Science.gov

Sample records for rich photon detector

  1. Hybrid photon detectors for the LHCb RICH

    NASA Astrophysics Data System (ADS)

    Eisenhardt, Stephan

    2006-09-01

    The LHCb Ring Imaging Cherenkov (RICH) counters use the pixel Hybrid Photon Detector (HPD) as a photo-sensitive device. Photo-electrons are produced in a semi-transparent multi-alkali photo-cathode (S20) and are accelerated by a voltage of 20 kV onto a pixelated silicon anode. The anode is bump-bonded to the LHCBPIX1 pixel readout chip which amplifies and digitises the anode signals at the LHC speed of 40 MHz. Using a demagnification of five, the effective pixel size at the HPD window is 2.5×2.5 mm2. Over the course of 18 months, 550 HPDs will undergo a quality-assurance programme to verify the specifications and to characterise the tubes. The tested parameters include the threshold and noise behaviour of the chip, the response to light emitting diode (LED) light, the demagnification of the electron optics, the leakage current and the depletion of the silicon sensor, the quality of the vacuum, the signal efficiency and the dark count rate. Results of tests of the first nine HPDs of the final design are presented and compared to the specifications.

  2. The photon detector of the HERMES dual-radiator RICH

    NASA Astrophysics Data System (ADS)

    Aschenauer, E. C.; Van der Kerckhove, K.

    1999-08-01

    To provide hadron identification over the full kinematic range (2-20GeV) of the HERMES experiment, the gas threshold Cherenkov counters were replaced by a dual-radiator ring-imaging Cherenkov detectors incorporating for the first time aerogel (SiO2) and C4F10 gas as radiator materials. This combination of radiators requires a photon detector that is sensitive over wavelengths from ultraviolet to 700nm. Commercially available `3/4 in.' photo-multipliers were chosen to form an array of 2000 for each of two photon-detectors. Exhaustive calibration and sorting of the phototubes prior to installation resulted in very low noise hit rates in the LeCroy PCOS4 readout system, with a uniform effective threshold of 0.1 photo-electrons.

  3. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  4. LHCb RICH Upgrade: an overview of the photon detector and electronic system

    NASA Astrophysics Data System (ADS)

    Cassina, L.

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 × 1033 cm-2s-1 with 25 ns bunch spacing are planned, with the goal of collecting 5 fb-1 of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using an 8-channel chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides features useful for testing and debugging. Photosensors and electronics are arranged in basic units, the first prototypes of which have been tested in charged particle beams in autumn 2014. An overview of the CLARO features and of the readout electronics is presented.

  5. The CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2016-05-01

    The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.

  6. The E781 (SELEX) RICH detector

    SciTech Connect

    Engelfried, J.

    1997-06-01

    First results from a new RICH detector, operating in an experiment currently taking data - Fermilab E781 (SELEX), are presented. The detector utilizes a matrix of 2848 phototubes for the photocathode. In a 650 GeV/c ?r- beam the number of photons detected is 14 per ring, giving a Figure of Merit No of 106 cm-`. The ring radius resolution obtained is 1.2 %. Results showing the particle identification ability of the detector are discussed.

  7. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  8. Photon detectors with gaseous amplification

    SciTech Connect

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  9. Fluid systems for RICH detectors

    NASA Astrophysics Data System (ADS)

    Ullaland, O.

    2005-11-01

    The optical properties of the radiator media are of prime importance in Ring Imaging Cherenkov detectors. The main requirements for the radiator fluid are a stable refractive index and a photon absorption as low as possible. We will in this note cover some of the cleaning procedures which are required together with distillation and similar separation procedures. Thin film membranes have been introduced during the last decade. They have proven particularly interesting in separating air from some Cherenkov fluids. We will also discuss the use of molecular sieves.

  10. The NA62 RICH detector

    SciTech Connect

    Cassese, A.

    2011-07-01

    The NA62 experiment is designed to measure the very rare kaon decay K{sup +} {yields} {pi}{sup +} at the CERN SPS with a 10% accuracy. The Standard Model prediction for the Branching Ratio is (8.5 {+-} 0.7) x 10{sup -11}. One of the challenging aspect of the experiment is the suppression of the K{sup +} {yields} {mu}{sup +} v{sub {mu}} background at the 10{sup -12} level. To satisfy this requirement a Ring Imaging Cherenkov Detector (RICH), able to separate {pi}{sup {+-}} from {mu}{sup {+-}} in the momentum range between 15 and 35 GeV/c, with a {mu}, rejection factor better than 10{sup -2}, is needed. The RICH must also have a time resolution of about 100 ps to disentangle accidental time associations of beam particles with pions. The RICH will have a very long focal length (17 m) and will be filled with Ne gas at atmospheric pressure. Two test beams were held at CERN in 2007 and 2009 with a RICH prototype. The results of the two test beams will be presented: the {mu}, mis-identification probability is found to be about 0.7% and the time resolution better than 100 ps in the whole momentum range. (authors)

  11. Silicon photomultiplier as a detector of Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Križan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-09-01

    A novel photon detector—i.e. the silicon photomultiplier—whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency.

  12. The LHCb RICH system; detector description and operation

    NASA Astrophysics Data System (ADS)

    Papanestis, A.

    2014-12-01

    Two RICH detectors provide positive charged hadron identification in the LHCb experiment at the Large Hadron Collider at CERN. RICH 1 covers the full acceptance of the spectrometer and contains two radiators: aerogel and C4F10. RICH 2 covers half the acceptance and uses CF4 as a Cherenkov radiator. Photon detection is performed by the Hybrid Photon Detectors (HPDs), with silicon pixel sensors and bump-bonded readout encapsulated in a vacuum tube for efficient, low-noise single photon detection. The LHCb RICH detectors form a complex system of three radiators, 120 mirrors and 484 photon detectors operating in the very challenging environment of the LHC. The high performance of the system in pion and kaon identification in the momentum range of 2-100 GeV/c is reached only after careful calibration of many parameters. Operational efficiency above 99% was achieved by a high level of automatization in the operation of the detectors, from switching-on to error recovery. The challenges of calibrating and operating such a system will be presented.

  13. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  14. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Denisov, O.; Duic, V.; Ferrero, A.; Finger, M.; Finger, M.; Gayde, J. Ch.; Giorgi, M.; Gobbo, B.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Panzieri, D.; Pesaro, G.; Polak, J.; Rocco, E.; Sbrizzai, G.; Schiavon, P.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.

    2014-12-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM) photogrammetry-based method has been implemented to measure the alignment of individual mirrors which can be characterized by the center of curvature. The mirror wall reflects a regular grid of retroreflective strips placed inside the detector vessel. Then, the position of each mirror is determined from the image of the grid reflection. The images are collected by four cameras. Any small mirror misalignment results in changes of the grid lines' positions in the image. The accuracy limits of the CLAM method were checked by laser interferometry and are below 0.1 mrad.

  15. SIS Detectors for Terahertz Photon Counting System

    NASA Astrophysics Data System (ADS)

    Ezawa, Hajime; Matsuo, Hiroshi; Ukibe, Masahiro; Fujii, Go; Shiki, Shigetomo

    2016-07-01

    An Intensity interferometer with photon counting detector is a candidate to realize a THz interferometer for astronomical observations. We have demonstrated that synthesis imaging is possible even with intensity interferometers. An SIS junction (or STJ) with low leakage current of 1 pA is a suitable device for photon counting detectors. Readout circuit utilizing FETs with low gate leakage, low gate capacitance, and fast response is discussed.

  16. RICH Detector for Jefferson Labs CLAS12

    NASA Astrophysics Data System (ADS)

    Trotta, Richard; Torisky, Ben; Benmokhtar, Fatiha

    2015-10-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to its Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beams. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new hybrid Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 8 GeV/c momentum range. This detector will be used for a variety of Semi-Inclusive Deep Inelastic Scattering experiments. Cherenkov light can be accurately detected by a large array of sophisticated Multi-Anode Photomultiplier Tubes (MA-PMT) and heavier particles, like kaons, will span the inner radii. We are presenting our work on the creation of the RICH's geometry within the CLAS12 java framework. This development is crucial for future calibration, reconstructions and analysis of the detector.

  17. The CLAS12 large area RICH detector

    SciTech Connect

    M. Contalbrigo, E. Cisbani, P. Rossi

    2011-05-01

    A large area RICH detector is being designed for the CLAS12 spectrometer as part of the 12 GeV upgrade program of the Jefferson Lab Experimental Hall-B. This detector is intended to provide excellent hadron identification from 3 GeV/c up to momenta exceeding 8 GeV/c and to be able to work at the very high design luminosity-up to 1035 cm2 s-1. Detailed feasibility studies are presented for two types of radiators, aerogel and liquid C6F14 freon, in conjunction with a highly segmented light detector in the visible wavelength range. The basic parameters of the RICH are outlined and the resulting performances, as defined by preliminary simulation studies, are reported.

  18. The CLAS12 large area RICH detector

    NASA Astrophysics Data System (ADS)

    Contalbrigo, M.; Cisbani, E.; Rossi, P.

    2011-05-01

    A large area RICH detector is being designed for the CLAS12 spectrometer as part of the 12 GeV upgrade program of the Jefferson Lab Experimental Hall-B. This detector is intended to provide excellent hadron identification from 3 GeV/ c up to momenta exceeding 8 GeV/ c and to be able to work at the very high design luminosity-up to 10 35 cm 2 s -1. Detailed feasibility studies are presented for two types of radiators, aerogel and liquid C 6F 14 freon, in conjunction with a highly segmented light detector in the visible wavelength range. The basic parameters of the RICH are outlined and the resulting performances, as defined by preliminary simulation studies, are reported.

  19. Looking at single photons using hybrid detectors

    NASA Astrophysics Data System (ADS)

    Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-01-01

    The SLS detector group develops silicon hybrid detectors for X-ray applications used in synchrotron facilities all over the world. Both microstrip and pixel detectors with either single photon counting or charge integrating read out are being developed. Low noise charge integrating detectors can be operated in single photon regime, i.e. with low fluxes and high frame rates in order to detect on average less than one photon per cluster of 2×2 pixels. In this case, the analog signal read out for each single X-ray provides information about the energy of the photon. Moreover the signal from neighboring channels can be correlated in order to overcome or even take advantage of charge sharing. The linear charge collection model describing microstrip detectors and large pixels is unsuitable for the calibration of small pitch pixel detectors due to the large amount of charge sharing occurring also in the corner region. For this reason, the linear charge collection model is extended to the case of small pixels and tested with monochromatic X-ray data acquired using the 25 μm pitch MÖNCH and the 75 μm pitch JUNGFRAU detectors. The successful outcome of the calibration of the MÖNCH detector is proven by the high energy resolution of the spectrum obtained by accumulating the counts from more than 6000 channels after the correction of the gain mismatches using the proposed model.

  20. A gas-RICH detector for space

    NASA Astrophysics Data System (ADS)

    Francke, T.; Bergström, D.; Boezio, M.; Carlson, P.; Suffert, M.

    1999-08-01

    A gas-RICH counter using a C4F10 radiator and pad readout has been developed. The good transmission of the optical elements together with a low noise level in the electronics results that on average 12 photoelectrons are detected per event for /Z=1 particles with /β~1. The reconstructed Cherenkov angle has a resolution of 1.2mrad. The RICH detector is an important part of a balloon borne experiment, CAPRICE, which measures the flux of antiprotons and positrons in the cosmic radiation.

  1. Single photon source characterization with a superconducting single photon detector.

    PubMed

    Hadfield, Robert H; Stevens, Martin J; Gruber, Steven S; Miller, Aaron J; Schwall, Robert E; Mirin, Richard P; Nam, Sae Woo

    2005-12-26

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g(2)( ?). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  2. Advantages of gated silicon single photon detectors

    NASA Astrophysics Data System (ADS)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  3. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  4. Superconducting nanowire single photon detector on diamond

    SciTech Connect

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lončar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.

  5. Single photon detector with high polarization sensitivity

    PubMed Central

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-01-01

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared. PMID:25875225

  6. Picosecond response of a photon drag detector

    SciTech Connect

    Kimmitt, M.F.

    1995-12-31

    The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.

  7. Advances in solid state photon detectors

    NASA Astrophysics Data System (ADS)

    Renker, D.; Lorenz, E.

    2009-04-01

    Semiconductor photodiodes were developed in the early `Forties approximately at the time when the photomultiplier tube became a commercial product (RCA 1939). Only in recent years, with the invention of the Geiger-mode avalanche photodiodes, have the semiconductor photo detectors reached sensitivity comparable to that of photomultiplier tubes. The evolution started in the `Sixties with the p-i-n (PIN) photodiode, a very successful device, which is still used in many detectors for high energy physics and a large number of other applications like radiation detection and medical imaging. The next step was the development of the avalanche photodiode (APD) leading to a substantial reduction of noise but not yet achieving single photon response. The weakest light flashes that can be detected by the PIN diode need to contain several hundreds of photons. An improvement of the sensitivity by 2 orders of magnitude was achieved by the development of the avalanche photodiode, a device with internal gain. At the end of the millennium, the semiconductor detectors evolved with the Geiger-mode avalanche photodiode into highly sensitive devices, which have an internal gain comparable to the gain of photomultiplier tubes and a response to single photons. A review of the semiconductor photo detector design and development, the properties and problems, some applications and a speculative outlook on the future evolution will be presented.

  8. Photonic crystal slab quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Reininger, Peter; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-01

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  9. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  10. Argon-39 Background in DUNE Photon Detectors

    NASA Astrophysics Data System (ADS)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  11. Novel photon detectors for focusing DIRC prototype

    NASA Astrophysics Data System (ADS)

    Field, C.; Hadig, T.; Jain, M.; Leith, D. W. G. S.; Mazaheri, G.; Ratcliff, B. N.; Schwiening, J.; Va'vra, J.

    2004-02-01

    For present BaBar DIRC, the Cherenkov angular resolution is dominated by three contributions—the chromatic error, bar thickness and pixel size. We have designed the Focusing DIRC prototype, which potentially can reduce the chromatic error by a precise timing in the range of 50-100 ps per photon, and the bar thickness by a focusing mirror. This paper describes two novel photon detectors, which are candidates for this type of concept: Hamamatsu 64-channel multi-anode Flat Panel H-8500 PMTs and Burle 64-channel micro-channel plate MCP-PMTs. The detectors were tested with a PiLas laser diode light pulse providing 35 ps FWHM timing resolution. A single-photon timing resolution of (1) σ˜120-140 ps was achieved with the Hamamatsu PMTs, and (2) σ˜55 ps with the Burle MCP-PMTs. To achieve the good timing resolution results, we have developed a new fast amplifier and a constant-fraction discriminator. We have also developed a computer-controlled scanning setup, which allows a detailed study of the relative efficiency response to single photons.

  12. Performance in space of the AMS-02 RICH detector

    NASA Astrophysics Data System (ADS)

    Giovacchini, F.

    2014-12-01

    AMS-02 was successfully installed on the International Space Station (ISS) in May 2011, to perform precise measurements of galactic cosmic rays in the 100 MV to few TV magnetic rigidity range. Among several specialized sub-detectors, AMS-02 includes a Ring Imaging Cherenkov detector (RICH), which provides a precise measurement of the particle charge and velocity. The Cherenkov light is produced in a radiator made of silica aerogel and sodium fluoride and collected by means of an array of photomultiplier tubes. Since its launch to space, the detector has been taking data without failures; its functionality and data integrity are monitored and show stable response. In order to achieve the optimal detector performance, calibrations have been performed to account for the dependence of the photodetectors response on temperature and for effective non-uniformities in the detector. The knowledge gathered of the photon yield at the percent level resulted in a charge resolution of 0.3 charge units for He and 0.5 charge units for Si ions. The required precision in the measurements of the particle velocity at the per mil level demanded a more accurate determination of the aerogel refractive index. A map of the aerogel radiator refractive index has been directly inferred from in-flight high statistics data with a precision of Δn / n < 2 ×10-5 on average and its stability with time has also been checked. Finally, a velocity resolution of ~ 0.8 ×10-3 for He and ~ 0.5 ×10-3 for Z > 5 ions has been obtained.

  13. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  14. VSiPMT a new photon detector

    NASA Astrophysics Data System (ADS)

    Di Capua, F.; Barbarino, G.; Barbato, F. C. T.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Migliozzi, P.; Mollo, C. M.; Vivolo, D.

    2016-04-01

    Photon detection is a key factor to study many physical processes in several areas of fundamental physics research. Focusing the attention on photodetectors for particle astrophysics, the future experiments aimed at the study of very high-energy or extremely rare phenomena (e.g. dark matter, proton decay, neutrinos from astrophysical sources) will require additional improvements in linearity, gain, quantum efficiency and single photon counting capability. To meet the requirements of these class of experiments, we propose a new design for a modern hybrid photodetector: the VSiPMT (Vacuum Silicon PhotoMultiplier Tube). The idea is to replace the classical dynode chain of a PMT with a SiPM, which therefore acts as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performances of the SiPM technology.

  15. An integrated Micromegas UV-photon detector

    NASA Astrophysics Data System (ADS)

    Melai, Joost; Lyashenko, Alexey; Breskin, Amos; van der Graaf, Harry; Timmermans, Jan; Visschers, Jan; Salm, Cora; Schmitz, Jurriaan

    2011-05-01

    Preliminary results of a photon detector combining a Micromegas-like multiplier coated with a UV-sensitive CsI photocathode are described. The multiplier is made in a CMOS compatible InGrid technology, which allows to postprocess it directly on the surface of an imaging IC. This method is aimed at building light-sensitive imaging detectors where all elements are monolithically integrated. We show that the CsI photocathode deposited in the InGrid mesh does not alter the device performance. Maximum gains of ˜6000 were reached in a single-grid element operated in Ar/CH4, with a 2% ion backflow fraction returning to the photocathode.

  16. The Heavy Photon Search test detector

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; Boyarinov, S.; Bueltmann, S.; Burkert, V.; Celentano, A.; Charles, G.; Cooper, W.; Cuevas, C.; Dashyan, N.; DeVita, R.; Desnault, C.; Deur, A.; Egiyan, H.; Elouadrhiri, L.; Essig, R.; Fadeyev, V.; Field, C.; Freyberger, A.; Gershtein, Y.; Gevorgyan, N.; Girod, F.-X.; Graf, N.; Graham, M.; Griffioen, K.; Grillo, A.; Guidal, M.; Haller, G.; Hansson Adrian, P.; Herbst, R.; Holtrop, M.; Jaros, J.; Kaneta, S.; Khandaker, M.; Kubarovsky, A.; Kubarovsky, V.; Maruyama, T.; McCormick, J.; Moffeit, K.; Moreno, O.; Neal, H.; Nelson, T.; Niccolai, S.; Odian, A.; Oriunno, M.; Paremuzyan, R.; Partridge, R.; Phillips, S. K.; Rauly, E.; Raydo, B.; Reichert, J.; Rindel, E.; Rosier, P.; Salgado, C.; Schuster, P.; Sharabian, Y.; Sokhan, D.; Stepanyan, S.; Toro, N.; Uemura, S.; Ungaro, M.; Voskanyan, H.; Walz, D.; Weinstein, L. B.; Wojtsekhowski, B.

    2015-03-01

    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment's technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+e- invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+e- pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.

  17. The RICH detector of the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Duk, Viacheslav

    2016-09-01

    The NA62 experiment at CERN is aimed at measuring the ultra-rare decay K+→π+νν with 10% accuracy. One of the detectors that is crucial for the rejection of background events is the RICH detector: a gas based detector aimed at π/μ separation in the 15-35 GeV/c momentum range with an inefficiency of less than 1%. The RICH must also provide a very precise time measurement (with the time resolution ˜100 ps) to correctly associate the π+ with the parent K+ particle measured by an upstream detector. This paper contains the detailed description of the RICH detector, its readout, and the results of the commissioning run at CERN in 2014.

  18. New Generation of Superconducting Nanowire Single-Photon Detectors

    NASA Astrophysics Data System (ADS)

    Goltsman, G. N.

    2015-09-01

    We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs) that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  19. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  20. Graphene Josephson Junction Single Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Lee, Gil-Ho; Efetov, Dmitri K.; Heuck, Mikkel; Crossno, Jesse; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    Single photon detectors (SPDs) have found use across a wide array of applications depending on the wavelength to which they are sensitive. Graphene, because of its linear, gapless dispersion near the Dirac point, has a flat, wide bandwidth absorption that can be enhanced to near 100 % through the use of resonant structures making it a promising candidate for broadband SPDs. Upon absorbing a photon in the optical to mid-infrared range, a small (~10 μm2) sheet of graphene at cryogenic temperatures can experience a significant increase in electronic temperature due to its extremely low heat capacity. At 1550 nm, for example, calculations show that the temperature could rise by as much as 500 %. This temperature increase could be detected with near perfect quantum efficiency by making the graphene the weak link in a Josephson junction (JJ). We present a theoretical model demonstrating that such a graphene JJ SPD could operate at the readily achievable temperature of 3 K with near zero dark count, sub-50 ps timing jitter, and sub-5 ns dead time and report on the progress toward experimentally realizing the device.

  1. Silicon photomultiplier based photon detector module as a detector of Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Korpar, Samo; Chagani, Hassan; Dolenec, Rok; Križan, Peter; Pestotnik, Rok; Stanovnik, Aleš

    2010-11-01

    We have constructed and tested a module, consisting of 64 (= 8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, for position sensitive detection of Cherenkov photons. Suitable light concentrators were produced to increase the efficiency and to improve the signal to noise ratio. The results of our measurements indicate that the performance of such a Cherenkov counter with aerogel radiator could meet the requirements of particle identification at the foreseen upgraded Belle detector.

  2. Single-photon-counting detector for increased sensitivity in two-photon laser scanning microscopy.

    PubMed

    Benninger, Richard K P; Ashby, William J; Ring, Elisabeth A; Piston, David W

    2008-12-15

    We present the use and characterization of a photon-counting detector for increased sensitivity at low signal levels in fluorescence laser scanning microscopy (LSM). Conventional LSM photomultiplier tube detectors utilize analog current integration and thus suffer from excessive noise at low signal levels, introduced during current measurement. In this Letter we describe the implementation of a fast single-photon-counting (SPC) detector on a conventional two-photon laser scanning microscope and detail its use in imaging low fluorescence intensities. We show that for a low photon flux, the SPC detector is shot-noise limited and thus provides increased detection sensitivity compared with analog current integration. PMID:19079484

  3. MPGD-based counters of single photons developed for COMPASS RICH-1

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Birsa, R.; Bodlak, M.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger, M., Jr.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Novakova, K.; Novy, J.; Panzieri, D.; Pereira, F. A.; Santos, C. A.; Sbrizzai, G.; Schiavon, P.; Schopferer, S.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.

