ·4H 2 O), whereas LCZ mainly consists of faujasite-type zeolite. The optimum sorption conditions were pH = 6.0; adsorbent dosage = 1.0 g·L -1 ; temperature = 25 °C; contact time = 100 min; and initial heavy metal concentration = 100 mg·L -1 . The sorption kinetics of the four aqueous cations on both LCZ and HCZ followed the pseudo-second-order kinetic model, and the sorption isotherm data fitted well with the Langmuir isotherm model. For LCZ, the maximum adsorption capacities of Zn 2+ , Cu 2+ , Cd 2+ , and Pb 2+ were 155.76, 197.86, 123.76, and 186.22 mg·g -1 , respectively. For HCZ, the values were 154.08, 183.15, 118.91, and 191.94 mg·g -1 , respectively. The zeolites were regenerated by NaCl solution (1 mol·L -1 ) and showed high removal efficiency. In conclusion, zeolites produced by fly ash are promising materials for removing Zn 2+ , Cu 2+ , Cd 2+ , and Pb 2+ from wastewater.

  16. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects

    Treesearch

    Yigen Chen; Michael D. Ulyshen; Therese M. Poland

    2012-01-01

    Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash...

  17. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China.

    PubMed

    Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.

  18. Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices.

    PubMed

    Ruíz-Hidalgo, Karla; Masís-Mora, Mario; Barbieri, Edison; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2016-02-01

    Biomixtures are used for the removal of pesticides from agricultural wastewater. As biomixtures employ high content of lignocellulosic substrates, their bioaugmentation with ligninolytic fungi represents a novel approach for their enhancement. Nonetheless, the decrease in the concentration of the pesticide may result in sublethal concentrations that still affect ecosystems. Two matrices, a microcosm of rice husk (lignocellulosic substrate) bioaugmented with the fungus Trametes versicolor and a biomixture that contained fungally colonized rice husk were used in the degradation of the insecticide/nematicide carbofuran (CFN). Elutriates simulating lixiviates from these matrices were used to assay the ecotoxicological effects at sublethal level over Daphnia magna (Straus) and the fish Oreochromis aureus (Steindachner) and Oncorhynchus mykiss (Walbaum). Elutriates obtained after 30 d of treatment in the rice husk microcosms at dilutions over 2.5% increased the offspring of D. magna as a trade-off stress response, and produced mortality of neonates at dilutions over 5%. Elutriates (dilution 1:200) obtained during a 30 d period did not produce alterations on the oxygen consumption and ammonium excretion of O. mykiss, however these physiological parameters were affected in O. aureus at every time point of treatment, irrespective of the decrease in CFN concentration. When the fungally colonized rice husk was used to prepare a biomixture, where more accelerated degradation is expected, similar alterations on the responses by O. aureus were achieved. Results suggest that despite the good removal of the pesticide, it is necessary to optimize biomixtures to minimize their residual toxicity and potential chronic effects on aquatic life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Investigation on the feasibility of coffee husk (endocarp) as efficient filler material for enhancing physical and mechanical properties of styrofoam based particleboard

    NASA Astrophysics Data System (ADS)

    Milawarni; Nurlaili; Ernayusnianti

    2018-03-01

    This research focuses on introducing a coffee husk as viable and efficient filler for enhancing physical and mechanical properties of Styrofoam based particleboard. Heat treatment method was adopted to produce the particleboard from the mixture of coffee husk (CH) with Styrofoam (PS). Styrofoam is material derived from polystyrene. The aim of this research is to get the appropriate weight composition between coffee husks with PS and to identify the physical and mechanical properties of the produced particleboard. The composition of coffee husk varies between 0-90%wt. The manufacture of particleboard i.e. coffee husk milled with size 20/10 mesh then soak with 10% NaOH for 2 hours, rinsed with clean water and dried and weight according to the composition. The mixture of CH and PS is inserted into mold and put into hot-press. The result shows from physical properties that density, water absorption and thick development test corresponding with SNI 03-2105-2006 standard, the mechanical properties shows MOR test meets the standard on the addition of CH 10-50%, while the MOE test has not meet the standard.

  20. Optimization of replacing pork back fat with grape seed oil and rice bran fiber for reduced-fat meat emulsion systems.

    PubMed

    Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Kim, Hyun-Wook; Lee, Ju-Woon; Chung, Hai-Jung; Kim, Cheon-Jei

    2010-01-01

    The effects of reducing pork fat levels from 30% to 20% and partially substituting the pork fat with a mix of grape seed oil (0%, 5%, 10% and 15%) and 2% rice bran fiber were investigated based on chemical composition, cooking characteristics, physicochemical and textural properties, and viscosity of reduced-fat meat batters. For reduced-fat meat batters containing grape seed oil and rice bran fiber the moisture and ash contents, uncooked and cooked pH values, yellowness, cohesiveness, gumminess, chewiness, and sarcoplasmic protein solubility were higher than in the control samples. The reduced-fat samples with increasing grape seed oil concentrations had lower cooking loss, emulsion stability, and apparent viscosity. The incorporation of grape seed oil and rice bran fiber successfully reduced the animal fat content in the final products while improving other characteristics.

  1. Host resistance to emerald ash borer: development of novel ash hybrids

    Treesearch

    Jennifer L. Koch; David W. Carey; Richard Larson

    2007-01-01

    In contrast to the rapid destruction of ash trees in the United States by emerald ash borer (EAB, Agrilus planipennis Fairmaire), outbreaks of EAB in Asia appear to be isolated responses to stress, such as drought, and do not devastate the ash population. This indicates that in Asia, ash trees may have a level of inherent resistance. This resistance...

  2. Blueberry Husks and Probiotics Attenuate Colorectal Inflammation and Oncogenesis, and Liver Injuries in Rats Exposed to Cycling DSS-Treatment

    PubMed Central

    Håkansson, Åsa; Bränning, Camilla; Molin, Göran; Adawi, Diya; Hagslätt, Marie-Louise; Jeppsson, Bengt; Nyman, Margareta; Ahrné, Siv

    2012-01-01

    Long-term colonic inflammation promotes carcinogenesis and histological abnormalities of the liver, and colorectal tumours frequently arise in a background of dysplasia, a precursor of adenomas. Altered colonic microbiota with an increased proportion of bacteria with pro-inflammatory characteristics, have been implicated in neoplastic progression. The composition of the microbiota can be modified by dietary components such as probiotics, polyphenols and dietary fibres. In the present study, the influence of probiotics in combination with blueberry husks on colorectal carcinogenesis and subsequent liver damage was evaluated. Colorectal tumours were induced in rats by cyclic treatment with dextran sulphate sodium (DSS). Blueberry husks and a mixture of three probiotic strains (Bifidobacterium infantis DSM 15159, Lactobacillus gasseri, DSM 16737 and Lactobacillus plantarum DSM 15313) supplemented a basic diet fortified with oats. The condition of the rats was monitored using a disease activity index (DAI). A qualitative and quantitative histological judgement was performed on segments of distal colon and rectum and the caudate lobe of the liver. The formation of short-chain fatty acids, bacterial translocation, the inflammatory reaction and viable count of lactobacilli and Enterobaceriaceae were addressed. Blueberry husks with or without probiotics significantly decreased DAI, and significantly reduced the number of colonic ulcers and dysplastic lesions. With a decreased proportion of blueberry husk in the diet, the probiotic supplement was needed to achieve a significant decrease in numbers of dysplastic lesions. Probiotics decreased faecal viable count of Enterobacteriaceae and increased that of lactobacilli. Blueberry husks with or without probiotics lowered the proportion of butyric acid in distal colon, and decreased the haptoglobin levels. Probiotics mitigated hepatic injuries by decreasing parenchymal infiltration and the incidence of stasis and translocation

  3. Microstructure and hardness performance of AA6061 aluminium composite using friction stir processing

    NASA Astrophysics Data System (ADS)

    Marini, C. D.; Fatchurrohman, N.

    2018-04-01

    Rice husk ash (RHA) is an industrial waste that has become a potential reinforced material for aluminium matrix composite (AMCs) due to low cost and abundantly available resources. Friction stir processing (FSP) has been introduced as a method to modify surface properties of the metal and alloy including theirs composite as well. The present work reports the production and characterization of AA6061 and AA6061/5 vol% RHA using FSP using parameters rotation speed 1000 rpm and traversed speed 25 mm/min. The microstructure was studied using optical microscopy (OM). A homogenous dispersion of RHA particles was obtained in the composite. No agglomeration or segregation was observed. The produced composite exhibited a fine grain structure. An improvement in hardness profile was observed as AA6061/5 vol% RHA improves in hardness compared to FSPed of AA6061 without reinforcement.

  4. Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica).

    PubMed

    Luo, Di; Niu, Xiangli; Yu, Jinde; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2012-09-01

    Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.

  5. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    USDA-ARS?s Scientific Manuscript database

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  6. Direct synthesis of carbon nanofibers from South African coal fly ash

    NASA Astrophysics Data System (ADS)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  7. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  8. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  9. 40 CFR 180.666 - Fluxapyroxad; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., meat 0.01 Cattle, meat byproducts 0.03 Corn, field, grain 0.01 Corn, oil 0.03 Corn, pop, grain 0.01 Corn, sweet, kernels plus cobs with husks removed 0.15 Cotton, gin byproducts 0.01 Cotton, undelinted...; except corn, pop, grain; except corn, kernels plus cobs with husks removed; except rice; except wheat 3.0...

  10. "Two-dimensional" molecularly imprinted solid-phase extraction coupled with crystallization and high performance liquid chromatography for fast semi-preparative purification of tannins from pomegranate husk extract.

