Science.gov

Sample records for rich microsecond isomers

  1. New Isomers in the Neutron-Rich Region Beyond 208Pb

    NASA Astrophysics Data System (ADS)

    Gottardo, A.; Valiente-Dobón, J. J.; Benzoni, G.; Gadea, A.; Lunardi, S.; Boutachkov, P.; Bruce, A. M.; Górska, M.; Grebosz, J.; Pietri, S.; Podolyák, Zs.; Pfützner, M.; Regan, P. H.; Weick, H.; Alcántara Núñez, J.; Algora, A.; Al-Dahan, N.; de Angelis, G.; Ayyad, Y.; Alkhomashi, N.; Allegro, P. R. P.; Bazzacco, D.; Benlliure, J.; Bowry, M.; Bracco, A.; Bunce, M.; Camera, F.; Casarejos, E.; Cortes, M. L.; Crespi, F. C. L.; Corsi, A.; Bacelar, A. M. Denis; Deo, A. Y.; Domingo-Pardo, C.; Doncel, M.; Dombradi, Zs.; Engert, T.; Eppinger, K.; Farrelly, G. F.; Farinon, F.; Farnea, E.; Geissel, H.; Gerl, J.; Goel, N.; Gregor, E.; Habermann, T.; Hoischen, R.; Janik, R.; John, P. R.; Klupp, S.; Kojouharov, I.; Kurz, N.; Lenzi, S. M.; Leoni, S.; Mandal, S.; Menegazzo, R.; Mengoni, D.; Million, B.; Modamio, V.; Morales, A. I.; Napoli, D. R.; Naqvi, F.; Nicolini, R.; Nociforo, C.; Prochazka, A.; Prokopowicz, W.; Recchia, F.; Ribas, R. V.; Reed, M. W.; Rudolph, D.; Sahin, E.; Schaffner, H.; Sharma, A.; Sitar, B.; Siwal, D.; Steiger, K.; Strmen, P.; Swan, T. P. D.; Szarka, I.; Ur, C. A.; Walker, P. M.; Wieland, O.; Wollersheim, H.-J.

    2014-03-01

    The region of neutron-rich nuclei beyond 208Pb has been very difficult to explore due to its high mass and exoticity. However, recent experimental improvements allowed one to perform a quite extended isomer decay spectroscopy of these nuclei.

  2. Observation of new K isomers among neutron-rich rare earth nuclei produced by in-flight fission of 345 MeV/nucleon 238U

    NASA Astrophysics Data System (ADS)

    Kameda, Daisuke; Kubo, Toshiyuki; BigRIPS new isotope Collaboration

    2014-09-01

    We have performed search for new K isomers for a wide range of neutron-rich rare earth nuclei using the BigRIPS separator at RIKEN RIBF. The rare earth nuclei were produced by in-flight fission of a 238U beam at 345 MeV/nucleon, and isomeric gamma rays were detected using four clover-type germanium detectors. As a result, we have observed a total of 25 new microsecond isomers: 158 m , 159 m , 160 mNd, 158 m , 159 m , 161 mPm, 160 m , 161 m , 162 mSm, 163 m , 164 mEu, 162 m , 164 m , 165 m , 166 mGd, 164 m , 165 m , 166 m , 167 m , 168 mTb, 167 m , 168 m , 169 m , 170 mDy, and 171mHo, and obtained a wealth of spectroscopic information on these nuclei. The nuclei in this region are predicted to be well deformed with a prolate shape, and Kisomers are expected to appear due to the K hindrance. In the present measurement, as anticipated, many of the observed new isomers have been interpreted as a K isomer, because we could identify some gamma rays which belong to the grand-state rotational band being fed by isomeric transitions. The systematics of known K isomers, such as those in neighboring higher- Zisotones, also help and support the interpretation of isomerism. Here we will report on the details of the experimental results and discuss the possible configurations of deformed orbits for the observed new K isomers.

  3. New μs isomers in the neutron-rich 210Hg nucleus

    NASA Astrophysics Data System (ADS)

    Gottardo, A.; Valiente-Dobón, J. J.; Benzoni, G.; Gadea, A.; Lunardi, S.; Boutachkov, P.; Bruce, A. M.; Górska, M.; Grebosz, J.; Pietri, S.; Podolyák, Zs.; Pfützner, M.; Regan, P. H.; Weick, H.; Alcántara Núñez, J.; Algora, A.; Al-Dahan, N.; de Angelis, G.; Ayyad, Y.; Alkhomashi, N.; Allegro, P. R. P.; Bazzacco, D.; Benlliure, J.; Bowry, M.; Bracco, A.; Bunce, M.; Camera, F.; Casarejos, E.; Cortes, M. L.; Crespi, F. C. L.; Corsi, A.; Denis Bacelar, A. M.; Deo, A. Y.; Domingo-Pardo, C.; Doncel, M.; Dombradi, Zs.; Engert, T.; Eppinger, K.; Farrelly, G. F.; Farinon, F.; Farnea, E.; Geissel, H.; Gerl, J.; Goel, N.; Gregor, E.; Habermann, T.; Hoischen, R.; Janik, R.; John, P. R.; Klupp, S.; Kojouharov, I.; Kurz, N.; Lenzi, S. M.; Leoni, S.; Mandal, S.; Menegazzo, R.; Mengoni, D.; Million, B.; Modamio, V.; Morales, A. I.; Napoli, D. R.; Naqvi, F.; Nicolini, R.; Nociforo, C.; Prochazka, A.; Prokopowicz, W.; Recchia, F.; Ribas, R. V.; Reed, M. W.; Rudolph, D.; Sahin, E.; Schaffner, H.; Sharma, A.; Sitar, B.; Siwal, D.; Steiger, K.; Strmen, P.; Swan, T. P. D.; Szarka, I.; Ur, C. A.; Walker, P. M.; Wieland, O.; Wollersheim, H.-J.

    2013-10-01

    Neutron-rich nuclei in the lead region, beyond N = 126, have been studied at the FRS-RISING setup at GSI, exploiting the fragmentation of a primary uranium beam. Two isomeric states have been identified in 210Hg: the 8+ isomer expected from the seniority scheme in the νg9/2 shell and a second one at low spin and low excitation energy. The decay strength of the 8+ isomer confirms the need of effective three-body forces in the case of neutron-rich lead isotopes. The other unexpected low-lying isomer has been tentatively assigned as a 3- state, although this is in contrast with theoretical expectations.

  4. Isomers in Neutron-Rich A ?? 190 NNuclides from 208Pb Fragmentation

    SciTech Connect

    Caamano, M.; Walker, P. M.; Regan, P. H.; Pfutzner, M.; Podolyak, Zs.; Gerl, J.; Hellstrom, M.; Mayet, P.; Mineva, M. N.; Aprahamian, A.; Benlliure, J.; Bruce, A. M.; Butler, P. A.; Cortina Gil, D.; Cullen, D. M.; Doring, J.; Enqvist, T.; Fox, C.; Garces Narro, J.; Geissel, H.; Gelletly, W.; Giovinazzo, J.; Grawe, H.; Grzywacz, R.; Kleinbohl, A.; Korten, W.; Lewitowicz, M.; Lucas, R.; Mach, H.; O'Leary, C. D.; De Oliveira, F.; Pearson, C. J.; Rejmund, F.; Rejmund, M.; Sawicka, M.; Schaffner, H.; Schlegel, C.; Schmidt, K.; Schmidt, K.-H.; Stevenson, P. D.; Theisen, Ch.; Vives, F.; Warner, D. D.; Wheldon, C.; Wollersheim, H. J.; Wooding, S.; Xu, F.; Yordanov, O.

    2005-01-01

    Relativistic projectile fragmentation of {sup 208}Pb has been used to produce isomers in neutron-rich, A {approx} 190 nuclides. A forward-focusing spectrometer provided ion-by-ion mass and charge identification. The detection of gamma-rays emitted by stopped ions has led to the assignment of isomers in {sup 188}Ta, {sup 190}W, {sup 192}Re, {sup 193}Re, {sup 195}Os, {sup 197}Ir, {sup 198}Ir, {sup 200}Pt, {sup 201}Pt, {sup 202}Pt and {sup 203}Au, with half-lives ranging from approximately 10 ns to 1 ms. Tentative isomer information has been found also for {sup 174}Er, {sup 175}Er, {sup 185}Hf, {sup 191}Re, {sup 194}Re and {sup 199}Ir. In most cases, time-correlated, singles gamma-ray events provided the first spectroscopic data on excited states for each nuclide. In {sup 200}Pt and {sup 201}Pt, the assignments are supported by gamma-gamma coincidences. Isomeric ratios provide additional information, such as half-life and transition energy constraints in particular cases. The level structures of the platinum isotopes are discussed, and comparisons are made with isomer systematics.

  5. Searching for high-K isomers in the proton-rich A ∼ 80 mass region

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Jun; Jiao, Chang-Feng; Gao, Yuan; Xu, Fu-Rong

    2016-09-01

    Configuration-constrained potential-energy-surface calculations have been performed to investigate the K isomerism in the proton-rich A ∼ 80 mass region. An abundance of high-K states are predicted. These high-K states arise from two and four-quasi-particle excitations, with Kπ = 8+ and Kπ = 16+, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under study are prolate spheroids in their ground states, the oblate shapes of the predicted high-K states may indicate a combination of K isomerism and shape isomerism. Supported by National Key Basic Research Program of China (2013CB834402) and National Natural Science Foundation of China (11235001, 11320101004 and 11575007)

  6. Searching for high-K isomers in the proton-rich A ˜ 80 mass region

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Jun; Jiao, Chang-Feng; Gao, Yuan; Xu, Fu-Rong

    2016-09-01

    Configuration-constrained potential-energy-surface calculations have been performed to investigate the K isomerism in the proton-rich A ˜ 80 mass region. An abundance of high-K states are predicted. These high-K states arise from two and four-quasi-particle excitations, with Kπ = 8+ and Kπ = 16+, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under study are prolate spheroids in their ground states, the oblate shapes of the predicted high-K states may indicate a combination of K isomerism and shape isomerism. Supported by National Key Basic Research Program of China (2013CB834402) and National Natural Science Foundation of China (11235001, 11320101004 and 11575007)

  7. 6+ isomers in neutron-rich Sn isotopes beyond N =82 and effective interactions

    NASA Astrophysics Data System (ADS)

    Maheshwari, Bhoomika; Jain, Ashok Kumar; Srivastava, P. C.

    2015-02-01

    Recent observation of the 6+ seniority isomers and measurements of the B (E 2 ) values in the Sn-138134 isotopes lying close to the neutron drip line have raised some questions about the validity of the currently used effective interactions in the neutron-rich region. Simpson et al. [Phys. Rev. Lett. 113, 132502 (2014), 10.1103/PhysRevLett.113.132502] had to modify the diagonal and nondiagonal ν f7/2 2 two-body matrix elements of the V l k interaction by ˜150 keV in their shell model calculations in order to explain the data of 136Sn. In contrast, we are able to explain the observed energy levels and the B (E 2 ) values after marginal reduction of the same set of matrix elements by 25 keV in the RCDB (renormalized CD-Bonn) interaction. The observed mismatch in reproducing the data of 136Sn is due to the seniority mixing. Further, we do not find it necessary to consider the core excitations, and the RCDB interaction seems better suited to explain the data beyond N =82 magic number.

  8. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGESBeta

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; et al

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  9. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    SciTech Connect

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Zhu, S.

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudes for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.

  10. Discovery of Highly Excited Long-Lived Isomers in Neutron-Rich Hafnium and Tantalum Isotopes through Direct Mass Measurements

    SciTech Connect

    Reed, M. W.; Cullen, I. J.; Walker, P. M.; Deo, A. Y.; Kempley, R. S.; Swan, T. P. D.; Litvinov, Yu. A.; Winckler, N.; Blaum, K.; Bosch, F.; Dimopoulou, C.; Farinon, F.; Heil, M.; Knoebel, R.; Kozhuharov, C.; Kurcewicz, J.; Kuzminchuk, N.; Litvinov, S.; Nociforo, C.; Nolden, F.

    2010-10-22

    A study of cooled {sup 197}Au projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides {sup 183,184,186}Hf and {sup 186,187}Ta. The results support the prediction of a strongly favored isomer region near neutron number 116.

  11. Characterization of isomers in the neutron-rich odd-odd nucleus {sup 156}Pm

    SciTech Connect

    Sood, P. C.; Gowrishankar, R; Sai, K. Vijay; Sainath, M.

    2011-02-15

    Critical examination of the experimental data from {sup 156}Nd and {sup 156}Pm {beta} decays and the observed location of relevant neutron and proton orbitals in the neighboring odd-A isotones and isotopes, taken together with the low-lying two-quasiparticle (2qp) structures expected in {sup 156}Pm from the rotor-particle model, lead to the conclusion that a consistent description of all the available data is achieved with the I{sup {pi}}=4{sup +} spin-parity assignment to the 26.7s {sup 156}Pm ground state (g.s.) and assignment of I{sup {pi}}=1{sup +} to its 150.3-keV isomer with the 2qp configuration 4{sub g.s.}{sup +}{l_brace}p{sub o}:5/2[532{up_arrow}]{+-}n{sub o}:3/2[521{up_arrow}]{r_brace}1{sub 150}{sup +}. In the process, a two-neutron configuration is also suggested for the 1509-keV 4{sup +} level in the daughter nucleus {sup 156}Sm. The present analysis reiterates the important question of whether the {beta}-decay log ft value, by itself, can be employed to deduce the relative parity of the {beta}-connected states.

  12. The Nature of a Shell Closure at N = 82 Explored with Seniority and Spin-Gap Isomers in Neutron-Rich Palladium and Silver Isotopes

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi

    The level structures of the very neutron-rich nuclei 128Pd82 and 126Pd80 have been investigated for the first time. A new isomer with a half-life of 5.8(8) µs in 128Pd is proposed to have a spin and parity of 8+ and is associated with a maximally aligned configuration arising from the g9/2 proton subshell with seniority υ = 2. The level sequence below the 8+ isomer is similar to that in the N = 82 isotone 130Cd, but the electric quadrupole transition that depopulates the 8+ isomer is more hindered in 126Pd than in 130Cd, as expected in the seniority scheme for a semi-magic, spherical nucleus. For 126Pd, three new isomers with Jπ = (5-), (7-), and (10+) have been identified with half-lives of 0.33(4) µs, 0.44(3) µs, and 23.0(8) ms, respectively. The smaller energy difference between the 10+ and 7- isomers in 126Pd than in the heavier N = 80 isotones can be interpreted as being ascribed to the monopole shift of the h11/2 neutron orbit. The nature of the N = 82 shell closure scrutinized with these characteristic isomers is discussed.

  13. Decay of a {pi}h{sub 11/2} x {nu}h{sub 11/2} microsecond isomer in {sub 61}{sup 136}Pm{sub 75}

    SciTech Connect

    Rigby, S. V.; Cullen, D. M.; Mason, P. J. R.; Scholes, D. T.; Scholey, C.; Rahkila, P.; Eeckhaudt, S.; Grahn, T.; Greenlees, P.; Jones, P. M.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppaenen, A.-P.; Nieminen, P.; Nyman, M.; Pakarinen, J.; Uusitalo, J.

    2008-09-15

    An experiment has been performed to populate several extremely neutron-deficient nuclei around the mass-140 region of the nuclear chart, using a beam of {sup 54}Fe on a {sup 92}Mo target at an energy of 315 MeV. Analysis of these data using recoil-isomer tagging has established that the yrast {pi}h{sub 11/2} x {nu}h{sub 11/2},J{sup {pi}}=(8{sup +}), bandhead state in {sup 136}Pm is isomeric with a half-life of 1.5(1) {mu}s. This isomeric state decays via a 43-keV, probable-E1 transition to a J{sup {pi}}=(7{sup -}) state. Consideration of the theoretical Nilsson orbitals near the Fermi surface suggests that the J{sup {pi}}=(8{sup +}) state has a {nu}h{sub 11/2}[505](11/2){sup -} x {pi}h{sub 11/2}[532](5/2){sup -} configuration, which decays to the J{sup {pi}}=(7{sup -}) state with a {nu}h{sub 11/2}[505](11/2){sup -} x {pi}d{sub 5/2}[411](3/2){sup +} configuration. Differences in the shape-driving effects for these two configurations is reasoned to be responsible for the long half-life of the J{sup {pi}}=(8{sup +}) isomeric state. The non-observation of other {gamma} rays in prompt or delayed coincidence with the 43-keV transition suggests that this transition may feed another, longer lived isomeric state with a half-life of the order of milliseconds or greater. However, the present experiment was not sensitive to the decay of this new J{sup {pi}}=(7{sup -}) state by internal conversion or even {beta} decay.

  14. Three hen strains fed photoisomerized trans,trans CLA-rich soy oil exhibit different yolk accumulation rates and source-specific isomer deposition.

    PubMed

    Shinn, Sara E; Gilley, Alex D; Proctor, Andrew; Anthony, Nicholas B

    2015-04-01

    Most CLA chicken feeding trials used cis,trans (c,t) and trans,cis (t,c) CLA isomers to produce CLA-rich eggs, while reports of trans,trans (t,t) CLA enrichment in egg yolks are limited. The CLA yolk fatty acid profile changes and the 10-12 days of feeding needed for maximum CLA are well documented, but there is no information describing CLA accumulation during initial feed administration. In addition, no information on CLA accumulation rates in different hen strains is available. The aim of this study was to determine a mathematical model that described yolk CLA accumulation and depletion in three hen strains by using t,t CLA-rich soybean oil produced by photoisomerization. Diets of 30-week Leghorns, broilers, and jungle fowl were supplemented with 15% CLA-rich soy oil for 16 days, and eggs were collected for 32 days. Yolk fatty acid profiles were measured by GC-FID. CLA accumulation and depletion was modeled by both quadratic and piecewise regression analysis. A strong quadratic model was proposed, but it was not as effective as piecewise regression in describing CLA accumulation and depletion. Broiler hen eggs contained the greatest concentration of CLA at 3.2 mol/100 g egg yolk, then jungle fowl at 2.9 mol CLA, and Leghorns at 2.3 mol CLA. The t,t CLA isomer levels remained at 55% of total yolk CLA during CLA feeding. However, t-10,c-12 (t,c) CLA concentration increased slightly during CLA accumulation and was significantly greater than c-9,t-11 CLA. Jungle fowl had the smallest increase in yolk saturated fat with CLA yolk accumulation.

  15. Interstellar isomers

    NASA Technical Reports Server (NTRS)

    Defrees, D.; Mclean, D.; Herbst, E.

    1986-01-01

    Both observational and theoretical studies of molecular clouds are hindered by many difficulties. One way to partially circumvent the difficulties of characterizing the chemistry within these objects is to study the relative abundances of isomers which are synthesized from a common set of precursors. Unfortunately, only one such system has been confirmed, the HCN/HNC pair of isomers. While the basic outlines of its chemistry have been known for some years, there are still many aspects of the chemistry which are unclear. Another potential pair of isomers is HCO+/HOC+; HCO+ is an abundant instellar molecule and a tentative identification of HOC+ has been made in Sgr B2. This identification is being challenged, however, based on theoretical and laboratory evidence that HOC+ reacts with H2. Another potential pair of interstellar isomers is methyl cyanide (CH3CN, acetonitrile) and methyl isocyanide (CH3NC). The cyanide is well known, however the isocyanide has yet to be observed despite theoretical predictions that appreciable quantities should be present.

  16. High-K isomers: some of the questions

    NASA Astrophysics Data System (ADS)

    Walker, P. M.

    2016-09-01

    High-K isomers exemplify the coexistence of individual-particle and collective motion in atomic nuclei. Here, the topic is briefly outlined, and some open questions are discussed. These include violations of the K quantum number; the high-spin limit to K isomerism; the fission stability of K isomers; possibilities for manipulation and control of K-isomer decay rates; and access to K isomers in neutron-rich nuclei.

  17. Long-lived K isomer and enhanced γ vibration in the neutron-rich nucleus 172Dy: Collectivity beyond double midshell

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P.-A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.

    2016-09-01

    The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71 (5) s and Kπ =8- has been identified at 1278 keV, which decays to the ground-state and γ-vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ =8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ-vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.

  18. New isomers in the full seniority scheme of neutron-rich lead isotopes: the role of effective three-body forces.

    PubMed

    Gottardo, A; Valiente-Dobón, J J; Benzoni, G; Nicolini, R; Gadea, A; Lunardi, S; Boutachkov, P; Bruce, A M; Górska, M; Grebosz, J; Pietri, S; Podolyák, Zs; Pfützner, M; Regan, P H; Weick, H; Alcántara Núñez, J; Algora, A; Al-Dahan, N; de Angelis, G; Ayyad, Y; Alkhomashi, N; Allegro, P R P; Bazzacco, D; Benlliure, J; Bowry, M; Bracco, A; Bunce, M; Camera, F; Casarejos, E; Cortes, M L; Crespi, F C L; Corsi, A; Denis Bacelar, A M; Deo, A Y; Domingo-Pardo, C; Doncel, M; Dombradi, Zs; Engert, T; Eppinger, K; Farrelly, G F; Farinon, F; Farnea, E; Geissel, H; Gerl, J; Goel, N; Gregor, E; Habermann, T; Hoischen, R; Janik, R; Klupp, S; Kojouharov, I; Kurz, N; Lenzi, S M; Leoni, S; Mandal, S; Menegazzo, R; Mengoni, D; Million, B; Morales, A I; Napoli, D R; Naqvi, F; Nociforo, C; Prochazka, A; Prokopowicz, W; Recchia, F; Ribas, R V; Reed, M W; Rudolph, D; Sahin, E; Schaffner, H; Sharma, A; Sitar, B; Siwal, D; Steiger, K; Strmen, P; Swan, T P D; Szarka, I; Ur, C A; Walker, P M; Wieland, O; Wollersheim, H-J; Nowacki, F; Maglione, E; Zuker, A P

    2012-10-19

    The neutron-rich lead isotopes, up to (216)Pb, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond (208)Pb.

  19. New isomers in the full seniority scheme of neutron-rich lead isotopes: the role of effective three-body forces.

    PubMed

    Gottardo, A; Valiente-Dobón, J J; Benzoni, G; Nicolini, R; Gadea, A; Lunardi, S; Boutachkov, P; Bruce, A M; Górska, M; Grebosz, J; Pietri, S; Podolyák, Zs; Pfützner, M; Regan, P H; Weick, H; Alcántara Núñez, J; Algora, A; Al-Dahan, N; de Angelis, G; Ayyad, Y; Alkhomashi, N; Allegro, P R P; Bazzacco, D; Benlliure, J; Bowry, M; Bracco, A; Bunce, M; Camera, F; Casarejos, E; Cortes, M L; Crespi, F C L; Corsi, A; Denis Bacelar, A M; Deo, A Y; Domingo-Pardo, C; Doncel, M; Dombradi, Zs; Engert, T; Eppinger, K; Farrelly, G F; Farinon, F; Farnea, E; Geissel, H; Gerl, J; Goel, N; Gregor, E; Habermann, T; Hoischen, R; Janik, R; Klupp, S; Kojouharov, I; Kurz, N; Lenzi, S M; Leoni, S; Mandal, S; Menegazzo, R; Mengoni, D; Million, B; Morales, A I; Napoli, D R; Naqvi, F; Nociforo, C; Prochazka, A; Prokopowicz, W; Recchia, F; Ribas, R V; Reed, M W; Rudolph, D; Sahin, E; Schaffner, H; Sharma, A; Sitar, B; Siwal, D; Steiger, K; Strmen, P; Swan, T P D; Szarka, I; Ur, C A; Walker, P M; Wieland, O; Wollersheim, H-J; Nowacki, F; Maglione, E; Zuker, A P

    2012-10-19

    The neutron-rich lead isotopes, up to (216)Pb, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond (208)Pb. PMID:23215071

  20. Microsecond dynamics of mismatch repair proteins

    NASA Astrophysics Data System (ADS)

    Salsbury, Freddie; Thompson, William

    We will present the results of long-time simulations (250ns-1microsecond) of the mismatch repair protein complexes Mutsalpha bound to various substrates, both normal and damaged. We do so to demonstrate the importance of long-range fluctuations and generalized allostery in such systems and how long-scale GPU-enabled simulations can enabled such analysis.

  1. Sub-microsecond-resolution probe microscopy

    DOEpatents

    Ginger, David; Giridharagopal, Rajiv; Moore, David; Rayermann, Glennis; Reid, Obadiah

    2014-04-01

    Methods and apparatus are provided herein for time-resolved analysis of the effect of a perturbation (e.g., a light or voltage pulse) on a sample. By operating in the time domain, the provided method enables sub-microsecond time-resolved measurement of transient, or time-varying, forces acting on a cantilever.

  2. The proportion of lycopene isomers in human plasma is modulated by lycopene isomer profile in the meal but not by lycopene preparation.

    PubMed

    Richelle, Myriam; Lambelet, Pierre; Rytz, Andreas; Tavazzi, Isabelle; Mermoud, Anne-France; Juhel, Christine; Borel, Patrick; Bortlik, Karlheinz

    2012-05-01

    Dietary lycopene consists mostly of the (all-E) isomer. Upon absorption, (all-E) lycopene undergoes isomerisation into various (Z)-isomers. Because these isomers offer potentially better health benefits than the (all-E) isomer, the aim of the present study was to investigate if the profile of lycopene isomers in intestinal lipoproteins is affected by the profile of lycopene isomers in the meal and by the tomato preparation. Six postprandial, crossover tests were performed in healthy men. Three meals provided about 70 % of the lycopene as (Z)-isomers, either mainly as 5-(Z) or 13-(Z), or as a mixture of 9-(Z) and 13-(Z) lycopene, while three tomato preparations provided lycopene mainly as the (all-E) isomer. Consumption of the 5-(Z) lycopene-rich meal led to a high (60 %) proportion of this isomer in TAG-rich lipoproteins (TRL), indicating a good absorption and/or a low intestinal conversion of this isomer. By contrast, consumption of meals rich in 9-(Z) and 13-(Z) lycopene isomers resulted in a low level of these isomers but high amounts of the 5-(Z) and (all-E) isomers in TRL. This indicates that the 9-(Z) and 13-(Z) isomers were less absorbed or were converted into 5-(Z) and (all-E) isomers. Dietary (Z)-lycopene isomers were, therefore, differently isomerised and released in TRL during their intestinal absorption in men. Consuming the three meals rich in (all-E) lycopene resulted in similar proportions of lycopene isomers in TRL: 60 % (all-E), 20 % 5-(Z), 9 % 13-(Z), 2 % 9-(Z) and 9 % unidentified (Z)-isomers. These results show that the tomato preparation has no impact on the lycopene isomerisation occurring during absorption in humans.

  3. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  4. Power optimization in logic isomers

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    Logic isomers are labeled, 2-isomorphic graphs that implement the same logic function. Logic isomers may have significantly different power requirements even though they have the same number of transistors in the implementation. The power requirements of the isomers depend on the transition activity of the input signals. The power requirements of isomorphic graph isomers of n-input NAND and NOR gates are shown. Choosing the less power-consuming isomer instead of the others can yield significant power savings. Experimental results on a ripple-carry adder are presented to show that the implementation using the least power-consuming isomers requires approximately 10 percent less power than the implementation using the most power-consuming isomers. Simulations of other random logic designs also confirm that designs using less power-consuming isomers can reduce the logic power demand by approximately 10 percent as compared to designs using more power-consuming isomers.

  5. Atlas of Nuclear Isomers

    SciTech Connect

    Jain, Ashok Kumar; Maheshwari, Bhoomika; Garg, Swati; Patial, Monika; Singh, Balraj

    2015-09-15

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  6. SERS Quantification of Entacapone Isomers

    NASA Astrophysics Data System (ADS)

    Marković, Marina; Biljan, Tomislav

    2010-08-01

    Raman spectroscopy, due to its non-destructive character and speed, has found widespread use in pharmaceutical applications [1]. It is also being used for quantifying various isomer mixtures, best known being the quantification of xylene isomers [2-3]. Solid-state isomer quantification of entacapone was earlier reported [4]. Here, we report quantification of isomer mixture of an active pharmaceutical substance, in solution, by SERS.

  7. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  8. Microsecond protein dynamics observed at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-07-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.

  9. Microsecond delays on non-real time operating systems

    SciTech Connect

    Angstadt, R.; Estrada, J.; Diehl, H.T.; Flaugher, B.; Johnson, M.; /Fermilab

    2007-05-01

    We have developed microsecond timing and profiling software that runs on standard Windows and Linux based operating systems. This software is orders of magnitudes better than most of the standard native functions in wide use. Our software libraries calibrate RDTSC in microseconds or seconds to provide two different types of delays: a ''Guaranteed Minimum'' and a precision ''Long Delay'', which releases to the kernel. Both return profiling information of the actual delay.

  10. Isomer Research: Energy Release Validation, Production, and Applications

    SciTech Connect

    Becker, J A; Rundberg, B

    2003-04-10

    The goal of this applied nuclear isomer research program is the search for, discovery of, and practical application of a new type of high energy density material (HEDM). Nuclear isomers could yield an energy source with a specific energy as much as a hundred thousand times as great as that of chemical fuels. There would be enormous payoffs to the Department of Energy and to the country as a whole if such energy sources could be identified and applied to a range of civilian and defense applications. Despite the potential payoff, efforts in applied isomer research have been rather limited and sporadic. Basic research on nuclear isomers dates back to their discovery in 1935 with occasional hints to tantalize interest in HEDM. In most cases, these hints were refuted following careful examination by other groups. The isomer research area is rich with possibilities: we prioritized several areas likely to be the most rewarding and fruitful for initial experimental investigation because these areas directly bear on important issues: Can the energy stored in nuclear isomers be released on demand? Is the size of the atomic-nuclear mixing matrix element large enough to be useful? Under what circumstances? Can we initiate quantal collective release of isomeric energy from a Moessbauer crystal?

  11. Microsecond Scale Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy

    PubMed Central

    Liao, Chien-Sheng; Slipchenko, Mikhail N.; Wang, Ping; Li, Junjie; Lee, Seung-Young; Oglesbee, Robert A.; Cheng, Ji-Xin

    2015-01-01

    Real-time vibrational spectroscopic imaging is desired for monitoring cellular states and cellular processes in a label-free manner. Raman spectroscopic imaging of highly dynamic systems is inhibited by relatively slow spectral acquisition on millisecond to second scale. Here, we report microsecond scale vibrational spectroscopic imaging by lock-in free parallel detection of spectrally dispersed stimulated Raman scattering signal. Using a homebuilt tuned amplifier array, our method enables Raman spectral acquisition, within the window defined by the broadband pulse, at the speed of 32 microseconds and with close to shot-noise limited detection sensitivity. Incorporated with multivariate curve resolution analysis, our platform allows compositional mapping of lipid droplets in single live cells, observation of intracellular retinoid metabolism, discrimination of fat droplets from protein-rich organelles in Caenorhabditis elegans, spectral detection of fast flowing tumor cells, and monitoring drug diffusion through skin tissue in vivo. The reported technique opens new opportunities for compositional analysis of cellular compartment in a microscope setting and high-throughput spectral profiling of single cells in a flow cytometer setting. PMID:26167336

  12. Optical Pumping and Laser Induced Nuclear Orientation of a Microsecond Isomeric Level in BARIUM-134

    NASA Astrophysics Data System (ADS)

    Bell, Curtis John

    Using optical pumping techniques, on and off-line experiments were performed on a microsecond nuclear isomer (('134m)Ba 10('+) ). Shifts in atomic resonances detected by changes in the angular distribution of characteristic nuclear radiations (expressed as changes in shape and size) yield information on changes in nuclear structure. The 10('+) isomeric state was produced using a 49 MeV pulsed beam of ('13)C on an isotopically enriched ('124)Sn target. The reaction products recoil out of the target and are slowed to thermal velocities in 10 torr of xenon in a region illuminated with circularly polarized light (553.5 nm) from a Coherent 699-21 dye laser. Nuclear parameters measured were the lifetime (3.8(2)(mu)s) and g-factor (g = -.20(1)) of the 10('+) state. Atomic parameters measured for barium were the depolarization cross sections of the ('1)P(,1) atomic level (6.0(6) nm('2)) in xenon, the quenching cross section for hydrogen (0.042(4) nm('2)), and the branching ratio of the metastable (('1,3)D(,1,2,3)) atomic states (0.011(1)). A possible anisotropy signal and the cumulative results (no measurable anisotropy) are presented. Difficulties encountered were insufficient neutralization, and unexpectedly large spatial distribution, and 'trapping' in metastable atomic states.

  13. Developing Single-Molecule Technique with Microsecond Resolution

    NASA Astrophysics Data System (ADS)

    Akhterov, Maxim V.

    Molecular machines like proteins are responsible for many regulatory and catalytic functions. Specifically, molecular motions of proteins and their flexibility determine conformational states required for enzyme catalysis, signal transduction, and protein-protein interactions. However, the mechanisms for protein transitions between conformational states are often poorly understood, especially in the milli- to microsecond ranges where conventional optical techniques and computational modeling are most limited. This work describes development of an electronic single-molecule technique for monitoring microsecond motions of biological molecules. Dynamic changes of conductance through a transistor made of a single-walled carbon nanotube (SWNT-FET) report conformational changes of a protein molecule tethered to the SWNT sidewall. In principle, the high operating speed of SWNT-FETs could allow this technique to resolve molecular events with nanosecond resolution. This project focused on improving the technique to a 200 kHz effective bandwidth in order to resolve microsecond-scale dynamics. The improvement was achieved with a home-built electrochemical flow cell. By minimizing parasitic capacitance due to liquid coupling to electrodes and eliminating noise pickup, the flow cell enabled low-noise, high bandwidth measurement of molecular events as short as 2 mus. The apparatus was used to observe closing and opening motions of lysozyme. Preliminary results suggest that lysozyme has a distribution of possible velocities with the most probable speed approaching our experimental resolution of 2 mus.

  14. Experiments with neutron-rich isomeric beams

    SciTech Connect

    Rykaczewski, K. |; Grzywacz, R. |; Lewitowicz, M.; Pfuetzner, M.; Grawe, H.

    1998-01-01

    A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented.

  15. Nuclear isomers: structures and applications

    SciTech Connect

    Sun Yang; Wiescher, Michael; Aprahamian, Ani; Fisker, Jacob

    2006-03-13

    Isomeric states in the nuclei along the rapid proton capture process path are studied by the projected shell model. Emphasis is given to two waiting point nuclei 68Se and 72Kr that are characterized by shape coexistence. Energy surface calculations indicate that the ground state of these nuclei corresponds to an oblate-deformed minimum, while the lowest state at the prolate-deformed minimum can be considered as a shape isomer. Due to occupation of the orbitals with large K-components, states built upon two-quasiparticle excitations at the oblate-deformed minimum may form high K-isomers. The impact of the isomer states on isotopic abundance in X-ray bursts is studied in a multi-mass-zone X-ray burst model by assuming an upper-lower limit approach.

  16. Microsecond yellow laser for subfoveal leaks in central serous chorioretinopathy

    PubMed Central

    Ambiya, Vikas; Goud, Abhilash; Mathai, Annie; Rani, Padmaja Kumari; Chhablani, Jay

    2016-01-01

    Purpose To evaluate the role of navigated yellow microsecond laser in treating subfoveal leaks in nonresolving central serous chorioretinopathy (CSC). Methods This prospective study included ten eyes of ten consecutive patients with nonresolving CSC with subfoveal leaks. All eyes were treated with 577 nm navigated yellow microsecond laser (5% duty cycle). Key inclusion criteria include a vision loss for a duration of minimum 3 months duration due to focal subfoveal leak on fluorescein angiography. Key exclusion criteria include prior treatment for CSC and any signs of chronic CSC. Comprehensive examination, in addition to low-contrast visual acuity assessment, microperimetry, autofluorescence, spectral domain optical coherence tomography, and fundus fluorescein angiography, was done at baseline, 1, 3, and 6 months after treatment. Rescue laser was performed as per predefined criteria at 3 months. Results The average best-corrected visual acuity improved from 73.3±16.1 letters to 75.8±14.0 (P=0.69) at 3 months and 76.9±13.0 (P=0.59) at 6 months, but was not statistically significant. Low-contrast visual acuity assessment (logMAR) improved from 0.41±0.32 to 0.35±0.42 (P=0.50) at 3 months and 0.28±0.33 (P=0.18) at 6 months. Average retinal sensitivity significantly improved from baseline 18.93±7.19 dB to 22.49±6.67 dB (P=0.01) at 3 months and 21.46±8.47 dB (P=0.04) at 6 months. Rescue laser was required only in one eye at 3 months; however, laser was required in three eyes at 6 months. Conclusion Microsecond laser is a safe and effective modality for treating cases of nonresolving CSC with subfoveal leaks. PMID:27570446

  17. Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics

    SciTech Connect

    Hertzog, D E; Santiago, J G; Bakajin, O

    2003-06-25

    We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated by Knight et al.[1]. Features of the mixer include 1 {micro}s mixing times, sample consumptions of order 1 nl/s, loading sample volumes on the order of microliters, and the ability to manufacture in fused silica for compatibility with most spectroscopic methods.

  18. Microsecond-resolved SDR-based cavity ring down ellipsometry.

    PubMed

    Sofikitis, D; Spiliotis, A K; Stamataki, K; Katsoprinakis, G E; Bougas, L; Samartzis, P C; Loppinet, B; Rakitzis, T P; Surligas, M; Papadakis, S

    2015-06-20

    We present an experimental apparatus that allows microsecond-resolved ellipsometric and absorption measurements. The apparatus is based on an optical cavity containing a Dove prism, in which light undergoes total internal reflection (TIR), while the data acquisition is based on software defined radio technology and custom-built drivers. We demonstrate the ability to sense rapid variations in the refractive index above the TIR interface for arbitrarily long times with a temporal resolution of at least 2 μs. PMID:26193040

  19. Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics

    SciTech Connect

    Hertzog, D E; Santiago, J G; Bakajin, O

    2005-02-10

    We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated by Knight et al.[1]. Features of the mixer include 1 {micro}s mixing times, sample consumptions of order 1 nl/s, loading sample volumes on the order of microliters, and the ability to manufacture in fused silica for compatibility with most spectroscopic methods.

  20. X-rays from a microsecond X-pinch

    SciTech Connect

    Appartaim, R. K.

    2013-08-28

    The characteristics of x-rays emitted by X-pinches driven by discharging a current of ∼320 kA with a quarter period of 1 μs in crossed 25 μm wires have been investigated. The x-ray emissions are studied using filtered silicon photodiodes, diamond radiation detectors, and pinhole cameras. The results show that predominantly x-rays from the microsecond X-pinch tend to be emitted in two distinct sets of bursts. The first is predominantly “soft,” i.e., with photon energy hν < 5 keV, followed by a second set of bursts beginning up to 100 ns following the initial bursts, and usually consisting of higher photon energies. Our results show, however, that the x-ray emissions do not contain a significant component with hν > 10 keV as might be expected from electron beam activity within the plasma or from the X-pinch diode. High-resolution images obtained with the observed x-rays suggest a well-defined small source of soft x-rays that demonstrates the potential of the microsecond X-pinch.

  1. X-rays from a microsecond X-pinch

    NASA Astrophysics Data System (ADS)

    Appartaim, R. K.

    2013-08-01

    The characteristics of x-rays emitted by X-pinches driven by discharging a current of ˜320 kA with a quarter period of 1 μs in crossed 25 μm wires have been investigated. The x-ray emissions are studied using filtered silicon photodiodes, diamond radiation detectors, and pinhole cameras. The results show that predominantly x-rays from the microsecond X-pinch tend to be emitted in two distinct sets of bursts. The first is predominantly "soft," i.e., with photon energy hν < 5 keV, followed by a second set of bursts beginning up to 100 ns following the initial bursts, and usually consisting of higher photon energies. Our results show, however, that the x-ray emissions do not contain a significant component with hν > 10 keV as might be expected from electron beam activity within the plasma or from the X-pinch diode. High-resolution images obtained with the observed x-rays suggest a well-defined small source of soft x-rays that demonstrates the potential of the microsecond X-pinch.

  2. Microsecond-scale electric field pulses in cloud lightning discharges

    NASA Technical Reports Server (NTRS)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  3. Structure of three-quasiparticle isomers in {sup 169}Ho and {sup 171}Tm.

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Hughes, R. O.; Kondev, F. G.; Watanabe, H.; Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.; Chowdhury, P.

    2010-09-17

    A three-quasiparticle isomer with {tau}=170(8) {micro}s and K{sup {pi}} = (19/2{sup +}) has been identified in the neutron-rich isotope {sup 169}Ho. The isomer decays with K-forbidden transitions to members of a band associated with the 7/2-[523] proton configuration, whose structure is characterized through analysis of the in-band {gamma}-ray branching ratios. In the isotone {sup 171}Tm, the rotational band based on the known 19/2{sup +}, three-quasiparticle isomer has also been observed. Alternative one-proton two-neutron configurations for the isomer in {sup 169}Ho are discussed in terms of multiquasiparticle calculations and through a comparison with the structures observed in {sup 171}Tm.

  4. Structure of three-quasiparticle isomers in {sup 169}Ho and {sup 171}Tm

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Hughes, R. O.; Kondev, F. G.; Chiara, C. J.; Watanabe, H.; Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.; Chowdhury, P.

    2010-09-15

    A three-quasiparticle isomer with {tau}=170(8) {mu}s and K{sup {pi}=} (19/2{sup +}) has been identified in the neutron-rich isotope {sup 169}Ho. The isomer decays with K-forbidden transitions to members of a band associated with the 7/2{sup -}[523] proton configuration, whose structure is characterized through analysis of the in-band {gamma}-ray branching ratios. In the isotone {sup 171}Tm, the rotational band based on the known 19/2{sup +}, three-quasiparticle isomer has also been observed. Alternative one-proton two-neutron configurations for the isomer in {sup 169}Ho are discussed in terms of multiquasiparticle calculations and through a comparison with the structures observed in {sup 171}Tm.

  5. Interconversion of diborane(4) isomers

    NASA Technical Reports Server (NTRS)

    Stanton, John F.; Gauss, Juergen; Bartlett, Rodney J.; Helgaker, Trygve; Jorgensen, Poul; Jensen, Hans J. A.; Taylor, Peter R.

    1992-01-01

    Highly correlated electronic structure computations using many-body perturbation theory and coupled-cluster gradient techniques are used to study the reaction pathway that links the two forms (C2u and D2d) of diborane(4). The results obtained indicate that a low-energy pathway exists for interconversion of the two low-lying isomers of diborane(4). The proposed mechanism consists of a single concerted but nonsynchronous rotation of the BH2 groups. The pathway first follows an idealized reaction coordinate which preserves C2 symmetry, but then bifurcates at a branch point, leading to two equivalent transition states which lack nontrivial elements of symmetry.

  6. High spin isomer beam line at RIKEN

    SciTech Connect

    Kishida, T.; Ideguchi, E.; Wu, H.Y.

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  7. Microsecond-sustained lasing from colloidal quantum dot solids

    PubMed Central

    Adachi, Michael M.; Fan, Fengjia; Sellan, Daniel P.; Hoogland, Sjoerd; Voznyy, Oleksandr; Houtepen, Arjan J.; Parrish, Kevin D.; Kanjanaboos, Pongsakorn; Malen, Jonathan A.; Sargent, Edward H.

    2015-01-01

    Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we find that the chief cause of nanosecond-only operation has been thermal runaway: the combination of rapid heat injection from the pump source, poor heat removal and a highly temperature-dependent threshold. We show microsecond-sustained lasing, achieved by placing ultra-compact colloidal quantum dot films on a thermally conductive substrate, the combination of which minimizes heat accumulation. Specifically, we employ inorganic-halide-capped quantum dots that exhibit high modal gain (1,200 cm−1) and an ultralow amplified spontaneous emission threshold (average peak power of ∼50 kW cm−2) and rely on an optical structure that dissipates heat while offering minimal modal loss. PMID:26493282

  8. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect

    Kuehn, Jeffery A; Kassoy, Dr. David R; Nabity, Mr. Matthew W.; Clarke, Dr. John F.

    2006-01-01

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A nonlinear transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gas dynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  9. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect

    Kassoy, Dr. David R; Kuehn, Jeffery A; Nabity, Mr. Matthew W.; Clarke, Dr. John F.

    2008-01-01

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gasdynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  10. Microsecond-sustained lasing from colloidal quantum dot solids.

    PubMed

    Adachi, Michael M; Fan, Fengjia; Sellan, Daniel P; Hoogland, Sjoerd; Voznyy, Oleksandr; Houtepen, Arjan J; Parrish, Kevin D; Kanjanaboos, Pongsakorn; Malen, Jonathan A; Sargent, Edward H

    2015-01-01

    Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we find that the chief cause of nanosecond-only operation has been thermal runaway: the combination of rapid heat injection from the pump source, poor heat removal and a highly temperature-dependent threshold. We show microsecond-sustained lasing, achieved by placing ultra-compact colloidal quantum dot films on a thermally conductive substrate, the combination of which minimizes heat accumulation. Specifically, we employ inorganic-halide-capped quantum dots that exhibit high modal gain (1,200 cm(-1)) and an ultralow amplified spontaneous emission threshold (average peak power of ∼50 kW cm(-2)) and rely on an optical structure that dissipates heat while offering minimal modal loss. PMID:26493282

  11. Hierarchical Biomolecular Dynamics: Picosecond Hydrogen Bonding Regulates Microsecond Conformational Transitions.

    PubMed

    Buchenberg, Sebastian; Schaudinnus, Norbert; Stock, Gerhard

    2015-03-10

    Biomolecules exhibit structural dynamics on a number of time scales, including picosecond (ps) motions of a few atoms, nanosecond (ns) local conformational transitions, and microsecond (μs) global conformational rearrangements. Despite this substantial separation of time scales, fast and slow degrees of freedom appear to be coupled in a nonlinear manner; for example, there is theoretical and experimental evidence that fast structural fluctuations are required for slow functional motion to happen. To elucidate a microscopic mechanism of this multiscale behavior, Aib peptide is adopted as a simple model system. Combining extensive molecular dynamics simulations with principal component analysis techniques, a hierarchy of (at least) three tiers of the molecule's free energy landscape is discovered. They correspond to chiral left- to right-handed transitions of the entire peptide that happen on a μs time scale, conformational transitions of individual residues that take about 1 ns, and the opening and closing of structure-stabilizing hydrogen bonds that occur within tens of ps and are triggered by sub-ps structural fluctuations. Providing a simple mechanism of hierarchical dynamics, fast hydrogen bond dynamics is found to be a prerequisite for the ns local conformational transitions, which in turn are a prerequisite for the slow global conformational rearrangement of the peptide. As a consequence of the hierarchical coupling, the various processes exhibit a similar temperature behavior which may be interpreted as a dynamic transition. PMID:26579778

  12. Precise inhibition is essential for microsecond interaural time difference coding

    NASA Astrophysics Data System (ADS)

    Brand, Antje; Behrend, Oliver; Marquardt, Torsten; McAlpine, David; Grothe, Benedikt

    2002-05-01

    Microsecond differences in the arrival time of a sound at the two ears (interaural time differences, ITDs) are the main cue for localizing low-frequency sounds in space. Traditionally, ITDs are thought to be encoded by an array of coincidence-detector neurons, receiving excitatory inputs from the two ears via axons of variable length (`delay lines'), to create a topographic map of azimuthal auditory space. Compelling evidence for the existence of such a map in the mammalian lTD detector, the medial superior olive (MSO), however, is lacking. Equally puzzling is the role of a-temporally very precise-glycine-mediated inhibitory input to MSO neurons. Using in vivo recordings from the MSO of the Mongolian gerbil, we found the responses of ITD-sensitive neurons to be inconsistent with the idea of a topographic map of auditory space. Moreover, local application of glycine and its antagonist strychnine by iontophoresis (through glass pipette electrodes, by means of an electric current) revealed that precisely timed glycine-controlled inhibition is a critical part of the mechanism by which the physiologically relevant range of ITDs is encoded in the MSO. A computer model, simulating the response of a coincidence-detector neuron with bilateral excitatory inputs and a temporally precise contralateral inhibitory input, supports this conclusion.

  13. Microsecond time-resolved 2D X-ray imaging

    NASA Astrophysics Data System (ADS)

    Sarvestani, A.; Sauer, N.; Strietzel, C.; Besch, H. J.; Orthen, A.; Pavel, N.; Walenta, A. H.; Menk, R. H.

    2001-06-01

    A method is presented which allows to take two-dimensional X-ray images of repetitive processes with recording times in the sub-microsecond range. Various measurements have been performed with a recently introduced novel two-dimensional single photon counter which has been slightly modified in order to determine the exact arrival time of each detected photon. For this purpose a special clock signal is synchronized with the process and is digitized contemporaneously with each event. This technique can be applied even with rate limited detectors and low flux sources, since—unlike in conventional methods, where chopped beams or gated read out electronics are used—all photons are used for the image formation. For the measurements, rapidly moving mechanical systems and conventional X-ray sources have been used, reaching time resolutions of some 10 μs. The technique presented here opens a variety of new biological, medical and industrial applications which will be discussed. As a first application example, three dimensional tomographic reconstructions of rapidly rotating objects (4000 turns/min) are presented.

  14. Understanding High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    J.B., J; D.A., G; T.L., H; E.J., L; R.D., S; L.K., T; G.E., V

    2007-08-15

    High voltage insulation is one of the main areas of pulsed power research and development since the surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This is troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and where relatively long pulses, on the order of several microseconds, are required. Here we give a summary of our approach to modeling and simulation efforts and experimental investigations for understanding flashover mechanism. The computational work is comprised of both filed and particle-in-cell modeling with state-of-the-art commercial codes. Experiments were performed in using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  15. 10 microsecond time resolution studies of Cygnus X-1

    SciTech Connect

    Wen, H.C.

    1997-06-01

    Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M{sub {circle_dot}} black hole.

  16. Towards Microsecond Biological Molecular Dynamics Simulations on Hybrid Processors

    SciTech Connect

    Hampton, Scott S; Agarwal, Pratul K

    2010-01-01

    Biomolecular simulations continue to become an increasingly important component of molecular biochemistry and biophysics investigations. Performance improvements in the simulations based on molecular dynamics (MD) codes are widely desired. This is particularly driven by the rapid growth of biological data due to improvements in experimental techniques. Unfortunately, the factors, which allowed past performance improvements of MD simulations, particularly the increase in microprocessor clock frequencies, are no longer improving. Hence, novel software and hardware solutions are being explored for accelerating the performance of popular MD codes. In this paper, we describe our efforts to port and optimize LAMMPS, a popular MD framework, on hybrid processors: graphical processing units (GPUs) accelerated multi-core processors. Our implementation is based on porting the computationally expensive, non-bonded interaction terms on the GPUs, and overlapping the computation on the CPU and GPUs. This functionality is built on top of message passing interface (MPI) that allows multi-level parallelism to be extracted even at the workstation level with the multi-core CPUs as well as extend the implementation on GPU clusters. The results from a number of typically sized biomolecular systems are provided and analysis is performed on 3 generations of GPUs from NVIDIA. Our implementation allows up to 30-40 ns/day throughput on a single workstation as well as significant speedup over Cray XT5, a high-end supercomputing platform. Moreover, detailed analysis of the implementation indicates that further code optimization and improvements in GPUs will allow {approx}100 ns/day throughput on workstations and inexpensive GPU clusters, putting the widely-desired microsecond simulation time-scale within reach to a large user community.

  17. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  18. Energetic and Structural Study of Diphenylpyridine Isomers

    NASA Astrophysics Data System (ADS)

    Rocha, Marisa A. A.; Gomes, Lígia R.; Low, John N.; Santos, Luís M. N. B. F.

    2009-09-01

    The energetic and structural study of three diphenylpyridine isomers is presented in detail. The three isomers, 2,6-, 2,5-, and 3,5-diphenylpyridines, were synthesized via Suzuki-Miyaura methodology based on palladium catalysis, and the crystal structures of the isomers were obtained by X-ray diffraction. The relative energetic stabilities in the condensed and gaseous phases as well as volatilities and structures of the three studied isomers were evaluated, regarding the position of the phenyl groups relative to the nitrogen atom of the pyridine ring. The temperature, standard molar enthalpies, and entropies of fusion were measured and derived by differential scanning calorimetry. The vapor pressures of the considered isomers were determined by a static apparatus based on a MKS capacitance diaphragm manometer. The standard molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived, and the phase diagram near the triple point coordinates were determined for all isomers. The standard (p° = 0.1 MPa) molar enthalpies of combustion of all crystalline isomers were determined, at T = 298.15 K, by static bomb combustion calorimetry. The standard molar enthalpies of formation, in the crystalline and gaseous phases, at T = 298.15 K, were derived. The experimental results for the energetics in the gaseous phase of the three compounds were compared and assessed with the values obtained by ab initio calculations at different levels of theory (DFT and MP2) showing that, at this level of theory, the computational methods underestimate the energetic stability, in the gaseous phase, for these molecules. In order to understand the aromaticity in the central ring of each isomer, calculations of NICS (B3LYP/6-311G++(d,p) level of theory) values on the pyridine ring were also performed.

  19. In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene.

    PubMed

    Failla, Mark L; Chitchumroonchokchai, Chureeporn; Ishida, Betty K

    2008-03-01

    The ratio of cis and all-trans lycopene (LYC) in human and animal tissues exceeds that in foods. The basis for this difference remains unknown, although differences in their stability, transport, and metabolism have been suggested. Here, we systematically compared the digestive stability, efficiency of micellarization, and uptake and intracellular stability of cis and all-trans isomers of LYC and carotenes using the coupled in vitro digestion and Caco-2 human intestinal cell model. Aril and oil from the carotenoid-rich gac fruit (Momordica cochinchinensis Spreng) were cooked with rice to provide a natural source of LYC and carotenes. The ratio of cis:trans isomers of LYC and beta-carotene was similar before and after simulated gastric and small intestinal digestion with recovery of total carotenoids in the digesta exceeding 70%. Micellarization of cis isomers of LYC during digestion of meals with both gac aril and oil was significantly greater than that of the all-trans isomer but less than for the carotenes. Uptake of cis isomers of LYC by Caco-2 cells was similar to that of carotenes and significantly greater than all-trans LYC. Micellarized carotenoids were relatively stable in micelles incubated in the cell culture environment and after accumulation in Caco-2 cells. These data suggest that the greater bioaccessibility of cis compared with all-trans isomers of LYC contributes to the enrichment of the cis isomers in tissues and that gac fruit is an excellent source of bioaccessible LYC and provitamin A carotenoids.

  20. High-harmonic spectroscopy of molecular isomers

    SciTech Connect

    Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R.; Spanner, M.; Patchkovskii, S.

    2011-11-15

    We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).

  1. K isomers as probes of nuclear structure

    SciTech Connect

    Tandel, S. K.

    2014-08-14

    K isomers are studied in Pu and Cm isotopes, and also in Hf and W nuclei. Many high-K states, several of which are isomeric, are identified. Lifetime measurements spanning the ns-s range have been performed, and decay paths of isomers established. Rotational bands built on high-K states are also identified in many cases. Isomer decays are considerably hindered in many instances, both in the A≈180 and 250 regions indicating that K is an approximately conserved quantum number. High-K states become the favored excitation mode at high spins in the A≈180 region. The energies of the 2-quasiparticle high-K states in Cm isotopes suggest the presence of a deformed subshell gap at N=152.

  2. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  3. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, E P

    2008-12-08

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  4. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, Edward P.

    2009-03-16

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  5. New Millisecond Isomer Lifetime Measurements at LANSCE

    SciTech Connect

    Devlin, M. Nelson, R.O.; Fotiades, N.; O'Donnell, J.M.

    2014-06-15

    New half-life measurements have been made of the millisecond isomers {sup 71m}Ge, {sup 114m2}I, {sup 208m}Bi, {sup 88m1}Y, {sup 88m2}Y, and {sup 75m}As populated in neutron-induced reactions. These measurements were made using the unique time structure of the LANSCE/WNR neutron source, by observing the γ-ray decays of the isomers during the time between the LANSCE proton macropulses. Two different LANSCE proton beam time structures were used. The GEANIE array of HPGe detectors was used to detect the γ-ray decays.

  6. The threshold photoelectron spectroscopy of the cis- and trans- 1-chloro 2-fluoro-ethene isomers: an experimental and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Locht, R.; Dehareng, D.; Leyh, B.

    2014-09-01

    The threshold photoelectron spectra (TPES) of the two vicinal isomers of the 1,2-C2H2FCl molecule have been investigated in the 9-24 eV energy range using synchrotron radiation. Eight (for the cis-isomer) or nine (for the trans-isomer) bands have been observed and the corresponding ionization energies have been determined. The spectroscopic assignments are based on high level quantum chemical ab initio calculations for both isomers. Most of the observed spectral features could be interpreted. For both species the first three TPES bands exhibit a rich vibrational structure. Vibrational energies were determined and assignments were also supported by quantum chemical calculations of vibrational wavenumbers for these three ionic states of both isomers.

  7. Parallel line raster eliminates ambiguities in reading timing of pulses less than 500 microseconds apart

    NASA Technical Reports Server (NTRS)

    Horne, A. P.

    1966-01-01

    Parallel horizontal line raster is used for precision timing of events occurring less than 500 microseconds apart for observation of hypervelocity phenomena. The raster uses a staircase vertical deflection and eliminates ambiguities in reading timing of pulses close to the end of each line.