    2014-09-01

    In fundamental research, gas detectors of single photons are a must in the field of Cherenkov imaging techniques (RICH counters) for particle identification in large momentum ranges and with wide coverage of the phase space domain. These counters, already extensively used, are foreseen in the setups of future experiments in a large variety of fields in nuclear and particle physics. The quest of novel gaseous photon detector is dictated by the fact that the present generation of detectors has unique characteristics concerning operation in magnetic field, low material budget and cost, but it suffers of severe limitations in effective efficiency, rates, life time and stability, discouraging their use in high precision and high rate experiments. We are developing large size THick GEM (THGEM)-based detector of single photons. The R&D program includes the complete characterization of the THGEM electron multipliers, the study of the aspects related to the detection of single photons and the engineering towards large size detector prototype. Our most recent achievements include: dedicated studies concerning the ion back-flow to the photo-cathode; relevant progress in the engineering aspects, in particular related to the production of large-size THGEMs, where the strict correlation between the local gain-value and the local thickness-value has been demonstrated the operation of a 300 mm × 300 mm2 active area detector at the CERN PS T10 test beam; the introduction of a new hybrid detector architecture offering promising indication, which is formed by a THGEM layer which acts as CsI support and pre-amplification device followed by a MICROMEGAS multiplication stage. The general status of the R&D program and the recent progress are reported

  4. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  5. The vertex detector for the Lepton/Photon collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  6. The vertex detector for the Lepton/Photon Collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity {eta} distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  7. Advantages of Photon Counting Detectors for Terahertz Astronomy

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ezawa, Hajime

    2016-08-01

    For astronomical observation at terahertz frequencies, a variety of cryogenic detector technologies are being developed to achieve background-limited observation from space, where a noise equivalent power (NEP) of less than 10^{-18} W/Hz^{0.5} is often required. When each photon signal is resolved in time, the requirements on NEP are reduced and 1 ns time resolution corresponds to an NEP of approximately 10^{-17} W/Hz^{0.5} at THz frequencies. Furthermore, fast photon counting detectors have a high dynamic range to observe bright terahertz sources such as stars and active galactic nuclei. Applications of photon counting detector are discussed for cosmic microwave background and photon counting terahertz interferometry.

  8. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  9. Results from first beam tests for the development of a RICH detector for CBM

    NASA Astrophysics Data System (ADS)

    Eschke, J.; Höhne, C.

    2011-05-01

    In the CBM experiment at FAIR, electrons will be identified using a gaseous RICH detector positioned behind a system of silicon tracking stations. The concept of the RICH detector foresees an array of Multianode Photomultipliers (MAPMTs) as photodetector. First beam test data with a 2 GeV proton beam were recorded to investigate the Cherenkov light detection with a 64 channel Hamamatsu H8500 MAPMT. In the beam test a proximity focusing setup with a solid radiator was used together with a new self triggered readout electronics based on the n-XYTER ADC chip. The results of this beam test demonstrate that the new front end electronics is suited for the readout of the Hamamatsu H8500 MAPMT. It could be demonstrated that this MAPMT is able to detect single Cherenkov photons. Uncorrelated noise could be well separated from the signal using available timing information. The recorded number of MAPMT hits per beam event is consistent with the expectations.

  10. Photon Identification with Segmented Germanium Detectors in Low Radiation Environments

    SciTech Connect

    Abt, I.; Caldwell, A.; Kroeninger, K.; Liu, J.; Liu, X.; Majorovits, B.; Stelzer, F.

    2007-03-28

    Effective identification of photon-induced events is essential for a new generation of double beta-decay experiments. One such experiment is the GERmanium Detector Array, GERDA, located at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It uses germanium, enriched in 76Ge, as source and detector, and aims at a background level of less than 10-3 counts/(kg {center_dot} keV {center_dot} y) in the region of the Q{beta}{beta}-value. Highly segmented detectors are being developed for this experiment. A detailed GEANT4 Monte Carlo study about the possibilities to identify photon--induced background was published previously. An 18-fold segmented prototype detector was tested and its performance compared with Monte Carlo predictions. The detector performed well and the agreement with the Monte Carlo is excellent.

  11. Communication Limits Due to Photon-Detector Jitter

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.; Farr, William H.

    2008-01-01

    A theoretical and experimental study was conducted of the limit imposed by photon-detector jitter on the capacity of a pulse-position-modulated optical communication system in which the receiver operates in a photon-counting (weak-signal) regime. Photon-detector jitter is a random delay between impingement of a photon and generation of an electrical pulse by the detector. In the study, jitter statistics were computed from jitter measurements made on several photon detectors. The probability density of jitter was mathematically modeled by use of a weighted sum of Gaussian functions. Parameters of the model were adjusted to fit histograms representing the measured-jitter statistics. Likelihoods of assigning detector-output pulses to correct pulse time slots in the presence of jitter were derived and used to compute channel capacities and corresponding losses due to jitter. It was found that the loss, expressed as the ratio between the signal power needed to achieve a specified capacity in the presence of jitter and that needed to obtain the same capacity in the absence of jitter, is well approximated as a quadratic function of the standard deviation of the jitter in units of pulse-time-slot duration.

  12. RICH detector at Jefferson Lab, design, performance and physics results

    SciTech Connect

    E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Frantoni; F. Garibaldi; F. Giuliani; M. Gricia; M. Lucentini; M.L. Magliozzi; L. Pierangeli; F. Santavenere; P. Veneroni; G.M. Urciuoli; M. Iodice; G. De Cataldo; R. De Leo; L. Lagamba; S. Marrone; E. Nappi; V. Paticchio; R. Feuerbach; D. Higinbotham; J. Lerose; B. Kross; R. Michaels; Y. Qiang; B. Reitz; J. Segal; B. Wojtsekhowski; C. Zorn; A. Acha; P. Markowitz; C.C. Chang; H. Breuer

    2006-04-01

    Since 2004 the hadron spectrometer of Hall A at Jefferson Lab is equipped with a proximity focusing RICH. This detector is capable of identify kaon from pion and proton with an angular separation starting from 6 sigma at 2 GeV/c. The RICH design is conceptually similar to the ALICE HMPID RICH; it uses a C6F14 liquid radiator and a 300 nm layer of CsI deposited on the cathode pad plane of an asymmetric MWPC. The RICH has operated for the Hypernuclear Spectroscopy Experiment E94-107, which took data in the last two years. Design details and performance along with first physics results from the hypernuclear experiment are shortly presented.

  13. Calibration of single-photon detectors using quantum statistics

    SciTech Connect

    Mogilevtsev, D.

    2010-08-15

    I show that calibration of the single-photon detector can be performed without knowledge of the signal parameters. Only partial information about the state statistics is sufficient for that. If one knows that the state is the squeezed one or the squeezed one mixed with the incoherent radiation, one can infer both the parameters of the state and the efficiency of the detector. For that one needs only to measure on/off statistics of detector clicks for the number of known absorbers placed before the detector. Thus, I suggest a scheme that performs a tomography of the signal and the measuring apparatus simultaneously.

  14. A Photon Interference Detector with Continuous Display.

    ERIC Educational Resources Information Center

    Gilmore, R. S.

    1978-01-01

    Describes an apparatus which attempts to give a direct visual impression of the random detection of individual photons coupled with the recognition of the classical intensity distribution as a result of fairly high proton statistics. (Author/GA)

  15. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    NASA Astrophysics Data System (ADS)

    Seitz, B.

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  16. The upgraded LHCb RICH detector: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Cardinale, R.

    2016-07-01

    The LHCb upgrade will take place during the second long shutdown of the LHC (LS2). The upgrade will enable the experiment to run at an instantaneous luminosity of 2 ×1033cm-2s-1 and will read out data at a rate of 40 MHz into a flexible software-based trigger. The two Ring Imaging Cherenkov detectors (RICH), installed in the LHCb experiment, will be re-designed to comply with these new operating conditions. The status and perspective of the RICH upgrade project will be presented.

  17. A RICH detector for hadron identification at Jlab

    SciTech Connect

    Mammoliti, Francesco; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Guisa, Antonio; De Jager, Cornelis; Russo, Guiseppe; Leda Sperduto, Maria; Sutera, Concetta; Urciuoli, Guido

    2011-08-01

    The “standard” Hall A apparatus at Jefferson Lab (TOF and aerogel threshold Cherenkov detectors) does not provide complete identification for proton, kaon and pion. To this aim, a proximity focusing C6F14/CsI RICH (Ring Image Cherenkov) detector has been designed, built, tested and operated to separate kaons from pions with a pion contamination of a few percent up to 2.4 GeV/c. Two quite different experimental investigations have benefitted of the RICH identification: on one side, the high-resolution hypernuclear spectroscopy series of experiments on carbon, beryllium and oxygen, devoted to the study of the lambda-nucleon potential. On the other side, the measurements of the single spin asymmetries of pion and kaon on a transversely polarized 3He target are of utmost interest in understanding QCD dynamics in the nucleon. We present the technical features of such a RICH detector and comment on the presently achieved performance in hadron identification.

  18. Photon-number-resolving detector with 10 bits of resolution

    SciTech Connect

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T

    2007-06-15

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  19. Influence of detector motion in entanglement measurements with photons

    SciTech Connect

    Landulfo, Andre G. S.; Matsas, George E. A.; Torres, Adriano C.

    2010-04-15

    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step toward the implementation of quantum information protocols in a global scale.

  20. Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors.

    PubMed

    Heath, Robert M; Tanner, Michael G; Drysdale, Timothy D; Miki, Shigehito; Giannini, Vincenzo; Maier, Stefan A; Hadfield, Robert H

    2015-02-11

    Superconducting nanowire single photon detectors are rapidly emerging as a key infrared photon-counting technology. Two front-side-coupled silver dipole nanoantennas, simulated to have resonances at 1480 and 1525 nm, were fabricated in a two-step process. An enhancement of 50 to 130% in the system detection efficiency was observed when illuminating the antennas. This offers a pathway to increasing absorption into superconducting nanowires, creating larger active areas, and achieving more efficient detection at longer wavelengths.

  1. Photon Detector For Inverse Photoemission Spectroscopy With Improved Energy Resolution

    SciTech Connect

    Maniraj, M.; D'Souza, S. W.; Barman, S. R.

    2011-07-15

    We present the results from newly designed and fabricated double window photon detector to improve the overall energy resolution for inverse photoemission spectroscopy (IPES). This simple design allows us to introduce an absorption gas (Krypton) to decrease the band-width of the energy selective photon detector and thus improve the resolution. Resonance absorption line of Kr of wavelength of 123.6 nm was used. By fitting the Fermi edge of the IPES spectrum of silver, we find an overall energy resolution improved by 73 meV. The design is modular and ensures ease and safety of handling.

  2. A Photon Counting Imaging Detector for NASA Exoplanet Mission

    NASA Astrophysics Data System (ADS)

    Figer, Donald

    The key objective of the proposed project is to advance the maturity of a 256x256 pixel single-photon optical imaging detector. The detector has zero read noise and is resilient against the harsh effects of radiation in space. We expect that the device will have state-of-the-art performance in other parameters, e.g., high quantum efficiency from UV to 1 #m, low dark current, etc.

  3. Photon detector for MEGA. [53 MeV

    SciTech Connect

    Gagliardi, C.A.; Tribble, R.E.

    1992-01-01

    The MEGA photon detector is designed to observe the 52.83-MeV photon produced in a [mu] [yields] e[gamma] decay with an energy resolution of 1.25 MeV, a position resolution of 2 [times] 5 mm[sup 2], a directional resolution of 10[degree], a time resolution of 500 ps, and an efficiency of about 5.4%. It will consist of three independent concentric cylindrical pair spectrometers mounted within a 1.5 T magnetic field produced by a superconducting solenoid magnet. Each pair spectrometer includes two thin Pb foils to convert photons into e[sup +]e[sup [minus

  4. Micro-channel plate photon detector studies for the TORCH detector

    NASA Astrophysics Data System (ADS)

    Castillo García, L.; Brook, N.; Cowie, E. N.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Van Dijk, M.

    2015-07-01

    The Time Of internally Reflected Cherenkov light (TORCH) detector is under development. Charged particle tracks passing through a 1 cm plate of quartz will generate the Cherenkov photons, and their arrival will be timed by an array of micro-channel plate photon detectors. As part of the TORCH R&D studies, commercial and custom-made micro-channel plate detectors are being characterized. The final photon detectors for this application are being produced in a three-phase program in collaboration with industry. Custom-made single-channel devices with extended lifetime have been manufactured and their performance is being systematically investigated in the laboratory. Optical studies for the preparation of beam and laboratory tests of a TORCH prototype are also underway.

  5. Eiger: a single-photon counting x-ray detector

    NASA Astrophysics Data System (ADS)

    Johnson, I.; Bergamaschi, A.; Billich, H.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Guizar-Sicairos, M.; Henrich, B.; Jungmann, J.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.; Tinti, G.

    2014-05-01

    Eiger is a single-photon counting x-ray pixel detector being developed at the Paul Scherrer Institut (PSI) for applications at synchrotron light sources. It follows the widely utilized and successful Pilatus detector. The main features of Eiger are a pixel size of 75 × 75 μm2, high frame rate capability of 22 kHz and negligible dead time between frames of 4 μs. This article contains a detailed description of Eiger detector systems, from the 500 kpixel single-module detector to large-area multi-modules systems. The calibration and performance of the first 500 kpixel system that is in routine user operation are also presented. Furthermore, a method of calibrating the energy of single-photon counting detectors along the detector gain axis is introduced. This approach has the advantage that the detector settings can be optimized at all energies for count rate capabilities. Rate capabilities of the system are reported for energies between 6 and 16 keV.

  6. Novel photon-counting detectors for free-space communication

    NASA Astrophysics Data System (ADS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-03-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of three types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 μm to 25 μm doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  7. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  8. A photon-counting detector for exoplanet missions

    NASA Astrophysics Data System (ADS)

    Figer, D. F.; Lee, J.; Hanold, B. J.; Aull, B. F.; Gregory, J. A.; Schuette, D. R.

    2011-10-01

    This paper summarizes progress of a project to develop and advance the maturity of photon-counting detectors for NASA exoplanet missions. The project, funded by NASA ROSES TDEM program, uses a 256×256 pixel silicon Geigermode avalanche photodiode (GM-APD) array, bump-bonded to a silicon readout circuit. Each pixel independently registers the arrival of a photon and can be reset and ready for another photon within 100 ns. The pixel has built-in circuitry for counting photo-generated events. The readout circuit is multiplexed to read out the photon arrival events. The signal chain is inherently digital, allowing for noiseless transmission over long distances. The detector always operates in photon counting mode and is thus not susceptible to excess noise factor that afflicts other technologies. The architecture should be able to operate with shot-noise-limited performance up to extremely high flux levels, >106 photons/second/pixel, and deliver maximum signal-to-noise ratios on the order of thousands for higher fluxes. Its performance is expected to be maintained at a high level throughout mission lifetime in the presence of the expected radiation dose.

  9. Microwave Photon Detector in Circuit QED

    NASA Astrophysics Data System (ADS)

    Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique

    2009-03-01

    In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.

  10. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  11. Module of silicon photomultipliers as a detector of individual Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Pestotnik, Rok; Dolenec, Rok; Korpar, Samo; Križan, Peter; Stanovnik, Aleš

    2011-05-01

    We have studied the possibility of using silicon photomultipliers as single photon detectors in a proximity focusing RICH with aerogel radiator. Such a counter is considered for the upgrade of the Belle detector. The main advantage of silicon over conventional photomultiplier tubes is their operation in high magnetic fields. Their disadvantage is the relatively high dark noise count rate (≈MHz/mm2) which can be overcome by using a narrow time window in the data acquisition. A module, consisting of 64 (8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, has been designed, constructed and tested with Cherenkov photons emitted in an aerogel radiator by 120 GeV/ c pions from the CERN T4-H6 beam. To increase the signal-to-noise ratio, i.e. to increase the effective surface on which light is detected, light concentrators have been employed.

  12. High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing.

    PubMed

    Calkins, Brice; Mennea, Paolo L; Lita, Adriana E; Metcalf, Benjamin J; Kolthammer, W Steven; Lamas-Linares, Antia; Spring, Justin B; Humphreys, Peter C; Mirin, Richard P; Gates, James C; Smith, Peter G R; Walmsley, Ian A; Gerrits, Thomas; Nam, Sae Woo

    2013-09-23

    The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40 % efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79 % ± 2 % detection efficiency with a single pass, and 88 % ± 3 % at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications. PMID:24104153

  13. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  14. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    NASA Astrophysics Data System (ADS)

    Bergström, D.; Boezio, M.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Castellano, M.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Bidoli, V.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2001-05-01

    A RICH counter using a gas radiator of C 4F 10 and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read out using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For β≃1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a β≃1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever used in a balloon-borne experiment capable of identifying charge one particles at energies above 5 GeV. The RICH provided an identification of cosmic ray antiprotons up to the highest energies ever studied (about 50 GeV of total energy). The spectrometer was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA.

  15. Investigation of Hamamatsu H8500 phototubes as single photon detectors

    NASA Astrophysics Data System (ADS)

    Montgomery, R. A.; Hoek, M.; Lucherini, V.; Mirazita, M.; Orlandi, A.; Anefalos Pereira, S.; Pisano, S.; Rossi, P.; Viticchiè, A.; Witchger, A.

    2015-08-01

    We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility. For this, a laser working at 407.2 nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application.

  16. Inhomogeneous critical current in nanowire superconducting single-photon detectors

    SciTech Connect

    Gaudio, R. Hoog, K. P. M. op 't; Zhou, Z.; Sahin, D.; Fiore, A.

    2014-12-01

    A superconducting thin film with uniform properties is the key to realize nanowire superconducting single-photon detectors (SSPDs) with high performance and high yield. To investigate the uniformity of NbN films, we introduce and characterize simple detectors consisting of short nanowires with length ranging from 100 nm to 15 μm. Our nanowires, contrary to meander SSPDs, allow probing the homogeneity of NbN at the nanoscale. Experimental results, endorsed by a microscopic model, show the strongly inhomogeneous nature of NbN films on the sub-100 nm scale.

  17. Superconducting nanowire single-photon detectors: physics and applications

    NASA Astrophysics Data System (ADS)

    Natarajan, Chandra M.; Tanner, Michael G.; Hadfield, Robert H.

    2012-06-01

    Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly emerged as a highly promising photon-counting technology for infrared wavelengths. These devices offer high efficiency, low dark counts and excellent timing resolution. In this review, we consider the basic SNSPD operating principle and models of device behaviour. We give an overview of the evolution of SNSPD device design and the improvements in performance which have been achieved. We also evaluate device limitations and noise mechanisms. We survey practical refrigeration technologies and optical coupling schemes for SNSPDs. Finally we summarize promising application areas, ranging from quantum cryptography to remote sensing. Our goal is to capture a detailed snapshot of an emerging superconducting detector technology on the threshold of maturity.

  18. (Test, calibrate, and prepare a BGO photon detector system)

    SciTech Connect

    Awes, T.C.

    1990-10-19

    The traveler spent the year at CERN primarily to test, calibrate, and prepare a BGO photon detector system for use in the August 1990 run of WA80 with sulfur beams and for use in future planned runs with an expanded BGO detector. The BGO was used in test-beam runs in December 1989 and April--May 1990 and in the August data-taking run. The Midrapidity Calorimeters (MIRAC) were also prepared in a new geometry for the August run with a new transverse energy trigger. The traveler also continued to refine and carry out simulations of photon detector systems in present and future planned photon detection experiments. The traveler participated in several WA80 collaboration meetings, which were held at CERN throughout the period of stay. Invited talks were presented at the Workshop on High Resolution Electromagnetic Calorimetry in Stockholm, Sweden, November 9--11, 1989, and at the International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High-Energy and Nuclear Physics at Lyon, France, March 19--24, 1990. The traveler participated in an experiment to measure particle--particle correlations at 30-MeV/nucleon incident energies at the SARA facility in Grenoble from November 11--24, 1989.

  19. Status of the development of large area photon detectors based on THGEMs and hybrid MPGD architectures for Cherenkov imaging applications

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Torre, S. Dalla; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger, M.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A.; Santos, C. A.; Sbrizzai, G.; Schiavon, P.; Schopferer, S.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.; Veloso, J. F. C. A.; Makke, N.

    2016-07-01

    We report about the development status of large area gaseous single photon detectors based on a novel hybrid concept for RICH applications. The hybrid concept combines Thick Gaseous Electron Multipliers (THGEMs) coupled to CsI, working as a photon sensitive pre-amplification stage, and Micromegas, as a multiplication stage. The most recent achievements within the research and development programme consist in the assembly and study of 300 × 300mm2 hybrid photon detectors, the optimization of front-end electronics, and engineering towards large area detectors. Hybrid detectors with an active area of 300 × 300mm2 have been successfully operated in laboratory conditions and at a CERN PS T10 test beam, achieving effective gains in the order of 105 and good time resolution (σ = 7 ns); APV25 front-end chips have been coupled to the detector resulting in noise levels lower than 1000 electrons; the production and characterization of 300 × 600mm2 THGEMs is ongoing. A set of hybrid detectors with 600 × 600mm2 active area is envisaged to upgrade COMPASS RICH-1 at CERN in 2016.

  20. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  1. A multi-functional superconductor single-photon detector at telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Zhang, Labao; Gu, Min; Jia, Tao; Qiu, Jian; Kang, Lin; Sun, Guozhu; Chen, Jian; Jin, Biaobin; Xu, Weiwei; Wu, Peiheng

    2014-06-01

    A multi-functional single-photon detector was demonstrated to resolve photon states by multiple superconductor single photon detectors (SSPDs) system with improved readout settings. The photon number and space distribution were resolved simultaneously by the presented system, which inherits the merits of SSPD, such as wide-response band, high repetition rate and working stability. Experimentally, four photons were resolved and the photon distribution over three pixels was figured out according to the amplitudes of output pulses at the telecommunication wavelength. The extension of this proposal to incorporate more elements for resolving more photons and revealing photons spatial distribution over larger scale is also discussed.

  2. Photon-counting detectors for space-based laser receivers

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Yang, Guangning; Li, Steven X.; Sun, Xiaoli

    2010-01-01

    Photon-counting detectors are required for numerous NASA future space-based laser receivers including science instruments and free-space optical communication terminals. Silicon avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, and land Elevation Satellite (ICESat) launched in 2003, currently in orbit measuring the Earth surface elevation and atmosphere backscattering. To measure cloud and aerosol backscattering, the SPCMs detect the GLAS laser light at 532-nm wavelength, with quantum efficiencies of 60 to 70% and maximum count rates greater than 13 million per second. The performance of the SPCMs has been monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, linearity or after-pulsing. The detector dark counts rates monitored while the spacecraft was in the dark side of the Earth have increased linearly at about 60 counts/s per day due to space radiation damage. As the ICESat mission nears completion, we have proposed ground-to-space optical and quantum communication experiments to utilize the on-orbit 1-meter optical receiver telescope with multiple SPCMs in the focal plane. NASA is preparing a follow-on mission to ICESat, called ICESat-2, with a launch date of late 2014. The major candidate photon-counting detectors under evaluation for ICESat-2 include 532 nm and 1064 nm wavelength-sensitive photomultiplier tubes and Geiger-mode avalanche photodiode arrays. Key specifications are high maximum count rate, detection efficiency, photon number resolution, radiation tolerance, power consumption, operating temperature and reliability. Future NASA science instruments and free-space laser communication terminals share a number of these requirements.