    PubMed

    Sun, Guangying; Liu, Yanfang; Ahat, Hasanjan; Shen, Aijin; Liang, Xinmiao; Xue, Xingya; Luo, Yuqin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber

    2017-07-07

    In this study, "two dimensional" molecularly imprinted solid-phase extraction (2D-MIP-SPE) of semi-preparative grade was constructed to fast purify ellagitannins in pomegranate husk extract with the help of crystallization and reverse-phase liquid chromatgoraphy (RPLC). Ellagic acid and punicalagin imprinted polymers were synthesized in batch mode and two semi-preparative MIP-SPE columns were individually packed. After investigaing "functional complementation", 2D-MIP-SPE was constructed using ellagic acid MIP and punicalagin MIP-SPE as the first and second dimension, respectively. Then, pomegranate husk extract was fast divided into four fractions individually enriching in ellagic acid, granatin A, punicalagin and ellagic acid glucoside by 2D-MIP-SPE. With the aid of crystallization and RPLC, ellagic acid (13.5mg) and punicalagin (53.4mg) were fast obtained in 30min. Ellagic acid glucoside was purified to the purity near 100% with a recovery of 86.1%. Granatin A (92%) was directly obtained by 2D-MIP-SPE with the recovery of 81.8%. All above indicated that 2D-MIP-SPE was highly efficient in natural product purification. The concept of "functional complementation" was expected to be a useful tool in the construction of 2D-MIP-SPE. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  12. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    NASA Astrophysics Data System (ADS)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  13. Feral rice from introgression of weedy rice genes into transgenic herbicide-resistant hybrid-rice progeny.

    PubMed

    Zhang, Jingxu; Kang, Ye; Valverde, Bernal E; Dai, Weimin; Song, Xiaoling; Qiang, Sheng

    2018-06-05

    Pollen-mediated herbicide-resistance transgene flow occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice is underestimated and poorly understood. Two of each glufosinate-resistant transgenic rice varieties and hybrid rice (F1) and their succeeding generations (F2-F4) were planted for three years in weedy-rice-free field plots adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants, both glufosinate-resistant and with red-pericarp seed, were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid rice. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of glufosinate-resistant transgenic hybrid rice (the original female parent of feral progeny) under common monoculture garden conditions. Hybrid rice progeny segregated into individuals of variable height and extended flowering. Hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96%-1.65%) than their progenitors (0.07%-0.98%). Herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice. Their segregating pollen-receptive progeny pose greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.

  14. Dispersal of Volcanic Ash on Mars: Ash Grain Shape Analysis

    NASA Astrophysics Data System (ADS)

    Langdalen, Z.; Fagents, S. A.; Fitch, E. P.

    2017-12-01

    Many ash dispersal models use spheres as ash-grain analogs in drag calculations. These simplifications introduce inaccuracies in the treatment of drag coefficients, leading to inaccurate settling velocities and dispersal predictions. Therefore, we are investigating the use of a range of shape parameters, calculated using grain dimensions, to derive a better representation of grain shape and effective grain cross-sectional area. Specifically, our goal is to apply our results to the modeling of ash deposition to investigate the proposed volcanic origin of certain fine-grained deposits on Mars. Therefore, we are documenting the dimensions and shapes of ash grains from terrestrial subplinian to plinian deposits, in eight size divisions from 2 mm to 16 μm, employing a high resolution optical microscope. The optical image capture protocol provides an accurate ash grain outline by taking multiple images at different focus heights prior to combining them into a composite image. Image composite mosaics are then processed through ImageJ, a robust scientific measurement software package, to calculate a range of dimensionless shape parameters. Since ash grains rotate as they fall, drag forces act on a changing cross-sectional area. Therefore, we capture images and calculate shape parameters of each grain positioned in three orthogonal orientations. We find that the difference between maximum and minimum aspect ratios of the three orientations of a given grain best quantifies the degree of elongation of that grain. However, the average aspect ratio calculated for each grain provides a good representation of relative differences among grains. We also find that convexity provides the best representation of surface irregularity. For both shape parameters, natural ash grains display notably different shape parameter values than sphere analogs. Therefore, Mars ash dispersal modeling that incorporates shape parameters will provide more realistic predictions of deposit extents

  15. Effect of the synthesis of rice non-symbiotic hemoglobins 1 and 2 in the recombinant Escherichia coli TB1 growth

    PubMed Central

    Álvarez-Salgado, Emma; Arredondo-Peter, Raúl

    2016-01-01

    Non-symbiotic hemoglobins (nsHbs) are widely distributed in land plants, including rice. These proteins are classified into type 1 (nsHbs-1) and type 2. The O 2-affinity of nsHbs-1 is very high mostly because of an extremely low O 2-dissociation rate constant resulting in that nsHbs-1 apparently do not release O 2 after oxygenation. Thus, it is possible that the in vivo function of nsHbs-1 is other than O 2-transport. Based on the properties of multiple Hbs it was proposed that nsHbs-1 could play diverse roles in rice organs, however the in vivo activity of rice nsHbs-1 has been poorly analyzed. An in vivo analysis for rice nsHbs-1 is essential to elucidate the biological function(s) of these proteins. Rice Hb1 and Hb2 are nsHbs-1 that have been generated in recombinant Es cherichia coli TB1. The rice Hb1 and Hb2 amino acid sequence, tertiary structure and rate and equilibrium constants for the reaction of O 2 are highly similar. Thus, it is possible that rice Hb1 and Hb2 function similarly in vivo. As an initial approach to test this hypothesis we analyzed the effect of the synthesis of rice Hb1 and Hb2 in the recombinant E. coli TB1 growth. Effect of the synthesis of the O 2-carrying soybean leghemoglobin a, cowpea leghemoglobin II and Vitreoscilla Hb in the recombinant E. coli TB1 growth was also analyzed as an O 2-carrier control. Our results showed that synthesis of rice Hb1, rice Hb2, soybean Lb a, cowpea LbII and Vitreoscilla Hb inhibits the recombinant E. coli TB1 growth and that growth inhibition was stronger when recombinant E. coli TB1 synthesized rice Hb2 than when synthesized rice Hb1. These results suggested that rice Hb1 and Hb2 could function differently in vivo. PMID:26973784

  16. Influences of composted hazelnut husk on some physical properties of soils.

    PubMed

    Zeytin, Serhat; Baran, Abdullah

    2003-07-01

    Some physical properties of clay loam and sandy loam soils amended with hazelnut husk (HH) were investigated. HH collected from hazelnut trees were dried, ground and composted for four months. Before use the composted material obtained was separated to three different aggregate sizes, smaller than 0.84 mm, 0.84-2.38 mm and bigger than 2.38 mm. Then these fractions were mixed with soil samples, at 0%, 1%, 2%, 4% and 8% by weight. Huzelnut husk compost-soil mixtures were placed to plastic pots and kept in an incubator at 25+/-5 degrees C for 45 and 90 days. At the end of incubation periods, water stable aggregate (WSA), hydraulic conductivity, total porosity, aeration porosity and macro- and micro-pore percentages of the mixtures were determined. Results obtained showed that composted HH increased the WSA, hydraulic conductivity, total porosity and macro-pore percentage in both clay loam and sandy loam soils depending on the incubation time and aggregate sizes.

  17. SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.

    PubMed

    Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo

    2017-01-01

    Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.

  18. Fly ash carbon passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most ofmore » the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.« less

  19. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Treesearch

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  20. Bio-softening of mature coconut husk for facile coir recovery.

    PubMed

    Suganya, D S; Pradeep, S; Jayapriya, J; Subramanian, S

    2007-06-01

    Bio-softening of the mature coconut husk using Basidiomyceteous fungi was attempted to recover the soft and whiter fibers. The process was faster and more efficient in degrading lignin and toxic phenolics. Phanerochaete chrysosporium, Pleurotus eryngii and Ceriporiopsis subvermispora were found to degrade lignin efficiently without any appreciable loss of cellulose, yielding good quality fiber ideal for dyeing.

  1. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.

    PubMed

    Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin

    2010-06-15

    Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry

  2. Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties.

    PubMed

    Akhtar, Ali; Sarmah, Ajit K

    2018-03-01

    In this study, biochar, a carbonaceous solid material produced from three different waste sources (poultry litter, rice husk and pulp and paper mill sludge) was utilized to replace cement content up to 1% of total volume and the effect of individual biochar mixed with cement on the mechanical properties of concrete was investigated through different characterization techniques. A total of 168 samples were prepared for mechanical testing of biochar added concrete composites. The results showed that pulp and paper mill sludge biochar at 0.1% replacement of total volume resulted in compressive strength close to the control specimen than the rest of the biochar added composites. However, rice husk biochar at 0.1% slightly improved the splitting tensile strength with pulp and papermill sludge biochar produced comparable values. Biochar significantly improved the flexural strength of concrete in which poultry litter and rice husk biochar at 0.1% produced optimum results with 20% increment than control specimens. Based on the findings, we conclude that biochar has the potential to improve the concrete properties while replacing the cement in minor fractions in conventional concrete applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents.