  8. Construction and performance of a photobleaching recovery apparatus with microsecond time resolution.

    PubMed

    Kao, H P; Verkman, A S

    1996-03-01

    A fluorescence recovery after photobleaching (FRAP) apparatus was constructed to measure sub-millisecond fluorescence recovery processes in living cells. The photobleaching pulse and probe beams were generated by modulating the intensity of a continuous wave Argon laser (4 W) by two acousto-optic modulators in series. The maximum intensity modulation was > 10(6):1 with a rise time of < 1 microsecond and a minimum pulse width of 6 microseconds. Fluorescence was detected by a photomultiplier, amplified by a transimpedance amplifier, and digitized at 1 MHz. During the photobleaching pulse, the photomultiplier gain was reduced by ca. 1500-fold by switching the second dynode voltage ca. 100 V negative with respect to the cathode voltage by computer control of two bidirectional Mosfet optoisolators. The switching circuit produced a optoisolators. The switching circuit produced a transient anode current (t approximately 15 microseconds) which was subtracted for measurement of recoveries of < 50-100 microseconds. The apparatus was coupled to an inverted microscope for measurement of fluorescence by epi-illumination or total internal reflection. Instrument performance was evaluated by measurement of the rapid fluorescence recoveries of fluorescein and fluorescein-dextrans in solutions and living cells.

  9. Plasma Emission Spectra of Opuntia Nopalea Obtained with Microsecond Laser Pulses

    SciTech Connect

    Ponce, L.; Flores, T.; Arronte, A.; Flores, A.

    2008-04-15

    Laser-induced Plasma Spectroscopy was performed during the spines ablation of Opuntia by using Nd:YAG microsecond laser pulses. The results show strong absorption in Glochids that causes the intense electronic noise on the spectra. This process is consider suitable for practical elimination of spines in alimentary products like opuntia.

  10. 'Melatonin isomer' in wine is not an isomer of the melatonin but tryptophan-ethylester.

    PubMed

    Gardana, Claudio; Iriti, Marcello; Stuknytė, Milda; De Noni, Ivano; Simonetti, Paolo

    2014-11-01

    Melatonin is a neurohormone, chronobiotic, and antioxidant compound found in wine and deriving directly from grapes and/or synthesized by yeast during alcoholic fermentation. In addition, a melatonin isomer has been detected in different foods, wine among them. The special interest for melatonin isomer related to the fact that it was found in greater quantities than melatonin and probably shares some of its biological properties. Despite this, its chemical structure has not yet been defined; although some researchers hypothesize, it could be melatonin with the ethylacetamide group shifted into position N1. Thus, the aim of our study was to identify the structures of the melatonin isomer. For this purpose, melatonin and melatonin isomer in Syrah wine were separated chromatographically by a sub-2 μm particle column and detected by tandem mass spectrometry. The sample was then purified and concentrated by solid-phase extraction, hydrolyzed with alkali or esterase, and substrates and products quantified by UPLC-MS/MS. Moreover, melatonin, melatonin isomer, and their product ions were evaluated by high-resolution mass spectrometry. The amount of melatonin isomer and melatonin in the wine was 84 ± 4 and 3 ± 0 ng/mL, respectively. In the solutions, containing diluted alkali or esterase, melatonin isomer was hydrolyzed in about 8 min. Correspondingly, tryptophan was detected, and its amount increased and reached the maximum concentration in about 8 min. Melatonin concentration was not affected by diluted alkali or esterase. The fragmentation pattern of melatonin isomer was different from that of melatonin but comparable to that of tryptophan-ethylester. Finally, the so-called melatonin isomer identity was verified by cochromatography with authentic standard of tryptophan-ethylester.

  11. Introduction of Branching Degrees of Octane Isomers.

    PubMed

    Perdih, Anton

    2016-01-01

    The concept of branching degrees is introduced. In the case of octane isomers it is derived from the values of a set of their physicochemical properties, calculating for each isomer the average of the normalized values and these averages are defined as branching degrees of octane isomers. The sequence of these branching degrees of octane isomers does not differ much from the »regular« one defined earlier. 2,2-Dimethylhexane appears to be less branched than 3,4-dimethylhexane and 3-ethyl, 2-methylpentane, whereas 2,3,4-trimethylpentane appears to be less branched than 3-ethyl, 3-methylpentane. While the increasing number of branches gives rise to increasing branching degrees, the peripheral position of branches and the separation between branches decreases the value of the branching degree. The central position of branches increases it. A bigger branch increases it more than a smaller one. The quantification of these structural features and their correlations with few indices is given as well. PMID:27333567

  12. Introduction of Branching Degrees of Octane Isomers.

    PubMed

    Perdih, Anton

    2016-01-01

    The concept of branching degrees is introduced. In the case of octane isomers it is derived from the values of a set of their physicochemical properties, calculating for each isomer the average of the normalized values and these averages are defined as branching degrees of octane isomers. The sequence of these branching degrees of octane isomers does not differ much from the »regular« one defined earlier. 2,2-Dimethylhexane appears to be less branched than 3,4-dimethylhexane and 3-ethyl, 2-methylpentane, whereas 2,3,4-trimethylpentane appears to be less branched than 3-ethyl, 3-methylpentane. While the increasing number of branches gives rise to increasing branching degrees, the peripheral position of branches and the separation between branches decreases the value of the branching degree. The central position of branches increases it. A bigger branch increases it more than a smaller one. The quantification of these structural features and their correlations with few indices is given as well.

  13. Molecular dynamics of a κB DNA element: base flipping via cross-strand intercalative stacking in a microsecond-scale simulation

    PubMed Central

    Mura, Cameron; McCammon, J. Andrew

    2008-01-01

    The sequence-dependent structural variability and conformational dynamics of DNA play pivotal roles in many biological milieus, such as in the site-specific binding of transcription factors to target regulatory elements. To better understand DNA structure, function, and dynamics in general, and protein···DNA recognition in the ‘κB’ family of genetic regulatory elements in particular, we performed molecular dynamics simulations of a 20-bp DNA encompassing a cognate κB site recognized by the proto-oncogenic ‘c-Rel’ subfamily of NF-κB transcription factors. Simulations of the κB DNA in explicit water were extended to microsecond duration, providing a broad, atomically detailed glimpse into the structural and dynamical behavior of double helical DNA over many timescales. Of particular note, novel (and structurally plausible) conformations of DNA developed only at the long times sampled in this simulation—including a peculiar state arising at ≈0.7 μs and characterized by cross-strand intercalative stacking of nucleotides within a longitudinally sheared base pair, followed (at ≈1 μs) by spontaneous base flipping of a neighboring thymine within the A-rich duplex. Results and predictions from the microsecond-scale simulation include implications for a dynamical NF-κB recognition motif, and are amenable to testing and further exploration via specific experimental approaches that are suggested herein. PMID:18653524

  14. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  15. C68 fullerene isomers, anions, and their metallofullerenes: charge-stabilizing different isomers.

    PubMed

    Chen, De-Li; Tian, Wei Quan; Feng, Ji-Kang; Sun, Chia-Chung

    2008-02-22

    The complete set of 6332 classical isomers of the fullerene C(68) as well as several non-classical isomers is investigated by PM3, and the data for some of the more stable isomers are refined by the DFT-based methods HCTH and B3LYP. C(2):0112 possesses the lowest energy of all the neutral isomers and it prevails in a wide range of temperatures. Among the fullerene ions modeled, C(68) (2-), C(68) (4-) and C(68) (6-), the isomers C(68) (2-)(C(s):0064), C(68) (4-)(C(2v):0008), and C(68) (6-)(D(3):0009) respectively, are predicted to be the most stable. This reveals that the pentagon adjacency penalty rule (PAPR) does not necessarily apply to the charged fullerene cages. The vertical electron affinities of the neutral C(s):0064, C(2v):0008, and D(3):0009 isomers are 3.41, 3.29, and 3.10 eV, respectively, suggesting that they are good electron acceptors. The predicted complexation energy, that is, the adiabatic binding energy between the cage and encapsulated cluster, of Sc(2)C(2)@C(68)(C(2v):0008) is -6.95 eV, thus greatly releasing the strain of its parent fullerene (C(2v):0008). Essentially, C(68) fullerene isomers are charge-stabilized. Thus, inducing charge facilitates the isolation of the different isomers. Further investigations show that the steric effect of the encaged cluster should also be an important factor to stabilize the C(68) fullerenes effectively.

  16. Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics

    PubMed Central

    Pasi, Marco; Maddocks, John H.; Lavery, Richard

    2015-01-01

    Microsecond molecular dynamics simulations of B-DNA oligomers carried out in an aqueous environment with a physiological salt concentration enable us to perform a detailed analysis of how potassium ions interact with the double helix. The oligomers studied contain all 136 distinct tetranucleotides and we are thus able to make a comprehensive analysis of base sequence effects. Using a recently developed curvilinear helicoidal coordinate method we are able to analyze the details of ion populations and densities within the major and minor grooves and in the space surrounding DNA. The results show higher ion populations than have typically been observed in earlier studies and sequence effects that go beyond the nature of individual base pairs or base pair steps. We also show that, in some special cases, ion distributions converge very slowly and, on a microsecond timescale, do not reflect the symmetry of the corresponding base sequence. PMID:25662221

  17. A high-sensitivity femtosecond to microsecond time-resolved infrared vibrational spectrometer.

    PubMed

    Towrie, Michael; Gabrielsson, Anders; Matousek, Pavel; Parker, Anthony W; Rodriguez, Ana Maria Blanco; Vlcek, Antonín

    2005-04-01

    We describe an apparatus that provides, for the first time, a seamless bridge between femtosecond and microsecond time-resolved Raman and infrared vibrational spectroscopy. The laser system comprises an actively Q-switched sub-nanosecond pulsed kilohertz laser electronically synchronized to an ultrafast titanium sapphire regenerative amplifier to within 0.2 ns. The ultrafast amplifier provides the stable probe light source enabling high-sensitivity infrared vibrational spectroscopy of transients. Time-resolved infrared spectra of the excited-state relaxation dynamics of metal carbonyl compounds are presented to illustrate the capability of the apparatus, and transient data is resolved from 1 picosecond to over 100 microseconds. The results are compared to conventional nanosecond Fourier transform infrared (FT-IR) and laser based flash photolysis time-resolved infrared technology.

  18. Modelling Study of Interstellar Ethanimine Isomers

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Corby, Joanna F.; Durr, Allison; Hassel, George

    2016-06-01

    Ethanimine (CH3CHNH) , including both the E- and Z- isomers, were detected towards the star-forming region Sgr B2(N) using the GBT PRIMOS data (Loomis et al 2013), and were recently imaged by the ACTA (Corby et al. 2015). These aldimines can serve as precursors of biological molecules such as amino acids thus are considered prebiotic molecules in interstellar medium. In this study, we present chemical simulations of ethanimine with various physical conditions. From models for Sgr B2(N) and environs, calculated ethanimine abundances show reasonable agreement with observed values, while the translucent cloud models yield much lower abundances. These results agree with locations suggested by observations that ethanimine isomers were detected in the foreground of the shells of the hot core.

  19. K Isomer in {sup 252}No

    SciTech Connect

    Sulignano, B.; Theisen, Ch.; Drouart, A.; Goergen, A.; Korten, W.; Obertelli, A.; Ackermann, D.; Hessberger, F. P.; Hofmann, S.; Antalic, S.; Venhart, M.; Dorvaux, O.; Piot, J.; Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.

    2010-04-30

    In this paper we discuss the discovery of an isomeric state in {sup 252}No and a recent experiment studying the rotational band built upon this isomeric state. Results from the later experiment help to assign the structure of the isomer on the basis of purely experimental data, and to disentangle between different theoretical interpretations. Comparison with similar states in {sup 250}Fm and {sup 254}No provides important information and helps the development of self -consistent theories.

  20. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., "Status on the SPHINX machine based on the 1microsecond LTD technology"] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140mm and maximum current from 3.5to5MA. 700to800ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3TW radial total power, 100-300kJ total yield, and 20-30kJ energy above 1keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ˜10kA and 50μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  1. Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy.

    PubMed

    Zondervan, Rob; Kulzer, Florian; van der Meer, Harmen; Disselhorst, Jos A J M; Orrit, Michel

    2006-04-15

    We demonstrate a novel technique to achieve fast thermal cycles of a small sample (a few femtoliters). Modulating a continuous near-infrared laser focused on a metal film, we can drive the local temperature from 130 to 300 K and back, within a few microseconds. By fluorescence microscopy of dyes in a thin glycerol film, we record images of the hot spot, calibrate its temperature, and follow its variations in real time. The temperature dependence of fluorescence anisotropy, due to photophysics and rotational diffusion, gives a steady-state temperature calibration between 200 and 350 K. From 200 to 220 K, we monitor temperature more accurately by fluorescence autocorrelation, a probe for rotational diffusion. Time-resolved measurements of fluorescence anisotropy give heating and cooling times of a few microseconds, short enough to supercool pure water. We designed our method to repeatedly cycle a single (bio)molecule between ambient and cryostat temperatures with microsecond time resolution. Successive measurements of a structurally relevant variable will decompose a dynamical process into structural snapshots. Such temperature-cycle experiments, which combine a high time resolution with long observation times, can thus be expected to yield new insights into complex processes such as protein folding. PMID:16443653

  2. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    SciTech Connect

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-15

    The Sphinx machine [F. Lassalle et al., 'Status on the SPHINX machine based on the 1microsecond LTD technology'] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140 mm and maximum current from 3.5 to 5 MA. 700 to 800 ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3 TW radial total power, 100-300 kJ total yield, and 20-30 kJ energy above 1 keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima {approx}10 kA and 50 {mu}s. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  3. Pulsed Electron Beam Water Radiolysis for Sub-Microsecond Hydroxyl Radical Protein Footprinting

    PubMed Central

    Watson, Caroline; Janik, Ireneusz; Zhuang, Tiandi; Charvátová, Olga; Woods, Robert J.; Sharp, Joshua S.

    2009-01-01

    Hydroxyl radical footprinting is a valuable technique for studying protein structure, but care must be taken to ensure that the protein does not unfold during the labeling process due to oxidative damage. Footprinting methods based on sub-microsecond laser photolysis of peroxide that complete the labeling process faster than the protein can unfold have been recently described; however, the mere presence of large amounts of hydrogen peroxide can also cause uncontrolled oxidation and minor conformational changes. We have developed a novel method for sub-microsecond hydroxyl radical protein footprinting using a pulsed electron beam from a 2 MeV Van de Graaff electron accelerator to generate a high concentration of hydroxyl radicals by radiolysis of water. The amount of oxidation can be controlled by buffer composition, pulsewidth, dose, and dissolved nitrous oxide gas in the sample. Our results with ubiquitin and β-lactoglobulin A demonstrate that one sub-microsecond electron beam pulse produces extensive protein surface modifications. Highly reactive residues that are buried within the protein structure are not oxidized, indicating that the protein retains its folded structure during the labeling process. Time-resolved spectroscopy indicates that the major part of protein oxidation is complete in a timescale shorter than that of large scale protein motions. PMID:19265387

  4. CYANOMETHANIMINE ISOMERS IN COLD INTERSTELLAR CLOUDS: INSIGHTS FROM ELECTRONIC STRUCTURE AND KINETIC CALCULATIONS

    SciTech Connect

    Vazart, Fanny; Latouche, Camille; Skouteris, Dimitrios; Barone, Vincenzo; Balucani, Nadia

    2015-09-10

    New insights into the formation of interstellar cyanomethanimine, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction CN + CH{sub 2} = NH. This reaction is a facile formation route of Z,E-C-cyanomethanimine, even under the extreme conditions of density and temperature typical of cold interstellar clouds. E-C-cyanomethanimine has been recently identified in Sgr B2(N) in the Green Bank Telescope (GBT) PRIMOS survey by P. Zaleski et al. and no efficient formation routes have been envisaged so far. The rate coefficient expression for the reaction channel leading to the observed isomer E-C-cyanomethanimine is 3.15 × 10-10 × (T/300){sup 0.152} × e{sup (−0.0948/T)}. According to the present study, the more stable Z-C-cyanomethanimine isomer is formed with a slightly larger yield (4.59 × 10{sup −10} × (T/300){sup 0.153} × e{sup (−0.0871/T)}. As the detection of E-isomer is favored due to its larger dipole moment, the missing detection of the Z-isomer can be due to the sensitivity limit of the GBT PRIMOS survey and the detection of the Z-isomer should be attempted with more sensitive instrumentation. The CN + CH{sub 2} = NH reaction can also play a role in the chemistry of the upper atmosphere of Titan where the cyanomethanimine products can contribute to the buildup of the observed nitrogen-rich organic aerosols that cover the moon.

  5. Nuclear isomers as ultra-high-energy-density materials

    NASA Astrophysics Data System (ADS)

    Poppe, C. H.; Weiss, M. S.; Anderson, J. D.

    1992-04-01

    Nuclear isomers are metastable states of atomic nuclei which release their energy in a prompt burst of electromagnetic radiation. Two kinds of nuclear isomers are known to exist: spin isomers and shape isomers. There is evidence for at least 27 different fissionless shape isomers in isotopes of mercury, lead, and thallium, in agreement with theoretical predictions. Three potential mechanisms for releasing the stored isomeric energy are neutron catalysis, laser-electron-nuclear coupling, and Stark-shift-induced mixing. While shape isomers are believed to hold the most promise for radioactivity-free, ultra-high-energy-density materials, spin isomers can be used as surrogates for developing the release mechanisms. It is proposed to undertake shell-model calculations for the nuclear levels in vicinity of the (sup 178)Hf spin isomer, in order to estimate the efficacy of neutron catalysis. It is also proposed to use the toroidal electron spectrometer to measure the conversion electrons from laser-induced transitions in (sup 229)Th. The final mechanism, Stark-shift-induced mixing of atomic and nuclear levels, would also be studied theoretically. Finally, isomer production is considered briefly, including the possibility of shape isomers in fission products from radwaste or nuclear explosions.

  6. In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene.

    PubMed

    Failla, Mark L; Chitchumroonchokchai, Chureeporn; Ishida, Betty K

    2008-03-01

    The ratio of cis and all-trans lycopene (LYC) in human and animal tissues exceeds that in foods. The basis for this difference remains unknown, although differences in their stability, transport, and metabolism have been suggested. Here, we systematically compared the digestive stability, efficiency of micellarization, and uptake and intracellular stability of cis and all-trans isomers of LYC and carotenes using the coupled in vitro digestion and Caco-2 human intestinal cell model. Aril and oil from the carotenoid-rich gac fruit (Momordica cochinchinensis Spreng) were cooked with rice to provide a natural source of LYC and carotenes. The ratio of cis:trans isomers of LYC and beta-carotene was similar before and after simulated gastric and small intestinal digestion with recovery of total carotenoids in the digesta exceeding 70%. Micellarization of cis isomers of LYC during digestion of meals with both gac aril and oil was significantly greater than that of the all-trans isomer but less than for the carotenes. Uptake of cis isomers of LYC by Caco-2 cells was similar to that of carotenes and significantly greater than all-trans LYC. Micellarized carotenoids were relatively stable in micelles incubated in the cell culture environment and after accumulation in Caco-2 cells. These data suggest that the greater bioaccessibility of cis compared with all-trans isomers of LYC contributes to the enrichment of the cis isomers in tissues and that gac fruit is an excellent source of bioaccessible LYC and provitamin A carotenoids. PMID:18287353

  7. Microsecond electrophoresis

    PubMed Central

    Plenert, Matthew L.; Shear, Jason B.

    2003-01-01

    Although analysis strategies exist for probing a diverse array of molecular properties, most of these approaches are not amenable to the study of reaction intermediates and other transient species. Separations in particular can provide detailed information on attributes not readily measured by spectroscopy but typically are performed over time scales much longer than the life span of highly unstable compounds. Here we report the development of an electrophoretic strategy that dramatically extends the practical speed limit for fractionations and demonstrate its utility in examining transient hydroxyindole photoproducts. Fluorescent reaction intermediates are optically generated in femtoliter volumes within a flowing reagent stream and are differentially transported at velocities as large as 1.3 m⋅s−1, thereby minimizing band variance and allowing multicomponent reaction mixtures to be resolved over separation paths as short as 9 μm. Analyte migration times and band variances do not deviate significantly from basic theory for separations performed with fields that exceed 0.1 MV⋅cm−1, indicating that effects from Joule heating are minor. We demonstrate the feasibility of achieving baseline resolution of a binary mixture in <10 μs, nearly 100-fold faster than previously possible. Application of this approach to the study of a range of short-lived molecules should be feasible. PMID:12629208

  8. Two-quasiparticle structures and isomers in {sup 168}Er, {sup 170}Er, and {sup 172}Er.

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.; Watanabe, H.; Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.; Australian National Univ.; RIKEN; Univ. of Maryland

    2010-05-01

    The stable and neutron-rich isotopes 168Er, 170Er, and 172Er have been studied with Gammasphere using inelastic excitation with energetic 136Xe beams. The previously assigned structures based on the proposed K?=4- isomeric intrinsic states in both 168Er and 170Er have been re-evaluated and an equivalent band identified in 172Er. In 170Er, the identification of a K?=6- band with transitions close in energy to those of the 4- band leads to a modified interpretation, since the overlap would have compromised previous analyses. The gK-gR values for the 4- bands deduced from the in-band ?-ray intensities for the sequence of isotopes suggest a predominantly two-neutron configuration in 168Er, an equally mixed two-neutron, two-proton configuration in 170Er, and a two-proton configuration in 172Er. A comprehensive decay scheme for the previously proposed 6+ isomer in 172Er has also been established, as well as band structures built on this isomer that closely resemble the 6+ and 7- two-neutron structures known in the isotone 174Yb. The implied K hindrances are discussed. The main decay path of the 6+ isomer occurs through the newly identified 4- isomer. The measured lifetimes of the 4- and 6+ isomers in 172Er are 57(3) and 822(90) ns, respectively. Multiquasiparticle calculations support the suggested configuration changes across the isotopic chain.

  9. The interstellar chemistry of H2C3O isomers

    NASA Astrophysics Data System (ADS)

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-03-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects.

  10. The interstellar chemistry of H2C3O isomers

    PubMed Central

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  11. Microsecond linear optical response in the unusual nematic phase of achiral bimesogens

    NASA Astrophysics Data System (ADS)

    Panov, V. P.; Balachandran, R.; Nagaraj, M.; Vij, J. K.; Tamba, M. G.; Kohlmeier, A.; Mehl, G. H.

    2011-12-01

    Some hydrocarbon linked mesogenic dimers are known to exhibit an additional nematic phase (Nx) below a conventional uniaxial nematic (Nu) phase. Although composed of non-chiral molecules, the Nx phase is found to exhibit linear (polar) switching under applied electric field. This switching has remarkably low response time of the order of a few microseconds. Two chiral domains with opposite handedness and consequently opposite responses are found in planar cells. Uniformly lying helix, electroclinic, and flexoelectric effects are given as possible causes for this intriguing phenomenon.

  12. Microsecond fiber laser pumped, single-frequency optical parametric oscillator for trace gas detection.

    PubMed

    Barria, Jessica Barrientos; Roux, Sophie; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Melkonian, Jean-Michel; Godard, Antoine; Lefebvre, Michel

    2013-07-01

    We report on the first microsecond doubly resonant optical parametric oscillator (OPO). It is based on a nested cavity OPO architecture allowing single longitudinal mode operation and low oscillation threshold (few microjoule). The combination with a master oscillator-power amplifier fiber pump laser provides a versatile optical source widely tunable in the 3.3-3.5 μm range with an adjustable pulse repetition rate (from 40 to 100 kHz), high duty cycle (~10(-2)) and mean power (up to 25 mW in the idler beam). The potential for trace gas sensing applications is demonstrated through photoacoustic detection of atmospheric methane. PMID:23811865

  13. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    SciTech Connect

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×109 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  14. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    DOE PAGESBeta

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×109 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  15. Binary homogeneous nucleation of octane isomers

    NASA Astrophysics Data System (ADS)

    Doster, George Jay

    The measurement of the binary homogeneous nucleation of i-octane and n-octane (2,2,4-trimethylpentane) has been performed with a Wilson cloud chamber. This system of octane isomers has been chosen because it exhibits the desirable properties of a nearly ideal system. The octanes are non-polar, do not hydrogen bond, and have a low heat of mixing. The results from this experiment are presented and compared to the binary classical nucleation theory, the diffuse interface theory, and the binary scaled nucleation theory. The data from this experiment includes 3 mixtures of the octane isomers in mole fraction ratios of 1:1, 1:3, and 3:1 along with results from the pure octanes. Nucleation rates from approximately 100 to 50,000 cm3s and nucleation temperatures of 215 K to 260 K are included. This wide range of data is an effort to create a collection of data to which modified or new nucleation theories may be compared.

  16. Unprecedented χ isomers of single-side triol-functionalized Anderson polyoxometalates and their proton-controlled isomer transformation.

    PubMed

    Zhang, Jiangwei; Liu, Zhenhua; Huang, Yichao; zhang, Jin; Hao, Jian; Wei, Yongge

    2015-06-01

    The μ2-O atom in Anderson polyoxometalates was regioselectively activated by the introduction of protons, which, upon functionalization with triol ligands, could afford a series of unique χ isomers of the organically-derived Anderson cluster {[RCC(CH2O)3]MMo6O18(OH)3}(3-). Herein proton-controlled isomer transformation between the δ and χ isomer was observed by using the fingerprint region in the IR spectra and (13)C NMR spectra.

  17. The truth about the lower plasma concentration of the (-)-isomer after racemic doxazosin administration in rats: Stereoselective inhibition of the (-)-isomer by the (+)-isomer at CYP3A.

    PubMed

    Kong, Dezhi; Li, Qing; Zhang, Panpan; Zhang, Wei; Zhen, Yaqin; Ren, Leiming

    2015-09-18

    Doxazosin (DOX), a long-lasting α1-adrenoceptor antagonist, is used clinically as a racemate that consists of two optical isomers. In humans and rats, following oral administration of racemic DOX [(±)-DOX], the plasma concentration of the (-)-isomer is lower than that of the (+)-isomer, but the mechanism for this interaction is not known. In this study, a chiral HPLC with fluorescence detection was used to measure the drug concentrations for analysis of the stereoselective metabolism of DOX in in vivo and in vitro experiments. We found that the plasma levels of the (-)-isomer were significantly lower than those of the (+)-enantiomer following i.v. administration of (±)-DOX to the rats and that the depletion rate constant (kdep) of (-)-DOX (0.0107±0.0007L/min) was significantly larger than that of (+)-DOX (kdep 0.0088±0.0005L/min) (p<0.05) when (±)-DOX was incubated with rat liver microsomes (RLMs). However, (-)-DOX was not depleted faster than (+)-DOX following their separate incubation with RLMs. The metabolism of (-)- or (+)-isomer in RLMs was catalysed by CYP3A because the depletion of the compounds was inhibited by ketoconazole (a potent CYP3A-selective inhibitor) similarly. More importantly, the kdep of (+)-DOX in the 1.0/2.0 and 0.5/2.5 (+)-DOX/(-)-DOX mixtures was significantly lower than that of (-)-DOX in the 1.0/2.0 and 0.5/2.5 (-)-DOX/(+)-DOX mixtures (p<0.05). In conclusion, although (-)-DOX is not depleted faster than (+)-DOX when only a single isomer of DOX is incubated with rat liver microsomes, it is depleted much faster than (+)-DOX when a mixture of the two isomers was used, suggesting a prominent and stereoselective inhibition of the (-)-isomer over the (+)-isomer at the CYP3A enzyme.

  18. Microsecond Molecular Simulations Reveal a Transient Proton Pathway in the Calcium Pump.

    PubMed

    Espinoza-Fonseca, L Michel; Ramírez-Salinas, G Lizbeth

    2015-06-10

    The calcium pump sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) counter-transports Ca(2+) and H(+) at the expense of ATP hydrolysis. SERCA uses separate proton and metal ion pathways during active transport to neutralize the highly charged transport site, thus preserving SERCA's structural stability during active Ca(2+) transport. Although separate metal ion and proton pathways have been identified during slow (millisecond) structural transitions of SERCA, the existence of simultaneous metal and proton pathways during fast (microsecond) structural transitions remains unknown. We have analyzed microsecond-long trajectories of E1·H(+)771, a protonated intermediate of the pump populated during SERCA regulation. We found a transiently established hydrophobic pore in the luminal side of the transmembrane helices 6, 8, and 9. This narrow (0.5-0.6 nm) pore connects the transport sites to the sarcoplasmic reticulum lumen through a chain of water molecules. Protein pKa calculations of the transport site residues and structural analysis of the water molecules showed that this pore is suitable for proton transport. This transient proton pathway ensures neutralization of the transport sites during the rapid structural transitions associated with regulation of the pump. We conclude that this transient proton pathway plays a central role in optimizing active Ca(2+) transport by SERCA. Our discovery provides insight into ion-exchange mechanisms through transient hydrophobic pores in P-type ATPases.

  19. Microsecond Time Resolution Optical Photometry using a H.E.S.S. Cherenkov Telescope

    SciTech Connect

    Deil, Christoph; Domainko, Wilfried; Hermann, German

    2008-02-22

    We have constructed an optical photometer with microsecond time resolution, which is currently being operated on one of the H.E.S.S. telescopes. H.E.S.S. is an array of four Cherenkov telescopes, each with a 107 m{sup 2} mirror, located in the Khomas highland in Namibia. In its normal mode of operation H.E.S.S. observes Cherenkov light from air showers generated by very high energy gamma-rays in the upper atmosphere. Our detector consists of seven photomultipliers, one in the center to record the lightcurve from the target and six concentric photomultipliers as a veto system to reject disturbing signals e.g. from meteorites or lightning at the horizon. The data acquisition system has been designed to continuously record the signals with zero deadtime. The Crab pulsar has been observed to verify the performance of the instrument and the GPS timing system. Compact galactic targets were observed to search for flares on timescales of a few microseconds to {approx}100 ms. The design and sensitivity of the instrument as well as the data analysis method are presented.

  20. Tuning Neuronal Hardware with Microsecond Precision: Sound Localization in the Barn Owl

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    1998-03-01

    In auditory and electrosensory neuronal systems, there seems to exist an unresolved paradox: They encode behaviorally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The barn owl's auditory system is a prominent example that may serve to provide a solution(W. Gerstner, R. Kempter, J.L. van Hemmen, and H. Wagner, Nature 383) (1996) 76--78 to the above paradox. First, neuronal output is much more accurate than the input, phprovided the presynaptic spikes arrive coherently on the average -- as they do in the adult animal. Second, this coherence in signal arrival times can be attained through unsupervised Hebbian learning (`tuning') during ontogenetic development. The learning rule governing the strength of a synapse is based on the precise timing of input as compared to output spikes. Third, the learning rule also selects the correct delays from two independent groups of input, for example, from the left and right ear and, thus, can explain the tuning to interaural time differences in the microsecond range that underlies sound localization. The relation to stochastic resonance is indicated.

  1. Dynamics of Lipids, Cholesterol, and Transmembrane α-Helices from Microsecond Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Extensive all-atom molecular dynamics (∼24 μs total) allowed exploration of configurational space and calculation of lateral diffusion coefficients of the components of a protein-embedded, cholesterol-containing model bilayer. The three model membranes are composed of an ∼50/50 (by mole) dipalmitoylphosphatidylcholine (DPPC)/cholesterol bilayer and contained an α-helical transmembrane protein (HIV-1 gp41 TM). Despite the high concentration of cholesterol, normal Brownian motion was observed and the calculated diffusion coefficients (on the order of 10–9 cm2/s) are consistent with experiments. Diffusion is sensitive to a variety of parameters, and a temperature difference of ∼4 K from thermostat artifacts resulted in 2–10-fold differences in diffusion coefficients and significant differences in lipid order, membrane thickness, and unit cell area. Also, the specific peptide sequence likely underlies the consistently observed faster diffusion in one leaflet. Although the simulations here present molecular dynamics (MD) an order of magnitude longer than those from previous studies, the three systems did not approach ergodicity. The distributions of cholesterol and DPPC around the peptides changed on the microsecond time scale, but not significantly enough to thoroughly explore configurational space. These simulations support conclusions of other recent microsecond MD in that even longer time scales are needed for equilibration of model membranes and simulations of more realistic cellular or viral bilayers. PMID:25380392

  2. Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein

    PubMed Central

    Wu, Ying; Kondrashkina, Elena; Kayatekin, Can; Matthews, C. Robert; Bilsel, Osman

    2008-01-01

    The earliest kinetic folding events for (βα)8 barrels reflect the appearance of off-pathway intermediates. Continuous-flow microchannel mixing methods interfaced to small-angle x-ray scattering (SAXS), circular dichroism (CD), time-resolved Förster resonant energy transfer (trFRET), and time-resolved fluorescence anisotropy (trFLAN) have been used to directly monitor global and specific dimensional properties of the partially folded state in the microsecond time range for a representative (βα)8 barrel protein. Within 150 μs, the α-subunit of Trp synthase (αTS) experiences a global collapse and the partial formation of secondary structure. The time resolution of the folding reaction was enhanced with trFRET and trFLAN to show that, within 30 μs, a distinct and autonomous partially collapsed structure has already formed in the N-terminal and central regions but not in the C-terminal region. A distance distribution analysis of the trFRET data confirmed the presence of a heterogeneous ensemble that persists for several hundreds of microseconds. Ready access to locally folded, stable substructures may be a hallmark of repeat-module proteins and the source of early kinetic traps in these very common motifs. Their folding free-energy landscapes should be elaborated to capture this source of frustration. PMID:18757725

  3. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source

    PubMed Central

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J.; Chance, Mark R.; Ralston, Corie

    2014-01-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale. PMID:24971962

  4. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  5. Quadrupole Moment of the 7/21 Isomer State of 43MS

    NASA Astrophysics Data System (ADS)

    Chevrier, R.; Daugas, J. M.; Gaudefroy, L.; Ichikawa, Y.; Ueno, H.; Hass, M.; Haas, H.; Cottenier, S.; Aoi, N.; Asahi, K.; Balabanski, D. L.; Fukuda, N.; Furukawa, T.; Georgiev, G.; Hayashi, H.; Iijima, H.; Inabe, N.; Inoue, T.; Ishihara, M.; Ishii, Y.; Kameda, D.; Kubo, T.; Nanao, T.; Neyens, G.; Ohnish, T.; Rajabali, M. M.; Suzuki, K.; Takeda, H.; Tsuchiya, M.; Vermeulen, N.; Watanabe, H.; Yoshimi, A.

    2013-06-01

    We report on the spectroscopic quadrupole moment of the 7/2- isomer state [E*=320.5(5) keV, T1/2=415(5) ns, |Qs|=23(3) efm2] in the neutron-rich 43S nucleus, using the Time Dependent Perturbed Angular Distribution (TDPAD) method at RIKEN. The measured |Qs| is larger than that expected for a single particle state. Comparison to shell model calculations performed using the SDPF-U interaction, show that correlations drive the isomeric state away from a purely spherical shape.

  6. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent...

  7. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent...

  8. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent...

  9. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent...

  10. 27 CFR 21.120 - Nitropropane, mixed isomers of.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Nitropropane, mixed isomers of. 21.120 Section 21.120 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Denaturants § 21.120 Nitropropane, mixed isomers of. (a) Nitropropane content. A minimum of 94 percent...

  11. Stereospecific Synthesis of the Geometrical Isomers of a Natural Product

    ERIC Educational Resources Information Center

    Grove, T.; DiLella, D.; Volker, E.

    2006-01-01

    Stereospecific synthesis of a geometrical isomer is not a common topic for the introductory organic chemistry laboratory. We have developed and tested an experiment for the synthesis of (Z) and (E) isomers that has been performed successfully by undergraduate students. The experiment is presented to the students as a puzzle in which they must…

  12. Complete Hexose Isomer Identification with Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagy, Gabe; Pohl, Nicola L. B.

    2015-04-01

    The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.

  13. Isomer ratio calculations using modeled discrete levels

    SciTech Connect

    Gardner, M.A.; Gardner, D.G.; Hoff, R.W.

    1984-10-16

    Isomer ratio calculations were made for the reactions: /sup 175/Lu(n,..gamma..)/sup 176m,g/Lu, /sup 175/Lu(n,2n)/sup 174m,g/Lu, /sup 237/Np(n,2n)/sup 236m,g/Np, /sup 241/Am(n,..gamma..)/sup 242m,g/Am, and /sup 243/Am(n,..gamma..)/sup 244m,g/Am using modeled level structures in the deformed, odd-odd product nuclei. The hundreds of discrete levels and their gamma-ray branching ratios provided by the modeling are necessary to achieve agreement with experiment. Many rotational bands must be included in order to obtain a sufficiently representative selection of K quantum numbers. The levels of each band must be extended to appropriately high values of angular momentum.

  14. Isomer Spectroscopy of the Heaviest Elements

    NASA Astrophysics Data System (ADS)

    Clark, Roderick

    2009-05-01

    A new generation of experiments on the structure and properties of the heaviest elements is being performed in laboratories around the world. These studies are addressing fundamental questions such as the maximum mass and charge that a nucleus can attain. Long-lived high-K isomers are found in the region of prolate-deformed trans-fermium nuclei and by studying their decay one can learn about the single-particle structure, pairing correlations, and excitation modes of the heaviest nuclei. Recent decay spectroscopy experiments using the Berkeley Gas-Filled Separator (BGS) at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory have yielded a wealth of detailed new information on many nuclei in the trans-fermium region. I will discuss these new results and their implications.

  15. Laboratory detection of the elusive HSCO+ isomer.

    PubMed

    McCarthy, M C; Thaddeus, P

    2007-12-14

    The rotational spectrum of protonated carbonyl sulfide, HSCO(+), has now been detected in the centimeter-wave band in a molecular beam by Fourier transform microwave spectroscopy. Rotational and centrifugal distortion constants have been determined from transitions in the K(a)=0 ladder of the normal isotopic species, and DSCO(+) and H(34)SCO(+). HSCO(+) is systematically more abundant by a factor of three than HOCS(+), the isomer obtained by attaching the H(+) to the other end of the molecule, which ab initio calculations long predicted to be higher in energy by 4-5 kcalmol. Because HSCO(+) is comparable in polarity to HOCS(+) and is apparently more stable and because OCS is widely distributed in astronomical sources, HSCO(+) is a good candidate for detection with radio telescopes. PMID:18081381

  16. Complete hexose isomer identification with mass spectrometry.

    PubMed

    Nagy, Gabe; Pohl, Nicola L B

    2015-04-01

    The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.

  17. Nuclear structure and depletion of nuclear isomers using electron linacs

    SciTech Connect

    Carroll, J. J.; Litz, M. S.; Henriquez, S. L.; Burns, D. A.; Netherton, K. A.; Pereira, N. R.; Karamian, S. A.

    2013-04-19

    Long-lived nuclear excited states (isomers) have proven important to understanding nuclear structure. With some isomers having half-lives of decades or longer, and intrinsic energy densities reaching 10{sup 12} J/kg, they have also been suggested for a wide range of applications. The ability to effectively transfer a population of nuclei from an isomer to shorter-lived levels will determine the feasibility of any applications. Here is described a first demonstration of the induced depletion of a population of the 438 year isomer of {sup 108}Ag to its 2.38 min ground state, using 6 MeV bremsstrahlung from a modified medical electron linac. The experiment suggests refinements to be implemented in the future and how a similar approach might be applied to study induced depletion of the 1200 year isomer of {sup 166}Ho.

  18. Energetics and Vibrational Analysis of Methyl Salicylate Isomers

    NASA Astrophysics Data System (ADS)

    Massaro, Richard D.; Dai, Yafei; Blaisten-Barojas, Estela

    2009-08-01

    Energetics and vibrational analysis study of six isomers of methyl salicylate in their singlet ground state and first excited triple state is put forward in this work at the density functional theory level and large basis sets. The ketoB isomer is the lowest energy isomer, followed by its rotamer ketoA. For both ketoB and ketoA their enolized tautomers are found to be stable as well as their open forms that lack the internal hydrogen bond. The calculated vibrational spectra are in excellent agreement with IR experiments of methyl salicylate in the vapor phase. It is demonstrated that solvent effects have a weak influence on the stability of these isomers. The ionization reaction from ketoB to ketoA shows a high barrier of 0.67 eV ensuring that thermal and chemical equilibria yield systems containing mostly the ketoB isomer at normal conditions.

  19. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    SciTech Connect

    Yoh, J J; McClelland, M A

    2003-07-16

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  20. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    SciTech Connect

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-06-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10{sup 3} compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second.

  1. Study of Vacuum Insulator Flashover for Pulse Lengths of Multi-Microseconds

    SciTech Connect

    Houck, T; Goerz, D; Javedani, J; Lauer, E; Tully, L; Vogtlin, G

    2006-07-31

    We are studying the flashover of vacuum insulators for applications where high voltage conditioning of the insulator and electrodes is not practical and for pulse lengths on the order of several microseconds. The study is centered about experiments performed with a 100-kV, 10-ms pulsed power system and supported by a combination of theoretical and computational modeling. The base line geometry is a cylindrically symmetric, +45{sup o} insulator between flat electrodes. In the experiments, flashovers or breakdowns are localized by operating at field stresses slightly below the level needed for explosive emissions with the base line geometry. The electrodes and/or insulator are then seeded with an emission source, e.g. a tuft of velvet, or a known mechanical defect. Various standard techniques are employed to suppress cathode-originating flashovers/breakdowns. We present the results of our experiments and discuss the capabilities of modeling insulator flashover.

  2. Astropulse: A Search for Microsecond Transient Radio Signals Using Distributed Computing. I. Methodology

    NASA Astrophysics Data System (ADS)

    Von Korff, J.; Demorest, P.; Heien, E.; Korpela, E.; Werthimer, D.; Cobb, J.; Lebofsky, M.; Anderson, D.; Bankay, B.; Siemion, A.

    2013-04-01

    We are performing a transient, microsecond timescale radio sky survey, called "Astropulse," using the Arecibo telescope. Astropulse searches for brief (0.4 μs to 204.8 μs ), wideband (relative to its 2.5 MHz bandwidth) radio pulses centered at 1420 MHz. Astropulse is a commensal (piggyback) survey, and scans the sky between declinations of -1.°33 and 38.°03. We obtained 1540 hr of data in each of seven beams of the ALFA receiver, with two polarizations per beam. The data are one-bit complex sampled at the Nyquist limit of 0.4 μs per sample. Examination of timescales on the order of microseconds is possible because we used coherent dedispersion, a technique that has frequently been used for targeted observations, but has never been associated with a radio sky survey. The more usual technique, incoherent dedispersion, cannot resolve signals below a minimum timescale which depends on the signal's dispersion measure (DM) and frequency. However, coherent dedispersion requires more intensive computation than incoherent dedispersion. The required processing power was provided by BOINC, the Berkeley Open Infrastructure for Network Computing. BOINC is a distributed computing system, allowing us to utilize hundreds of thousands of volunteers' computers to perform the necessary calculations for coherent dedispersion. Astrophysical events that might produce brief radio pulses include giant pulses from pulsars, rotating radio transients, exploding primordial black holes, or new sources yet to be imagined. Radio frequency interference and noise contaminate the data; these are mitigated by a number of techniques including multi-polarization correlation, DM repetition detection, and frequency profiling.

  3. Histotripsy Produced by Hundred-Microsecond-Long Focused Ultrasonic Pulses: A Preliminary Study.

    PubMed

    Guan, Yubo; Lu, Mingzhu; Li, Yujiao; Liu, Fenfen; Gao, Ya; Dong, Tengju; Wan, Mingxi

    2016-09-01

    A new strategy is proposed in this study to rapidly generate mechanical homogenized lesions using hundred-microsecond-long pulses. The pulsing scheme was divided into two stages: generating sufficient bubble seed nuclei via acceleration by boiling bubbles and efficiently forming a mechanically homogenized and regularly shaped lesion with a homogenate inside via inertial cavitation. The duty cycle was set at 4.9%/3.9% in stage 1 and 1%/0.88% in stage 2 by changing the pulse duration (PD) and off-time independently. The pulse sequence was 500-μs/400-μs PD with a 100-Hz pulse repetition frequency (PRF) in stage 1, followed by 500-μs/400-μs PD with a 100-Hz PRF and 200-μs PD with a 200-Hz PRF in stage 2. Experiments were conducted on polyacrylamide phantoms with bovine serum albumin and on ex vivo porcine kidney tissues using a single-element 1.06-MHz transducer at an 8-MPa peak negative pressure with shock waves. The lesion evolution and dynamic elastic modulus variation in the phantoms and the histology in the tissue samples were investigated. The results indicate that the two-stage treatment using hundred-microsecond-long pulses can efficiently produce mechanically homogenized lesions with smooth borders, long tear shapes and the total homogenate inside. The time to generate a single mechanically homogenized lesion is shortened from >50 s to 17.1 s. PMID:27318864

  4. ASTROPULSE: A SEARCH FOR MICROSECOND TRANSIENT RADIO SIGNALS USING DISTRIBUTED COMPUTING. I. METHODOLOGY

    SciTech Connect

    Von Korff, J.; Heien, E.; Korpela, E.; Werthimer, D.; Cobb, J.; Lebofsky, M.; Anderson, D.; Bankay, B.; Siemion, A.; Demorest, P.

    2013-04-10

    We are performing a transient, microsecond timescale radio sky survey, called 'Astropulse', using the Arecibo telescope. Astropulse searches for brief (0.4 {mu}s to 204.8 {mu}s ), wideband (relative to its 2.5 MHz bandwidth) radio pulses centered at 1420 MHz. Astropulse is a commensal (piggyback) survey, and scans the sky between declinations of -1. Degree-Sign 33 and 38. Degree-Sign 03. We obtained 1540 hr of data in each of seven beams of the ALFA receiver, with two polarizations per beam. The data are one-bit complex sampled at the Nyquist limit of 0.4 {mu}s per sample. Examination of timescales on the order of microseconds is possible because we used coherent dedispersion, a technique that has frequently been used for targeted observations, but has never been associated with a radio sky survey. The more usual technique, incoherent dedispersion, cannot resolve signals below a minimum timescale which depends on the signal's dispersion measure (DM) and frequency. However, coherent dedispersion requires more intensive computation than incoherent dedispersion. The required processing power was provided by BOINC, the Berkeley Open Infrastructure for Network Computing. BOINC is a distributed computing system, allowing us to utilize hundreds of thousands of volunteers' computers to perform the necessary calculations for coherent dedispersion. Astrophysical events that might produce brief radio pulses include giant pulses from pulsars, rotating radio transients, exploding primordial black holes, or new sources yet to be imagined. Radio frequency interference and noise contaminate the data; these are mitigated by a number of techniques including multi-polarization correlation, DM repetition detection, and frequency profiling.

  5. From microseconds to seconds and minutes—time computation in insect hearing

    PubMed Central

    Hartbauer, Manfred; Römer, Heiner

    2014-01-01

    The computation of time in the auditory system of insects is of relevance at rather different time scales, covering a large range from microseconds to several minutes. At the one end of this range, only a few microseconds of interaural time differences are available for directional hearing, due to the small distance between the ears, usually considered too small to be processed reliably by simple nervous systems. Synapses of interneurons in the afferent auditory pathway are, however, very sensitive to a time difference of only 1–2 ms provided by the latency shift of afferent activity with changing sound direction. At a much larger time scale of several tens of milliseconds to seconds, time processing is important in the context species recognition, but also for those insects where males produce acoustic signals within choruses, and the temporal relationship between song elements strongly deviates from a random distribution. In these situations, some species exhibit a more or less strict phase relationship of song elements, based on phase response properties of their song oscillator. Here we review evidence on how this may influence mate choice decisions. In the same dimension of some tens of milliseconds we find species of katydids with a duetting communication scheme, where one sex only performs phonotaxis to the other sex if the acoustic response falls within a very short time window after its own call. Such time windows show some features unique to insects, and although its neuronal implementation is unknown so far, the similarity with time processing for target range detection in bat echolocation will be discussed. Finally, the time scale being processed must be extended into the range of many minutes, since some acoustic insects produce singing bouts lasting quite long, and female preferences may be based on total signaling time. PMID:24782783

  6. Advances in turbulent mixing techniques to study microsecond protein folding reactions

    PubMed Central

    Kathuria, Sagar V.; Chan, Alexander; Graceffa, Rita; Nobrega, R. Paul; Matthews, C. Robert; Irving, Thomas C.; Perot, Blair; Bilsel, Osman

    2013-01-01

    Recent experimental and computational advances in the protein folding arena have shown that the readout of the one-dimensional sequence information into three-dimensional structure begins within the first few microseconds of folding. The initiation of refolding reactions has been achieved by several means, including temperature jumps, flash photolysis, pressure jumps and rapid mixing methods. One of the most commonly used means of initiating refolding of chemically-denatured proteins is by turbulent flow mixing with refolding dilution buffer, where greater than 99% mixing efficiency has been achieved within 10’s of microseconds. Successful interfacing of turbulent flow mixers with complementary detection methods, including time-resolved Fluorescence Spectroscopy (trFL), Förster Resonance Energy Transfer (FRET), Circular Dichroism (CD), Small-Angle X-ray Scattering (SAXS), Hydrogen Exchange (HX) followed by Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR), Infrared Spectroscopy (IR), and Fourier Transform IR Spectroscopy (FTIR), has made this technique very attractive for monitoring various aspects of structure formation during folding. Although continuous-flow (CF) mixing devices interfaced with trFL detection have a dead time of only 30 µs, burst-phases have been detected in this time scale during folding of peptides and of large proteins (e.g., CheY and TIM barrels). Furthermore, a major limitation of CF mixing technique has been the requirement of large quantities of sample. In this brief communication, we will discuss the recent flurry of activity in micromachining and microfluidics, guided by computational simulations, that are likely to lead to dramatic improvements in time resolution and sample consumption for CF mixers over the next few years. PMID:23868289

  7. Separation and identification of indene–C70 bisadduct isomers

    PubMed Central

    Zhang, Bolong; Subbiah, Jegadesan; Jones, David J

    2016-01-01

    Summary Following an initial work on the isolation of a single geometric isomer from an indene–C70 bisadduct (IC70BA) mixture, we report the full fractionation and identification of the bisadduct species in the material. Eleven fractions of IC70BA isomers were separated by high-performance liquid chromatography. A number of fractions contained relatively pure isomer species and their configuration were deduced using a variety of analytical techniques including 1H and 13C NMR and UV–vis spectroscopy. The electrochemical properties and the organic solar cell device performance were investigated for fractions where a reasonable quantity of sample could be isolated. PMID:27340480

  8. Detection of Actinides via Nuclear Isomer De-Excitation

    SciTech Connect

    Francy, Christopher J.

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  9. Raman spectroscopic analysis of isomers of biliverdin dimethyl ester.

    PubMed

    Matysik, J; Hildebrandt, P; Smit, K; Mark, F; Gärtner, W; Braslavsky, S E; Schaffner, K; Schrader, B

    1997-06-01

    The constitutional isomers of biliverdin dimethyl ester, IX alpha and XIII alpha, were studied by resonance Raman spectroscopy. The far-reaching spectral similarities suggest that despite the different substitution patterns, the compositions of the normal modes are closely related. This conclusion does not hold only for the parent state (ZZZ, sss configuration) but also for the configurational isomers which were obtained upon double-bond photoisomerization. Based on a comparison of the resonance Raman spectra, a EZZ configuration is proposed for one of the two photoisomers of biliverdin dimethyl ester IX alpha, while a ZZE, ssa configuration has been assigned previously to the second isomer. PMID:9226559

  10. Conversion electron spectroscopy at the FMA focal plane: Decay studies of proton-rich N {approximately} 82 nuclei

    SciTech Connect

    Nisius, D.; Janssens, R.V.F.; Ahmad, I.

    1995-08-01

    The FMA has proven to be an ideal instrument for the detailed study of the decay of microsecond isomers behind the focal plane following mass selection. In reactions leading to the population of nuclei with isomeric lifetimes longer than their flight time through the device, decay gamma rays and conversion electrons can be detected in an environment free from the backgrounds of prompt radiation and delta electrons. This was a very successful technique to study proton (h{sub 11/2}){sup n} seniority isomers in nuclei with Z > 64 and N {approximately} 82. Since isomeric decay gamma rays are emitted isotropically, conversion electrons are essential for the assignment of multipolarities in these nuclei. Furthermore, the low-energy transitions that depopulate isomeric states are typically highly converted and can escape gamma-ray detection, but they can be identified by their conversion electrons.

  11. Electropolymerization mechanisms of hydroxyphenylacetic acid isomers

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luciano P.; Ferreira, Deusmaque C.; Sonoda, Milton Taidi; Madurro, Ana Graci B.; Abrahão, Odonírio; Madurro, João M.

    2014-08-01

    Three different films of conducting polymers with free carboxylic functional groups were obtained from 2,3 and 4-hydroxyphenylacetic acid isomers (HPA) and the respective electropolymerization mechanisms were elucidated by DFT calculations. The different properties observed at these new material characterizations, obtained by means of cyclic voltammetry on graphite, are in agreement with theoretical interpretation presented for each reaction mechanisms, which involves the different radical cation coupling and formation of aromatic polyethers with free carboxyl groups, characterized by FTIR spectrometry and electrochemical tests. The computational chemistry analysis of the radical cations spin densities and partial atomic charges variation during the monomer oxidations, indicates the most probably reactive sites for their coupling, allowing the proposition of HPA electropolymerization mechanisms. The poly(2-HPA) had the largest yield in the electropolymerization reaction and the lowest electron transfer. The poly(4-HPA) displayed the lowest yield and the largest electron transfer coefficient, with poly(3-HPA) presenting intermediate values between the former two. Therefore, poly(3-HPA) is a very promising polymer for the platform development for electronic systems, which require materials with good electronic conductivity allied to intrinsic flexibility of polymeric materials.

  12. Isomer spectroscopy of {sup 127}Cd

    SciTech Connect

    Naqvi, F.; Gorska, M.; Grawe, H.; Beck, T.; Doornenbal, P.; Geissel, H.; Gerl, J.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Schaffner, H.; Tashenov, S.; Wollersheim, H. J.; Caceres, L.; Jungclaus, A.; Pfuetzner, M.; Werner-Malento, E.; Nowacki, F.; Sieja, K.

    2010-09-15

    The spin and configurational structure of excited states of {sup 127}Cd, the two-proton and three-neutron hole neighbor of {sup 132}Sn, has been studied. An isomeric state with a half-life of 17.5(3) {mu}s was populated in the fragmentation of a {sup 136}Xe beam on a {sup 9}Be target at a beam energy of 750 MeV/u. Time distributions of the delayed {gamma} transitions and {gamma}{gamma} coincidence relations were exploited to construct a decay scheme. The observed yrast (19/2){sup +} isomer is proposed to have dominant configurations of {nu}(h{sub 11/2}{sup -3}){pi}(g{sub 9/2}{sup -1},p{sub 1/2}{sup -1}), {nu}(h{sub 11/2}{sup -2}d{sub 3/2}{sup -1}){pi}(g{sub 9/2}{sup -2}), and {nu}(h{sub 11/2}{sup -2},s{sub 1/2}{sup -1}){pi}(g{sub 9/2}{sup -2}) and to decay by two competing stretched M2 and E3 transitions. Experimental results are compared with the isotone {sup 129}Sn. The new information provides input for the proton-neutron interaction and the evolution of neutron hole energies in nuclei around the doubly magic {sup 132}Sn core.

  13. Shape Isomers - a Key to Fission Barriers

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Hambsch, F.-J.; Kornilov, N.; Lövestam, G.; Oberstedt, A.; Gawrys, M.

    2008-04-01

    Quantitative predictions of fission product yields are relevant for the reliable operation of different modern nuclear applications. This concerns the realistic characterizations of the radio-toxicity of the fuel elements after the envisaged extended irradiation, as well as sub-critical assemblies, where the number of delayed neutrons from minor actinides is determined by the characteristic emission yields of the corresponding so-called pre-cursor isotopes. However, to be able to make more reliable quantitative predictions of fission characteristics requires the better understanding of the fission process itself. For this purpose a better knowledge about the distinct structure of the nuclear energy landscape around the fission barrier is indispensable. In particular, the question should be answered, whether the fission barrier is either double- or triple-humped or even multi-humped as been proposed within the multi-modal neck rupture model. Despite quite some effort based on different experimental techniques and theoretical approaches, this question remains still unanswered. There is still no consistent picture of the fission barrier available and hence, different sets of barrier parameters are in use, unable to describe the different observed phenomena in a coherent way. With the systematic investigation of shape isomer population, its decay modes as well as the branching ratio, precise information can be obtained to resolve the puzzling situation. The experimental approach will be discussed and results from first experiments presented.

  14. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  15. Simple Nuclear Structure in Cd-129111 from Atomic Isomer Shifts

    NASA Astrophysics Data System (ADS)

    Yordanov, D. T.; Balabanski, D. L.; Bissell, M. L.; Blaum, K.; Budinčević, I.; Cheal, B.; Flanagan, K.; Frömmgen, N.; Georgiev, G.; Geppert, Ch.; Hammen, M.; Kowalska, M.; Kreim, K.; Krieger, A.; Meng, J.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Rajabali, M. M.; Papuga, J.; Schmidt, S.; Zhao, P. W.

    2016-01-01

    Isomer shifts have been determined in 111-129>Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1 /2+ and the 3 /2+ ground states to the 11 /2- isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction with the known quadrupole moments. This intuitive interpretation is supported by covariant density functional theory.