  3. New techniques for imaging photon-counting and particle detectors

    NASA Astrophysics Data System (ADS)

    Lapington, Jonathan Stephen

    Since the advent of space-based astronomy in the early 1960's, there has been a need for space-qualified detectors with sufficient sensitivity and resolution to detect and image single photons, ions or electrons. This thesis describes a research programme to develop detectors that fulfil these requirements. I begin by describing the role of detectors in space astronomy and follow with a review of detector technologies, with particular emphasis on imaging techniques. Conductive charge division image readouts offer high performance, simplicity, and flexibility and their potential is investigated in both theory and practice. I introduce the basic design concept and discuss the fundamental factors limiting performance in relation to physical design and to underlying physical processes. Readout manufacturing techniques are reviewed and a novel method presented. I describe specific space and ground-based readout applications which proved valuable in teaching lessons and raising questions. These questions initiated an experimental programme, whose goals were to understand limiting physical processes and find techniques to overcome them. Results are presented, and the innovation of the progressive geometry readout technique, which this programme also spawned, is described. Progressive geometry readout devices, such as the Vernier anode, offer dramatically improved performance and have been successfully flight-proven. I describe the development of a Vernier readout for the J-PEX sounding rocket experiment, and discuss the instrument calibration and the flight programme. First investigations into a next generation of charge division readout design are presented. These devices will use charge comparison instead of amplitude measurement to further enhance resolution and count rate capability. In conclusion, I summarize the advances made during the course of this research, and discuss ongoing technological developments and further work which will enable MCP detectors to

  4. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.

    PubMed

    Natarajan, Chandra M; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N; Zwiller, Val; Walmsley, Ian A; Hadfield, Robert H

    2013-01-14

    Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD. PMID:23388983

  5. Fast integrated gaseous detector with single-photon resolution

    NASA Astrophysics Data System (ADS)

    Menk, Ralf-Hendrik; Sarvestani, Amir; Besch, Hans-Juergen; Walenta, Albert H.

    1999-10-01

    Gaseous detectors are excellent candidates for x-ray imaging devices which are suitable in the energy range between 5 and 90 kV. Especially the extreme low inherent noise floor which in principle is limited by the read out electronics only in combination with the high flexibility in the choice of gases and the geometry result in high detective quantum efficiency values (DQE). A DQE close to one is valuable especially in medical imaging applications where in general the image quality is dose limited. Moreover, recent developments in gas amplification structures such as the Micro-CAT allow fast imaging with a single photon precision also for integrating devices resulting in high DQE values even for low photon flux applications.

  6. Performance of the EIGER single photon counting detector

    NASA Astrophysics Data System (ADS)

    Tinti, G.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.

    2015-03-01

    EIGER is a single photon counting hybrid pixel detector being developed at Paul Scherrer Institute (PSI), Switzerland, for applications at synchrotron light sources in an energy range from a few to 25 keV. EIGER is characterized by a small pixel size (75 × 75 μm2), a frame rate up to 22 kHz and a small dead time between frames (4 μs). An EIGER module is a hybrid detector composed of a ≈ 8 × 4 cm2 monolithic silicon sensor bump bonded to 4 × 2 readout chips, for a total of 500 kpixels. Each pixel has a configurable depth (up to 12 bits) counter and records the number of photons impinging. Custom designed module electronics reads out the bits in the pixel counter and processes the data in the module before transferring them to a PC. A large dynamic range (32 bits) for the pixel counter can be obtained through on-board image summation. Rate corrections can be applied on-board to compensate for inefficiencies when the pixel counting rates approach pile-up levels around a million counts per second. The EIGER modules are the building blocks of large area detectors: a 1.5 and a 9 Mpixel systems are under development for the cSAXS beamline at the Swiss Light Source (SLS) at PSI. The very high frame rate capabilities are equally fast for multi-module systems due to the fully parallel data processing.The module calibration will be discussed, with emphasis on the choice of the optimal operation settings as a function of photon energy. The performance regarding threshold dispersion and minimum achievable threshold will be presented. In addition, the progress towards the production of larger multi-module systems will be discussed.

  7. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    PubMed

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack. PMID:24664022

  8. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    PubMed

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  9. Optimised quantum hacking of superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.

    2014-03-01

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  10. Detection mechanism of superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Engel, A.; Renema, J. J.; Il'in, K.; Semenov, A.

    2015-11-01

    In this paper we intend to give a comprehensive description of the current understanding of the detection mechanism in superconducting nanowire single-photon detectors. We will review key experimental results related to the detection mechanism, e.g. the variations of the detection probability as a function of bias current, temperature or magnetic field. Commonly used detection models will be introduced and we will analyze their predictions in view of the experimental observations. Although none of the proposed detection models is able to describe all experimental data, it is becoming increasingly clear that vortices are essential for the formation of the initial normal-conducting domain that triggers a detection event.

  11. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  12. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×10 6 X-rays/s/pixel.

  13. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    SciTech Connect

    Wittmann, Christoffer; Sych, Denis; Leuchs, Gerd; Takeoka, Masahiro

    2010-06-15

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental realization of a homodyne receiver with postselection. In the comparison, it becomes clear that the performance of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within any Gaussian operations and conditional dynamics.

  14. Photon-counting-intensified CID detector for space astronomy

    NASA Astrophysics Data System (ADS)

    Morrissey, Patrick F.; Norton, Timothy J.; Kimble, Randy A.

    1998-08-01

    We are developing a novel solar blind, high resolution, photon counting detector for applications in space UV astronomy. Our concept is to utilize a charge injection device (CID) as the readout stage behind a microchannel plate (MCP) intensifier. This detector will take advantage of the flexible readout options afforded by the addressable CID architecture to provide high local frame rates around bright features in an image. In this concept, the detector bandwidth can be used most efficiently, reading pixels around a bright star more frequently than those in a nearby dim cloud of gas, for example. The demonstration apparatus described in this paper incorporates a 25 mm diameter intensifier tube fiber optically coupled to a commercially available 30 frame-s(superscript -1), 512 X 512 pixel, progressive-scan CID2250 camera. The 10 MHz analog video from this camera is digitized and processed by a centroider module that calculates the position of each event in real time with subpixel precision, thus providing high spatial resolution limited by the MCPs. The pore-resolved images presented in this paper validate the intensified CID concept. We plan to incorporates custom driving electronics and an experimental CID with on-chip address decoders for high speed random access of detector subarrays of arbitrary size and location. Our goal is to demonstrate a solar-blind UV photon counter with 200-300 counts-s(superscript -1) point source and 3 X 10(superscript 5) counts-s(superscript -1) global rate capability with up to 4000 by 4000 elements.

  15. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    SciTech Connect

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-12-04

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  16. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios.

  17. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  18. Photon-Noise Limited Direct Detector Based on Disorder-Controlled Electron Heating

    NASA Technical Reports Server (NTRS)

    Karasik, B.; McGrath, W.; Gershenson, M.; Sergeev, A.

    1999-01-01

    We present a new concept for a hot-electron direct detector (HEDD) capable of counting single millimeter-wave photons. The detector is based on a transition edge sensor (1-meu size bridge) made form a disordered superconducting film.

  19. Broadband illumination of superconducting pair breaking photon detectors

    NASA Astrophysics Data System (ADS)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  20. Rise time of voltage pulses in NbN superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Yu. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Yu.

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  1. High bit rate germanium single photon detectors for 1310nm

    NASA Astrophysics Data System (ADS)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  2. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  3. Application of PHOTON simulation software on calibration of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Nikolic, J.; Puzovic, J.; Todorovic, D.; Rajacic, M.

    2015-11-01

    One of the major difficulties in gamma spectrometry of voluminous environmental samples is the efficiency calibration of the detectors used for the measurement. The direct measurement of different calibration sources, containing isolated γ-ray emitters within the energy range of interest, and subsequent fitting to a parametric function, is the most accurate and at the same time most complicated and time consuming method of efficiency calibration. Many other methods are developed in time, some of them using Monte Carlo simulation. One of such methods is a dedicated and user-friendly program PHOTON, developed to simulate the passage of photons through different media with different geometries. This program was used for efficiency calibration of three HPGe detectors, readily used in Laboratory for Environment and Radiation Protection of the Institute for Nuclear Sciences Vinca, Belgrade, Serbia. The simulation produced the spectral response of the detectors for fixed energy and for different sample geometries and matrices. Thus obtained efficiencies were compared to the values obtained by the measurement of the secondary reference materials and to the results obtained by GEANT4 simulation, in order to establish whether the simulated values agree with the experimental ones. To further analyze the results, a realistic measurement of the materials provided by the IAEA within different interlaboratory proficiency tests, was performed. The activities obtained using simulated efficiencies were compared to the reference values provided by the organizer. A good agreement in the mid energy section of the spectrum was obtained, while for low energies the lack of some parameters in the simulation libraries proved to produce unacceptable discrepancies.

  4. An ion-to-photon conversion detector for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dubois, F.; Knochenmuss, R.; Zenobi, R.

    1997-12-01

    An ion-to-photon conversion detector (IPD) for time-of-flight mass spectrometry was studied and tested with ions produced by matrix-assisted laser desorption-ionization. The detector consisted of a conversion surface located at the end of the drift tube of a time-of-flight mass spectrometer and, behind it, a head-on photomultiplier tube. Fluorescent organic scintillator materials like Bu-PBD [2-(4-t-buthylphenyl)-5-(4-biphenylyl)-1,3,4-oxidiazole] were found to be the most efficient converters of those materials tested. Similar mass resolutions were found with the ion-to-photo detector and standard microchannel plates in a linear time-of-flight instrument. The background noise of the IPD was more intense than with microchannel plates. Slow unfocused ions are suspected to contribute to this noise. Test analytes as large as 70 000 Da could be measured with the IPD. Even with no secondary particle conversion surface in front of the IPD, masses up to approximately 20 000 Da may be more efficiently detected with the IPD than the MCP. For higher masses, a conversion dynode should be considered for increased signal.

  5. Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications

    NASA Astrophysics Data System (ADS)

    Gaggero, A.; Nejad, S. Jahanmiri; Marsili, F.; Mattioli, F.; Leoni, R.; Bitauld, D.; Sahin, D.; Hamhuis, G. J.; Nötzel, R.; Sanjines, R.; Fiore, A.

    2010-10-01

    We demonstrate efficient nanowire superconducting single photon detectors (SSPDs) based on NbN thin films grown on GaAs. NbN films ranging from 3 to 5 nm in thickness have been deposited by dc magnetron sputtering on GaAs substrates at 350 °C. These films show superconducting properties comparable to similar films grown on sapphire and MgO. In order to demonstrate the potential for monolithic integration, SSPDs were fabricated and measured on GaAs/AlAs Bragg mirrors, showing a clear cavity enhancement, with a peak quantum efficiency of 18.3% at λ =1300 nm and T=4.2 K.

  6. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  7. Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.

    1999-01-01

    Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

  8. The RICH detector for CLAS12 at Jefferson Lab

    SciTech Connect

    Pappalardo, Luciano L.

    2014-06-01

    The CLAS12 spectrometer at JLab will offer unique possibilities to study the 3D nucleon structure in terms of TMDs and GPDs in the poorly explored valence region, and to perform high precision hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification capability in the momentum range 3-8 GeV/c. The detector, based on a novel hybrid imaging design, foresees an aerogel radiator and an array of multi-anode photomultipliers. The detector concept and preliminary results of test-beams on a prototype are presented.

  9. Calibration of photon counting imaging microchannel plate detectors for EUV astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Jelinsky, P.

    1986-01-01

    The calibration of photon counting imaging detectors for satellite based EUV astronomy is a complex process designed to ensure the validity of the data received 'in orbit'. The methods developed to accomplish calibration of microchannel plate detectors for the Extreme Ultraviolet Explorer are described and illustrated. The characterization of these detectors can be subdivided into three categories: stabilization, performance tests, and environmental tests.

  10. Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.

    2006-01-01

    We report on the fabrication and characterization of high-speed, single photon detectors using superconducting NbN nanowires at a wavelength of 1064 nm. A 15 by 15 micron detector with a detector efficiency of 40% has been measured. Due to kinetic inductance, the recovery time of such large area detectors is longer than that of smaller or single wire detectors. The recovery time of our detectors (50 ns) has been characterized by measuring the inter-arrival time statistics of our detector.

  11. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  12. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    PubMed Central

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard, energy-integrating x-ray detectors but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a “hybrid” detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al, Med Phys 2011). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (“bowtie”) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of two to three. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors. PMID

  13. Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms

    SciTech Connect

    Nawar Rahman, Samia Hall, David; Lo, Yu-Hwa

    2014-05-07

    A new type of single photon detector, Multiple Amplification Gain with Internal Control (MAGIC), is proposed and analyzed using Monte Carlo simulations based on a physical model of the device. The MAGIC detector has two coupled amplification mechanisms, avalanche multiplication and bipolar gain, and the net gain is regulated by a built-in feedback mechanism. Compared to conventional Geiger mode single photon avalanche detectors (SPADs), the MAGIC detector produces a much greater single photon detection efficiency of nearly 100%, low bit-error-ratio for single photon signals, and a large dynamic range. All these properties are highly desirable for applications that require single photon sensitivity and are absent for conventional Geiger-mode SPADs.

  14. An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays

    SciTech Connect

    Inderbitzin, K.; Engel, A.; Schilling, A.; Il'in, K.; Siegel, M.

    2012-10-15

    Although superconducting nanowire single-photon detectors (SNSPDs) are well studied regarding the detection of infrared/optical photons and keV-molecules, no studies on continuous x-ray photon counting by thick-film detectors have been reported so far. We fabricated a 100 nm thick niobium x-ray SNSPD (an X-SNSPD) and studied its detection capability of photons with keV-energies in continuous mode. The detector is capable to detect photons even at reduced bias currents of 0.4%, which is in sharp contrast to optical thin-film SNSPDs. No dark counts were recorded in extended measurement periods. Strikingly, the signal amplitude distribution depends significantly on the photon energy spectrum.

  15. Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector.

    PubMed

    Renema, J J; Gaudio, R; Wang, Q; Zhou, Z; Gaggero, A; Mattioli, F; Leoni, R; Sahin, D; de Dood, M J A; Fiore, A; van Exter, M P

    2014-03-21

    We report an experimental test of the photodetection mechanism in a nanowire superconducting single photon detector. Detector tomography allows us to explore the 0.8-8 eV energy range via multiphoton excitations. High accuracy results enable a detailed comparison of the experimental data with theories for the mechanism of photon detection. We show that the temperature dependence of the efficiency of the superconducting single photon detector is determined not by the critical current but by the current associated with vortex unbinding. We find that both quasiparticle diffusion and vortices play a role in the detection event.

  16. Superconducting nanowire single-photon detectors integrated with waveguide circuits for quantum information science

    NASA Astrophysics Data System (ADS)

    Gaggero, A.; Sahin, D.; Mattioli, F.; Leoni, R.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J. P.; Beetz, J.; Lermer, M.; Höfling, S.; Kamp, M.; Fiore, A.

    2013-05-01

    We present our progress in the development of an integrated technology suitable for the photonic quantum information processing, showing the first autocorrelator based on two separated detectors integrated on top of the same ridge waveguide. An efficiency of ~1% at 1300 nm for both detectors and independent of the polarization of the incoming photons, is reported. This ultracompact device enables the on-chip measurement of the second-order correlation function g(2)(τ) . We will further discuss ongoing work on the integration of detectors with single-photon sources.

  17. Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.

    2006-01-01

    This viewgraph presentation describes the fabrication of large area superconducting Niobium Nitride nanowire single photon detectors. The topics include: 1) Introduction and Motivation; 2) Operation of SNSPD Detectors; 3) NbTiN Deposition; 4) Fabrication Details; 5) Backside Coupled SNSPD; 6) Measurement Apparatus; 7) Electrical Response of a 15x15 micrometer SNSPD to 1064nm radiation; 8) Detector Efficiency vs Bias Current; 9) Interarrival Time Plot; 10) Detector Linearity; and 11) Conclusion.

  18. Photon Detection System for LBNE Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Djurcic, Zelimir

    2014-03-01

    The LBNE (Long-Baseline Neutrino Experiment) is the next generation accelerator-based neutrino oscillation experiment planned in US. The experiment will use a new muon-neutrino beam sent from Fermi National Accelerator Laboratory and will detect electron-neutrino appearance and muon-neutrino disappearance using a Liquid Argon TPC located at a distance of 1300 km at Sanford Underground Research Facility in South Dakota. The primary physics goal of the LBNE is a definitive determination the neutrino mass hierarchy, determination the octant of the neutrino mixing angle theta-23, and precise measurement of CP violation in neutrino oscillation. Neutrino interaction in LAr result in charged particles producing ionization and scintillation light signals. Dedicated photon detection system is under design for use in the LBNE LArTPC far detectors. The baseline design couples wavelength-shifter coated ultraviolet transmitting acrylic to 3 mm2 silicon photomultipliers. By detecting scintillation light we aim to improve event reconstruction capabilities and efficiently separate neutrino events from background. Current status of the system will be described.

  19. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    SciTech Connect

    Heath, Robert M. Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-02-10

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

  20. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    NASA Astrophysics Data System (ADS)

    Rose, Paul B.; Erickson, Anna S.

    2016-08-01

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  1. Photon detector configured to employ the Gunn effect and method of use

    DOEpatents

    Cich, Michael J

    2015-03-17

    Embodiments disclosed herein relate to photon detectors configured to employ the Gunn effect for detecting high-energy photons (e.g., x-rays and gamma rays) and methods of use. In an embodiment, a photon detector for detecting high-energy photons is disclosed. The photon detector includes a p-i-n semiconductor diode having a p-type semiconductor region, an n-type semiconductor region, and a compensated i-region disposed between the p-type semiconductor region and the n-type semiconductor region. The compensated i-region and has a width of about 100 .mu.m to about 400 .mu.m and is configured to exhibit the Gunn effect when the p-i-n semiconductor diode is forward biased a sufficient amount. The compensated i-region is doped to include a free carrier concentration of less than about 10.sup.10 cm.sup.-3.

  2. Resolution limitation in superconducting transition edge photon detectors due to downconversion phonon noise

    SciTech Connect

    Kozorezov, A. G.; Wigmore, J. K.; Martin, D.; Verhoeve, P.; Peacock, A.

    2006-11-27

    The authors have identified an important source of line broadening in transition edge sensors used as optical photon detectors. It arises through the loss of high energy phonons into the substrate during the initial photon energy downconversion stage. Because of the relatively small number of phonons involved, the loss rate is subjected to large fluctuations due to the statistical nature of the energy exchange processes. They show that the resulting noise may represent a significant limitation to the resolving power of current detectors.

  3. Combination of current-integrating/photon-counting detector modules for spectral CT.

    PubMed

    Chu, Jiyang; Cong, Wenxiang; Li, Liang; Wang, Ge

    2013-10-01

    Inspired by compressive sensing theory and spectral detection technology, here we propose a novel design of a CT detector array that uses current-integrating/photon-counting modules in an interlacing fashion so that strengths of each detector type can be synergistically combined. For geometrical symmetry, an evenly alternating pattern is initially assumed for these detector modules to form a hybrid detector array. While grayscale detector modules acquire regular raw data in a large dynamic range cost-effectively, spectral detector modules simultaneously sense energy-discriminative data in multiple energy bins. A split Bregman iterative algorithm is developed for spectral CT reconstruction from projection data of an object collected with the hybrid detector array. With mathematical phantoms, an optimal ratio of the number of the spectral elements over the number of grayscale elements is determined based on classic image quality evaluation. This hybrid detector array is capable of delivering a performance comparable with that of a full spectral detector array.

  4. Bias-free true random number generation using superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    He, Yuhao; Zhang, Weijun; Zhou, Hui; You, Lixing; Lv, Chaolin; Zhang, Lu; Liu, Xiaoyu; Wu, Junjie; Chen, Sijing; Ren, Min; Wang, Zhen; Xie, Xiaoming

    2016-08-01

    We demonstrate a bias-free true random number generator (TRNG) based on single photon detection using superconducting nanowire single photon detectors (SNSPDs). By comparing the photon detection signals of two consecutive laser pulses and extracting the random bits by the von Neumann correction method, we achieved a random number generation efficiency of 25% (a generation rate of 3.75 Mbit s-1 at a system clock rate of 15 MHz). Using a multi-channel superconducting nanowire single photon detector system with controllable pulse signal amplitudes, we detected the single photons with photon number resolution and positional sensitivity, which could further increase the random number generation efficiency. In a three-channel SNSPD system, the random number bit generation efficiency was improved to 75%, corresponding to a generation rate of 7.5 Mbit s-1 with a 10 MHz system clock rate. All of the generated random numbers successfully passed the statistical test suite.

  5. Bias-free true random number generation using superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    He, Yuhao; Zhang, Weijun; Zhou, Hui; You, Lixing; Lv, Chaolin; Zhang, Lu; Liu, Xiaoyu; Wu, Junjie; Chen, Sijing; Ren, Min; Wang, Zhen; Xie, Xiaoming

    2016-08-01

    We demonstrate a bias-free true random number generator (TRNG) based on single photon detection using superconducting nanowire single photon detectors (SNSPDs). By comparing the photon detection signals of two consecutive laser pulses and extracting the random bits by the von Neumann correction method, we achieved a random number generation efficiency of 25% (a generation rate of 3.75 Mbit s‑1 at a system clock rate of 15 MHz). Using a multi-channel superconducting nanowire single photon detector system with controllable pulse signal amplitudes, we detected the single photons with photon number resolution and positional sensitivity, which could further increase the random number generation efficiency. In a three-channel SNSPD system, the random number bit generation efficiency was improved to 75%, corresponding to a generation rate of 7.5 Mbit s‑1 with a 10 MHz system clock rate. All of the generated random numbers successfully passed the statistical test suite.