    PubMed

    Song, Min; Wei, Yuexing; Cai, Shipan; Yu, Lei; Zhong, Zhaoping; Jin, Baosheng

    2018-03-15

    Different activated carbon materials are prepared from a series of solid wastes (sawdust, acrylic fabric, tire powder and rice husk) by combination of the KOH activation method and steam activation method. The influences of several parameters such as pH, contact time, adsorbent dosage and temperature on adsorption performance of Pb 2+ with those different carbon adsorbents are investigated. The results demonstrate that C rice husk performance well in the adsorption process. In the following, the C rice husk is used to explain the adsorption mechanism of Pb 2+ by SEM-EDS, FT-IR and XPS. The results illustrate that the surface oxygen-containing functional groups such as carboxyl, lactone group, phenolic hydroxyl and other alkaline metal ions like Na + and K + have significant effect on the adsorption process. A reasonable mechanism of Pb 2+ adsorption is proposed that the ion exchange play key roles in the adsorption process. In addition, the effects of Cu 2+ , Zn 2+ on the Pb 2+ adsorption capacity with the four carbon adsorbents are also studied and the results demonstrate that other heavy metals play positive effects on the adsorption of Pb 2+ . Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mercury release from fly ashes and hydrated fly ash cement pastes

    NASA Astrophysics Data System (ADS)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  5. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18more » cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.« less

  6. Glass-ceramic from mixtures of bottom ash and fly ash.

    PubMed

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Self-enhancement of GABA in rice bran using various stress treatments.

    PubMed

    Kim, Hyun Soo; Lee, Eun Jung; Lim, Seung-Taik; Han, Jung-Ah

    2015-04-01

    Gamma-aminobutyric acid (GABA) may be synthesized in plant tissues when the organism is under stressful conditions. Rice bran byproduct obtained from the milling of brown rice was treated under anaerobic storage with nitrogen at different temperatures (20-60 °C) and moisture contents (10-50%) up to 12h. For the GABA synthesis, the storage at 30% moisture content and 40 °C appeared optimal. Utilisation of an electrolyzed oxidizing water (EOW, pH 3.3) for moisture adjustment and addition of glutamic acid increased the GABA content in rice bran. The maximum GABA content in rice bran (523 mg/100g) could be achieved by the anaerobic storage at 30% EOW for 5h at 40 °C after an addition of glutamic acid (5mM). This amount was approximately 17 times higher than that in the control (30 mg/100g). The use of EOW also prevented bacterial growth by decreasing the colony counts almost by half. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  9. Anaerobic treatment of coconut husk liquor for biogas production.

    PubMed

    Leitão, R C; Araújo, A M; Freitas-Neto, M A; Rosa, M F; Santaella, S T

    2009-01-01

    The market for coconut water causes environmental problems as it is one of the major agro-industrial solid wastes in some developing countries. With the aim of reusing the coconut husk, Embrapa developed a system for processing this raw material. During the dewatering stage Coconut Husk Liquor (CHL) is generated with chemical oxygen demand (COD) varying from 60 to 70 g/L due to high concentrations of sugars and tannins. The present study evaluated the feasibility of anaerobic treatment of CHL through Anaerobic Toxicity Assay and the operation of a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. Results showed that CHL can be treated through a UASB reactor operating with an OLR that reaches up to 10 kg/m3.d and that is maintained stable during the whole operation. With this operational condition, the removal efficiency was higher than 80% for COD and approximately 78% for total tannins, and biogas production was 20 m3 of biogas or 130 KWh per m3 of CHL. Seventy-five percent of the biogas composition was methane and toxicity tests demonstrated that CHL was not toxic to the methanogenic consortia. Conversely, increasing the concentration of CHL leads to increased methanogenic activity.

  10. The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi

    NASA Astrophysics Data System (ADS)

    Sutariati, G. A. K.; Bande, L. O. S.; Khaeruni, A.; Muhidin; Mudi, L.; Savitri, R. M.

    2018-02-01

    Research was aimed to evaluate the bio-invigoration techniques using Bacillus sp. CKD061 in improving seed viability and vigor of local upland rice. The research is arranged in factorial with completely randomized design (CRD). The different upland rice cultivars as first factor that consists of 11 cultivars, namely: Pae Tinangge, Pae Rowu, Pae Uwa, Pae Tanta, Pae Waburi-Buri, Pae Mornene, Pae Indalibana, Pae Lawarangka, Pae Huko, Pae Wagamba and Pae Momea. The second factor is the seed bio-invigoration technique, consists of 5 treatments, namely: without seed bio-invigoration (B0), NaCl + Bacillus sp. CKD061 (B1), KNO3 + Bacillus sp. CKD061 (B2), Ground burned-rice husk + Bacillus sp. CKD061 (B3), and Ground brick + Bacillus sp. CKD061 (B4). The results showed that seed bio-invigoration using Bacillus sp. CKD061 gave effect on the seed viability and vigor. Interaction of the seed bio-invigoration and upland rice cultivars were able to improve seed viability and vigor. Seed bio-invigoration ttreatment using ground brick + Bacillus sp. CKD061 was the best treatment, which could improve the viability and vigor of Pae Waburi-Buri, Pae Mornene and Pae Indalibana. The treatment increased vigor index by 133% in Pae Waburi-Buri and 127% in Pae Mornene, and Pae Indalibana compared with control.

  11. Quantitative and qualitative studies of silica in different rice samples grown in north of Iran using UV-vis, XRD and IR spectroscopy techniques.

    PubMed

    Samadi-Maybodi, Abdolraouf; Atashbozorg, Ebrahim

    2006-11-15

    Silicon is an essential trace element and is found in vegetables, fruits, cereals, water, pasta and rice (Oryza sativa). In this work, the silica content of different types of rice grains were measured. Here, we used the heteropoly blue photometric method with a double beam UV-vis spectrophotometer to determine the amount of silicon in rice samples (n=7) that were collected in the north of Iran. The samples were digested with wet-ashing method by microwave-assisted heating and then treated with ammonium molybdate to produce a yellow color compound in acidic solution (ca. pH 1.2) and then reduced to give a heteropoly compound with a blue color. Analyses were performed using standard addition method and absorbance values were measured with double beam UV-vis spectrophotometer at lambda(max)=815nm. Results indicated that the silica content was 307-451mg/kg for the samples. X-ray diffraction patterns and infra-red spectra were obtained from rice samples without any sample treatment.

  12. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  13. Synthesis, characterization and DC conductivity studies of conducting polyaniline/PVA/Fly ash polymer composites

    NASA Astrophysics Data System (ADS)

    Revanasiddappa, M.; Swamy, D. Siddalinga; Vinay, K.; Ravikiran, Y. T.; Raghavendra, S. C.

    2018-05-01

    The present work is an investigation of dc conduction behaviour of conducting polyaniline/fly ash nano particles blended in polyvinyl Alcohol (PANI/PVA/FA) synthesized via in-situ polymerization technique using (NH4)2S2O8 as an oxidising agent with varying fly ash cenosphere by 10, 20, 30, 40 and 50 wt%. The structural characterization of the synthesised polymer composites was examined using FT-IR, XRD and SEM techniques. Dc conductivity as a function of temperature has been measured in the temperature range from 302K - 443K. The increase of conductivity with increasing temperature reveals semiconducting behaviour of the composites and shows an evidence for the transport properties of the composites.

  14. Phycocyanin extraction in Spirulina produced using agricultural waste

    NASA Astrophysics Data System (ADS)

    Taufiqurrahmi, N.; Religia, P.; Mulyani, G.; Suryana, D.; Ichsan; Tanjung, F. A.; Arifin, Y.

    2017-06-01

    Phycocyanin is a pigment-protein complex synthesized by blue-green microalgae such as Arthrospira (Spirulina) platensis. This pigment is used mainly as natural colouring in food industry. Previous studies have demonstrated the potential health benefits of this natural pigment. The price of phycocyanin is a vital factor that dictates its marketability. The cost of culturing the algae, particularly from the substrate used for growth, is one of the main factors that determine the price of phycocyanin. Another important factor is the growth yield of the algae. In our research, agricultural waste such as charcoal produced from rice husk was utilized for the algae cultivation to replace the synthetic chemicals such as urea and triple superphosphate used the mineral medium. The use of this low cost substrate increases the cell concentration by 60 % during 8 days’ cultivation to reach 0.39 g/l. The phycocyanin extraction was performed using water at the different biomass-to-solvent ratio and shaking rates. The phycocyanin concentration and purity (A615/A280) obtained were 1.2 g/l and 0.3. These values are 40 % and 20 % lower than the value obtained from the algae produced using the synthetic chemicals. Further purification produced the extract purity required for food grade. The biomass-solvent ratio does not significantly affect the extract purity; however, the higher shaking rate during extraction reduces the purity. This finding demonstrates the potential of using rice husk as an alternative substrate to cultivate algae for phycocyanin extraction.

  15. Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum.

    PubMed

    Das, Archana M; Hazarika, Manash P; Goswami, Monmi; Yadav, Archana; Khound, Pradip

    2016-05-05

    Cellulose was extracted from agricultural waste like Rice Husk (RH) a renewable resource of India as well as in the World. Cellulose was isolated from rice husk (RH) using eco-friendly method with Montmorillonite K-10/LiOH solution and bleaching with 2% H2O2. The reaction parameters like time, temperature, catalyst, acid and alkali were studied to evaluate the optimum reaction conditions 6h, 80°C, 20% maleic acid and 10% LiOH (in H2O) for time, temperature, acid and alkali, respectively. Renewable energy, biofuel from agricultural waste using Myrothecium gramineum was also investigated herein. Cellulose was converted to glucose by using acid hydrolysis and the optimum reaction conditions were 140°C for 60min. in presence of H2SO4 (5% v/v). It has been recognized significantly as potential sustainable sources of sugars for fermentation to bioethanol. So, our effort was given to obtain bioethanol from RH using new and novel renewable fungal strain M. gramineum. M. gramineum was isolated from acacia plant available in NE region of India. The results revealed that % yields of cellulose, glucose and bioethanol were 68%, 60% and 25%, respectively. Moreover, the bioethanol was compared with the standard ethanol (Laboratory grade) and also the ethanol produced from the known microb Aspergillus niger. The synthesized products were characterized with the help of analytical techniques like FT-IR, GC, TGA, DSC and XRD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption.