  16. Carotenoids and their isomers: color pigments in fruits and vegetables.

    PubMed

    Khoo, Hock-Eng; Prasad, K Nagendra; Kong, Kin-Weng; Jiang, Yueming; Ismail, Amin

    2011-02-18

    Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as 'functional food ingredients'. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  17. Molecular structure of uranium carbides: isomers of UC3.

    PubMed

    Zalazar, M Fernanda; Rayón, Víctor M; Largo, Antonio

    2013-03-21

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density.

  18. Chromatographic selectivity study of 4-fluorophenylacetic acid positional isomers separation.

    PubMed

    Chasse, Tyson; Wenslow, Robert; Bereznitski, Yuri

    2007-07-13

    Unique properties of the fluorine atom stimulate widespread use and development of new organofluorine compounds in agrochemistry, biotechnology and pharmacology applications. However, relatively few synthetic methods exhibit a high degree of fluorination selectivity, which ultimately results in the presence of structurally related fluorinated isomers in the synthetic product. This outcome is undesirable from a pharmaceutical perspective as positional isomers possess different reactivity, biological activity and toxicity as compared to the desired product. It is advantageous to control positional isomers in the early stages of the synthetic process, as rejection and analysis of these isomers will likely become more difficult in later stages. The current work reports the development of a chromatographic analysis of 2- and 3-fluorophenylacetic acid positional isomer impurities in 4-fluorophenylacetic acid (4-FPAA), a building block in the synthesis of an active pharmaceutical ingredient. The method is employed as a part of a Quality by Design Approach to control purity of the starting material in order to eliminate the presence of undesirable positional isomers in the final drug substance. During method development, a wide range of chromatographic conditions and structurally related positional isomer probe molecules were exploited in an effort to gain insight into the specifics of the separation mechanism. For the systems studied it was shown that the choice of organic modifier played a key role in achieving acceptable separation. Further studies encompassed investigation of temperature influence on retention and selectivity of the FPAA isomers separation. Thermodynamic analysis of these data showed that the selectivity of the 2- and 4- fluorophenylacetic acids separation was dominated by an enthalpic process, while the selectivity of the 4- and 3-fluorophenylacetic acids separation was exclusively entropy driven (Delta(DeltaH degrees approximately 0). Studies of

  19. Synthesis of dibenzylamino-1-methylcyclohexanol and dibenzylamino-1-trifluoromethylcyclohexanol isomers.

    PubMed

    Jones, D Heulyn; Bresciani, Stefano; Tellam, James P; Wojno, Justyna; Cooper, Anthony W J; Kennedy, Alan R; Tomkinson, Nicholas C O

    2016-01-01

    The isomers of dibenzylamino-1-methylcyclohexan-1-ol and dibenzylamino-1-trifluoromethylcyclohexan-1-ol have been prepared. The stereochemistry of these compounds was unequivocally assigned through a combination of NMR spectroscopy and single crystal X-ray analysis. The cis-isomer of 3-N,N-dibenzylamino-1-trifluoromethylcyclohexanol and its derivatives display an unusual conformational behaviour in both solution-phase and the solid-state, where the amino group usually adopts an axial conformation. PMID:26468867

  20. Theoretical investigation of C56 fullerene isomers and related compounds

    NASA Astrophysics Data System (ADS)

    Chen, De-Li; Tian, Wei Quan; Feng, Ji-Kang; Sun, Chia-Chung

    2008-01-01

    All the 924 classical isomers of fullerene C56 have been investigated by PM3, and some most stable isomers are refined with HCTH/3-21G and B3LYP /6-31G(d) methods. D2:003 with the least number of adjacent pentagons is predicted to be the most stable isomer at B3LYP /6-31G(d) level, while Cs:022 and C2:049 possess nearly degenerate energies with relative energies of 0.03 and 3.90kcal/mol, respectively. However, as to dianionic C562- fullerene, C2v:011 is predicted to be the most stable isomer. Investigations also show that the encapsulation of Ca atom in C56 fullerene is exothermic and the metallofullerenes Ca@C56 can be described as Ca2+@C562-. The computed relative stabilities show that the D2:003 behaves more thermodynamically stable than other isomers in a wide temperature interval, and C2v:011 should also be an important component. The electronic isomerization of C56 (C2v:011) and C50 (D5h:002) indicates that this phenomenon might be rather general in fullerenes and causes different properties, thus bringing about new possible applications of fullerenes. The static second-order hyperpolarizabilities of the three most stable isomers are slightly larger than that of C60.

  1. Site-specific protein glycosylation analysis with glycan isomer differentiation.

    PubMed

    Hua, Serenus; Nwosu, Charles C; Strum, John S; Seipert, Richard R; An, Hyun Joo; Zivkovic, Angela M; German, J Bruce; Lebrilla, Carlito B

    2012-05-01

    Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.

  2. The combustion kinetics of octane isomers

    SciTech Connect

    Burcat, A. . Faculty of Aerospace Engineering); Pitz, W.J.; Westbrook, C.K. )

    1990-03-29

    Shock tube experiments provide conditions for testing kinetic models that are unique, since this is the only common environment in which initiation reactions, primarily the unimolecular decompositions of the fuel, play an important role. At least two factors are known to be very important, the fuel molecule size and its precise structure. Iso-octane has an octane number of 100, which reflects the relative difficulty with which iso-octanes/air mixtures ignite. Conversely, C{sub 8}H{sub 18}, the straight chain n-octane, ignites very easily, with an octane number of approximately zero. The present work addresses the importance of fuel structure for large hydrocarbon fuels, by comparing the ignition of isomers of octane under shock tube conditions. Ignition delay times were performed with n-octane, a linear chain molecular with only primary and secondary C-H bonds, 2-3-4-trimethyl-pentane has a highly branched molecule and contains only primary and tertiary C-H bonds, and iso-octane a molecule which includes a mixture of primary, secondary, and tertiary C-H bonds. Also 1-octene, a simple straight chain alkene was included. The experiments were run in a single pulse stainless steel shock tube. 475 shocks were performed. They were spread as follows: (1) 164 experiments with 1-octene (C{sub 8}H{sub 16}). (2) 137 experiments with 2,2,4 tri-methyl pentane. (3) 30 experiments with 2,3,4 tri-methyl pentane. (4) 144 experiments with n-octane. 3 refs.

  3. Pentachlorodibenzo-p-dioxin isomer differentiation by capillary gas chromatography fourier transform infrared spectroscopy

    SciTech Connect

    Grainger, J.; Reddy, V.V.; Patterson, D.G. Jr. )

    1988-09-01

    Analysis of polychlorinated dibenzo-p-dioxin (PCDD) isomers has been the focus of a number of recent investigations due to the extreme toxicities of specific laterally tetrachlorinated isomers. These investigations have primarily been directed toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD isomer and toward isomer differentiation of TCDD isomers as a group. With the exception of pentachlorodibenzo-p-dioxin (PnCDD) isomer specific determinations based on calculated retention indices, isomer differentiation of the 14 PnCDD isomers has not been reported although 1,2,3,7,8-PnCDD is nearly as toxic as 2,3,7,8-TCDD. Chromatographically independent methods for PCDD isomer assignment have been reported by x-ray powder diffraction, proton nuclear magnetic resonance ({sup 1}H NMR), gas chromatography/matrix isolation Fourier transform infrared (MI/FTIR) spectroscopy, diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy and gas chromatography/Fourier transform infrared (GC/FTIR) spectroscopy. Although TCDD isomer assignments by the various methods are substantially in agreement, some differences are yet to be resolved. Vapor-phase reference infrared spectra are presented for the 14 PnCDD isomers. These spectra were recorded from low (< 10) microgram quantities for each isomer. The spectrum of each isomer is unique, allowing for positive isomer identification and individual group frequency absorption characteristics as a function of isomer structure.

  4. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    PubMed

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

  5. Microsecond regime optical cross connect: 32 port to 32 port scalable device

    NASA Astrophysics Data System (ADS)

    Lynn, Brittany; Miles, Alexander; Blanche, Pierre-Alexandre; Wissinger, John; Carothers, Daniel; Norwood, Robert A.; Peyghambarian, N.

    2014-03-01

    Presented here is a 32 × 32 optical switch for telecommunications applications capable of reconfiguring at speeds of up to 12 microseconds. The free space switching mechanism in this interconnect is a digital micromirror device (DMD) consisting of a 2D array of 10.8μm mirrors optimized for implementation at 1.55μm. Hinged along one axis, each micromirror is capable of accessing one of two positions in binary fashion. In general reflection based applications this corresponds to the ability to manifest only two display states with each mirror, but by employing this binary state system to display a set of binary amplitude holograms, we are able to access hundreds of distinct locations in space. We previously demonstrated a 7 × 7 switch employing this technology, providing a proof of concept device validating our initial design principles but exhibiting high insertion and wavelength dependent losses. The current system employs 1920 × 1080 DMD, allowing us to increase the number of accessible ports to 32 × 32. Adjustments in imaging, coupling component design and wavelength control were also made in order to improve the overall loss of the switch. This optical switch performs in a bit-rate and protocol independent manner, enabling its use across various network fabrics and data rates. Additionally, by employing a diffractive switching mechanism, we are able to implement a variety of ancillary features such as dynamic beam pick-off for monitoring purposes, beam division for multicasting applications and in situ attenuation control.

  6. Three-dimensional multispectral hand-held optoacoustic imaging with microsecond-level delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel

    2015-03-01

    Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.

  7. Ultrafast x-ray photoelectron spectroscopy in the microsecond time domain

    SciTech Connect

    Höfert, O.; Gleichweit, C.; Steinrück, H.-P.; Papp, C.

    2013-09-15

    We introduce a new approach for ultrafast in situ high-resolution X-ray photoelectron spectroscopy (XPS) to study surface processes and reaction kinetics on the microsecond timescale. The main idea is to follow the intensity at a fixed binding energy using a commercial 7 channeltron electron analyzer with a modified signal processing setup. This concept allows for flexible switching between measuring conventional XP spectra and ultrafast XPS. The experimental modifications are described in detail. As an example, we present measurements for the adsorption and desorption of CO on Pt(111), performed at the synchrotron radiation facility BESSY II, with a time resolution of 500 μs. Due to the ultrafast measurements, we are able to follow adsorption and desorption in situ at pressures of 2 × 10{sup −6} mbar and temperatures up to 500 K. The data are consistently analyzed using a simple model in line with data obtained with conventional fast XPS at temperatures below 460 K. Technically, our new approach allows measurement on even shorter timescales, down to 20 μs.

  8. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    SciTech Connect

    Ke Yin; Weiqiang Yang; Bin Zhang; Ying Li; Jing Hou

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stage amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)

  9. Mechanisms of allosteric gene regulation by NMR quantification of microsecond-millisecond protein dynamics.

    PubMed

    Kleckner, Ian R; Gollnick, Paul; Foster, Mark P

    2012-01-13

    The trp RNA-binding attenuation protein (TRAP) is a paradigmatic allosteric protein that regulates the tryptophan biosynthetic genes associated with the trp operon in bacilli. The ring-shaped 11-mer TRAP is activated for recognition of a specific trp-mRNA target by binding up to 11 tryptophan molecules. To characterize the mechanisms of tryptophan-induced TRAP activation, we have performed methyl relaxation dispersion (MRD) nuclear magnetic resonance (NMR) experiments that probe the time-dependent structure of TRAP in the microsecond-to-millisecond "chemical exchange" time window. We find significant side chain flexibility localized to the RNA and tryptophan binding sites of the apo protein and that these dynamics are dramatically reduced upon ligand binding. Analysis of the MRD NMR data provides insights into the structural nature of transiently populated conformations sampled in solution by apo TRAP. The MRD data are inconsistent with global two-state exchange, indicating that conformational sampling in apo TRAP is asynchronous. These findings imply a temporally heterogeneous population of structures that are incompatible with RNA binding and substantiate the study of TRAP as a paradigm for probing and understanding essential dynamics in allosteric, regulatory proteins. PMID:22115774

  10. Studies of the dynamics of a 1-microsecond X-pinch

    NASA Astrophysics Data System (ADS)

    Appartaim, Richard; Green, Danielle

    2015-11-01

    The 1- μs X-pinch (0.3 kA/ns) has been shown to produce intense soft x-rays with a spatially reproducible source location and fine size (i .e . < 10 μm) . For certain applications these x-rays are comparable in their utility to those produced on pulsed-power devices but have the advantage of a much lower component of hard x-rays. Many of the critical plasma dynamics are also similar to those observed in the fast rise-time (1 kA/ns) experiments. However, the longer rise time of the microsecond discharge can lead to important differences in wire ablation rates and transition to coronal plasma, plasma current distribution and plasma dynamics. We present recent results of these plasma dynamics using optical techniques such as shadowgraphy, schlieren and framing photography, as well as x-ray observation techniques including filtered PCD and Si diode measurements, pinhole photography and x-ray spectroscopy. We demonstrate potential applications including the relevance of the observed plasma jets to astrophysical jets. Supported by DOE Grant DE-FG02-0547253ER.

  11. X-Pinch Measurements Performed on a 1-microsecond Current Generator.

    NASA Astrophysics Data System (ADS)

    Appartaim, Richard; Maakuu, Bulmuo

    2008-11-01

    A 320 kiloamp, 1-microsecond current generator based on a simple L-C discharge has been used to drive 2-wire and 4-wire X-pinches of tungsten, aluminum, titanium, etc., with diameters ranging from 13--25 microns. We report the results of measurements of the characteristics and dynamics of the X-pinch using silicon p-n junction photodiodes, a diamond radiation detector, pinhole cameras, x-ray spectroscopy and interferometry. The time duration of the observed x-ray pulses as well as the difference in the spectral sensitivities of the silicon and diamond radiation detectors provide a way to determine what fraction of the emitted x-rays is soft (e.g. with photon energy from 1 keV to 5 keV that may be emitted from high temperature plasmas at the hot spots) and what fraction is due to dense plasma interactions with electron beams accelerated across mini-diodes near the X-pinch crossing point. We address this issue as well as present the results of spectroscopic measurements of plasma parameters.

  12. Electronic spectra of C4H3Cl+ isomers

    NASA Astrophysics Data System (ADS)

    Chakrabarty, S.; Rudnev, V.; Fulara, J.; Dietsche, R.; Nagy, A.; Garkusha, I.; Mazzotti, F. J.; Rice, C. A.; Maier, J. P.

    2012-12-01

    Two experimental methods were applied to identify the structure and electronic transitions of C4H3Cl+ isomers. The first is a direct absorption technique where mass-selected ions are embedded in 6 K neon matrices using a mass-selected ion beam and absorption spectra of different C4H3Cl+ isomers were thus observed. The second is a gas phase method on ions which have been collisional cooled with cryogenic helium inside of a 22-pole ion trap. The c-type (1)2 A‧ ← X 2 A″ electronic transition of a C4H3Cl+ isomer could then be measured by a one-colour, two-photon technique at 20 and 50 K in the gas phase. The two sets of data, complemented by calculated excitation energies, allowed the assignment of particular isomers. Rotational structure in the gas phase spectra was resolved for C4H3 35Cl+ and C4H3 37Cl+ isomers of cis-1-chlorobutenynylium. The analysis leads to the spectroscopic constants: T 00 = 19 184.680(5), ? , ? , ? , ? , ? and ? (all in cm-1).

  13. Substitution effects on the absorption spectra of nitrophenolate isomers.

    PubMed

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-01

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  14. Analysis of the pH-dependent thermodynamic stability, local motions, and microsecond folding kinetics of carbonmonoxycytochrome c.

    PubMed

    Kumar, Rajesh

    2016-09-15

    This paper analyzes the effect of pH on thermodynamic stability, low-frequency local motions and microsecond folding kinetics of carbonmonoxycytochrome c (Cyt-CO) all across the alkaline pH-unfolding transition of protein. Thermodynamic analysis of urea-induced unfolding transitions of Cyt-CO measured between pH 6 and pH 11.9 reveals that Cyt-CO is maximally stable at pH∼9.5. Dilution of unfolded Cyt-CO into refolding medium forms a native-like compact state (NCO-state), where Fe(2+)-CO interaction persists. Kinetic and thermodynamic parameters measured for slow thermally-driven CO dissociation (NCO→N+CO) and association (N+CO→NCO) reactions between pH 6.5 and pH 13 reveal that the thermal-motions of M80-containing Ω-loop are decreased in subdenaturing limit of alkaline pH. Laser photolysis of Fe(2+)-CO bond in NCO-state triggers the microsecond folding (NCO→N). The microsecond kinetics measured all across the alkaline pH-unfolding transition of Cyt-CO produce rate rollover in the refolding limb of chevron plot, which suggests a glass transition of NCO en route to N. Between pH 7 and pH 11.9, the natural logarithm of the microsecond folding rate varies by < 1.5 units while the natural logarithm of apparent equilibrium constant varies by 11.8 units. This finding indicates that the pH-dependent ionic-interactions greatly affect the global stability of protein but have very small effect on folding kinetics. PMID:27424489

  15. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    SciTech Connect

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J.P.; Chittenden, J.P.; Lebedev, S.V.; Jennings, C.A.; Bland, S.N.

    2006-01-05

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1{mu}s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-{theta} simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  16. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  17. Two-quasiparticle isomer, E1 hindrances and residual interactions in {sup 172}Tm

    SciTech Connect

    Hughes, R. O.; Lane, G. J.; Dracoulis, G. D.; Kibedi, T.; Nieminen, P.; Watanabe, H.

    2008-04-15

    The structure of the neutron-rich nucleus {sup 172}Tm has been studied using incomplete fusion of {sup 7}Li on an {sup 170}Er target at 30 MeV. A 190-{mu}s isomer at an excitation energy of 476 keV was identified using chopped beams and {gamma}-ray spectroscopy. The isomer decays with very inhibited E1 transitions to the rotational bands based on the parallel and antiparallel couplings of the {nu}5/2{sup -}[512] x {pi}1/2{sup +}[411] configuration, the latter (K{sup {pi}}=2{sup -}) being the ground state. The isomeric state has been assigned J{sup {pi}}=6{sup +}, arising from the energetically favored (parallel) coupling of the {nu}5/2{sup -}[512] x {pi}7/2{sup -}[523] configuration. The proton-neutron residual interaction was deduced for the configuration of the isomeric state and is found to agree with previous empirical studies.

  18. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  19. Preferential polymerization and adsorption of L-optical isomers of amino acids relative to D-optical isomers on kaolinite templates.

    NASA Technical Reports Server (NTRS)

    Jackson, T. A.

    1971-01-01

    Experiments on the polymerization of the L- and D-optical isomers of aspartic acid and serine using kaolinite as a catalyst showed that the L-optical isomers were polymerized at a much higher rate than the D-optical isomers; racemic (DL-) mixtures were polymerized at an intermediate rate. The peptides formed from the L-monomers were preferentially adsorbed by the clay. In the absence of kaolinite, no significant or consistent difference in the behavior of the L- and D-optical isomers was observed. In experiments on the adsorption of L- and D-phenylalanine by kaolinite, the L-optical isomer was preferentially adsorbed.

  20. Metastable isomers - A new class of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Green, S.; Herbst, E.

    1979-01-01

    The abundances of a variety of metastable isomers of small organic molecules, analogous to HNC/HCN, in dense interstellar clouds are considered. These metastable species, some of which are thought to exist as intermediates in laboratory organic chemical reactions, are of considerable interest to chemists. Current ideas of gas-phase, ion-molecule chemistry are utilized to demonstrate that such metastable species should often be present in dense clouds in sufficient abundance to be observed. Unfortunately, the spectral constants of metastable isomers have rarely been determined in the laboratory, and quantum chemical calculations of a varying degree of accuracy must be utilized; results are included of some new quantum chemical calculations. The interstellar chemistry and expected microwave spectra of a representative sample of possibly important interstellar metastable isomers are discussed.

  1. Spectroscopy of {sup 144}Ho using recoil-isomer tagging

    SciTech Connect

    Mason, P. J. R; Cullen, D. M.; Scholey, C.; Greenlees, P. T.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Peura, P.; Puurunen, A.; Rahkila, P.; Ruotsalainen, P.; Sorri, J.; Saren, J.; Uusitalo, J.; Xu, F. R.

    2010-02-15

    Excited states in the proton-unbound odd-odd nucleus {sup 144}Ho have been populated using the {sup 92}Mo({sup 54}Fe,pn){sup 144}Ho reaction and studied using the recoil-isomer-tagging technique. The alignment properties and signature splitting of the rotational band above the I{sup p}i=(8{sup +}){sup 144m}Ho isomer have been analyzed and the isomer confirmed to have a pih{sub 11/2} x nuh{sub 11/2} two-quasiparticle configuration. The configuration-constrained blocking method has been used to calculate the shapes of the ground and isomeric states, which are both predicted to have triaxial nuclear shapes with |gamma|approx =24 deg.

  2. FY2010 Annual Report for the Actinide Isomer Detection Project

    SciTech Connect

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Miller, Erin A.; Hatarik, R.

    2011-01-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for Special Nuclear Materials (SNM). Future work will include a follow-up measurement scheduled for December 2010 at LBNL. Lessons learned from the July 2010 measurements will be incorporated into these new measurements. Analysis of both the July and December experiments will be completed in a few months. A research paper to be submitted to a peer-reviewed journal will be drafted if the conclusions from the measurements warrant publication.

  3. Identification of the isomers using principal component analysis (PCA) method

    NASA Astrophysics Data System (ADS)

    Kepceoǧlu, Abdullah; Gündoǧdu, Yasemin; Ledingham, Kenneth William David; Kilic, Hamdi Sukur

    2016-03-01

    In this work, we have carried out a detailed statistical analysis for experimental data of mass spectra from xylene isomers. Principle Component Analysis (PCA) was used to identify the isomers which cannot be distinguished using conventional statistical methods for interpretation of their mass spectra. Experiments have been carried out using a linear TOF-MS coupled to a femtosecond laser system as an energy source for the ionisation processes. We have performed experiments and collected data which has been analysed and interpreted using PCA as a multivariate analysis of these spectra. This demonstrates the strength of the method to get an insight for distinguishing the isomers which cannot be identified using conventional mass analysis obtained through dissociative ionisation processes on these molecules. The PCA results dependending on the laser pulse energy and the background pressure in the spectrometers have been presented in this work.

  4. Effects of butanol isomers on dipalmitoylphosphatidylcholine bilayer membranes.

    PubMed

    Reeves, Megan D; Schawel, Adam K; Wang, Weidong; Dea, Phoebe

    2007-06-01

    Differential scanning calorimetry and (31)P-NMR were used to study the effects of butanol isomers on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. The threshold concentration for the onset of interdigitation for each isomer was determined by the disappearance of the pretransition and the onset of a large hysteresis between the heating and cooling scans of the gel-to-liquid main transition. The threshold concentration was found to correlate with increased solubility of the isomers in the aqueous phase, led by tert-butanol. However, as the solution concentration of tert-butanol increased, there was an abrupt shrinking of the hysteresis, initially with well-resolved shoulder peaks indicating mixed phases. The eventual disappearance of the shoulder peaks was correlated with a breakdown of the multilamellar structure identified using (31)P-NMR.

  5. Anaerobic degradation of phthalate isomers by methanogenic consortia

    SciTech Connect

    Kleerebezem, R.; Pol, L.W.H.; Lettinga, G.

    1999-03-01

    Three methanogenic enrichment cultures, grown on ortho-phthalate, iso-phthalate, or terephthalate were obtained from digested sewage sludge or methanogenic granular sludge. Cultures grown on one of the phthalate isomers were not capable of degrading the other phthalate isomers. All three cultures had the ability to degrade benzoate. Maximum specific growth rates ({mu}{sub S}{sup max}) and biomass yields (Y{sub X{sub tot}S}) of the mixed cultures were determined by using both the phthalate isomers and benzoate as substrates. Comparable values for these parameters were found for all three cultures. Values for {mu}{sub X}{sup max} and Y{sub X{sub tot}S} were higher for growth on benzoate compared to the phthalate isomers. Based on measured and estimated values for the microbial yield of the methanogens in the mixed culture, specific yields for the phthalate and benzoate fermenting organisms were calculated. A kinetic model, involving three microbial species, was developed to predict intermediate acetate and hydrogen accumulation and the final production of methane. Values for the ratio of the concentrations of methanogenic organisms, versus the phthalate isomer and benzoate fermenting organisms, and apparent half-saturation constants (K{sub S}) for the methanogens were calculated. By using this combination of measured and estimated parameter values, a reasonable description of intermediate accumulation and methane formation was obtained, with the initial concentration of phthalate fermenting organisms being the only variable. The energetic efficiency for growth of the fermenting organisms on the phthalate isomers was calculated to be significantly smaller than for growth on benzoate.

  6. Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS.

    PubMed

    Montaño, Manuel D; Majestic, Brian J; Jämting, Åsa K; Westerhoff, Paul; Ranville, James F

    2016-05-01

    The rapid development of nanotechnology has led to concerns over their environmental risk. Current analytical techniques are underdeveloped and lack the sensitivity and specificity to characterize these materials in complex environmental and biological matrices. To this end, single particle ICP-MS (spICP-MS) has been developed in the past decade, with the capability to detect and characterize nanomaterials at environmentally relevant concentrations in complex environmental and biological matrices. However, some nanomaterials are composed of elements inherently difficult to quantify by quadrupole ICP-MS due to abundant molecular interferences, such as dinitrogen ions interfering with the detection of silicon. Three approaches aimed at reducing the contribution of these background molecular interferences in the analysis of (28)Si are explored in an attempt to detect and characterize silica colloids. Helium collision cell gases and reactive ammonia gas are investigated for their conventional use in reducing the signal generated from the dinitrogen interference and background silicon ions leaching from glass components of the instrumentation. A new approach brought on by the advent of microsecond dwell times in single particle ICP-MS allows for the detection and characterization of silica colloids without the need for these cell gases, as at shorter dwell times the proportion of signal attributed to a nanoparticle event is greater relative to the constant dinitrogen signal. It is demonstrated that the accurate detection and characterization of these materials will be reliant on achieving a balance between reducing the contribution of the background interference, while still registering the maximum amount of signal generated by the particle event. PMID:27055808

  7. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution.

  8. Microsecond Molecular Dynamics Simulations of Intrinsically Disordered Proteins Involved in the Oxidative Stress Response

    PubMed Central

    Cino, Elio A.; Wong-ekkabut, Jirasak; Karttunen, Mikko; Choy, Wing-Yiu

    2011-01-01

    Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), with a common binding partner, Kelch-like ECH-associated protein 1(Keap1), are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5–1.0 microsecond atomistic molecular dynamics (MD) simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs) and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response. PMID:22125611

  9. Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS.

    PubMed

    Montaño, Manuel D; Majestic, Brian J; Jämting, Åsa K; Westerhoff, Paul; Ranville, James F

    2016-05-01

    The rapid development of nanotechnology has led to concerns over their environmental risk. Current analytical techniques are underdeveloped and lack the sensitivity and specificity to characterize these materials in complex environmental and biological matrices. To this end, single particle ICP-MS (spICP-MS) has been developed in the past decade, with the capability to detect and characterize nanomaterials at environmentally relevant concentrations in complex environmental and biological matrices. However, some nanomaterials are composed of elements inherently difficult to quantify by quadrupole ICP-MS due to abundant molecular interferences, such as dinitrogen ions interfering with the detection of silicon. Three approaches aimed at reducing the contribution of these background molecular interferences in the analysis of (28)Si are explored in an attempt to detect and characterize silica colloids. Helium collision cell gases and reactive ammonia gas are investigated for their conventional use in reducing the signal generated from the dinitrogen interference and background silicon ions leaching from glass components of the instrumentation. A new approach brought on by the advent of microsecond dwell times in single particle ICP-MS allows for the detection and characterization of silica colloids without the need for these cell gases, as at shorter dwell times the proportion of signal attributed to a nanoparticle event is greater relative to the constant dinitrogen signal. It is demonstrated that the accurate detection and characterization of these materials will be reliant on achieving a balance between reducing the contribution of the background interference, while still registering the maximum amount of signal generated by the particle event.

  10. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution. PMID:25553956

  11. K = 6+ Isomers in Hf, yb and W Nuclei

    NASA Astrophysics Data System (ADS)

    Rath, Aswini Kumar; Walker, P. M.; Praharaj, C. R.; Xu, F. R.

    Using deformed Hartree-Fock and angular momentum projection (PHF) technique we try to understand the intrinsic structure and the systematics in the life times of K = 6+ isomers in the Hf isotopes (in 172-178Hf nuclei) and N = 104 Yb, Hf and W isotones. The band structure in 172Hf is reasonably well reproduced. The variation in the B(E2;2+ → 0+) values in the Hf isotopes as well as N = 104 isotones are well reproduced. The calculated K-forbidden E2 transition probabilities from the isomer bandheads to the 4+ yrast states qualitatively explain the variation of the lifetimes with N and Z.

  12. Quantum-chemical study of C 84 fulleren isomers

    NASA Astrophysics Data System (ADS)

    Bakowies, Dirk; Kolb, Matthias; Thiel, Walter; Richard, Sabine; Ahlrichs, Reinhart; Kappes, Manfred M.

    1992-12-01

    Semiempirical and ab initio SCF calculations are reported for the C 84 fullerenes with isolated pentagons. The optimized geometries and relative stabilities are discussed. All methods applied predict two nearly isoenergetic structures with D 2 and D 2d symmetry to be the most stable of the 24 isomers considered, which is consistent with the experimental observed 13C-NMR spectrum. Infrared spectra are predicted for these D 2 and D 2d isomers. The semiempirical results (MNDO, AM1, PM3) for the geometries and relative energies are in excellent agreement with the ab initio predictions at the split-valence SCF level.

  13. New high spin isomers obtained in thermal fission

    SciTech Connect

    Fogelberg, B.; Mach, H.; Gausemel, H.; Omtvedt, J. P.; Mezilev, K. A.

    1998-10-26

    The product nuclei following fission often are initially highly excited and have high angular momenta. As a consequence, there is a substantial probability for the population of isomeric yrast traps in the vicinity of closed shells. The excitation energies and decay properties of such isomers give important formation regarding the shell structure and interaction energies. Recent experiments at the OSIRIS mass separator have revealed a number of isomers in the {sup 132}Sn region having angular momenta exceeding 10 units. A brief presentation is given of some experimental results and their interpretation.

  14. Differentiation of optical isomers through enhanced weak-field interactions

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    The influence of weak field interaction terms due to the cooperative effects which arise from a macroscopic assemblage of interacting sites is studied. Differential adsorption of optical isomers onto an achiral surface is predicted to occur if the surface was continuous and sufficiently large. However, the quantity of discontinuous crystal surfaces did not enhance the percentage of differentiation and thus the procedure of using large quantities of small particles was not a viable technique for obtaining a detectable differentiation of optical isomers on an achiral surface.

  15. On the calculation of Mössbauer isomer shift.

    PubMed

    Filatov, Michael

    2007-08-28

    A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nucleus model in the calculations enables one to incorporate straightforwardly the effects of relativity and electron correlation. The results of benchmark calculations carried out for several iron complexes as well as for a number of atoms and atomic ions are presented and compared with the available experimental and theoretical data. PMID:17764223

  16. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10

    PubMed Central

    Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin

    2016-01-01

    A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192

  17. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10.

    PubMed

    Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin

    2016-01-01

    A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192

  18. Photoelectron Spectroscopy and Ab Initio Calculations of CS3(-) Isomers: Carbon Trisulfide and Carbon Disulfide S-Sulfide Anions.

    PubMed

    Nakanishi, Ryuzo; Kato, Shugo; Matsuyama, Yasushi; Nagata, Takashi

    2016-09-01

    Carbon sulfides are known as a class of binary compounds that can exist in various isomeric and/or polymeric forms. As for a sulfur-rich compound with the composition formula CS3, two possible constitutional isomers have been proposed experimentally or theoretically for the neutral species and its corresponding radical cation and anion. Although the previous studies claim that one isomer has a carbon trisulfide (CS3) C-centered configuration and the other has a carbon disulfide S-sulfide (SCSS) chain configuration, they have not yet been fully identified by a spectroscopic method. In this study, we have prepared the anions of those isomers in the gas phase by employing two types of reactions: dissociative electron attachment to 1,3-dithiole-2-thione for CS3(-) formation and the S(-) + CS2 ion-molecule reaction for SCSS(-). Photoelectron spectroscopic measurements reveal that the reactions result in the production of two anionic species that can be well distinguished by their vertical detachment energy. With the aid of ab initio calculations, they are identified distinctively as the anions of carbon trisulfide and carbon disulfide S-sulfide. PMID:27533492

  19. DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers

    NASA Astrophysics Data System (ADS)

    Khamis, S. M.; Jones, R. A.; Johnson, A. T. C.; Preti, G.; Kwak, J.; Gelperin, A.

    2012-06-01

    We have explored the abilities of all-electronic DNA-carbon nanotube (DNA-NT) vapor sensors to discriminate very similar classes of molecules. We screened hundreds of DNA-NT devices against a panel of compounds chosen because of their similarities. We demonstrated that DNA-NT vapor sensors readily discriminate between series of chemical homologues that differ by single methyl groups. DNA-NT devices also discriminate among structural isomers and optical isomers, a trait common in biological olfactory systems, but only recently demonstrated for electronic FET based chemical sensors.

  20. Identification of a shape isomer in 235U.

    PubMed

    Oberstedt, A; Oberstedt, S; Gawrys, M; Kornilov, N

    2007-07-27

    The shape isomer in 235U has been searched for in a neutron-induced fission experiment on 234U, which was performed at the isomer spectrometer NEPTUNE of the EC-JRC IRMM. A neutron source, with a tunable pulse frequency in the Hz to kHz range and its individually adjustable neutron pulse width in connection with an appropriate detector system turned out to be the ideal instrument to perform an isomer search, when decay half-lives above 100 micros are expected. From the delayed fission events observed for two different NEPTUNE settings and at mean incident neutron energies En=0.95 and 1.27 MeV the isomeric fission half-life could be determined to be T1/2=(3.6+/-1.8) ms. The corresponding cross section was determined to sigmaif=(10+/-8) microb. With these results an experimental confirmation for the existence of a superdeformed shape isomer in odd-uranium isotopes is given for the first time. PMID:17678355

  1. Short-lived isomers in 192Po and 194Po

    NASA Astrophysics Data System (ADS)

    Andel, B.; Andreyev, A. N.; Antalic, S.; Heßberger, F. P.; Ackermann, D.; Hofmann, S.; Huyse, M.; Kalaninová, Z.; Kindler, B.; Kojouharov, I.; Kuusiniemi, P.; Lommel, B.; Nishio, K.; Page, R. D.; Sulignano, B.; Van Duppen, P.

    2016-06-01

    Isomeric states in 194Po and 192Po were studied at the velocity filter SHIP. The isotopes were produced in the fusion-evaporation reactions 141Pr(56Fe, p 2 n )194Po and 144Sm(51V, p 2 n )192Po . Several new γ -ray transitions were attributed to the isomers and γ -γ coincidences for both isomers were studied for the first time. The 459-keV transition earlier, tentatively proposed as de-exciting the isomeric level in 194Po, was replaced by a new 248-keV transition, and the spin of this isomer was reassigned from (11-) to (10-). The de-excitation of the (11-) isomeric level in 192Po by the 154-keV transition was confirmed and a parallel de-excitation by a 733-keV (E 3 ) transition to (8+) level of the ground-state band was suggested. Moreover, side feeding to the (4+) level of the ground-state band was proposed. The paper also discusses strengths of transitions de-exciting 11- isomers in neighboring Po and Pb isotopes.

  2. Isomers of 3-(4-nitrophenyl)acrolein oxime

    SciTech Connect

    Leitis, L.Ya.; Liepin'sh, E.E.; Yansone, D.P.; Dreibante, I.I.; Shimanskaya, M.V.; Maslii, L.K.; Nikol'skaya, G.S.

    1986-06-10

    The Z and E isomers of 3-(4-nitrophenyl)acrolein oxime were obtained and characterized. The assignment was made on the basis of the geminal hetero constants /sup 2/J(/sup 15/N = C-/sup 1/H) and /sup 2/J(/sup 15/N = C-/sup 13/C).

  3. Electronic Structure Mediated Vibrational Coherence in Methyl Acetophenone Isomers

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim; Levine, Benjamin; Dantus, Marcos

    2014-05-01

    The role of ground and excited state electronic structures in influencing the vibrational coherences in gas phase polyatomic molecules has been a hot topic for quite some time. Here we explore the time resolved dynamics of acetophenone and its methyl substituted isomer when excited by intense 800nm femtosecond pump and probe pulses. The parent ion yield show 500 fs modulations that die down within 3ps. Similar modulations having the same timescales in the parent ion yield are also observed for the p-methyl isomer. The o-methyl isomer however shows longer 1ps modulations. Interestingly enough no oscillations are observed for the meta isomer. Quantum chemical calculations at the CASSCF/6-311G level of theory predicts that upon excitation the neutral ground state is planar and the energy spacing between the levels is very small. Preliminary calculations also predict torsional motion coupled to electronic modulations on the D0 state and further calculations are being performed to ascertain the involvement of the D1 and D2 states. This could help us better understand the electronic effect of substitution on a benzene ring.

  4. Electronic Structure Mediated Vibrational Coherence in Methyl Acetophenone Isomers

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Levine, Benjamin; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    The role of ground and excited state electronic structures in influencing the vibrational coherences in gas phase polyatomic molecules has been a hot topic for quite some time. Here we explore the time resolved dynamics of acetophenone and its methyl substituted isomer when excited by intense 800nm femtosecond pump and probe pulses. The parent ion yield show 500 fs modulations that die down within 3ps. Similar modulations having the same timescales in the parent ion yield are also observed for the p-methyl isomer. The o-methyl isomer however shows longer 1ps modulations. Interestingly enough no oscillations are observed for the meta isomer. Quantum chemical calculations at the CASSCF/6-311G level of theory predicts that upon excitation the neutral ground state is planar and the energy spacing between the levels is very small. Preliminary calculations also predict torsional motion coupled to electronic modulations on the D0 state and further calculations are being performed to ascertain the involvement of the D1 and D2 states. This could help us better understand the electronic effect of substitution on a benzene ring.

  5. Two methods for the separation of monounsaturated octadecenoic acid isomers.

    PubMed

    Villegas, C; Zhao, Y; Curtis, J M

    2010-01-29

    The identification and quantification of complex mixtures of cis and trans octadecenoic (18:1) fatty acid isomers presents a major challenge for conventional one-dimensional GC/FID analysis of their methyl esters. We have compared the use of two methods to achieve optimized separations of positional and geometrical octadecenoic fatty acid isomers-comprehensive two-dimensional gas chromatography (GCxGC), and silver ion high performance liquid chromatography interfaced to atmospheric pressure photoionization (APPI) mass spectrometry. Nine isomers of octadecenoic acid methyl ester were well separated on a single silver ion column with a mobile phase of 0.018% acetonitrile and 0.18% isopropanol in hexane. Reproducible retention times were obtained with relative standard deviations of around 1% over 5 injections. The extra selectivity and reproducibility afforded by APPI-MS, together with the wide separation of cis and trans isomers by silver ion chromatography, resulted in a promising method for measurement of octadecenoic acid FAME. The GCxGC separation was performed using various column combinations, and optimal separation was obtained by coupling an ionic liquid column (Supelco SLB-IL100 [1,9-di(3-vinyl-imidazolium) nonane bis(trifluoromethyl) sulfonyl imidate]) in the first dimension with a SGE BPX50 (50% phenyl polysilphenylene-siloxane) in the second dimension. These methods have been applied to the analysis of octadecenoic acid in milk and beef fat. PMID:20022011

  6. FY2011 Annual Report for the Actinide Isomer Detection Project

    SciTech Connect

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha; Hatarik, R.

    2011-10-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured [Ressler 2010]. The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted from an HEU target when bombarded with 11 MeV neutrons. This report discussed the analysis and resulting conclusions from those measurements. There was one strong candidate, at 1204 keV, of an isomeric signature of 235U. The half-life of the state is estimated to be 9.3 {mu}s. The measured time dependence fits the decay time structure very well. Other possible explanations for the 1204-keV state were investigated, but they could not explain the gamma ray. Unfortunately, the relatively limited statistics of the measurement limit, and the lack of understanding of some of the systematic of the experiment, limit

  7. Fuel properties of heptadecene isomers prepared via tandem isomerization-decarboxylation of oleic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heptadecene isomers were prepared via tandem isomerization-decarboxylation of oleic acid using catalytic triruthenium dodecacarbonyl [Ru3(CO)12]. Chromatographic and spectroscopic characterization of the isolated heptadecene mixture indicated that it consisted of 96% internal isomers and 4% aromatic...

  8. Computational Docking of the Isomers of Nonylphenol to the Ligand Binding Domain of the Estrogen Receptor

    EPA Science Inventory

    Nonylphenols are environmentally persistent endocrine disrupting chemicals. They exist in the environment as complex mixtures containing many nonylphenol isomers. Environmental mixtures of nonylphenols, along with a few single isomers have been tested for their capacity to inte...

  9. Bragg Resonator Cyclotron Resonance Maser Experiments Driven by a Microsecond, Intense Electron Beam Accelerator

    NASA Astrophysics Data System (ADS)

    Choi, Jin Joo

    The cyclotron resonance maser (CRM) has proven to be attractive for many high power microwave applications such as fusion plasma heating, radar/communications, and high gradient RF accelerators. Most of the previous CRM experiments with MV electron beams have been conducted with short (<0.1 musec) pulses. The present work contains the first comprehensive experimental study on mode competition in a high-Q Bragg resonator CRM employing a microsecond, relativistic electron beam. We have designed and fabricated a high-Q sinusoidal Bragg resonator designed to excite high frequency CARM oscillation of the TE_{31} cylindrical cavity mode at 18.9 GHz. The measured reflectivity of the TE_{31} mode is consistent with the prediction of uncoupled single mode theory. A high quality annular electron beam with low velocity spread and energy spread is produced through an apertured mask-anode. The apertured electron beam has been characterized by the use of glass plate diagnostics. The measured beam velocity ratio, v_{| }/v_{|}, was shown to be in agreement with computer simulation results and the theoretical predictions. Experiments have been performed for 4 cases: (1) Bragg resonator with ripples half-inward, (2) large diameter smooth tube without Bragg resonator, (3) Bragg resonator with ripples fully-outward, and (4) small diameter smooth tube without Bragg resonator. The Bragg resonator with ripples half-inward generated high power microwave radiation from TE_ {11} gyro-BWO interactions, TE _{21} absolute instability, and high harmonic gyrotron modes. Considerably less power from the TE_{11} gyro -BWO was observed for the Bragg resonator with ripples fully -outward. The microwave emission from the TE_ {21} absolute instability in the Bragg resonator with ripples fully-outward was successfully suppressed by lowering the cavity magnetic field. These three undesired oscillations, (TE _{21} absolute instability, TE _{11} gyro-BWO, TE _{51} second and third harmonic), were the most

  10. Isomer-specific combustion chemistry in allene and propyne flames

    SciTech Connect

    Hansen, Nils; Miller, James A.; Westmoreland, Phillip R.; Kasper, Tina; Kohse-Hoeinghaus, Katharina; Wang, Juan; Cool, Terrill A.

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  11. Cyclodextrin and its complexation for resolution of isomers using diffusion ordered spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin R.; Srinivasa; Suryaprakash, N.

    2013-02-01

    Diffusion ordered spectroscopy (DOSY) generally fails to separate the peaks pertaining to isomeric species possessing identical molecular weights and similar hydrodynamic radii. The present study demonstrates the resolution of isomers using α/β-cyclodextrin as a co-solute by Matrix Assisted Diffusion Ordered Spectroscopy. The resolution of isomers has been achieved by measuring the significant differences in the diffusion rates between the positional isomers of aminobenzoic acids, benzenedicarboxylic acids and between the cis, trans isomers, fumaric acid and maleic acid.

  12. 40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section...

  13. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship.

    PubMed

    Lu, Zhijiang; Reif, Rubén; Gan, Jay

    2015-01-01

    Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP₁₉₃a/b, NP₁₁₀a and NP₁₉₄ in the effluent. Moreover, biodegradability was related to the bulkiness of α-substituents and followed α-dimethyl > α-ethyl-α-methyl > α-methyl-α-n-propyl > α-iso-propyl-α-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R² = 0.76). Decrease of temperature to 10 °C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP.

  14. 40 CFR 180.418 - Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Cypermethrin and an isomer zeta... FOOD Specific Tolerances § 180.418 Cypermethrin and an isomer zeta-cypermethrin; tolerances for... (±))(cis-trans 3-(2,2-dichloroethenyl)-2,2 dimethylcyclopropanecarboxylate and its inactive R-isomers in...

  15. 40 CFR 180.418 - Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Cypermethrin and an isomer zeta... FOOD Specific Tolerances § 180.418 Cypermethrin and an isomer zeta-cypermethrin; tolerances for... (±))(cis-trans 3-(2,2-dichloroethenyl)-2,2 dimethylcyclopropanecarboxylate and its inactive R-isomers in...

  16. 40 CFR 180.418 - Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Cypermethrin and an isomer zeta... FOOD Specific Tolerances § 180.418 Cypermethrin and an isomer zeta-cypermethrin; tolerances for... (±))(cis-trans 3-(2,2-dichloroethenyl)-2,2 dimethylcyclopropanecarboxylate and its inactive R-isomers in...

  17. 40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section...

  18. Isomer-specific biodegradation of nonylphenol in an activated sludge bioreactor and structure-biodegradability relationship.

    PubMed

    Lu, Zhijiang; Reif, Rubén; Gan, Jay

    2015-01-01

    Nonylphenol (NP), one of the priority hazardous substances, is in fact a mixture of numerous isomers. It is inconclusive whether or not biodegradation during wastewater treatment process is isomer-specific, leading to the environmental release of NP in different isomer profiles. In this study, we evaluated the isomer selectivity of 19 NP isomers in a laboratory-scale continuous flow conventional activated sludge bioreactor under various operational conditions. The removal efficiency of NP isomers ranged from 90 to 99%, depending on the operational conditions and isomer structures. Isomer selective biodegradation resulted in the increase of composition of recalcitrant isomers, such as, NP₁₉₃a/b, NP₁₁₀a and NP₁₉₄ in the effluent. Moreover, biodegradability was related to the bulkiness of α-substituents and followed α-dimethyl > α-ethyl-α-methyl > α-methyl-α-n-propyl > α-iso-propyl-α-methyl. Steric effect index, a quantitative descriptor of steric hindrance, was linearly correlated with residues of NP isomers in the effluent (R² = 0.76). Decrease of temperature to 10 °C decreased the overall biodegradability and also enhanced the relative enrichment of recalcitrant isomers. These findings suggest that isomer compositions of NP entering the environment may be different from those in technical mixtures and that isomeric selectivity should be taken into account to better understand the occurrence, fate, and ecological risks of NP. PMID:25462736

  19. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: microsecond vs. millisecond dwell times.

    PubMed

    Abad-Álvaro, Isabel; Peña-Vázquez, Elena; Bolea, Eduardo; Bermejo-Barrera, Pilar; Castillo, Juan R; Laborda, Francisco

    2016-07-01

    The quality of the quantitative information in single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) depends directly on the number concentration of the nanoparticles in the sample analyzed, which is proportional to the flux of nanoparticles through the plasma. Particle number concentrations must be selected in accordance with the data acquisition frequency, to control the precision from counting statistics and the bias, which is produced by the occurrence of multiple-particle events recorded as single-particle events. With quadrupole mass spectrometers, the frequency of data acquisition is directly controlled by the dwell time. The effect of dwell times from milli- to microseconds (10 ms, 5 ms, 100 μs, and 50 μs) on the quality of the quantitative data has been studied. Working with dwell times in the millisecond range, precision figures about 5 % were achieved, whereas using microsecond dwell times, the suitable fluxes of nanoparticles are higher and precision was reduced down to 1 %; this was independent of the dwell time selected. Moreover, due to the lower occurrence of multiple-nanoparticle events, linear ranges are wider when dwell times equal to or shorter than 100 μs are used. A calculation tool is provided to determine the optimal concentration for any instrument or experimental conditions selected. On the other hand, the use of dwell times in the microsecond range reduces significantly the contribution of the background and/or the presence of dissolved species, in comparison with the use of millisecond dwell times. Although the use of dwell times equal to or shorter than 100 μs offers improved performance working in single-particle mode, the use of conventional dwell times (3-10 ms) should not be discarded, once their limitations are known.

  20. Sub microsecond notching of a negative hydrogen beam at low energy utilizing a magnetron ion source with a split extractor

    SciTech Connect

    Moehs, Douglas; /Fermilab

    2004-12-01

    A technique for sub-microsecond beam notching is being developed at 20 keV utilizing a Magnetron ion source with a slit extraction system and a split extractor. Each half of the extractor is treated as part of a 50 ohm transmission line which can be pulsed at {+-}700 volts creating a 1400 volt gradient. This system along with the associated electronics is electrically floated on top of a pulsed extraction voltage. A beam reduction of 95% has been observed at the end of the Fermilab 400 MeV Linac and 35% notching has recently been achieved in the Booster.

  1. Population and decay of a Kπ=8- two-quasineutron isomer in 244Pu

    NASA Astrophysics Data System (ADS)

    Hota, S. S.; Tandel, S. K.; Chowdhury, P.; Ahmad, I.; Carpenter, M. P.; Chiara, C. J.; Greene, J. P.; Hoffman, C. R.; Jackson, E. G.; Janssens, R. V. F.; Kay, B. P.; Khoo, T. L.; Kondev, F. G.; Lakshmi, S.; Lalkovski, S.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Moran, K.; Peterson, D.; Shirwadkar, U.; Seweryniak, D.; Stefanescu, I.; Toh, Y.; Zhu, S.

    2016-08-01

    The decay of a Kπ=8- isomer in 244Pu and the collective band structures populating the isomer were studied using deep inelastic excitations with 47Ti and 208Pb beams, respectively. Precise measurements of M 1 /E 2 branching ratios in the band confirm a 9 /2-[734] ν⊗7 /2+[624] ν configuration assignment for the isomer, validating the systematics of Kπ=8- , two-quasineutron isomers observed in even-Z , N =150 isotones. These isomers around the deformed shell gap at N =152 provide critical benchmarks for theoretical predictions of single-particle energies in this gateway region to superheavy nuclei.

  2. Astropulse: A search for microsecond transient radio signals using distributed computing

    NASA Astrophysics Data System (ADS)

    von Korff, Joshua Solomon

    I performed a transient, microsecond timescale radio sky survey, called "Astropulse," using the Arecibo telescope in Puerto Rico. Astropulse searches for brief (0.4 mus to 204.8 mus), wideband (relative to its 2.5 MHz bandwidth) radio pulses centered at 1,420 MHz, a range that includes the hyperfine hydrogen line. Astropulse is a commensal survey, obtaining its data by sharing telescope time with other surveys, such as PALFA. I scanned the sky visible to Arecibo, between declinations of --1.33 and 38.03 degrees, with varying dwell times depending on the requirements of our partner surveys. I analyzed 1,540 hours of data in each of 7 beams of the ALFA receiver, with 2 polarizations per beam, for a total of 21,600 hours of data. The data were 1-bit complex sampled at the Nyquist limit of 0.4 mus per sample. Examination of timescales less than 12.8 mus would have been impossible if not for my use of coherent dedispersion, a technique that has frequently been used for targeted observations, but has never before been associated with a radio sky survey. I performed nonlinear coherent dedispersion, reversing the broadening effects on signals caused by their passage through the interstellar medium (ISM). Coherent dedispersion requires intensive computations, and needs far more processing power than the more usual incoherent dedispersion. This processing power was provided by BOINC, the Berkeley Open Infrastructure for Network Computing. BOINC is a distributed computing system, which allowed me to utilize hundreds of thousands of volunteers' computers to perform the necessary calculations for coherent dedispersion. Each volunteer's computer requires about a week to process a single 8 MB "workunit," corresponding to 13 s of data from a single beam and polarization. In all, Astropulse analyzed over 48 TB of data. I did not aim to detect any particular astrophysical source, intending rather to perform a survey of the transient radio sky. Astrophysical events that might produce

  3. Microsecond protein folding events revealed by time-resolved fluorescence resonance energy transfer in a microfluidic mixer.

    PubMed

    Jiang, Liguo; Zeng, Yan; Sun, Qiqi; Sun, Yueru; Guo, Zhihong; Qu, Jianan Y; Yao, Shuhuai

    2015-06-01

    We demonstrate the combination of the time-resolved fluorescence resonance energy transfer (tr-FRET) measurement and the ultrarapid hydrodynamic focusing microfluidic mixer. The combined technique is capable of probing the intermolecular distance change with temporal resolution at microsecond level and structural resolution at Angstrom level, and the use of two-photon excitation enables a broader exploration of FRET with spectrum from near-ultraviolet to visible wavelength. As a proof of principle, we used the coupled microfluidic laminar flow and time-resolved two-photon excitation microscopy to investigate the early folding states of Cytochrome c (cyt c) by monitoring the distance between the tryptophan (Trp-59)-heme donor-acceptor (D-A) pair. The transformation of folding states of cyt c in the early 500 μs of refolding was revealed on the microsecond time scale. For the first time, we clearly resolved the early transient state of cyt c, which is populated within the dead time of the mixer (<10 μs) and has a characteristic Trp-59-heme distance of ∼31 Å. We believe this tool can find more applications in studying the early stages of biological processes with FRET as the probe.

  4. Breaking the millisecond barrier on SpiNNaker: implementing asynchronous event-based plastic models with microsecond resolution.

    PubMed

    Lagorce, Xavier; Stromatias, Evangelos; Galluppi, Francesco; Plana, Luis A; Liu, Shih-Chii; Furber, Steve B; Benosman, Ryad B

    2015-01-01

    Spike-based neuromorphic sensors such as retinas and cochleas, change the way in which the world is sampled. Instead of producing data sampled at a constant rate, these sensors output spikes that are asynchronous and event driven. The event-based nature of neuromorphic sensors implies a complete paradigm shift in current perception algorithms toward those that emphasize the importance of precise timing. The spikes produced by these sensors usually have a time resolution in the order of microseconds. This high temporal resolution is a crucial factor in learning tasks. It is also widely used in the field of biological neural networks. Sound localization for instance relies on detecting time lags between the two ears which, in the barn owl, reaches a temporal resolution of 5 μs. Current available neuromorphic computation platforms such as SpiNNaker often limit their users to a time resolution in the order of milliseconds that is not compatible with the asynchronous outputs of neuromorphic sensors. To overcome these limitations and allow for the exploration of new types of neuromorphic computing architectures, we introduce a novel software framework on the SpiNNaker platform. This framework allows for simulations of spiking networks and plasticity mechanisms using a completely asynchronous and event-based scheme running with a microsecond time resolution. Results on two example networks using this new implementation are presented. PMID:26106288

  5. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  6. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays

    PubMed Central

    Lu, Yiqing; Lu, Jie; Zhao, Jiangbo; Cusido, Janet; Raymo, Françisco M; Yuan, Jingli; Yang, Sean; Leif, Robert C.; Huo, Yujing; Piper, James A.; Paul Robinson, J; Goldys, Ewa M.; Jin, Dayong

    2014-01-01

    Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called ‘τ-Dots’. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer. We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences. PMID:24796249

  7. Isolation of rotational isomers and developments derived therefrom

    PubMed Central

    ŌKI, Michinori

    2010-01-01

    Isolation of rotational isomer models of ethane-type molecules is described. We could experimentally prove that, if rotational isomers whose molecular shape was chiral, the molecule could be optically active, even though it did not carry an asymmetric carbon atom. As an extension, other types of stereochemically fundamental and optically active molecules were isolated and their absolute stereochemistry was determined. One example is the model of meso-tartaric acid, for which optical inactivity had been attributed to internal compensation but is now explained as follows. On dissolution of meso-tartaric acid in a solvent, the molecule gives two kinds of conformers, one of which is a Ci molecule and the other is a C1 molecule. Although the latter is intrinsically optically active, the optical activity is cancelled by its enantiomer. The theory of internal compensation is recommended to be abandoned. As an extension to another area, some reactions of conformers are also discussed. PMID:21084771

  8. Characterization of geometric isomers of Norbornene end-capped imides

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1983-01-01

    Three geometric isomers from the thermal isomerization of methylene-4,4' bis(endo-N-phenylbicyclo/2.2.1/hept-2-ene-5,6-di carboximide) (I) were chromatographically separated and isolated in order to investigate the thermal cure of norbornene end-capped imide oligomers, which display considerable promise for use in various aerospace adhesive and composite applications. Endo-endo (I), endo-exo (II), and exo-exo (III) configurations were assigned to each compound based on the results of NMR spectroscopy. Several chromatographic, spectroscopic, and thermal techniques were then used to characterize these three isomers which serve as model compounds for norbornene end-capped polyimides. It was found that each compound thermally isomerized to an equilibrium mixture of all three compounds prior to cure. It is proposed that these compounds react by different mechanisms in air and nitrogen.

  9. Spectroscopic studies of the several isomers of UO3

    NASA Astrophysics Data System (ADS)

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-10-01

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and α-UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  10. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  11. [Beaded molecule imprinted polymer for stereo isomer separation].

    PubMed

    Meng, Z; Wang, J; Zhou, L; Wang, Q; Zhu, D

    1999-07-01

    Beaded molecule imprinted polymer (MIP) was made by suspension polymerization. Particles with the size of 50-70 microns in diameter were collected and evaluated in HPLC mode to separate stereo isomers. Stereo isomers cinchonine and cinchonidine were successfully discriminated with selectivity factor of 2.89 and resolution factor of 0.76. Stereo selectivity of the MIP was found to come from both the interaction between the analyte and carboxyl group on the MIP and the similarity between the stereo structure of imprinted molecule and the MIP. The thermal analysis results showed that the MIP had high thermal stability with initial thermal decomposition temperature of 320 degrees C. The pore volume of the MIP was 0.1849 mL/g, the specific surface area was 126.84 sqm/g and the average pore diameter was 5.8 nanometer. Scanning electron microscopy showed that MIP had perfect spherical morphology.