  6. Development of a high-frequency electronic integrator for photon-number resolving detectors

    NASA Astrophysics Data System (ADS)

    Meier, Kristina; Wayne, Michael; Kwiat, Paul

    2016-05-01

    Efficient photon-number-resolving single-photon detectors are a critical resource for optical quantum information processing, e.g., for realizing deterministic single-photon production. Previously, we have developed Visible Light Photon Counters (VLPCs) that can detect single photons with high quantum efficiency. The detector configuration allows photons to initiate multiple electron avalanches simultaneously, creating a signal with a charge proportional to the number of photons detected. One current obstacle is the extraction of the total charge of each pulse at frequencies ranging from 200 MHz to 20 GHz. The charge of each pulse is proportional to the area under the input signal and so we are currently developing an electronic integrator that, with appropriate signal amplification, will produce an output signal of pulses with heights equal to the integral of the VLPC pulse, thereby fully realizing the photon-number resolving capabilities of these detectors. Finally, we are also studying the use of optical annealing to reduce the detector's dark counts.

  7. High-efficiency quantum-nondemolition single-photon-number-resolving detector

    SciTech Connect

    Munro, W.J.; Nemoto, Kae; Beausoleil, R.G.; Spiller, T.P.

    2005-03-01

    We discuss an approach to the problem of creating a photon-number-resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon-number quantum-nondemolition measurement with high efficiency ({approx}99%) using fewer than 1600 atoms embedded in a dielectric waveguide.

  8. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  9. Position-Dependent Local Detection Efficiency in a Nanowire Superconducting Single-Photon Detector.

    PubMed

    Renema, J J; Wang, Q; Gaudio, R; Komen, I; op 't Hoog, K; Sahin, D; Schilling, A; van Exter, M P; Fiore, A; Engel, A; de Dood, M J A

    2015-07-01

    We probe the local detection efficiency in a nanowire superconducting single-photon detector along the cross-section of the wire with a far subwavelength resolution. We experimentally find a strong variation in the local detection efficiency of the device. We demonstrate that this effect explains previously observed variations in NbN detector efficiency as a function of device geometry. PMID:26087352

  10. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Adamczewski, J.; Becker, K.-H.; Belogurov, S.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eom, J.; Eschke, J.; Ho¨hne, C.; Kampert, K.-H.; Kleipa, V.; Kochenda, L.; Kolb, B.; Kopfer, J.; Kravtsov, P.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Nam, Y.; Niebur, W.; Oh, K.; Ososkov, G.; Ovcharenko, E.; Pauly, C.; Pouryamout, J.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Song, J.; Tarasenkova, O.; Torres de Heidenreich, T.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.; Yi, J.; Yoo, I.-K.

    2014-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption.

  11. A simple method for afterpulse probability measurement in high-speed single-photon detectors

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Li, Yongfu; Ding, Lei; Zhang, Chunfang; Fang, Jiaxiong

    2016-07-01

    A simple statistical method is proposed for afterpulse probability measurement in high-speed single-photon detectors. The method is based on in-laser-period counting without the support of time-correlated information or delay adjustment, and is readily implemented with commercially available logic devices. We present comparisons among the proposed method and commonly used methods which use the time-correlated single-photon counter or the gated counter, based on a 1.25-GHz gated infrared single-photon detector. Results show that this in-laser-period counting method has similar accuracy to the commonly used methods with extra simplicity, robustness, and faster measuring speed.

  12. Electronic-state-controlled reset operation in quantum dot resonant-tunneling single-photon detectors

    SciTech Connect

    Weng, Q. C.; Zhu, Z. Q.; An, Z. H.; Song, J. D.; Choi, W. J.

    2014-02-03

    The authors present a systematic study of an introduced reset operation on quantum dot (QD) single photon detectors operating at 77 K. The detectors are based on an AlAs/GaAs/AlAs double-barrier resonant tunneling diode with an adjacent layer of self-assembled InAs QDs. Sensitive single-photon detection in high (dI)/(dV) region with suppressed current fluctuations is achieved. The dynamic detection range is extended up to at least 10{sup 4} photons/s for sensitive imaging applications by keeping the device far from saturation by employing an appropriate reset frequency.

  13. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J. E.; Weiss, S.

    2006-10-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and highspatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions.

  14. Liquid-nitrogen cooled, free-running single-photon sensitive detector at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Covi, M.; Pressl, B.; Günthner, T.; Laiho, K.; Krapick, S.; Silberhorn, C.; Weihs, G.

    2015-03-01

    The measurement of light characteristics at the single- and few photon level plays a key role in many quantum optics applications. Often photodetection is preceded with the transmission of quantum light over long distances in optical fibers with their low loss window near 1550 nm. Nonetheless, the detection of the photonic states at telecommunication wavelengths via avalanche photodetectors has long been facing severe restrictions. Only recently, demonstrations of the first free-running detector techniques in the telecommunication band have lifted the demand of synchronizing the signal with the detector. Moreover, moderate cooling is required to gain single-photon sensitivity with these detectors. Here, we implement a liquid-nitrogen cooled negative-feedback avalanche diode (NFAD) at telecommunication wavelengths and investigate the properties of this highly flexible, free-running single-photon sensitive detector. Our realization of cooling provides a large range of stable operating temperatures and has advantages over the relatively bulky commercial refrigerators that have been used before. We determine the region of NFAD working parameters most suitable for single-photon sensitive detection enabling a direct plug-in of our detector to a true photon-counting task.

  15. The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors

    SciTech Connect

    Renema, J. J.; Rengelink, R. J.; Komen, I.; Wang, Q.; Kes, P.; Aarts, J.; Exter, M. P. van; Dood, M. J. A. de; Gaudio, R.; Hoog, K. P. M. op 't; Zhou, Z.; Fiore, A.; Sahin, D.; Driessen, E. F. C.

    2015-03-02

    We experimentally investigate the effect of a magnetic field on photon detection in superconducting single-photon detectors (SSPDs). At low fields, the effect of a magnetic field is through the direct modification of the quasiparticle density of states of the superconductor, and magnetic field and bias current are interchangeable, as is expected for homogeneous dirty-limit superconductors. At the field where a first vortex enters the detector, the effect of the magnetic field is reduced, up until the point where the critical current of the detector starts to be determined by flux flow. From this field on, increasing the magnetic field does not alter the detection of photons anymore, whereas it does still change the rate of dark counts. This result points at an intrinsic difference in dark and photon counts, and also shows that no enhancement of the intrinsic detection efficiency of a straight SSPD wire is achievable in a magnetic field.

  16. High-photon-yield scintillation detector with Ar/CF4 and glass gas electron multiplier

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeshi; Mitsuya, Yuki; Yanagida, Takayuki; Saito, Takumi; Toyokawa, Hiroyuki; Takahashi, Hiroyuki

    2016-10-01

    The glass made gas electron multiplier (GEM) and Ar/CF4-gas-based gaseous detector is developed as a scintillation detector and ultra high photon yield is demonstrated. The light yield of a glass GEM (G-GEM)-based gaseous detector is estimated to be 85,000 photons/keV, which is three orders of magnitude brighter than inorganic scintillators. The radioluminescence spectrum peak appeared at around 620 nm, which matches the spectral response of commonly used photosensors such as photomultiplier tubes, photodiodes, CMOSs, CCDs, and other photo-sensors. In X-ray spectroscopy, the light yield showed excellent proportionality and the device was successfully operated as a gas proportional scintillation counter. With this design, we obtained a high photon yield of the G-GEM, which has the further advantage of being much more sensitive to low-energy radiation than solid-scintillator-based detectors.

  17. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  18. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  19. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  20. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector

    PubMed Central

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2016-01-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging. PMID:27041789

  1. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits

    PubMed Central

    Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.

    2012-01-01

    Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658

  2. A High-resolution TOF Detector _ A Possible Way to Compete with a RICH Detector

    SciTech Connect

    Va'vra, J; Ertley, C.; Leith, D.W.G.S.; Ratcliff, B.; Schwiening, J.; /SLAC

    2008-07-25

    Using two identical 64-pixel Burle/Photonis MCP-PMTs to provide start and stop signals, they have achieved a timing resolution of {sigma}{sub Single{_}detector} {approx} 7.2 ps for N{sub pe} {approx} 50 photoelectrons (N{sub pe}) with a laser diode providing a 1 mm spot on the MCP window. The limiting resolution achieved was {sigma}{sub Single{_}detector} {approx} 5.0 ps for N{sub pe} {approx} 180, for which they estimate the MCP-PMT contribution of {sigma}{sub MCP-PMT} {approx} 4.5 ps. The electronics contribution is estimated as {sigma}{sub Electrons} = 3.42 ps. These results suggest that an ultra-high resolution TOF detector may become a reality at future experiments one day.

  3. Controlling an actively-quenched single photon detector with bright light.

    PubMed

    Sauge, Sebastien; Lydersen, Lars; Anisimov, Andrey; Skaar, Johannes; Makarov, Vadim

    2011-11-01

    We control using bright light an actively-quenched avalanche single-photon detector. Actively-quenched detectors are commonly used for quantum key distribution (QKD) in the visible and near-infrared range. This study shows that these detectors are controllable by the same attack used to hack passively-quenched and gated detectors. This demonstrates the generality of our attack and its possible applicability to eavsdropping the full secret key of all QKD systems using avalanche photodiodes (APDs). Moreover, the commercial detector model we tested (PerkinElmer SPCM-AQR) exhibits two new blinding mechanisms in addition to the previously observed thermal blinding of the APD, namely: malfunctioning of the bias voltage control circuit, and overload of the DC/DC converter biasing the APD. These two new technical loopholes found just in one detector model suggest that this problem must be solved in general, by incorporating generally imperfect detectors into the security proof for QKD.

  4. Effect of temperature on superconducting nanowire single-photon detector noise

    NASA Astrophysics Data System (ADS)

    Bahgat Shehata, A.; Ruggeri, A.; Stellari, F.; Weger, Alan J.; Song, P.; Sunter, K.; Najafi, F.; Berggren, Karl K.; Anant, Vikas

    2015-08-01

    Today Superconducting Nanowire Single-Photon Detectors (SNSPDs) are commonly used in different photon-starved applications, including testing and diagnostics of VLSI circuits. Detecting very faint signals in the near-infrared wavelength range requires not only good detection efficiency, but also very low Dark Count Rate (DCR) and jitter. For example, low noise is crucial to enable ultra-low voltage optical testing of integrated circuits. The effect of detector temperature and background thermal radiation on the noise of superconducting single-photon detectors made of NbN meanders is studied in this paper. It is shown that two different regimes can be identified in the DCR vs. bias current characteristics. At high bias, the dark count rate is dominated by the intrinsic noise of the detector, while at low bias current it is dominated by the detection of stray photons that get onto the SNSPD. Changing the detector temperature changes its switching current and only affects the high bias branch of the characteristics: a reduction of the DCR can be achieved by lowering the SNSPD base temperature. On the other hand, changing the temperature of the single-photon light source (e.g. the VLSI circuit under test) only affects the low bias regime: a lower target temperature leads to a smaller DCR.

  5. Design of wide-field submillimeter-wave camera using SIS photon detectors

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ariyoshi, Seiichiro; Otani, Chiko; Ezawa, Hajime; Kobayashi, Jun; Mori, Yuko; Nagata, Hirohisa; Shimizu, Hirohiko M.; Fujiwara, Mikio; Akiba, Makoto; Hosako, Iwao

    2004-10-01

    SIS photon detectors are niobium-based superconducting direct detectors for submillimeter-wave that show superior performance when compared with bolometric detectors for ground-based observations. We present the design and development of the SIS photon detectors together with optical and cryogenic components for wide field continuum observation system on Atacama Submillimeter Telescope Experiment (ASTE). Using antenna coupled distributed junctions, SIS photon detectors give wide band response in a 650-GHz atmospheric window as well as high current sensitivity, shot noise limited operation, fast response and high dynamic range. Optical noise equivalent power (NEP) was measured to be 1.6x10-16 W/Hz0.5 that is less than the background photon fluctuation limit for ground based submillimeter-wave observations. Fabrication of focal plane array with 9 detector pixels is underway to install in ASTE. Readout electronics with Si-JFETs operating at about 100 K will be used for this array. Development of readout electronics for larger array is based on GaAs-JFETs operating at 0.3 K. For the purpose of installing 100 element array of SIS photon detectors, we have developed remotely operable low-vibration cryostat, which now cools bolometers for 350, 450, 850-µm observations down to 0.34 K. GM-type 4-K cooler and He3/He4 sorption cooler is used, which can be remotely recycled to keep detectors at 0.34 K. Since we have large optical window for this cryostat, sapphire cryogenic window is used to block infrared radiation. The sapphire window is ante-reflection coated with SiO2 by chemical vapor deposition (CVD). The transmittance of the cryogenic window at 650 GHz is more than 95%.

  6. Photon-statistics-based classical ghost imaging with one single detector.

    PubMed

    Kuhn, Simone; Hartmann, Sébastien; Elsäßer, Wolfgang

    2016-06-15

    We demonstrate a novel ghost imaging (GI) scheme based on one single-photon-counting detector with subsequent photon statistics analysis. The key idea is that instead of measuring correlations between the object and reference beams such as in standard GI schemes, the light of the two beams is superimposed. The photon statistics analysis of this mixed light allows us to determine the photon number distribution as well as to calculate the central second-order correlation coefficient. The image information is obtained as a function of the spatial resolution of the reference beam. The performance of this photon-statistics-based GI system with one single detector (PS-GI) is investigated in terms of visibility and resolution. Finally, the knowledge of the complete photon statistics allows easy access to higher correlation coefficients such that we are able to perform here third- and fourth-order GI. The PS-GI concept can be seen as a complement to already existing GI technologies thus enabling a broader dissemination of GI as a superior metrology technique, paving the road for new applications in particular with advanced photon counting detectors.

  7. Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields.

    PubMed

    Scott, Alison J D; Kumar, Sudhir; Nahum, Alan E; Fenwick, John D

    2012-07-21

    The impact of density and atomic composition on the dosimetric response of various detectors in small photon radiation fields is characterized using a 'density-correction' factor, F(detector), defined as the ratio of Monte Carlo calculated doses delivered to water and detector voxels located on-axis, 5 cm deep in a water phantom with a SSD of 100 cm. The variation of F(detector) with field size has been computed for detector voxels of various materials and densities. For ion chambers and solid-state detectors, the well-known variation of F(detector) at small field sizes is shown to be due to differences between the densities of detector active volumes and water, rather than differences in atomic number. However, associated changes in the measured shapes of small-field profiles offset these variations in F(detector), so that integral doses measured using the different detectors are quite similar, at least for slit fields. Since changes in F(detector) with field size arise primarily from differences between the densities of the detector materials and water, ideal small-field relative dosimeters should have small active volumes and water-like density. PMID:22722374

  8. A universal setup for active control of a single-photon detector.

    PubMed

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors. PMID:24517746

  9. A universal setup for active control of a single-photon detector

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  10. A universal setup for active control of a single-photon detector

    SciTech Connect

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía; Kurtsiefer, Christian; Makarov, Vadim; Gerhardt, Ilja

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  11. A universal setup for active control of a single-photon detector.

    PubMed

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  12. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    SciTech Connect

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  13. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  14. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-05-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 {times} 2048 spatial pixels and a maximum count rate of about 10{sup 6} photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V {approx} 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of {approximately} 10{sup 6} photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  15. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-01-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 [times] 2048 spatial pixels and a maximum count rate of about 10[sup 6] photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V [approx] 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of [approximately] 10[sup 6] photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  16. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    SciTech Connect

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-27

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  17. Quantum detector tomography of a single-photon frequency upconversion detection system.

    PubMed

    Ma, Jianhui; Chen, Xiuliang; Hu, Huiqin; Pan, Haifeng; Wu, E; Zeng, Heping

    2016-09-01

    We experimentally presented a full quantum detector tomography of a synchronously pumped infrared single-photon frequency upconversion detector. A maximum detection efficiency of 37.6% was achieved at the telecom wavelength of 1558 nm with a background noise about 1.0 × 10-3 counts/pulse. The corresponding internal quantum conversion efficiency reached as high as 84.4%. The detector was then systematically characterized at different pump powers to investigate the quantum decoherence behavior. Here the reconstructed positive operator valued measure elements were equivalently illustrated with the Wigner function formalism, where the quantum feature of the detector is manifested by the presence of negative values of the Wigner function. In our experiment, pronounced negativities were attained due to the high detection efficiency and low background noise, explicitly showing the quantum feature of the detector. Such quantum detector could be useful in optical quantum state engineering, quantum information processing and communication. PMID:27607700

  18. Quantum detector tomography of a single-photon frequency upconversion detection system.

    PubMed

    Ma, Jianhui; Chen, Xiuliang; Hu, Huiqin; Pan, Haifeng; Wu, E; Zeng, Heping

    2016-09-01

    We experimentally presented a full quantum detector tomography of a synchronously pumped infrared single-photon frequency upconversion detector. A maximum detection efficiency of 37.6% was achieved at the telecom wavelength of 1558 nm with a background noise about 1.0 × 10-3 counts/pulse. The corresponding internal quantum conversion efficiency reached as high as 84.4%. The detector was then systematically characterized at different pump powers to investigate the quantum decoherence behavior. Here the reconstructed positive operator valued measure elements were equivalently illustrated with the Wigner function formalism, where the quantum feature of the detector is manifested by the presence of negative values of the Wigner function. In our experiment, pronounced negativities were attained due to the high detection efficiency and low background noise, explicitly showing the quantum feature of the detector. Such quantum detector could be useful in optical quantum state engineering, quantum information processing and communication.

  19. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    SciTech Connect

    Contalbrigo, M; Baltzell, N; Benmokhtar, F; Barion, L; Cisbani, E; El Alaoui, A; Hafidi, K; Hoek, M; Kubarovsky, V; Lagamba, L; Lucherini, V; Malaguti, R; Mirazita, M; Montgomery, R; Movsisyan, A; Musico, P; Orecchini, D; Orlandi, A; Pappalardo, L L; Pereira, S; Perrino, R; Phillips, J; Pisano, S; Rossi, P; Squerzanti, S; Tomassini, S; Turisini, M; Viticchiè, A

    2014-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

  20. Single photon avalanche detectors: prospects of new quenching and gain mechanisms

    NASA Astrophysics Data System (ADS)

    Hall, David; Liu, Yu-Hsin; Lo, Yu-Hwa

    2015-11-01

    While silicon single-photon avalanche diodes (SPAD) have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

  1. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Millaud, J. E.; Weiss, S.

    2006-02-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 10 7 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions.

  2. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  3. Evaluation of the efficiency curve of a Cadmiun Telluride detector for low-energy photon spectrometry.

    PubMed

    Correia, Amanda Ribeiro; Iwahara, Akira; da Cruz, Paulo Alberto Lima; da Silva, Carlos José; Tauhata, Luiz; Poledna, Roberto; da Silva, Ronaldo Lins; de Queiroz Filho, Pedro Pacheco; Lopes, Ricardo Tadeu

    2016-10-01

    The performance of a Cadmiun Telluride (CdTe) detector for low energy photon spectrometry was evaluated. Collected data were analyzed using the basic software package available with the CdTe detector system and the COLEGRAM code developed for photopeak deconvolution at LNHB/France. Several calibrated point sources were used to determine the energy versus efficiency curve. The efficiency curve was used in the determination of main X-ray intensities of (153)Sm and (177)Lu.

  4. Evaluation of the efficiency curve of a Cadmiun Telluride detector for low-energy photon spectrometry.

    PubMed

    Correia, Amanda Ribeiro; Iwahara, Akira; da Cruz, Paulo Alberto Lima; da Silva, Carlos José; Tauhata, Luiz; Poledna, Roberto; da Silva, Ronaldo Lins; de Queiroz Filho, Pedro Pacheco; Lopes, Ricardo Tadeu

    2016-10-01

    The performance of a Cadmiun Telluride (CdTe) detector for low energy photon spectrometry was evaluated. Collected data were analyzed using the basic software package available with the CdTe detector system and the COLEGRAM code developed for photopeak deconvolution at LNHB/France. Several calibrated point sources were used to determine the energy versus efficiency curve. The efficiency curve was used in the determination of main X-ray intensities of (153)Sm and (177)Lu. PMID:27544313

  5. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  6. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  7. Spatio-energetic cross-talks in photon counting detectors: detector model and correlated Poisson data generator

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Kappler, Steffen

    2016-03-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the two pixels. This is called double-counting with charge sharing. The output of individual PCD pixel is Poisson distributed integer counts; however, the outputs of adjacent pixels are correlated due to double-counting. Major problems are the lack of detector noise model for the spatio-energetic crosstalk and the lack of an efficient simulation tool. Monte Carlo simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, we developed a new detector model and implemented into an efficient software simulator which uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account effects: (1) detection efficiency and incomplete charge collection; (2) photoelectric effect with total absorption; (3) photoelectric effect with fluorescence x-ray emission and re-absorption; (4) photoelectric effect with fluorescence x-ray emission which leaves PCD completely; and (5) electric noise. The model produced total detector spectrum similar to previous MC simulation data. The model can be used to predict spectrum and correlation with various different settings. The simulated noisy data demonstrated the expected performance: (a) data were integers; (b) the mean and covariance matrix was close to the target values; (c) noisy data generation was very efficient

  8. Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors

    NASA Astrophysics Data System (ADS)

    Wang, Meiyu; Yan, Fengli; Xu, Jingzhou

    2016-08-01

    We show how to concentrate an arbitrary four-photon polarization entangled state into a maximally entangled state based on some quantum nondemolition detectors. The entanglement concentration protocol (ECP) resorts to an ancillary single-photon resource and the conventional projection measurement on photons to assist the concentration, which makes it more economical. Our ECP involves weak cross-Kerr nonlinearities, X homodyne measurement and basic linear-optical elements, which make it feasible in the current experimental technology. Moreover, the ECP considers cyclic utilization to enhance a higher success probability. Thus, our scheme is meaningful in practical applications in quantum communication.

  9. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  10. Photon-counting H33D detector for biological fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Millaud, J. E.; Weiss, S.

    2006-11-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross-delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions.

  11. Photon-Counting H33D Detector for Biological Fluorescence Imaging.

    PubMed

    Michalet, X; Siegmund, O H W; Vallerga, J V; Jelinsky, P; Millaud, J E; Weiss, S

    2006-11-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021

  12. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect

    Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  13. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  14. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  15. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  16. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan

    2007-01-01

    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  17. Hybrid analog/digital, large format, photon counting detectors for astronomy

    NASA Astrophysics Data System (ADS)

    Crocker, J.; Rafal, M.; Denman, B.; Paresce, F.; Hiltner, A.

    1986-01-01

    The development of a new microchannel plate photon-counting detector with an analog readout method based on a resistive anode is reported. This detector exhibits extremely high, stable electron gains of 10 to the 8th. At this gain, the spatial resolution is no longer primarily limited by the noise of the resistive anode, so that digital methods of readout, such as discrete conductors, lose their advantage. These detectors can be readily scaled to 40 mm and 70 mm formats to match plate scales of 2-m (and larger) telescopes. New, high speed digital electronics fully exploit the high spatial and time resolution made possible by gains of this level. Analysis of the theoretical performance of this detector shows that the major limitation to the spatial resolution is the proximity focus of the photocathode and the first microchannel plate. The detector has been mated to an echelle spectrograph developed.