    PubMed

    Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka

    2011-11-30

    Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  18. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), is an exotic wood-boring beetle that has been threatening North American ash (Fraxinus spp.) resources since its discovery in Michigan and Ontario in 2002. In this study, we investigated the phytochemical responses of the three most common North American ash species (black, green, and white ash) in northeastern USA to EAB adult feeding. Black ash was the least responsive to EAB adult feeding in terms of the induction of volatile compounds, and levels of only two (indole and benzyl cyanide) of the 11 compounds studied increased. In green ash, levels of two [(E)-β-ocimene and indole] of the 11 volatile compounds studied were elevated, while the levels of two green leaf volatiles [hexanal and (E)-2-hexenal] decreased. White ash showed the greatest response with an increase in levels of seven of the 11 compounds studied. Qualitative differences among ash species were detected. Among the phenolic compounds detected, ligustroside was the only one detected in all three species. Oleuropein aglycone and 2 unidentified compounds were found only in black ash; coumaroylquinic acid and feruloylquinic acid were detected only in green ash; and verbascoside hexoside was detected only in white ash. EAB adult feeding did not elicit or decrease concentrations of any selected individual phenolic compounds. However, although levels of total phenolics from black and green ash foliage were not affected by EAB adult feeding, they decreased significantly in white ash. EAB adult feeding elevated chymotrypsin inhibitors in black ash. The possible ecological implications of these findings are discussed.

  19. Performance of Nitrogen and Phosphorus Removal in Petrochemical Wastewater by Zeolited Fly Ash

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Gu, Guizhou; Ji, Shenghao

    2018-05-01

    The zeolitized fly ash was synthesized by alkali melt hydrothermal method. The cation exchange capacity of zeolitized fly ash was far greater than the raw material fly ash. The main component was NaP1 zeolite (Na6Al6Si10O32·12H2O), followed by mullite, and a small amount of heterozygous crystals. The effect of synthetic zeolite dosage, pH value, adsorption time and reaction temperature on the effect of nitrogen and phosphorus removal in petrochemical wastewater were investigated. The results showed that when the zeolitized fly ash dosage was 9 g/L, the petrochemical wastewater pH value was 6∼8, adsorption time was 30 min and the reaction temperature was 30°C, the synthetic zeolite had the best effect on the removal of TN and TP in petrochemical wastewater, and the removal was 65.5%, 91.4% respectively. Besides, the concentrations of TN and TP in the effluent were 11.04 mg/L, 0.31 mg/L respectively. The concentrations met the sewage discharge standard in petrochemical industry of "Liaoning sewage comprehensive discharge standard" (DB21 1627-2008). This study was to realize the comprehensive utilization of solid waste and achieve the purpose of waste and waste.

  20. Characterization a binderless particleboard of coffee husk using Hydrogen Peroxide (H2O2) and Ferrous Sulfate (FeSO4)

    NASA Astrophysics Data System (ADS)

    Milawarni; Nurlaili; Sariyadi

    2018-05-01

    Binderless particleboard is particleboard that can be made of a lignocellulose material which is formed into a board only by heat pressing without the addition of adhesive or resin. The particleboard in this study was made from coffee husk (endocarp) using H2O2 and FeSO4 catalyst to activate lignin coffee husk component by oxidation method. Initial treatment of coffee husk is the variation of steam then Oxidation (S + O) and Oxidation without steaming (O). In this study H2O2 and FeSO4 catalysts were varied, including H2O2 levels of 10,20,30 wt% based on particle dry weight and FeSO4 is 5 and 7.5 wt% based on H2O2 weight. From the results of the study, it can be concluded that the coffee husk particleboard whose raw material is treated oxidation without steam can improve the physical properties of binderless particleboard. Increased wt% of H2O2 and FeSO4 catalysts in the oxidation process of coffee husk particles produce binderless particleboard with good physical characteristics such as density, water content, water absorption and swelling thickness. Therefore, considering the efficient aspects of the use of chemicals, the combination of H2O2 and FeSO4 catalysts that can be made according to JIS A 5908 2003 standard are 20% H2O2 and 7.5% FeSO4. The ester linkages were detected by Fourier transform infrared spectroscopy, indicated that cross-link due to the incorporation of phenoxyl radicals.

  1. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.).

    PubMed

    Rebek, Eric J; Herms, Daniel A; Smitley, David R

    2008-02-01

    We conducted a 3-yr study to compare the susceptibility of selected North American ash and an Asian ash species to emerald ash borer, Agrilus planipennis Fairmaire, an invasive wood-boring beetle introduced to North America from Asia. Because of a coevolutionary relationship between Asian ashes and emerald ash borer, we hypothesized an Asian ash species, Manchurian ash, is more resistant to the beetle than its North American congeners. Consistent with our hypothesis, Manchurian ash experienced far less mortality and yielded far fewer adult beetles than several cultivars of North American green and white ash. Surprisingly, a black ash (North American) x Manchurian ash hybrid was highly susceptible to emerald ash borer, indicating this cultivar did not inherit emerald ash borer resistance from its Asian parent. A corollary study investigated the efficacy of soil-applied imidacloprid, a systemic, neonicotinoid insecticide, for controlling emerald ash borer in each of the five cultivars. Imidacloprid had no effect on emerald ash borer colonization of Manchurian ash, which was low in untreated and treated trees. In contrast, imidacloprid did enhance survival of the North American and hybrid cultivars and significantly reduced the number of emerald ash borer adults emerging from green and white ash cultivars. We identify a possible mechanism of resistance of Manchurian ash to emerald ash borer, which may prove useful for screening, selecting, and breeding emerald ash borer-resistant ash trees.

  2. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to manchurian ash, a species resistant to emerald ash borer.

    PubMed

    Whitehill, Justin G A; Opiyo, Stephen O; Koch, Jennifer L; Herms, Daniel A; Cipollini, Donald F; Bonello, Pierluigi

    2012-05-01

    The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest. We characterized constitutive phenolic profiles and lignin levels in the phloem of green, white, black, blue, European, and Manchurian ash. Phloem was sampled twice during the growing season, coinciding with phenology of early and late instar EAB. We identified 66 metabolites that displayed a pattern of variation, which corresponded strongly with phylogeny. Previously identified lignans and lignan derivatives were confirmed to be unique to Manchurian ash, and may contribute to its high level of resistance to EAB. Other compounds that had been considered unique to Manchurian ash, including hydroxycoumarins and the phenylethanoids calceolarioside A and B, were detected in closely related, but susceptible species, and thus are unlikely to contribute to EAB resistance of Manchurian ash. The distinct phenolic profile of blue ash may contribute to its relatively high resistance to EAB.

  3. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  4. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  5. Retention of barium and europium radionuclides from aqueous solutions on ash-based sorbents by application of radiochemical techniques.

    PubMed

    Noli, Fotini; Kapnisti, Maria; Buema, Gabriela; Harja, Maria

    2016-10-01

    New materials were synthesized for application in sorption of radionuclides from aqueous solutions. The elaboration was performed by conversion of power plant ash using the hydrothermal method under optimum experimental conditions. Sodalite, Na-Y, and analcime were formed from ash precursor during the treatment, exhibiting thermal stability as revealed by the characterization by X-ray diffraction (XRD) and thermogravimetric differential thermal analysis (TG-DTA). The Brunauer-Emmett-Teller (BET) surface area and pore volume were determined and they presented higher values than plant ash. The ability of the new products to retain Ba and Eu radionuclides was studied in aqueous solutions using (133)Ba and (152)Eu as tracers and γ-ray spectroscopy under batch experiments. The experimental data were modeled by the Langmuir and Freundlich equations, whereas sorption kinetics measurements were performed at 293, 308, and 323K and thermodynamic parameters were calculated. The release of the sorbed ions into the environment was also tested by leaching experiments. The results of these tests indicated that the synthesized materials are very efficient in removing the aforementioned metals from aqueous solutions and can be considered as potential low-cost sorbents in nuclear waste management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Elemental and thermo-chemical analysis of oil palm fronds for biomass energy conversion

    NASA Astrophysics Data System (ADS)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.

    2012-06-01

    Oil palm frond is the most abundant yet untapped biomass waste in Malaysia. This paper investigates the characteristics of raw oil palm fronds and its ash to evaluate its potential utilization as a biomass fuel for gasification process using single throat downdraft gasifier. The morphological nature, elemental content, proximate and ultimate analysis and calorific value were studied. Field emission scanning electron microscopy and x-ray fluorescence were used to investigate the surface morphology, elemental and mineralogical nature of oil palm frond and its ash. The results were compared with other agricultural and forestry biomass wastes. From proximate analysis volatile matter, fixed carbon and ash were found to be 83.5%, 15.2% and 1.3%, respectively on dry basis. From ultimate analysis result values of 44.58%, 4.53%, 0.71% and 0.07% for carbon, hydrogen, nitrogen and sulfur were found respectively on dry basis. Oxygen was determined by difference and found to be 48.81%. The proximate and ultimate analysis results indicate that oil palm frond is better than agricultural wastes and less than most forestry wastes to use as a feedstock in the gasification process in order to get a better quality of syngas. The amount of ash content in OPF was found to be much less than in agricultural wastes and higher than most forestry wastes. From x-ray fluorescence analysis CaO and K2O were found as the major oxides in oil palm fronds and rice husk ash with the amount of 28.46% and 15.71% respectively. The overall results of oil palm fronds were found to be satisfactory to use as a feedstock for the process of gasification.