  12. Theoretical characterisation of the SSO, cyclic SOS and SOS isomers

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2010-01-01

    The SSO, cyclic SOS and open SOS isomers have been investigated, employing the CCSD(T) methodology and the cc-pV(X + d)Z X = 3, 4, 5, 6 basis sets. The anharmonic force fields have been calculated to predict the fundamental vibrational frequencies, rotational constants, vibration-rotation corrections, anharmonic corrections to zero-point energies, and structural parameters. At the CCSD(T)/CBS limit and including corrections for scalar relativistic effects, complete quadruple excitations, spin-orbit and core-valence correlation effects, the estimated enthalpies of formation are -13.9 ± 1, 32.1 ± 1, and -51.2 ± 1 kcal/mol, for SSO, cyclic-SOS and open-SOS, respectively. Finally, it was found that the asymmetric SO stretch of the open and cyclic SOS isomers are located in a nearly identical position and it is likely that SOS also maybe present in the surface of Io.

  13. Mobilities of Li(+)-attached butanol isomers in He gas.

    PubMed

    Takahashi, K; Saito, K; Koizumi, T; Matoba, S; Kojima, T M; Tanuma, H; Shiromaru, H

    2013-08-28

    Mobilities of Li(+)-attached butanol isomers, (n-BuOH)Li(+), (s-BuOH)Li(+), (i-BuOH)Li(+), and (t-BuOH)Li(+), in helium gas were measured over a range of reduced electric fields (E/N = 25-96 Td) at room temperature. Arrival time measurements accurately identified small differences in the measured mobilities of the isomer ions. At low E/N (≤30 Td, corresponding to a mean collision energy ε≤0.05 eV), (n-BuOH)Li(+) showed a mobility about 1.5% greater than that of the other ions, but at high E/N (≥75 Td, ε≥0.1 eV) its mobility was about 1.1% less.

  14. Density Functional Exploration of C4H3N Isomers.

    PubMed

    Custer, Thomas; Szczepaniak, Urszula; Gronowski, Marcin; Fabisiewicz, Emilia; Couturier-Tamburelli, Isabelle; Kołos, Robert

    2016-07-28

    Molecules having C4H3N stoichiometry are of astrophysical interest. Two of these, methylcyanoacetylene (CH3C3N) and its structural isomer allenyl cyanide (H2CCCHN), have been observed in interstellar space, while several more have been examined in laboratories. Here we describe, for a broad range of C4H3N isomers, density functional calculations (B3LYP/aug-cc-pVTZ) of molecular parameters including the energetics, geometries, rotational constants, electric dipole moments, polarizabilities, vibrational IR frequencies, IR absorption intensities, and Raman activities. Singlet-triplet splittings as well as singlet vertical electronic excitation energies are given for selected species. The identification of less stable C4H3N molecules, generated in ongoing spectroscopic experiments, relies heavily on these quantum chemical predictions. PMID:27341606

  15. Positional isomer differentiation of synthetic cannabinoid JWH-081 by GC-MS/MS.

    PubMed

    Kusano, Maiko; Zaitsu, Kei; Nakayama, Hiroshi; Nakajima, Junichi; Hisatsune, Kazuaki; Moriyasu, Takako; Matsuta, Shuntaro; Katagi, Munehiro; Tsuchihashi, Hitoshi; Ishii, Akira

    2015-03-01

    Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH-081. Purchased standard compounds of JWH-081 and its positional isomers were analyzed by gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near-identical EI spectra were further subjected to GC-tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2-methoxy, 7-methoxy and 8-methoxy. The remaining isomers exhibited near-identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3-Methoxy and 5-methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6-methoxy isomer resembled that of JWH-081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study.

  16. Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship.

    PubMed

    Lu, Zhijiang; Gan, Jay

    2014-01-21

    Nonylphenol (NP), a well-known environmental estrogen with numerous isomers, is frequently found in surface water and sediments. Recent studies showed that NP isomers exhibited different estrogenicity. However, at present little information is available on its isomer-specific degradation in the bed sediment, which is the primary sink of NP in surface aquatic systems. In this study, we investigated the biodegradability of 19 NP isomers in two river sediments under oxic and anoxic conditions. Under oxic conditions, the half-lives of NP isomers in an upper river sediment ranged from 0.9 to 13.2 d. Under reduced conditions, the persistence of NP isomers generally increased, with negligible dissipation under strongly reduced conditions. In the well-aerated sediment, NP isomers with short side chain and/or bulky α-substituents were found to be more recalcitrant to degradation. Moreover, when a total of 57 molecular descriptors were examined, the degree of branching as quantified by IDWbar was found to result in the best linear correlation with half-lives of NP isomers (R(2) = 0.88). These results indicated that the isomer-specificity of NP in environmental processes should be considered, and that simple molecular descriptors may be used to identify the more recalcitrant isomers, thus allowing prioritization in the evaluation of environmental fate and risks of NP isomers.

  17. Condensations of single DNA molecules induced by heptaplatin and its chiral isomer

    SciTech Connect

    Zhang, Hong-Yan; Liu, Yu-Ru; Li, Wei; Li, Hui; Dou, Shuo-Xing; Xie, Ping; Wang, Wei-Chi; Wang, Peng-Ye

    2014-08-15

    Heptaplatin is a third-generation platinum antitumor drug. It has a chiral isomer. We studied the interactions between the two isomers and DNA by using magnetic tweezers and atomic force microscopy (AFM) to investigate the effect of chiralities of the isomers on the interactions. We found that the extension curves and average condensation rates of DNA molecules incubated with heptaplatin were nearly the same as those incubated with its chiral isomer. In addition, the structures of DNA molecules incubated with heptaplatin were also similar to those incubated with its chiral isomer. These results indicate the difference in chirality of the two isomers does not induce different interactions of the isomers with DNA. Our study may facilitate the understanding of interactions of platinum complexes with DNA and the design of new antitumor platinum complexes.

  18. Characterization and performance of short cationic antimicrobial peptide isomers.

    PubMed

    Juba, Melanie; Porter, Devin; Dean, Scott; Gillmor, Susan; Bishop, Barney

    2013-07-01

    Cationic antimicrobial peptides (CAMPs) represent an ancient defense mechanism against invading bacteria, with peptides such as the cathelicidins being essential elements of vertebrate innate immunity. CAMPs are typically associated with broad-spectrum antimicrobial potency and limited bacterial resistance. The cathelicidin identified from the elapid snake Naja atra (NA-CATH) contains a semi-conserved repeated 11-residue motif (ATRA motif) with a sequence pattern consistent with formation of an amphipathic helical conformation. Short peptide amides (ATRA-1, -1A, -1P, and -2) generated based on the pair of ATRA motifs in NA-CATH exhibited varied antimicrobial potencies. The small size of the ATRA peptides, coupled with their varied antimicrobial performances, make them interesting models to study the impact various physico-chemical properties have on antimicrobial performance in helical CAMPs. Accordingly, the D- and L-enantiomers of the peptide ATRA-1A, which in earlier studies had shown both good antimicrobial performance and strong helical character, were investigated in order to assess the impact peptide stereochemistry has on antimicrobial performance and interaction with chiral membranes. The ATRA-1A isomers exhibit varied potencies against four bacterial strains, and their conformational properties in the presence of mixed zwitterionic/anionic liposomes are influenced by anionic lipid content. These studies reveal subtle differences in the properties of the peptide isomers. Differences are also seen in the abilities of the ATRA-1A isomers to induce liposome fusion/aggregation, bilayer rearrangement and lysing through turbidity studies and fluorescence microscopy. The similarities and differences in the properties of the ATRA-1A isomers could aid in efforts to develop D-peptide-based therapeutics using high-performing L-peptides as templates.

  19. Thermodynamics of finite magnetic two-isomer systems

    NASA Astrophysics Data System (ADS)

    Borrmann, Peter; Stamerjohanns, Heinrich; Hilf, Eberhard R.; Jund, Philippe; Kim, Seong Gon; Tománek, David

    1999-12-01

    We use Monte Carlo simulations to investigate the thermodynamical behavior of aggregates consisting of few superparamagnetic particles in a colloidal suspension. The potential energy surface of this classical two-isomer system with a stable and a metastable "ring" and "chain" configuration is tunable by an external magnetic field and temperature. We determine the complex "phase diagram" of this system and analyze thermodynamically the nature of the transition between the ring and the chain "phase."

  20. Flame Propagation of Butanol Isomers/Air Mixtures

    SciTech Connect

    Veloo, Peter S.; Egolfopoulos, Fokion N.

    2011-01-01

    An experimental and computational study was conducted on the propagation of flames of saturated butanol isomers. The experiments were performed in the counterflow configuration under atmospheric pressure, unburned mixture temperature of 343 K, and for a wide range of equivalence ratios. The experiments were simulated using a recent kinetic model for the four isomers of butanol. Results indicate that n-butanol/air flames propagate somewhat faster than both sec-butanol/air and iso-butanol/air flames, and that tert-butanol/air flames propagate notably slower compared to the other three isomers. Reaction path analysis of tert-butanol/air flames revealed that iso-butene is a major intermediate, which subsequently reacts to form the resonantly stable iso-butenyl radical retarding thus the overall reactivity of tert-butanol/air flames relatively to the other three isomers. Through sensitivity analysis, it was determined that the mass burning rates of sec-butanol/air and iso-butanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 2} hydrocarbon kinetics and not to fuel-specific reactions similarly to n-butanol/air flames. However, for tert-butanol/air flames notable sensitivity to fuel-specific reactions exists. While the numerical results predicted closely the experimental data for n-butanol/air and sec-butanol/air flames, they overpredicted and underpredicted the laminar flame speeds for iso-butanol/air and tert-butanol/air flames respectively. It was demonstrated further that the underprediction of the laminar flame speeds of tert-butanol/air flames by the model was most likely due to deficiencies of the C{sub 4}-alkene kinetics.

  1. [Determination of dimethylbenzoic acid isomers in urine by gas chromatography].

    PubMed

    Kostrzewski, P; Wiaderna-Brycht, A; Czerski, B

    1994-01-01

    Trimethylobenzene (TMB) is a main ingredient of many organic solvents used in industry. In Farbasol (Polish trade name of the solvent) TMB occurs as a mixture of three isomers: pseudocumene (1, 2, 4-TMB) 30%; mesitylene (1, 3, 5-TMB) 15%; hemimellitene (1,2,3-TMB) 5%. As it is known in human organism, TMB is metabolized mainly to dimethylbenzoic (DMBA) and dimethylhippuric (DMHA) acids, and some authors suggest, that the acids excreted in urine can be biological indicators of exposure to TMB. This study was aimed at developing the method of determination of DMBA isomers in urine. Biological material was hydrolyzed with sodium hydroxide and next extracted with diethyl ether. DMBA concentration in urine was determined by gas chromatography using a variant of quantitative analysis with internal standard (5-methyl-2-isopropylphenol, thymol). Analytical parameters of the developed method of determination of DMBA isomers in urine such as linearity, precision, reproducibility, stability (192 days, when urine samples stored at-18 degrees C), detectability limit (400 micrograms/dm3) have been fully compatible with the requirements of biological monitoring. In order to confirm the presence of DMBA isomers in urine, four volunteers were exposed (8 hours) to Farbasol in toxicological chamber. The TMB concentration in the air, determined by means of gas chromatograph (HP 5890), amounted to 100 mg/m3 (MAC value in Poland). In urine samples collected 2,3-; 2,4-; 2,5-; 2,6-; 3,4-; 3,5-dimethylbenzoic acids were identified by means of GC/MSD.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8170375

  2. Virtual libraries of tetrapyrrole macrocycles. Combinatorics, isomers, product distributions, and data mining.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2011-09-26

    A software program (PorphyrinViLiGe) has been developed to enumerate the type and relative amounts of substituted tetrapyrrole macrocycles in a virtual library formed by one of four different classes of reactions. The classes include (1) 4-fold reaction of n disubstituted heterocycles (e.g., pyrroles or diiminoisoindolines) to form β-substituted porphyrins, β-substituted tetraazaporphyrins, or α- or β-substituted phthalocyanines; (2) combination of m aminoketones and n diones to form m × n pyrroles, which upon 4-fold reaction give β-substituted porphyrins; (3) derivatization of an 8-point tetrapyrrole scaffold with n reagents, and (4) 4-fold reaction of n aldehydes and pyrrole to form meso-substituted porphyrins. The program accommodates variable ratios of reactants, reversible or irreversible reaction (reaction classes 1 and 2), and degenerate modes of formation. Pólya's theorem (for enumeration of cyclic entities) has also been implemented and provides validation for reaction classes 3 and 4. The output includes the number and identity of distinct reaction-accessible substituent combinations, the number and identity of isomers thereof, and the theoretical mass spectrum. Provisions for data mining enable assessment of the number of products having a chosen pattern of substituents. Examples include derivatization of an octa-substituted phthalocyanine with eight reagents to afford a library of 2,099,728 members (yet only 6435 distinct substituent combinations) and reversible reaction of six distinct disubstituted pyrroles to afford 2649 members (yet only 126 distinct substituent combinations). In general, libraries of substituted tetrapyrrole macrocycles occupy a synthetically accessible region of chemical space that is rich in isomers (>99% or 95% for the two examples, respectively).

  3. Virtual libraries of tetrapyrrole macrocycles. Combinatorics, isomers, product distributions, and data mining.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2011-09-26

    A software program (PorphyrinViLiGe) has been developed to enumerate the type and relative amounts of substituted tetrapyrrole macrocycles in a virtual library formed by one of four different classes of reactions. The classes include (1) 4-fold reaction of n disubstituted heterocycles (e.g., pyrroles or diiminoisoindolines) to form β-substituted porphyrins, β-substituted tetraazaporphyrins, or α- or β-substituted phthalocyanines; (2) combination of m aminoketones and n diones to form m × n pyrroles, which upon 4-fold reaction give β-substituted porphyrins; (3) derivatization of an 8-point tetrapyrrole scaffold with n reagents, and (4) 4-fold reaction of n aldehydes and pyrrole to form meso-substituted porphyrins. The program accommodates variable ratios of reactants, reversible or irreversible reaction (reaction classes 1 and 2), and degenerate modes of formation. Pólya's theorem (for enumeration of cyclic entities) has also been implemented and provides validation for reaction classes 3 and 4. The output includes the number and identity of distinct reaction-accessible substituent combinations, the number and identity of isomers thereof, and the theoretical mass spectrum. Provisions for data mining enable assessment of the number of products having a chosen pattern of substituents. Examples include derivatization of an octa-substituted phthalocyanine with eight reagents to afford a library of 2,099,728 members (yet only 6435 distinct substituent combinations) and reversible reaction of six distinct disubstituted pyrroles to afford 2649 members (yet only 126 distinct substituent combinations). In general, libraries of substituted tetrapyrrole macrocycles occupy a synthetically accessible region of chemical space that is rich in isomers (>99% or 95% for the two examples, respectively). PMID:21866949

  4. A Rapid Compression Machine Modelling Study of the Heptane Isomers

    SciTech Connect

    Silke, E J; Curran, H J; Simmie, J M; Pitz, W J; Westbrook, C K

    2005-05-10

    Previously we have reported on the combustion behavior of all nine isomers of heptane in a rapid compression machine (RCM) with stoichiometric fuel and ''air'' mixtures at a compressed gas pressure of 15 atm. The dependence of autoignition delay times on molecular structure was illustrated. Here, we report some additional experimental work that was performed in order to address unusual results regarding significant differences in the ignition delay times recorded at the same fuel and oxygen composition, but with different fractions of nitrogen and argon diluent gases. Moreover, we have begun to simulate these experiments with detailed chemical kinetic mechanisms. These mechanisms are based on previous studies of other alkane molecules, in particular, n-heptane and iso-octane. We have focused our attention on n-heptane in order to systematically redevelop the chemistry and thermochemistry for this C{sub 7} isomer with the intention of extending our greater knowledge gained to the other eight isomers. The addition of new reaction types, that were not included previously, has had a significant impact on the simulations, particularly at low temperatures.

  5. Diffusion studies of dihydroxybenzene isomers in water-alcohol systems.

    PubMed

    Codling, Dale J; Zheng, Gang; Stait-Gardner, Tim; Yang, Shu; Nilsson, Mathias; Price, William S

    2013-03-01

    Nuclear magnetic resonance diffusion studies can be used to identify different compounds in a mixture. However, because the diffusion coefficient is primarily dependent on the effective hydrodynamic radius, it is particularly difficult to resolve compounds with similar size and structure, such as isomers, on the basis of diffusion. Differential solution interactions between species in certain solutions can afford possibilities for separation. In the present study, the self-diffusion of the three isomers of dihydroxybenzene (i.e., (1,2-) catechol, (1,3-) resorcinol, and (1,4-) hydroquinone) was studied in water, aqueous monohydric alcohols (i.e., ethanol, 1-propanol, tert-butanol), and aqueous ethylene glycol. These systems allowed the effects of isomerism and differential solvent interactions on diffusion to be examined. It was found that, while in aqueous solution these isomers had the same diffusion coefficient, in water-monohydric alcohol systems the diffusion coefficient of catechol differed from those of resorcinol and hydroquinone. The separation was found to increase at higher concentrations of monohydric alcohols. The underlying chemical reasons for these differences were investigated.

  6. On the Ionization Energies of C4H3 Isomers

    SciTech Connect

    Kaiser, Ralf I.; Mebel, Alexander; Kostko, Oleg; Ahmed, Musahid

    2009-09-16

    We have conducted a combined experimental and theoretical study on the formation of distinct isomers of resonantly stabilized free radicals, C4H3, which are important intermediates in the formation of polycyclic aromatic hydrocarbons in combustion flames and possibly in the interstellar medium. Our study utilized laser ablation of graphite in combination with seeding the ablated species in neat methylacetylene gas which also acted as a reagent. Photoionization efficiency (PIE) curves were recorded of the C4H3 isomers at the Advanced Light Source from 8.0 to 10.3 eV. The experimental PIE curve was compared with theoretical ones suggesting the formation of four C4H3 radicals: two acyclic structures i-C4H3 [1] and E/Z-n-C4H3 [2E/2Z]and two cyclic isomers 3 and 4. These molecules are likely formed via an initial addition of ground state carbon atoms to the carbon-carbon triple bond of the methylacetylene molecule followed by isomerization via hydrogen migrations and ring opening and emission of atomic hydrogen from these intermediates.

  7. Isomer Energy Differences for the C4H3 and C4H5 Isomers UsingDiffusion Monte Carlo

    SciTech Connect

    Domin, D.; Lester Jr., W.A.; Whitesides, R.; Frenklach, M.

    2007-12-01

    A new diffusion Monte Carlo study is performed on the isomers of C{sub 4}H{sub 3} and C{sub 4}H{sub 5} emulating the methodology of a previous study [Int. J. Chem. Kinetics 33, 808 (2001)]. Using the same trial wave function form of the previous study, substantially different isomerization energies were found owing to the use of larger walker populations in the present work. The energy differences between the E and I isomers of C{sub 4}H{sub 3} were found to be 10.5 {+-} 0.5 kcal/mol and for C{sub 4}H{sub 5}, 9.7 {+-} 0.6 kcal/mol. These results are in reasonable accord with recent MRCI and CCSD(T) findings.

  8. Contents of conjugated linoleic acid isomers in ruminant-derived foods and estimation of their contribution to daily intake in Portugal.

    PubMed

    Martins, Susana V; Lopes, Paula A; Alfaia, Cristina M; Ribeiro, Verónica S; Guerreiro, Teresa V; Fontes, Carlos M G A; Castro, Matilde F; Soveral, Graça; Prates, José A M

    2007-12-01

    The present study provides a detailed overview of the contents of conjugated linoleic acid (CLA) isomers in the most consumed Portuguese CLA-rich foods (milk, butter, yoghurt, cheese, beef and lamb meat), by using silver ion-HPLC. In addition, the contribution of these ruminant-derived foods to the daily intake of CLA isomers was estimated based on Portuguese consumption habits. The total CLA concentration in milk and dairy products ranged from 4.00 mg/g fat in yoghurt to 7.22 mg/g fat in butter, and, regarding meats, from 4.45 mg/g fat in intensively produced beef to 11.29 mg/g fat in lamb meat. The predominant CLA isomers identified in these products were cis-9, trans-11 (59.89-79.21 %) and trans-7, cis-9 (8.04-20.20 %). The average estimated total CLA intake for the Portuguese population was 73.70 mg/d. Milk and cheese are probably the two products with the highest contribution to the final CLA intake, as a result of their high fat content and consumption values. The results also suggested that cis-9, trans-11 and trans-7, cis-9 are the isomers most represented, with, respectively, 76.10 and 12.56 % of the total CLA intake. Being the first detailed report on the contents of total and individual CLA isomers in Portuguese commercial ruminant-derived foods, we further discuss the implication of the results for diet characteristics and human health.

  9. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control

  10. Distribution of perfluorooctane sulfonate isomers and predicted risk of thyroid hormonal perturbation in drinking water.

    PubMed

    Yu, Nanyang; Wang, Xiaoxiang; Zhang, Beibei; Yang, Jingping; Li, Meiying; Li, Jun; Shi, Wei; Wei, Si; Yu, Hongxia

    2015-06-01

    We documented the distribution of seven perfluorooctane sulfonate (PFOS) isomers in drinking water in Jiangsu Province, China. Compared to the 30% proportion of branched PFOS in technical PFOS, the levels of branched PFOS in drinking water increased to 31.8%-44.6% of total PFOS. Because of previous risk assessment without considering the PFOS isomer profile and the toxicity of individual PFOS isomers, here we performed a new health risk assessment of PFOS for thyroid hormonal perturbation in drinking water with the contribution from individual PFOS isomers. The risk quotients (RQs) of individual PFOS isomers indicated that linear PFOS contributed most to the risk among all the target PFOS isomers (83.0%-90.2% of the total PFOS RQ), and that risk from 6m-PFOS (5.2%-11.9% of the total PFOS RQ) was higher than that from other branched PFOS isomers. We found that the risks associated with PFOS in drinking water would be overestimated by 10.0%-91.7% if contributions from individual PFOS isomers were not considered. The results revealed that the PFOS isomer profile and the toxicity of individual PFOS isomers were important factors in health risk assessment of PFOS and should be considered in the future risk assessments. PMID:25813491

  11. Distribution of perfluorooctane sulfonate isomers and predicted risk of thyroid hormonal perturbation in drinking water.

    PubMed

    Yu, Nanyang; Wang, Xiaoxiang; Zhang, Beibei; Yang, Jingping; Li, Meiying; Li, Jun; Shi, Wei; Wei, Si; Yu, Hongxia

    2015-06-01

    We documented the distribution of seven perfluorooctane sulfonate (PFOS) isomers in drinking water in Jiangsu Province, China. Compared to the 30% proportion of branched PFOS in technical PFOS, the levels of branched PFOS in drinking water increased to 31.8%-44.6% of total PFOS. Because of previous risk assessment without considering the PFOS isomer profile and the toxicity of individual PFOS isomers, here we performed a new health risk assessment of PFOS for thyroid hormonal perturbation in drinking water with the contribution from individual PFOS isomers. The risk quotients (RQs) of individual PFOS isomers indicated that linear PFOS contributed most to the risk among all the target PFOS isomers (83.0%-90.2% of the total PFOS RQ), and that risk from 6m-PFOS (5.2%-11.9% of the total PFOS RQ) was higher than that from other branched PFOS isomers. We found that the risks associated with PFOS in drinking water would be overestimated by 10.0%-91.7% if contributions from individual PFOS isomers were not considered. The results revealed that the PFOS isomer profile and the toxicity of individual PFOS isomers were important factors in health risk assessment of PFOS and should be considered in the future risk assessments.

  12. Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data.

    PubMed

    Deán-Ben, Xosé Luís; Bay, Erwin; Razansky, Daniel

    2014-07-30

    The breakthrough capacity of optoacoustics for three-dimensional visualization of dynamic events in real time has been recently showcased. Yet, efficient spectral unmixing for functional imaging of entire volumetric regions is significantly challenged by motion artifacts in concurrent acquisitions at multiple wavelengths. Here, we introduce a method for simultaneous acquisition of multispectral volumetric datasets by introducing a microsecond-level delay between excitation laser pulses at different wavelengths. Robust performance is demonstrated by real-time volumetric visualization of functional blood parametrers in human vasculature with a handheld matrix array optoacoustic probe. This approach can avert image artifacts imposed by velocities greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g. abrupt displacements during handheld-mode operation in a clinical environment.

  13. μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA

    PubMed Central

    Pasi, Marco; Maddocks, John H.; Beveridge, David; Bishop, Thomas C.; Case, David A.; Cheatham, Thomas; Dans, Pablo D.; Jayaram, B.; Lankas, Filip; Laughton, Charles; Mitchell, Jonathan; Osman, Roman; Orozco, Modesto; Pérez, Alberto; Petkevičiūtė, Daiva; Spackova, Nada; Sponer, Jiri; Zakrzewska, Krystyna; Lavery, Richard

    2014-01-01

    We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters. PMID:25260586

  14. The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Park, Ji Hoon; Jeon, Su Nam; Park, Bong Sang; Choi, Eun Ha; Attri, Pankaj

    2016-03-01

    In the present work, we have generated reactive species (RS) through microsecond-pulsed plasma (MPP) in the cell culture media using a Marx generator with point-point electrodes of approximately 0.06 J discharge energy/pulse. RS generated in culture media through MPP have a selective action between growth of the H460 lung cancer cells and L132 normal lung cells. We observed that MPP-activated media (MPP-AM) induced apoptosis on H460 lung cancer cells through an oxidative DNA damage cascade. Additionally, we studied the apoptosis-related mRNA expression, DNA oxidation and polymerase-1 (PARP-1) cleaved analysis from treated cancer cells. The result proves that radicals generated through MPP play a pivotal role in the activation of media that induces the selective killing effect.

  15. Microsecond Molecular Dynamics Simulations of Influenza Neuraminidase Suggest a Mechanism for the Increased Virulence of Stalk-Deletion Mutants

    PubMed Central

    2016-01-01

    Deletions in the stalk of the influenza neuraminidase (NA) surface protein are associated with increased virulence, but the mechanisms responsible for this enhanced virulence are unclear. Here we use microsecond molecular dynamics simulations to explore the effect of stalk deletion on enzymatic activity, contrasting NA proteins from the A/swine/Shandong/N1/2009 strain both with and without a stalk deletion. By modeling and simulating neuraminidase apo glycoproteins embedded in complex-mixture lipid bilayers, we show that the geometry and dynamics of the neuraminidase enzymatic pocket may differ depending on stalk length, with possible repercussions on the binding of the endogenous sialylated-oligosaccharide receptors. We also use these simulations to predict previously unrecognized druggable “hotspots” on the neuraminidase surface that may prove useful for future efforts aimed at structure-based drug design. PMID:27141956

  16. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination.

    PubMed

    Ponseca, Carlito S; Savenije, Tom J; Abdellah, Mohamed; Zheng, Kaibo; Yartsev, Arkady; Pascher, Tobjörn; Harlang, Tobias; Chabera, Pavel; Pullerits, Tonu; Stepanov, Andrey; Wolf, Jean-Pierre; Sundström, Villy

    2014-04-01

    Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials. We found that electron-hole pairs are generated almost instantaneously after photoexcitation and dissociate in 2 ps forming highly mobile charges (25 cm(2) V(-1) s(-1)) in the neat perovskite and in perovskite/alumina blends; almost balanced electron and hole mobilities remain very high up to the microsecond time scale. When the perovskite is introduced into a TiO2 mesoporous structure, electron injection from perovskite to the metal oxide is efficient in less than a picosecond, but the lower intrinsic electron mobility of TiO2 leads to unbalanced charge transport. Microwave conductivity measurements showed that the decay of mobile charges is very slow in CH3NH3PbI3, lasting up to tens of microseconds. These results unravel the remarkable intrinsic properties of CH3NH3PbI3 perovskite material if used as light absorber and charge transport layer. Moreover, finding a metal oxide with higher electron mobility may further increase the performance of this class of solar cells.

  17. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-01-16

    An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.

  18. Differential adsorption of CHON isomers at interstellar grain surfaces

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Ellinger, Y.; Ceccarelli, C.

    2015-06-01

    Context. The CHON generic chemical formula covers different isomers such as isocyanic acid (HNCO), cyanic acid (HOCN), fulminic acid (HCNO), and isofulminic acid (HONC); the first three have been identified in a large variety of environments in the interstellar medium (ISM). Several phenomena could be at the origin of the observed abundances, such as different pathways of formation and destruction involving gas phase reactions with different possible activation barriers and/or surface processes depending on the local temperature and the nature of the support. Aims: The scope of this article is to shed some light on the interaction of the CHON isomers with interstellar grains as a function of the nature of the surface and to determine the corresponding adsorption energies in order to find whether this phenomenon could play a role in the abundances observed in the ISM. Methods: The question was addressed by means of numerical simulations using first principle periodic density functional theory (DFT) to represent the grain support as a solid of infinite dimension. Results: Regardless of the nature of the model surface (water ice, graphene, silica), two different classes of isomers were identified: weakly bound (HNCO and HCNO) and strongly bound (HOCN and HONC), with the adsorption energies of the latter group being about twice those of the former. The range of the adsorption energies is (from highest to lowest) HOCN > HONC > HNCO > HCNO. They are totally disconnected from the relative stabilities, which range from HNCO > HOCN > HCNO > HONC. Conclusions: The possibility of hydrogen bonding is the discriminating factor in the trapping of CHON species on grain surfaces. Whatever the environment, differential adsorption is effective and its contribution to the molecular abundances should not be ignored. The theoretical adsorption energies provided here could be profitably used for a more realistic modeling of molecule-surfaces interactions.

  19. Ototoxicity of the three xylene isomers in the rat.

    PubMed

    Maguin, Katy; Lataye, Robert; Campo, Pierre; Cossec, Benoît; Burgart, Manuella; Waniusiow, Delphine

    2006-01-01

    Numerous experiments have shown that the aromatic solvents can affect the auditory system in the rat, the cochlea being targeted first. Solvents differ in cochleotoxic potency: for example, styrene is more ototoxic than toluene or xylenes. The goal of this study was to determine the relative ototoxicity of the three isomers of xylene (o-, m- or p-xylene). Moreover, by dosing with the two urinary metabolites of xylene, methylhippuric (MHAs) and mercapturic acids (MBAs), this study points toward a causal relationship between the cochleotoxic effects and potential reactive intermediates arising from the biotransformation of the parent molecules. Separate groups of rats were exposed by inhalation to one isomer following this schedule: 1800 ppm, 6 h/d, 5 d/wk for 3 wk. Auditory thresholds were determined with brainstem-auditory evoked potentials. Morphological analysis of the organ of Corti was performed by counting both sensory and spiral ganglion cells. Among the three isomers, only p-xylene was cochleotoxic. A 39-dB permanent threshold shift was obtained over the tested frequencies range from 8 to 20 kHz. Whereas outer hair cells were largely injured, no significant morphological change was observed within spiral ganglia. The concentrations of urinary p-, o- or m-MHA were greater (p-MHA: 33.2 g/g; o-MHA: 7.8 g/g; m-MHA: 20.4 g/g) than those obtained for MBAs (p-MBA: 0.04 g/g; o-MBA: 6.2 g/g; m-MBA: 0.03 g/g). Besides, there is a large difference between o-MBA (6.2 g/g) and p-MBA (0.04 g/g). As a result, since the cysteine conjugates are not determinant in the ototoxic process of xylenes, the location of the methyl groups around the benzene nucleus could play a key role. PMID:17045780

  20. Formation of melatonin and its isomer during bread dough fermentation and effect of baking.

    PubMed

    Yılmaz, Cemile; Kocadağlı, Tolgahan; Gökmen, Vural

    2014-04-01

    Melatonin is produced mainly by the pineal gland in vertebrates. Also, melatonin and its isomer are found in foods. Investigating the formation of melatonin and its isomer is of importance during bread dough fermentation and its degradation during baking since bread is widely consumed in high amounts. Formation of melatonin was not significant during dough fermentation. The melatonin isomer content of nonfermented dough was found to be 4.02 ng/g and increased up to 16.71 ng/g during fermentation. Lower amounts of isomer in crumb and crust than dough showed that the thermal process caused a remarkable degree of degradation in melatonin isomer. At the end of the 180 min fermentation Trp decreased by 58%. The results revealed for the first time the formation of a melatonin isomer in bread dough during yeast fermentation.

  1. Identification of chiral drug isomers by capillary electrophoresis.

    PubMed

    Fanali, S

    1996-05-31

    Separation of optical isomers of compounds of pharmaceutical interest by capillary electrophoretic techniques is reviewed. The direct and indirect separation method, as well as the main resolution mechanisms and the parameters influencing the stereoselectivity are discussed considering capillary zone electrophoresis, micellar electrokinetic chromatography, isotachophoresis and electrochromatography. Several chiral selectors have been successfully used in CE for chiral separation, including cyclodextrins and their derivatives, modified crown-ethers, proteins, antibiotics, linear saccharides and chiral surfactants. Only applications in the pharmaceutical field with the most important experimental conditions are summarised in the Tables reported in this paper. The chiral analyses of drugs in real samples like biological fluids or pharmaceutical formulations are also reported.

  2. Identification of a high-spin isomer in Mo99

    NASA Astrophysics Data System (ADS)

    Jones, G. A.; Regan, P. H.; Walker, P. M.; Podolyák, Zs.; Stevenson, P. D.; Carpenter, M. P.; Carroll, J. J.; Chakrawarthy, R. S.; Chowdhury, P.; Garnsworthy, A. B.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lane, G. J.; Liu, Z.; Seweryniak, D.; Thompson, N. J.; Zhu, S.; Williams, S. J.

    2007-10-01

    A previously unreported isomer has been identified in Mo99 at an excitation energy of Ex=3010 keV, decaying with a half-life of T1/2=8(2) ns. The nucleus of interest was produced following fusion-fission reactions between a thick Al27 target frame and a Hf178 beam at a laboratory energy of 1150 MeV. This isomeric state is interpreted as an energetically favored, maximally aligned configuration of νh(11)/(2)⊗π(g(9)/(2))2.

  3. Interstellar Isomers: The Importance of Bonding Energy Differences

    NASA Technical Reports Server (NTRS)

    Remijan, Anthony J.; Hollis, J. M.; Lovas, F. J.; Plusquellic, D. F.; Jewell, P. R.

    2005-01-01

    We present strong detections of methyl cyanide (CH3CN), vinyl cyanide (CH2CHCN), ethyl cyanide (CH3CH2CN) and cyanodiacetylene (HC4CN) molecules with the Green Bank Telescope (GBT) toward the Sgr B2(N) molecular cloud. Attempts to detect the corresponding isocyanide isomers were only successful in the case of methyl isocyanide (CH3NC) for its J(sub K) = 1(sub 0) - 0(sub 0) transition, which is the first interstellar report of this line. To determine the spatial distribution of CH3NC, we used archival Berkeley-Illinois-Maryland Association (BIMA) array data for the J(sub K) = 1(sub 0) - 0(sub 0) transitions but no emission was detected. From ab initio calculations, the bonding energy difference between the cyanide and isocyanide molecules is greater than 8500 per centimeter (greater than 12,000 K). Thus, cyanides are the more stable isomers and would likely be formed more preferentially over their isocyanide counterparts. That we detect CH3NC emission with a single antenna (Gaussian beamsize(omega(sub B))=1723 arcsec(sup 2)) but not with an interferometer (omega(sub b)=192 arcsec(sup 2)), strongly suggests that CH3NC has a widespread spatial distribution toward the Sgr B2(N) region. Other investigators have shown that CH3CN is present both in the LMH hot core of Sgr B2(N) and in the surrounding medium, while we have shown that CH3NC appears to be deficient in the LMH hot core. Thus, largescale, non-thermal processes in the surrounding medium may account for the conversion of CH3CN to CH3NC while the LMH hot core, which is dominated by thermal processes, does not produce a significant amount of CH3NC. Ice analog experiments by other investigators have shown that radiation bombardment of CH3CN can produce CH3NC, thus supporting our observations. We conclude that isomers separated by such large bonding energy differences are distributed in different interstellar environments, making the evaluation of column density ratios between such isomers irrelevant unless it can

  4. Peroxy and cyclic isomers of NO2 and NO2(-)

    NASA Astrophysics Data System (ADS)

    Meredith, Cynthia; Davy, Randall D.; Quelch, Geoffrey E.; Schaefer, Henry F., III

    1991-01-01

    Results are reported from ab initio theoretical calculations on possible isomers of NO2 and NO2(-), both of interest for studies of atmospheric chemistry and synthetic fuels. The techniques applied are discussed, and the results are presented in extensive tables. Minima corresponding to the C2v open chain, the Cs peroxy, and the C2v ring forms of both NO2 and NO2(-) are located. The electron affinity of NOO(-) is estimated as 2.11 eV on the basis of the present calculations and experimental results on ONO(-) obtained by Herbst et al. (1974).

  5. Electrons From A 0.3s Isomer In 254No

    SciTech Connect

    Mukherjee, G.; Khoo, T.L.; Blinstrup, R.; Seweryniak, D.; Ahmad, I.; Carpenter, M.P.; Davids, C.N.; Greene, J.P.; Hammond, N.J.; Janssens, R.V.F.; Kondev, F.G.; Lauritsen, T.; Lister, C.J.; Moore, E.F.; Sinha, S.; Butler, P.A.; Herzberg, R.D.; Ikin, P.J.C.; Jones, G.D.; Chowdhury, P.

    2005-04-05

    We have detected the electrons accompanying the decay of a long-lived isomer in 254No, which was produced with the 208Pb(48Ca,2n) reaction. Time and spatial correlations of A = 254 evaporation residues, isomeric electrons and ground-state {alpha}-particles confirmed the existence of the isomer. The measured electron sum-energy spectrum favors a K{pi} = 7- assignment for the isomer.

  6. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins.

    PubMed

    Beesoon, Sanjay; Martin, Jonathan W

    2015-05-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.

  7. The prenucleosome, a stable conformational isomer of the nucleosome

    PubMed Central

    Fei, Jia; Torigoe, Sharon E.; Brown, Christopher R.; Khuong, Mai T.; Kassavetis, George A.; Boeger, Hinrich; Kadonaga, James T.

    2015-01-01

    Chromatin comprises nucleosomes as well as nonnucleosomal histone–DNA particles. Prenucleosomes are rapidly formed histone–DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone–DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone–DNA species in the cell. PMID:26680301

  8. Chemical Simulations of Prebiotic Molecules: Interstellar Ethanimine Isomers

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Corby, Joanna F.; Durr, Allison; Hassel, George

    2016-06-01

    The E- and Z-isomers of ethanimine (CH3CHNH) were recently detected toward the star-forming region Sagittarius (Sgr) B2(N) using the Green Bank Telescope PRIMOS cm-wave spectral data, and imaged by the Australia Telescope Compact Array. Ethanimine is not reported in the hot cores of Sgr B2, but only in gas that absorbs at +64 and +82 km s-1 in the foreground of continuum emission generated by H ii regions. The ethanimine isomers can serve as precursors of the amino acid alanine and may play important roles in forming biological molecules in the interstellar medium. Here we present a study of the chemistry of ethanimine using a gas-grain simulation based on rate equations, with both isothermal and warm-up conditions. In addition, the density, kinetic temperature, and cosmic ray ionization rate have been varied. For a variety of physical conditions in the warm-up models for Sgr B2(N) and environs, the simulations show reasonable agreement with observationally obtained abundances. Isothermal models of translucent clouds along the same line of sight yield much lower abundances, so that ethanimine would be much more difficult to detect in these sources despite the fact that other complex molecules have been detected there.

  9. The prenucleosome, a stable conformational isomer of the nucleosome.

    PubMed

    Fei, Jia; Torigoe, Sharon E; Brown, Christopher R; Khuong, Mai T; Kassavetis, George A; Boeger, Hinrich; Kadonaga, James T

    2015-12-15

    Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.

  10. Chemical Simulations of Prebiotic Molecules: Interstellar Ethanimine Isomers

    NASA Astrophysics Data System (ADS)

    Quan, Donghui; Herbst, Eric; Corby, Joanna F.; Durr, Allison; Hassel, George

    2016-06-01

    The E- and Z-isomers of ethanimine (CH3CHNH) were recently detected toward the star-forming region Sagittarius (Sgr) B2(N) using the Green Bank Telescope PRIMOS cm-wave spectral data, and imaged by the Australia Telescope Compact Array. Ethanimine is not reported in the hot cores of Sgr B2, but only in gas that absorbs at +64 and +82 km s‑1 in the foreground of continuum emission generated by H ii regions. The ethanimine isomers can serve as precursors of the amino acid alanine and may play important roles in forming biological molecules in the interstellar medium. Here we present a study of the chemistry of ethanimine using a gas-grain simulation based on rate equations, with both isothermal and warm-up conditions. In addition, the density, kinetic temperature, and cosmic ray ionization rate have been varied. For a variety of physical conditions in the warm-up models for Sgr B2(N) and environs, the simulations show reasonable agreement with observationally obtained abundances. Isothermal models of translucent clouds along the same line of sight yield much lower abundances, so that ethanimine would be much more difficult to detect in these sources despite the fact that other complex molecules have been detected there.

  11. Gamma-ray spectroscopy of the ^238U shape isomer.

    NASA Astrophysics Data System (ADS)

    Hauschild, K.; Bauer, R. W.; Becker, J. A.; Bernstein, L. A.; Britt, H. C.; Younes, W.; Fotiades, N.

    1997-04-01

    The γ--rays de--exciting the fission isomers ^236U and ^238U are very different despite similar excitation energies, lifetimes and low--lying yrast structures. The predominant γ--ray decay branch for ^236U^m is a 1.783 MeV E1 transition (J. Schirmer, et al., Phys. Rev. Lett. 63), 2196 (1989); and Refs. therein., while ^238U^m is depopulated by a 2.513 MeV E2 γ-ray (J. Kantele, et al., Phys. Rev. C 29), 1693 (1984); and Refs. therein.. Approximately 65% of the γ--branch de-exciting ^238U^m remains to be identified. To determine the multipolarity of the remaining γ-branch out of ^238U^m we used the Gammasphere array at LBNL and the ^238U(d,pn) reaction at Ed = 20 MeV. A search for excited states in the 2^nd well has also been conducted. Preliminary results will be presented, and the γ--decay of the shape isomers discussed in context with the recent A ~190 SD decay--out results (T. L. Khoo, et al., Phys. Rev. Lett. 76), 1583 (1996); A. Lopez-Martens, et al., Phys. Lett. B380, 18 (1996); K. Hauschild, et al., submitted to Phys. Rev. C (1996)..

  12. Calculations of long-lived isomer production in neutron reactions

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1991-01-01

    We present theoretical calculations for the production of the long-lived isomers: {sup 121m}Sn (11/2-, 55 yr), {sup 166m}Ho(7-, 1200 yr), {sup 184m}Re(8+, 165 d), {sup 186m}Re(8+, 2{times}10{sup 5} yr), {sup 178m}Hf(16+, 31 yr), {sup 179m}Hf(25/2-, 25 d), {sup 192m}Ir(9+, 241 yr), all which pose potential radiation activation problems in nuclear fusion reactors if produced in 14-MeV neutron-induced reactions. We consider mainly (n,2n) production modes, but also (n,n{sup {prime}}) and (n,{gamma}) where necessary, and compare our results both with experimental data (where available) and systematics. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. 16 refs., 9 figs., 6 tabs.

  13. The Oak Ridge Isobar and Isomer Separator and Spectrometer (ORISS)

    NASA Astrophysics Data System (ADS)

    Piechaczek, Andreas; Batchelder, J. C.; Carter, H. K.; Reed, C. A.; Yair, O.; Shchepunov, V.; Zganjar, E. F.; Blalock, A.; Berridge, S.; Todd, R.; Armstrong, G.; Omoumi, K.; Fleury, A. R.; Hu, Y.

    2011-04-01

    ORISS is an electrostatic high-resolution isobar and isomer spectrometer and separator to provide pure beams for decay spectroscopy of exotic nuclei. It consists of an RFQ, low emittance, ion cooler and buncher, a multi-pass time-of-flight spectrometer, and a time-of-flight detector to register time-of-flight spectra, or a Bradbury Nielsen (BN) gate to physically separate isobars and isomers of interest. Presently, ORISS uses an off-line ion source. Ion bunches as short as 8 ns FWHM have been produced in the buncher, and a BN gate with transition times open/closed of 15 ns was built. These results of individual component tests together with ion optical calculations predict a mass resolving power of 400,000 and transmission of 50% for the completed system. In the future, radioactive ions from the Holifield Radioactive Ion Beam Facility at ORNL will be injected. Results of first test measurements of the complete off-line system will be presented.

  14. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  15. Rich catalytic injection

    DOEpatents

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  16. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry

    NASA Astrophysics Data System (ADS)

    Cool, Terrill A.; Nakajima, Koichi; Mostefaoui, Toufik A.; Qi, Fei; McIlroy, Andrew; Westmoreland, Phillip R.; Law, Matthew E.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2003-10-01

    We report the first use of synchrotron radiation, continuously tunable from 8 to 15 eV, for flame-sampling photoionization mass spectrometry (PIMS). Synchrotron radiation offers important advantages over the use of pulsed vacuum ultraviolet lasers for PIMS; these include superior signal-to-noise, soft ionization, and access to photon energies outside the limited tuning ranges of current VUV laser sources. Near-threshold photoionization efficiency measurements were used to determine the absolute concentrations of the allene and propyne isomers of C3H4 in low-pressure laminar ethylene-oxygen and benzene-oxygen flames. Similar measurements of the isomeric composition of C2H4O species in a fuel-rich ethylene-oxygen flame revealed the presence of substantial concentrations of ethenol (vinyl alcohol) and acetaldehyde. Ethenol has not been previously detected in hydrocarbon flames. Absolute photoionization cross sections were measured for ethylene, allene, propyne, and acetaldehyde, using propene as a calibration standard. PIE curves are presented for several additional reaction intermediates prominent in hydrocarbon flames.

  17. Research: Rags to Rags? Riches to Riches?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2004-01-01

    Everyone has read about what might be called the "gold gap"--how the rich in this country are getting richer and controlling an ever-larger share of the nation's wealth. The Century Foundation has started publishing "Reality Check", a series of guides to campaign issues that sometimes finds gaps in these types of cherished delusions. The guides…

  18. Colorimetric and fluorometric discrimination of geometrical isomers (maleic acid vs fumaric acid) with real-time detection of maleic acid in solution and food additives.

    PubMed

    Samanta, Soham; Kar, Chirantan; Das, Gopal

    2015-09-01

    Heterobis imine Schiff base probe L is able to discriminate geometrical isomers (maleic acid vs fumaric acid) through sharp colorimetric as well as fluorogenic responses even conspicuous with the naked eye. Colorimetric as well as fluorogenic sensing of maleic acid among various carboxylic acids was also demonstrated in ethanol-buffer medium. Sensing behavior of L was corroborated by (1)H NMR spectra, mass spectrometry, and theoretical calculations. Subsequently sensing behavior of L was used to probe maleic acid in starch rich food samples.

  19. Colorimetric and fluorometric discrimination of geometrical isomers (maleic acid vs fumaric acid) with real-time detection of maleic acid in solution and food additives.

    PubMed

    Samanta, Soham; Kar, Chirantan; Das, Gopal

    2015-09-01

    Heterobis imine Schiff base probe L is able to discriminate geometrical isomers (maleic acid vs fumaric acid) through sharp colorimetric as well as fluorogenic responses even conspicuous with the naked eye. Colorimetric as well as fluorogenic sensing of maleic acid among various carboxylic acids was also demonstrated in ethanol-buffer medium. Sensing behavior of L was corroborated by (1)H NMR spectra, mass spectrometry, and theoretical calculations. Subsequently sensing behavior of L was used to probe maleic acid in starch rich food samples. PMID:26246182

  20. Fuel properties of heptadecene isomers prepared via tandem isomerization-decarboxylation of oleic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heptadecene isomers were prepared via tandem isomerization-decarboxylation of oleic acid using catalytic triruthenium dodecacarbonyl [Ru3(CO)12]. Chromatographic and spectroscopic characterization of the isolated heptadecene mixture indicated that it consisted of 96% internal trans isomers and 4% ar...

  1. Theoretical Prediction of the Structures and Energies of Olympicene and its Isomers

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew J. S.; Mazziotti, David A.

    2013-10-01

    Pentacene, a linear five-ringed polyaromatic hydrocarbon, has recently been used as an organic semiconductor in field-effect transistors. The recently synthesized olympicene molecule, so named because of its resemblance to the olympic rings, is a more compact five-ringed structure. This paper offers the first theoretical study of the kinetic stability of olympicene and its isomers. We use the parametric two-electron reduced density matrix (2-RDM) method, which takes the 2-RDM as the basic variable in lieu of the traditional wave function in calculations [ Mazziotti, D. A. Phys. Rev. Lett. 2008, 101, 253002 ]. Our calculations demonstrate that olympicene-s isomers may be separated into aromatic and diradical isomers, the latter of which require accurate treatment of strong electron correlation to detect multireference character. Albeit formally a single-reference method, the parametric 2-RDM captures the multireference correlation of the diradical isomers; relative to olympicene, the 2-RDM predicts five diradical isomers that are 16-22 kcal/mol lower in energy than those from coupled cluster with single and double excitations-a significant change that causes these isomers to be stable to dissociation by 2-20 kcal/mol. We characterize the transition states between olympicene-s isomers, observe differences in aromaticity among the different isomers, and compare the electronic properties of olympicene to those of pentacene. The olympicene molecule has the potential to complement pentacene as an organic semiconductor.

  2. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 180.436, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Cyfluthrin and the isomer beta... FOOD Specific Tolerances § 180.436 Cyfluthrin and the isomer beta-cyfluthrin; tolerances for...

  3. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 180.436, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Cyfluthrin and the isomer beta... FOOD Specific Tolerances § 180.436 Cyfluthrin and the isomer beta-cyfluthrin; tolerances for...

  4. 40 CFR 180.418 - Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues. 180.418 Section 180.418 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.418 Cypermethrin and an isomer zeta-cypermethrin; tolerances...

  5. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 180.436, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Cyfluthrin and the isomer beta... FOOD Specific Tolerances § 180.436 Cyfluthrin and the isomer beta-cyfluthrin; tolerances for...

  6. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 180.436, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Cyfluthrin and the isomer beta... FOOD Specific Tolerances § 180.436 Cyfluthrin and the isomer beta-cyfluthrin; tolerances for...

  7. 40 CFR 180.418 - Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues. 180.418 Section 180.418 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.418 Cypermethrin and an isomer zeta-cypermethrin; tolerances...

  8. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 180.436, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Cyfluthrin and the isomer beta... FOOD Specific Tolerances § 180.436 Cyfluthrin and the isomer beta-cyfluthrin; tolerances for...

  9. A Highly Sensitive Diketopyrrolopyrrole-Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers.

    PubMed

    Wang, Bin; Huynh, Tan-Phat; Wu, Weiwei; Hayek, Naseem; Do, Thu Trang; Cancilla, John C; Torrecilla, Jose S; Nahid, Masrur Morshed; Colwell, John M; Gazit, Oz M; Puniredd, Sreenivasa Reddy; McNeill, Christopher R; Sonar, Prashant; Haick, Hossam

    2016-06-01

    An ambipolar poly(diketopyrrolopyrrole-terthiophene)-based field-effect transistor (FET) sensitively detects xylene isomers at low ppm levels with multiple sensing features. Combined with pattern-recognition algorithms, a sole ambipolar FET sensor, rather than arrays of sensors, can discriminate highly similar xylene structural isomers from one another. PMID:26996398

  10. Comparison of some specific polychlorinated biphenyl isomers in human and monkey milk

    SciTech Connect

    Mes, J.; Marchand, L.

    1987-11-01

    The presence and levels of polychlorinated biphenyls (PCBs) in monkey milk have been reported earlier as part of studies which investigated the overall toxicity of PCBs in commercial Aroclors. Some of this information has served as a basis for an estimation of the potential health hazard of PCB contaminated breast milk to human infants. To further support such extrapolation from one primate situation to another, it would be desirable to know not only the levels of PCBs in the milk of these primates, but also the isomeric distribution in order to better evaluate the contribution of each isomer to the overall toxicity. A large concentration in breast milk of an isomer of relatively low toxicity may have the same effect on an infant as a smaller concentration of a highly toxic isomer. This paper compares the relative amounts of 29 selected PCB isomers in human milk and monkey milk samples. The selection of isomers was based on the most prevalent PCB isomers in human milk and represented approximately 80% of all reported isomers. In addition, Aroclor 1254, whose toxicity in monkeys has been investigated recently by several investigators, was analyzed for the same 29 selected PCB isomers.

  11. Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes.

    PubMed

    Zhang, Bo; He, Pin-Jing; Ye, Ning-Fang; Shao, Li-Ming

    2008-03-01

    In order to improve the purity of lactic acid isomers, the effects of pH, temperature, fermentation time and their interactions on l(+) or d(-)-lactic acid production were evaluated during lactic acid fermentation of the non-sterile kitchen wastes. The results showed that l(+)-lactic acid was the main isomeric form. The isomer purity was much higher at acidic or alkalic pH (non-controlled pH, pH 5 and pH 8) than neutral pH (pH 6 and pH 7). Increasing the fermentation temperature from 35 degrees C to 45 degrees C at pH 7 enhanced the isomer purity from 60:40 to 83:17. The optimal fermentation time for the purity of lactic acid isomers was found to depend on the corresponding pH and temperature. From the response surface analysis, the optimized combination of pH and temperature could obviously increase the l(+)-isomer concentration. It is confirmed that the variation of the isomer purity with pH, temperature and fermentation time change resulted from the substitution of microbial community composition. The lactic acid bacteria and Clostridium sp. dominated the fermentation of non-sterile kitchen wastes, and the emergence and disappearance of lactic acid bacteria which produced l(+)-isomer and Clostridium sp. resulted in the variations of the isomer purity. PMID:17376675

  12. A Highly Sensitive Diketopyrrolopyrrole-Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers.

    PubMed

    Wang, Bin; Huynh, Tan-Phat; Wu, Weiwei; Hayek, Naseem; Do, Thu Trang; Cancilla, John C; Torrecilla, Jose S; Nahid, Masrur Morshed; Colwell, John M; Gazit, Oz M; Puniredd, Sreenivasa Reddy; McNeill, Christopher R; Sonar, Prashant; Haick, Hossam

    2016-06-01

    An ambipolar poly(diketopyrrolopyrrole-terthiophene)-based field-effect transistor (FET) sensitively detects xylene isomers at low ppm levels with multiple sensing features. Combined with pattern-recognition algorithms, a sole ambipolar FET sensor, rather than arrays of sensors, can discriminate highly similar xylene structural isomers from one another.

  13. Kinetics of photoirradiation-induced synthesis of soy oil-conjugated linoleic acid isomers.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2007-02-01

    Photoirradiation of soy oil with UV/visible light has been shown to produce significant amounts of trans,trans conjugated linoleic acid (CLA) isomers through conversion of various synthesized intermediate cis,trans isomers. The objective of this study was to determine the kinetics of CLA isomers synthesis to better understand the production of various isomers. Soy oil was irradiated with UV/visible light for 144 h in the presence of an iodine catalyst and CLA isomers analyzed by gas chromatography (GC). Arrhenius plots were developed for the conversion of soy oil linoleic acid (A) to form cis-, trans/trans-, cis-CLA (B), conversion of cis-, trans/trans-, cis-CLA to form trans,trans-CLA (C) with respect to B, and formation of trans,trans-CLA isomers with respect to C. The kinetics of consumption of linoleic acid (LA) to form cis-, trans/trans-, cis-CLA was found to be of second-order with a rate constant of 9.01 x 10-7 L/mol s. The rate of formation of cis-, trans/trans-, cis-CLA isomers depends on the rate of formation from LA and its rate of consumption to form trans,trans-CLA isomers. The conversion of cis-, trans/trans-, cis-CLA isomers to trans,trans-CLA isomers was found to be of first-order with a rate constant of 2.75 x 10-6 s-1. However, the formation of thermodynamically stable trans,trans-CLA isomers (C) with respect to C was found to be a zero-order reaction with a rate constant of 10.66 x 10-7 mol/L s. The consumption of LA was found to be the rate-determining step in the CLA isomers formation reaction mechanism. The findings provide a better understanding of the mechanism of CLA isomers synthesis by photoirradiation and the factors controlling the ratio of various isomers.

  14. Submolecular imaging of chloronitrobenzene isomers on Cu(111)

    NASA Astrophysics Data System (ADS)

    Niemi, Eeva; Simic-Milosevic, Violeta; Morgenstern, Karina; Korventausta, Antti; Paavilainen, Sami; Nieminen, Jouko

    2006-11-01

    We compare computer simulations to experimental scanning tunneling microscopy (STM) images of chloronitrobenzene molecules on a Cu(111) surface. The experiments show that adsorption induced isomerization of the molecules takes place on the surface. Furthermore, not only the submolecular features can be seen in the STM images, but different isomers can also be recognized. The Todorov-Pendry approach to tunneling produces simulated STM images which are in good accordance with the experiments. Alongside with STM simulations in a tight-binding basis, ab initio calculations are performed in order to analyze the symmetry of relevant molecular orbitals and to consider the nature of tunneling channels. Our calculations show that while the orbitals delocalized to the phenyl ring create a relatively transparent tunneling channel, they also almost isolate the orbitals of the substitute groups at energies which are relevant in STM experiments. These features of the electronic structure are the key ingredients of the accurate submolecular observations.