  18. Statistical strength of experiments to reject local realism with photon pairs and inefficient detectors

    SciTech Connect

    Zhang Yanbao; Knill, Emanuel; Glancy, Scott

    2010-03-15

    Because of the fundamental importance of Bell's theorem, a loophole-free demonstration of a violation of local realism (LR) is highly desirable. Here, we study violations of LR involving photon pairs. We quantify the experimental evidence against LR by using measures of statistical strength related to the Kullback-Leibler (KL) divergence, as suggested by van Dam et al.[W. van Dam, R. D. Gill, and P. D. Grunwald, IEEE Trans. Inf. Theory. 51, 2812 (2005)]. Specifically, we analyze a test of LR with entangled states created from two independent polarized photons passing through a polarizing beam splitter. We numerically study the detection efficiency required to achieve a specified statistical strength for the rejection of LR depending on whether photon counters or detectors are used. Based on our results, we find that a test of LR free of the detection loophole requires photon counters with efficiencies of at least 89.71%, or photon detectors with efficiencies of at least 91.11%. For comparison, we also perform this analysis with ideal unbalanced Bell states, which are known to allow rejection of LR with detector efficiencies above 2/3.

  19. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  20. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    SciTech Connect

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-12-15

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  1. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  2. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  3. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  4. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  5. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    PubMed

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

  6. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study.

    PubMed

    Shikhaliev, Polad M

    2005-12-21

    Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do not provide accurate

  7. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2005-12-01

    Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do not provide accurate

  8. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    NASA Astrophysics Data System (ADS)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  9. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  10. Fast digitization and discrimination of prompt neutron and photon signals using a novel silicon carbide detector

    SciTech Connect

    Brandon W. Blackburn; James T. Johnson; Scott M. Watson; David L. Chichester; James L. Jones; Frank H. Ruddy; John G. Seidel; Robert W. Flammang

    2007-04-01

    Current requirements of some Homeland Security active interrogation projects for the detection of Special Nuclear Material (SNM) necessitate the development of faster inspection and acquisition capabilities. In order to do so, fast detectors which can operate during and shortly after intense interrogation radiation flashes are being developed. Novel silicon carbide (SiC) semiconductor Schottky diodes have been utilized as robust neutron and photon detectors in both pulsed photon and pulsed neutron fields and are being integrated into active inspection environments to allow exploitation of both prompt and delayed emissions. These detectors have demonstrated the capability of detecting both photon and neutron events during intense photon flashes typical of an active inspection environment. Beyond the inherent insensitivity of SiC to gamma radiation, fast digitization and processing has demonstrated that pulse shape discrimination (PSD) in combination with amplitude discrimination can further suppress unwanted gamma signals and extract fast neutron signatures. Usable neutron signals have been extracted from mixed radiation fields where the background has exceeded the signals of interest by >1000:1.

  11. Characterization of γ-ray detectors using the photon tagger NEPTUN for energies up to 20 MeV

    NASA Astrophysics Data System (ADS)

    Schnorrenberger, L.; Savran, D.; Glorius, J.; Lindenberg, K.; Löher, B.; Pietralla, N.; Sonnabend, K.

    2014-01-01

    A new setup for the characterization of γ-ray detectors has been installed at the NEPTUN photon tagger facility of TU Darmstadt. The tagging technique used at NEPTUN provides a quasi monoenergetic photon source up to about 20 MeV by selecting single γ-ray energies within a bremsstrahlung spectrum. The energy is freely selectable by changing the tagging condition. The detector response function (DRF) of γ-ray detectors for quasi monoenergetic incident photons can be measured. This allows to investigate DRFs of various photon detectors as a function of the incident γ-ray energy. Simulations of DRFs that are intensively used in the analysis of nuclear physics experiments can be tested and compared to experimental data. The experimental setup is presented and the measurement of the DRF of a large volume high-purity Germanium detector is described as an example.

  12. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  13. Comparison of contrast enhancement methods using photon counting detector in spectral mammography

    NASA Astrophysics Data System (ADS)

    Kim, Hyemi; Park, Su-Jin; Jo, Byungdu; Kim, Dohyeon; Kim, Hee-Joung

    2016-03-01

    The photon counting detector with energy discrimination capabilities provides the spectral information and energy of each photon with single exposure. The energy-resolved photon counting detector makes it possible to improve the visualization of contrast agent by selecting the appropriate energy window. In this study, we simulated the photon counting spectral mammography system using a Monte Carlo method and compared three contrast enhancement methods (K-edge imaging, projection-based energy weighting imaging, and dual energy subtraction imaging). For the quantitative comparison, we used the homogeneous cylindrical breast phantom as a reference and the heterogeneous XCAT breast phantom. To evaluate the K-edge imaging methods, we obtained images by increasing the energy window width based on K-edge absorption energy of iodine. The iodine which has the K-edge discontinuity in the attenuation coefficient curve can be separated from the background. The projection-based energy weighting factor was defined as the difference in the transmissions between the contrast agent and the background. Each weighting factor as a function of photon energy was calculated and applied to the each energy bin. For the dual energy subtraction imaging, we acquired two images with below and above the iodine K-edge energy using single exposure. To suppress the breast tissue in high energy images, the weighting factor was applied as the ratio of the linear attenuation coefficients of the breast tissue at high and low energies. Our results demonstrated the CNR improvement of the K-edge imaging was the highest among the three methods. These imaging techniques based on the energy-resolved photon counting detector improved image quality with the spectral information.

  14. Single microwave-photon detector using an artificial Λ-type three-level system

    NASA Astrophysics Data System (ADS)

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D.; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-07-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete `click'. We attain a high single-photon-detection efficiency of 0.66+/-0.06 with a low dark-count probability of 0.014+/-0.001 and a reset time of ~400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.

  15. Single microwave-photon detector using an artificial Λ-type three-level system.

    PubMed

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-01-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete 'click'. We attain a high single-photon-detection efficiency of 0.66±0.06 with a low dark-count probability of 0.014±0.001 and a reset time of ∼400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.

  16. Single microwave-photon detector using an artificial Λ-type three-level system.

    PubMed

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-01-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete 'click'. We attain a high single-photon-detection efficiency of 0.66±0.06 with a low dark-count probability of 0.014±0.001 and a reset time of ∼400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing. PMID:27453153

  17. Single microwave-photon detector using an artificial Λ-type three-level system

    PubMed Central

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D.; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-01-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete ‘click'. We attain a high single-photon-detection efficiency of 0.66±0.06 with a low dark-count probability of 0.014±0.001 and a reset time of ∼400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing. PMID:27453153

  18. The photon drag effect: A fast FIR detector

    SciTech Connect

    Sigg, H.C.; Son, P.C. van; Wenckebach, W.Th.

    1995-12-31

    The photon drag (PD) effect in solids is the electrical current generated along the path of the absorbed photons. It is a very direct transducer which is also very fast because the momentum relaxation times of the electrons are involved. We studied the PD effect in the 2D electron gas (2DEG) of a GaAs/AlGaAs multi-quantum well system using the free-electron laser source FELIX. The temporal response on a ps timescale has been observed, and the continuous spectral response through the intersubband resonance (ISR) is investigated. For high excitation intensities we observe saturation of both the PD effect and the ISR absorption. The experiments are performed on an MBE grown GaAs/AlGaAs sample with 30 8-nm-wide quantum wells, each containing 0.8 10{sup 12} electrons/cm{sup 2}. The light is coupled to the 2DEG through a single-pass internal reflection in a Ge prism pressed onto the sample surface, and the electrical signal is capacitively coupled out to a microstrip line. The measured temporal response to the 2-ps-long infrared micropulses is limited by the 34 GHz bandwidth of the sampling oscilloscope. The spectral response (ISR at 120 meV) and the saturation of the PD effect and of the optical absorption are measured real-time on the timescale of the FELIX macropulse (typically 2 {mu}). Two contributions to the PD signal an be distinguished in the spectral response: One is proportional to the absorption and the other is proportional to its derivative with respect to frequency. The relative strength of the contributions is related to the momentum relaxation times of the electrons in the lowest and first excited subbands. At high excitation intensities, the relative strength of the two contributions stays surprisingly constant, despite the strongly increased ISR linewidth and the saturation of the signal. This indicates that the limiting relaxation time relevant for the saturation of the PD effect is longer than the sub-picosecond momentum relaxation times.

  19. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  20. Searching for photon-sector Lorentz violation using gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Melissinos, Adrian C.; Mewes, Matthew

    2016-10-01

    We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.

  1. Real-time compression of streaming X-ray photon correlation spectroscopy area-detector data

    NASA Astrophysics Data System (ADS)

    Madden, T.; Jemian, P.; Narayanan, S.; Sandy, A. R.; Sikorski, M.; Sprung, M.; Weizeorick, J.

    2011-09-01

    We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimination compression of streaming X-ray photon correlation spectroscopy (XPCS) data from a fast charge-coupled device area detector. The system is built using a commercial frame grabber with an on-board field-programmable gate array (FPGA). The system is capable of continuously processing 60 CCD frames per second each consisting of 1024×1024 pixels with up to 64 512 photon hits per frame.

  2. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  3. Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits.

    PubMed

    Zhao, Qingyuan; Jia, Tao; Gu, Min; Wan, Chao; Zhang, Labao; Xu, Weiwei; Kang, Lin; Chen, Jian; Wu, Peiheng

    2014-04-01

    Counting rates of superconducting nanowire single-photon detectors are usually estimated at hundreds of MHz by their kinetic-inductive reset time. This maximum is also limited by capacitor coupling effects in conventional readout circuits. In this Letter, we design and demonstrate an improved readout circuit that reduces the reset time and removes circuit limits. The counting rate at the 3 dB compression point is increased by four times for a large active area detector. We also discuss nonlinear dependences of the counting rate on the incident continuous-wave optical power and give a numerical model to explain our observations.

  4. Response of a BGO detector to photon and neutron sources: simulations and measurements

    NASA Astrophysics Data System (ADS)

    Vincke, H.; Gschwendtner, E.; Fabjan, C. W.; Otto, T.

    2002-05-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. For the measurements three low-energy photon emitters ( 60Co, 54Mn, 137Cs) were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am-Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  5. On-chip detection of non-classical light by scalable integration of single-photon detectors

    PubMed Central

    Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.; Bellei, Francesco; Dane, Andrew; Lee, Catherine; Hu, Xiaolong; Kharel, Prashanta; Marsili, Francesco; Assefa, Solomon; Berggren, Karl K.; Englund, Dirk

    2015-01-01

    Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light. PMID:25575346

  6. Material separation in x-ray CT with energy resolved photon-counting detectors

    PubMed Central

    Wang, Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-01-01

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  7. Cascaded-systems analyses of photon-counting x-ray detectors

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-03-01

    Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. Recently, cascaded systems analysis (CSA) has been extended to the description of the detective quantum efficiency (DQE) of SPC detectors. In this article we apply the new CSA approach to the description of the DQE of hypothetical direct-conversion selenium (Sc) and cadmium zinc telluride (CdZnTc) detectors including the effects of poly-energetic x-ray spectra, stochastic conversion of x-ray energy to electron­ hole (c-h) pairs, depth-dependent collection of e-h pairs using the Hecht relation, additive electronic noise, and thresholding. Comparisons arc made to an energy-integrating model. For this simple model, with the exception of thick (1- 10 mm) Sc-bascd convertors, we found that the SPC DQE was 5-20 %greater than that of the energy­ integrating model. This trend was tnw even when additive noise was included in the SPC model and excluded from the energy-integrating model. However, the DQE of SPC detectors with poor collection efficiency (such as thick (<1 mm) Sc detectors) and high levels of additive noise can be degraded by 40-90 % for all energies and x-ray spectra considered. vVhile photon-counting approaches arc not yet ready for routine diagnostic imaging, the available DQE is equal to or higher than that of conventional energy-integrating detectors under a wide range of x-ray energies and convertor thickness. However, like energy-integrating detectors, the DQE of SPC detectors will be degraded by the combination of poor collection efficiency and high levels of additive noise.

  8. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOEpatents

    Holland, Stephen Edward

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.

  9. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  10. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.

    PubMed

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-25

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  11. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  12. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  13. Characterization of NbN films for superconducting nanowire single photon detectors

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Weisse - Bernstein, Nina R; Williamson, Todd L; Hoffbauer, M. A.; Graf, M. J.; Rabin, M. W.

    2011-01-14

    Nanoscopic superconducting meander patterns offer great promise as a new class of cryogenic radiation sensors capable of single photon detection. To realize this potential, control of the superconducting properties on the nanoscale is imperative. To this end, Superconducting Nanowire Single Photon Detectors (SNSPDs) are under development by means Energetic Neutral Atom Beam Lithography and Epitaxy, or ENABLE. ENABLE can growth highly-crystalline, epitaxial thin-film materials, like NbN, at low temperatures; such wide-ranging control of fabrication parameters is enabling the optimization of film properties for single photon detection. T{sub c}, H{sub c2}, {zeta}{sub GL} and J{sub c} of multiple thin films and devices have been studied as a function of growth conditions. The optimization of which has already produced devices with properties rivaling all reports in the existing literature.

  14. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    PubMed Central

    Pratx, Guillem

    2013-01-01

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of γ-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains. PMID:19652293

  15. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  16. Photon-counting CT with silicon detectors: feasibility for pediatric imaging

    NASA Astrophysics Data System (ADS)

    Yveborg, Moa; Xu, Cheng; Fredenberg, Erik; Danielsson, Mats

    2009-02-01

    X-ray detectors made of crystalline silicon have several advantages including low dark currents, fast charge collection and high energy resolution. For high-energy x-rays, however, silicon suffers from its low atomic number, which might result in low detection efficiency, as well as low energy and spatial resolution due to Compton scattering. We have used a monte-carlo model to investigate the feasibility of a detector for pediatric CT with 30 to 40 mm of silicon using x-ray spectra ranging from 80 to 140 kVp. A detection efficiency of 0.74 was found at 80 kVp, provided the noise threshold could be set low. Scattered photons were efficiently blocked by a thin metal shielding between the detector units, and Compton scattering in the detector could be well separated from photo absorption at 80 kVp. Hence, the detector is feasible at low acceleration voltages, which is also suitable for pediatric imaging. We conclude that silicon detectors may be an alternative to other designs for this special case.

  17. A multilayer edge-on silicon microstrip single photon counting detector for momography mammography

    NASA Astrophysics Data System (ADS)

    Arfelli, F.; Bonvicini, V.; Bravin, A.; Cantatore, G.; Castelli, E.; Fabrizioli, M.; Longo, R.; Olivo, A.; Pani, S.; Pontoni, D.; Poropat, P.; Prest, M.; Rashevsky, A.; Rigon, L.; Tromba, G.; Vacchi, A.; Vallazza, E.

    1999-08-01

    A 3-layer edge-on silicon microstrip detector for the SYRMEP/FRONTRAD project has been designed and realised. The image matrix is made by 764 pixels with dimensions 300 (thickness of the single detectors) × 200 (strip pitch) μm 2. The system has a sensitive area of 50 × 1 mm 2, an inter-layer distance of ≈ 100 μm and an efficiency of ≈ 80% for 20 keV photons. The image is acquired by scanning the object across the beam cross-section and the overall statistics on the single pixel is obtained by summing up the information of corresponding pixels in the three layers, thereby reducing the effect of possible noisy or not functioning pixels. Experimental results obtained at the SYRMEP/FRONTRAD beam line of the ELETTRA synchrotron radiation machine with this innovative detector are presented.

  18. Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.

    PubMed

    Emami, Hossein; Sarkhosh, Niusha

    2014-06-01

    A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.

  19. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  20. Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.

    2015-01-01

    Geant4 Monte Carlo code simulations were used to solve experimental and theoretical complications for calculation of mass energy-absorption coefficients of elements, air, and compounds. The mass energy-absorption coefficients for nuclear track detectors were computed first time using Geant4 Monte Carlo code for energy 1 keV-20 MeV. Very good agreements for simulated results of mass energy-absorption coefficients for carbon, nitrogen, silicon, sodium iodide and nuclear track detectors were observed on comparison with the values reported in the literatures. Kerma relative to air for energy 1 keV-20 MeV and energy absorption buildup factors for energy 50 keV-10 MeV up to 10 mfp penetration depths of the selected nuclear track detectors were also calculated to evaluate the absorption of the gamma photons. Geant4 simulation can be utilized for estimation of mass energy-absorption coefficients in elements and composite materials.

  1. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications.

    PubMed

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-07-01

    Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more

  2. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications

    PubMed Central

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-01-01

    Abstract. Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed

  3. Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry

    PubMed Central

    Akino, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J.

    2015-01-01

    A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth–dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth–dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth–dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. PMID:26268483

  4. High-performance SPAD array detectors for parallel photon timing applications

    NASA Astrophysics Data System (ADS)

    Rech, I.; Cuccato, A.; Antonioli, S.; Cammi, C.; Gulinatti, A.; Ghioni, M.

    2012-02-01

    Over the past few years there has been a growing interest in monolithic arrays of single photon avalanche diodes (SPAD) for spatially resolved detection of faint ultrafast optical signals. SPADs implemented in planar technologies offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency than PMTs and are able to provide, beside sensitivities down to single-photons, very high acquisition speeds. In order to make SPAD array more and more competitive in time-resolved application it is necessary to face problems like electrical crosstalk between adjacent pixel, moreover all the singlephoton timing electronics with picosecond resolution has to be developed. In this paper we present a new instrument suitable for single-photon imaging applications and made up of 32 timeresolved parallel channels. The 32x1 pixel array that includes SPAD detectors represents the system core, and an embedded data elaboration unit performs on-board data processing for single-photon counting applications. Photontiming information is exported through a custom parallel cable that can be connected to an external multichannel TCSPC system.

  5. Advances in InGaAsP-based avalanche diode single photon detectors

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Jiang, Xudong; Entwistle, Mark; Slomkowski, Krystyna; Tosi, Alberto; Acerbi, Fabio; Zappa, Franco; Cova, Sergio

    2011-02-01

    In this Topical Review, we survey the state-of-the-art of single photon detectors based on avalanche diodes fabricated in the InGaAsP materials system for photon counting at near infrared wavelengths in the range from 0.9-1.6 µm. The fundamental trade-off between photon detection efficiency and dark count rate can now be managed with performance that adequately serves many applications, with low dark count rates of ∼1 kHz having been demonstrated at photon detection efficiencies of 20% for 25 µm diameter fiber-coupled devices with thermoelectric cooling. Timing jitter of less than 50 ps has been achieved, although device uniformity is shown to be essential in obtaining good jitter performance. Progress is also reported towards resolving the limitations imposed on photon counting rate by afterpulsing, with at least 50 MHz repetition frequencies demonstrated for 1 ns gated operation with afterpulsing limited to the range of 1-5%. We also present a discussion of future trends and challenges related to these devices organized according to the hierarchy of materials properties, device design concepts, signal processing and electronic circuitry, and multiplexing concepts. Whereas the materials properties of these devices may pose significant challenges for the foreseeable future, there has been considerable progress in device concepts and circuit solutions towards the present imperatives for higher counting rates and simpler device operation.

  6. Comparison of TPB and bis-MSB as VUV waveshifters in prototype LBNE photon detector paddles

    NASA Astrophysics Data System (ADS)

    Baptista, B.; Mufson, S.

    2013-12-01

    The Long-Baseline Neutrino Experiment (LBNE) Project is expected to provide facilities that will enable a program in neutrino physics that can measure fundamental physical parameters, explore physics beyond the Standard Model and better elucidate the nature of matter and anti-matter. The LBNE Photon Detection subsystem is primarily designed to detect the scintillation photons produced at 128 nm as ionizing particles traverse the liquid argon. The LBNE reference design for the photon detector subsystem uses adiabatic light guides consisting of cast acrylic bars whose surface is embedded with waveshifter to convert the Vacuum Ultraviolet (VUV) 128 nm photons into the optical bandpass of silicon photomultipliers (SiPMs). In this investigation, we describe comparative studies of two VUV waveshifters — TPB and bis-MSB. We find that bis-MSB is more efficient than TPB at 128 nm. We also find that the efficiency of converting VUV photons into the optical for both waveshifters rises from 170-200 nm. Studies of the long wavelength behavior of the waveshifters supports the result that the efficiency is rising.

  7. Linear Mode Photon Counting LADAR Camera Development for the Ultra-Sensitive Detector Program

    NASA Astrophysics Data System (ADS)

    Jack, M.; Bailey, S.; Edwards, J.; Burkholder, R.; Liu, K.; Asbrock, J.; Randall, V.; Chapman, G.; Riker, J.

    Advanced LADAR receivers enable high accuracy identification of targets at ranges beyond standard EOIR sensors. Increased sensitivity of these receivers will enable reductions in laser power, hence more affordable, smaller sensors as well as much longer range of detection. Raytheon has made a recent breakthrough in LADAR architecture by combining very low noise ~ 30 electron front end amplifiers with moderate gain >60 Avalanche Photodiodes. The combination of these enables detection of laser pulse returns containing as few as one photon up to 1000s of photons. Because a lower APD gain is utilized the sensor operation differs dramatically from traditional "geiger mode APD" LADARs. Linear mode photon counting LADAR offers advantages including: determination of intensity as well as time of arrival, nanosecond recovery times and discrimination between radiation events and signals. In our talk we will review the basic amplifier and APD component performance, the front end architecture, the demonstration of single photon detection using a simple 4 x 4 SCA and the design of a fully integrated photon counting camera under development in support of the Ultra-Sensitive Detector (USD) program sponsored by the Air Force Research Laboratory at Kirtland AFB, NM. Work Supported in Part by AFRL - Contract # FA8632-05-C-2454 Dr. Jim Riker Program Manager.

  8. Detector dose response in megavoltage small photon beams. I. Theoretical concepts

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Seuntjens, Jan; Kamio, Yuji; Palmans, Hugo

    2015-10-15

    Purpose: To explain the reasons for significant quality correction factors in megavoltage small photon fields and clarify the underlying concepts relevant to dosimetry under such conditions. Methods: The validity of cavity theory and the requirement of charged particle equilibrium (CPE) are addressed from a theoretical point of view in the context of nonstandard beams. Perturbation effects are described into four main subeffects, explaining their nature and pointing out their relative importance in small photon fields. Results: It is demonstrated that the failure to meet classical cavity theory requirements, such as CPE, is not the reason for significant quality correction factors. On the contrary, it is shown that the lack of CPE alone cannot explain these corrections and that what matters most, apart from volume averaging effects, is the relationship between the lack of CPE in the small field itself and the density of the detector cavity. The density perturbation effect is explained based on Fano’s theorem, describing the compensating effect of two main contributions to cavity absorbed dose. Using the same approach, perturbation effects arising from the difference in atomic properties of the cavity medium and the presence of extracameral components are explained. Volume averaging effects are also discussed in detail. Conclusions: Quality correction factors of small megavoltage photon fields are mainly due to differences in electron density between water and the detector medium and to volume averaging over the detector cavity. Other effects, such as the presence of extracameral components and differences in atomic properties of the detection medium with respect to water, can also play an accentuated role in small photon fields compared to standard beams.