  7. Optimization of binder addition and particle size for densification of coffee husks briquettes using response surface methodology

    NASA Astrophysics Data System (ADS)

    Raudah; Zulkifli

    2018-03-01

    The present research focuses on establishing the optimum conditions in converting coffee husk into a densified biomass fuel using starch as a binding agent. A Response Surface Methodology (RSM) approach using Box-Behnken experimental design with three levels (-1, 0, and +1) was employed to obtain the optimum level for each parameter. The briquettes wereproduced by compressing the mixture of coffee husk-starch in a piston and die assembly with the pressure of 2000 psi. Furthermore, starch percentage, pyrolysis time, and particle size were the input parameters for the algorithm. Bomb calorimeter was used to determine the heating value (HHV) of the solid fuel. The result of the study indicated that a combination of 34.71 mesh particle size, 110.93 min pyrolysis time, and 8% starch concentration werethe optimum variables.The HHV and density of the fuel were up to 5644.66 calgr-1 and 0.7069 grcm-3,respectively. The study showed that further research should be conducted to improve the briquette density therefore the coffee husk could be convert into commercialsolid fuel to replace the dependent on fossil fuel.

  8. Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    PubMed Central

    Whitehill, Justin G. A.; Popova-Butler, Alexandra; Green-Church, Kari B.; Koch, Jennifer L.; Herms, Daniel A.; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion. PMID:21949771

  9. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    PubMed

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  10. The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.

    2018-06-01

    Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.

  11. Impact of volunteer rice infestation on yield and grain quality of rice.

    PubMed

    Singh, Vijay; Burgos, Nilda R; Singh, Shilpa; Gealy, David R; Gbur, Edward E; Caicedo, Ana L

    2017-03-01

    Volunteer rice (Oryza sativa L.) grains may differ in physicochemical traits from cultivated rice, which may reduce the quality of harvested rice grain. To evaluate the effect of volunteer rice on cultivated rice, fields were surveyed in Arkansas in 2012. Cropping history that included hybrid cultivars in the previous two years (2010 and 2011) had higher volunteer rice infestation (20%) compared with fields planted previously with inbred rice (5.5%). The total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density. The grain quality did not change in fields planted with the same cultivar for three years. Volunteer rice density of at least 7.6% negatively impacted the head rice and when infestation reached 17.7%, it also reduced the rice grain yield. The protein and amylose contents of rice were not affected until volunteer rice infestation exceeded 30%. Crop rotation systems that include hybrid rice are expected to have higher volunteer rice infestation than systems without hybrid rice. It is predicted that, at 8% infestation, volunteer rice will start to impact head rice yield and will reduce total yield at 18% infestation. It could alter the chemical quality of rice grain at >30% infestation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-09-26

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids.

  13. Survey for tolerance to emerald ash borer within North American ash species

    Treesearch

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  14. The influence of sugarcane bagasse ash as fly ash on cement quality

    NASA Astrophysics Data System (ADS)

    Rauf, N.; Damayanti, M. C.; Pratama, S. W. I.

    2017-01-01

    Fly ash often is used as the third material for cement. The fly ash from sugarcane bagasse is usually considered as industrial waste material that can be added to the base material of cement (clinker, trash, gypsum and lime stone) for economic and environment reason. The amount of fly ash usually up to 30 % of cement material, but in this research the percentage of sugarcane bagasse ash (SBA) is added to cement material is up to 15% total weight. Then the x-rays fluorescence (XRF) was used to determine its chemical composition of raw material and cement samples. The physical properties of cement such as fineness, setting time, expansion, and compressive strength were measured using Automatic Blaine, Vicat, Autoclave, respectively. The result show that the percentage of sugarcane bagasse ash influences the quality of cement and concrete, and this is confirmed with Indonesia National Standard (SNI). It is showed that the sugarcane bagasse ash could be use as material to improve the quality of cement and will solve the environment waste material

  15. Effects of replacing pork back fat with vegetable oils and rice bran fiber on the quality of reduced-fat frankfurters.

    PubMed

    Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Jeong, Jong-Youn; Chung, Hai-Jung; Kim, Cheon-Jei

    2010-03-01

    The effects of substituting olive, grape seed, corn, canola, or soybean oil and rice bran fiber on the chemical composition, cooking characteristics, fatty acid composition, and sensory properties of low-fat frankfurters were investigated. Ten percent of the total fat content of frankfurters with a total fat content of 30% (control) was partially replaced by one of the vegetable oils to reduce the pork fat content by 10%. The moisture and ash content of low-fat frankfurters with vegetable oil and rice bran fiber were all higher than the control (P<0.05). Low-fat frankfurters had reduced-fat content, energy values, cholesterol and trans-fat levels, and increased pH, cooking yield and TBA values compared to the controls (P<0.05). Low-fat frankfurters with reduced-fat content plus rice bran fiber had sensory properties similar to control frankfurters containing pork fat. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  16. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  17. Chemical, physical, and sensory characteristics of analog rice developed from the mocaf, arrowroof, and red bean flour

    NASA Astrophysics Data System (ADS)

    Wahjuningsih, S. B.; Susanti, S.

    2018-01-01

    This research was aimed to analyze the chemical, physical, and sensory characteristics of the analog rice developed from a composite formula consisting of mocaf, arrowroot, and red bean flour. Experiment was designed into 5 different composition types i.e B1 (90%: 0%: 10%), B2 (80%:10%: 10%), B3 (70% : 20% : 10%), B4 (60%: 30%:10%), and B5 (50%: 40%: 10%) which in each type was repeated in 4 times. Carrageenan was used as a binder in the making process of those analog rice. Investigation procedure was carried out into several stages such as preparation and characterization of raw materials, production of analog rice in composite formula, then the testing of its chemical and sensory properties. Chemical characteristics were evaluated about the level of starch, amylose, dietary fiber, and resistant starch while sensory characteristics were examined about the texture, flavor, and aroma. The result showed that based on the sensory test, the best composite formula of rice analog was B2 (ratio flour of mocaf: Arrowroot: Red bean = 80:10:10). In addition, B2 formula possessed the chemical characteristics similar with the truth rice either in water content (12.18%), ash (2.63%), protein (6.17%), fat (1.31%), carbohydrate (89.88%), starch (73.29%), amylose (24.91%), total dietary fiber (7.04%), or resistant starch (6.71%). Furthermore, the higher of arrowroot flour proportion, the greater of amylose, dietary fiber and resistant starch containing in the rice analog. In the opposite, its starch content was getting down.

  18. Selenium in fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Bache, C.A.; Youngs, W.D.

    1976-03-05

    Selenium, at concentrations exceeding 200 parts per million (ppM) (dry weight), has been found in white sweet clover voluntarily growing on beds of fly ash in central New York State. Guinea pigs fed such clover concentrated selenium in their tissues. The contents of the honey stomachs of bees foraging on this seleniferous clover contained negligible selenium. Mature vegetables cultured on 10 percent (by weight) fly ash-amended soil absorbed up to 1 ppM of selenium. Fly ashes from 21 states contained total selenium contents ranging from 1.2 to 16.5 ppM. Cabbage grown on soil containing 10 percent (by weight) of thesemore » fly ashes absorbed selenium (up to 3.7 ppM) in direct proportion (correlation coefficient r = .89) to the selenium concentration in the respective fly ash. Water, aquatic weeds, algae, dragonfly nymphs, polliwogs, and tissues of bullheads and muskrats from a fly ash-contaminated pond contained concentrations of selenium markedly elevated over those of controls.« less

  19. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries.

    PubMed

    Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H

    2015-06-01

    The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.

  20. Inactivation mechanisms of pathogenic bacteria in several matrixes during the composting process in a composting toilet.

    PubMed

    Sossou, S K; Hijikata, N; Sou, M; Tezuka, R; Maiga, A H; Funamizu, N

    2014-01-01

    This study aimed to compare the inactivation rate and the mechanisms of pathogenic bacteria in three matrixes (sawdust, rice husk and charcoal) during the composting process. The inactivation rate was evaluated with Escherichia coli strain and the damaged parts and/or functions were evaluated with three different media. Normalized inactivation rate constant in three media and from three matrixes had no significant difference in each process (pure, 1 month and 2 months). The value in rice husk was relatively increased during 2 months but there was no significant difference. The inactivation rate constants of Tryptic Soy Agar (TSA) and Compact Dry E. coli/Coliform in pure sawdust and rice husk were relatively lower than that of Desoxycholate Agar, but increased in 2 months. This indicated that damaging part was changed from outer membrane to enzymes and metabolisms during the 2-month composting process. In the case of charcoal, only the TSA value in apure matrix was relatively lower than that of others, but it increased in 2 months. This indicated that damaging part was changed from outer membrane and enzyme to metabolisms during the composting process. Composting matrix and composting process did not significantly affect inactivation rate of pathogenic bacteria during the process but affected the damaging part of the bacteria.

  1. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.