  15. Lutein and Zeaxanthin Isomers in Eye Health and Disease.

    PubMed

    Mares, Julie

    2016-07-17

    Current evidence suggests lutein and its isomers play important roles in ocular development in utero and throughout the life span, in vision performance in young and later adulthood, and in lowering risk for the development of common age-related eye diseases in older age. These xanthophyll (oxygen-containing) carotenoids are found in a wide variety of vegetables and fruits, and they are present in especially high concentrations in leafy green vegetables. Additionally, egg yolks and human milk appear to be bioavailable sources. The prevalence of lutein, zeaxanthin, and meso-zeaxanthin in supplements is increasing. Setting optimal and safe ranges of intake requires additional research, particularly in pregnant and lactating women. Accumulating evidence about variable interindividual response to dietary intake of these carotenoids, based on genetic or metabolic influences, suggests that there may be subgroups that benefit from higher levels of intake and/or alternate strategies to improve lutein and zeaxanthin status. PMID:27431371

  16. Identification of an isomer impurity in piperaquine drug substance.

    PubMed

    Lindegårdh, N; Giorgi, F; Galletti, B; Di Mattia, M; Quaglia, M; Carnevale, D; White, N J; Mazzanti, A; Day, N P J

    2006-12-01

    A significant contaminant of the antimalarial drug piperaquine (1,3-bis-[4-(7-chloroquinolyl-4)-piperazinyl-1]propane) has been identified using liquid chromatography-mass spectrometry (LC-MS) and 2D NMR spectroscopy (1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC). The impurity was identified as the positional isomer 1-[(5-chloroquinolin-4)-piperazinyl]-3-[(7-chloroquinolin-4)-piperazinyl]propane. The impurity is formed because of contamination of batches of 4,7-dichloroquinoline (a precursor in the synthesis of piperaquine) with 4,5-dichloroquinoline. The amount of impurity (peak area impurity/peak area piperaquine using LC-UV at 347 nm) in old batches of piperaquine and in Artekin (the combination of dihydroartemisinin-piperaquine) ranged from 1.5 to 5%. PMID:17046006

  17. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers.

    PubMed

    Generoso, Wesley Cardoso; Schadeweg, Virginia; Oreb, Mislav; Boles, Eckhard

    2015-06-01

    Saccharomyces cerevisiae has decisive advantages in industrial processes due to its tolerance to alcohols and fermentation conditions. Butanol isomers are considered as suitable fuel substitutes and valuable biomass-derived chemical building blocks. Whereas high production was achieved with bacterial systems, metabolic engineering of yeast for butanol production is in the beginning. For isobutanol synthesis, combination of valine biosynthesis and degradation, and complete pathway re-localisation into cytosol or mitochondria gave promising results. However, competing pathways, co-factor imbalances and FeS cluster assembly are still major issues. 1-Butanol production via the Clostridium pathway seems to be limited by cytosolic acetyl-CoA, its central precursor. Endogenous 1-butanol pathways have been discovered via threonine or glycine catabolism. 2-Butanol production was established but was limited by B12-dependence.

  18. Optoelectronic properties of (ZnO)60 isomers.

    PubMed

    Caddeo, Claudia; Malloci, Giuliano; De Angelis, Filippo; Colombo, Luciano; Mattoni, Alessandro

    2012-11-01

    We studied the optoelectronic properties of six possible structures of the (ZnO)(60) cluster using density functional theory (DFT). Vertical ionization energies and electron affinities are calculated through total energy differences, while the optical absorption spectra are obtained by using hybrid time-dependent DFT. The (ZnO)(60) cluster has been proven to be particularly stable and it is of potential interest for future applications in nanoelectronics, but its ground-state configuration has been unknown to date. Since the relative stability inferred from total energy calculations suffers from a strong dependence on the computational scheme adopted, we combined it with optical spectroscopy to identify the most abundant geometrical structure of this cluster. The calculated optical spectra are different for each isomer and they could be thus used in comparison with experimental data to explain the ground state of (ZnO)(60). PMID:23000945

  19. Reverse Stability of Oxyluciferin Isomers in Aqueous Solutions.

    PubMed

    Noguchi, Yoshifumi; Hiyama, Miyabi; Shiga, Motoyuki; Sugino, Osamu; Akiyama, Hidefumi

    2016-09-01

    We investigated the stability of oxyluciferin anions (keto, enol, and enolate isomers) in aqueous solution at room temperature by performing a nanosecond time scale first-principles molecular dynamics simulation. In contrast to all previous quantum chemistry calculations, which suggested the keto-type to be the most stable, we show that the enol-type is slightly more stable than the keto-type, in agreement with some recent experimental studies. The simulation highlights the remarkable hydrophobicity of the keto-type by the cavity formed at the oxyluciferin-water interface as well as a reduction in hydrophobicity with the number of hydrating water molecules. It is therefore predicted that the isomeric form in a hydrated cluster is size-dependent. PMID:27479583

  20. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L. ).

    PubMed

    Nakatani, N; Kayano, S; Kikuzaki, H; Sumino, K; Katagiri, K; Mitani, T

    2000-11-01

    Neochlorogenic acid (3-CQA) and cryptochlorogenic acid (4-CQA), isolated from prune (Prunus domestica L.), were identified by NMR and MS analyses. In addition, the quantity of chlorogenic acid isomers in prune were measured by HPLC. These isomers, 3-CQA, 4-CQA, and chlorogenic acid (5-CQA), were contained in the ratio 78.7:18. 4:3.9, respectively. 4-CQA was identified and quantified in prune for the first time, and relatively high amounts of this isomer were characteristic. Antioxidative activities of the chlorogenic acid isomers, such as scavenging activity on superoxide anion radicals and inhibitory effect against oxidation of methyl linoleate, were also evaluated. Each isomer showed antioxidative activities which were almost the same.

  1. An inconvenient influence of iridium(III) isomer on OLED efficiency.

    PubMed

    Baranoff, Etienne; Bolink, Henk J; De Angelis, Filippo; Fantacci, Simona; Di Censo, Davide; Djellab, Karim; Grätzel, Michael; Nazeeruddin, Md Khaja

    2010-10-14

    The recently reported heteroleptic cyclometallated iridium(III) complex [Ir(2-phenylpyridine)(2)(2-carboxy-4-dimethylaminopyridine)] N984 and its isomer N984b have been studied more in detail. While photo- and electrochemical properties are very similar, DFT/TDDFT calculations show that the two isomers have different HOMO orbital characteristics. As a consequence, solution processed OLEDs made using a mixture of N984 and isomer N984b similar to vacuum processed devices show that the isomer has a dramatic detrimental effect on the performances of the device. In addition, commonly used thermogravimetric analysis is not suitable for showing the isomerization process. The isomer could impact performances of vacuum processed OLEDs using heteroleptic cyclometallated iridium(III) complexes as dopant.

  2. Separation and conversion dynamics of nuclear-spin isomers of gaseous methanol

    PubMed Central

    Sun, Zhen-Dong; Ge, Meihua; Zheng, Yujun

    2015-01-01

    All symmetrical molecules with non-zero nuclear spin exist in nature as nuclear-spin isomers (NSIs). However, owing to the lack of experimental information, knowledge is rare about interconversions of NSIs of gaseous molecules with torsional symmetry. Here we report our separation and conversion observations on NSI-torsion-specific transition systems of gaseous methanol from a light-induced drift experiment involving partially spatial separation of the ortho and para isomers. We find that vibrationally excited molecules of the methanol spin isomer have a smaller collision cross-section than their ground-state counterparts. Interconversion of the enriched ortho isomer with the para isomer, which is generally considered improbable, has been quantitatively studied by sensitive detections of the spectral intensities. Rather counterintuitively, this reveals that the interconversion is inhibited with increasing pressure. Our results suggest that the spin conversion mechanism in methanol is via a quantum relaxation process with the quantum Zeno effect induced by molecular collisions. PMID:25880882

  3. Thermodynamics and kinetics of guest-induced switching between "basket handle" porphyrin isomers.

    PubMed

    Deutman, Alexander B C; Woltinge, Tim; Smits, Jan M M; De Gelder, René; Elemans, Johannes A A W; Nolte, Roeland J M; Rowan, Alan E

    2014-01-01

    The synthesis and switching properties of two "basket handle" porphyrin isomers is described. The cis-oriented meso-phenyl groups of these porphyrins are linked at their ortho-positons via benzocrown-ether-based spacers, which as a result of slow atropisomerization are located either on the same side of the porphyrin plane (cis), or on opposite sides (trans). In solution, the cis-linked isomer slowly isomerizes in the direction of the thermodynamically more stable trans-isomer. In the presence of viologen (N,N'-dialkyl-4,4'-bipyridinium) derivatives, which have different affinities for the two isomers, the isomerization equilibrium could be significantly influenced. In addition, the presence of these guests was found to enhance the rate of the switching process, which was suggested to be caused by favorable interactions between the positively charged guest and the crown ethers of the receptor, stabilizing the transition state energies of the isomerization reaction between the two isomers. PMID:24762966

  4. Process for recovering 4,4 prime dihydroxydiphenyl sulfone from an isomer mixture

    SciTech Connect

    Zemlanicky, F.; Cooker, B.

    1991-03-19

    This patent describes a process for the recovery of 4,4{prime}-bisphenol sulfone from an isomer mixture comprising 4,4{prime}-bisphenol sulfone and 2,4{prime}-bisphenol sulfone. It comprises dissolving the isomer mixture in a basic aqueous solution comprising about one mole of base per mole of the mixture of 4,4{prime}-bisphenol sulfone and 2,4{prime}-bisphenol sulfone to form a basic isomer solution and adding acid to the isomer solution in an amount of from about 0.85 to 0.95 mole per mole of the 4,4{prime}-bisphenol sulfone wherein the acid is added in an amount sufficient to cause selective precipitation of crystals of 4,4{prime}-bisphenol sulfone yet in an amount less than sufficient to neutralize the isomer solution and removing the crystals of 4,4{prime}-bisphenol from the aqueous solution.

  5. Thermodynamics and kinetics of guest-induced switching between "basket handle" porphyrin isomers.

    PubMed

    Deutman, Alexander B C; Woltinge, Tim; Smits, Jan M M; De Gelder, René; Elemans, Johannes A A W; Nolte, Roeland J M; Rowan, Alan E

    2014-01-01

    The synthesis and switching properties of two "basket handle" porphyrin isomers is described. The cis-oriented meso-phenyl groups of these porphyrins are linked at their ortho-positons via benzocrown-ether-based spacers, which as a result of slow atropisomerization are located either on the same side of the porphyrin plane (cis), or on opposite sides (trans). In solution, the cis-linked isomer slowly isomerizes in the direction of the thermodynamically more stable trans-isomer. In the presence of viologen (N,N'-dialkyl-4,4'-bipyridinium) derivatives, which have different affinities for the two isomers, the isomerization equilibrium could be significantly influenced. In addition, the presence of these guests was found to enhance the rate of the switching process, which was suggested to be caused by favorable interactions between the positively charged guest and the crown ethers of the receptor, stabilizing the transition state energies of the isomerization reaction between the two isomers.

  6. Table of superdeformed nuclear bands and fission isomers

    SciTech Connect

    Firestone, R.B.; Singh, B.

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.

  7. Theoretical investigation of the photophysics of methyl salicylate isomers

    NASA Astrophysics Data System (ADS)

    Massaro, Richard D.; Blaisten-Barojas, Estela

    2011-10-01

    The photophysics of methyl salicylate (MS) isomers has been studied using time-dependent density functional theory and large basis sets. First electronic singlet and triplet excited states energies, structure, and vibrational analysis were calculated for the ketoB, enol, and ketoA isomers. It is demonstrated that the photochemical pathway involving excited state intramolecular proton transfer (ESIPT) from the ketoB to the enol tautomer agrees well with the dual fluorescence in near-UV (from ketoB) and blue (from enol) wavelengths obtained from experiments. Our calculation confirms the existence of a double minimum in the excited state pathway along the O-H-O coordinate corresponding to two preferred energy regions: (1) the hydrogen belongs to the OH moiety and the structure of methyl salicylate is ketoB; (2) the hydrogen flips to the closest carboxyl entailing electronic rearrangement and tautomerization to the enol structure. This double well in the excited state is highly asymmetric. The Franck-Condon vibrational overlap is calculated and accounts for the broadening of the two bands. It is suggested that forward and backward ESIPT through the barrier separating the two minima is temperature-dependent and affects the intensity of the fluorescence as seen in experiments. When the enol fluoresces and returns to its ground state, a barrier-less back proton transfer repopulates the ground state of methyl salicylate ketoB. It is also demonstrated that the rotamer ketoA is not stable in an excited state close to the desired emission wavelength. This observation eliminates the conjecture that the near-UV emission of the dual fluorescence originates from the ketoA rotamer. New experimental results for pure MS in the liquid state are reported and theoretical results compared to them.

  8. Improved HRGC separation of cis, trans CLA isomers as Diels-Alder adducts of alkyl esters.

    PubMed

    Blasi, F; Giua, L; Lombardi, G; Codini, M; Simonetti, M S; Damiani, P; Cossignani, L

    2011-05-01

    This paper reports the separation of four isomers of conjugated linoleic acid (CLA), c,t/t,c-8,10; c,t/t,c-9,11; c,t/t,c-10,12; c,t/t,c-11,13, after reaction of esterification with aliphatic alcohols of different chain length and adduct formation with 4-methyl-1,2,4-triazoline-3,5-dione (MTAD). The high resolution gas chromatographic analyses were carried out using a simple 50-m cyanopropyl polysiloxane capillary column both with a flame ionization detector and a mass spectrometer. The resolution between the two pair of isomers: c,t/t,c-9,11 and c,t/t,c-10,12 and between c,t/t,c-10,12 and c,t/t,c-11,13 isomers were good for all the investigated alkyl esters and increased with the chain length of alcohol esterified to carboxylic moiety of CLA isomers. The most interesting result was relative to the c,t/t,c-8,10 and c,t/t,c-9,11 isomers, critical pair of isomers also when analyzed with a 120-m cyanopropyl polysiloxane capillary column; their resolution also increased from methyl to hexyl esters of CLA isomers and reached an acceptable value (0.8) in the case of hexyl esters. The best resolutions of the four considered CLA isomers were obtained with the hexyl esters of MTAD adducts of the isomers, without excessive analysis time. This method was useful and simple to evaluate the profile of the four main c,t isomers in commercial CLA samples.

  9. The ligand effect on the isomer stability of Au24(SR)20 clusters.

    PubMed

    Tang, Qing; Ouyang, Runhai; Tian, Ziqi; Jiang, De-en

    2015-02-14

    A key challenge in nanocluster research in particular and nanoscience in general is structure prediction for known compositions. Usually a simple ligand such as a methyl group is used to replace complex ligands in structure prediction of ligand-protected nanoclusters. However, how ligands dictate the energy landscape of such a cluster remains unclear. Here we elucidate the role of the ligand effect on the isomer stability of Au24(SR)20 nanoclusters by computing the relative energy of two isomers (one from the experiment, denoted as the "J" isomer; the other is the best theoretical model, denoted as the "P" isomer) of Au24(SR)20 with dispersion-corrected density functional theory. We find that when R = -CH3, the two isomers are equally stable (within 0.13 eV), but for R = -CH2CH2Ph the P isomer is more stable by 1.6 eV and for R = -CH2Ph-(t)Bu the J isomer is more stable by 1.0 eV. Partition of the total energy into DFT and vdW contributions indicates that the higher stability of the P isomer in the case of R = -CH2CH2Ph stems from the stronger vdW interactions among -CH2CH2Ph groups, while the higher stability of the J isomer in the case of R = -CH2Ph-(t)Bu is due to its better capacity to respond to the steric effect of the larger -CH2Ph-(t)Bu groups. This finding confirms that the ligand plays a crucial role in dictating the isomer stability.

  10. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  11. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  12. Preclinical Study of Locoregional Therapy of Hepatocellular Carcinoma by Bioelectric Ablation with Microsecond Pulsed Electric Fields (μsPEFs)

    PubMed Central

    Chen, Xinhua; Ren, Zhigang; Li, Chengxiang; Guo, Fei; Zhou, Dianbo; Jiang, Jianwen; Chen, Xinmei; Sun, Jihong; Yao, Chenguo; Zheng, Shusen

    2015-01-01

    Unresectable hepatocellular carcinoma (HCC) needs locoregional ablation as a curative or downstage therapy. Microsecond Pulsed Electric Fields (μsPEFs) is an option. A xenograft tumor model was set up on 48 nude mice by injecting human hepatocellular carcinoma Hep3B cells subcutaneously. The tumor-bearing mice were randomly divided into 3 groups: μsPEFs treated, sham and control group. μsPEFs group was treated by μsPEFs twice in 5 days. Tumor volume, survival, pathology, mitochondria function and cytokines were followed up. μsPEFs was also conducted on 3 swine to determine impact on organ functions. The tumors treated by μsPEFs were completely eradicated while tumors in control and sham groups grew up to 2 cm3 in 3 weeks. The μsPEFs-treated group indicated mitochondrial damage and tumor necrosis as shown in JC-1 test, flow cytometry, H&E staining and TEM. μsPEFs activates CD56+ and CD68+ cells and inhibits tumor proliferating cell nuclear antigen. μsPEFs inhibits HCC growth in the nude mice by causing mitochondria damage, tumor necrosis and non-specific inflammation. μsPEFs treats porcine livers without damaging vital organs. μsPEFs is a feasible minimally invasive locoregional ablation option. PMID:25928327

  13. Aryl-Decorated Ru(II) Polypyridyl-type Photosensitizer Approaching NIR Emission with Microsecond Excited State Lifetimes.

    PubMed

    Schlotthauer, Tina; Suchland, Benedikt; Görls, Helmar; Parada, Giovanny A; Hammarström, Leif; Schubert, Ulrich S; Jäger, Michael

    2016-06-01

    Bis-tridentate Ru(II) complexes based on the dqp scaffold (dqp is 2,6-di(quinolin-8-yl)pyridine) with multiple aryl substituents were explored to tailor the absorption and emission properties. A synthetic methodology was developed for the facile synthesis and purification of homo- and heteroleptic bis-tridentate Ru complexes. The effect of the aryl substituents in the para positions of the pyridine and quinoline subunits was detailed by X-ray crystallography, steady state and time-resolved spectroscopy, electrochemistry, and computational methods. The attachment of the aryl groups results in enhanced molar extinction coefficients with the largest effect in the pyridine position, whereas the quinoline substituent leads to red-shifted emission tailing into the NIR region (up to 800 nm). Notably, the excited state lifetimes remain in the microsecond time scale even in the presence of O2, whereas the emission quantum yields are slightly increased with respect to the parental complex [Ru(dqp)2](2+). The peripheral functional groups (Br, Me, OMe) have only a minor impact on the optical properties and are attractive to utilize such complexes as functional building blocks. PMID:27228222

  14. Preclinical Study of Locoregional Therapy of Hepatocellular Carcinoma by Bioelectric Ablation with Microsecond Pulsed Electric Fields (μsPEFs).

    PubMed

    Chen, Xinhua; Ren, Zhigang; Li, Chengxiang; Guo, Fei; Zhou, Dianbo; Jiang, Jianwen; Chen, Xinmei; Sun, Jihong; Yao, Chenguo; Zheng, Shusen

    2015-01-01

    Unresectable hepatocellular carcinoma (HCC) needs locoregional ablation as a curative or downstage therapy. Microsecond Pulsed Electric Fields (μsPEFs) is an option. A xenograft tumor model was set up on 48 nude mice by injecting human hepatocellular carcinoma Hep3B cells subcutaneously. The tumor-bearing mice were randomly divided into 3 groups: μsPEFs treated, sham and control group. μsPEFs group was treated by μsPEFs twice in 5 days. Tumor volume, survival, pathology, mitochondria function and cytokines were followed up. μsPEFs was also conducted on 3 swine to determine impact on organ functions. The tumors treated by μsPEFs were completely eradicated while tumors in control and sham groups grew up to 2 cm(3) in 3 weeks. The μsPEFs-treated group indicated mitochondrial damage and tumor necrosis as shown in JC-1 test, flow cytometry, H&E staining and TEM. μsPEFs activates CD56+ and CD68+ cells and inhibits tumor proliferating cell nuclear antigen. μsPEFs inhibits HCC growth in the nude mice by causing mitochondria damage, tumor necrosis and non-specific inflammation. μsPEFs treats porcine livers without damaging vital organs. μsPEFs is a feasible minimally invasive locoregional ablation option. PMID:25928327

  15. Examination of isomer specific bioaccumulation parameters and potential in vivo hepatic metabolites of syn- and anti-Dechlorane Plus isomers in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Tomy, Gregg T; Thomas, Caden R; Zidane, Thane M; Murison, Kathryn E; Pleskach, Kerri; Hare, Jonathon; Arsenault, Gilles; Marvin, Chris H; Sverko, Ed

    2008-08-01

    Juvenile rainbow trout (Oncorhynchus mykiss) were exposed in the laboratory to elevated doses of syn- and anti-isomers of Dechlorane Plus (DP) via their diet for 49 days (uptake phase), followed by 112 days of untreated food (depuration phase) to examine bioaccumulation parameters and possible metabolic products. Three groups of 60 fish were used in the study. Two groups were exposed separately to food fortified with known concentrations of syn- (0.79 +/- 0.03 microg/g, lipid weight) and anti-DP (1.17 +/- 0.12 microg/g, lipid weight) while a third control group was fed unfortified food. Neither isomer reached steady-state after 49 days of exposure. Only the syn-isomer accumulated linearly in the fish (whole-body minus liver) during the dosing phase with a calculated uptake rate constant of 0.045 +/- 0.005 (arithmetic mean +/- 1 x standard error) nmoles per day. A similar uptake rate was also observed for this isomer in the liver. The elimination of both isomers from the whole fish (minus liver) obeyed first order depuration kinetics (syn-: r2 = 0.6427, p < 0.001, anti-: r2 = 0.5350, p < 0.005) with calculated half-lives (t1/2) of 53.3 +/- 13.1 (syn-) and 30.4 +/- 5.7 (anti-) days. Elimination of the isomers from the liver was difficult to interpret because of suspected enterohepatic circulation and redistribution of the isomers in the liver during clearance from other tissues. The biomagnification factor (BMF, determined in whole fish minus liver) of the syn-isomer (5.2) was greater than the anti-isomer (1.9) suggesting that the former isomer is more bioavailable. A suite of metabolites were screened for in the liver including dechlorinated, hydroxylated, methoxylated and methyl sulfone degradates. Even with the purposely high dose used in the uptake phase, none of these degradates could be detected in the extracts. This suggests that if metabolites of DP are detected in fish from aquatic food webs their presence is likely not from in vivo biotransformation of the

  16. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Lambda-cyhalothrin and an isomer gamma... FOOD Specific Tolerances § 180.438 Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for... established for the combined residues of the pyrethroid [gamma-cyhalothrin (the isolated active isomer...

  17. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Lambda-cyhalothrin and an isomer gamma... FOOD Specific Tolerances § 180.438 Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for... established for the combined residues of the pyrethroid [gamma-cyhalothrin (the isolated active isomer...

  18. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lambda-cyhalothrin and an isomer gamma... FOOD Specific Tolerances § 180.438 Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for... established for the combined residues of the pyrethroid [gamma-cyhalothrin (the isolated active isomer...

  19. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Lambda-cyhalothrin and an isomer gamma... FOOD Specific Tolerances § 180.438 Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for... established for the combined residues of the pyrethroid [gamma-cyhalothrin (the isolated active isomer...

  20. 40 CFR 180.157 - Methyl 3-[(dimethoxyphos-phinyl) oxy]butenoate, alpha and beta isomers; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... isomers; tolerances for residues. 180.157 Section 180.157 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.157 Methyl 3- butenoate, alpha and beta isomers; tolerances for residues... and beta isomers, in or on the following raw agricultural commodities: Commodity Parts per...

  1. 40 CFR 180.438 - Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Lambda-cyhalothrin and an isomer gamma... FOOD Specific Tolerances § 180.438 Lambda-cyhalothrin and an isomer gamma-cyhalothrin; tolerances for... established for the combined residues of the pyrethroid [gamma-cyhalothrin (the isolated active isomer...

  2. 40 CFR 180.157 - Methyl 3-[(dimethoxyphos-phinyl) oxy]butenoate, alpha and beta isomers; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... isomers; tolerances for residues. 180.157 Section 180.157 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.157 Methyl 3- butenoate, alpha and beta isomers; tolerances for residues... and beta isomers, in or on the following raw agricultural commodities: Commodity Parts per...

  3. The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with millisecond to microsecond motions.

    PubMed Central

    Wyss, D. F.; Dayie, K. T.; Wagner, G.

    1997-01-01

    We have used 15N NMR relaxation experiments to probe, for the glycosylated human CD2 adhesion domain, the overall molecular motion, as well as very fast nanosecond-picosecond (ns-ps) and slow millisecond-microsecond (ms-microsecond) internal motions. Using a novel analysis method that considers all residues, we obtained a correlation time for the overall motion of 9.5 +/- 0.3 ns. Surprisingly, we found a large contiguous patch of residues in the counterreceptor (CD58) binding site of human CD2 exhibiting slow conformational exchange motions (ms-microsecond). On the other hand, almost none of the residues of the CD58 binding side display fast (ns-ps) internal motions of amplitudes larger than what is seen for well-ordered regions of the structure. Residues close to the N-glycosylation site, and the first N-acetylglucosamine of the high mannose glycan are as rigid as the protein core. Residues conserved in the immunoglobulin superfamily V-set domain are generally very rigid. PMID:9070436

  4. Prediction of low-energy isomers of large fullerenes from C132 to C160.

    PubMed

    Xu, Lei; Cai, Wensheng; Shao, Xueguang

    2006-07-27

    To predict energetically favored isomers, we used a topological scheme as a prescreening tool to select candidate isomers for each fullerene from C(106) to C(160). Comparison with the PM3 and tight-binding (TB) potential calculated results and few published data for the low-energy isomers of C(106) to C(130) indicates that the prescreening approach is feasible. For each fullerene from C(132) up to C(160), the selected 1000 candidate isomers were further optimized by PM3 and TB potential. The analysis of the semiempirical PM3 and TB results of C(106) to C(160) provides some qualitative features of the large fullerenes. Furthermore, calculations at the B3LYP/6-31G*//B3LYP/3-21G level of theory were carried out on the top ten PM3 and TB low-energy isomers of C(132) to C(160) to accurately predict the stable isomers, and the HOMO-LUMO gap, the ionization energy, and electron affinity of the lowest-energy isomers were also investigated at the same level.

  5. Search for a 2-quasiparticle high-K isomer in {sup 256}Rf

    SciTech Connect

    Robinson, A. P.; Jenkins, D. G.; Marley, P.; Khoo, T. L.; Seweryniak, D.; Ahmad, I.; Back, B. B.; Carpenter, M. P.; Davids, C. N.; Greene, J.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E.; Peterson, D.; Stefanescu, I.; Zhu, S.; Asai, M.; Chowdhury, P.

    2011-06-15

    The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{mu}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {approx}30%, suggests that it is more likely a 4-qp isomer. Possible reasons for the absence of an electromagnetic signature of a 2-qp isomer decay are discussed. These include the favored possibility that the isomer decays by fission, with a half-life indistinguishably close to that of the ground state. Another possibility, that there is no 2-qp isomer at all, would imply an abrupt termination of axially symmetric deformed shapes at Z=104, which describes nuclei with Z=92-103 very well.

  6. Gas-phase ion isomer analysis reveals the mechanism of peptide sequence scrambling.

    PubMed

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-03-18

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values, which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M → (c)b) pathway is less energetically (or kinetically) favored.

  7. Search for a 2-quasiparticle high-K isomer in {sup 256}Rf.

    SciTech Connect

    Robinson, A. P.; Khoo, T. L.; Seweryniak, D.; Ahmad, I.; Asai, M.; Back, B. B.; Carpenter, M. P.; Davids, C. N.; Greene, J.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E.; Peterson, D.; Zhu, S.

    2011-06-13

    The energies of 2-quasiparticle (2-qp) states in heavy shell-stabilized nuclei provide information on the single-particle states that are responsible for the stability of superheavy nuclei. We have calculated the energies of 2-qp states in {sup 256}Rf, which suggest that a long-lived, low-energy 8{sup -} isomer should exist. A search was conducted for this isomer through a calorimetric conversion electron signal, sandwiched in time between implantation of a {sup 256}Rf nucleus and its fission decay, all within the same pixel of a double-sided Si strip detector. A 17(5)-{micro}s isomer was identified. However, its low population, {approx}5(2)% that of the ground state instead of the expected {approx}30%, suggests that it is more likely a 4-qp isomer. Possible reasons for the absence of an electromagnetic signature of a 2-qp isomer decay are discussed. These include the favored possibility that the isomer decays by fission, with a half-life indistinguishably close to that of the ground state. Another possibility, that there is no 2-qp isomer at all, would imply an abrupt termination of axially symmetric deformed shapes at Z = 104, which describes nuclei with Z = 92-103 very well.

  8. Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in ^{254}Rf.

    PubMed

    David, H M; Chen, J; Seweryniak, D; Kondev, F G; Gates, J M; Gregorich, K E; Ahmad, I; Albers, M; Alcorta, M; Back, B B; Baartman, B; Bertone, P F; Bernstein, L A; Campbell, C M; Carpenter, M P; Chiara, C J; Clark, R M; Cromaz, M; Doherty, D T; Dracoulis, G D; Esker, N E; Fallon, P; Gothe, O R; Greene, J P; Greenlees, P T; Hartley, D J; Hauschild, K; Hoffman, C R; Hota, S S; Janssens, R V F; Khoo, T L; Konki, J; Kwarsick, J T; Lauritsen, T; Macchiavelli, A O; Mudder, P R; Nair, C; Qiu, Y; Rissanen, J; Rogers, A M; Ruotsalainen, P; Savard, G; Stolze, S; Wiens, A; Zhu, S

    2015-09-25

    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the ^{254}Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1) μs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.

  9. Structural-based differences in ecotoxicity of benzoquinoline isomers to the zebra mussel (Dreissena polymorpha)

    SciTech Connect

    Kraak, M.H.S.; Wijnands, P.; Govers, H.A.J.; Admiraal, W.; Voogt, P. de

    1997-10-01

    Effects of four benzoquinoline isomers on the filtration rate of the zebra mussel (Dreissena polymorpha) were analyzed, to study the effect of minor differences in chemical structure on adverse biological effects. Filtration rates were measured after 48 h of exposure to different concentrations of acridine, phenanthridine, benzo[f]quinoline, and benzo[h]quinoline in the water. The 50% effective concentration (EC50) values for filtration rate of the four isomers differed significantly. Effects increased in the order benzo[f], -[h], -[b], and -[c]quinoline, and the difference between the most toxic isomer and the least toxic isomer amounted to a factor of 30. Attempts were made to relate these differences in toxicity to the structure of the isomers. Size- or topology-related molecular descriptors provided insufficient resolution to distinguish between the benzoquinoline isomers, and none of the electronic descriptors separately provided a significant correlation with the observed effects. In an alternative approach, molecular shape, accessibility, and minimum agent-macromolecule distance were used to represent repulsive and attractive forces between the benzoquinoline isomers and biological membranes. This approach could tentatively explain the observed effects and is supported by a high correlation between the EC50 data and the reversed-phase C18-HPLC behavior of the benzoquinolines (k{sub 0}), which is likely to be governed by similar processes.

  10. Utilization of Lactate Isomers by Propionibacterium freudenreichii subsp. shermanii: Regulatory Role for Intracellular Pyruvate

    PubMed Central

    Crow, Vaughan L.

    1986-01-01

    Five strains of Propionibacterium freudenreichii subsp. shermanii utilized the l-(+) isomer of lactate at a faster rate than they did the d-(−) isomer when grown with a mixture of lactate isomers under a variety of conditions. ATCC 9614, grown anaerobically in defined medium containing 160 mM dl-lactate, utilized only 4 and 15% of the d-(−)-lactate by the time 50 and 90%, respectively, of the l-(+)-lactate was used. The intracellular pyruvate concentration was high (>100 mM) in the initial stages of lactate utilization, when either dl-lactate or the l-(+) isomer was the starting substrate. The concentration of this intermediate dropped during dl-lactate fermentation such that when only d-(−)-lactate remained, the concentration was <20 mM. When only the d-(−) isomer was initially present, a similar relatively low concentration of intracellular pyruvate was present, even at the start of lactate utilization. The NAD+-independent lactate dehydrogenase activities in extracts showed different kinetic properties with regard to pyruvate inhibition, depending upon the lactate isomer present. Pyruvate gave a competitive inhibitor pattern with l-(+)-lactate and a mixed-type inhibitor pattern with d-(−)-lactate. It is suggested that these properties of the lactate dehydrogenases and the intracellular pyruvate concentrations explain the preferential use of the l-(+) isomer. PMID:16347134

  11. Detailed Chemical Kinetic Reaction Mechanisms for Autoignition of Isomers of Heptane Under Rapid Compression

    SciTech Connect

    Westbrook, C K; Pitz, W J; Boercker, J E; Curran, H J; Griffiths, J F; Mohamed, C; Ribaucour, M

    2001-12-17

    Detailed chemical kinetic reaction mechanisms are developed for combustion of all nine isomers of heptane (C{sub 7}H{sub 16}), and these mechanisms are tested by simulating autoignition of each isomer under rapid compression machine conditions. The reaction mechanisms focus on the manner in which the molecular structure of each isomer determines the rates and product distributions of possible classes of reactions. The reaction pathways emphasize the importance of alkylperoxy radical isomerizations and addition reactions of molecular oxygen to alkyl and hydroperoxyalkyl radicals. A new reaction group has been added to past models, in which hydroperoxyalkyl radicals that originated with abstraction of an H atom from a tertiary site in the parent heptane molecule are assigned new reaction sequences involving additional internal H atom abstractions not previously allowed. This process accelerates autoignition in fuels with tertiary C-H bonds in the parent fuel. In addition, the rates of hydroperoxyalkylperoxy radical isomerization reactions have all been reduced so that they are now equal to rates of analogous alkylperoxy radical isomerizations, significantly improving agreement between computed and experimental ignition delay times in the rapid compression machine. Computed ignition delay times agree well with experimental results in the few cases where experiments have been carried out for specific heptane isomers, and predictive model calculations are reported for the remaining isomers. The computed results fall into three general groups; the first consists of the most reactive isomers, including n-heptane, 2-methyl hexane and 3-methyl hexane. The second group consists of the least reactive isomers, including 2,2-dimethyl pentane, 3,3-dimethyl pentane, 2,3-dimethyl pentane, 2,4-dimethyl pentane and 2,2,3-trimethyl butane. The remaining isomer, 3-ethyl pentane, was observed computationally to have an intermediate level of reactivity. These observations are generally

  12. Isomer Shift and Magnetic Moment of the Long-Lived 1/2^{+} Isomer in _{30}^{79}Zn_{49}: Signature of Shape Coexistence near ^{78}Ni.

    PubMed

    Yang, X F; Wraith, C; Xie, L; Babcock, C; Billowes, J; Bissell, M L; Blaum, K; Cheal, B; Flanagan, K T; Garcia Ruiz, R F; Gins, W; Gorges, C; Grob, L K; Heylen, H; Kaufmann, S; Kowalska, M; Kraemer, J; Malbrunot-Ettenauer, S; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Sánchez, R; Yordanov, D T

    2016-05-01

    Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (^{79}Zn)=-1.1866(10)μ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (^{79m}Zn)=-1.0180(12)μ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6)  fm^{2}, providing first evidence of shape coexistence.

  13. Isomer Shift and Magnetic Moment of the Long-Lived 1/2^{+} Isomer in _{30}^{79}Zn_{49}: Signature of Shape Coexistence near ^{78}Ni.

    PubMed

    Yang, X F; Wraith, C; Xie, L; Babcock, C; Billowes, J; Bissell, M L; Blaum, K; Cheal, B; Flanagan, K T; Garcia Ruiz, R F; Gins, W; Gorges, C; Grob, L K; Heylen, H; Kaufmann, S; Kowalska, M; Kraemer, J; Malbrunot-Ettenauer, S; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Sánchez, R; Yordanov, D T

    2016-05-01

    Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (^{79}Zn)=-1.1866(10)μ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (^{79m}Zn)=-1.0180(12)μ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6)  fm^{2}, providing first evidence of shape coexistence. PMID:27203317

  14. Isomer Shift and Magnetic Moment of the Long-Lived 1 /2+ Isomer in 30,79Zn49: Signature of Shape Coexistence near 78Ni

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wraith, C.; Xie, L.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Kraemer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papuga, J.; Sánchez, R.; Yordanov, D. T.

    2016-05-01

    Collinear laser spectroscopy is performed on the 30,79Zn49 isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in 79Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I =9 /2 and I =1 /2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (79Zn)=-1.1866 (10 )μN , confirms the spin-parity 9 /2+ with a ν g9/2 -1 shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (Znm79)=-1.0180 (12 )μN supports a positive parity for the isomer, with a wave function dominated by a 2 h -1 p neutron excitation across the N =50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ ⟨rc2⟩79 ,79 m=+0.204 (6 ) fm2 , providing first evidence of shape coexistence.

  15. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    NASA Astrophysics Data System (ADS)

    Staszczak, Andrzej; Wong, Cheuk-Yin

    2016-05-01

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ħ and 140ħ, which follow the same (multi-particle)-(multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.

  16. Identification of a new isomer from a reversible isomerization of ceftriaxone in aqueous solution.

    PubMed

    Tian, Ye; Lu, Li; Chang, Yan; Zhang, Dou-sheng; Li, Jin; Feng, Yan-Chun; Hu, Chang-Qin

    2015-01-01

    A reversible isomerization of ceftriaxone in aqueous solution was observed, and the structure of the isomer was determined by mass spectrometry and various 1D and 2D NMR techniques. The mechanism of isomerization was also discussed. Finally, molecular docking simulations were performed and the antimicrobial activities of the isomers were measured. This showed that the biological activity of ceftriaxone was stronger than that of its isomer. The results reported in this article may be important to quality control requirements and to the stability of ceftriaxone products.

  17. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    DOE PAGESBeta

    Staszczak, A.; Wong, Cheuk-Yin

    2016-05-11

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28 A 52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114 and 140, which follow the same (multi-particle) (multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.

  18. Effects of high-order deformation on high-K isomers in superheavy nuclei

    SciTech Connect

    Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.

    2011-01-15

    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of {beta}{sub 6} deformation, we find remarkable effects of the high-order deformation on the high-K isomers in {sup 254}No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of {beta}{sub 6} deformation significantly improves the description of the very heavy high-K isomers.

  19. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: Experiment and simulation

    SciTech Connect

    Wang, Ruixue; Zhang, Cheng; Yan, Ping; Shao, Tao; Shen, Yuan; Zhu, Weidong; Babaeva, Natalia Yu.; Naidis, George V.

    2015-09-28

    A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tail and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.

  20. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    SciTech Connect

    Luo Ningqi; Xiao Jun; Hu Wenyong; Chen Dihu; Tian Xiumei; Yang Chuan; Li Li

    2013-04-28

    Ultra-small gadolinium oxide (Gd{sub 2}O{sub 3}) can be used as T{sub 1}-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r{sub 1}) and has attracted intensive attention in these years. In this paper, ultra-small Gd{sub 2}O{sub 3} nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd{sub 2}O{sub 3} by laser ablation in DEG. The r{sub 1} value and T{sub 1}-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r{sub 1} value of 9.76 s{sup -1} mM{sup -1} to be good MRI contrast agents. We propose an explanation for the high r{sub 1} value of ultra-small Gd{sub 2}O{sub 3} by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd{sup 3+} on Gd{sub 2}O{sub 3} surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd{sub 2}O{sub 3} of high r{sub 1} value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd{sub 2}O{sub 3} MRI contrast agents.

  1. Validation of Force Fields of Rubber through Glass-Transition Temperature Calculation by Microsecond Atomic-Scale Molecular Dynamics Simulation.

    PubMed

    Sharma, Pragati; Roy, Sudip; Karimi-Varzaneh, Hossein Ali

    2016-02-25

    Microsecond atomic-scale molecular dynamics simulation has been employed to calculate the glass-transition temperature (Tg) of cis- and trans-1,4-polybutadiene (PB) and 1,4-polyisoprene (PI). Both all-atomistic and united-atom models have been simulated using force fields, already available in literature. The accuracy of these decade old force fields has been tested by comparing calculated glass-transition temperatures to the corresponding experimental values. Tg depicts the phase transition in elastomers and substantially affects various physical properties of polymers, and hence the reproducibility of Tg becomes very crucial from a thermodynamic point of view. Such validation using Tg also evaluates the ability of these force fields to be used for advanced materials like rubber nanocomposites, where Tg is greatly affected by the presence of fillers. We have calculated Tg for a total of eight systems, featuring all-atom and united-atom models of cis- and trans-PI and -PB, which are the major constituents of natural and synthetic rubber. Tuning and refinement of the force fields has also been done using quantum-chemical calculations to obtain desirable density and Tg. Thus, a set of properly validated force fields, capable of reproducing various macroscopic properties of rubber, has been provided. A novel polymer equilibration protocol, involving potential energy convergence as the equilibration criterion, has been proposed. We demonstrate that not only macroscopic polymer properties like density, thermal expansion coefficient, and Tg but also local structural characteristics like end-to-end distance (R) and radius of gyration (Rg) and mechanical properties like bulk modulus have also been equilibrated using our strategy. Complete decay of end-to-end vector autocorrelation function with time also supports proper equilibration using our strategy. PMID:26836395

  2. Validation of Force Fields of Rubber through Glass-Transition Temperature Calculation by Microsecond Atomic-Scale Molecular Dynamics Simulation.

    PubMed

    Sharma, Pragati; Roy, Sudip; Karimi-Varzaneh, Hossein Ali

    2016-02-25

    Microsecond atomic-scale molecular dynamics simulation has been employed to calculate the glass-transition temperature (Tg) of cis- and trans-1,4-polybutadiene (PB) and 1,4-polyisoprene (PI). Both all-atomistic and united-atom models have been simulated using force fields, already available in literature. The accuracy of these decade old force fields has been tested by comparing calculated glass-transition temperatures to the corresponding experimental values. Tg depicts the phase transition in elastomers and substantially affects various physical properties of polymers, and hence the reproducibility of Tg becomes very crucial from a thermodynamic point of view. Such validation using Tg also evaluates the ability of these force fields to be used for advanced materials like rubber nanocomposites, where Tg is greatly affected by the presence of fillers. We have calculated Tg for a total of eight systems, featuring all-atom and united-atom models of cis- and trans-PI and -PB, which are the major constituents of natural and synthetic rubber. Tuning and refinement of the force fields has also been done using quantum-chemical calculations to obtain desirable density and Tg. Thus, a set of properly validated force fields, capable of reproducing various macroscopic properties of rubber, has been provided. A novel polymer equilibration protocol, involving potential energy convergence as the equilibration criterion, has been proposed. We demonstrate that not only macroscopic polymer properties like density, thermal expansion coefficient, and Tg but also local structural characteristics like end-to-end distance (R) and radius of gyration (Rg) and mechanical properties like bulk modulus have also been equilibrated using our strategy. Complete decay of end-to-end vector autocorrelation function with time also supports proper equilibration using our strategy.

  3. Experiments on a relativistic magnetron driven by a microsecond electron beam accelerator with a ceramic insulating stack

    NASA Astrophysics Data System (ADS)

    Lopez, Mike Rodriguez

    2003-10-01

    Relativistic magnetron experiments with a 6-vane, Titan tube have generated over 300 MW total microwave output power near 1 GHz. These experiments were driven by a long-pulse, e-beam accelerator. Parameters of the device were voltage = -0.3 to -0.4 MV, current = 1--10 kA, and pulselength = 0.5 microsecond. This body of work investigated pulse-shortening in the relativistic magnetron. Microwave generation with a conventional plastic insulator was compared to that with a new ceramic insulator. The ceramic insulator improved the vacuum by an order of magnitude (1 x 10-7 Torr) and increased voltage stability of the accelerator. The effect of RF breakdown in the waveguide on the intensity and duration of high power microwaves were also investigated. These experiments found that when SF6 gas was introduced into the waveguide, the measured efficiency, power, and pulselength of microwaves increased. Two different microwave extraction mechanisms were used. In the first system, two waveguides were connected to the magnetron pi-radians from each other. The second system used three waveguides to connect to the magnetron's extraction ports at 2pi/3 radians from each other. Microwaves were extracted into and measured from the waveguide. Pulselengths were found to be in the range of 10--200 ns. The theoretical investigation calculates the maximum injected current for a time-independent cycloidal flow in a relativistic, magnetically insulated diode. The analytical theory of Lovelace-Ott was extended by relaxing the space charge limited (SCL) assumption. This theory reduced to Christenson's results in the deeply non-relativistic regime, and to Lovelace-Ott under SCL. This theory has been successfully tested against relativistic PIC code simulations.

  4. Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations

    PubMed Central

    Khelashvili, George; Grossfield, Alan; Feller, Scott E.; Pitman, Michael C.; Weinstein, Harel

    2014-01-01

    An unresolved question about GPCR function is the role of membrane components in receptor stability and activation. In particular, cholesterol is known to affect the function of membrane proteins, but the details of its effect on GPCRs are still elusive. Here, we describe how cholesterol modulates the behavior of the TM1-TM2-TM7-helix 8(H8) functional network that comprises the highly conserved NPxxY(x)5,6F motif, through specific interactions with the receptor. The inferences are based on the analysis of microsecond length molecular dynamics (MD) simulations of rhodopsin in an explicit membrane environment. Three regions on the rhodopsin exhibit the highest cholesterol density throughout the trajectory: the extracellular end of TM7, a location resembling the high-density sterol area from the electron microscopy data; the intracellular parts of TM1, TM2, and TM4, a region suggested as the cholesterol binding site in the recent X-ray crystallography data on β2-adrenergic GPCR; and the intracellular ends of TM2-TM3, a location that was categorized as the high cholesterol density area in multiple independent 100 ns MD simulations of the same system. We found that cholesterol primarily affects specific local perturbations of the helical TM domains such as the kinks in TM1, TM2, and TM7. These local distortions, in turn, relate to rigid-body motions of the TMs in the TM1-TM2-TM7-H8 bundle. The specificity of the effects stems from the nonuniform distribution of cholesterol around the protein. Through correlation analysis we connect local effects of cholesterol on structural perturbations with a regulatory role of cholesterol in the structural rearrangements involved in GPCR function. PMID:19173312

  5. Polymerization of the cis- and trans-isomers of bis(triethoxysilyl)-2-butene and comparison of their structural properties

    SciTech Connect

    Shaltout, R.M.; Loy, D.A.; Carpenter, J.P.; Dorhout, K.; Shea, K.J.

    1998-09-01

    The cis and trans isomers of bis-(triethoxysilyl)-2-butene were polymerized by the sol-gel method under various conditions. The trans isomer formed gels under all conditions. The cis isomer formed gels only under basic conditions. Under acidic conditions it formed soluble resins of molecular weight ranging from 88,000 to 180,000 Daltons. Solid state and solution {sup 29}Si NMR revealed that the trans isomer formed condensed gels, and that the resins formed by the cis isomer contained cyclic monomers and/or ordered oligomers.

  6. Precursor anion states in dissociative electron attachment to chlorophenol isomers

    NASA Astrophysics Data System (ADS)

    Kossoski, F.; Varella, M. T. do N.

    2016-07-01

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl ∗ , one σOH ∗ , and three π∗ shape resonances. We show that electron capture into the two lower lying π∗ orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π∗ resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 ∗ anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl ∗ state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl ∗ resonance and destabilizing the σOH ∗ resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH ∗ orbital.

  7. Products from the Oxidation of Linear Isomers of Hexene

    PubMed Central

    Battin-Leclerc, Frédérique; Rodriguez, Anne; Husson, Benoit; Herbinet, Olivier; Glaude, Pierre-Alexandre; Wang, Zhandong; Cheng, Zhanjun; Qi, Fei

    2014-01-01

    The experimental study of the oxidation of the three linear isomers of hexene was performed in a quartz isothermal jet-stirred reactor (JSR) at temperatures ranging from 500 to 1100 K including the negative temperature coefficient (NTC) zone, at quasi-atmospheric pressure (1.07 bar), at a residence time of 2 s and with dilute stoichiometric mixtures. The fuel and reaction product mole fractions were measured using online gas chromatography. In the case of 1-hexene, the JSR has also been coupled through a molecular-beam sampling system to a reflectron time-of-flight mass spectrometer combined with tunable synchrotron vacuum ultraviolet photoionization. A difference of reactivity between the three fuels which varies with the temperature range has been observed and is discussed according to the changes in the possible reaction pathways when the double bond is displaced. An enhanced importance of the reactions via the Waddington mechanism and of those of allylic radicals with HO2 radicals can be noted for 2- and 3-hexenes compared to 1-hexene. PMID:24400665

  8. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  9. Charge transfer between isomer domains on n+-doped Si(111)-2 × 1: energetic stabilization.

    PubMed

    Feenstra, R M; Bussetti, G; Bonanni, B; Violante, A; Goletti, C; Chiaradia, P; Betti, M G; Mariani, C

    2012-09-01

    Domains of different surface reconstruction-negatively or positively buckled isomers-have been previously observed on highly n-doped Si(111)-2 × 1 surfaces by angle-resolved ultraviolet photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. At low temperature, separate domains of the two isomer types are apparent in the data. It was argued in the previous work that the negative isomers have a lower energy of their empty surface states than the positive isomers, providing a driving force for the formation of the negative isomers. In this work we show that the relative abundance of these two isomers shows considerable variation from sample to sample, and it is argued that the size of the isomer domains is likely to be related to this variation. A model is introduced in which the electrostatic effect of charge transfer between the domains is computed, yielding total energy differences between the two types of isomer. It is found that the transfer of electrons from domains of positive isomers to negative ones leads to an energetic stabilization of the negative isomers. The model predicts a dependence of the isomer populations on doping that is in agreement with most experimental results. Furthermore, it accounts, at least qualitatively, for the marked lineshape variation from sample to sample observed in photoemission spectra.

  10. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  11. AN ISOMER PREDICTION MODEL FOR PCNS, PCDD/FS, AND PCBS FROM MUNICIPAL WASTE INCINERATORS

    EPA Science Inventory

    Isomer patterns of polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated biphenyls (PCBs) from municipal waste incinerators (MWIs) were predicted by a model based on dechlorination kinetics from the most-chlorinated species. Successfu...

  12. Disentangling the Contribution of Multiple Isomers to the Infrared Spectrum of the Protonated Water Heptamer.

    PubMed

    Heine, Nadja; Fagiani, Matias R; Asmis, Knut R

    2015-06-18

    We use infrared/infrared double-resonance population labeling (IR(2)MS(2)) spectroscopy in the spectral region of the free and hydrogen-bonded OH stretching fundamentals (2880-3850 cm(-1)) to identify the number and to isolate the vibrational signatures of individual isomers contributing to the gas-phase IR spectra of the cryogenically cooled protonated water clusters H(+)(H2O)n·H2/D2 with n = 7-10. For n = 7, four isomers are identified and assigned. Surprisingly, the IR(2)MS(2) spectra of the protonated water octa-, nona-, and decamer show no evidence for multiple isomers. The present spectra support the prediction that the quasi-2D to 3D structural transition occurs in between n = 8 and 9 in the cold cluster regime. However, the same models have difficulty explaining the remarkable size dependence of the isomer population reported here.

  13. Identification of Geometrical Isomers of the Cobalt(III)-Iminodiacetate System.

    ERIC Educational Resources Information Center

    Lawrance, Geoffrey A.; Rix, Colin J.

    1979-01-01

    In this experiment, students prepare, isolate, and characterize two geometrical isomers of a metal coordination compound. This experiment provides a good introduction to the techniques of modern coordination chemistry. (BB)

  14. Differential Effect of Amphetamine Optical Isomers on Bender Gestalt Performance of the Minimally Brain Dysfunctioned

    ERIC Educational Resources Information Center

    Arnold, L. Eugene; And Others

    1978-01-01

    The differential effect of amphetamine optical isomers on Bender Gestalt performance was examined in 31 hyperkinetic minimally brain dysfunctioned children between the ages of 4 and 12 years, using a double-blind Latin-square crossover comparison. (Author)

  15. Structural isomers of C2N(+) - A selected-ion flow tube study

    NASA Technical Reports Server (NTRS)

    Knight, J. S.; Petrie, S. A. H.; Freeman, C. G.; Mcewan, M. J.; Mclean, A. D.

    1988-01-01

    Reactivities of the structural isomers CCN(+) and CNC(+) were examined in a selected-ion flow tube at 300 + or - 5 K. The less reactive CNC(+) isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC(+) can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN(+) and CNC(+); a saddle point for the reaction CCN(+) yielding CNC(+) is calculated to be 195 kJ/mol above CNC(+). The results provide evidence that the more reactive CCN(+) isomer is unlikely to be present in measurable densities in interstellar clouds.

  16. Structural isomers of C2N+: a selected-ion flow tube study.

    PubMed

    Knight, J S; Petrie, S A; Freeman, C G; McEwan, M J; McLean, A D; DeFrees, D J

    1988-01-01

    Reactivities of the structural isomers CCN+ and CNC+ were examined in a selected-ion flow tube at 300 +/- 5 K. The less reactive CNC+ isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC+ can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN+ and CNC+; a saddle point for the reaction CCN+ --> CNC+ is calculated to be 195 kJ mol-1 above the CNC+. The results provide evidence that the more reactive CCN+ isomer is unlikely to be present in measurable densities in interstellar clouds.

  17. 40 CFR 180.1103 - Isomate-C; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... moth pheromone (Isomate-C) E,E-8,10-dodecenyl alcohol, dodecanol, tetradecanol is exempt from the... dispensers for use in orchards with encapsulated polyethylene tubing to control codling moth....

  18. 40 CFR 180.1103 - Isomate-C; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... moth pheromone (Isomate-C) E,E-8,10-dodecenyl alcohol, dodecanol, tetradecanol is exempt from the... dispensers for use in orchards with encapsulated polyethylene tubing to control codling moth....

  19. 40 CFR 180.1103 - Isomate-C; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... moth pheromone (Isomate-C) E,E-8,10-dodecenyl alcohol, dodecanol, tetradecanol is exempt from the... dispensers for use in orchards with encapsulated polyethylene tubing to control codling moth....

  20. 40 CFR 180.1103 - Isomate-C; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... moth pheromone (Isomate-C) E,E-8,10-dodecenyl alcohol, dodecanol, tetradecanol is exempt from the... dispensers for use in orchards with encapsulated polyethylene tubing to control codling moth....

  1. 40 CFR 180.1103 - Isomate-C; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... moth pheromone (Isomate-C) E,E-8,10-dodecenyl alcohol, dodecanol, tetradecanol is exempt from the... dispensers for use in orchards with encapsulated polyethylene tubing to control codling moth....

  2. Simple Nuclear Structure in (111-129)Cd from Atomic Isomer Shifts.

    PubMed

    Yordanov, D T; Balabanski, D L; Bissell, M L; Blaum, K; Budinčević, I; Cheal, B; Flanagan, K; Frömmgen, N; Georgiev, G; Geppert, Ch; Hammen, M; Kowalska, M; Kreim, K; Krieger, A; Meng, J; Neugart, R; Neyens, G; Nörtershäuser, W; Rajabali, M M; Papuga, J; Schmidt, S; Zhao, P W

    2016-01-22

    Isomer shifts have been determined in ^{111-129}Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2^{+} and the 3/2^{+} ground states to the 11/2^{-} isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction with the known quadrupole moments. This intuitive interpretation is supported by covariant density functional theory. PMID:26849588

  3. Isolation and spectroscopic characterization of two isomers of the metallofullerene Nd at C82

    SciTech Connect

    Porfyrakis, Kyriakos; Briggs, G. Andrew D.; Kanai, Mito; Dennis, T. John S.; Morley, Gavin W.; Ardavan, Arzhang

    2005-09-27

    For the first time, two types of the metallofullerene Nd at C82 have been isolated and characterized. HPLC was used to isolate Nd at C82(I, II). The two isomers were characterized by mass spectrometry and UV-Vis-NIR absorption spectroscopy. Nd at C82(I) was found to be similar in structure to the main isomer of other lanthanofullerenes such as La at C82, as was previously reported. We assign Nd at C82(I) to have a C2v cage symmetry. Nd at C82(II) showed a markedly different UV-Vis-NIR absorption spectrum to Nd at C82(I). Its spectrum is in good agreement with that of the minor isomer of metallofullerenes such as Pr at C82. We therefore assign Nd at C82(II) to have a Cs cage symmetry. In contrast to other metallofullerenes, both isomers appear to be equally abundant.

  4. Separation of a set of peptide sequence isomers using differential ion mobility spectrometry.

    PubMed

    Shvartsburg, Alexandre A; Creese, Andrew J; Smith, Richard D; Cooper, Helen J

    2011-09-15

    Protein identification in bottom-up proteomics requires disentangling isomers of proteolytic peptides, a major class of which are sequence inversions. Their separation using ion mobility spectrometry (IMS) has been limited to isomeric pairs. Here we demonstrate baseline separation of all seven 8-mer tryptic peptide isomers using differential IMS. Evaluation of peak capacity implies that even larger libraries should be resolved for heavier peptides with higher charge states.