  9. Comment on ``Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors''

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Vinokur, V. M.

    2012-07-01

    We discuss the importance of the vortex core energy and realistic boundary conditions to the Fokker-Plank equation for the calculation of thermally activated hopping of vortices across narrow superconducting films. Disregard of these issues in the papers by Bulaevskii, Graf and Kogan, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.85.014505 85, 014505 (2012) and by Bulaevskii , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.144526 83, 144526 (2011) in which an uncertain London vortex core cutoff was used, can produce large numerical errors and a significant discrepancy between their results and the results of the paper by Gurevich and Vinokur, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.227007 100, 227007 (2008) in which these issues were taken into account. This can be essential for the interpretation of experimental data on thin-film photon detectors and other superconducting nanostructures.

  10. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency.

    PubMed

    Li, Hao; Zhang, Lu; You, Lixing; Yang, Xiaoyan; Zhang, Weijun; Liu, Xiaoyu; Chen, Sijing; Wang, Zhen; Xie, Xiaoming

    2015-06-29

    Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photonic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 μm. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps. PMID:26191739

  11. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  12. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  13. Influence of detector noise in holographic imaging with limited photon flux.

    PubMed

    Wahyutama, I S; Tadesse, G K; Tünnermann, A; Limpert, J; Rothhardt, J

    2016-09-19

    Lensless coherent diffractive imaging usually requires iterative phase-retrieval for recovering the missing phase information. Holographic techniques, such as Fourier-transform holography (FTH) or holography with extended references (HERALDO), directly provide this phase information and thus allow for a direct non-iterative reconstruction of the sample. In this paper, we analyze the effect of detector noise on the reconstruction for FTH and HERALDO with linear and rectangular references. We find that HERALDO is more sensitive to this type of noise than FTH, especially if rectangular references are employed. This excessive noise, caused by the necessary differentiation step(s) during reconstruction in case of HERALDO, additionally depends on the numerical implementation. When considering both shot-noise and detector noise, we find that FTH provides a better signal-to-noise ratio (SNR) than HERALDO if the available photon flux from the light source is low. In contrast, at high photon flux HERALDO provides better SNR and resolution than FTH. Our findings will help in designing optimum holographic imaging experiments particularly in the photon-flux-limited regime where most ultrafast experiments operate. PMID:27661936

  14. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PMID:27074452

  15. Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle

    NASA Astrophysics Data System (ADS)

    Pichler, A.; Bartalucci, S.; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; D'Ufflzi, A.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Sperandio, L.; Vazquez-Doce, O.; Widmann, E.; Zmeskal, J.

    2016-05-01

    The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist Wolfgang Pauli in 1925. Since then, several experiments have checked its validity. From 2006 until 2010, the VIP (Violation of the Pauli Principle) experiment took data at the LNGS underground laboratory to test the PEP. This experiment looked for electronic 2p to Is transitions in copper, where 2 electrons are in the Is state before the transition happens. These transitions violate the PEP. The lack of detection of X-ray photons coming from these transitions resulted in a preliminary upper limit for the violation of the PEP of 4.7 × 10-29. Currently, the successor experiment VIP2 is under preparation. The main improvements are, on one side, the use of Silicon Drift Detectors (SDDs) as X-ray photon detectors. On the other side an active shielding is implemented, which consists of plastic scintillator bars read by Silicon Photomultipliers (SiPMs). The employment of these detectors will improve the upper limit for the violation of the PEP by around 2 orders of magnitude.

  16. Superconducting detector of IR single-photons based on thin WSi films

    NASA Astrophysics Data System (ADS)

    Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Yu B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V.

    2016-08-01

    We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors’ SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).

  17. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams

    SciTech Connect

    Reft, Chester S.

    2009-05-15

    Optically stimulated luminescent detectors, which are widely used in radiation protection, offer a number of potential advantages for application in radiation therapy dosimetry. Their introduction into this field has been somewhat hampered by the lack of information on their radiation response in megavoltage beams. Here the response of a commercially available optically stimulated luminescent detector (OSLD) is determined as a function of energy, absorbed dose to water, and linear energy transfer (LET). The detector response was measured as a function of energy for absorbed doses from 0.5 to 4.0 Gy over the following ranges: 125 kVp to18 MV for photons, 6-20 MeV for electrons, 50-250 MeV for protons, and 290 MeV/u for the carbon ions. For the low LET beams, the response of the detector was linear up to 2 Gy with supralinearity occurring at higher absorbed doses. For the kilovoltage photons, the detector response relative to 6 MV increased with decreasing energy due to the higher atomic number of aluminum oxide (11.2) relative to water (7.4). For the megavoltage photons and electrons, the response was independent of energy. The response for protons was also independent of energy, but it was about 6% higher than its response to 6 MV photons. For the carbon ions, the dose response was linear for a given LET from 0.5 to 4.0 Gy, and no supralinearity was observed. However, it did exhibit LET dependence on the response relative to 6 MV photons decreasing from 1.02 at 1.3 keV/{mu}m to 0.41 at 78 keV/{mu}m. These results provide additional information on the dosimetric properties for this particular OSL detector and also demonstrate the potential for their use in photon, electron, and proton radiotherapy dosimetry with a more limited use in high LET radiotherapy dosimetry.

  18. Silicon Vertex Tracker for PHENIX Upgrade at RICH: Capabilities and Detector Technology

    NASA Astrophysics Data System (ADS)

    Nouicer, R.

    From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at sNN = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. At the relatively low transverse momentum region, the collective motion of the heavy flavor will be a sensitive signal for the thermalization of light flavors. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 × 10^26 cm-2 s-1 for Au+Au, and 2 × 10^32 cm-2 s-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon Vertex Tracker (VTX). The VTX detector will provide us the tool to measure new physics observables that are not accessible at the present RHIC or available only with very limited accuracy. These include a precise determination of the charm production cross section, transverse momentum spectra at high-pT region for particles carrying beauty quarks as well the detection of recoil jets in direct photon production. The VTX detector consists of four layers of barrel detectors located in the region of pseudorapidity |η| < 1.2 and covers almost 2π azimuthal angle. The pseudorapidity, η, is defined as η = -ln[tan(θ/2)], where θ is the emission angle relative to the beam axis. The inner two silicon barrels consists of silicon pixel sensors and their technology is the ALICE1LHCb sensor-readout hybrid, which was developed

  19. Multipixel geiger-mode photon detectors for ultra-weak light sources

    NASA Astrophysics Data System (ADS)

    Campisi, A.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.; Musumeci, F.; Privitera, S.; Scordino, A.; Tudisco, S.; Fallica, G.; Sanfilippo, D.; Mazzillo, M.; Condorelli, G.; Piazza, A.; Valvo, G.; Lombardo, S.; Sciacca, E.; Bonanno, G.; Belluso, M.

    2007-02-01

    Arrays of Single Photon Avalanche Detectors (SPAD) are considered today as a possible alternative to PMTs and other semiconductor devices in several applications, like physics research, bioluminescence, Positron Emission Tomography (PET) systems, etc. We have developed and characterized a first prototype array produced by STMicroelectronics in silicon planar technology and working at low voltage (30-40 V) in Geiger mode operation. The single cell structure (size down to 20 μm) and the geometrical arrangement give rise to appealing intrinsic characteristics of the device, such as photon detection efficiency, dark count map, cross-talk effects, timing and energy resolution. New prototypes are under construction with a higher number of pixels that have a common output signal to obtain a so-called SiPM (Silicon PhotoMultiplier) configuration.

  20. Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

    SciTech Connect

    Hubmayr, J. Beall, J.; Becker, D.; Cho, H.-M.; Hilton, G. C.; Li, D.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.; Gao, J.; Devlin, M.; Dober, B.; Groppi, C.; Mauskopf, P.; Irwin, K. D.; Wang, Y.; Wei, L. F.

    2015-02-16

    We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4 K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250 μm. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >0.5 pW, corresponding to noise equivalent powers >3×10{sup −17} W/√(Hz). This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.

  1. Estimation of extrinsic detection efficiency using intrinsic detection sensitivity of the commercial single photon detector

    NASA Astrophysics Data System (ADS)

    Hammura, Kiyotaka; Xu, Xiulai; Brossard, Frederic; Williams, David

    2009-03-01

    The detection efficiency (DE) of the commercial single-photon-receiver based on InGaAs gate-mode avalanche photodiode is estimated using the detection sensitivity (DS). Instalment of a digital-blanking-system (DBS) to reduce dark current makes the difference between DS, which is an efficiency of the detector during its open-gate/active state, and the total/overall detection efficiency (DE). By numerical simulations, it is found that the average number of light-pulses, blanked by DBS, following a registered pulse is 0.333. DS is estimated at 0.216, which can be used for estimating DE for an arbitrary photon arriving rate and a gating frequency of the receiver.

  2. Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model

    NASA Astrophysics Data System (ADS)

    Zotova, A. N.; Vodolazov, D. Yu

    2014-12-01

    We theoretically study the dependence of the intrinsic detection efficiency (IDE) of a superconducting nanowire single photon detector on the applied current, I, and magnetic field, H. We find that the current, at which the resistive state appears in the superconducting film, depends on the position of the hot spot (a region with suppressed superconductivity around the place where the photon has been absorbed) with respect to the edges of the film. This circumstance leads to inevitable smooth dependence IDE(I) when IDE ˜ 0.05-1, even for a homogenous straight superconducting film and in the absence of fluctuations. For IDE ≲ 0.05, a much sharper current dependence comes from the fluctuation-assisted vortex entry to the hot spot, which is located near the edge of the film. We find that a weak magnetic field strongly affects IDE when the photon detection is connected with fluctuation-assisted vortex entry to the hot spot (IDE \\ll 1), and it weakly affects IDE when the photon detection is connected with the current-induced vortex nucleation in the film with the hot spot (IDE ˜ 0.05-1).

  3. SWAD: inherent photon counting performance of amorphous selenium multi-well avalanche detector

    NASA Astrophysics Data System (ADS)

    Stavro, Jann; Goldan, Amir H.; Zhao, Wei

    2016-03-01

    Photon counting detectors (PCDs) have the potential to improve x-ray imaging, however they are still hindered by several performance limitations and high production cost. By using amorphous Selenium (a-Se) the cost of PCDs can be significantly reduced compared to crystalline materials and enable large area detector fabrication. To overcome the problem of low carrier mobility and low charge conversion gain in a-Se, we are developing a novel direct conversion a- Se field-Shaping multi-Well Avalanche Detector (SWAD). SWAD circumvents the charge transport limitation by using a Frisch grid built within the readout circuit, reducing charge collection time to ~200 ns. Field shaping permits depth independent avalanche gain in wells, resulting in total conversion gain that is comparable to Si and CdTe. In the present work we investigate the effects of charge sharing and energy loss to understand the inherent photon counting performance for SWAD at x-ray energies used in breast imaging applications (20-50keV). The energy deposition profile for each interacting x-ray was determined with Monte Carlo simulation. For the energy ranges we are interested in, photoelectric interaction dominates, with a k-fluorescence yield of approximately 60%. Using a monoenergetic 45 keV beam incident on a target pixel in 400um of a-Se, our results show that only 20.42 % and 22.4 % of primary interacting photons have kfluorescence emissions which escape the target pixel for 100um and 85um pixel sizes respectively, demonstrating SWAD's potential for high spatial resolution applications.

  4. High Speed Optical Imaging Photon Counting Microchannel Plate Detectors for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; McPhate, J.; Rogers, D.

    In recent years we have implemented a variety of high-resolution, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, SSULI, HST-COS, rocket, and shuttle payloads as well as sensors for ground based Astronomy, reconnaissance and biology. These detectors can meet many of the challenging imaging and timing demands of applications including astronomy of transient and time-variable sources, Earth atmospheric imaging and spectroscopy for real time space weather monitoring, biological single-molecule fluorescence lifetime microscopy, airborne and space situational awareness, and optical night-time/reconnaissance. Our recent work on high performance photon counting imaging readouts enables significant advancements over previous detector systems used for these applications. We have developed novel Cross-Strip and Cross-Delay-Line anode structures that can, in combination with small pore MCP's in sealed tube detectors, can achieve high spatial resolution (better than 10 um FWHM) with self triggered ~1 ns timing accuracy at up to 10 MHz event rates. Sealed tubes with formats, of 18mm, and 25mm with efficient S25 photocathodes have been built and are being used in several applications. The detectors and their properties will be discussed in this paper. Our installation and astronomical commissioning of one of these detectors at the South African Astronomical Observatory, South African Large Telescope (SALT) 10m telescope will be described. Our photometer is positioned in an auxiliary instrument port of the SALT. This is a stand-alone instrument that includes our detector system with two filter wheels (neutral density and U, B, V), an iris, and all the control modules necessary to operate the system. This instrument gives us access to the southern sky with significant sensitivity and unprecedented time resolution (microsec). High time resolution astronomy is still in its infancy, such that high cadence observations of the variable

  5. Photon detector for MEGA. Progress report, July 16, 1991--May 31, 1992

    SciTech Connect

    Gagliardi, C.A.; Tribble, R.E.

    1992-12-01

    The MEGA photon detector is designed to observe the 52.83-MeV photon produced in a {mu} {yields} e{gamma} decay with an energy resolution of 1.25 MeV, a position resolution of 2 {times} 5 mm{sup 2}, a directional resolution of 10{degree}, a time resolution of 500 ps, and an efficiency of about 5.4%. It will consist of three independent concentric cylindrical pair spectrometers mounted within a 1.5 T magnetic field produced by a superconducting solenoid magnet. Each pair spectrometer includes two thin Pb foils to convert photons into e{sup +}e{sup {minus}} pairs. The two smaller pair spectrometers will have three drift chamber layers to track the e{sup +}e{sup {minus}} pairs and thereby determine both their locations and their vector momenta. The third pair spectrometer will have four layers of drift chamber, together with a larger turning region, to provide better tracking information for high energy photons. The inner drift chamber layer in each of the spectrometers includes a delay line cathode to determine the z coordinates needed for track reconstruction. An MWPC located between the two Pb layers identifies the conversion layer so that energy loss corrections may be applied, while plastic scintillators provide timing information. During the past year, efforts have focused primarily on software development, completion of the delay line tests, and development of electronics for the scintillators and delay line read-out. Optical windows were glued onto the light guides required for the third pair spectrometer. In addition, major contributions were made to the development of a proposal to measure the Michel parameter, {rho}, using the MEGA positron detectors.

  6. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  7. Development of a compact photon detector for ANKE at C OSY

    NASA Astrophysics Data System (ADS)

    Hejny, V.; Bacelar, J.; Chernyshev, V.; Büscher, M.; Hoek, M.; Koch, H. R.; Löhner, H.; Machner, H.; Magiera, A.; Novotny, R.; Römer, K.; Ströher, H.; Wrońska, A.

    2002-06-01

    Recent improvements in the performance of PbWO 4, a high-density inorganic scintillator, offer the possibility to design very compact, large-acceptance electromagnetic calorimeters with excellent timing and good energy resolution, applicable also for photon energies below 1 GeV. Such a detection system is planned to be built for the internal magnetic spectrometer ANKE (Apparatus for Studies of Nucleon and Kaon Ejectiles) at the Cooler Synchrotron ( COSY) Jülich. The limited space and stray magnetic fields of ANKE place severe boundary conditions, which have to be taken into account for detector layout and the choice of photo sensors.

  8. Performance of multi-pixel photon counters for the T2K near detectors

    NASA Astrophysics Data System (ADS)

    Yokoyama, M.; Minamino, A.; Gomi, S.; Ieki, K.; Nagai, N.; Nakaya, T.; Nitta, K.; Orme, D.; Otani, M.; Murakami, T.; Nakadaira, T.; Tanaka, M.

    2010-10-01

    We have developed a Multi-Pixel Photon Counter (MPPC) for the neutrino detectors of T2K experiment. About 64,000 MPPCs have been produced and tested in about a year. In order to characterize a large number of MPPCs, we have developed a system that simultaneously measures 64 MPPCs with various bias voltage and temperature. The performance of MPPCs are found to satisfy the requirement of T2K experiment. In this paper, we present the performance of 17,686 MPPCs measured at Kyoto University.

  9. Dark counts in superconducting single-photon NbN/NiCu detectors

    NASA Astrophysics Data System (ADS)

    Parlato, L.; Nasti, U.; Ejrnaes, M.; Cristiano, R.; Myoren, H.; Sobolewski, Roman; Pepe, G.

    2015-05-01

    Nanostripes of hybrid superconductor/ferromagnetic (S/F) NbN/NiCu bilayers and pure superconducting NbN nanostripes have been investigated in dark count experiments. Presence of a ferromagnetic layer influences the superconducting properties of the S/F bilayer, such as the critical current density and the transient photoresponse. The observed significant decrease of the dark-count rate is discussed in terms of vortex-related fluctuation models to shed more light in the intriguing question of the basic mechanism responsible for dark counts in superconducting nanostripe single photon detectors.

  10. Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Xu, Ruiying; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-03-01

    Superconducting nanowire single photon detectors (SNSPDs) deliver superior performance over their competitors in the near-infrared regime. However, these detectors have an intrinsic polarization dependence on the incident wave because of their one-dimensional meander structure. In this paper, we propose an approach to eliminate the polarization sensitivity of SNSPDs by using near-field optics to increase the absorption of SNSPDs under transverse magnetic (TM) illumination. In addition, an optical cavity is added to our SNSPD to obtain nearly perfect absorption of the incident wave. Numerical simulations show that the maximum absorption of a designed SNSPD can reach 96% at 1550 nm, and indicate that the absorption difference between transverse electric (TE) and TM polarization is less than 0.5% across a wavelength window of 300 nm. Our work provides the first demonstration of the possibility of designing a polarization-insensitive and highly efficient SNSPD without performing device symmetry improvements.

  11. Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency.

    PubMed

    Zheng, Fan; Xu, Ruiying; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-01-01

    Superconducting nanowire single photon detectors (SNSPDs) deliver superior performance over their competitors in the near-infrared regime. However, these detectors have an intrinsic polarization dependence on the incident wave because of their one-dimensional meander structure. In this paper, we propose an approach to eliminate the polarization sensitivity of SNSPDs by using near-field optics to increase the absorption of SNSPDs under transverse magnetic (TM) illumination. In addition, an optical cavity is added to our SNSPD to obtain nearly perfect absorption of the incident wave. Numerical simulations show that the maximum absorption of a designed SNSPD can reach 96% at 1550 nm, and indicate that the absorption difference between transverse electric (TE) and TM polarization is less than 0.5% across a wavelength window of 300 nm. Our work provides the first demonstration of the possibility of designing a polarization-insensitive and highly efficient SNSPD without performing device symmetry improvements. PMID:26948672

  12. A silicon photonic wavelength division multiplex system for high-speed data transmission in detector instrumentation

    NASA Astrophysics Data System (ADS)

    Skwierawski, P.; Schneider, M.; Karnick, D.; Eisenblätter, L.; Weber, M.

    2016-01-01

    We propose a new silicon photonics-based optical transmission system utilizing wavelength division multiplexing (WDM) . This technology has the possibility of reading out all raw data from a detector even without massive local data reduction. The transmitter in the detector volume consists of multiple integrated Mach-Zehnder modulators monolithically integrated with wavelength (de-)multiplexers. The first demonstrator currently under development aims for a data rate of 160 Gbit/s per fiber, scalable to 5 Tbit/s and beyond. We report on our recently developed Echelle grating WDM multiplexers with up to 45 channels on an area of 0.5 mm2 and electro-optic modulators providing a bandwidth of 18 GHz.

  13. Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency

    PubMed Central

    Zheng, Fan; Xu, Ruiying; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-01-01

    Superconducting nanowire single photon detectors (SNSPDs) deliver superior performance over their competitors in the near-infrared regime. However, these detectors have an intrinsic polarization dependence on the incident wave because of their one-dimensional meander structure. In this paper, we propose an approach to eliminate the polarization sensitivity of SNSPDs by using near-field optics to increase the absorption of SNSPDs under transverse magnetic (TM) illumination. In addition, an optical cavity is added to our SNSPD to obtain nearly perfect absorption of the incident wave. Numerical simulations show that the maximum absorption of a designed SNSPD can reach 96% at 1550 nm, and indicate that the absorption difference between transverse electric (TE) and TM polarization is less than 0.5% across a wavelength window of 300 nm. Our work provides the first demonstration of the possibility of designing a polarization-insensitive and highly efficient SNSPD without performing device symmetry improvements. PMID:26948672

  14. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  15. The LAMBDA photon-counting pixel detector and high-Z sensor development

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Struth, B.; Hirsemann, H.; Fauler, A.; Fiederle, M.; Tolbanov, O.; Zarubin, A.; Tyazhev, A.; Shelkov, G.; Graafsma, H.

    2014-12-01

    Many X-ray experiments at third-generation synchrotrons benefit from using single-photon-counting detectors, due to their high signal-to-noise ratio and potential for high-speed measurements. LAMBDA (Large Area Medipix3-Based Detector Array) is a pixel detector system based on the Medipix3 readout chip. It combines the features of Medipix3, such as a small pixel size of 55 μm and flexible functionality, with a large tileable module design consisting of 12 chips (1536 × 512 pixels) and a high-speed readout system capable of running at 2000 frames per second. To enable high-speed experiments with hard X-rays, the LAMBDA system has been combined with different high-Z sensor materials. Room-temperature systems using GaAs and CdTe systems have been produced and tested with X-ray tubes and at synchrotron beamlines. Both detector materials show nonuniformities in their raw image response, but the pixel yield is high and the uniformity can be improved by flat-field correction, particularly in the case of GaAs. High-frame-rate experiments show that useful information can be gained on millisecond timescales in synchrotron experiments with these sensors.

  16. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have

  17. Mcps-range photon-counting X-ray computed tomography system utilizing an oscillating linear-YAP(Ce) photon detector

    NASA Astrophysics Data System (ADS)

    Oda, Yasuyuki; Sato, Eiichi; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-07-01

    High-speed X-ray photon counting is useful for discriminating photon energy, and the counting can be used for constructing an X-ray computed tomography (CT) system. A photon-counting X-ray CT system consists of an X-ray generator, a turntable, an oscillation linear detector, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0 mm-thick crystal (scintillator) of YAP(Ce) (cerium-doped yttrium aluminum perovskite), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of an MPPC module, the YAP(Ce), and a scan stage. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. Because the lower level of the photon energy was roughly determined by a comparator in the module, the average photon energy of the X-ray spectra increased with increase in the lower-level voltage of the comparator at a constant tube voltage. The maximum count rate was approximately 3 Mcps (mega counts per second), and photon-counting CT was carried out.