    PubMed

    Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian

    2013-11-01

    In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Utilization of Cacao Pod Husk (Theobroma cacao l.) as Activated Carbon and Catalyst in Biodiesel Production Process from Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Rachmat, Devita; Johar Mawarani, Lizda; Dewi Risanti, Doty

    2018-01-01

    Cocoa pod husk (Theobroma cacao l.) is a waste from cocoa beans processing. In this research we employ cocoa pod husk as activated carbon to decrease the value of FFA (Free Fatty Acid) in waste cooking oil and as K2CO3 catalyst in biodiesel production process from waste cooking oil. Cocoa pod husk was crusched and grounded into powder that passed thorugh 60 mesh-screen. As activated carbon, cocoa pod husk was firstly carbonized at three variant temperatures i.e 250°C, 300°C and 350°C. The activation process was done using HCl 2M as activator. Based on the results of XRD and FTIR, the carbonization at all variant temperatures does not cause a significant changes in terms of crystallite structure and water content. The pore of activated carbon started to form in sample that was carbonized at 350°C resulting in pore diameter of 5.14644 nm. This result was supported by the fact that the ability of this activated carbon in reducing the FFA of waste cooking oil was the most pronounced one, i.e. up to 86.7% of FFA. It was found that the performance of cocoa pod husk’s activated carbon in reducing FFA is more effective than esterification using H2SO4 which can only decrease 80.8%. On the other hand, the utilization as K2CO3 catalyst was carried out by carbonization at temperature 650°C and extraction using aquadest solvent. The extraction of cocoa pod husk produced 7.067% K2CO3 catalyst. According to RD results the fraction of K2CO3 compound from the green catalysts is the same as the commercial (SAP, 99%) that is ≥ 60%. From the obtained results, the best yield percentage was obtained using K2CO3 catalyst from cacao pod husk extract, i.e. 73-85%. To cope with biodiesel conversion efficiency, a two-step process consisting pretreatment with activated carbon carbonized at 350°C and esterification with K2CO3 from cocoa pod husk catalyst was developed. This two-step process could reach a high conversion of 85%. From the results it was clear that the produced

  3. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  4. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  5. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  6. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis.

    PubMed

    Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi

    2018-01-01

    Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1  h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.

  7. Transgenic cry1C(⁎) gene rough rice line T1C-19 does not change the host preferences of the non-target stored product pest, Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae), and its parasitoid wasp, Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae).

    PubMed

    Sun, Xiao; Yan, Miao-Jun; Zhang, Aijun; Wang, Man-Qun

    2015-10-01

    Rough rice grains are often stored for extended periods before they are used or consumed. However, during storage, the rough rice is vulnerable to insect infestation, resulting in significant economic loss. Previous studies have shown that volatiles cues, physical characteristics, and taste chemicals on the grains could be the important key behavior factors for storage insect pests to locate the hosts and select oviposition sites. It is also well known that the transgenic Bt rough rice line T1C-19, which expresses a cry1C(⁎) gene has a high resistance to Lepidoptera pests. However, there were no evidences to show the consequences of host preference for non-target insect pests after growing Bt transgenic rice. In this study, the potential key factors of Bt rough rice were investigated for their impacts on the behaviors of non-target pest lesser grain borer Rhyzopertha dominica, the main weevil pest of grain and its parasitic wasps Anisopteromalus calandrae, the natural enemy of the beetle. Both electronic nose and electronic tongue analyses showed that the parameters of Bt rough rice were analogous to those of the non-Bt rough rice. The volatile profiles of Bt and non-Bt rough rice examined by gas chromatographic mass spectrometry (GC-MS) were similar. For most volatile compounds, there were no significantly quantitative differences in compound quantities between Bt and non-Bt rough rice. The densities of sclereids and trichomes on the rough rice husk surface were statistically equal in Bt and non-Bt rough rice. The non-target pest, R. dominica, and its parasitoid wasp, A. calandrae, were attracted to both rough rice and could not distinguish the transgenic T1C-19 from the isogenic rough rice. These results demonstrated that Bt rough rice has no negative impacts on the host preference behaviors of non-target stored product pest R. dominica and its parasitoid A. calandrae. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The spatial distribution of riparian ash: implications for the dispersal of the emerald ash borer

    Treesearch

    Susan J. Crocker; W. Keith Moser; Mark H. Hansen; Mark D. Nelson

    2007-01-01

    A pilot study to assess riparian ash connectivity and its implications for emerald ash borer dispersal was conducted in three subbasins in Michigan's Southern Lower Peninsula. Forest Inventory and Analysis data were used to estimate ash biomass. The nineteen percent of plots in riparian physiographic classes contained 40 percent of ash biomass. Connectivity of...

  9. Large-scale reintroduction of ash

    Treesearch

    Ronald. Overton

    2010-01-01

    No strategies currently exist for reintroducing ash; progression of emerald ash borer (EAB) through the eastern United States is likely to be a decades-long process, and extirpation of ash from this area is likely to take even longer. Reintroduction of ash into areas where it has been extirpated by EAB will require addressing technical issues as well as social and...

  10. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer

    Treesearch

    Justin G.A. Whitehill; Alexandra Popova-Butler; Kari B. Green-Church; Jennifer L. Koch; Daniel A. Herms; Pierluigi Bonello

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F....

  11. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE PAGES

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  12. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  13. Blueberry husks, rye bran and multi-strain probiotics affect the severity of colitis induced by dextran sulphate sodium.

    PubMed

    Håkansson, Asa; Bränning, Camilla; Adawi, Diya; Molin, Göran; Nyman, Margareta; Jeppsson, Bengt; Ahrné, Siv

    2009-01-01

    The enteric microbiota is a pivotal factor in the development of intestinal inflammation in humans but probiotics, dietary fibres and phytochemicals can have anti-inflammatory effects. The aim of this study was to evaluate the therapeutic effect of multi-strain probiotics and two conceivable prebiotics in an experimental colitis model. Sprague-Dawley rats were fed a fibre-free diet alone or in combination with Lactobacillus crispatus DSM 16743, L. gasseri DSM 16737 and Bifidobacterium infantis DSM 15158 and/or rye bran and blueberry husks. Colitis was induced by 5% dextran sulphate sodium (DSS) given by oro-gastric tube. Colitis severity, inflammatory markers, gut-load of lactobacilli and Enterobacteriaceae, bacterial translocation and formation of carboxylic acids (CAs) were analysed. The disease activity index (DAI) was lower in all treatment groups. Viable counts of Enterobacteriaceae were reduced and correlated positively with colitis severity, while DAI was negatively correlated with several CAs, e.g. butyric acid. The addition of probiotics to blueberry husks lowered the level of caecal acetic acid and increased that of propionic acid, while rye bran in combination with probiotics increased caecal CA levels and decreased distal colonic levels. Blueberry husks with probiotics reduced the incidence of bacterial translocation to the liver, colonic levels of myeloperoxidase, malondialdehyde and serum interleukin-12. Acetic and butyric acids in colonic content correlated negatively to malondialdehyde. A combination of probiotics and blueberry husks or rye bran enhanced the anti-inflammatory effects compared with probiotics or dietary fibres alone. These combinations can be used as a preventive or therapeutic approach to dietary amelioration of intestinal inflammation.

  14. Rice-Map: a new-generation rice genome browser.

    PubMed

    Wang, Jun; Kong, Lei; Zhao, Shuqi; Zhang, He; Tang, Liang; Li, Zhe; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge

    2011-03-30

    The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. More than one hundred annotation tracks (81 for japonica and 82 for indica) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading.

  15. Broken rice kernels and the kinetics of rice hydration and texture during cooking.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2013-05-01

    During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.

  16. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.

    PubMed

    Andrade, Kátia S; Gonçalvez, Ricardo T; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria; Martínez, Julian; Ferreira, Sandra R S

    2012-01-15

    The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less

  18. Investigating differences in light stable isotopes between Thai jasmine rice and Sungyod rice

    NASA Astrophysics Data System (ADS)

    Kukusamude, C.; Kongsri, S.

    2017-10-01

    We report the differences in light stable isotopes between two kinds of Thai rice (Thai jasmine and Sungyod rice). Thai jasmine rice and Sungyod rice were cultivated in the northeast and the south of Thailand. Light isotopes including 13C, 15N and 18O of Thai jasmine rice and Sungyod rice samples were carried out using isotope ratio mass spectrometry (IRMS). Thai jasmine rice (Khao Dawk Mali 105) was cultivated from Thung Kula Rong Hai area, whereas Sungyod rice was cultivated from Phathalung province. Hypothesis testing of difference of each isotope between Thai jasmine rice and Sungyod rice was also studied. The study was the feasibility test whether the light stable isotopes can be the variables to identify Thai jasmine rice and Sungyod rice. The result shows that there was difference in the isotope patterns of Thai jasmine rice and Sungyod rice. Our results may provide the useful information in term of stable isotope profiles of Thai rice.

  19. The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.

    2017-11-01

    This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.

  20. Compressive strength of concrete by partial replacement of cement with metakaolin

    NASA Astrophysics Data System (ADS)

    Ganesh, Y. S. V.; Durgaiyya, P.; Shivanarayana, Ch.; Prasad, D. S. V.

    2017-07-01

    Metakaolin or calcined kaolin, other type of pozzolan, produced by calcination has the capability to replace silica fume as an alternative material. Supplementary cementitious materials have been widely used all over the world in concrete due to their economic and environmental benefits; hence, they have drawn much attention in recent years. Mineral admixtures such as fly ash, rice husk ash, silica fume etc. are more commonly used SCMs. They help in obtaining both higher performance and economy. Metakaolin is also one of such non - conventional material, which can be utilized beneficially in the construction industry. This paper presents the results of an experimental investigations carried out to find the suitability of metakaolin in production of concrete. In the present work, the results of a study carried out to investigate the effects of Metakaolin on compressive strength of concrete are presented. The referral concrete M30 was made using 43 grade OPC and the other mixes were prepared by replacing part of OPC with Metakaolin. The replacement levels were 5%, 10%, 15% and 20%(by weight) for Metakaolin. The various results, which indicate the effect of replacement of cement by metakalion on concrete, are presented in this paper to draw useful conclusions.