  5. Isomer-specific biotransformation of perfluorooctane sulfonamide in Sprague-Dawley rats.

    PubMed

    Ross, Matthew S; Wong, Charles S; Martin, Jonathan W

    2012-03-20

    Great variability exists in perfluorooctane sulfonate (PFOS) isomer patterns in human and wildlife samples, including unexpectedly high percentages (e.g., >40%) of branched isomers in human sera. Previous in vitro tests showed that branched PFOS-precursors were biotransformed faster than the corresponding linear isomer. Thus, high percentages of branched PFOS may be a biomarker of PFOS-precursor exposure in humans. We evaluated this hypothesis by examining the isomer-specific fate of perfluorooctane sulfonamide (PFOSA), a known PFOS-precursor, in male Sprague-Dawley rats exposed to commercial PFOSA via food for 77 days (83.0 ± 20.4 ng kg(-1) day(-1)), followed by 27 days of depuration. Elimination half-lives of the two major branched PFOSA isomers (2.5 ± 1.0 days and 3.7 ± 1.2 days) were quicker than for linear PFOSA (5.9 ± 4.6 days), resulting in a depletion of branched PFOSA isomers in blood and tissues relative to the dose. A corresponding increase in the total branched isomer content of PFOS, the ultimate metabolite, in rat serum was not observed. However, a significant enrichment of 5m-PFOS and a significant depletion of 1m-PFOS were observed, relative to authentic electrochemical PFOS. The data cannot be directly extrapolated to humans, due to known differences in the toxicokinetics of PFOS in rodents and humans. However, the results confirm that in vivo exposure to commercially relevant PFOS-precursors can result in a distinct PFOS isomer profile that may be useful as a biomarker of exposure source.

  6. Theoretical 57Fe Mössbauer spectroscopy: isomer shifts of [Fe]-hydrogenase intermediates.

    PubMed

    Hedegård, Erik Donovan; Knecht, Stefan; Ryde, Ulf; Kongsted, Jacob; Saue, Trond

    2014-03-14

    Mössbauer spectroscopy is an indispensable spectroscopic technique and analytical tool in iron coordination chemistry. The linear correlation between the electron density at the nucleus ("contact density") and experimental isomer shifts has been used to link calculated contact densities to experimental isomer shifts. Here we have investigated relativistic methods of systematically increasing sophistication, including the eXact 2-Component (X2C) Hamiltonian and a finite-nucleus model, for the calculation of isomer shifts of iron compounds. While being of similar accuracy as the full four-component treatment, X2C calculations are far more efficient. We find that effects of spin-orbit coupling can safely be neglected, leading to further speedup. Linear correlation plots using effective densities rather than contact densities versus experimental isomer shift lead to a correlation constant a = -0.294 a0(-3) mm s(-1) (PBE functional) which is close to an experimentally derived value. Isomer shifts of similar quality can thus be obtained both with and without fitting, which is not the case if one pursues a priori a non-relativistic model approach. As an application for a biologically relevant system, we have studied three recently proposed [Fe]-hydrogenase intermediates. The structures of these intermediates were extracted from QM/MM calculations using large QM regions surrounded by the full enzyme and a solvation shell of water molecules. We show that a comparison between calculated and experimentally observed isomer shifts can be used to discriminate between different intermediates, whereas calculated atomic charges do not necessarily correlate with Mössbauer isomer shifts. Detailed analysis reveals that the difference in isomer shifts between two intermediates is due to an overlap effect.

  7. Effect of uniaxial tensile stress on the isomer shift of 57Fe in fcc stainless steels

    NASA Astrophysics Data System (ADS)

    Ratner, E.; Ron, M.

    1982-05-01

    The electron wave-function response to uniaxial tensile stress in fcc steels (SS310 and SS316) was investigated through the isomer shift of the Mössbauer effect. Stresses up to 12 kbar (the ultimate tensile stress is approximately 14 kbar) were applied at room temperature. The isomer shift changes linearly in these circumstances. It is concluded that, as in the case of hydrostatic pressure, the paramount factor here is the volume strain of the wave functions of 4S electrons.

  8. Separation of a Set of Peptide Sequence Isomers Using Differential Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Creese, Andrew J.; Smith, Richard D.; Cooper, Helen J.

    2011-08-15

    Protein identification in bottom-up proteomics requires disentangling isomers of proteolytic peptides, a major class of which are sequence inversions. Separation of sequence isomers using ion mobility spectrometry (IMS) has been reported, but limited to pairs of species. Here we demonstrate baseline separation of all seven sequences for a tryptic peptide with eight residues using differential IMS or FAIMS. Evaluations of peak capacity of the method indicate that even larger libraries should generally be separated for heavier peptides with higher charge states.

  9. Isomer Tagging with a Dual Multi-Wire Proportional Counter and a Differential Plunger

    SciTech Connect

    Cullen, D. M.; Mason, P. J. R.; Khan, S.; Kishada, A. M.; Varley, B. J.; Rigby, S. V.; Scholey, C.; Greenlees, P.; Rahkila, P.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppaenen, A. P.; Nyman, M.; Uusitalo, J.; Grahn, T.; Pakarinen, J.; Nieminen, P.

    2008-05-12

    This report details the status of an experimental research programme which has studied isomeric states in the mass 130-160 region of the nuclear chart. Several new isomers have been established and characterised near the proton drip line using a recoil isomer tagging technique at the University of Jyvaeskylae, Finland. The latest experiments have been performed with a modified setup where the standard GREAT focal-plane double-sided silicon-strip detector was changed to a dual multi-wire proportional-counter arrangement. This new setup has improved capability for short-lived isomer studies where large focal-plane rates can be tolerated. The results of key recent experiments for nuclei situated above ({sup 153}Yb, {sup 152}Tm) and below ({sup 144}Ho, {sup 142}Tb) the N = 82 shell gap were presented. These studies have charted the evolution of isomeric states across the neutron shell from K-Isomers at N = 74, to shape isomers at N = 77 and shell-model isomers at N = 82, 83. The excitation energies for some of the lowest-lying excited states in these isomeric nuclei show behaviour which is characteristic of an X(5) symmetry falling midway between the limits expected for pure vibrational and rotational behaviour. The future prospects for studies of these nuclei were discussed using an isomer-tagged differential-plunger setup. This technique will be capable of establishing the deformation of the states above the isomers and will aid in determining whether their behaviour is indeed well described by the X(5) symmetry limit.

  10. Superprolate shape of the spontaneous-fission isomer /sup 240/Am/sup m/

    SciTech Connect

    Pauling, L.

    1980-10-01

    A superprolate structure for nuclei with Aapprox.240 proposed in 1965 on the basis of the polyspheron theory leads to the value 0.66 for the deformation parameter ..beta... This value agrees well with a recently reported experimental value, 0.66 +- 0.04 for the spontaneous-fission isomer /sup 240/Am/sup m/, obtained by Bemis et al. from their measurement of the optical isomer shift. This agreement provides additional support for the proposed superprolate structure.

  11. Probing and evaluating anion-π interaction in meso-dinitrophenyl functionalized calix[4]pyrrole isomers.

    PubMed

    Kim, Ajeong; Ali, Rashid; Park, Seok Ho; Kim, Yong-Hoon; Park, Jung Su

    2016-09-25

    We investigate anion-π binding modes in a cis-isomer of 3,5-dinitrophenyl-substituted calix[4]pyrrole with various anions via X-ray crystallographic analyses and compare its binding affinities with those of the corresponding trans-isomer. Sandwich-type anion-π interactions prove to not only enhancing anion binding abilities but also altering the anion-binding selectivity of the calix[4]pyrrole framework. PMID:27549578

  12. Experimental and computational study of the thermochemistry of the fluoromethylaniline isomers.

    PubMed

    Ribeiro da Silva, Manuel A V; Ferreira, Ana I M C L; Gomes, José R B

    2007-06-14

    The standard (po = 0.1 MPa) molar enthalpies of formation in the condensed phase of seven isomers of fluoromethylaniline were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g) and HF.10H2O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of vaporization or sublimation of these compounds, also at T = 298.15 K, were determined using Calvet microcalorimetry, while the enthalpies of fusion of the solid compounds were determined by differential scanning calorimetry. The standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived from the former two experimental quantities. G3MP2//B3LYP calculations were performed for all possible fluoromethylanilines allowing the estimation of data for the isomers that were not studied experimentally. The Cox scheme was applied with two different approaches for the estimation of the standard molar enthalpies of formation of all the isomers studied, and this led to the conclusion that the literature values for the enthalpies of formation of the meta and para isomers of methylaniline seem to be not reliable. Further G3MP2//B3LYPs calculations on the methylaniline isomers yielded new values for the standard molar enthalpies of formation of the isomers of methylaniline, which have been tested under the Cox scheme, resulting in better estimates. PMID:17518494

  13. Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05.

    PubMed

    Manickam, Natesan; Bajaj, Abhay; Saini, Harvinder S; Shanker, Rishi

    2012-09-01

    Environmental biodegradation of several chlorinated pesticides is limited by their low solubility and sorption to soil surfaces. To mitigate this problem we quantified the effect of three biosurfactant viz., rhamnolipid, sophorolipid and trehalose-containing lipid on the dissolution, bioavailability, and biodegradation of HCH-isomers in liquid culture and in contaminated soil. The effect of biosurfactants was evaluated through the critical micelle concentration (CMC) value as determined for each isomer. The surfactant increased the solubilization of HCH isomers by 3-9 folds with rhamnolipid and sophorolipid being more effective and showing maximum solubilization of HCH isomers at 40 μg/mL, compared to trehalose-containing lipid showing peak solubilization at 60 μg/mL. The degradation of HCH isomers by Sphingomonas sp. NM05 in surfactant-amended liquid mineral salts medium showed 30% enhancement in 2 days as compared to degradation in 10 days in the absence of surfactant. HCH-spiked soil slurry incubated with surfactant also showed around 30-50% enhanced degradation of HCH which was comparable to the corresponding batch culture experiments. Among the three surfactants, sophorolipid offered highest solubilization and enhanced degradation of HCH isomers both in liquid medium and soil culture. The results of this study suggest the effectiveness of surfactants in improving HCH degradation by increased bioaccessibility.

  14. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    PubMed

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress.

  15. Isomer Studies for Nuclei near the Proton Drip Line in the Mass 130-160 Region

    SciTech Connect

    Cullen, D. M.; Mason, P. J. R.; Khan, S.; Kishada, A. M.; Varley, B. J.; Rigby, S. V.; Scholey, C.; Greenlees, P.; Rahkila, P.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppaenen, A. P.; Nyman, M.; Uusitalo, J.; Grahn, T.; Nieminen, P.; Pakarinen, J.

    2007-11-30

    This report details the status of an experimental research programme which has studied isomeric states in the mass 130-160 region of the nuclear chart. Several new isomers have been established and characterised near the proton drip line using a recoil isomer tagging technique at the University of Jyvaeskylae, Finland. The latest experiments have been performed with a modified setup where the standard GREAT focal-plane double-sided silicon-strip detector was changed to a dual multi-wire proportional-counter arrangement. This new setup has improved capability for short-lived isomer studies where high focal-plane rates can be tolerated. The results of key recent experiments for nuclei situated above ({sup 153}Yb,{sup 152}Tm) and below ({sup 136}Pm,{sup 142}Tb) the N = 82 shell gap were presented along with an interpretation for the isomers. Finally, the future prospects of the technique, using an isomer-tagged differential-plunger setup, were discussed. This technique will be capable of establishing the deformation of the states above the isomers and will aid in the process of assigning underlying single-particle configurations to the isomeric states.

  16. 241Am (n,gamma) isomer ratio measurement

    SciTech Connect

    Bond, Evelyn M; Vieira, David J; Moody, Walter A; Slemmons, Alice K

    2011-01-05

    The objective of this project is to improve the accuracy of the {sup 242}Cm/{sup 241}Am radiochemistry ratio. We have performed an activation experiment to measure the {sup 241}Am(n,{gamma}) cross section leading to either the ground state of {sup 242g}Am (t{sub 1/2} = 16 hr) which decays to {sup 242}Cm (t{sub 1/2} = 163 d) or the long-lived isomer {sup 242m}Am (t{sub 1/2} = 141 yr). This experiment will develop a new set of americium cross section evaluations that can be used with a measured {sup 242}Cm/{sup 241}Am radiochemical measurement for nuclear forensic purposes. This measurement is necessary to interpret the {sup 242}Cm/{sup 241}Am ratio because a good measurement of this neutron capture isomer ratio for {sup 241}Am does not exist. The targets were prepared in 2007 from {sup 241}Am purified from LANL stocks. Gold was added to the purified {sup 241}Am as an internal neutron fluence monitor. These targets were placed into a holder, packaged, and shipped to Forschungszentrum Karlsruhe, where they were irradiated at their Van de Graff facility in February 2008. One target was irradiated with {approx}25 keV quasimonoenergetic neutrons produced by the {sup 7}Li(p,n) reaction for 3 days and a second target was also irradiated for 3 days with {approx}500 keV neutrons. Because it will be necessary to separate the {sup 242}Cm from the {sup 241}Am in order to measure the amount of {sup 242}Cm by alpha spectrometry, research into methods for americium/curium separations were conducted concurrently. We found that anion exchange chromatography in methanol/nitric acid solutions produced good separations that could be completed in one day resulting in a sample with no residue. The samples were returned from Germany in July 2009 and were counted by gamma spectrometry. Chemical separations have commenced on the blank sample. Each sample will be spiked with {sup 244}Cm, dissolved and digested in nitric acid solutions. One third of each sample will be processed at a time

  17. Vibronic Spectroscopy of a Structural Isomer of Quinoline: -

    NASA Astrophysics Data System (ADS)

    Mehta-Hurt, Deepali N.; Korn, Joseph A.; Zwier, Timothy S.

    2013-06-01

    This talk will present results of a gas phase, jet-cooled vibronic spectroscopy study of (Z)-phenylvinylnitrile ((Z)-C_6H_5-CH=CH-C=N, (Z)-PVN). With a substituent locked into a cis conformation with respect to the aromatic ring, (Z)-PVN is postulated to be a molecule with an ideal functionality to isomerize to quinoline upon photoexcitation. As such, (Z)-PVN is particularly relevant to Titan's nitrile-containing atmosphere, where much of the chemistry is photochemically driven. As a first step towards such photochemical studies, a fluorescence excitation spectrum of a mixture of (E)- and (Z)-PVN was collected spanning the range 33,300-35,580 cm^{-1} (300.0-281.0 nm). Previous investigations in the Zwier group pertaining to the vibronic spectroscopy of (E)-PVN allowed for the identification of peaks in the (E)- and (Z)-PVN composite spectrum that were solely due to (Z)-PVN, and the S_0-S_1 origin of (Z)-PVN was identified as a dominant band that occurs at 33,706 cm^{-1}. For additional confirmation, ultraviolet depletion spectroscopy (UVD) was used to obtain an isomer specific spectrum of (Z)-PVN as well as search for non-radiative transitions. Dispersed fluorescence spectra that characterize the vibronic activity have also been acquired. A comparison between the vibronic spectroscopy of (Z)-PVN with both (E)-PVN and (Z)-phenylvinylacetylene ((Z)-PVA), the hydrocarbon analog of (Z)-PVN, will be made in this talk.

  18. Quantification of Structural Isomers via Mode-Selective Irmpd

    NASA Astrophysics Data System (ADS)

    Polfer, Nicolas C.

    2016-06-01

    Mixtures of structural isomers can pose a challenge for vibrational ion spectroscopy. In cases where particular structures display diagnostic vibrations, these structures can be selectively "burned away". In ion traps, the ion population can be subjected to multiple laser shots, in order to fully deplete a particular structure, in effect allowing a quantification of this structure. Protonated para-amino benzoic acid (PABA) serves as an illustrative example. PABA is known to preferentially exist in the N-protonated (N-prot) form in solution, but in the gas phase it is energetically favorable in the O-protonated (O-prot) form. As shown in Figure 1, the N-prot structure can be kinetically trapped in the gas phase when sprayed from non-protic solvent, whereas the O-prot structure is obtained when sprayed from protic solvents, analogous to results by others [1,2]. y parking the light source on the diagnostic 3440 wn mode, the percentage of the O-prot structure can be determined, and by default the remainder is assumed to adopt the N-prot structure. It will be shown that the relative percentages of O-prot vs N-prot are highly dependent on the solvent mixture, going from close to 0% O-prot in non-protic solvents, to 99% in protic solvents. Surprisingly, water behaves much more like a non-protic solvent than methanol. It is observed that the capillary temperature, which aids droplet desolvation by black-body radiation in the ESI source, is critical to promote the appearance of O-prot structures. These results are consistent with the picture that a protic bridge mechanism is at play to facilitate proton transfer, and thus allow conversion from N-prot to O-prot, but that this mechanism is subject to appreciable kinetic barriers on the timescale of solvent evaporation. 1. J. Phys. Chem. A 2011, 115, 7625. 2. Anal. Chem. 2012, 84, 7857.

  19. Precursor anion states in dissociative electron attachment to chlorophenol isomers.

    PubMed

    Kossoski, F; Varella, M T do N

    2016-07-28

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl (∗), one σOH (∗), and three π(∗) shape resonances. We show that electron capture into the two lower lying π(∗) orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π(∗) resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 (∗) anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl (∗) state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl (∗) resonance and destabilizing the σOH (∗) resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH (∗) orbital. PMID:27475364

  20. Pulpal Effects of Enamel Ablation With a Microsecond Pulsed λ=9.3-μm CO2 Laser

    PubMed Central

    Staninec, Michal; Darling, Cynthia L.; Goodis, Harold E.; Pierre, Daniel; Cox, Darren P.; Fan, Kenneth; Larson, Michael; Parisi, Renaldo; Hsu, Dennis; Manesh, Saman K.; Ho, Chi; Hosseini, Mehran; Fried, Daniel

    2011-01-01

    Background and Objectives In vitro studies have shown that CO2 lasers operating at the highly absorbed 9.3 and 9.6-μm wavelengths with a pulse duration in the range of 10–20-microsecond are well suited for the efficient ablation of enamel and dentin with minimal peripheral thermal damage. Even though these CO2 lasers are highly promising, they have yet to receive FDA approval. Clinical studies are necessary to determine if excessive heat deposition in the tooth may have any detrimental pulpal effects, particularly at higher ablative fluencies. The purpose of this study was to evaluate the pulpal safety of laser irradiation of tooth occlusal surfaces under the conditions required for small conservative preparations confined to enamel. Study Design/Materials and Methods Test subjects requiring removal of third molar teeth were recruited and teeth scheduled for extraction were irradiated using a pulsed CO2 laser at a wavelength of 9.3 μm operating at 25 or 50 Hz using a incident fluence of 20 J/cm2 for a total of 3,000 laser pulses (36 J) for both rates with water cooling. Two control groups were used, one with no treatment and one with a small cut made with a conventional high-speed hand-piece. No anesthetic was used for any of the procedures and tooth vitality was evaluated prior to treatment by heat, cold and electrical testing. Short term effects were observed on teeth extracted within 72 hours after treatment and long term effects were observed on teeth extracted 90 days after treatment. The pulps of the teeth were fixed with formalin immediately after extraction and subjected to histological examination. Additionally, micro-thermocouple measurements were used to estimate the potential temperature rise in the pulp chamber of extracted teeth employing the same irradiation conditions used in vivo. Results Pulpal thermocouple measurements showed the internal temperature rise in the tooth was within safe limits, 3.3±4°C without water cooling versus 1.7±6

  1. Definition of "positional isomer" as it pertains to the control of schedule I controlled substances. Final rule.

    PubMed

    2007-12-01

    On May 25, 2006, DEA published a Notice of Proposed Rulemaking which proposed the addition of a specific definition for the term "positional isomer" to allow for the systematic determination of which isomers of schedule I substances would be considered to be "positional," and therefore, subject to schedule I control. This rulemaking finalizes that definition. The Controlled Substances Act (CSA) and its implementing regulations specify which hallucinogenic substances are considered schedule I controlled substances. The CSA states that all salts, isomers, and salts of isomers of these substances are also schedule I controlled substances. In non-technical terms, an isomer of a substance is a different compound, but a compound which has the same number and kind of atoms. The terms "optical isomer" and "geometric isomer" are specific scientific terms and it is easy to determine whether one substance is an optical or geometric isomer of another. The term "positional isomer," however, is subject to scientific interpretation. The addition of a definition for the term "positional isomer" will assist legitimate research[ers] and industry in determining the control status of materials that are "positional isomers" of schedule I hallucinogens. While the DEA will remain the authority for ultimately determining the control status of a given material, providing a specific definition for "positional isomer" will ensure consistent criteria are utilized in making these determinations. This rule does not change existing laws, regulations, policies, processes, and procedures regarding the determination of control status for schedule I hallucinogenic substances. This rule merely makes available to the public the longstanding definition of "positional isomer" which DEA has used when making these scheduling determinations. This rule is relevant only to specialized forensic or research chemists. Most of these individuals are existing DEA registrants who are authorized by the DEA to handle

  2. Food sources of individual plasma phospholipid trans fatty acid isomers: the Cardiovascular Health Study12345

    PubMed Central

    King, Irena B; Lemaitre, Rozenn N; Rimm, Eric B; Sacks, Frank; Song, Xiaoling; Siscovick, David S; Mozaffarian, Dariush

    2010-01-01

    Background: The overall consumption of trans fatty acids (TFAs) increases the risk of coronary artery disease. However, multiple TFA isomers exist, each with potentially different health effects. Different food sources of these specific TFA isomers are not well established. Objective: Our objective was to determine the major independent food sources of specific TFA isomers. Design: We investigated relations of major potential food sources of TFAs, as assessed by serial food-frequency questionnaires, with 10 plasma phospholipid TFA isomers [5 trans (t-) 18:1, 3 t-18:2, and 2 t-16:1] in 3330 older adults in the Cardiovascular Health Study, a community-based multicenter cohort. Stepwise regression was used to identify independent major food sources of individual plasma phospholipid TFA isomers, which were adjusted for demographic, lifestyle, and dietary factors. Results: All 5 t-18:1 isomers were similarly associated with foods commonly made with partially hydrogenated vegetable oils (PHVOs), including biscuits (0.51 higher SD of total 18:1 fatty acid concentrations per serving/d, P < 0.01), chips and/or popcorn (0.33 higher SD per serving/d, P = 0.02), margarine (0.32 higher SD per serving/d, P < 0.001), fried foods (0.32 higher SD per serving/d, P = 0.04), and bakery foods (0.23 higher SD per serving/d, P = 0.02). Each of the t-18:2 isomers were associated only with bakery foods (0.50 higher SD of total 18:2 fatty acid concentrations per serving/d, P < 0.001). Ruminant foods were major correlates of t-16:1n−7, including red meats (0.72 higher SD per serving/d, P < 0.001), butter (0.43 higher SD per serving/d, P < 0.001), and higher-fat dairy (0.37 higher SD per serving/d, P < 0.001). In contrast, t-16:1n−9 were derived mainly from margarine (0.31 higher SD per serving/d, P < 0.001). Conclusions: t-18:1 Isomers are similarly derived from multiple PHVO-containing foods. In contrast, t-18:2 and t-16:1n−9 isomers are derived from more-specific types of PHVO

  3. Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids

    NASA Astrophysics Data System (ADS)

    Niedzwiedzki, Dariusz M.; Sandberg, Daniel J.; Cong, Hong; Sandberg, Megan N.; Gibson, George N.; Birge, Robert R.; Frank, Harry A.

    2009-02-01

    The structures of a number of stereoisomers of carotenoids have been revealed in three-dimensional X-ray crystallographic investigations of pigment-protein complexes from photosynthetic organisms. Despite these structural elucidations, the reason for the presence of stereoisomers in these systems is not well understood. An important unresolved issue is whether the natural selection of geometric isomers of carotenoids in photosynthetic pigment-protein complexes is determined by the structure of the protein binding site or by the need for the organism to accomplish a specific physiological task. The association of cis isomers of a carotenoid with reaction centers and trans isomers of the same carotenoid with light-harvesting pigment-protein complexes has led to the hypothesis that the stereoisomers play distinctly different physiological roles. A systematic investigation of the photophysics and photochemistry of purified, stable geometric isomers of carotenoids is needed to understand if a relationship between stereochemistry and biological function exists. In this work we present a comparative study of the spectroscopy and excited state dynamics of cis and trans isomers of three different open-chain carotenoids in solution. The molecules are neurosporene ( n = 9), spheroidene ( n = 10), and spirilloxanthin ( n = 13), where n is the number of conjugated π-electron double bonds. The spectroscopic experiments were carried out on geometric isomers of the carotenoids purified by high performance liquid chromatography (HPLC) and then frozen to 77 K to inhibit isomerization. The spectral data taken at 77 K provide a high resolution view of the spectroscopic differences between geometric isomers. The kinetic data reveal that the lifetime of the lowest excited singlet state of a cis-isomer is consistently shorter than that of its corresponding all- trans counterpart despite the fact that the excited state energy of the cis molecule is typically higher than that of the trans

  4. Positron emission tomographic investigations of central muscarinic cholinergic receptors with three isomers of [76Br]BrQNP.

    PubMed

    Strijckmans, V; Bottlaender, M; Luo, H; Ottaviani, M; McPherson, D W; Loc'h, C; Fuseau, C; Knapp, F F; Mazière, B

    1997-05-01

    We studied the potential of three radiobrominated isomers of BrQNP, (Z(-,-)-[76Br]BrQNP, E(-,-)-[76Br]BrQNP and E(-,+)-[76Br]BrQNP), as suitable radioligands for imaging of central muscarinic cholinergic receptors in the human brain. These radioligands were stereospecifically prepared by electrophilic radiobromodestannylation of the respective tributylstannyl precursors using no-carrier-added [76Br]BrNH4 and peracetic acid. Preliminary pharmacological characterizations were determined by biodistribution, autoradiography, competition, displacement and metabolite studies in rats. The (-,-)-configuration presented important specific uptakes in brain muscarinic cholinergic receptor (mAChR)-rich structures and in heart, low metabolization rates and an apparent M2 selectivity. The (-,+)-configuration revealed more rapid clearance, lower uptake, a higher metabolization rate and an apparent M1 selectivity. Reversibility of the binding was confirmed for the three radiotracers. Positron emission tomography in the living baboon brain revealed high and rapid uptake in the brain and accumulation in the mAChR-rich structures studied. At 30 min p.i., the E(-,-)-radiotracer reached a plateau in cortex, pons and thalamus with concentrations of 29%, 24% and 19% ID/l, respectively. Z(-,-)-[76Br]BrQNP also accumulated in these structures, reaching a maximal uptake (27% ID/l) in the cortex 2 h p.i. At 5 min p.i. a plateau (17% ID/l) was only observed in the cortex for the E(-, +)-[76Br]BrQNP; by contrast, the other structures showed slow washout. After 3 weeks, the (-,-)-radiotracers were studied in the same baboon pretreated with dexetimide (1 mg/kg), a well-known muscarinic antagonist. In all the mAChR structures, the highly reduced uptake observed after this preloading step indicates that these radiotracers specifically bind to muscarinic receptors. Z(-, -)-[76Br]BrQNP, which is displaced in higher amounts from M2 mAChR-enriched structures, reveals an M2 affinity. The two isomers

  5. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  6. Trans fatty acid isomers in human health and in the food industry.

    PubMed

    Valenzuela, A; Morgado, N

    1999-01-01

    Trans fatty acids are unsaturated fatty acids with at least one double bond in the trans configuration. These fatty acids occur naturally in dairy and other natural fats and in some plants. However, industrial hydrogenation of vegetable or marine oils is largely the main source of trans fatty acids in our diet. The metabolic effect of trans isomers are today a matter of controversy generating diverse extreme positions in light of biochemical, nutritional, and epidemiological studies. Trans fatty acids also have been implicated in the etiology of various metabolic and functional disorders, but the main concern about its health effects arose because the structural similarity of these isomers to saturated fatty acids, the lack of specific metabolic functions, and its competition with essential fatty acids. The ingestion of trans fatty acids increases low density lipoprotein (LDL) to a degree similar to that of saturated fats, but it also reduces high density lipoproteins (HDL), therefore trans isomers are considered more atherogenic than saturated fatty acids. Trans isomers increase lipoprotein(a), a non-dietary-related risk of atherogenesis, to levels higher than the corresponding chain-length saturated fatty acid. There is little evidence that trans fatty acids are related to cancer risk at any of the major cancer sites. Considerable improvement has been obtained with respect to the metabolic effect of trans fatty acids due the development of analytical procedures to evaluate the different isomers in both biological and food samples. The oleochemical food industries have developed several strategies to reduce the trans content of hydrogenated oils, and now margarine and other hydrogenated-derived products containing low trans or virtually zero trans are available and can be obtained in the retail market. The present review provides an outline of the present status of trans fatty acids including origin, analytical procedures, estimated ingestion, metabolic effects

  7. Impact of the electron environment on the lifetime of the {sup 229}Th{sup m} low-lying isomer

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2007-11-15

    The question of the lifetime of the {sup 229}Th{sup m} low-lying isomer is considered in light of current experimental research. A strong effect of the electron shell on lifetime is demonstrated, depending on the energy of the isomer. Calculations are performed within the framework of the multiconfiguration Dirac-Fock method. The calculated lifetime ranges from around 1 min down to 10{sup -5} s. Prospects for further experimental research of the isomer are discussed.

  8. Structure/effect studies of fatty acid isomers as skin penetration enhancers and skin irritants.

    PubMed

    Aungst, B J

    1989-03-01

    Comparisons were made of branched vs unbranched saturated fatty acids and cis vs trans unsaturated fatty acids as skin penetration enhancers and primary skin irritants. Skin penetration studies used naloxone base as the diffusant, propylene glycol as the vehicle, and human skin. Maximum naloxone flux was with C9-12-branched and unbranched fatty acids. For C5-14 fatty acids, branched and unbranched isomers had similar effects. One branched C18 fatty acid isomer (C16-branched isostearic acid) was more effective in enhancing skin penetration than a differently branched (C2-branched isostearic acid) or unbranched C18 isomer (stearic acid). There was no significant difference between cis and trans unsaturated C16-18 fatty acid isomers in their effects on naloxone flux, and all unsaturated fatty acids were more effective enhancers than the corresponding saturated isomers. Several of these fatty acid/propylene glycol vehicles were evaluated in a rabbit primary skin irritation test. Irritation indices were poorly correlated with the effectiveness of the vehicles in enhancing naloxone flux. It was possible to enhance naloxone skin penetration greatly with a vehicle with only minimal skin irritation potential.

  9. Urinary excretion of isomers of biliverdin after destruction in vivo of haemoproteins and haemin.

    PubMed Central

    Hirota, K; Yamamoto, S; Itano, H A

    1985-01-01

    The amount and isomeric composition of urinary biliverdin in rabbits were analysed by h.p.l.c. Physiological values were maintained after the injection of haemin. On the other hand, when haemoglobins from several mammalian species were injected into rabbits, the excretion of biliverdin-IX alpha and biliverdin-IX beta were increased 6-18-fold and 32-66-fold respectively over physiological excretion. Injection of myoglobin resulted in a 44-fold increase in excretion of the IX alpha-isomer. Coupled oxidation with ascorbate of haemoglobin and myoglobin by oxygen produced mainly the IX alpha- and IX beta-isomers from haemoglobin and the IX alpha-isomer from myoglobin. The destruction of part of the haem from injected haemoproteins by non-enzymic chemical degradation would account for the observed respective increases in the excretion of biliverdin isomers. The excretion of biliverdin isomers after the injection of phenylhydrazine into rabbits was similar to that after the injection of haemoglobin. PMID:4038276

  10. Natural and bioremediated selective degradation of polycyclic aromatic alkyl isomers in oil-contaminated soils

    SciTech Connect

    Sauer, T.C.; McCarthy, K.; Uhler, A.; Porta, A.

    1995-12-31

    In studies where 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) are determined as part of characterizing released oil constituents in environmental samples, the changes in composition of PAHs from weathering (e.g., evaporation, dissolution) and biodegradation are most often represented by PAH alkyl homologue distributions. Concentrations of PAH alkyl groups are the sum of individual PAH isomers of similar carbon number; such as for C2-naphthalenes, the C2 alkyl group consists of dimethyl and ethyl substitutions on the parent naphthalene. In weathering and degradation studies, the changes in relative concentration of the individual isomers within an alkyl group are rarely reported. In a field study of oiled soils, the authors looked at the selective losses, for a period of a year, of individual PAH alkyl isomers that occur both naturally by weathering processes and through the use of bioremediation technology. Results showed that decreases in alkyl group concentrations were not always represented by similar losses of each isomer in the alkyl group, but were often due to the preferential or selective loss of certain isomers in the group.

  11. Perfluorinated acid isomer profiling in water and quantitative assessment of manufacturing source.

    PubMed

    Benskin, Jonathan P; Yeung, Leo W Y; Yamashita, Nobuyoshi; Taniyasu, Sachi; Lam, Paul K S; Martin, Jonathan W

    2010-12-01

    A method for isomer profiling of perfluorinated compounds (PFCs) in water was developed and applied to quantitatively assess the contributions from electrochemical (ECF) and telomer manufacturing processes around source regions of North America, Asia, and Europe. With the exception of 3 sites in Japan, over 80% of total perfluorooctanoate (PFOA, C(7)F(15)COO(-)) was from ECF, with the balance attributable to strictly linear (presumably telomer) manufacturing source(s). Comparing PFOA isomer profiles in samples from China, with PFOA obtained from a local Chinese manufacturer, indicated <3% difference in overall branched isomer content; thus, exclusive contribution from local ECF production cannot be ruled out. In Tokyo Bay, ECF, linear-telomer, and isopropyl-telomer sources contributed to 33%, 53%, and 14% of total PFOA, respectively. Perfluorooctane sulfonate (PFOS, C(8)F(17)SO(3)(-)) isomer profiles were enriched in branched content (i.e., >50% branched) in the Mississippi River but in all other locations were similar or only slightly enriched in branched content relative to historical ECF PFOS. Isomer profiles of other PFCs are also reported. Overall, these data suggest that, with the exception of Tokyo Bay, ECF manufacturing has contributed to the bulk of contamination around these source regions, but other sources are significant, and remote sites should be monitored.

  12. Geometric isomerism in the OCS-CS2 complex: observation of a cross-shaped isomer.

    PubMed

    Norooz Oliaee, J; Mivehvar, F; Dehghany, M; Moazzen-Ahmadi, N

    2010-07-15

    Infrared spectra of the OCS-CS(2) van der Waals complex were studied in a pulsed supersonic slit-jet using a tunable diode laser probe. Spectra were recorded in the region of nu(1) fundamental of OCS. Two bands were observed and analyzed, one band corresponding to a previously observed planar isomer and another due to a new isomer which has a nonplanar cross-shaped structure. The intermolecular (center of mass) separation of the planar isomer is 3.87017(2) A. The structure of this isomer has been determined previously from its rotational spectrum. The cross-shaped isomer was observed here for the first time, and its structure was determined with the help of isotopic substitution. Two structural parameters, the intermolecular distance (R) and an angle (phi), are necessary to completely define the structure. These were determined to be R 3.5553(8) A and phi = 104.82(22) degrees which are in fair agreement with the theoretical predictions.

  13. Isomer profiles of perfluoroalkyl substances in water and soil surrounding a chinese fluorochemical manufacturing park.

    PubMed

    Jin, Hangbiao; Zhang, Yifeng; Zhu, Lingyan; Martin, Jonathan W

    2015-04-21

    Despite that China is the largest global manufacturer of perfluoroalkyl substances (PFASs), the manufacturing methods and isomer purity of these chemicals are generally unknown. Here, sampling was conducted around a major fluorochemical manufacturing park in China in 2012, including soil and water collection inside the park, including from a wastewater treatment plant (WWTP), as well as in surrounding rivers and soil (∼15 km radius). Perfluoroalkyl sulfonates (PFSAs) were lower than perfluoroalkyl carboxylates (PFCAs) in all samples, and short-chain (C4-C6) PFCAs were predominant. Perfluoroalkyl phosphonates and phosphate diesters were occasionally detected, but at low detection frequency. Branched isomers of perfluorobutanesulfonate (PFBS) are reported for the first time, accounting for 15-27% of total PFBS in water. An enrichment of isopropyl-PFOA (28%) was found in WWTP influent, suggesting its manufacturing primarily by isopropyl telomerization. More numerous branched isomers were observed for the longer C9-C13 PFCAs (e.g., C12 PFCA had 16 branched isomers), including high proportions of one major branched isomer (likely isopropyl), possibly as impurities from isopropyl-PFOA manufacturing. Overall, short-chain perfluorinated acids were the predominant PFASs being released, but PFOA was still a major chemical in use at this site, primarily from isopropyl telomerization.

  14. Effects of Bond Location on the Ignition and Reaction Pathways of trans-Hexene Isomers.

    PubMed

    Wagnon, Scott W; Barraza-Botet, Cesar L; Wooldridge, Margaret S

    2015-07-16

    Chemical structure and bond location are well-known to impact combustion reactivity. The current work presents new experimental autoignition and speciation data on the three trans-hexene isomers (1-hexene, trans-2-hexene, and trans-3-hexene), which describe the effects of the location of the carbon-carbon double bond. Experiments were conducted with the University of Michigan rapid compression facility to determine ignition delay times from pressure time histories. Stoichiometric (ϕ = 1.0) mixtures at dilution levels of buffer gas:O2 = 7.5 (mole basis) were investigated at an average pressure of 11 atm and temperatures from 837 to 1086 K. Fast gas sampling and gas chromatography were also used to quantitatively measure 13 stable intermediate species formed during the ignition delay period of each isomer at a temperature of ∼900 K. The measured ignition delay times and species measurements were in good agreement with previous experimental studies at overlapping conditions. The results were modeled using a gasoline surrogate reaction mechanism from Lawrence Livermore National Laboratory, which contains a submechanism for the trans-hexene isomers. The model predictions captured the overall autoignition characteristics of the hexene isomers well (within a factor of 2), as well as the time histories of several of the intermediate species (e.g., propene). However, there were discrepancies between the model predictions and the experimental data for some species, particularly for the 3-hexene isomer.

  15. Stability and isomerization reactions of phenyl cation C6H5+ isomers

    NASA Astrophysics Data System (ADS)

    Shi, Dandan; Yang, Xue; Zhang, Xiaomei; Shan, Shimin; Xu, Haifeng; Yan, Bing

    2016-03-01

    As a key polyatomic molecular cation that plays a pivotal role in growth of the polycyclic aromatic hydrocarbons, phenyl cation C6H5+ exhibits various isomers and isomerization reactions. Investigation on the structure and stability of the isomers as well as the isomerization is important for better understanding the chemical reactions involving C6H5+ cations. In this work, we have performed a theoretical study on the stability and isomerization reactions of C6H5+ isomers at density functional theory B3LYP/6-311G (d, p) level. We have obtained a total of 60 isomers of C6H5+ cations, most of which are reported for the first time. The geometries, vibrational frequencies, thermodynamic properties and stability of 28 out of 60 isomers have been summarized in detail. Different ring-to-ring and ring-to-chain isomerization pathways, which are connected via 28 transition states, have been investigated using the intrinsic reaction coordinate method. The results show that the isomerization reactions occur via hydrogen migration followed by bond-breaking and reconstruction.

  16. Theoretical investigation on isomer formation probability and free energy of small C clusters

    NASA Astrophysics Data System (ADS)

    Lin, Zheng-Zhe

    2015-06-01

    Molecular dynamics simulations and free energy calculations are employed to investigate the evolution, formation probability, detailed balance, and isomerization rate of small C cluster isomer at 2500 K. For C10, the isomer formation probability predicted by free energy is in good agreement with molecular dynamics simulation. However, for C20, C30, and C36, the formation probabilities predicted by free energy are not in agreement with molecular dynamics simulations. Although the cluster systems are in equilibrium, detailed balance is not reached. Such results may be attributed to high transformation barriers between cage, bowl, and sheet isomers. In summary, for mesoscopic nanosystems the free energy criterion, which commonly holds for macroscopic systems in dynamic equilibrium, may not provide a good prediction for isomer formation probability. New theoretical criterion should be further investigated for predicting the isomer formation probability of a mesoscopic nanosystem. Project supported by the National Natural Science Foundation of China (Grant No. 11304239) and the Fundamental Research Funds for the Central Universities.

  17. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry.

    PubMed

    Reading, Eamonn; Munoz-Muriedas, Jordi; Roberts, Andrew D; Dear, Gordon J; Robinson, Carol V; Beaumont, Claire

    2016-02-16

    Ion mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood. Here the gas phase conformational space of drug and drug-like molecules has been investigated as well as the influence of protonation and adduct formation on the conformations of drug metabolite structural isomers. The use of CCSs, measured from IM-MS and molecular modeling information, for the structural identification of drug metabolites has also been critically assessed. Detection of structural isomers of drug metabolites using IM-MS is demonstrated and, in addition, a molecular modeling approach has been developed offering rapid conformational searching and energy assessment of candidate structures which agree with experimental CCSs. Here it is illustrated that isomers must possess markedly dissimilar CCS values for structural differentiation, the existence and extent of CCS differences being ionization state and molecule dependent. The results present that IM-MS and molecular modeling can inform on the identity of drug metabolites and highlight the limitations of this approach in differentiating structural isomers. PMID:26752623

  18. Classification of polychlorinated biphenyl residues: isomers vs. homologue concentrations in modeling aroclors and polychlorinated biphenyl residues

    SciTech Connect

    Stalling, D.L.; Schwartz, T.R.; Dunn, W.J. III; Wold, S.

    1987-07-15

    SIMCA (soft independent modeling by class analogy), a principal components chemometric modeling program, was used to examine complex mixtures of polychlorinated biphenyl residues (PCBs) in fish and turtles. Individual PCB isomers were measured by electron capture capillary gas chromatography. The authors calculated PCB (Cl/sub 1-10/) congener concentrations by summing 105 isomer concentrations into homologue subgroups. Information theory was used to estimate the maximum information content of the two data sets. The authors compared the results from principal components modeling of samples and Aroclors by using both isomer and Cl/sub 1-10/ homologue concentrations. Modeling of normalized data from Aroclors or their mixtures gave similar sample score plots for both data sets. However, modeling environmental sample congener concentrations gave erroneous classification results when compared to results from modeling isomer data. Although the Cl/sub 1-10/ sums accurately reflect the concentration of PCBs in the sample, calculations to determine PCB profiles as Aroclor mixtures should be made by using individual PCB isomers.

  19. Nucleation and stabilization of carbon-rich structures in interstellar media

    SciTech Connect

    Patra, N.; Král, P.; Sadeghpour, H. R. E-mail: pkral@uic.edu

    2014-04-10

    We study the conditions under which carbon clusters of different sizes form and stabilize. We describe the approach to equilibrium by simulating tenuous carbon gas dynamics to long times. First, we use reactive molecular dynamics simulations to describe the nucleation of long chains, large clusters, and complex cage structures in carbon- and hydrogen-rich interstellar gas phases. We study how temperature, particle density, the presence of hydrogen, and carbon inflow affect the nucleation of molecular moieties with different characteristics, in accordance with astrophysical conditions. We extend the simulations to densities that are orders of magnitude lower than current laboratory densities, to temperatures that are relevant to circumstellar environments of planetary nebulae, and microsecond formation times. We correlate cluster size distributions from the simulations with thermodynamic equilibrium at low temperatures and gas densities, where entropy plays a significant role.

  20. Data Rich, Information Poor

    SciTech Connect

    Kaplan, P.G.; Rautman, C.A.

    1998-11-09

    Surviving in a data-rich environment means understanding the difference between data and information. This paper reviews an environmental case study that illustrates that understanding and shows its importance. In this study, a decision problem was stated in terms of au economic-objective fimction. The function contains a term that defines the stochastic relationship between the decision and the information obtained during field chamctetition for an environmental contaminant. Data is defied as samples drawn or experimental realizations of a mudom fimction. Information is defined as the quantitative change in the value of the objective fiction as a result of the sample.

  1. [C72]—Fullerene: Enumeration of Substitution Isomers Based on the Vertex, Edge and Facial Differentiation

    NASA Astrophysics Data System (ADS)

    Smolyakov, V. M.; Sokolov, D. V.; Nilov, D. Yu.; Grebeshkov, V. V.; Bolshakov, V. V.

    2010-11-01

    The paper discusses substitution isomers [C72]—fullerene by vertices, edges and faces. The derivation of isomers is based on the Polya theorem [1]. Formulas of symmetry Z, generating functions for identification of the number of substitution isomers of [C72]—fullerene, distribution of isomers over families ρ(m) and depending on number m of places of substitution is established. Based on the models [2-5] an addictive assessment scheme of the properties of gaseous carbon clusters [C60]-[C100] is obtained, and calculations of gaseous carbon clusters ΔfH° 298к, S° 298к not studied experimentally yet, are carried out.

  2. Isomer-specific accumulation of perfluorooctane sulfonate in the liver of chicken embryos exposed in ovo to a technical mixture.

    PubMed

    O'Brien, Jason M; Kennedy, Sean W; Chu, Shaogang; Letcher, Robert J

    2011-01-01

    Prior to its recent phaseout, perfluorooctane sulfonate (PFOS) was produced by electrochemical fluorination processes, which yielded technical mixtures composed of linear isomer (∼65-79%) and several branched isomers (∼21-35%). Because PFOS can biomagnify in wildlife, birds that occupy higher trophic levels are at increased risk of exposure. We hypothesized that the pharmacokinetic properties of PFOS are isomer-specific in developing chicken (Gallus gallus domesticus) embryos exposed to technical grade PFOS (T-PFOS). In the present study, T-PFOS was composed of 62.7% linear isomer (L-PFOS), and 37.3% branched isomer, including six mono(trifluoromethyl)-branched isomers and four bis(trifluoromethyl)-branched isomers. Concentrations of 0.1, 5, or 100 µg/g of T-PFOS were injected into the air cell of chicken eggs prior to incubation. After pipping, compared with T-PFOS, the PFOS isomer profile in embryonic liver tissue for the 0.1 µg/g dose group showed 21% enrichment in the proportion of L-PFOS with a corresponding decrease in the proportion of branched isomers. Not all branched isomers were discriminated against at equal rates. The proportion of two mono(trifluoromethyl)-branched isomers and three bis(trifluoromethyl)-branched isomers decreased to a greater degree than other branched isomers. In contrast, the mono-branched isomer, P6MHpS, was overrepresented in the low-dose group. In the higher dose groups, L-PFOS was still enriched but only by approximately 10%, which indicated a dose-dependent change in isomer composition relative to T-PFOS. These results show that accumulation of PFOS in chicken embryo livers is dependent on the presence and position of branches on the alkyl backbone. This supports the hypothesis that the pharmacokinetics of PFOS are isomer-specific in biota, and may help explain why wildlife PFOS burdens are dominated by L-PFOS relative to T-PFOS mixtures.

  3. Linear and branched perfluorooctane sulfonate (PFOS) isomer patterns differ among several tissues and blood of polar bears.

    PubMed

    Greaves, Alana K; Letcher, Robert J

    2013-09-01

    Perfluorooctane sulfonate (PFOS) is a globally distributed persistent organic pollutant that has been found to bioaccumulate and biomagnify in aquatic food webs. Although principally in its linear isomeric configuration, 21-35% of the PFOS manufactured via electrochemical fluorination is produced as a branched structural isomer. PFOS isomer patterns were investigated in multiple tissues of polar bears (Ursus maritimus) from East Greenland. The liver (n = 9), blood (n = 19), brain (n = 16), muscle (n = 5), and adipose (n = 5) were analyzed for linear PFOS (n-PFOS), as well as multiple mono- and di-trifluoromethyl-substituted branched isomers. n-PFOS accounted for 93.0 ± 0.5% of Σ-PFOS isomer concentrations in the liver, whereas the proportion was significantly lower (p<0.05) in the blood (85.4 ± 0.5%). Branched isomers were quantifiable in the liver and blood, but not in the brain, muscle, or adipose. In both the liver and blood, 6-perfluoromethylheptane sulfonate (P6MHpS) was the dominant branched isomer (2.61 ± 0.10%, and 3.26 ± 0.13% of Σ-PFOS concentrations, respectively). No di-trifluoromethyl-substituted isomers were detectable in any of the tissues analyzed. These tissue-specific isomer patterns suggest isomer-specific pharmacokinetics, perhaps due to differences in protein affinities, and thus differences in protein interactions, as well transport, absorption, and/or metabolism in the body.

  4. Advances in research on cis-9, trans-11 conjugated linoleic acid: a major functional conjugated linoleic acid isomer.

    PubMed

    Wang, Tao; Lee, Hong Gu

    2015-01-01

    Conjugated linoleic acid (CLA) consists of a group of positional and geometric conjugated isomers of linoleic acid. Since the identification of CLA as a factor that can inhibit mutagenesis and carcinogenesis, thousands of studies have been conducted in the last several decades. Among the many isomers discovered, cis-9, trans-11 CLA is the most intensively studied because of its multiple, isomer-specific effects in humans and animals. This paper provides an overview of the available data on cis-9, trans-11 CLA, including its isomer-specific effects, biosynthesis, in vivo/in vitro research models, quantification, and the factors influencing its content in ruminant products.

  5. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  6. Studies of multi-quasiparticle k-isomers in rare-earth and trans-fermium nuclei.

    SciTech Connect

    Kondev, F. G.; Dracoulis, G. D.; Khoo, T. L.; Lane, G. J.; Byrne, A. P.; Kibedi, T.; Ahmad, I.; Carpenter, M. P.; Janssens, R. V. F.; Lauritzen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Chowdhury, P.; Tandel, S. K.; Australian National Univ.; Univ. of Massachusetts Lowell

    2007-01-01

    Nuclear K-isomers play an important role in understanding the structure of deformed axially symmetric nuclei. Examples are presented of recent studies in the rare-earth region (A {approx} 180) using deep-inelastic and multi-nucleon transfer reactions, and in the trans-fermium region (A {approx} 250) using fusion-evaporation reactions. A specific two-level mixing scenario is invoked to explain the unusual decay of the K{sup {pi}} = 13{sup +} isomer in {sup 174}Lu. The identification of 2- and 4-quasiparticle isomers in {sup 254}No is discussed and predictions of similar isomers in neighboring No and Rf nuclei are presented.

  7. Generation of viroid conformational isomers that are stable to incubation with magnesium ions and in a nuclear extract from tomato plants.

    PubMed Central

    Pace, U; Branch, A D; Robertson, H D

    1992-01-01

    We identified conditions for heating and quick cooling viroid RNAs in the presence of salt which lead to the production of conformational isomers stable to incubation for at least 45 minutes at 30 degrees in the presence of magnesium ions. Elution in 0.3 M NaCl allowed the purification of an electrophoretically slow form of an in vitro transcript carrying a complete copy of the potato spindle tuber viroid RNA sequence. Slow forms of this transcript and of kinase-labeled linear viroid RNA persisted for longer than 20 minutes when incubated with a protein-rich extract prepared from the nuclei of uninfected tomato plants, although both were slowly cleaved by a nuclease present in this extract. The fast form of the transcript was highly resistant to this tomato ribonuclease. The slow form of the transcript was much more susceptible to cleavage by RNase T1 than the fast form of this RNA, suggesting that the reduced gel mobility of the slow forms results from their relatively open structure. The ability to purify viroid conformational isomers from polyacrylamide gels will facilitate biochemical studies aimed at identifying host components interacting with RNAs of the viroid replication complex, which may not all be present in the most thermodynamically favored rodlike structure of mature viroids. Images PMID:1282703

  8. Isomer discrimination of polycyclic aromatic hydrocarbons in the Murchison meteorite by resonant ionization

    NASA Astrophysics Data System (ADS)

    Callahan, Michael P.; Abo-Riziq, Ali; Crews, Bridgit; Grace, Louis; de Vries, Mattanjah S.

    2008-12-01

    We have used two-color resonant two-photon ionization (2C-R2PI) mass spectrometry to discriminate between isomers of polycyclic aromatic hydrocarbons in the Murchison meteorite. We measured the 2C-R2PI spectra of chrysene and triphenylene seeded in a supersonic jet by laser desorption. Since each isomer differs in its R2PI spectrum, we can distinguish between isomers using wavelength dependent ionization and mass spectrometry. We found both chrysene and triphenylene in sublimates from carbonaceous residue obtained by acid demineralization of the Murchison meteorite. Their R2PI mass spectra show only the molecular ion, even though these samples contain a complex inventory of organic molecules.

  9. Two New Isomers of Palmityl-4-hydroxycinnamate from Flowers of Taraxacum Species.

    PubMed

    Dudáš, Matej; Vilková, Mária; Béres, Tibor; Repcák, Miroslav; Mártonfi, Pavol

    2016-06-01

    Two isomers, (Z)- and (E)-palmityl 4-hydroxycinnamate [hexadecyl(2Z)-3-(4-hydroxyphenyl)prop-2-enoate and hexadecyl(2E)-3-(4-hydroxyphenyl)prop-2-enoate] were isolated for the first time from ligulate flowers of Taraxacum linearisquameum Soest (sect. Taraxacum). The highest amount of these compounds was detected in pollen grains; 0.26 mg/100 mg DW of the (E)-isomer and 0.096 mg/100 mg DW of the (Z)-isomer. The structures of these compounds were elucidated by a combination of HPLC-ESI-Qtof-MS and 1D and 2D NMR spectroscopy. Their presence was confirmed in other species of Taraxacum, but they were not found in the male - sterile triploid agamospermous taxon T. parnassicum. PMID:27534130

  10. Fast decay of a three-quasiparticle isomer in {sup 171}Tm

    SciTech Connect

    Walker, P. M.; Wood, R. J.; El-Masri, H. M.; Wheldon, C.; Dracoulis, G. D.; Kibedi, T.; Bark, R. A.; Davidson, P. M.; Lane, G. J.; Moon, C.; Bruce, A. M.; Orce, J. N.; Estevez, F. M. Prados; Byrne, A. P.; Wilson, A. N.

    2009-04-15

    Incomplete-fusion reactions have been used to study high-spin states in {sup 171}Tm. Gamma rays and conversion electrons were measured using pulsed-beam conditions for enhanced isomer sensitivity. A K{sup {pi}}=19/2{sup +}, three-quasiparticle isomer was identified, with a half-life of 1.7(2){mu}s. The faster than expected transition rates from the isomer can be understood as being due to a chance near-degeneracy, with mixing between the isomeric state and the I{sup {pi}}=19/2{sup +} member of the one-quasiparticle rotational band to which it decays. The implied mixing matrix element is 12(2) eV.

  11. Gas-liquid chromatographic properties of positional isomers of methyl thia, selena, and tellura laurate analogs.

    PubMed

    Jie, M S; Bakare, O; Cheung, Y K; Chau, S H

    1997-06-01

    Gas-liquid chromatographic analyses of three complete series of synthetic positional isomers of methyl thia, selena, and tellura laurate analogs were carried on a nonpolar (SE-30) and a polar (SP-2330) stationary phase. The average ECL (equivalent chain length) values of the thia, selena, and tellura laurate on SE-30 stationary phase were 13.8, 14.8, and 15.7, respectively, while on SP-2330 the average values for the same series were 17.1, 19.0, and 19.1, respectively. Positional isomers with the heteroatom at the 2-position exhibited the lowest ECL values, while those with the heteroatom at the omega-1 position gave the highest ECL values and were readily separated from the other positional isomers of the same series of analogs by this technique.

  12. Discovery and identification of a series of alkyl decalin isomers in petroleum geological samples.

    PubMed

    Wang, Huitong; Zhang, Shuichang; Weng, Na; Zhang, Bin; Zhu, Guangyou; Liu, Lingyan

    2015-07-01

    The comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) has been used to characterize a crude oil and a source rock extract sample. During the process, a series of pairwise components between monocyclic alkanes and mono-aromatics have been discovered. After tentative assignments of decahydronaphthalene isomers, a series of alkyl decalin isomers have been synthesized and used for identification and validation of these petroleum compounds. From both the MS and chromatography information, these pairwise compounds were identified as 2-alkyl-decahydronaphthalenes and 1-alkyl-decahydronaphthalenes. The polarity of 1-alkyl-decahydronaphthalenes was stronger. Their long chain alkyl substituent groups may be due to bacterial transformation or different oil cracking events. This systematic profiling of alkyl-decahydronaphthalene isomers provides further understanding and recognition of these potential petroleum biomarkers.

  13. Curcumin promotes fibril formation in F isomer of human serum albumin via amorphous aggregation.

    PubMed

    Mothi, Nivin; Muthu, Shivani A; Kale, Avinash; Ahmad, Basir

    2015-12-01

    We here describe the amyloid fibrils promoting behavior of curcumin, which ability to inhibit amyloid fibrillization of several globular proteins is well documented. Transmission electron microscopy (TEM), 90° light scattering (RLS), thioflavine T (ThT) and Congo red (CR) binding studies demonstrated that both F (pH3.4) and E (pH1.8) isomers of human serum albumin (HSA) in the absence and presence of curcumin initially converted into amorphous aggregates. Interestingly, only the sample containing F isomer preincubated with curcumin formed fibrils on incubation for longer period. We also found that curcumin strongly bind to the F isomer, alter its secondary, tertiary structures and thermal stability. We conclude that the conversion of intermediate states into amorphous aggregate to fibrils is dictated by its conformation. This study provides unique insights into ligand-controlled HSA aggregation pathway and should provide a useful model system to study both amorphous and the fibrillar aggregation of multidomain proteins.