  18. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina

  19. Evaluation of a photon-counting hybrid pixel detector array with a synchrotron X-ray source

    NASA Astrophysics Data System (ADS)

    Ponchut, C.; Visschers, J. L.; Fornaini, A.; Graafsma, H.; Maiorino, M.; Mettivier, G.; Calvet, D.

    2002-05-01

    A photon-counting hybrid pixel detector (Medipix-1) has been characterized using a synchrotron X-ray source. The detector consists of a readout ASIC with 64×64 independent photon-counting cells of 170×170 μm 2 pitch, bump-bonded to a 300 μm thick silicon sensor, read out by a PCIbus-based electronics, and a graphical user interface (GUI) software. The intensity and the energy tunability of the X-ray source allow characterization of the detector in the time, space, and energy domains. The system can be read out on external trigger at a frame rate of 100 Hz with 3 ms exposure time per frame. The detector response is tested up to more than 7×10 5 detected events/pixel/s. The point-spread response shows <2% crosstalk between neighboring pixels. Fine scanning of the detector surface with a 10 μm beam reveals no loss in sensitivity between adjacent pixels as could result from charge sharing in the silicon sensor. Photons down to 6 keV can be detected after equalization of the thresholds of individual pixels. The obtained results demonstrate the advantages of photon-counting hybrid pixel detectors and particularly of the Medipix-1 chip for a wide range of X-ray imaging applications, including those using synchrotron X-ray beams.

  20. Conception and design of a control and monitoring system for the mirror alignment of the CBM RICH detector

    NASA Astrophysics Data System (ADS)

    Bendarouach, J.

    2016-08-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures created in A+A collisions. For the SIS100 accelerator, the foreseen beam energy will range up to 11 AGeV for the heaviest nuclei. One of the key detector components required for the CBM physics program is the Ring Imaging CHerenkov (RICH) detector, which is developed for efficient and clean electron identification and pion suppression. An important aspect to guarantee a stable operation of the RICH detector is the alignment of the mirrors. A qualitative alignment control procedure for the mirror system has been implemented in the CBM RICH prototype detector and tested under real conditions at the CERN PS/T9 beamline. Collected data and results of image processing are reviewed and discussed. In parallel a quantitative method using recorded data has also been employed to compute mirror displacements of the RICH mirrors. Results based on simulated events and the limits of the method are presented and discussed as well. If mirror misalignment is detected, it can be subsequently included and rectified by correction routines. A first correction routine is presented and a comparison between misaligned, corrected and ideal geometries is shown.

  1. Development of a Compact Photon Detector for Anke at Cosy JÜLICH

    NASA Astrophysics Data System (ADS)

    Büscher, M.; Hejny, V.; Koch, H. R.; Machner, H.; Seyfarth, H.; Ströher, H.; Hoek, M.; Novotny, R.; Römer, K.; Bacelar, J.; Löhner, H.; Magiera, A.; Wrońska, A.; Chernychov, V.

    2002-06-01

    COSY Jülich is a race-track shaped synchrotron which accelerates and cools beams of protons (both polarized and unpolarized) and deuterons with momenta up to 3.6 GeV/c. Those beams are delivered to internal and external target positions for hadron physics experiments. Since magnetic and time-of-flight detectors based on organic scintillators are used in the experimental setups, all measurements are essentially "photon blind". Recent improvements in the performance of high-density inorganic scintillators offer the possibility to design very compact large-acceptance electromagnetic calorimeters with excellent timing and good energy resolution, applicable also for photon energies below 1 GeV. Such a detection system, based on PbWO4, is planned to be built for the internal magnetic spectrometer ANKE at COSY Jülich. The limited space and stray magnetic fields of ANKE place severe boundary conditions, which have to be taken into account for detector layout and the choice of photo sensors.

  2. Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Smirnov, K. V.; Vachtomin, Yu. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N.

    2008-11-01

    At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow (~100 nm) and long (~0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC=~5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm) dark counts rate <=1 s-1; duration of voltage pulse <=5 ns; jitter <=40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.

  3. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  4. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  5. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  6. GCR-induced Photon Luminescence of the Moon: The Moon as a CR Detector

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lee, Kerry; Andersen, Vic

    2007-01-01

    We report on the results of a preliminary study of the GCR-induced photon luminescence of the Moon using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) in FLUKA to determine the photon fluence when there is no sunshine or Earthshine. From the photon fluence we derive the energy spectrum which can be utilized to design an orbiting optical instrument for measuring the GCR-induced luminescence. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of its radiogenic constituents lying in the surface and interior. Also, we investigate transient optical flashes from high-energy CRs impacting the lunar surface (boulders and regolith). The goal is to determine to what extent the Moon could be used as a rudimentary CR detector. Meteor impacts on the Moon have been observed for centuries to generate such flashes, so why not CRs?

  7. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  8. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  9. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now. PMID:27250477

  10. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  11. Flash-Bang Detector to Model the Attenuation of High-Energy Photons

    NASA Astrophysics Data System (ADS)

    Pagsanjan, N., III; Kelley, N. A.; Smith, D. M.; Sample, J. G.

    2015-12-01

    It has been known for years that lightning and thunderstorms produce gamma rays and x-rays. Terrestrial gamma-ray flashes (TGFs) are extremely bright bursts of gamma rays originating from thunderstorms. X-ray stepped leaders are bursts of x-rays coming from the lightning channel. It is known that the attenuation of these high-energy photons is a function of distance, losing energy and intensity at larger distances. To complement gamma-ray detectors on the ground it would be useful to measure the distance to the flash. Knowing the distance would allow for the true source fluence of gamma rays or x-rays to be modeled. A flash-bang detector, which uses a micro-controller, a photodiode, a microphone and temperature sensor will be able to detect the times at which lightning and thunder occurs. Knowing the speed of sound as function of temperature and the time difference between the flash and the thunder, the range to the lightning can be calculated. We will present the design of our detector as well as some preliminary laboratory test results.

  12. Multi-Anode-PMT Analysis for new RICH detector at JLab's CLAS12 spectrometer

    NASA Astrophysics Data System (ADS)

    Witchger, Andrew; Benmokhtar, Fatiha

    2014-03-01

    Thomas Jefferson National Accelerator Facility (JLab) is performing a large-scale upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) to reach energies of 12 GeV. CEBAF Large Acceptance Spectrometer (CLAS12) in Hall B is undergoing major upgrade too to run to collect data at these high energies. A new Ring Imaging CHerenkov (RICH) detector is being developed to provide better kaon - pion separation for CLAS12 in the 3 to 8 GeV/ c range. With this addition, when the electron beam hits the target, the resulting pions, kaons, and other particles will pass through a wall of translucent aerogel tiles and create Cherenkov radiation. This light can then be accurately detected by a large array of Multi-Anode Photo-Multiplier Tubes (MA-PMT). The supporting hardware and software systems for MA-PMTs were developed by the collaboration. I am presenting my work on the testing and analysis of these systems and results that will amplify the physical capabilities of the spectrometer.

  13. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).

    PubMed

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40

  14. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)

    PubMed Central

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the

  15. Usefulness of an energy-binned photon-counting x-ray detector for dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Katsumata, Akitoshi; Ogawa, Koichi; Fujiwara, Shuu

    2015-03-01

    A newly developed dental panoramic radiography system is equipped with a photon-counting semiconductor detector. This photon-counting detector acquires transparent X-ray beams by dividing them into several energy bands. We developed a method to identify dental materials in the patient's teeth by means of the X-ray energy analysis of panoramic radiographs. We tested various dental materials including gold alloy, dental amalgam, dental cement, and titanium. The results of this study suggest that X-ray energy scattergram analysis could be used to identify a range of dental materials in a patient's panoramic radiograph.

  16. Image-based spectral distortion correction for photon-counting x-ray detectors

    SciTech Connect

    Ding Huanjun; Molloi, Sabee

    2012-04-15

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation

  17. Recent results with a segmented Hybrid Photon Detector for a novel, parallax-free PET Scanner for Brain Imaging

    NASA Astrophysics Data System (ADS)

    Braem, A.; Chesi, E.; Joram, C.; Mathot, S.; Séguinot, J.; Weilhammer, P.; Ciocia, F.; De Leo, R.; Nappi, E.; Vilardi, I.; Argentieri, A.; Corsi, F.; Dragone, A.; Pasqua, D.

    2007-02-01

    We describe the design, fabrication and test results of a segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics. Both the photodetector and its VLSI readout electronics are custom designed and have been tailored to the requirements of a recently proposed novel geometrical concept of a Positron Emission Tomograph. Emphasis is laid on the PET specific features of the device. The detector has been fabricated in the photocathode facility at CERN.

  18. Anomalous WW{gamma} coupling in photon-induced processes using forward detectors at the CERN LHC

    SciTech Connect

    Kepka, O.; Royon, C.

    2008-10-01

    We present a new method to test the standard model expectations at the LHC using photon-induced WW production. Both W decay in the main ATLAS or CMS detectors while scattered protons are measured in forward detectors. The sensitivity to anomalous WW{gamma} triple gauge coupling can be improved by more than a factor of 5 or 30 compared to the present LEP or Tevatron sensitivity, respectively.

  19. Brownian Thermal Noise in Interferometric Gravitational Wave Detectors and Single Photon Optomechanics

    NASA Astrophysics Data System (ADS)

    Hong, Ting

    . For the future GW detectors, with much lower noises and higher sensitivity, this might be used to investigate the quantum behaviors of macroscopic mechanical objects. In recent years the linear optomechanical systems with cavity modes coupling to a mechanical oscillator have been studied extensively. In the second part of my thesis (Chapter 4), I study the interaction between a single photon and a high-finesse cavity with a movable mirror, in the so-called strong coupling regime, where the recoil of the photon can cause significant change in the momentum of the mirror. The results are applied to analyze the case with a Fabry-Perot cavity. We also present that with engineering the photon wave function, it is possible to prepare the oscillator into an arbitrary quantum state.

  20. Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers

    NASA Astrophysics Data System (ADS)

    Smirnov, Konstantin; Vachtomin, Yury; Divochiy, Alexander; Antipov, Andrey; Goltsman, Gregory

    2015-02-01

    We found that background radiation limits the dark count rates of superconducting single photon detectors coupled to standard single mode optical fibers to a minimum level when the source temperature of the photons is close to 300 K. We measured this level to be 103 cps, which was confirmed by a theoretical analysis of the background radiation influence. We also investigated the filtering-effect of cooled single mode optical fibers with different bending diameters and showed that for superconducting photon receivers with operating wavelengths below 2 µm the minimum dark count rate can be significantly decreased down to 0.1 cps.

  1. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    NASA Technical Reports Server (NTRS)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 me

  2. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    PubMed

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  3. Tuning of superconducting nanowire single-photon detector parameters for VLSI circuit testing using time-resolved emission

    NASA Astrophysics Data System (ADS)

    Bahgat Shehata, A.; Stellari, F.

    2015-01-01

    Time-Resolved Emission (TRE) is a truly non-invasive technique based on the detection of intrinsic light emitted by integrated circuits that is used for the detection of timing related faults from the backside of flip-chip VLSI circuits. Single-photon detectors with extended sensitivity in the Near Infrared (NIR) are used to perform time-correlated single-photon counting measurements and retrieve the temporal distribution of the emitted photons, thus identifying gates switching events. The noise, efficiency and jitter performance of the detector are crucial to enable ultra-low voltage waveform sensitivity. For this reason, cryogenically cooled Superconducting Nanowire Single-Photon Detectors (SNSPDs) offer superior performance compared to state-of-the-art Single-Photon Avalanche Diodes (SPADs). In this paper we will discuss how detector front-end electronics parameters, such as bias current, RF attenuation and comparator threshold, can be tailored to optimize the measurement Signal-to-Noise Ratio (SNR), defined as the ratio between the switching emission peak amplitude and the standard deviation of the noise in the time interval in which there are no photons emitted from the circuit. For example, reducing the attenuation and the threshold of the comparator used to detect switching events may lead to an improvement of the jitter, due to the better discrimination of the detector firing, but also a higher sensitivity to external electric noise disturbances. Similarly, by increasing the bias current, both the detection efficiency and the jitter improve, but the noise increases as well. For these reasons an optimization of the SNR is necessary. For this work, TRE waveforms were acquired from a 32 nm Silicon On Insulator (SOI) chip operating down to 0.4 V using different generations of SNSPD systems.

  4. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    PubMed

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was <1 %. For the 6-MV photons, the dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  5. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., “white”) difference in their NPS exists such that NPSPC≥NPSEI and hence DQEPC≤DQEEI. The necessary and sufficient condition for equality is that the PSF is a

  6. Fundamental and practical limitations of FUV/EUV photon-counting image detectors

    NASA Technical Reports Server (NTRS)

    Lampton, M.

    1991-01-01

    In EUV and FUV space-astronomy applications, the best contemporary detector designs are based on the use of microchannel plates due to their ability to deliver photon-counting performance with high efficiency. The major unresolved issue is the choice of position-readout system for the individual photoevents. Electrical event-readout systems are divided into two classes: the discrete wire anodes that perform coordinate digitization by wire-group selection, and the continuous centroid-position encoders for which coordinates are digitized in the associated electronics. The centroid-position encoder techniques are discussed in terms of how they overcome the four chief limitations of the discrete-wire readouts - their limited format size, their flat focal surface, their fundamental hex-channel vs squared-pixel moire pattern, and their image undersampling. With these limitations overcome, microchannel based image systems can deliver the performance demanded by the forthcoming generation of applications in space astronomy.

  7. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors.

    PubMed

    Tchernycheva, M; Messanvi, A; de Luna Bugallo, A; Jacopin, G; Lavenus, P; Rigutti, L; Zhang, H; Halioua, Y; Julien, F H; Eymery, J; Durand, C

    2014-06-11

    We report the fabrication of a photonic platform consisting of single wire light-emitting diodes (LED) and photodetectors optically coupled by waveguides. MOVPE-grown (metal-organic vapor-phase epitaxy) InGaN/GaN p-n junction core-shell nanowires have been used for device fabrication. To achieve a good spectral matching between the emission wavelength and the detection range, different active regions containing either five narrow InGaN/GaN quantum wells or one wide InGaN segment were employed for the LED and the detector, respectively. The communication wavelength is ∼400 nm. The devices are realized by means of electron beam lithography on Si/SiO2 templates and connected by ∼100 μm long nonrectilinear SiN waveguides. The photodetector current trace shows signal variation correlated with the LED on/off switching with a fast transition time below 0.5 s.

  8. Characterization of superconducting nanowire single-photon detector with artificial constrictions

    SciTech Connect

    Zhang, Ling; Liu, Dengkuan; Wu, Junjie; He, Yuhao; Lv, Chaolin; You, Lixing Zhang, Weijun; Zhang, Lu; Liu, Xiaoyu; Wang, Zhen Xie, Xiaoming

    2014-06-15

    Statistical studies on the performance of different superconducting nanowire single-photon detectors (SNSPDs) on one chip suggested that random constrictions existed in the nanowire that were barely registered by scanning electron microscopy. With the aid of advanced e-beam lithography, artificial geometric constrictions were fabricated on SNSPDs as well as single nanowires. In this way, we studied the influence of artificial constrictions on SNSPDs in a straight forward manner. By introducing artificial constrictions with different wire widths in single nanowires, we concluded that the dark counts of SNSPDs originate from a single constriction. Further introducing artificial constrictions in SNSPDs, we studied the relationship between detection efficiency and kinetic inductance and the bias current, confirming the hypothesis that constrictions exist in SNSPDs.

  9. Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers

    PubMed Central

    Yamashita, Taro; Waki, Kentaro; Miki, Shigehito; Kirkwood, Robert A.; Hadfield, Robert H.; Terai, Hirotaka

    2016-01-01

    We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths. PMID:27775712

  10. A novel readout module for single photon solid state detectors (SiPMD, GAPD, MPPC, MAPC)

    SciTech Connect

    Kushpil, V.; Kushpil, S.; Huna, Z.

    2011-07-01

    In this paper a novel, Readout Module (RM) for Single Photon Detector (SiPD has been described. The electronics design is based on the concept of virtual instrumentation RM consists of SiPD preamplifier, shaping amplifier, discriminator, multi channel analyzer and control module connected to a PC through the USB bus and of PC application software. The RM can be used for investigation of different types of SiPD with maximum biasing voltage 90 V and maximal current 2 mA. The RM has fast digital output for triggering and 12 bit internal ADC for output digitizing. The RM uses USB bus as a power supply. It could be very useful for laboratory experiment. The small size of module allows easy integration of few modules into multi-channel system that can be used for PET application. (authors)

  11. High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler.

    PubMed

    Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen

    2013-04-22

    We present high performance fiber-coupled niobium titanium nitride superconducting nanowire single photon detectors fabricated on thermally oxidized silicon substrates. The best device showed a system detection efficiency (DE) of 74%, dark count rate of 100 c/s, and full width at half maximum timing jitter of 68 ps under a bias current of 18.0 μA with a practical Gifford-McMahon cryocooler system. We also introduced six detectors into the cryocooler and confirmed that the system DE of all detectors was higher than 67% at the dark count rate of 100 c/s.

  12. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    PubMed Central

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-01-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = −0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches. PMID:27795606

  13. The joint NASA/Goddard-University of Maryland research program in charged particle and high energy photon detector technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Progress made in the following areas is discussed: low energy ion and electron experiments; instrument design for current experiments; magnetospheric measurement of particles; ion measurement in the earth plasma sheet; abundance measurement; X-ray data acquisition; high energy physics; extragalactic astronomy; compact object astrophysics; planetology; and high energy photon detector technology.

  14. Development of an ultra-low-power x-ray-photon-resolving imaging detector array

    NASA Astrophysics Data System (ADS)

    Sun, Shunming; Downey, Stephen; Gaalema, Stephen; Gates, James L.; Jernigan, J. Garrett; Kaaret, Philip; MacIntosh, Scott; Ramsey, Brian; Wall, Bruce

    2010-08-01

    We report on progress to develop and demonstrate CZT and Si hybrid detector arrays for future NASA missions in X-ray and Gamma-ray astronomy. The primary goal for these detectors is consistent with the design concept for the EXIST mission1 and will also be appropriate for other NASA applications and ground-based projects. In particular we target science instruments that have large aperture (multiple square meters) and therefore require a low power ROIC (readout integrated circuits) design (< 10 microwatt per pixel in quiescent mode). The design also must achieve good energy resolution for single photon detection for X rays in the range 5-600 keV with a CZT sense layer and 2-30 keV with a Si sense layer. The target CZT arrays are 2 cm × 2 cm with 600 micron square-shaped pixels. The low power smart pixel detects rare X-ray hits with an adjustable threshold setting. A test array of 7 × 5 pixels with a 5 mm thick CZT sense layer demonstrates that the low power pixel can successfully detect X-rays with {50 readout noise electrons RMS.

  15. Flare star monitoring with a new photon-counting imaging detector

    SciTech Connect

    Casperson, D.

    1997-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A search for faint time-varying optical signals from the nighttime sky has been conducted in parallel with the programmatic development of a new type of imaging detector. This detector combines high spatial and high temporal resolution with single-photon-counting sensitivity over a 40-mm diameter large-area format. It is called a microchannel plate with crossed delay line readout, or MCP/CDL, and is placed in the focal plane of a telescope to collect time-resolved images from objects such as flaring stars and other astrophysical transient sources. A short-lived prototype MCP/CDL was used to provide the initial stellar images for this project, but the author could not generate any extended database with which to characterize flare star populations. Consequently, a supplementary experimental search for optical transients was begun, utilizing the NASA 3-meter-aperture Liquid Mirror Telescope (LMT) facility in Cloudcroft, NM.

  16. Temperature Dependence of Novel Single-Photon Detectors in the Long-Wavelength Infrared Range

    NASA Astrophysics Data System (ADS)

    Ueda, Takeji; An, Zhenghua; Komiyama, Susumu

    2011-05-01

    Novel single-photon detectors, called Charge-sensitive Infrared Phototransistor (CSIP), have been developed in the long wavelength infrared (LWIR) range. The devices are fabricated in GaAs/AlGaAs double-quantum-well (DQW) structure, and do not require ultralow temperatures ( T < 1 K) for operation. Figures of merit are determined in a T-range of 4.2 K˜30 K by using a homemade all-cryogenic spectrometer. We found that the photo-signal persists up to around 30 K. Excellent specific detectivity D * = 9.6 × 1014 cm Hz1/2/W and noise equivalent power NEP = 8.3 × 10-19 W/Hz1/2 are derived up to T = 23 K. The dynamic range of detection exceeds 106, roughly ranging from attowatt to picowatt levels. These values are by a few orders of magnitude higher than that of the state-of-the-art values of other detectors. Simple planar structure of CSIPs is feasible for array fabrication and will make it possible to monolithically integrate with reading circuit. CSIPs are, therefore, not only extremely sensitive but also suitable for practical use in wide ranging applications.

  17. SU-D-213-01: Transparent Photon Detector For The Online Monitoring Of IMRT Beams

    SciTech Connect

    Delorme, R; Arnoud, Y; Fabbro, R; Boyer, B; Rossetto, O; Gallin-Martel, L; Gallin-Martel, M; Pelissier, A; Fonteille, I

    2015-06-15

    Purpose: An innovative Transparent Detector for Radiotherapy (TraDeRa) has been developed. The detector aims at real-time monitoring of modulated beam ahead of the patient during delivery sessions, with a field cover up to 40×40 cm {sup 2}. Methods: TraDeRa consists in a pixelated matrix of ionization chambers with a patented electrodes design. An in-house designed specific integrated circuit allows to extract the signal and provides a real-time map of beam intensity and shape, at the linac pulse-scale. The measurements under irradiation are made with a 6 MV clinical X-Ray beam. Dose calculations are performed with the Monte Carlo code PENELOPE, modeling the full accelerator head and the TraDeRa detector. Results: A 2 % attenuation of the beam was measured in the presence of TraDeRa and the PENELOPE dosimetric study showed no significant modification of the photon beam properties. TraDeRa detects error leaf position as small as 1 mm compared to a reference field, for both static and modulated fields. In addition, measurements are accurate over a large dynamic range from low intensity signals, as inter-leaves leaks, to very high intensities as obtained on the medical line of the European Synchrotron Radiation Facility. The detector is fully operational for conventional and high dose rate beams as FFF modes (up to 2400 MU/min). Conclusion: The current version of TraDeRa shows promising results for IMRT quality assurance (QA), allowing pulse-scale monitoring of the beam and high sensitivity for errors detection. The attenuation is small enough not to hinder the irradiation while keeping the beam upstream of the patient under constant control. A final prototype under development will include 1600 independent electrodes, half of them with a high resolution centered on the beam axis. This compact detector provides an independent set of measurements for a better QA. Funding support : This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Universite de Lyon

  18. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    NASA Astrophysics Data System (ADS)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  19. Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating

    SciTech Connect

    Liang Xiaolei; Ma Jian; Jin Ge; Chen Zengbing; Zhang Jun; Pan Jianwei; Liu Jianhong; Wang Quan; Du Debing

    2012-08-15

    InGaAs/InP single-photon avalanche diodes (SPADs) working in the regime of GHz clock rates are crucial components for the high-speed quantum key distribution (QKD). We have developed for the first time a compact, stable, and user-friendly tabletop InGaAs/InP single-photon detector system operating at a 1.25 GHz gate rate that fully integrates functions for controlling and optimizing SPAD performance. We characterize the key parameters of the detector system and test the long-term stability of the system for continuous operation of 75 h. The detector system can substantially enhance QKD performance and our present work paves the way for practical high-speed QKD applications.