  1. Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review

    NASA Astrophysics Data System (ADS)

    Tambichik, M. A.; Mohamad, N.; Samad, A. A. A.; Bosro, M. Z. M.; Iman, M. A.

    2018-04-01

    Green Concrete (GC) is defined as a concrete that utilize a waste material for at least one of its component. The production of GC has been increasing due to the drawback of conventional concrete that create many environmental problems. In Malaysia, the amount of waste generates from agricultural and construction industries were increasing every year. Hence, one of the solutions to reduce the impact of conventional concrete and limited landfill spaces due to excessive waste is by utilizing it in concrete. This paper reviews the possible use of construction waste (Recycle Concrete Aggregate) and agricultural waste (Palm Oil Fuel Ash, Rice Husk Ash and Palm Oil Fibre) as partial replacement for the basic material in a concrete to produce an innovative Green Concrete. The optimum replacement level for each type of waste was also been review. Green Concrete also has the potential to reduce environmental pollution and solve the depletion of natural sources. The result from this review shows that the addition of agricultural waste or construction waste in concrete indicate positive and satisfactory strength when compared to normal concrete. Finally, a mass production of Green Concrete can fulfil the Construction Industry Transformation Plan (CITP) 2016-2020 made by CIDB that emphasizes on a construction system which is environmentally sustainable.

  2. Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review

    PubMed Central

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive. PMID:24688443

  3. Mechanical characteristics of hardened concrete with different mineral admixtures: a review.

    PubMed

    Ayub, Tehmina; Khan, Sadaqat Ullah; Memon, Fareed Ahmed

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive.

  4. Quality assessment of dry noodles made from blend of mocaf flour, rice flour and corn flour

    NASA Astrophysics Data System (ADS)

    Afifah, N.; Ratnawati, L.

    2017-12-01

    Mocaf flour, rice flour, and corn flour in different concentrations were used to produce dry noodles. The aims of this study were to investigate physicochemical properties of the flours and the quality characteristics of dry noodles made from these flours. Dry noodles were prepared by gelatinization of blending flours followed by feeding the dough to extruder and drying overnight in room temperature. Flours were analyzed for chemical and pasting properties and noodle samples were evaluated for chemical, cooking, and texture properties. The results showed there were significant differences in protein content and elongation between noodles made from blending mocaf and rice flour with that of blending mocaf, rice, and corn flour. The moisture, ash, and protein content of noodle samples ranged from 10.98 to 14.18%, 1.23 to 1.39%, and 4.09 to 5.58%, respectively. Values of noodle cooking quality were ranging from 12.0 - 13.8 minutes, 10.6 to 14.3%, and 204 to 248%, respectively for cooking time, cooking loss, and cooking weight. The elongation, hardness, and adhesiveness of noodles ranged from 276 to 374%, 3,523 to 10,478 gf, and -81.99 to -52.49 g.sec.

  5. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  6. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development.

    PubMed

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L; Vega-Sánchez, Miguel E; Williams, Brian; Chiniquy, Dawn M; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G; Willats, William G T; Scheller, Henrik V; Ronald, Pamela C; Bartley, Laura E

    2016-10-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Synthesis and characterization of zeolites prepared from industrial fly ash.

    PubMed

    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata

    2014-09-01

    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol · dm(-3) NaOH + 0.4 dm(3) of 3 mol · dm(-3) NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2) · g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2) · g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq · g(-1), Na-P1 at 0.72 meq · g(-1), and sodalite at 0.56 meq · g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination.

  8. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice.

    PubMed

    Zheng, Guowei; Li, Lixia; Li, Weiqi

    2016-03-22

    Glycerolipids are the principal constituent of cellular membranes; remodelling of glycerolipids plays important roles in temperature adaptation in plants. Temperate plants can endure freezing stress, but even chilling at above-zero temperatures can induce death in tropical species. However, little is known about the differences in glycerolipid response to low temperatures between chilling-sensitive and freezing-tolerant plants. Using ESI-MS/MS-based lipidomic analysis, we compared the glycerolipidome of chilling (4 and 10 °C)-treated rice with that of freezing (-6 and -12 °C)-treated Arabidopsis, both immediately after these low-temperature treatments and after a subsequent recovery culture period. Arabidopsis is a 16:3 plant that harbours both eukaryotic and prokaryotic-type lipid synthesis pathways, while rice is an 18:3 plant that harbours only the eukaryotic lipid synthesis pathway. Arabidopsis contains higher levels of galactolipids than rice and has a higher double bond index (DBI). Arabidopsis contains lower levels of high melting point phosphatidylglycerol (PG) molecules and has a lower average acyl chain length (ACL). Marked phospholipid degradation occurred during the recovery culture period of non-lethal chilling treated rice, but did not occur in non-lethal freezing treated Arabidopsis. Glycerolipids with larger head groups were synthesized more in Arabidopsis than in rice at sub-lethal low-temperatures. Levels of phosphatidic acid (PA) and phosphatidylinositol (PI) rose in both plants after low-temperature treatment. The DBI and ACL of total lipids did not change during low-temperature treatment. A higher DBI and a lower ACL could make the membranes of Arabidopsis more fluid at low temperatures. The ability to synthesize glycerolipids containing a larger head group may correlate with low-temperature tolerance. The low-temperature-induced increase of PA may play a dual role in plant responses to low temperatures: as a lipid signal that initiates

  9. Making sense of HUSK: practice implications for social change initiatives.

    PubMed

    McBeath, Bowen

    2015-01-01

    As an exemplar of bottom-up progressive social experimentation, HUSK provides opportunities to examine how innovative practice is supported and challenged in bureaucratic settings. In this analysis the author uses a sensemaking lens to identify critical issues and questions for those seeking to promote progressive change initiative in social welfare systems. Findings identify essential organizational and managerial supports needed to support service user voice and participation and reinforce the importance of reflexivity in practice and research.

  10. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    PubMed

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  11. Morphology and petrography of volcanic ashes.

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1972-01-01

    Study of volcanic ash samples collected from a variety of recent eruptions using petrography, chemical analyses, and scanning electron microscopy to characterize each type and to relate ash morphology to magma composition and the type of eruption. The ashes are placed in the broad genetic categories of magmatic and phreatomagmatic. The morphology of ash particles from magmatic eruptions of high viscosity magma is governed primarily by vesicle density and shape. Ash particles from eruptions of low viscosity magmas are mostly droplets. The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles.

  12. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    USDA-ARS?s Scientific Manuscript database

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  13. Coffee husk composting: An investigation of the process using molecular and non-molecular tools

    PubMed Central

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H.; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-01-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. PMID:24369846

  14. Impacts of integrated nutrient management on methane emission, global warming potential and carbon storage capacity in rice grown in a northeast India soil.

    PubMed

    Bharali, Ashmita; Baruah, Kushal Kumar; Baruah, Sunitee Gohain; Bhattacharyya, Pradip

    2018-02-01

    Rice soil is a source of emission of two major greenhouse gases (methane (CH 4 ) and nitrous oxide (N 2 O)) and a sink of carbon dioxide (CO 2 ). The effect of inorganic fertilizers in combination with various organics (cow dung, green manure (Sesbania aculeata) Azolla compost, rice husk) on CH 4 emission, global warming potential, and soil carbon storage along with crop productivity were studied at university farm under field conditions. The experiment was conducted in a randomized block design for 2 years in a monsoon rice (cv. Ranjit) ecosystem (June-November, 2014 and 2015). Combined application of inorganic (NPK) with Sesbania aculeata resulted in high global warming potential (GWP) of 887.4 kg CO 2 ha -1 and low GWP of 540.6 kg CO 2 ha -1 was recorded from inorganic fertilizer applied field. Irrespective of the type of organic amendments, flag leaf photosynthesis of the rice crop increased over NPK application (control). There was an increase in CH 4 emission from the organic amended fields compared to NPK alone. The combined application of NPK and Azolla compost was effective in the buildup of soil carbon (16.93 g kg -1 ) and capacity of soil carbon storage (28.1 Mg C ha -1 ) with high carbon efficiency ratio (16.9). Azolla compost application along with NPK recorded 15.66% higher CH 4 emission with 27.43% yield increment over control. Azolla compost application significantly enhanced carbon storage of soil and improved the yielding ability of grain (6.55 Mg ha -1 ) over other treatments.

  15. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    PubMed

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  16. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    PubMed

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Biogas purification with biomass ash.