  14. Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom

    PubMed Central

    Pandey, Shivendra; Johnson, Daniel; Kaplan, Ryan; Klobusicky, Joseph; Menon, Govind; Gracias, David H.

    2014-01-01

    The spontaneous self-organization of conformational isomers from identical precursors is of fundamental importance in chemistry. Since the precursors are identical, it is the multi-unit interactions, characteristics of the intermediates, and assembly pathways that determine the final conformation. Here, we use geometric path sampling and a mesoscale experimental model to investigate the self-assembly of a model polyhedral system, an octahedron, that forms two isomers. We compute the set of all possible assembly pathways and analyze the degrees of freedom or rigidity of intermediates. Consequently, by manipulating the degrees of freedom of a precursor, we were able to experimentally enrich the formation of one isomer over the other. Our results suggest a new approach to direct pathways in both natural and synthetic self-assembly using simple geometric criteria. We also compare the process of folding and unfolding in this model with a geometric model for cyclohexane, a well-known molecule with chair and boat conformations. PMID:25299051

  15. Comparative study for elastic electron collisions on C{sub 2}N{sub 2} isomers

    SciTech Connect

    Michelin, S. E.; Falck, A. S.; Mazon, K. T.; Piacentini, J. J.; Scopel, M. A.; Silva, L. S. S. da; Oliveira, H. L.; Fujimoto, M. M.; Iga, I.; Lee, M.-T.

    2006-08-15

    In this work, we present a theoretical study on elastic electron collisions with the four C{sub 2}N{sub 2} isomers. More specifically, calculated differential, integral, and momentum transfer cross sections are reported in the 1-100 eV energy range. Calculations are performed at both the static-exchange-absorption and the static-exchange-polarization-absorption levels. The iterative Schwinger variational method combined with the distorted wave approximation is used to solve the scattering equations. Our study reveals an interesting trend of the calculated cross sections for the four isomers. In particular, strong isomer effect is seen at low incident energies. Also, we have identified a shape resonance which leads to a depression in the calculated partial integral cross section.

  16. Two New Isomers of Palmityl-4-hydroxycinnamate from Flowers of Taraxacum Species.

    PubMed

    Dudáš, Matej; Vilková, Mária; Béres, Tibor; Repcák, Miroslav; Mártonfi, Pavol

    2016-06-01

    Two isomers, (Z)- and (E)-palmityl 4-hydroxycinnamate [hexadecyl(2Z)-3-(4-hydroxyphenyl)prop-2-enoate and hexadecyl(2E)-3-(4-hydroxyphenyl)prop-2-enoate] were isolated for the first time from ligulate flowers of Taraxacum linearisquameum Soest (sect. Taraxacum). The highest amount of these compounds was detected in pollen grains; 0.26 mg/100 mg DW of the (E)-isomer and 0.096 mg/100 mg DW of the (Z)-isomer. The structures of these compounds were elucidated by a combination of HPLC-ESI-Qtof-MS and 1D and 2D NMR spectroscopy. Their presence was confirmed in other species of Taraxacum, but they were not found in the male - sterile triploid agamospermous taxon T. parnassicum.

  17. Effects of pentanol isomers on the phase behavior of phospholipid bilayer membranes.

    PubMed

    Griffin, Kathryn L; Cheng, Chih-Yin; Smith, Eric A; Dea, Phoebe K

    2010-11-01

    Differential scanning calorimetry (DSC) was used to analyze the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of pentanol isomers. The concentration of each pentanol isomer needed to induce the interdigitated phase was determined by the appearance of a biphasic effect in the main transition temperatures, the onset of a hysteresis associated with the main transition from the gel-to-liquid crystalline phase, and the disappearance of the pretransition. Lower threshold concentrations were found to correlate with isomers of greater alkyl chain length while branching of the alkyl chain was found to increase biphasic behavior. The addition of a methyl group to butanol systems drastically decreased threshold concentrations. However, as demonstrated in the DPPC/neopentanol system, branching of the alkyl chain away from the -OH group lowers the threshold concentration while maintaining a biphasic effect.

  18. Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20-C36.

    PubMed

    Małolepsza, Edyta; Witek, Henryk A; Irle, Stephan

    2007-07-26

    We employ the self-consistent-charge density-functional tight-binding (SCC-DFTB) method for computing geometric, electronic, and vibrational properties for various topological isomers of small fullerenes. We consider all 35 five- and six-member rings containing isomers of small fullerenes, C20, C24, C26, C28, C30, C32, C34, and C36, as first part of a larger effort to catalog CC distance distributions, valence CCC angle distributions, electronic densities of states (DOSs), vibrational densities of states (VDOSs), and infrared (IR) and Raman spectra for fullerenes C20-C180. Common features among the fullerenes are identified and properties characteristic for each specific fullerene isomer are discussed. PMID:17429953

  19. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Davidson, P. M.; Kibédi, T.; Nieminen, P.; Watanabe, H.; Wilson, A. N.

    2008-04-01

    The level scheme of 212Rn has been extended to spins of ∼ 38 ℏ and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ = 25 (2) ns and τ = 12 (2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.

  20. Computational design of multi-states monomolecular device using molecular hydrogen and C20 isomers

    NASA Astrophysics Data System (ADS)

    Ganji, M. Darvish

    2016-07-01

    We perform detailed calculations for the interaction of molecular hydrogen with C20isomers in the framework of density functional theory method. The adsorption of H2 outside the C20-e isomer with parallel orientation with respect to the plane of the hexagon is found to be the most stable adsorption configuration. Thus this might have potential for the hydrogen storing. We have also investigated the number and the position of adsorption sites in the pentagon for the parallel configurations of the H2/C20 systems. We find two stable configurations of the molecule for the C20-bowl isomer that have a small difference in energy. Thus, surprisingly, despite their apparent simplicity these H2/C20-bowl systems are shown to exhibit the flip-flop motion by a small current pulse. Hence, it might be a candidate for multi-states monomolecular device. Convenient experimental techniques such as field emission microscopy are proposed to test these predictions.

  1. Prompt and delayed spectroscopy of {sup 142}Tb using recoil-isomer tagging

    SciTech Connect

    Mason, P. J. R.; Cullen, D. M.; Kishada, A. M.; Rigby, S. V.; Varley, B. J.; Scholey, C.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaenen, A.-P.; Maentyniemi, K.; Nieminen, P.; Nyman, M.; Pakarinen, J.

    2009-02-15

    Recoil-isomer tagging has been used to characterize the states built upon an I{sup {pi}}=8{sup +} isomer in {sup 142}Tb. High-spin states of the neutron-deficient nucleus {sup 142}Tb were populated using an {sup 54}Fe beam, accelerated onto a {sup 92}Mo target of thickness {approx}500 {mu}g/cm{sup 2} at energies of 245, 252, and 265 MeV using the K130 cyclotron at the University of Jyvaeskylae, Finland. Use of the JUROGAM target-position Ge-detector array coupled with the GREAT focal-plane spectrometer at the RITU gas-filled recoil separator has significantly increased the efficiency of the isomer-tagging technique. The rotational band built upon the I{sup {pi}}=8{sup +} isomeric state was established with isomer-tagged {gamma}-{gamma} coincidence data and angular distributions were measured for some of the more intensely populated states. Two previously unobserved bands that bypass the isomer were also established. The new data have been interpreted within the framework of the cranked-shell model. The data show good agreement with the calculated triaxial nuclear shape with {gamma}=-30 deg. for the {sup 142m2}Tb isomeric state. The B(M1)/B(E2) branching ratios, nuclear alignment, signature splitting, and reduced transition probability, B(E1), of the isomeric state have been systematically compared with those of the neighboring nuclei. These comparisons give further evidence for the {pi}h{sub 11/2} x {nu}h{sub 11/2} configuration of the isomer.

  2. Trophic magnification and isomer fractionation of perfluoroalkyl substances in the food web of Taihu Lake, China.

    PubMed

    Fang, Shuhong; Chen, Xinwei; Zhao, Shuyan; Zhang, Yifeng; Jiang, Weiwei; Yang, Liping; Zhu, Lingyan

    2014-02-18

    Biomagnification of perfluoroalkyl substances (PFASs) are well studied in marine food webs, but related information in fresh water ecosystem and knowledge on fractionation of their isomers along the food web are limited. The distribution, bioaccumulation, magnification, and isomer fractionation of PFASs were investigated in a food web of Taihu Lake, China. Perfluorooctanesulfonate (PFOS) and perfluorocarboxylates (PFCAs) with longer carbon chain lengths, such as perfluorodecanoate (PFDA) and perfluoroundecanoate (PFUnA), were predominant in organisms, while perfluorohexanoate (PFHxA) and perfluorooctanoate (∑PFOA) contributed more in the water phase. The consistent profile signature of PFOA isomers in water phase with 3M electrochemical fluorination (ECF) products suggests that ECF production of PFOA still exists in China. Linear proportions of PFOA, PFOS and perfluorooctane sulfonamide (PFOSA) in the biota were in the range of 91.9-100%, 78.6-95.5%, and 72.2-95.5%, respectively, indicating preferential bioaccumulation of linear isomers in biota. Trophic magnification factors (TMFs) were estimated for PFDA (2.43), perfluorododecanoate (PFDoA) (2.68) and PFOS (3.46) when all biota were included, suggesting that PFOS and long-chained PFCAs are biomagnified in the fresh water food web. The TMF of PFOS isomers descended in the order: n-PFOS (3.86) > 3+5m-PFOS (3.35) > 4m-PFOS (3.32) > 1m-PFOS (2.92) > m2-PFOS (2.67) > iso-PFOS (2.59), which is roughly identical to their elution order on a FluoroSep-RP Octyl column, suggesting that hydrophobicity may be an important contributor for isomer discrimination in biota.

  3. Experimental investigation of the low temperature oxidation of the five isomers of hexane.

    PubMed

    Wang, Zhandong; Herbinet, Olivier; Cheng, Zhanjun; Husson, Benoit; Fournet, René; Qi, Fei; Battin-Leclerc, Frédérique

    2014-07-31

    The low-temperature oxidation of the five hexane isomers (n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethylbutane, and 2,3-dimethylbutane) was studied in a jet-stirred reactor (JSR) at atmospheric pressure under stoichiometric conditions between 550 and 1000 K. The evolution of reactant and product mole fraction profiles were recorded as a function of the temperature using two analytical methods: gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). Experimental data obtained with both methods were in good agreement for the five fuels. These data were used to compare the reactivity and the nature of the reaction products and their distribution. At low temperature (below 800 K), n-hexane was the most reactive isomer. The two methyl-pentane isomers have about the same reactivity, which was lower than that of n-hexane. 2,2-Dimethylbutane was less reactive than the two methyl-pentane isomers, and 2,3-dimethylbutane was the least reactive isomer. These observations are in good agreement with research octane numbers given in the literature. Cyclic ethers with rings including 3, 4, 5, and 6 atoms have been identified and quantified for the five fuels. While the cyclic ether distribution was notably more detailed than in other literature of JSR studies of branched alkane oxidation, some oxiranes were missing among the cyclic ethers expected from methyl-pentanes. Using SVUV-PIMS, the formation of C2-C3 monocarboxylic acids, ketohydroperoxides, and species with two carbonyl groups have also been observed, supporting their possible formation from branched reactants. This is in line with what was previously experimentally demonstrated from linear fuels. Possible structures and ways of decomposition of the most probable ketohydroperoxides were discussed. Above 800 K, all five isomers have about the same reactivity, with a larger formation from branched alkanes of some unsaturated species, such as allene and propyne, which

  4. cis-Isomers of Cytokinins Predominate in Chickpea Seeds throughout Their Development1

    PubMed Central

    Emery, Robert Joseph Neil; Leport, Laurent; Barton, Joanne Edith; Turner, Neil Clifford; Atkins, Craig Anthony

    1998-01-01

    Trans-isomers of cytokinins (CK) are thought to predominate and have greater biological activity than corresponding cis-isomers in higher plants. However, this study demonstrates a system within which the predominant CK are cis-isomers. CK were measured at four developmental stages in developing chickpea (Cicer arietinum L. cultivar Kaniva) seeds by gas chromatography-mass spectrometry. Concentrations were highest at an early endospermic fluid stage and fell considerably when the cotyledons expanded. The cis-isomers of zeatin nucleotide ([9R-MP]Z), zeatin riboside ([9R]Z), and zeatin (Z) were present in greater concentrations than those of corresponding trans-isomers: (trans)[9R-MP]Z, (trans)[9R]Z, (trans)Z, or dihydrozeatin riboside. Dihydrozeatin, dihydrozeatin nucleotide, and the isopentenyl-type CK concentrations were either low or not detectable. Root xylem exudates also contained predominantly cis-isomers of [9R-MP]Z and [9R]Z. Identities of (cis)[9R]Z and (cis)Z were confirmed by comparison of ion ratios and retention indices, and a full spectrum was obtained for (cis)[9R]Z. Tissues were extracted under conditions that minimized the possibility of RNase hydrolysis of tRNA following tissue disruption, being a significant source of the cis-CK. Since no isomerization of (trans)[2H]CK internal standards occurred, it is unlikely that the cis-CK resulted from enzymic or nonenzymic isomerization during extraction. Although quantities of total CK varied, similar CK profiles were found among three different chickpea cultivars and between adequately watered and water-stressed plants. Developing chickpea seeds will be a useful system for investigating the activity of cis-CK or determining the origin and metabolism of free CK. PMID:9701607

  5. Accumulation of D- vs. L-isomers of alanine and leucine in rat prostatic adenocarcinoma

    SciTech Connect

    Conti, P.S.; Schmall, B.; Bigler, R.E.; Zanzonico, P.B.; Kleinert, E.; Whitmore, W.F. Jr.

    1985-05-01

    It has been reported that tumor tissue may accumulate some D-amino acids preferentially over the L-isomers. In order to investigate the potential use of carbon-11 labeled amino acid isomers for in vivo tumor studies with positron emission tomography in patients, the tissue distributions of alanine and leucine, substrates for the A-type and L-type amino acid transport systems, respectively, were studied in Copenhagen rates bearing the Dunning R3327G prostatic adenocarcinoma. The authors have previously reported differences in the accumulation of A-type vs. L-type amino acids in rat prostatic adenocarcinoma and normal tissues. All compounds were labeled with C-14 in the carboxyl position with specific activities of 30.0-56.6 mCi/mmol. Higher levels of C-14 activity (Relative Concentration (RC)=dpm found per gm tissue + dpm inject per gm animal mass) were observed in tumor tissue using D-alanine (0.71) compared to L- (0.21) or DL-alanine (0.27) at 45 min post-injection. While tumor/prostate and tumor/liver ratios were above 2 for all three substrates, tumor/blood and tumor/muscle were above one for only the D-isomer. Comparisons made with D-, L-, and DL-leucine also demonstrated a higher level of RC in tumor tissue with the D-isomer (0.84) vs. the L-(0.66) and DL-leucine (0.63). In this case, however, tumor/blood, tumor/prostate, and tumor/muscle ratios were above one for all three substrates, while tumor/liver ratios were below one. These results support the observation of a preferential accumulation of D-amino acids in tumor tissue over the natural L-isomers. Observed differences in the accumulation of the isomers in normal tissues are discussed.

  6. Comparison of suppression of mutagenicity of benzo(a)pyrene among methylsulfonyl polychlorinated biphenyl isomers

    SciTech Connect

    Kiyohara, Chikako; Hirohata, Tomio; Omura, Minoru; Masuda, Yoshito

    1992-06-01

    Methylsulfonyl (MSF) derivatives of polychlorinated biphenyls (PCBs) were first identified in fat from seals in the Baltic. Since then, a number of these substances have been demonstrated in animals. They were also isolated from the excreta of mice and rats treated with tri-, tetra-, penta- or hexachlorobiphenyls. Studies on the metabolic fates of several structurally defined chlorobiphenyls in mice showed that, in addition to the hydroxy species that were considered to be major metabolites of PCBs, sulfur-containing compounds were formed by the mercapturic acid pathway from PCB arene oxide. The accumulations of some MSF-PCB isomers have been evidenced not only in the mice experimentally ingested with certain PCBs but also in a human being accidentally exposed to PCBs. Even health people were found to have MSF-PCB isomers at concentrations as high as those of PCBs. It is noteworthy that some MSF-PCB isomers have been demonstrated to be toxic for rats and mice. Moreover, our preliminary study indicated that some MSF-PCB isomers have an inhibitory potency against the aryl hydrocarbon hydroxylase (AHH) activity, a well-known drug-metabolizing enzyme, in cultured human lymphoblastoid cells. These effects of MSF-PCB isomers seemed comparable to those of the well known 7,8-benzoflavone (7,8-BF), which inhibits chemical carcinogenesis. In the present study, we studied the effect of 11 MSF-PCB isomers and 7,8-BF on the mutagenicity of benzo(a)pyrene (BP) using Salmonella strains TA98 and TA100 in the Ames assay. In addition, the relationship between the results of Ames assay and the AHH assay was investigated. 17 refs., 3 tabs.

  7. New isomers and medium-spin structure of the {sup 95}Y nucleus

    SciTech Connect

    Urban, W.; Sieja, K.; Simpson, G. S.; Rzaca-Urban, T.; Zlomaniec, A.; Lukasiewicz, M.; Smith, A. G.; Durell, J. L.; Smith, J. F.; Varley, B. J.; Nowacki, F.; Ahmad, I.

    2009-04-15

    Excited states in {sup 95}Y, populated following the spontaneous fission of {sup 248}Cm and {sup 252}Cf and following fission of {sup 235}U induced by thermal neutrons, were studied by means of {gamma} spectroscopy using the EUROGAM2 and GAMMASPHERE multidetector Ge arrays and the LOHENGRIN fission-fragment separator, respectively. We have found a new (17/2{sup -}) isomer in {sup 95}Y at 3142.2 keV with a half-life of T{sub 1/2}=14.9(5) ns. Another isomer was identified in {sup 95}Y at 5022.1 keV and it was assigned a spin-parity (27/2{sup -}). For this isomer a half-life of T{sub 1/2}=65(4) ns was determined and four decay branches were found, including an E3 decay. A new E3 decay branch was also found for the known, 1087.5-keV isomer in {sup 95}Y, for which we measured a half-life of 51.2(9) {mu}s. The B(E3) and B(E1) transition rates, of 2.0 and 3.8x10{sup -7} W.u., respectively, observed in {sup 95}Y are significantly lower than in the neighboring {sup 96}Zr core, suggesting that octupole correlations in this region are mainly due to the coupling of proton {delta}j=3 orbitals. Shell-model calculations indicate that the (27/2{sup -}) isomer in {sup 95}Y corresponds to the {pi}g{sub 9/2}{nu}(g{sub 7/2}h{sub 11/2}) maximally aligned configuration and that all three isomers in {sup 95}Y decay, primarily, by M2 transitions between proton g{sub 9/2} and f{sub 5/2} orbitals.

  8. Preparative isolation and structural characterization of sucrose ester isomers from oriental tobacco.

    PubMed

    Jia, Chunxiao; Wang, Yingying; Zhu, Yonghua; Xu, Chunping; Mao, Duobin

    2013-05-01

    To date, the structures of the sucrose tetraester (STE) isomers, a main kind of sucrose esters (SEs) in Solanum, have not been conclusively assigned. In this study, three groups of STE isomers with the molecular weight 650, 664 and 678 (designated as STE I, STE II and STE III, respectively) have been isolated and purified from the oriental tobacco-Komotini Basma using a semi-preparative RP-HPLC method. The full characterization of the isomers in the three groups of STE were investigated for the first time by MS (HRMS, MS(2)) and NMR ((1)H, (13)C, HSQC) spectroscopy combined with alkaline hydrolysis and STE derivation experiments. The STE III (a single compound) was confirmed as a known sucrose tetraester. Furthermore, the STE II was found to contain three isomers and the structures were first unambiguously established as 6-O-acetyl (2,3 or 2,4 or 3,4)-di-O-3-methylvaleryl-(4 or 3 or 2)-O-2-methylbutyryl-α-d-glucopyranosyl-β-d-fructofuranoside. Finally, the STE I was discovered to contain seven isomers and the structures were elucidated as 6-O-acetyl (2 or 3 or 4)-O-3-methylvaleryl-(3,4 or 2,4 or 2,3)-di-O-2-methylbutyryl-α-d-glucopyranosyl-β-d-fructofuranoside, 6-O-acetyl (2 or 3 or 4)-O-3-methylvaleryl-(3,4 or 2,4 or 2,3)-di-O-isovaleryl-α-d-glucopyranosyl-β-d-fructofuranoside and 6-O-acetyl (2,3 or 2,4 or 3,4)-di-O-3-methylvaleryl-(4 or 3 or 2)-O-isobutyryl-α-d-glucopyranosyl-β-d-fructofuranoside (one of the 3 isomers). PMID:23542308

  9. Isomer ratio measurements as a probe of the dynamics of breakup and incomplete fusion

    SciTech Connect

    Gasques, L. R.; Dasgupta, M.; Hinde, D. J.; Peatey, T.; Diaz-Torres, A.; Newton, J. O.

    2006-12-15

    The incomplete fusion mechanism following breakup of {sup 6,7}Li and {sup 9}Be projectiles incident on targets of {sup 209}Bi and {sup 208}Pb is investigated through isomer ratio measurements for the {sup 212}At and {sup 211}Po products. The phenomenological analysis presented in this paper indicates that incomplete fusion brings relatively more angular momentum into the system than equivalent reactions with a direct beam of the fused fragment. This is attributed to the trajectories of breakup fragments. Calculations with a 3D classical trajectory model support this. Isomer ratio measurements for incomplete fusion reactions can provide a test of new theoretical models of breakup and fusion.

  10. Separation of cis and trans Isomers of Polyproline by FAIMS Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Creese, Andrew J.; Cooper, Helen J.

    2016-10-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS) is well-established as a tool for separating peptide isomers (sequence inversions and post-translationally modified localization variants). Here, we demonstrate the FAIMS is able to differentiate cis and trans isomers of polyproline. Polyproline assumes an all-cis conformation—the PPI helix—in 1-propanol, and an all-trans conformation—the PPII helix—in aqueous solutions. Differentiation of these conformers may be achieved both through use of a cylindrical FAIMS device and a miniaturized ultrahigh field planar FAIMS device.

  11. High spin states above the 28{sup {minus}} isomer in {sup 152}Ho

    SciTech Connect

    Rizzutto, M.A.; Ribas, R.V.; Cybulska, E.W.; Oliveira, J.R.; Zahn, G.S.; Medina, N.H.; Bazzacco, D.; Medina, N.H.; Brandolini, F.; Burch, R.; Lunardi, S.; Pavan, P.; Alvarez, C.R.; Spolaore, P.

    1997-03-01

    The structure of the high spin states above the 28{sup {minus}} isomer in the odd-odd {sup 152}Ho nucleus was investigated using the GASP {gamma}-ray spectrometer coupled to the recoil mass spectrometer CAMEL. The {sup 152}Ho nucleus was populated through the {sup 120}Sn({sup 37}Cl,5n) fusion reaction at a beam energy of 187 MeV. A complex level scheme above that isomer was established up to an excitation energy of 13 MeV and I{approx} 40{h_bar}. No rotational bands were observed. {copyright} {ital 1997} {ital The American Physical Society}

  12. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  13. Solvent effects on reactivity properties of dicarba-closo-dodecarboranes isomers

    NASA Astrophysics Data System (ADS)

    Junqueira, G. M. A.; Rocha, L. C.; Cotta, V. T.; César, E. T.

    2012-06-01

    In this Letter, a discussion on global reactivity indexes - electronic chemical potential (μ), chemical hardness (η) and electrophilicity (ω) - for dicarba-closo-dodecarboranes isomers, in gas phase and aqueous solution is reported. A sequential Monte Carlo/quantum mechanics methodology (S-MC/QM) was used in simulations. The results obtained showed the solvent must be considered on reactivity properties of the studied compounds. Generally, the solvated isomers become softer (η decreases) and the μ increases comparing to gas phase values, indicating the charge transfer from solvent to the solute.

  14. Separation and analysis of dimethylaniline isomers by supercritical fluid chromatography--electrospray ionization tandem mass spectrometry.

    PubMed

    Strife, Robert J; Mangels, Michele L; Skare, Julie A

    2009-10-01

    The assessment of human exposure to specific isomers of dimethylanilines (DMA's) is of interest for the evaluation of potential exposure-health outcome relationships. Improved analytical methods will help in identifying the environmental sources of such exposures. The separation of all six DMA isomers by supercritical fluid chromatography (SFC), without derivatization, is reported within. Further, the combination of SFC with electrospray ionization/tandem mass spectrometry provides selective detection in crude extracts of spiked (40 ppb of 3,5-dimethylaniline) raw materials. The raw materials chosen for analysis are commonly used in the manufacture of consumer hair-dye products.

  15. Undergraduate research in nuclear physics in Youngstown State University's Isomer Physics Project

    NASA Astrophysics Data System (ADS)

    Carroll, James

    2007-10-01

    Experimental research into the interaction of isomeric nuclei with the electromagnetic field has been conducted by the YSU Isomer Physics Project for more than a decade. Among the numerous studies have been a detailed investigation of the induced depletion of nature's rarest isotope, ^180Ta, and the characterization of a new 2.29 s isomer in ^174Tm. The backbone of these efforts has been comprised of undergraduate students from a variety of majors, performing experiments at facilities such as SPring-8 (Japan), Argonne National Laboratory (with Gammasphere), TRIUMF (Canada) and YSU's own X-ray Effects Laboratory (XEL). This talk with briefly survey the involvement of undergraduate students in this work.

  16. Tryptophan-ethylester, the false (unveiled) melatonin isomer in red wine.

    PubMed

    Iriti, Marcello; Vigentini, Ileana

    2015-01-01

    Among the food plants, the presence of melatonin in grapes (Vitis vinifera L.) deserves particular attention because of the production of wine, an alcoholic beverage of economic relevance and with putative healthy effects. Furthermore, melatonin isomers have been detected in wine too. Recently, one of these isomers has been identified as tryptophan-ethylester, a compound with the same molecular weight of melatonin. In this Commentary, we briefly comment the source(s) of tryptophan-ethylester in wine and the putative nutritional role(s). PMID:25922582

  17. Rifamycin S and its geometric isomer produced by a newly found actinomycete, Micromonospora rifamycinica.

    PubMed

    Huang, Huiqin; Wu, Xiaopeng; Yi, Sheng; Zhou, Zhiwang; Zhu, Jun; Fang, Zhe; Yue, Jianmin; Bao, Shixiang

    2009-02-01

    Strain AM105 was separated from mangrove sediment in the South China Sea in this research. The morphological and genomic data showed that the strain merits description as a novel species, proposed as Micromonospora rifamycinica. From the acetate ethyl extract of its fermentation broth, two antibiotics against Gram-positive bacteria (including MRSA), rifamycin S and its geometric isomer were isolated. Their structures were elucidated on the basis of spectroscopic analyzes. (1)H and (13)C NMR data of the isomer of rifamycin S were first described in this paper.

  18. The Oxygen-Rich Beryllium Oxides BeO4 and BeO6.

    PubMed

    Zhang, Qingnan; Jerabek, Paul; Chen, Mohua; Zhou, Mingfei; Frenking, Gernot

    2016-08-26

    Two novel isomers of BeO4 with the structures OBeOOO and OBe(O3 ) in the electronic triplet state have been prepared as well as the known disuperoxide complex Be(O2 )2 in solid noble-gas matrices. We also report the synthesis of the oxygen-rich bis(ozonide) complex Be(O3 )2 in the triplet state which has a D2d equilibrium geometry. The molecular structures were identified by infrared absorption spectroscopy with isotopic substitutions as well as quantum chemical calculations. PMID:27494950

  19. Revised structure of a homonojirimycin isomer from Aglaonema treubii: first example of a naturally occurring alpha-homoallonojirimycin.

    PubMed

    Martin, O R; Compain, P; Kizu, H; Asano, N

    1999-11-01

    The structure of a homonojirimycin isomer isolated from Aglaonema treublii and originally proposed as alpha-3,4-di-epi-homonojirimycin was revised to alpha-4-epi-homonojirimycin 3 ("alpha-homoallonojirimycin") on the basis of NMR analysis and synthetic studies. Its activity as a glycosidase inhibitor is compared to that of other homonojirimycin isomers.

  20. Comparison of the biliary excretion of the four isomers of bilirubin-IX in Wistar and homozygous Gunn rats.

    PubMed Central

    Blanckaert, N; Heirwegh, K P; Zaman, Z

    1977-01-01

    The biliary excretion of the four isomers of bilirubin-IX was studied in Wistar rats (JJ) and homozygous Gunn rats (jj). Synthetic preparations of 14C-labelled pigments were used. 1. After intravenous administration, the alpha-isomer was rapidly excreted in conjugated form in bile of Wistar rats. In Gunn rats excretion was insignificant. In contrast, both rat species promptly excreted the non-alpha-isomers at rates that were comparable with that found for bilirubin-IXalpha in Wistar rats. 2. In normal rats about 16% of the beta- and delta-isomers and at least 50% of the gamma-isomer were excreted as ester conjugates of the injected parent bile pigments. Conjugation of the beta- and delta-isomers had occurred exclusively at the carboxyl groups of pyrrole ring D and C respectively. For bilirubin-IXgamma no preference for any carboxyl group could be established. 3. In homozygous Gunn rats the non-alpha-isomers were apparently excreted chemically unaltered. This suggests that, as for bilirubin-IXalpha, conjugation of the non-alpha-isomers is also deficient in Gunn rats. PMID:880229

  1. 40 CFR 180.449 - Avermectin B1 and its delta-8,9-isomer; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Register citations affecting § 180.449, see the List of CFR Sections Affected, which appears in... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Avermectin B1 and its delta-8,9-isomer... Tolerances § 180.449 Avermectin B1 and its delta-8,9-isomer; tolerances for residues. (a) General....

  2. 40 CFR 180.449 - Avermectin B1 and its delta-8,9-isomer; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Register citations affecting § 180.449, see the List of CFR Sections Affected, which appears in... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Avermectin B1 and its delta-8,9-isomer... Tolerances § 180.449 Avermectin B1 and its delta-8,9-isomer; tolerances for residues. (a) General....

  3. 40 CFR 180.449 - Avermectin B1 and its delta-8,9-isomer; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 180.449, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Avermectin B1 and its delta-8,9-isomer... Tolerances § 180.449 Avermectin B1 and its delta-8,9-isomer; tolerances for residues. (a) General....

  4. 40 CFR 180.449 - Avermectin B1 and its delta-8,9-isomer; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 180.449, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Avermectin B1 and its delta-8,9-isomer... Tolerances § 180.449 Avermectin B1 and its delta-8,9-isomer; tolerances for residues. (a) General....

  5. 40 CFR 180.449 - Avermectin B1 and its delta-8,9-isomer; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 180.449, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Avermectin B1 and its delta-8,9-isomer... Tolerances § 180.449 Avermectin B1 and its delta-8,9-isomer; tolerances for residues. (a) General....

  6. Metabolism of a- and y-hexabromocyclododecane and enantioselective fractions of a-, ß-, y-isomers in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial HBCD is a mixture of three major isomers, a, ß, and ', with the '-diastereoisomer predominating (>70%). Thus, the prevalence of the a-isomer as an environmental contaminant must be explained by either different pharmacokinetics, or by isomerization of the '-diastereoisomer. a- and '-[14...

  7. FT-Raman spectroscopy of structural isomers of Pt(II) complex PtCl2(PEt3)2

    NASA Astrophysics Data System (ADS)

    Bhatt, Himal; Deo, M. N.; Vishwakarma, S. R.; Bajaj, Naini; Sharma, Surinder M.

    2015-06-01

    We report here the detailed spectroscopic aspects of the structural isomers of Pt(II) complex PtCl2(P(C2H5)3)2 using FT-Raman spectroscopy. A comparison of the structural contraction instigated by lowering the temperature up to liquid nitrogen temperature in the cis and trans isomers has been presented. The lattice region lying in the far infrared region upto 50cm-1 has been analyzed in detail to probe the structural modifications. It was found that the ambient temperature lower symmetry structure of the cis isomer is preserved at low temperatures. The trans isomer, stabilizing in a high symmetry structure at room temperature, transforms to a low symmetry structure on lowering the temperature, which can be attributed to a loss of inversion symmetry of the trans isomer.

  8. Effect of the Initial Load Parameters on the K-shell Output of Al Planar Wire Arrays Operating in the Microsecond Implosion Regime

    SciTech Connect

    Shishlov, A.; Chaikovsky, S.; Fedunin, A.; Fursov, F.; Kokshenev, V.; Kurmaev, N.; Labetsky, A.; Oreshkin, V.; Rousskikh, A.; Labetskaya, N.

    2009-01-21

    A set of microsecond implosion experiments was carried on the GIT-12 generator to study the radiative performance of Al planar wire arrays. The load parameters such as a wire diameter, a gap between the wires, the number of wires, and the total planar wire mass and width were varied during the experiments, however the implosion time and the peak implosion current were almost the same for all load configurations. This ensured equal energy deposition to the plasma due to kinetic mechanisms for all load configurations. Two implosion regimes with the implosion times of 1050 ns and 850 ns were investigated. The experimental data on the K-shell radiation yield and power at varying load parameters are presented.

  9. Scanning Single-Molecule Fluorescence Correlation Spectroscopy Enables Kinetics Study of DNA Hairpin Folding with a Time Window from Microseconds to Seconds.

    PubMed

    Bi, Huimin; Yin, Yandong; Pan, Bailong; Li, Geng; Zhao, Xin Sheng

    2016-05-19

    Single-molecule fluorescence measurements have been widely used to explore kinetics and dynamics of biological systems. Among them, single-molecule imaging (SMI) is good at tracking processes slower than tens of milliseconds, whereas fluorescence correlation spectroscopy (FCS) is good at probing processes faster than submilliseconds. However, there is still shortage of simple yet effective single-molecule fluorescence method to cover the time-scale between submilliseconds and tens of milliseconds. To effectively bridge this millisecond gap, we developed a single-molecule fluorescence correlation spectroscopy (smFCS) method that works on surface-immobilized single molecules through surface scanning. We validated it by monitoring the classical DNA hairpin folding process. With a wide time window from microseconds to seconds, the experimental data are well fitted to the two-state folding model. All relevant molecular parameters, including the relative fluorescence brightness, equilibrium constant, and reaction rate constants, were uniquely determined.

  10. Platelet-Rich Plasma

    PubMed Central

    Cole, Brian J.; Seroyer, Shane T.; Filardo, Giuseppe; Bajaj, Sarvottam; Fortier, Lisa A.

    2010-01-01

    Context: Platelet-rich plasma (PRP) may affect soft tissue healing via growth factors released after platelet degranulation. Because of this potential benefit, clinicians have begun to inject PRP for the treatment of tendon, ligament, muscle, and cartilage injuries and early osteoarthritis. Evidence Acquisition: A PubMed search was performed for studies relating to PRP, growth factors, and soft tissue injuries from 1990 to 2010. Relevant references from these studies were also retrieved. Results: Soft tissue injury is a major source of disability that may often be complicated by prolonged and incomplete recovery. Numerous growth factors may potentiate the healing and regeneration of tendons and ligaments. The potential benefits of biologically enhanced healing processes have led to a recent interest in the use of PRP in orthopaedic sports medicine. There has been widespread anecdotal use of PRP for muscle strains, tendinopathy, and ligament injuries and as a surgical adjuvant to rotator cuff repair, anterior cruciate ligament reconstruction, and meniscal or labral repairs. Although the fascination with this emerging technology has led to a dramatic increase in its use, scientific data supporting this use are still in their infancy. Conclusions: The literature is replete with studies on the basic science of growth factors and their relation to the maintenance, proliferation, and regeneration of various tissues and tissue-derived cells. Despite the promising results of several animal studies, well-controlled human studies are lacking. PMID:23015939

  11. Isolation and crystallographic identification of four isomers of Sm@C90.

    PubMed

    Yang, Hua; Jin, Hongxiao; Zhen, Hongyu; Wang, Zhimin; Liu, Ziyang; Beavers, Christine M; Mercado, Brandon Q; Olmstead, Marilyn M; Balch, Alan L

    2011-04-27

    Four isomers with the composition SmC(90) were obtained from carbon soot produced by electric arc vaporization of carbon rods doped with Sm(2)O(3). These were labeled Sm@C(90)(I), Sm@C(90)(II), Sm@C(90)(III), and Sm@C(90)(IV) in order of their elution times during chromatography on a Buckyprep column with toluene as the eluent. Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(octaethylporphyrin) reveals the identities of the individual isomers as follows: I, Sm@C(2)(40)-C(90); II, Sm@C(2)(42)-C(90); III, Sm@C(2v)(46)-C(90) and IV, Sm@C(2)(45)-C(90). This is the most extensive series of isomers of any endohedral fullerene to have their individual structures determined by single-crystal X-ray diffraction. The cage structures of these four isomers can be related pairwise to one another in a formal sense through sequential Stone-Wales transformations. PMID:21452811

  12. Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter☆

    PubMed Central

    Kazakov, G.A.; Schauer, V.; Schwestka, J.; Stellmer, S.P.; Sterba, J.H.; Fleischmann, A.; Gastaldo, L.; Pabinger, A.; Enss, C.; Schumm, T.

    2014-01-01

    The Thorium-229 isotope features a nuclear isomer state with an extremely low energy. The currently most accepted energy value, 7.8±0.5 eV, was obtained from an indirect measurement using a NASA x-ray microcalorimeter with an instrumental resolution 26 eV. We study, how state-of-the-art magnetic metallic microcalorimeters with an energy resolution down to a few eV can be used to measure the isomer energy. In particular, resolving the 29.18 keV doublet in the γ-spectrum following the α-decay of Uranium-233, corresponding to the decay into the ground and isomer state, allows to measure the isomer transition energy without additional theoretical input parameters, and increase the energy accuracy. We study the possibility of resolving the 29.18 keV line as a doublet and the dependence of the attainable precision of the energy measurement on the signal and background count rates and the instrumental resolution. PMID:25844000

  13. Isomer production ratios and the angular momentum distribution of fission fragments

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.; Jandel, M.

    2013-10-01

    Latest generation fission experiments provide an excellent testing ground for theoretical models. In this contribution we compare the measurements for 235U(nth,f), obtained with the Detector for Advanced Neutron Capture Experiments (DANCE) calorimeter at Los Alamos Neutron Science Center (LANSCE), with our full-scale simulation of the primary fragment de-excitation, using the recently developed cgmf code, based on a Monte Carlo implementation of the Hauser-Feshbach theoretical model. We compute the isomer ratios as a function of the initial angular momentum of the fission fragments, for which no direct information exists. Comparison with the available experimental data allows us to determine the initial spin distribution. We also study the dependence of the isomer ratio on the knowledge of the low-lying discrete spectrum input for nuclear fission reactions, finding a high degree of sensitivity. Finally, in the same Hauser-Feshbach approach, we calculate the isomer production ratio for thermal neutron capture on stable isotopes, where the initial conditions (spin, excitation energy, etc.) are well understood. We find that with the current parameters involved in Hauser-Feshbach calculations, we obtain up to a factor of 2 deviation from the measured isomer ratios.

  14. C18-unsaturated branched-chain fatty acid isomers: characterization and physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iso-oleic acid is a mixture of C18-unsaturated branched-chain fatty acid isomers with a methyl group on various positions of the alkyl chain, which is the product of the skeletal isomerization reaction of oleic acid and is the intermediate used to make isostearic acid (C18-saturated branched-chain f...

  15. Clusterization in the shape isomers of the {sup 56}Ni nucleus

    SciTech Connect

    Darai, J.; Cseh, J.; Antonenko, N. V.; Jolos, R. V.; Royer, G.; Algora, A.; Hess, P. O.; Scheid, W.

    2011-08-15

    The interrelation of the quadrupole deformation and clusterization is investigated in the example of the {sup 56}Ni nucleus. The shape isomers, including superdeformed and hyperdeformed states, are obtained as stability regions of the quasidynamical U(3) symmetry based on a Nilsson calculation. Their possible binary clusterizations are investigated by considering both the consequences of the Pauli exclusion principle and the energetic preference.

  16. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  17. Isomer residual ratio of odd-odd isotope {sup 180}Ta in supernova nucleosynthsis

    SciTech Connect

    Hayakawa, Takehito; Kajino, Toshitaka; Chiba, Satoshi; Mathews, Grant

    2010-06-01

    The nucleosynthesis of {sup 180}Ta has remained an unsolved problem and as its origin many nucleosynthesis mechanisms have been proposed. This isotope has the unique feature that the naturally occurring abundance of {sup 180}Ta is actually a meta-stable isomer (half-life of >=10{sup 15} yr), while the ground state is a 1{sup +} unstable state which beta-decays with a half-life of only 8.15 hr. We have made a new time-dependent calculation of {sup 180}Ta meta-stable isomer residual ratio after supernova neutrino-induced reactions. This residual isomer ratio is crucial for understanding the production and survival of this naturally occurring rare isotope. We have constructed a new model under temperature evolution after type II supernova explosion. We include the explicit linking between the isomer and all known excited states and found that the residual ratio is insensitive to astrophysical parameters such as neutrino energy spectrum, explosion energy, decay time constant. We find that the explicit time evolution of the synthesis of {sup 180}Ta avoids the overproduction relative to {sup 138}La for a neutrino process neutrino temperature of 4 MeV.

  18. Using One's Hands for Naming Optical Isomers and Other Stereochemical Positions.

    ERIC Educational Resources Information Center

    Mezl, Vasek A.

    1996-01-01

    Presents a method that allows students to use their hands to obtain the stereochemistry of chiral centers without redrawing the structure. Discusses the use of the model in: determining the configurations of amino acids, determining if sugars are D or L isomers, the sequence rule procedure, prochirality, naming the sides of trigonal carbons, and…

  19. Infrared spectroscopy of the acetyl cation and its protonated ketene isomer

    SciTech Connect

    Mosley, J. D.; Young, J. W.; Duncan, M. A.

    2014-07-14

    [C{sub 2},H{sub 3},O]{sup +} ions are generated with a pulsed discharge in a supersonic expansion containing methyl acetate or acetone. These ions are mass selected and their infrared spectra are recorded via laser photodissociation and the method of argon tagging. Computational chemistry is employed to investigate structural isomers and their spectra. The acetyl cation (CH{sub 3}CO{sup +}) is the global minimum and protonated ketene (CH{sub 2}COH{sup +}) is the next lowest energy isomer (+176.2 kJ/mol). When methyl acetate is employed as the precursor, the infrared spectrum reveals that only the acetyl cation is formed. Partially resolved rotational structure reveals rotation about the C{sub 3} axis. When acetone is used as the precursor, acetyl is still the most abundant cation, but there is also a minor component of protonated ketene. Computations reveal a significant barrier to interconversion between the two isomers (+221 kJ/mol), indicating that protonated ketene must be obtained via kinetic trapping. Both isomers may be present in interstellar environments, and their implications for astrochemistry are discussed.

  20. Excitation of the {sup 229m}Th nuclear isomer via resonance conversion in ionized atoms

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-09-15

    Pressing problems concerning the optical pumping of the 7.6-eV {sup 229m}Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8s–7s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at an energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.

  1. Human tissue lipids: occurrence of fatty acid isomers from dietary hydrogenated oils.

    PubMed

    Ohlrogge, J B; Emken, E A; Gulley, R M

    1981-08-01

    Hydrogenation of vegetable oils produces fatty acids with unusual structures having trans double bonds and double bonds in new positions of the acyl chain. This study was designed to determine which of these fatty acid isomers are incorporated or accumulated in humans during long-term dietary consumption of hydrogenated fats. The double bond position and configuration of the octadecenoate fraction of total lipids extracted from human heart, brain, liver, aorta, and adipose tissue were determined. The level of trans octadecenoate in the tissues as determined by both direct gas-liquid chromatography (GLC) and by GLC after silver nitrate thin-layer chromatography ranged between 0.4 and 5.0%, with an average of 2.7%. Tissues were found to contain trans-octadecenoic isomers having double bonds between the 6 and 15 positions, whereas cis double bonds were found to occur between the 6 and 14 positions. The distribution of double bonds in adipose tissue correlated very closely with the composition of dietary hydrogenated fat. Thus, essentially all of the unusual octadecenoic fatty acid isomers that are produced during vegetable oil hydrogenation are incorporated into human tissue. However, in contrast to results of short-term (1-6 months) feeding studies of animals, our results suggest that long-term (20-60 years) consumption of hydrogenated fats by humans does not lead to substantial preferential accumulation of positional isomers in human tissue total lipids.

  2. High accuracy ab initio studies of Li6+, Li6-, and three isomers of Li6

    NASA Astrophysics Data System (ADS)

    Temelso, Berhane; Sherrill, C. David

    2005-02-01

    The structures and energetics of Li6+, Li6- and three isomers of Li6 are investigated using the coupled-cluster singles, doubles and perturbative triples [CCSD(T)] method with valence and core-valence correlation consistent basis sets of double- to quadruple-ζ quality (cc-pVXZ and cc-pCVXZ, where X =D-Q). These results are compared with qualitatively different predictions by less reliable methods. Our results conclusively show that the D4h isomer is the global minimum structure for Li6. It is energetically favored over the C5v and D3h structures by about 5.1 and 7.1kcalmol-1, respectively, after the inclusion of the zero-point vibrational energy (ZPVE) correction. Our most accurate total atomization energies are 123.2, 117.6, and 115.7kcalmol-1 for the D4h, C5v, and D3h isomers, respectively. Comparison of experimental optical absorption spectra with our computed electronic spectra also indicate that the D4h isomer is indeed the most stable structure. The cation, anion, and some higher spin states are investigated using the less expensive cc-pCVDZ basis set. Adiabatic ionization energies and electron affinities are reported and compared with experimental values. Predictions of molecular properties are found to be sensitive to the basis set used and to the treatment of electron correlation.

  3. Photocontrolled nitric oxide release from two nitrosylruthenium isomer complexes and their potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Liu, Jiao; Duan, Qingqing; Wang, Jianru; Song, Zhen; Qiao, Xiaoyan; Wang, Hongfei

    2015-01-01

    Nitric oxide (NO) has key regulatory roles in various biological and medical processes. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO donors. Release of NO from metal-nitrosyl complexes upon exposure to light is a strategy that could allow for the site-specific delivery of the reactive species NO to physiological targets. The photodissociation of NO from two nitrosylruthenium(II) isomer complexes {cis- and trans-[Ru(OAc)2NO]} was demonstrated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry spectra, and electron paramagnetic resonance spectra further prove the photoinduced NO release by spin trapping of NO free radicals upon photoirradiation. Real-time NO release was quantitatively measured by electrochemistry with an NO-specific electrode. The quantitative control of NO release from [Ru(OAc)2NO] in aqueous solutions was done by photoirradiation at different wavelengths. Both isomers show photoinduced damage on plasmid DNA, but the trans isomer has higher cytotoxicity and photocytotoxicity activity against the HeLa tumor cell line than that of the cis isomer. Nitrosylruthenium(II) complex, with 8-quinolinol derivatives as ligands, has a great potential as a photoactivated NO donor reagent for biomedical applications.

  4. 57Fe quadrupole splitting and isomer shift in various oxyhemoglobins: study using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Berkovsky, A. L.; Kumar, A.; Kundu, S.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.

    2010-04-01

    A comparative study of normal human, rabbit and pig oxyhemoglobins and oxyhemoglobin from patients with chronic myeloleukemia and multiple myeloma using Mössbauer spectroscopy with a high velocity resolution demonstrated small variations of the 57Fe quadrupole splitting and isomer shift. These variations may be a result of small structural differences in the heme iron stereochemistry of various hemoglobins.

  5. On the possible biological relevance of HSNO isomers: a computational investigation.

    PubMed

    Ivanova, Lena V; Anton, Becka J; Timerghazin, Qadir K

    2014-05-14

    Thionitrous acid (HSNO), the smallest S-nitrosothiol, has been identified as a potential biologically active molecule that connects the biochemistries of two important gasotransmitters, nitric oxide (NO) and hydrogen sulfide (H2S). Here, we computationally explore possible isomerization reactions of HSNO that may occur under physiological conditions using high-level coupled-cluster as well as density functional theory and composite CBS-QB3 methodology calculations. Gas-phase calculations show that the formation of the tautomeric form HONS and the Y-isomer SN(H)O is thermodynamically feasible, as they are energetically close, within ∼6 kcal mol(-1), to HSNO, while the recently proposed three-membered ring isomer is not thermodynamically or kinetically accessible. The gas-phase intramolecular proton-transfer reactions required for HSNO isomerization into HONS and SN(H)O are predicted to have prohibitively high reaction barriers, 30-50 kcal mol(-1). However, the polar aqueous environment and water-assisted proton shuttle should decrease these barriers to ∼9 kcal mol(-1), which makes these two isomers kinetically accessible under physiological conditions. Our calculations also support the possibility of an aqueous reaction between the Y-isomer SN(H)O and H2S leading to biologically active nitroxyl HNO. These results suggest that the formation of HSNO in biological milieu can lead to various derivative species with their own, possibly biologically relevant, activity.

  6. Production ratio of meta-stable isomer in {sup 180}Ta by neutrino-induced reactions

    SciTech Connect

    Hayakawa, Takehito; Kajino, Toshitaka; Chiba, Satoshi; Mathews, Grant

    2010-05-12

    The nucleosynthesis of {sup 180}Ta has remained an unsolved problem and as its origin many nucleosynthesis mechanisms have been proposed. This isotope has the unique feature that the naturally occurring abundance of {sup 180}Ta is actually a meta-stable isomer (half-life of >=10{sup 15} yr), while the ground state is a 1{sup +} unstable state which beta-decays with a half-life of only 8.15 hr. We have made a new time-dependent calculation of {sup 180}Ta meta-stable isomer residual ratio after supernova neutrino-induced reactions. This isomer residual ratio is crucial for understanding the production and survival of this naturally occurring rare isotope. We have constructed a new model under temperature evolution after type II supernova explosion. We include the explicit linking between the isomer and all known excited states and found that the residual ratio is insensitive to astrophysical parameters such as neutrino energy spectrum, explosion energy, decay time constant. We find that the explicit time evolution of the synthesis of {sup 180}Ta avoids the overproduction relative to {sup 138}La for a neutrino process neutrino temperature of 4 MeV.

  7. Separation rule of oleanane and ursane pentacyclic triterpenoids isomers from nature plants by coordination chromatography.

    PubMed

    Kai, Guiqing; Chen, Yan; Wang, Yu; Yan, Qinghua

    2014-07-01

    Many of oleanolic and ursolic pentacyclic triterpenoid isomers generally coexist. There is a small difference in their structures. Based on coordination chromatography theory, a reversed-phase high-performance thin-layer chromatography (HPLC) method has been investigated for improving the isomers' resolution by adding suitable agents in mobile phase, and the separation rule was summarized. With the calculation analysis, the space sizes of isomers were in the range of 3.77-5.65 Å. The total minimum energy in the inclusion of guest and β-CD had the biggest reduction, compared with the energy in the simple mixture of guest and β-CD (such as "asiaticoside-B" and "β-CD," from 196.4406 to 95.0670 kJ mol(-1)). So, β-CD (the cavity space size is in the range of 6.00-6.50 Å) and its derivatives were selected as the suitable agents. The experiment results showed that the resolution might be improved by adding the hydrophilic β-CD derivatives in mobile phase, such as Glu-β-CD, when the isomer structures carry big hydrophilic groups.

  8. 40 CFR 180.1073 - Isomate-M; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Isomate-M; exemption from the requirement of a tolerance. 180.1073 Section 180.1073 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1073...

  9. Formation of isomers of anionic hemiesters of sugars and carbonic acid in aqueous medium.

    PubMed

    Dos Santos, Vagner B; Vidal, Denis T R; Francisco, Kelliton J M; Ducati, Lucas C; do Lago, Claudimir L

    2016-06-16

    Hemiesters of carbonic acid can be freely formed in aqueous media containing HCO3(-)/CO2 and mono- or poly-hydroxy compounds. Herein, (13)C NMR spectroscopy was used to identify isomers formed in aqueous solutions of glycerol (a prototype compound) and seven carbohydrates, as well as to estimate the equilibrium constant of formation (Keq). Although both isomers are formed, glycerol 1-carbonate corresponds to 90% of the product. While fructose and ribose form an indistinct mixture of isomers, the anomers of d-glucopyranose 6-carbonate correspond to 74% of the eight isomers of glucose carbonate that were detected. The values of Keq for the disaccharides sucrose (4.3) and maltose (4.2) are about twice the values for the monosaccharides glucose (2.0) and fructose (2.3). Ribose (Keq = 0.89)-the only sugar without a significant concentration of a species containing a -CH2OH group in an aqueous solution-resulted in the smallest Keq. On the basis of the Keq value and the concentrations of HCO3(-) and glucose in blood, one can anticipate a concentration of 2-4 µmol L(-1) for glucose 6-carbonate, which corresponds to ca. of 10% of its phosphate counterpart (glucose 6-phosphate).

  10. Lack of selective developmental toxicity of three butanol isomers administered by inhalation to rats.

    PubMed

    Nelson, B K; Brightwell, W S; Khan, A; Burg, J R; Goad, P T

    1989-04-01

    As part of an ongoing study of the developmental toxicology of industrial alcohols, this report presents the results of the teratology assessments of 1-butanol, 2-butanol, and t-butanol administered by inhalation to rats. Groups of approximately 15 Sprague-Dawley rats were exposed at 8000, 6000, 3500, or 0 ppm 1-butanol, 7000, 5000, 3500, or 0 ppm 2-butanol, or 5000, 3500, 2000, or 0 ppm t-butanol for 7 hr/day on Gestation Days 1-19 (sperm = 0). In each case, the highest concentration was selected to produce maternal toxicity. Dams were sacrificed on Gestation Day 20, and fetuses were individually weighed, tagged, and examined for external malformations. One-half of the fetuses were stained and examined for skeletal abnormalities, and the other half were examined for visceral defects using the Wilson technique. For each butanol isomer examined, the highest concentration (and the intermediate in some cases) was maternally toxic, as manifest by reduced weight gain and feed intake. Even at a maternally toxic dose, and in spite of a dose-dependent reduction in fetal weights for each isomer, the only teratogenicity observed was a slight increase in skeletal malformations (primarily rudimentary cervical ribs), seen with the highest concentration of 1-butanol. Thus, although teratogenicity was observed at 8000 ppm 1-butanol, and developmental toxicity was observed with each of the butyl alcohol isomers studied, concentrations 50 times the current permissible exposure limits for these three butanol isomers do not produce teratogenicity in rats.

  11. Lactones 42. Stereoselective enzymatic/microbial synthesis of optically active isomers of whisky lactone.

    PubMed

    Boratyński, Filip; Smuga, Małgorzata; Wawrzeńczyk, Czesław

    2013-11-01

    Two different methods, enzyme-mediated reactions and biotrasformations with microorganisms, were applied to obtain optically pure cis- and trans-isomers of whisky lactone 4a and 4b. In the first method, eight alcohol dehydrogenases were investigated as biocatalysts to enantioselective oxidation of racemic erythro- and threo-3-methyloctane-1,4-diols (1a and 1b). Oxidation processes with three of them, alcohol dehydrogenases isolated from horse liver (HLADH) as well as recombinant from Escherichia coli and primary alcohol dehydrogenase (PADH I), were characterized by the highest degree of conversion with moderate enantioselectivity (ee=27-82%) of the reaction. In all enzymatic reactions enantiomerically enriched not naturally occurring isomers of trans-(-)-(4R,5S)-4b or cis-(+)-(4R,5R)-4a were formed preferentially. In the second strategy, based on microbial lactonization of γ-oxoacids, naturally occurring opposite isomers of whisky lactones were obtained. Trans-(+)-(4S,5R)-isomer (ee=99%) of whisky lactone 4b was stereoselectively formed as the only product of biotransformations of 3-methyl-4-oxooctanoic acid (5) catalyzed by Didimospheria igniaria KCH6651, Laetiporus sulphurens AM525, Chaetomium sp.1 KCH6670 and Saccharomyces cerevisiae AM464. Biotransformation of γ-oxoacid 5, in the culture of Beauveria bassiana AM278 and Pycnidiella resinae KCH50 afforded a mixtures of trans-(+)-(4S,5R)-4b with enantiomeric excess ee=99% and cis-(-)-(4S,5S)-4a with enantiomeric excesses ee=77% and ee=45% respectively.

  12. Toward the laboratory identification of [O,N,S,S] isomers: Implications for biological NO chemistry

    NASA Astrophysics Data System (ADS)

    Ayari, Tarek; Jaidane, Nejm-Eddine; Al Mogren, Muneerah Mogren; Francisco, Joseph S.; Hochlaf, Majdi

    2016-06-01

    Benchmark ab initio calculations are performed to investigate the stable isomers of [O,N,S,S]. These computations are carried out using coupled cluster (RCCSD(T)) and explicitly correlated coupled cluster methods (RCCSD(T)-F12). In addition to the already known cis isomer of SSNO, nine other stable forms are predicted. The most stable isomer is cis-OSNS. Nine structures are chain bent-bent with relatively large dipole moments which make them detectable, as cis-SSNO, by infrared, far-infrared, and microwave spectroscopies. We found also a C2v isomer (NS2O). Since these species are strongly suggested to play an important role as intermediates during the bioactive reaction products of the NO/H2S interaction, the rotational and vibrational spectroscopic parameters are presented to help aid the in vivo identification and assignment of these spectra. Results from this work show that [O,N,S,S] may play key roles during nitric oxide transport and deliver in biological media, as well as, provide an explanation for the weak characteristic of disulfide bridges within proteins.

  13. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale.

    PubMed Central

    Rohr, S; Salzberg, B M

    1994-01-01

    We have applied multiple site optical recording of transmembrane voltage (MSORTV) to patterned growth cultures of heart cells to analyze the effect of geometry per se on impulse propagation in excitable tissue, with cellular and subcellular resolution. Extensive dye screening led to the choice of di-8-ANEPPS as the most suitable voltage-sensitive dye for this application; it is internalized slowly and permits optical recording with signal-to-noise ratios as high as 40:1 (measured peak-to-peak) and average fractional fluorescence changes of 15% per 100 mV. Using a x 100 objective and a fast data acquisition system, we could resolve impulse propagation on a microscopic scale (15 microns) with high temporal resolution (uncertainty of +/- 5 microseconds). We could observe the decrease in conduction velocity of an impulse propagating along a narrow cell strand as it enters a region of abrupt expansion, and we could explain this phenomenon in terms of the micro-architecture of the tissue. In contrast with the elongated and aligned cells forming the narrow strands, the cells forming the expansions were aligned at random and presented 2.5 times as many cell-to-cell appositions per unit length. If the decrease in conduction velocity results entirely from this increased number of cell-to-cell boundaries per unit length, the mean activation delay introduced by each boundary can be estimated to be 70 microseconds. Using this novel experimental system, we could also demonstrate the electrical coupling of fibroblasts and endotheloid cells to myocytes in culture. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 8 PMID:7811945

  14. CuCl2 for the isolation of a broad array of endohedral fullerenes containing metallic, metallic carbide, metallic nitride, and metallic oxide clusters, and separation of their structural isomers.

    PubMed

    Stevenson, Steven; Rottinger, Khristina A

    2013-08-19

    A typical arc-synthesis generates many types of fullerenes and endohedrals. Resulting soot extracts contain a complex mixture of >50 types of fullerenes, metallofullerenes, and their structural isomers. Prior to application development, novel separation methods are required to fractionate this rich array of metallic, metallic carbide, metallic nitride, and metallic oxide endohedrals, all of which can be present in a single, soot extract. Herein, we report the discovery of CuCl2 as a Lewis acid that will selectively precipitate only the more reactive members of each of these endohedral families. The more reactive Sc4O2@Ih-C80, Sc3C2@Ih-C80, and Sc3N@D3h-C78 endohedrals are quickly removed from extracts to greatly decrease the number of endohedrals present in a sample. Experiments indicate that enrichment factors of several orders of magnitude can be achieved within minutes of reaction time. CuCl2 also has sufficient selectivity to resolve and separate structural isomers, as demonstrated with Er2@C82 (isomer I, Cs(6)-C82 versus isomer III). The selective complexation of CuCl2 with fullerenes can be correlated to their first oxidation potential. We estimate a significantly lower threshold of precipitation for CuCl2 (<0.19 V) compared to stronger Lewis acids. Fullerenes and metallofullerenes having first oxidation potentials above 0.19 V tend to remain unreacted in solution. In contrast, species with first oxidation potentials below 0.19 V (vs Fc/Fc(+)) precipitate via complexation, and are easily decomplexed. CuCl2 is compared to Lewis acids having higher precipitation thresholds (e.g., FeCl3) in our goal to predict a priori which endohedrals would remain in solution versus which endohedral species would complex and precipitate. The ability to predict endohedral precipitation a priori is beneficial to the design of purification strategies for metallofullerenes. PMID:23952569

  15. Branched perfluorooctane sulfonate isomer quantification and characterization in blood serum samples by HPLC/ESI-MS(/MS).

    PubMed

    Riddell, Nicole; Arsenault, Gilles; Benskin, Jonathan P; Chittim, Brock; Martin, Jonathan W; McAlees, Alan; McCrindle, Robert

    2009-10-15

    Perfluorooctane sulfonate (PFOS) is a global contaminant and is currently among the most prominent contaminants in human blood and wildlife samples. Although "total PFOS" (SigmaPFOS) analytical methods continue to be the most commonly used for quantification, recent analytical method developments have made it possible to resolve the various isomers of PFOS by HPLC-MS/MS. Characterized technical PFOS standards (i.e., containing a mixture of PFOS isomers) are now available that enable isomer specific quantification of PFOS, however the advantages of such an analysis have notyet been examined systematically. Herein, PFOS isomers have been individually quantified for the first time in real samples and the results are compared to a traditional SigmaPFOS method; the influence of analytical standards and isomer specific electrospray and MS/ MS behavior were also investigated. The two human serum standard reference materials chosen for analysis contained dramaticallydifferent PFOS isomer profiles (approximately 30-50% total branched isomers) emphasizing that isomer patterns should not be ignored and may provide useful information on exposure sources (i.e., direct exposure to PFOS vs indirect exposure from PFOS-precursors). Depending on the sample and the particular MS/MS transition chosen for SigmaPFOS analysis (i.e., 499-->80 or 499-->99), SigmaPFOS concentrations may be over- or underestimated compared to the isomer specific analysis. Differences in the extent of in-source fragmentation and MS/MS dissociation contributed to the systematic analytical bias. It was also shown that SigmaPFOS data are prone to interlaboratory variation due to various choices of PFOS standards and instrumental conditions used. In the future, for either SigmaPFOS or isomer specific PFOS analyses, we suggest that accuracy can be maximized and interlaboratory discrepancies minimized by using a common chemically pure technical PFOS standard characterized by 19F NMR.

  16. Isomer-specific regulation of differentiating pig preadipocytes by conjugated linoleic acids.

    PubMed

    Brandebourg, T D; Hu, C Y

    2005-09-01

    Conjugated linoleic acids are a group of geometric and positional isomers of linoleic acid that decrease body fat in growing animals by a poorly understood mechanism. The objective of this study was to investigate the isomer-specific effect of CLA on the proliferation and differentiation of pig preadipocytes in primary culture. The effect of CLA on preadipocyte proliferation was determined using cleavage of the tetrazolium salt, WST-1, as a marker for proliferation. Preadipocyte number was decreased in a dose-dependent fashion by trans-12,cis-10 CLA (P < 0.05). No other fatty acid affected preadipocyte number. Differentiation was monitored on d 10 after induction morphologically, enzymatically, and by measuring the mRNA abundance of key adipogenic transcription factors. Both a crude CLA preparation containing a mixture of CLA isomers (CLA-mix) and the pure trans-10,cis-12 CLA isomer inhibited glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent fashion, with trans-10,cis-12 CLA being more potent (P < 0.01) than the CLA-mix. Cis-9,trans-11 CLA failed to decrease GPDH activity; however, increasing concentrations of cis-9,trans-11 CLA tended to blunt the inhibitory effect of trans-10,cis-12 CLA on GPDH activity (P < 0.09), suggesting that cis-9,trans-11 CLA may antagonize the action of trans-10,cis-12 CLA in porcine adipocytes. Finally, the isomer-specific effect of CLA on adipogenic transcription factor gene expression was investigated. Trans-10,cis-12 CLA decreased expression of peroxisome proliferator-activated receptor gamma (PPAR gamma; P < 0.01) and sterol regulatory element-binding protein-1c (SREBP-1c; P < 0.05) mRNA, while failing to alter the expression of CCAAT/enhancer binding protein alpha (C/EBPalpha) mRNA. Interestingly, both the CLA-mix and the trans-10,cis-12 CLA isomer increased the mRNA abundance of chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF; P < 0.002). No other fatty acid affected COUP-TF mRNA levels

  17. [Structural identification and quality study on isomers of a novel anticancer photosensitiser photocyanine].

    PubMed

    Yang, Bei-bei; Yao, Hui-sheng; Liu, Hong; Jiang, Zhou; Wang, Jian; He, Wen-yi; Wang, Yan; Chen, Nai-sheng; Huang, Jin-ling

    2010-12-01

    Our work focuses on the quality control and structural identification of Photocyanine as a cancer therapeutic photosensitizer. Photocyanine is a mixture which contains four ZnPcS2P2 type substituted Phthalocyanine isomers. In order to obtain the single component from Photocyanine, the mixture of four isomers possessing the similar structures and chemical property had been isolated and purified. An HPLC method with a mixture of methanol-acetonitrile-ion-pair buffer as the mobile phase was applied to isolate the four isomers by means of a semi-preparative C18 column. To remove the salts which were mixed in the preparative product, a SPE C18 column was used to separate the salts by elution with water and then the marker component was eluted by methanol. Subsequently, a column of Sephadex LH-20 gel was applied to elute the crudes with methanol to desalination. The purity of the isolated compound was measured by TLC and four different isomers of phthalocyanine were obtained. The chemical structures of them were elucidated by 1H NMR spectra, gCOSY and NOE1D. An HPLC-DAD method was developed for simultaneously determination of four major isomers in Photocyanine with a C18 column (Grace Smart, 150 mm x 4.6 mm ID, 5 microm). The separation was carried out with a gradient program at a flow rate of 1.0 mL x min(-1). The mobile phase was a mixture of acetonitrile and ion-pair buffer (0.01 mol x L(-1) hexadecyl trimethyl ammonium bromide and 0.01 mol x L(-1) potassium dihydrogen phosphate, adjusted the pH value to 6.8 with potassium hydroxide solution). The resolution values of four isomers were 2.5, 1.20, 1.33, and 1.8. Linear regression analysis for four compounds was performed by the external standard method. Four constituents were linear in the concentration range of 0.005 to 10 microg. The values of relative standard deviation (RSD) of intra-day were 0.12%, 0.66%, 0.99%, and 1.21%, respectively. The limits of detection for four compounds were 15 ng, 20 ng, 12 ng, and 25 ng

  18. The role of alkoxy radicals in the heterogeneous reaction of two structural isomers of dimethylsuccinic acid.

    PubMed

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R

    2015-10-14

    A key challenge in understanding the transformation chemistry of organic aerosols is to quantify how changes in molecular structure alter heterogeneous reaction mechanisms. Here we use two model systems to investigate how the relative locations of branched methyl groups control the heterogeneous reaction of OH with two isomers of dimethylsuccinic acid (C6H10O4). 2,2-Dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA) differ only in the location of the two branched methyl groups, thus enabling a closer inspection of how the distribution of carbon reaction sites impacts the chemical evolution of the aerosol. The heterogeneous reaction of OH with 2,3-DMSA (reactive OH uptake coefficient, γ = 0.99 ± 0.16) is found to be ∼2 times faster than that of 2,2-DMSA (γ = 0.41 ± 0.07), which is attributed to the larger stability of the tertiary alkyl radical produced by the initial OH abstraction reaction. While changes in the average aerosol oxidation state (OSC) and the carbon number (NC) are similar for both isomers upon reaction, significant differences are observed in the underlying molecular distribution of reaction products. The reaction of OH with the 2,3-DMSA isomer produces two major reaction products: a product containing a new alcohol functional group (C6H10O5) formed by intermolecular hydrogen abstraction and a C5 compound formed via carbon-carbon (C-C) bond scission. Both of these reaction products are explained by the formation and subsequent reaction of a tertiary alkoxy radical. In contrast, the OH reaction with the 2,2-DMSA isomer forms four dominant reaction products, the majority of which are C5 scission products. The difference in the quantity of C-C bond scission products for these two isomers is unexpected since decomposition is assumed to be favored for the isomer with the most tertiary carbon sites (i.e. 2,3-DMSA). For both isomers, there is a much larger abundance of C6 alcohol relative to C6 ketone products, which suggests

  19. Evaluation of Enhanced Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for the Separation of Recalcitrant Polychlorinated Biphenyl Isomers

    EPA Science Inventory

    The separation of some recalcitrant polychlorinated biphenyl (PCB) isomers in extracts from environmental compartments has been a daunting task for environmental chemists. Summed quantitation values for coeluting PCB isomers are often reported. This composite data obscures the ac...

  20. Differential developmental toxicity of naphthoic acid isomers in medaka (Oryzias latipes) embryos

    PubMed Central

    Carney, Michael W.; Erwin, Kyle; Hardman, Ron; Yuen, Bonny; Volz, David C.; Hinton, David E.; Kullman, Seth W.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread persistent pollutants that readily undergo biotic and abiotic conversion to numerous transformation products in rivers, lakes and estuarine sediments. Here we characterize the developmental toxicity of four PAH transformation products each structural isomers of hydroxynaphthoic acid: 1H2NA, 2H1NA, 2H3NA, and 6H2NA. Medaka fish (Oryzias latipes) embryos and eleutheroembryos were used to determine toxicity. A 96-well micro-plate format was used to establish a robust, statistically significant platform for assessment of early life stages. Individual naphthoic acid isomers demonstrated a rank order of toxicity with 1H2NA > 2H1NA > 2H3NA > 6H2NA being more toxic. Abnormalities of circulatory system were most pronounced including pericardial edema and tube heart. To determine if HNA isomers were AhR ligands, spatial-temporal expression and activity of CYP1A was measured via in vivo EROD assessments. qPCR measurement of CYP1A induction proved different between isomers dosed at respective concentrations affecting 50% of exposed individuals (EC50s). In vitro, all ANH isomers transactivated mouse AhR using a medaka CYP1A promoter specific reporter assay. Circulatory abnormalities followed P450 induction and response was consistent with PAH toxicity. A 96-well micro-plates proved suitable as exposure chambers and provided statistically sound evaluations as well as efficient toxicity screens. Our results demonstrate the use of medaka embryos for toxicity analysis thereby achieving REACH objectives for the reduction of adult animal testing in toxicity evaluations. PMID:18433798

  1. Naturally occurring structural isomers in serum IgA1 o-glycosylation.

    PubMed

    Takahashi, Kazuo; Smith, Archer D; Poulsen, Knud; Kilian, Mogens; Julian, Bruce A; Mestecky, Jiri; Novak, Jan; Renfrow, Matthew B

    2012-02-01

    IgA is the most abundantly produced antibody and plays an important role in the mucosal immune system. Human IgA is represented by two isotypes, IgA1 and IgA2. The major structural difference between these two subclasses is the presence of nine potential sites of O-glycosylation in the hinge region between the first and second constant region domains of the heavy chain. Thr(225), Thr(228), Ser(230), Ser(232) and Thr(236) have been identified as the predominant sites of O-glycan attachment. The range and distribution of O-glycan chains at each site within the context of adjacent sites in this clustered region create a complex heterogeneity of surface epitopes that is incompletely defined. We previously described the analysis of IgA1 O-glycan heterogeneity by use of high resolution LC-MS and electron capture dissociation tandem MS to unambiguously localize all amino acid attachment sites in IgA1 (Ale) myeloma protein. Here, we report the identification and elucidation of IgA1 O-glycopeptide structural isomers that occur based on amino acid position of the attached glycans (positional isomers) and the structure of the O-glycan chains at individual sites (glycan isomers). These isomers are present in a model IgA1 (Mce1) myeloma protein and occur naturally in normal human serum IgA1. Variable O-glycan chains attached to Ser(230), Thr(233) or Thr(236) produce the predominant positional isomers, including O-glycans composed of a single GalNAc residue. These findings represent the first definitive identification of structural isomeric IgA1 O-glycoforms, define the single-site heterogeneity for all O-glycan sites in a single sample, and have implications for defining epitopes based on clustered O-glycan variability.

  2. Portable, Battery Operated Capillary Electrophoresis with Optical Isomer Resolution Integrated with Ionization Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moini, Mehdi; Rollman, Christopher M.

    2016-03-01

    We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids.

  3. Probing ground and low-lying excited states for HIO2 isomers

    NASA Astrophysics Data System (ADS)

    de Souza, Gabriel L. C.; Brown, Alex

    2014-12-01

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).

  4. Probing ground and low-lying excited states for HIO2 isomers.

    PubMed

    de Souza, Gabriel L C; Brown, Alex

    2014-12-21

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10(-3)). PMID:25527931

  5. Probing ground and low-lying excited states for HIO{sub 2} isomers

    SciTech Connect

    Souza, Gabriel L. C. de; Brown, Alex

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  6. Time-resolved cryogenic modulation reveals isomer interconversion profiles in dynamic chromatography.

    PubMed

    Mariott, P; Trapp, O; Shellie, R; Schurig, V G

    2001-06-01

    The dynamic chromatographic study of interconversion of E and Z forms of oximes has been investigated by using a novel cryogenic modulation method in a two-dimensional gas chromatographic array. The primary column is a conventional capillary GC column on which the molecular interconversion proceeds. In this case, the molecular dynamical process leads to a peak profile describing the kinetics and thermodynamics of the interconverting molecules during its chromatographic elution. Thus an interconversion region intercedes the elution of the individual stereoisomers of the reaction. Since the molecules are isomers, classical molecular identification methods such as gas chromatography-mass spectrometry are unable to study the individual instantaneous amounts of each of the compounds. Hence the infinitesimal profiles of interconversion along the entire column have never been experimentally observed; rather the total profile is normally subjected to mathematical modelling studies in order to match experiment with theory, and to gain the kinetic parameters of the process. In the present study, an instantaneous ratio of the individual isomers can be found during the chromatographic elution by direct measurement. This is achieved by using a cryogenic zone focussing process, with rapid longitudinal modulation of a cold trap and continual pulsing of collected zones into a fast-analysis high-resolution capillary column on which isomer interconversion is minimized. The data can be displayed as a two-dimensional contour plot to demonstrate the individual isomer profiles. The two-dimensional analysis also allows easy measurement of the peak ratios of the two isomers which is an indicator of the extent of interconversion that has taken place. Two model systems, acetaldoxime and butyraldoxime, were chosen to illustrate the use of the cryogenic modulation procedure. It is anticipated that the procedure could be applied to other molecules which exhibit gas-phase isomerizations or

  7. Conformational preferences and synthesis of isomers Z and E of oxazole-dehydrophenylalanine.

    PubMed

    Staś, Monika; Bujak, Maciej; Broda, Małgorzata A; Siodłak, Dawid

    2016-05-01

    Dehydrophenylalanine, ΔPhe, is the most commonly studied α,β-dehydroamino acid. In nature, further modifications of the α,β-dehydroamino acids were found, for example, replacement of the C-terminal amide group by oxazole ring. The conformational properties of oxazole-dehydrophenylalanine residue (ΔPhe-Ozl), both isomers Z and E, were investigated. To determine all possible conformations, theoretical calculations were performed using Ac-(Z/E)-ΔPhe-Ozl(4-Me) model compounds at M06-2X/6-31++G(d,p) level of theory. Ac-(Z/E)-ΔPhe-Ozl-4-COOEt compounds were synthesized and the conformational preferences of each isomer, Z and E, were investigated using FTIR and NMR-NOE in solutions of increasing polarity (CHCl3 , DMSO-d6). The solid-state low-temperature structures of Ac-(Z)-ΔPhe-Ozl-4-COOEt and its intermediate analog Ac-(Z)-ΔPhe-Ozn(4-OH)-4-COOEt were also determined. In a weakly polar environment, the ΔPhe-Ozl residue has a tendency to adopt the conformation β2 with the calculated φ and ψ angles of -127° and 0° for the isomer Z and -170° and 26° for the isomer E. The increase of environment polarity favors the helical conformation α and the beta-turn like conformation β, but the conformation β2 seems to be still accessible. The (E)-ΔPhe-Ozl residue can be obtained from the isomer Z in photoisomerization reaction. However, hydroxyl-oxazoline-dehydrophenylalanine ΔPhe-Ozn(4-OH) decomposes in such conditions. Alternatively, (E)-ΔPhe-NH2 can be applied as a substrate in the Hantzsch reaction. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 283-294, 2016. PMID:27061820

  8. An experimental and kinetic modeling study of the oxidation of the four isomers of butanol.

    PubMed

    Moss, Jeffrey T; Berkowitz, Andrew M; Oehlschlaeger, Matthew A; Biet, Joffrey; Warth, Valérie; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique

    2008-10-30

    Butanol, an alcohol which can be produced from biomass sources, has received recent interest as an alternative to gasoline for use in spark ignition engines and as a possible blending compound with fossil diesel or biodiesel. Therefore, the autoignition of the four isomers of butanol (1-butanol, 2-butanol, iso-butanol, and tert-butanol) has been experimentally studied at high temperatures in a shock tube, and a kinetic mechanism for description of their high-temperature oxidation has been developed. Ignition delay times for butanol/oxygen/argon mixtures have been measured behind reflected shock waves at temperatures and pressures ranging from approximately 1200 to 1800 K and 1 to 4 bar. Electronically excited OH emission and pressure measurements were used to determine ignition-delay times. The influence of temperature, pressure, and mixture composition on ignition delay has been characterized. A detailed kinetic mechanism has been developed to describe the oxidation of the butanol isomers and validated by comparison to the shock-tube measurements. Reaction flux and sensitivity analysis illustrates the relative importance of the three competing classes of consumption reactions during the oxidation of the four butanol isomers: dehydration, unimolecular decomposition, and H-atom abstraction. Kinetic modeling indicates that the consumption of 1-butanol and iso-butanol, the most reactive isomers, takes place primarily by H-atom abstraction resulting in the formation of radicals, the decomposition of which yields highly reactive branching agents, H atoms and OH radicals. Conversely, the consumption of tert-butanol and 2-butanol, the least reactive isomers, takes place primarily via dehydration, resulting in the formation of alkenes, which lead to resonance stabilized radicals with very low reactivity. To our knowledge, the ignition-delay measurements and oxidation mechanism presented here for 2-butanol, iso-butanol, and tert-butanol are the first of their kind.

  9. Portable, Battery Operated Capillary Electrophoresis with Optical Isomer Resolution Integrated with Ionization Source for Mass Spectrometry.

    PubMed

    Moini, Mehdi; Rollman, Christopher M

    2016-03-01

    We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids. PMID:26644308

  10. Conformational preferences and synthesis of isomers Z and E of oxazole-dehydrophenylalanine.

    PubMed

    Staś, Monika; Bujak, Maciej; Broda, Małgorzata A; Siodłak, Dawid

    2016-05-01

    Dehydrophenylalanine, ΔPhe, is the most commonly studied α,β-dehydroamino acid. In nature, further modifications of the α,β-dehydroamino acids were found, for example, replacement of the C-terminal amide group by oxazole ring. The conformational properties of oxazole-dehydrophenylalanine residue (ΔPhe-Ozl), both isomers Z and E, were investigated. To determine all possible conformations, theoretical calculations were performed using Ac-(Z/E)-ΔPhe-Ozl(4-Me) model compounds at M06-2X/6-31++G(d,p) level of theory. Ac-(Z/E)-ΔPhe-Ozl-4-COOEt compounds were synthesized and the conformational preferences of each isomer, Z and E, were investigated using FTIR and NMR-NOE in solutions of increasing polarity (CHCl3 , DMSO-d6). The solid-state low-temperature structures of Ac-(Z)-ΔPhe-Ozl-4-COOEt and its intermediate analog Ac-(Z)-ΔPhe-Ozn(4-OH)-4-COOEt were also determined. In a weakly polar environment, the ΔPhe-Ozl residue has a tendency to adopt the conformation β2 with the calculated φ and ψ angles of -127° and 0° for the isomer Z and -170° and 26° for the isomer E. The increase of environment polarity favors the helical conformation α and the beta-turn like conformation β, but the conformation β2 seems to be still accessible. The (E)-ΔPhe-Ozl residue can be obtained from the isomer Z in photoisomerization reaction. However, hydroxyl-oxazoline-dehydrophenylalanine ΔPhe-Ozn(4-OH) decomposes in such conditions. Alternatively, (E)-ΔPhe-NH2 can be applied as a substrate in the Hantzsch reaction. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 283-294, 2016.

  11. Glass transition dynamics and boiling temperatures of molecular liquids and their isomers.

    PubMed

    Wang, Li-Min; Richert, Ranko

    2007-03-29

    The relation between a dynamic and a thermodynamic temperature, glass transition Tg and boiling point Tb, is investigated for various glass-forming liquids, with emphasis on monohydroxy alcohols. As is well known, Tb and Tg are positively correlated across a large variety of liquids. However, we found that the same quantities show a negative correlation within an isomeric series, i.e., Tb decreases with increasing Tg for different isomers of the same chemical formula. For the alcohol series, CnH2n+1OH with 3 < or = n < or = 10, a master curve of the negative Tg - Tb correlation is obtained if the temperatures are normalized to the respective values of the n-alkanols. This Tg - Tb dependence of isomeric liquids is linked to entropic effects and responsible for much of the scatter of the correlation observed for a large number of molecular organic glass-formers with 45 < Tg < 250 K. Dielectric relaxation is measured for three groups of isomers: (a) 3-methoxyl-1-butanol and 2-iso-propoxyethanol, (b) 1,4-, 1,2-, and 2,4-pentanediol, and (c) di-n- and di-iso-butyl phthalate. Two key parameters of the dynamics, fragility m and stretching exponent beta, are found to be indistinguishable within isomers of moderately different Tgs. Larger fragility differences are readily expected with pronounced structural change, but no systematic trend is observed within an isomer series. The results provide a useful tool for assessing Tg, m, and beta for marginal glass formers on the basis of their isomers.

  12. What Makes a Rich Task?

    ERIC Educational Resources Information Center

    Griffin, Pete

    2009-01-01

    A common view seems to be emerging in the mathematics education world at the moment that the development and use of "rich tasks" is a good thing; a "right thing" to do. There are many examples of these "rich tasks" and teachers are encouraged to use them whenever they can. Professional learners don't just accept this uncritically, but question…

  13. Isomeric states observed in heavy neutron-rich nuclei populated in the fragmentation of a 208Pb beam

    NASA Astrophysics Data System (ADS)

    Steer, S. J.; Podolyák, Zs.; Pietri, S.; Górska, M.; Grawe, H.; Maier, K. H.; Regan, P. H.; Rudolph, D.; Garnsworthy, A. B.; Hoischen, R.; Gerl, J.; Wollersheim, H. J.; Becker, F.; Bednarczyk, P.; Cáceres, L.; Doornenbal, P.; Geissel, H.; Grębosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopwicz, W.; Saito, T.; Schaffner, H.; Tashenov, S.; Heinz, A.; Pfützner, M.; Kurtukian-Nieto, T.; Benzoni, G.; Jungclaus, A.; Balabanski, D. L.; Bowry, M.; Brandau, C.; Brown, A.; Bruce, A. M.; Catford, W. N.; Cullen, I. J.; Dombrádi, Zs.; Estevez, M. E.; Gelletly, W.; Ilie, G.; Jolie, J.; Jones, G. A.; Kmiecik, M.; Kondev, F. G.; Krücken, R.; Lalkovski, S.; Liu, Z.; Maj, A.; Myalski, S.; Schwertel, S.; Shizuma, T.; Walker, P. M.; Werner-Malento, E.; Wieland, O.

    2011-10-01

    Heavy neutron-rich nuclei were populated via the fragmentation of a E/A=1 GeV 20882Pb beam. Secondary fragments were separated and identified and subsequently implanted in a passive stopper. By the detection of delayed γ rays, isomeric decays associated with these nuclei have been identified. A total of 49 isomers were detected, with the majority of them observed for the first time. The newly discovered isomers are in 204,20580Hg, 201,202,204,20579Au, 197,203,20478Pt, 195,199-20377Ir, 193,197-19976Os, 19675Re, 190,19174W, and 18973Ta. Possible level schemes are constructed and the structure of the nuclei discussed. To aid the interpretation, shell-model as well as BCS calculations were performed.

  14. Differential accumulation and elimination behavior of perfluoroalkyl Acid isomers in occupational workers in a manufactory in China.

    PubMed

    Gao, Yan; Fu, Jianjie; Cao, Huiming; Wang, Yawei; Zhang, Aiqian; Liang, Yong; Wang, Thanh; Zhao, Chunyan; Jiang, Guibin

    2015-06-01

    In this study, serum and urine samples were collected from 36 occupational workers in a fluorochemical manufacturing plant in China from 2008 to 2012 to evaluate the body burden and possible elimination of linear and branched perfluoroalkyl acids (PFAAs). Indoor dust, total suspended particles (TSP), diet, and drinking water samples were also collected to trace the occupational exposure pathway to PFAA isomers. The geometric mean concentrations of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorohexanesulfonate (PFHxS) isomers in the serum were 1386, 371, and 863 ng mL(-1), respectively. The linear isomer of PFOS, PFOA, and PFHxS was the most predominant PFAA in the serum, with mean proportions of 63.3, 91.1, and 92.7% respectively, which were higher than the proportions in urine. The most important exposure routes to PFAA isomers in the occupational workers were considered to be the intake of indoor dust and TSP. A renal clearance estimation indicated that branched PFAA isomers had a higher renal clearance rate than did the corresponding linear isomers. Molecular docking modeling implied that linear PFOS (n-PFOS) had a stronger interaction with human serum albumin (HSA) than branched isomers did, which could decrease the proportion of n-PFOS in the blood of humans via the transport of HSA.

  15. Biochemical Characterization of Inducible 'Reductase' Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4.

    PubMed

    Karandikar, Rohini; Badri, Abinaya; Phale, Prashant S

    2015-09-01

    The first step involved in the degradation of phthalate isomers (phthalate, isophthalate and terephthalate) is the double hydroxylation by respective aromatic-ring hydroxylating dioxygenases. These are two component enzymes consisting of 'oxygenase' and 'reductase' components. Soil isolate Pseudomonas aeruginosa strain PP4 degrades phthalate isomers via protocatechuate and benzoate via catechol 'ortho' ring cleavage pathway. Metabolic studies suggest that strain PP4 has carbon source-specific inducible phthalate isomer dioxygenase and benzoate dioxygenase. Thus, it was of interest to study the properties of reductase components of these enzymes. Reductase activity from phthalate isomer-grown cells was 3-5-folds higher than benzoate grown cells. In-gel activity staining profile showed a reductase activity band of R f 0.56 for phthalate isomer-grown cells as compared to R f 0.73 from benzoate-grown cells. Partially purified reductase components from phthalate isomer grown cells showed K m in the range of 30-40 μM and V max = 34-48 μmol min(-1) mg(-1). However, reductase from benzoate grown cells showed K m = 49 μM and V max = 10 μmol min(-1) mg(-1). Strikingly similar molecular and kinetic properties of reductase component from phthalate isomer-grown cells suggest that probably the same reductase component is employed in three phthalate isomer dioxygenases. However, reductase component is different, with respect to kinetic properties and zymogram analysis, from benzoate-grown cells when compared to that from phthalate isomer grown cells of PP4.

  16. Perfluorooctane sulfonate toxicity, isomer-specific accumulation, and maternal transfer in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Sharpe, Rainie L; Benskin, Jonathan P; Laarman, Anne H; Macleod, Sherri L; Martin, Jonathan W; Wong, Charles S; Goss, Greg G

    2010-09-01

    Perfluorooctane sulfonate (PFOS; C(8)F(17)SO(3) (-)) bioaccumulation and toxicity have been demonstrated in both aquatic and terrestrial organisms. The majority of investigations have examined total PFOS concentrations in wildlife and in toxicity testing, but isomer-specific monitoring studies are less common, and no laboratory-based study of PFOS isomer accumulation in fish has been reported. The present study examined accumulation and maternal transfer of PFOS isomers in zebrafish and tissue-specific accumulation of PFOS isomers in trout parr. A median lethal dose (LC50) of 22.2 and 2.5 mg/L was calculated for adult zebrafish and trout parr, respectively. A two-week PFOS exposure resulted in tissue-specific PFOS accumulation in trout, with maximum concentrations identified in the liver tissue (>50 microg/g). Prior exposure to PFOS as alevin did not affect the accumulation of PFOS in tissues later in life. In both species, accumulation of branched PFOS isomers generally occurred to a lesser extent than linear PFOS, which may explain the relative deficiency of branched PFOS isomers in some aquatic species in the field. Analysis of exposed trout tissues indicated that isomer discrimination may occur at the level of elimination or uptake and elimination processes in the kidney or gill, respectively. When zebrafish underwent a reproductive cycle in the presence of PFOS, approximately 10% (wt) of the adult PFOS body burden was transferred to the developing embryos, resulting in a higher total PFOS concentration in eggs (116 +/- 13.3 microg/g) than in the parent fish (72.1 +/- 7.6 microg/g). The isomer profile in eggs was not significantly different from that of adults, suggesting that the maternal transfer of branched and linear PFOS isomers in fish is largely nonisomer specific.

  17. High-K isomers in {sup 176}W and mechanisms of K-violation

    SciTech Connect

    Crowell, B.; Janssens, R.V.F.; Blumenthal, D.J.

    1995-08-01

    K-isomers are states in deformed nuclei whose {gamma}-decay is hindered by selection rules involving K, the projection of the angular momentum along the axis of symmetry of the nucleus. Previous work with the Argonne Notre Dame BGO Array delineated the existence of two K-isomers in {sup 176}W, one of which had a very unusual pattern of decay. A short description of this work was published as a letter, and a more complete account is being readied for submission. These results provided evidence that quantum-mechanical fluctuations in the nuclear shape may be responsible for some of the observed K-violating transitions. In addition, hints were present in the data of the existence of another K-isomer with an even higher in. An experiment was performed in September 1994 to observe this isomer, using the reaction {sup 50}Ti({sup 130}Te,4n), and a technique in which recoiling {sup 176}W nuclei were created 17-cm upstream of the center of the array and caught on a Pb catcher foil at the center. Intense ({approximately} 3 pnA) beams of {sup 130}Te were supplied by the ECR source using a new sputtering technique. The recoil-shadow geometry was highly successful at removing the background from non-isomeric decays, allowing the weakly populated K-isomers to be detected cleanly. In addition, the availability of pulsed beams from ATLAS and the timing data from the BGO array provided a second technique for isolating the decays of interest, by selecting events in which a given number of BGO detectors fired between beam pulses. This method was used in the previous experiment, and was also applied in this experiment as a second level of selection. As a result, gamma-ray transitions were detected in the present experiment with intensities as small as {approximately} 0.02 % of the {sup 176}W reaction channel. The existence of the new isomer was confirmed, and a partial level-scheme was constructed.

  18. Differential adsorption of complex organic molecules isomers at interstellar ice surfaces

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Bertin, M.; Mokrane, H.; Romanzin, C.; Michaut, X.; Jeseck, P.; Fillion, J.-H.; Chaabouni, H.; Congiu, E.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Pauzat, , F.; Pilmé, J.; Minot, C.; Ellinger, Y.

    2011-08-01

    Context. Over 20 of the ~150 different species detected in the interstellar and circumstellar media have also been identified in icy environments. For most of the species observed so far in the interstellar medium (ISM), the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle - MEP) with few exceptions such as, for example, CH3COOH/HCOOCH3 and CH3CH2OH/CH3OCH3, whose formation is thought to occur on the icy mantles of interstellar grains. Aims: We investigate whether differences found in the compositions of molecular ices and the surrounding gas phase could originate from differences between the adsorption of one isomer from that of another at the ice surface. Methods: We performed a coherent and concerted theoretical/experimental study of the adsorption energies of the four molecules mentioned above, i.e. acetic acid (AA)/methyl formate (MF) and ethanol (EtOH)/dimethyl ether (DME) on the surface of water ice at low temperature. The question was first addressed theoretically at LCT using solid state periodic density functional theory (DFT) to represent the organized solid support. The experimental determination of the ice/molecule interaction energies was then carried out independently by two teams at LPMAA and LERMA/LAMAp using temperature programmed desorption (TPD) under an ultra-high vacuum (UHV) between 70 and 160 K. Results: For each pair of isomers, theory and experiments both agree that the most stable isomer (AA or EtOH) interacts more efficiently with the water ice than the higher energy isomer (MF or DME). This differential adsorption can be clearly seen in the different desorption temperatures of the isomers. It is not related to their intrinsic stability but instead to both AA and EtOH producing more and stronger hydrogen bonds with the ice surface. Conclusions: We show that hydrogen bonding may play an important role in the release of organic species from grains and propose that, depending on the

  19. Are isomers of the vinyl cyanide ion missing links for interstellar pyrimidine formation?

    SciTech Connect

    Bera, Partha P.; Lee, Timothy J.; Schaefer, Henry F. III

    2009-08-21

    In the interstellar medium (ISM) there are many regions where the formation of molecules is kinetically driven rather than thermochemically, which can lead to the formation of many isomers even though some may be fairly higher in energy relative to the molecular global minimum. Recent laboratory experiments where noble gas cations are reacted with pyrimidine favored the formation of C{sub 3}H{sub 3}N{sup +}, but the molecular structure(s) of this fragment was not determined. Microscopic reversibility means that pyrimidine could form under interstellar conditions should the required C{sub 3}H{sub 3}N{sup +} reactant be detected in the ISM. Hence C{sub 3}H{sub 3}N{sup +} could be a strong candidate for involvement in the formation of heterocyclic biomolecules such as pyrimidine in the ISM. In this study, we have investigated the low energy isomers of the acrylonitrile ion (C{sub 3}H{sub 3}N{sup +}) using density functional theory as well as high levels of ab initio theory, namely, the singles and doubles coupled-cluster theory that includes a perturbational correction for connected triple excitations, denoted as CCSD(T). An automated stochastic search procedure, Kick, has been employed to find isomers on the ground state doublet potential energy surface. Several new structures, along with all the previously reported minima, have been found. The global minimum H{sub 2}CCCNH{sup +} is energetically much lower than either H{sub 2}CC(H)CN{sup +}, the acrylonitrile ion, or HCC(H)NCH{sup +}, the most likely intermediate of the reaction between HCCH{sup +} and HCN. These isomers are connected to the global minimum via several transition states and intermediates. The results indicate that not only the global minimum but also several higher energy isomers of the C{sub 3}H{sub 3}N{sup +} ion could be important in interstellar pyrimidine formation. The isomeric molecules have the necessary CCNC backbone needed for the reaction with HCN to form the cyclic pyrimidine framework

  20. Isomer and β-decay spectroscopy of Tz=1 isotopes below the N=Z=50 shell gap

    NASA Astrophysics Data System (ADS)

    Boutachkov, P.; Braun, N.; Brock, T.; Nara Singh, B. S.; Blazhev, A.; Liu, Z.; Wadsworth, R.; Górska, M.; Grawe, H.; Pietri, S.; Domingo-Pardo, C.; Faestermann, T.; Farinon, F.; Grebosz, J.; Kojuharov, I.; Kurz, N.; Nociforo, C.; Podolyák, Zs; Prochazka, A.; Steer, S.; Cáceres, L.; Engert, T.; Gerl, J.; Goel, N.; Hoischen, R.; Schaffner, H.; Weick, H.; Wollersheim, H.-J.; Bettermann, L.; Finke, F.; Geibel, K.; Ilie, G.; Iwasaki, H.; Jolie, J.; Nyberg, J.; Reiter, P.; Scholl, C.; Söderström, P.-A.; Warr, N.; Eppinger, K.; Gottardo, A.; Hinke, C.; Krücken, R.; Pfützner, M.; Regan, P.; Rinta-Antila, S.; Rudolph, D.; Woods, P.; Ataç, A.; Merchán, E.

    2011-09-01

    The RISING setup at the GSI-FRS facility was used to investigate the isomer and beta decays in N~Z~50 Cd, Ag and Pd isotopes. A preliminary analysis of the data has revealed new results on the Tz=1, 94Pd, 96Ag and 98Cd isotopes. In 94Pd a new high-spin isomer was observed, whilst in 96Ag 3 new isomeric states were identified, including core-excited states. In 98Cd a new high-energy isomeric γ-ray transition is observed, thus enabling us to confirm the previous spin assignment for the core-excited 12+ isomer.

  1. Synthesis of the E and Z isomers of the antiestrogen tamoxifen and its metabolite, hydroxytamoxifen, in tritium-labeled form

    SciTech Connect

    Robertson, D.W.; Katzenellenbogen, J.A.

    1982-06-04

    Both isomers of the potent antiestrogen tamoxifen (1,2-diphenyl-1-(4-(2-(dimethylamino)ethoxy)phenyl)-1-butene: E isomer = ICI-47699; Z isomer = ICI-46474, Nolvadex) and its metabolite, hydroxytamoxifen (1-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(4-hydroxyphenyl)-2-phenyl-1-butene), have been synthesized in a high specific activity, tritium-labeled form by catalytic tritium-halogen exchange performed on brominated precursors. The synthesis of another precursor to labeled tamoxifen which would enable the incorporation of three tritium atoms into the molecule by tritium-halogen exchange is reported.

  2. CIS-TRANS ISOMERS OF VITAMIN A AND RETINENE IN THE RHODOPSIN SYSTEM

    PubMed Central

    Hubbard, Ruth; Wald, George

    1952-01-01

    Vitamin A and retinene, the carotenoid precursors of rhodopsin, occur in a variety of molecular shapes, cis-trans isomers of one another. For the synthesis of rhodopsin a specific cis isomer of vitamin A is needed. Ordinary crystalline vitamin A, as also the commercial synthetic product, both primarily all-trans, are ineffective. The main site of isomer specificity is the coupling of retinene with opsin. It is this reaction that requires a specific cis isomer of retinene. The oxidation of vitamin A to retinene by the alcohol dehydrogenase-cozymase system displays only a low degree of isomer specificity. Five isomers of retinene have been isolated in crystalline condition: all-trans; three apparently mono-cis forms, neoretinenes a and b and isoretinene a; and one apparently di-cis isomer, isoretinene b. Neoretinenes a and b were first isolated in our laboratory, and isoretinenes a and b in the Organic Research Laboratory of Distillation Products Industries. Each of these substances is converted to an equilibrium mixture of stereoisomers on simple exposure to light. For this reaction, light is required which retinene can absorb; i.e., blue, violet, or ultraviolet light. Yellow, orange, or red light has little effect. The single geometrical isomers of retinene must therefore be protected from low wave length radiation if their isomerization is to be avoided. By incubation with opsin in the dark, the capacity of each of the retinene isomers to synthesize rhodopsin was examined. All-trans retinene and neoretinene a are inactive. Neoretinene b yields rhodopsin indistinguishable from that extracted from the dark-adapted retina (λmax· 500 mµ). Isoretinene a yields a similar light-sensitive pigment, isorhodopsin, the absorption spectrum of which is displaced toward shorter wave lengths (λmax· 487 mµ). Isoretinene b appears to be inactive, but isomerizes preferentially to isoretinene a, which in the presence of opsin is removed to form isorhodopsin before the

  3. Response of great horned owls given the optical isomers of ketamine.

    PubMed

    Redig, P T; Larson, A A; Duke, G E

    1984-01-01

    The relative anesthetic effects of the 2 purified isomers and the racemic mixture of ketamine were compared in 6 great horned owls (Bubo virginianus), a species in which racemic ketamine is poorly tolerated. Other investigators have reported that the L(-) form is only a 3rd as potent as the D(+) form with respect to analgesic action in mammals. Accordingly, the racemic and the - forms were given at 2 X and 3 X, respectively, the dose of the + form in an attempt to achieve a potentially equivalent state of anesthesia. At these dose levels, there was no difference observed in the average duration of anesthesia with the 3 ketamine preparations. The - isomer yielded a poorer anesthetic response characterized by inadequate muscle relaxation, cardiac arrhythmias, and marked excitatory behavior during recovery. With the dosages used, the + form and the racemate were comparable in degree of muscle relaxation produced. The + form yielded smoother inductions and less cardiac arrhythmia than did the racemate. PMID:6703445

  4. Experimental and computational investigation of the thermochemistry of the six isomers of dichloroaniline.

    PubMed

    Ribeiro da Silva, Manuel A V; Amaral, Luísa M P F; Gomes, José R B

    2006-07-27

    The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies. PMID:16854047

  5. Exclusive accumulation of Z-isomers of monolignols and their glucosides in bark of Fagus grandifolia

    NASA Technical Reports Server (NTRS)

    Lewis, N. G.; Inciong, E. J.; Ohashi, H.; Towers, G. H.; Yamamoto, E.

    1988-01-01

    In addition to Z-coniferyl and Z-sinapyl alcohols, bark extracts of Fagus grandifolia also contain significant amounts of the glucosides, Z-coniferin, Z-isoconiferin (previously called faguside) and Z-syringin. The corresponding E-isomers of these glucosides do not accumulate to a detectable level. The accumulation of the Z-isomers suggests that either they are not lignin precursors or that they are reservoirs of monolignols for subsequent lignin biosynthesis; it is not possible to distinguish between these alternatives. The co-occurrence of Z-coniferin and Z-isoconiferin demonstrate that glucosylation of monolignols can occur at either the phenolic or the allylic hydroxyl groups.

  6. Thermochemical stabilities and vibrational spectra of isomers of the chlorine oxide dimer

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. P.; Clemitshaw, K. C.; Rowland, F. S.; Hehre, W. J.

    1988-01-01

    Molecular orbital calculations were performed to determine the relative thermochemical stabilities and IR vibrational spectra of isomers of the ClO dimer. Two straight-chain isomers (ClOOCl and ClOClO) and one branched species (ClClO2) were identified as energy minima on the Cl2O2 potential surface. It is shown that ClOOCl and ClClO2 are comparable in terms of stability, while ClOClO is about 11 kcal/mol higher in energy. The IR spectra obtained by Molina and Molina (1987) as a result of the reaction of chlorine atoms with ClO precursors are consistent with the production of the two most stable forms of Cl2O2.

  7. Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer, from Medicago truncatula.

    PubMed

    Tokunaga, Tamami; Hayashi, Hideo; Akiyama, Kohki

    2015-03-01

    A major strigolactone produced by the model legume Medicago truncatula (barrel medic) has been tentatively identified as a didehydro-orobanchol isomer. In this study, a putative didehydro-orobanchol isomer was isolated from root exudates collected from barrel medic grown hydroponically under phosphate-starved conditions. The structure and absolute configurations of this strigolactone, named medicaol, were determined by a combination of spectroscopic analysis and spectral comparison with 4-deoxymedicaol which was synthesized using solvolysis and rearrangement of hydroxymethylhexahydroindenone to tetrahydroazulenone as a key step. Medicaol has a seven-membered cycloheptadiene in the A ring instead of a typical six-membered cyclohexene. Medicaol and 4-deoxymedicaol showed activity comparable to their corresponding six-membered A ring relatives, orobanchol and 4-deoxyorobanchol (ent-2'-epi-5-deoxystrigol), in inducing hyphal branching of germinating spores of an arbuscular mycorrhizal fungus Gigaspora margarita. Plausible biosynthetic pathways from 4-deoxyorobanchol to medicaol are also proposed.

  8. High-K isomers in transactinide nuclei close to N = 162

    SciTech Connect

    Prassa, V. Nikšić, T.; Vretenar, D.; Lu, Bing-Nan; Ackermann, D.

    2015-10-15

    Transactinide nuclei around neutron number N = 162 display axially deformed equilibrium shapes, as shown in our previous analysis [1] of constrained mean-field energy surfaces and collective excitation spectra. In the present study we are particularly interested in the occurrence of high-K isomers in the axially deformed isotopes of Rf (Z = 104), Sg (Z = 106), Hs (Z = 108), and Ds (Z = 110), with neutron number N = 160 − 166 and the effect of the N=162 closure on the structure and distribution of two-quasiparticle (2qp) states. The evolution of high-K isomers is analysed in a self-consistent axially-symmetric relativistic Hartree-Bogoliubov calculation using the blocking approximation with time-reversal symmetry breaking.

  9. Aminophenol isomers unraveled by conformer-specific far-IR action spectroscopy.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-02-17

    Spectroscopic studies of molecular structure can strongly benefit from extending the conventional mid-IR range to the far-IR and THz regions, as low-frequency molecular vibrations provide unique fingerprints and high sensitivity to intra- and intermolecular interactions. In this work, the gas-phase conformer specific far-IR spectra of aminophenol isomers, recorded in the spectral range of 220-800 cm(-1) at the free-electron laser laboratory FELIX in Nijmegen (the Netherlands), are reported. Many distinct far-IR vibrational signatures which are specific for the molecular structure of the different aminophenol isomers are revealed and assigned. The observed far-IR transitions of the NH2 wagging (inversion) motion have been treated with a double-minimum harmonic well potential model that has enabled us to obtain the inversion barrier values. Moreover, we discuss the limitations and capability of conventional DFT frequency calculations to describe the far-IR vibrational modes. PMID:26854118

  10. Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers.

    PubMed

    Wang, Yang; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando

    2015-11-01

    Fullerene anions and cations have unique structural, electronic, magnetic and chemical properties that make them substantially different from neutral fullerenes. Although much theoretical effort has been devoted to characterizing and predicting their properties, this has been limited to a fraction of isomeric forms, mostly for fullerene anions, and has practically ignored fullerene cations. Here we show that the concepts of cage connectivity and frontier π orbitals allow one to understand the relative stability of charged fullerene isomers without performing elaborate quantum chemistry calculations. The latter is not a trivial matter, as the number of possible isomers for a medium-sized fullerene is many more than 100,000. The model correctly predicts the structures observed experimentally and explains why the isolated pentagon rule is often violated for fullerene anions, but the opposite is found for fullerene cations. These predictions are relevant in fields as diverse as astrophysics, electrochemistry and supramolecular chemistry.

  11. Experimental and computational investigation of the thermochemistry of the six isomers of dichloroaniline.

    PubMed

    Ribeiro da Silva, Manuel A V; Amaral, Luísa M P F; Gomes, José R B

    2006-07-27

    The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies.

  12. Preferential Isomer Formation Observed in H3+ + CO by Crossed Beam Imaging

    PubMed Central

    2016-01-01

    The proton transfer reaction H3+ + CO is one of the cornerstone chemical processes in the interstellar medium. Here, the dynamics of this reaction have been investigated using crossed beam velocity map imaging. Formyl product cations are found to be predominantly scattered into the forward direction irrespective of the collision energy. In this process, a high amount of energy is transferred to internal product excitation. By fitting a sum of two distribution functions to the measured internal energy distributions, the product isomer ratio is extracted. A small HOC+ fraction is obtained at a collision energy of 1.8 eV, characterized by an upper limit of 24% with a confidence level of 84%. At lower collision energies, the data indicate purely HCO+ formation. Such low values are unexpected given the previously predicted efficient formation of both HCO+ and HOC+ isomers for thermal conditions. This is discussed in light of the direct reaction dynamics that are observed. PMID:27352138

  13. Levels of146Ce studied through the decay of high-spin isomer of146La

    NASA Astrophysics Data System (ADS)

    Sharshar, T.; Yamada, S.; Okano, K.; Aoki, K.

    1993-12-01

    The decay of 10.0 s high-spin isomer of146La to levels of146Ce has been studied using the on-line isotope separator KUR-ISOL. Gamma-ray singles, γ -γ coincidence and conversion-electron spectra have been measured. A level scheme containing 90 levels and 206 γ-ray transitions has been constructed for146Ce, populated in the decay of the high-spin isomer of146La. Among these, 39 levels are reported for the first time. Spins and parities for some levels are proposed on the basis of γ-decay mode, log ft values and conversion-electron measurements. The band structure of the low-lying levels in146Ce is discussed.

  14. Identification of an {alpha}-decaying (9{sup -}) isomer in {sup 216}Fr

    SciTech Connect

    Kurcewicz, J.; Karny, M.; Korgul, A.; Kurcewicz, W.; Kurpeta, J.; Lewandowski, S.; Majorkiewicz, P.; Plochocki, A.; Wojtasiewicz, A.; Czarnacki, W.; Kasztelan, M.; Kisielinski, M.; Penttilae, H.; Roussiere, B.; Steczkiewicz, O.

    2007-11-15

    The {alpha} decay of the trans-lead isotopes {sup 212}At, {sup 216}Fr, and {sup 220}Ac was investigated by using mass-separated sources and analog as well as digital signal processing. By measuring {alpha}-{alpha} time correlations evidence was obtained for the occurrence of an {alpha}-decaying (9{sup -}) isomer in {sup 216}Fr. The {alpha}-decay energy and half-life amount to 9000(5) keV and 850(30) ns, respectively. The excitation energy of the isomer is compared with shell-model predictions for the high-spin members of the {pi}(h{sub 9/2}){nu}(g{sub 9/2}) multiplet, and the relevance of the new data concerning the search for reflection asymmetry is presented.

  15. Deformation increase of high-spin core-excited isomers in the astatine nuclei

    SciTech Connect

    Scheveneels, G.; Hardeman, F.; Neyens, G.; Coussement, R. )

    1991-06-01

    Quadrupole moments of six high-spin isomers in the At isotopes have been measured with the level-mixing-spectroscopy method: {sup 208}At(16{sup {minus}}), {sup 209}At(29/2{sup +}), {sup 210}At(19{sup +},15{sup {minus}}), {sup 211}At(39/2{sup {minus}},29/2{sup +}). The results show that level mixing spectroscopy is a promising technique to determine quadrupole moments of isomers that are difficult to measure by other in-beam hyperfine interaction methods. A large increase of the quadrupole moment is observed if neutrons are excited across or removed from the {ital N}=126 shell closure. This behavior is explained in terms of an enhanced core softness for fewer core neutrons; the aligned valence particles, moving in equatorial orbits, then easily polarize the core towards oblate deformation.

  16. Polymerization of the E and Z Isomers of Bis-(Triethoxysilyl)-2-Butene

    SciTech Connect

    Carpenter, J.P. Dorhout, K.; Loy, D.A.; Shaltout, R.M.; Shea, K.J.

    1999-05-11

    We have synthesized the Z and E isomers of 1,4-bis(triethoxysilyl)-2- butene and polymerized them under acid and base catalyzed sol-gel conditions. As expected the E system formed crosslinked, insoluble gels. The Z isomer, by nature of its geometry, formed high molecular weight, soluble polymeric products under acidic conditions. We were able to prepare and isolate both the cyclic disilsesquioxane monomer, and its dimer. Comparison of their spectral characterization with that of the soluble polymers suggests that the cyclics are present within the polymers. lle synthesis of a dimer likely present at some early stage of the polymerization suggests that we may be able to control the reaction and form rigid polymers with controllable tacticity. In addition, most of the gels were found to be non-porous indicating that the gels were, in fact, more compliant than ethenylene-bridged polysilsesquioxanes leading to collapse of pores during drying.

  17. Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando

    2015-11-01

    Fullerene anions and cations have unique structural, electronic, magnetic and chemical properties that make them substantially different from neutral fullerenes. Although much theoretical effort has been devoted to characterizing and predicting their properties, this has been limited to a fraction of isomeric forms, mostly for fullerene anions, and has practically ignored fullerene cations. Here we show that the concepts of cage connectivity and frontier π orbitals allow one to understand the relative stability of charged fullerene isomers without performing elaborate quantum chemistry calculations. The latter is not a trivial matter, as the number of possible isomers for a medium-sized fullerene is many more than 100,000. The model correctly predicts the structures observed experimentally and explains why the isolated pentagon rule is often violated for fullerene anions, but the opposite is found for fullerene cations. These predictions are relevant in fields as diverse as astrophysics, electrochemistry and supramolecular chemistry.

  18. Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers.

    PubMed

    Wang, Yang; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando

    2015-11-01

    Fullerene anions and cations have unique structural, electronic, magnetic and chemical properties that make them substantially different from neutral fullerenes. Although much theoretical effort has been devoted to characterizing and predicting their properties, this has been limited to a fraction of isomeric forms, mostly for fullerene anions, and has practically ignored fullerene cations. Here we show that the concepts of cage connectivity and frontier π orbitals allow one to understand the relative stability of charged fullerene isomers without performing elaborate quantum chemistry calculations. The latter is not a trivial matter, as the number of possible isomers for a medium-sized fullerene is many more than 100,000. The model correctly predicts the structures observed experimentally and explains why the isolated pentagon rule is often violated for fullerene anions, but the opposite is found for fullerene cations. These predictions are relevant in fields as diverse as astrophysics, electrochemistry and supramolecular chemistry. PMID:26492014

  19. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities.

    PubMed

    Liang, Ningjian; Xue, Wei; Kennepohl, Pierre; Kitts, David D

    2016-12-15

    Coffee bean source and roasting conditions significantly (p<0.05) affected the content of chlorogenic acid (CGA) isomers, several indices of browning and subsequent antioxidant values. Principal component analysis was used to interpret the correlations between physiochemical and antioxidant parameters of coffee. CGA isomer content was positively correlated (p<0.001) to capacity of coffee to reduce nitric oxide and scavenge Frémy's salt. Indices of browning in roasted coffee were positively correlated (p<0.001) to ABTS and TEMPO radical scavenging capacity, respectively. Only the CGA content of coffee corresponded to intracellular antioxidant capacity measured in Caco-2 intestinal cells. This study concluded that the intracellular antioxidant capacity that best describes potential health benefits of coffee positively corresponds best with CGA content. PMID:27451179

  20. Large-scale shell model study of the newly found isomer in 136La

    NASA Astrophysics Data System (ADS)

    Teruya, E.; Yoshinaga, N.; Higashiyama, K.; Nishibata, H.; Odahara, A.; Shimoda, T.

    2016-07-01

    The doubly-odd nucleus 136La is theoretically studied in terms of a large-scale shell model. The energy spectrum and transition rates are calculated and compared with the most updated experimental data. The isomerism is investigated for the first 14+ state, which was found to be an isomer in the previous study [Phys. Rev. C 91, 054305 (2015), 10.1103/PhysRevC.91.054305]. It is found that the 14+ state becomes an isomer due to a band crossing of two bands with completely different configurations. The yrast band with the (ν h11/2 -1⊗π h11 /2 ) configuration is investigated, revealing a staggering nature in M 1 transition rates.