    PubMed

    Fernández-Delgado Juárez, M; Mostbauer, P; Knapp, A; Müller, W; Tertsch, S; Bockreis, A; Insam, H

    2018-01-01

    The aim of the study was to investigate the option to purify biogas from small-scale biogas plants by entrapping CO 2 and H 2 S with regionally available biomass ash. Connected to the existing biogas plant Neustift (Tyrol) wood ash placed in a 1 m 3 container was used as a trap for CO 2 and H 2 S in the biogas. With the process conditions chosen, for a period of a few hours CO 2 was trapped resulting in pure methane. The removal of H 2 S was much longer-lasting (up to 34 d). The cumulative H 2 S uptake by the biomass ash ranged from 0.56 to 1.25 kg H 2 S per ton of ash. The pH of the ash and the leachability of Lead and Barium were reduced by the flushing with biogas, however toxicity towards plants was increased thus reducing the potential of ash use in agriculture. It can be concluded that biomass ash may be used for removal of hydrogen sulphide from biogas in small and medium biogas plants. The economic evaluation, however, indicated that the application of this system is limited by transport distances for the ash and its potential use afterwards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characterization of zeolites synthesized from porous wastes using hydrothermal agitational leaching assisted by magnetic separation

    NASA Astrophysics Data System (ADS)

    Top, Soner; Vapur, Huseyin; Ekicibil, Ahmet

    2018-07-01

    In this study, zeolite Na-P1 synthesis from the fly ashes (FA) taken from dust catcher in Sugözü thermic power plant was researched. The structural and magnetic characteristics of the synthesized materials were studied by using the XRD, SEM, EDS, CEC, TGA, DTA, DSC and M-H techniques. High intensity wet magnetic separation was applied to the ashes at different magnetic field intensities. 61% of the iron oxide impurity (Fe2O3) was removed by single-stage high intensity wet magnetic separation at 1.5 T. Non-magnetic phase was accumulated in order to leach in alkali medium. 2 M NaOH was used as the synthesizing solution. Solid-liquid ratio was 0.3 kg:1 L. It was determined that the zeolitization degrees of the products depend on the reaction time. Zeolite Na-P1 (Na6Al6Si10O32·12H2O) which is the member of the group P zeolites was the dominant species after 10 h reaction time. Additionally, gismondine (Ca2Al4Si4O16·9H2O) presence was observed in the products. It was found out that the ferromagnetisms of the products were weakened by elapsed time. The CEC values of the synthesized products were the superior grades ranging from 269.63 meq/100 g to 388.85 meq/100 g.

  19. Relating raw rice color and composition to cooked rice color.

    USDA-ARS?s Scientific Manuscript database

    Traditionally, the color of milled rice is economically important. The whiter the rice the more it is preferred by consumers and the more value it has in the market place. Little attention has been given to relating raw rice color to cooked milled rice color and, specifically, to determining the i...

  20. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry

    Treesearch

    Yigen Chen; Justin G.A. Whitehill; Pierluigi Bonello; Therese M. Poland

    2011-01-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region...

  1. RiceAtlas, a spatial database of global rice calendars and production.

    PubMed

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  2. High-volume fly ash concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of the proposed study is to design, test, and evaluate high-volume fly ash concrete mixtures. Traditional specifications : limit the amount of fly ash to 40% or less cement replacement. This program attempts to increase the ash content ...

  3. Emerald ash borer biocontrol in ash saplings: The potential for early stage recovery of North American ash trees

    Treesearch

    Jian J. Duan; Leah S. Bauer; Roy G. Van Driesche

    2017-01-01

    In many parts of North America, ash (Fraxinus) stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees, saplings, basal sprouts, and seedlings. Without a soil seed bank for Fraxinus spp., tree recovery will require survival and maturation of these...

  4. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  5. Determination of anisotropy and multimorphology in fly ash based geopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my

    2015-07-22

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  6. Determination of anisotropy and multimorphology in fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Khan, M. Irfan; Azizli, Khairun; Sufian, Suriati; Man, Zakaria; Siyal, Ahmer Ali; Ullah, Hafeez

    2015-07-01

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  7. Ash cloud aviation advisories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet andmore » every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.« less

  8. Cacao pod husks as a source of low-methoxyl, highly acetylated pectins able to gel in acidic media.

    PubMed

    Vriesmann, Lúcia Cristina; de Oliveira Petkowicz, Carmen Lúcia

    2017-08-01

    Cacao pod husks, the main by-product from cocoa production, have been investigated for pectin isolation. In the present study, the rheological properties of two low-methoxyl (LM) pectins isolated from cacao pod husks using different extraction conditions were evaluated. One pectin was obtained from optimized conditions employing aqueous nitric acid as an extractant, and the other one was extracted with boiling water. Pectin gels (0.99% galacturonic acid equivalent, w/w) were prepared at pH 2.5-3.0 in the presence of 60% sucrose (w/w) and subjected to rheological analysis. Dynamic oscillatory experiments at 25°C indicated that better gels were obtained at the lowest pH (2.5). Steady shear measurements revealed a shear-thinning behavior. The apparent viscosities of the samples increased as pH decreased. Gelation with calcium ions was not observed for either of the highly acetylated LM pectins analyzed. The rheological analysis results showed that despite their high acetyl content, LM pectins extracted by different methods from cacao pod husks were able to form gels at low pH under reduced water activity, suggesting a possible application in acidic products. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu

    2015-05-01

    High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  10. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    USDA-ARS?s Scientific Manuscript database

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  11. Can herbicide safeners allow selective control of weedy rice infesting rice crops?

    PubMed

    Busi, Roberto; Nguyen, Nghia K; Chauhan, Bhagirath S; Vidotto, Francesco; Tabacchi, Maurizio; Powles, Stephen B

    2017-01-01

    Rice is a major field crop of paramount importance for global food security. However, the increased adoption of more profitable and resource-efficient direct-seeded rice (DSR) systems has contributed to greater weed infestations, including weedy rice, which has become a severe problem in several Asian regions. In this study we have developed a conceptually novel method to protect rice plants at high doses of clomazone and triallate. The insecticide phorate applied to rice seeds provided a substantial level of protection against the herbicides clomazone or triallate. A quantity of 15 kg phorate ha -1 significantly increased the LD 50 values, which were more than twofold greater than for rice plants treated only with clomazone. A quantity of 20 kg phorate ha -1 in combination with 2000 g triallate ha -1 safened rice plants (80% survival) with LD 50 >3.4-fold greater than in phorate-untreated rice. Weed control efficacy was not lowered by the presence of phorate-treated rice seeds. Weedy rice is one of the most damaging global weeds and a major threat to DSR systems. In this study we have developed a proof-of-concept method to allow selective weedy rice control in rice crops. We call for herbicide discovery programmes and research to identify candidate safener and herbicide combinations to achieve selective herbicide control of weedy rice and alleviate weed infestations in global rice crops. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Utilization of Cocoa Pod Husk Waste Composting by Tremella Sp and Pleurotus Sp as A Medium to Growth of Cocoa Seedling

    NASA Astrophysics Data System (ADS)

    Rahim, Iradhatullah; Nasruddin, A.; Kuswinanti, T.; Asrul, L.; Rasyid, B.

    2018-05-01

    Cocoa pod husk waste is a problem in the cocoa field, but it potentially as a source of organic matter to improve soil fertility.The paper discuss about the ability of Tremella sp and Pleurotus sp on producing phytohormone and on degrading cocoa pod husks waste. The research start with isolation, screening, and propagation of rot fungi were collected from decayed cocoa plants. The measurement of IAA is according to the method of Glickman and Dessaux (1995), by addition of L-Tryptophan 0.1 g l-1, whereas the Gibberellic Acid content was measured by using the method of Borrow et al., (1955). Composting process of cocoa pod husks waste was revealed during 40 days. This research showed that the IAA and GA3 content in compost fermented with Tremella sp was higher than treatment with Pleurotus sp. Similarly, the result was also observed in the ability of hemicellulose degradation. However, Pleurotus sp was capable to produce compost with higher nutrient levels. Compost fermented by rot fungi gave significant effect to the growth of cocoa seedlings. Nevertheless the difference in varieties of cocoa had no effect on growth of cocoa seedlings. Cocoa pod husk waste composted by Tremella sp and Pleurotus sp gave the significant effect on Leaf Area Index (LAI), Net Assimilation Rate (NAR), Crop Growth Rate (CGR), Root-shoot ratio, and root dry weight of Cocoa seedling.

  13. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.

    PubMed

    Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong

    2017-08-24

    Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.

  14. Binding of iron, zinc, and lead ions from aqueous solution by shea butter (Butyrospermun Parkii) seed husks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eromosele, I.C.; Otitolaye, O.O.

    1994-08-01

    Several workers have reported on the potential use of agricultural products as substrates for the removal of metal ions from aqueous solutions. These studies demonstrated that considerable amounts of metal ions can be removed from aqueous solutions by cellulosic materials. The merit in the use of the latter is their relative abundance and cheapness compared to conventional materials for the removal of toxic metal ions from waste-waters. In some of the studies, chemical modification of cellulosic materials significantly enhanced their ion-binding properties, providing greater flexibility in their applications to a wide range of heavy metal ions. Shea butter plant (Butyrospermunmore » Parkii) normally grows in the wild within the guinea-savana zone of Nigeria. The seeds are a rich source of edible oils and the husks are usually discarded. The husk is thus available in abundance and, hence, there is reason to examine its ion-binding properties for its possible application in the removal of toxic metal ions from industrial waste-waters. This paper reports on preliminary studies of the sorption of iron, zinc and lead ions from aqueous solution by modified and unmodified shea butter seed husks. 8 refs., 5 figs., 1 tab.« less

  15. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  16. Can the co-cultivation of rice and fish help sustain rice production?

    NASA Astrophysics Data System (ADS)

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-06-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability.

  17. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    PubMed

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Pesticide residue analysis of soil, water, and grain of IPM basmati rice.

    PubMed

    Arora, Sumitra; Mukherji, Irani; Kumar, Aman; Tanwar, R K

    2014-12-01

    The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008-2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (<0.001-0.05 μg/g) in all 24 samples of rice grains and soil under IPM and non-IPM trials. Residues were below detection level (<0.001-0.05 μg/L) in irrigation water samples (2008-09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (<0.001-0.05 μg/g) in all 40 samples of Basmati rice grains and soil. It was also observed as BDL (<0.001-0.05 μg/L) for 12 water samples (2009-2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (<0.001-0.05 μg/g) in 40 samples of Basmati rice grains and soil and 12 water samples (<0.001-0.05 μg/L) (2010-2011).

  19. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  20. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water