  20. Estimation of mammary gland composition using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Ihori, Akiko; Okamoto, Chizuru; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Nakajima, Ai; Kato, Misa; Kodera, Yoshie

    2016-03-01

    Energy resolved photon-counting mammography is a new technology, which counts the number of photons that passes through an object, and presents it as a pixel value in an image of the object. Silicon semiconductor detectors are currently used in commercial mammography. However, the disadvantage of silicon is the low absorption efficiency for high X-ray energies. A cadmium telluride (CdTe) series detector has a high absorption efficiency over a wide energy range. In this study, we proposed a method to estimate the composition of the mammary gland using a CdTe series detector as a photon-counting detector. The fact that the detection rate of breast cancer in mammography is affected by mammary gland composition is now widely accepted. Assessment of composition of the mammary gland has important implications. An important advantage of our proposed technique is its ability to discriminate photons using three energy bins. We designed the CdTe series detector system using the MATLAB simulation software. The phantom contains nine regions with the ratio of glandular tissue and adipose varying in increments of 10%. The attenuation coefficient for each bin's energy was calculated from the number of input and output photons possessed by each. The evaluation results obtained by plotting the attenuation coefficient μ in a three-dimensional (3D) scatter plot show that the plots had a regular composition order congruent with that of the mammary gland. Consequently, we believe that our proposed method can be used to estimate the composition of the mammary gland.

  1. On the Monte Carlo simulation of small-field micro-diamond detectors for megavoltage photon dosimetry.

    PubMed

    Andreo, Pedro; Palmans, Hugo; Marteinsdóttir, Maria; Benmakhlouf, Hamza; Carlsson-Tedgren, Åsa

    2016-01-01

    Monte Carlo (MC) calculated detector-specific output correction factors for small photon beam dosimetry are commonly used in clinical practice. The technique, with a geometry description based on manufacturer blueprints, offers certain advantages over experimentally determined values but is not free of weaknesses. Independent MC calculations of output correction factors for a PTW-60019 micro-diamond detector were made using the EGSnrc and PENELOPE systems. Compared with published experimental data the MC results showed substantial disagreement for the smallest field size simulated ([Formula: see text] mm). To explain the difference between the two datasets, a detector was imaged with x rays searching for possible anomalies in the detector construction or details not included in the blueprints. A discrepancy between the dimension stated in the blueprints for the active detector area and that estimated from the electrical contact seen in the x-ray image was observed. Calculations were repeated using the estimate of a smaller volume, leading to results in excellent agreement with the experimental data. MC users should become aware of the potential differences between the design blueprints of a detector and its manufacturer production, as they may differ substantially. The constraint is applicable to the simulation of any detector type. Comparison with experimental data should be used to reveal geometrical inconsistencies and details not included in technical drawings, in addition to the well-known QA procedure of detector x-ray imaging.

  2. On the Monte Carlo simulation of small-field micro-diamond detectors for megavoltage photon dosimetry

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Palmans, Hugo; Marteinsdóttir, Maria; Benmakhlouf, Hamza; Carlsson-Tedgren, Åsa

    2016-01-01

    Monte Carlo (MC) calculated detector-specific output correction factors for small photon beam dosimetry are commonly used in clinical practice. The technique, with a geometry description based on manufacturer blueprints, offers certain advantages over experimentally determined values but is not free of weaknesses. Independent MC calculations of output correction factors for a PTW-60019 micro-diamond detector were made using the EGSnrc and PENELOPE systems. Compared with published experimental data the MC results showed substantial disagreement for the smallest field size simulated (5~\\text{mm}× 5 mm). To explain the difference between the two datasets, a detector was imaged with x rays searching for possible anomalies in the detector construction or details not included in the blueprints. A discrepancy between the dimension stated in the blueprints for the active detector area and that estimated from the electrical contact seen in the x-ray image was observed. Calculations were repeated using the estimate of a smaller volume, leading to results in excellent agreement with the experimental data. MC users should become aware of the potential differences between the design blueprints of a detector and its manufacturer production, as they may differ substantially. The constraint is applicable to the simulation of any detector type. Comparison with experimental data should be used to reveal geometrical inconsistencies and details not included in technical drawings, in addition to the well-known QA procedure of detector x-ray imaging.

  3. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  4. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  5. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  6. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  7. UCD-SPI: Un-Collimated Detector Single-Photon Imaging System for Small Animal and Plant Imaging

    NASA Astrophysics Data System (ADS)

    Walker, Katherine Leigh

    Medical imaging systems using single gamma-ray emitting radioisotopes implement collimators in order to form images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in "thin" objects such as mice, small plants, and well plates used for in vitro experiments. This flexible geometry un-collimated detector single-photon imaging (UCD-SPI) system consists of two large (5 cm x 10 cm), thin (3 mm and 5 mm), closely spaced, pixelated scintillation detectors of either NaI(Tl), CsI(Na), or BGO. The detectors are read out by two adjacent Hamamatsu H8500 multichannel photomultiplier tubes. The detector heads enable the interchange of scintillation detectors of different materials and thicknesses to optimize performance for a wide range of gamma-ray energies and imaging subjects. The detectors are horizontally oriented for animal imaging, and for plant imaging the system is rotated on its side to orient the detectors vertically. While this un-collimated detector system is unable to approach the sub-mm spatial resolution obtained by the most advanced preclinical pinhole SPECT systems, the high sensitivity could enable significant and new use in molecular imaging applications which do not require good spatial resolution- for example, screening applications for drug development (small animals), for material transport and sequestration studies for phytoremediation (plants), or for counting radiolabeled cells in vitro (well plates).

  8. A Study on Determination of an Optimized Detector for Single Photon Emission Computed Tomography.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Mohammad; Mahmoudian, Babak; Mardanshahi, Ali Reza

    2016-01-01

    The detector is a critical component of the single photon emission computed tomography (SPECT) imaging system for giving accurate information from the exact pattern of radionuclide distribution in the target organ. The SIMIND Monte Carlo program was utilized for the simulation of a Siemen's dual head variable angle SPECT imaging system with a low energy high resolution (LEHR) collimator. The Planar and SPECT scans for a (99m)Tc point source and a Jaszczak Phantom with the both experiment and simulated systems were prepared and after verification and validation of the simulated system, the similar scans of the phantoms were compared (from the point of view of the images' quality), namely, the simulated system with the detectors including bismuth germanate (BGO), yttrium aluminum garnet (YAG:Ce), Cerium-doped yttrium aluminum garnet (YAG:Ce), yttrium aluminum perovslite (YAP:Ce), lutetium aluminum garnet (LuAG:Ce), cerium activated lanthanum bromide (LaBr3), cadmium zinc telluride (CZT), and sodium iodide activated with thallium [NaI(Tl)]. The parameters of full width at half maximum (FWHM), energy and special resolution, sensitivity, and also the comparison of images' quality by the structural similarity (SSIM) algorithm with the Zhou Wang and Rouse/Hemami methods were analyzed. FWHMs for the crystals were calculated at 13.895, 14.321, 14.310, 14.322, 14.184, and 14.312 keV and the related energy resolutions obtained 9.854, 10.229, 10.221, 10.230, 10.131, and 10.223 %, respectively. Finally, SSIM indexes for comparison of the phantom images were calculated at 0.22172, 0.16326, 0.18135, 0.17301, 0.18412, and 0.20433 as compared to NaI(Tl). The results showed that BGO and LuAG: Ce crystals have high sensitivity and resolution, and better image quality as compared to other scintillation crystals. PMID:26912973

  9. A Study on Determination of an Optimized Detector for Single Photon Emission Computed Tomography

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Mohammad; Mahmoudian, Babak; Mardanshahi, Ali Reza

    2016-01-01

    The detector is a critical component of the single photon emission computed tomography (SPECT) imaging system for giving accurate information from the exact pattern of radionuclide distribution in the target organ. The SIMIND Monte Carlo program was utilized for the simulation of a Siemen's dual head variable angle SPECT imaging system with a low energy high resolution (LEHR) collimator. The Planar and SPECT scans for a 99mTc point source and a Jaszczak Phantom with the both experiment and simulated systems were prepared and after verification and validation of the simulated system, the similar scans of the phantoms were compared (from the point of view of the images’ quality), namely, the simulated system with the detectors including bismuth germanate (BGO), yttrium aluminum garnet (YAG:Ce), Cerium-doped yttrium aluminum garnet (YAG:Ce), yttrium aluminum perovslite (YAP:Ce), lutetium aluminum garnet (LuAG:Ce), cerium activated lanthanum bromide (LaBr3), cadmium zinc telluride (CZT), and sodium iodide activated with thallium [NaI(Tl)]. The parameters of full width at half maximum (FWHM), energy and special resolution, sensitivity, and also the comparison of images’ quality by the structural similarity (SSIM) algorithm with the Zhou Wang and Rouse/Hemami methods were analyzed. FWHMs for the crystals were calculated at 13.895, 14.321, 14.310, 14.322, 14.184, and 14.312 keV and the related energy resolutions obtained 9.854, 10.229, 10.221, 10.230, 10.131, and 10.223 %, respectively. Finally, SSIM indexes for comparison of the phantom images were calculated at 0.22172, 0.16326, 0.18135, 0.17301, 0.18412, and 0.20433 as compared to NaI(Tl). The results showed that BGO and LuAG: Ce crystals have high sensitivity and resolution, and better image quality as compared to other scintillation crystals. PMID:26912973

  10. SiPMs characterization and selection for the DUNE far detector photon detection system

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Maricic, J.

    2016-01-01

    The Deep Underground Neutrino Experiment (DUNE) together with the Long Baseline Neutrino Facility (LBNF) hosted at the Fermilab will provide a unique, world-leading program for the exploration of key questions at the forefront of neutrino physics and astrophysics. CP violation in neutrino flavor mixing is one of its most important potential discoveries. Additionally, the experiment will determine the neutrino mass hierarchy and precisely measure the neutrino mixing parameters which may potentially reveal new fundamental symmetries of nature. Moreover, the DUNE is also designed for the observation of nucleon decay and supernova burst neutrinos. The photon detection (PD) system in the DUNE far detector provides trigger for cosmic backgrounds, enhances supernova burst trigger efficiency and improves the energy resolution of the detector. The DUNE adopts the technology of liquid argon time projection chamber (LArTPC) that requires the PD sensors, silicon photomultipliers (SiPM), to be carefully chosen to not only work properly in LAr temperature, but also meet certain specifications for the life of the experiment. A comprehensive testing of SiPMs in cryostat is necessary since the datasheet provided by the manufactures in the market does not cover this temperature regime. This paper gives the detailed characterization results of SenSL C-Series 60035 SiPMs, including gain, dark count rate (DCR), cross-talk and after-pulse rate. Characteristic studies on SiPMs from other vendors are also discussed in order to avoid any potential problems associated with using a single source. Moreover, the results of the ongoing mechanical durability tests are shown for the current candidate, SenSL B/C-Series 60035 SiPMs.

  11. Development of mammography system using CdTe photon counting detector for the exposure dose reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Sho; Niwa, Naoko; Yamazaki, Misaki; Yamakawa, Tsutomu; Nagano, Tatsuya; Kodera, Yoshie

    2014-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) photon-counting detector for exposure dose reduction. In contrast to conventional mammography, this system uses high-energy X-rays. This study evaluates the usefulness of this system in terms of the absorbed dose distribution and contrast-to-noise ratio (CNR) at acrylic step using a Monte Carlo simulation. In addition, we created a prototype system that uses a CdTe detector and automatic movement stage. For various conditions, we measured the properties and evaluated the quality of images produced by the system. The simulation result for a tube voltage of 40 kV and tungsten/barium (W/Ba) as a target/filter shows that the surface dose was reduced more than 60% compared to that under conventional conditions. The CNR of our proposal system also became higher than that under conventional conditions. The point at which the CNRs coincide for 4 cm polymethyl methacrylate (PMMA) at the 2-mm-thick step corresponds to a dose reduction of 30%, and these differences increased with increasing phantom thickness. To improve the image quality, we determined the problematic aspects of the scanning system. The results of this study indicate that, by using a higher X-ray energy than in conventional mammography, it is possible to obtain a significant exposure dose reduction without loss of image quality. Further, the image quality of the prototype system can be improved by optimizing the balance between the shift-and-add operation and the output of the X-ray tube. In future work, we will further examine these improvement points.

  12. Firmware lower-level discrimination and compression applied to streaming x-ray photon correlation spectroscopy area-detector data

    NASA Astrophysics Data System (ADS)

    Madden, T.; Fernandez, P.; Jemian, P.; Narayanan, S.; Sandy, A. R.; Sikorski, M.; Sprung, M.; Weizeorick, J.

    2011-07-01

    We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimination compression of streaming x-ray photon correlation spectroscopy data from a fast charge-coupled device (CCD) area detector. The system is built using a commercial frame grabber with an on-board field-programmable gate array. The system is capable of continuously processing at least 60 CCD frames per second each consisting of 1024 × 1024 16-bit pixels with ≲ 15 000 photon hits per frame at a maximum compression factor of ≈95%.

  13. Firmware lower-level discrimination and compression applied to streaming x-ray photon correlation spectroscopy area-detector data.

    PubMed

    Madden, T; Fernandez, P; Jemian, P; Narayanan, S; Sandy, A R; Sikorski, M; Sprung, M; Weizeorick, J

    2011-07-01

    We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimination compression of streaming x-ray photon correlation spectroscopy data from a fast charge-coupled device (CCD) area detector. The system is built using a commercial frame grabber with an on-board field-programmable gate array. The system is capable of continuously processing at least 60 CCD frames per second each consisting of 1024 × 1024 16-bit pixels with ≲ 15,000 photon hits per frame at a maximum compression factor of ≈95%.

  14. Firmware lower-level discrimination and compression applied to streaming x-ray photon correlation spectroscopy area-detector data

    SciTech Connect

    Madden, T.; Fernandez, P.; Jemian, P.; Narayanan, S.; Sandy, A. R.; Sikorski, M.; Sprung, M.; Weizeorick, J.

    2011-07-15

    We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimination compression of streaming x-ray photon correlation spectroscopy data from a fast charge-coupled device (CCD) area detector. The system is built using a commercial frame grabber with an on-board field-programmable gate array. The system is capable of continuously processing at least 60 CCD frames per second each consisting of 1024 x 1024 16-bit pixels with < or approx. 15 000 photon hits per frame at a maximum compression factor of {approx_equal}95%.

  15. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    SciTech Connect

    Deluca Silberberg, Carolina

    2009-04-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb-1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb-1. Both Run I and Run II results show agreement with the theoretical predictions except for the low pTγ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower pTγ ranges, showing excess of data compared to the theory, particularly at high xT. From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons

  16. Determination of small field output factors in 6 and 10 MV flattening filter free photon beams using various detectors

    NASA Astrophysics Data System (ADS)

    Masanga, W.; Tangboonduangjit, P.; Khamfongkhruea, C.; Tannanonta, C.

    2016-03-01

    The study aimed to determine appropriate detectors for output factor measurement of small fields in 6 and 10 MV flattening filter free photon beams using five different detectors. Field sizes were varied between 0.6 × 0.6 and 4.0 × 4.0 cm2. An indirect method (daisy-chaining) was applied to normalize the output factors. For the smallest field size, the variations of output factors compared among the detectors were 13%. Exradin A16 had the lowest output factor and increasing in sequence with CC01, microDiamond, microLion and EDGE detectors, respectively, for both energies. The similarity between CC01 and microDiamond output factor values were within 1.6% and 1% for all field sizes of 6 and 10 MV FFF, respectively. EDGE and microLion presented the highest values while ExradinA16 gave lowest values. In conclusion, IBACC01, Exradin A16, microLion, microDiamond and EDGE detectors seem to be the detectors of choices for small field output factor measurement of FFF beams down to 1.6 × 1.6 cm2. However, we could not guarantee which detector is the most suitable for output factor measurement in small field less than 1.6 × 1.6 cm2 of FFF beams. Further studies are required to provide reference information for validation purposes.

  17. Automated MCNP photon source generation for arbitrary configurations of radioactive materials and first-principles calculations of photon detector responses

    SciTech Connect

    Estes, G.P.; Schrandt, R.G.; Kriese, J.T.

    1988-03-01

    A patch to the Los Alamos Monte Carlo code MCNP has been developed that automates the generation of source descriptions for photons from arbitrary mixtures and configurations of radioactive isotopes. Photon branching ratios for decay processes are obtained from national and international data bases and accesed directly from computer files. Code user input is generally confined to readily available information such as density, isotopic weight fractions, atomic numbers, etc. of isotopes and material compositions. The availbility of this capability in conjunction with the ''generalized source'' capability of MCNP Version 3A makes possible the rapid and accurate description of photon sources from complex mixtures and configurations of radioactive materials, resulting in imporved radiation transport predictive capabilities. This capability is combined with a first - principles calculation of photon spectrometer response - functions for NaI, BGO, and HPGe for E..gamma.. )approxreverse arrowlt) 1 MeV. 25 refs., 1 fig., 4 tabs.

  18. Electron-Hole Pairs Created by Photons and Intrinsic Properties in Detector Materials

    SciTech Connect

    Gao, Fei; Campbell, Luke W.; Xie, YuLong; Devanathan, Ram; Peurrung, Anthony J.; Weber, William J.

    2008-06-26

    A Monte Carlo (MC) code has been developed to simulate the interaction of gamma-rays with semiconductors and scintillators, and the subsequent energy partitioning of fast electrons. The results provide insights on the processes involved in the electron-hole pair yield and intrinsic variance through simulations of full electron energy cascades. The MC code has been applied to simulate the production of electron-hole pairs and to evaluate intrinsic resolution in a number of semiconductors. In addition, the MC code is also able to consider the spatial distribution of electron-hole pairs induced by photons and electrons in detector materials, and has been employed to obtain details of the spatial distribution of electron-hole pairs in Ge, as a benchmark case. The preliminary results show that the distribution of electron-hole pairs exhibit some important features; (a) the density of electron-hole pairs along the main electron track is very high and (b) most electron-hole pairs produced by interband transitions are distributed at the periphery of the cascade volume. The spatial distribution and density of thermalized electron-hole pairs along the primary and secondary tracks are important for large scale simulations of electron-hole pair transport.

  19. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    PubMed Central

    Csete, Mária; Sipos, Áron; Szalai, Anikó; Najafi, Faraz; Szabó, Gábor; Berggren, Karl K.

    2013-01-01

    Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression. PMID:23934331

  20. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices.

    PubMed

    Lizunov, A; Khilchenko, A; Khilchenko, V; Kvashnin, A; Zubarev, P

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D(α) or H(α) lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10(6) s(-1) per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D(α) light emission from the plasma confined in a magnetic trap are presented. PMID:26724090

  1. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices.

    PubMed

    Lizunov, A; Khilchenko, A; Khilchenko, V; Kvashnin, A; Zubarev, P

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D(α) or H(α) lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10(6) s(-1) per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D(α) light emission from the plasma confined in a magnetic trap are presented.

  2. Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.; Leduc, Henry G.; Bumble, Bruce

    2008-01-01

    Superconducting-nanowire single-photon detectors (SNSPDs) in which Nb(x)Ti(1-x)N (where x<1) films serve as the superconducting materials have shown promise as superior alternatives to previously developed SNSPDs in which NbN films serve as the superconducting materials. SNSPDs have potential utility in optical communications and quantum cryptography. Nb(x)Ti(1-x)N is a solid solution of NbN and TiN, and has many properties similar to those of NbN. It has been found to be generally easier to stabilize Nb(x)Ti(1-x)N in the high-superconducting-transition temperature phase than it is to so stabilize NbN. In addition, the resistivity and penetration depth of polycrystalline films of Nb(x)Ti(1-x)N have been found to be much smaller than those of films of NbN. These differences have been hypothesized to be attributable to better coupling at grain boundaries within Nb(x)Ti(1-x)N films.

  3. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    SciTech Connect

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-15

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D{sub α} or H{sub α} lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10{sup 6} s{sup −1} per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D{sub α} light emission from the plasma confined in a magnetic trap are presented.

  4. Evaluation of models of spectral distortions in photon-counting detectors for computed tomography.

    PubMed

    Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki

    2016-04-01

    A semi-analytical model describing spectral distortions in photon-counting detectors (PCDs) for clinical computed tomography was evaluated using simulated data. The distortions were due to count rate-independent spectral response effects and count rate-dependent pulse-pileup effects and the model predicted both the mean count rates and the spectral shape. The model parameters were calculated using calibration data. The model was evaluated by comparing the predicted x-ray spectra to Monte Carlo simulations of a PCD at various count rates. The data-model agreement expressed as weighted coefficient of variation [Formula: see text] was better than [Formula: see text] for dead time losses up to 28% and [Formula: see text] or smaller for dead time losses up to 69%. The accuracy of the model was also tested for the purpose of material decomposition by estimating material thicknesses from simulated projection data. The estimated attenuator thicknesses generally agreed with the true values within one standard deviation of the statistical uncertainty obtained from multiple noise realizations. PMID:27213165

  5. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  6. Evaluation of models of spectral distortions in photon-counting detectors for computed tomography.

    PubMed

    Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki

    2016-04-01

    A semi-analytical model describing spectral distortions in photon-counting detectors (PCDs) for clinical computed tomography was evaluated using simulated data. The distortions were due to count rate-independent spectral response effects and count rate-dependent pulse-pileup effects and the model predicted both the mean count rates and the spectral shape. The model parameters were calculated using calibration data. The model was evaluated by comparing the predicted x-ray spectra to Monte Carlo simulations of a PCD at various count rates. The data-model agreement expressed as weighted coefficient of variation [Formula: see text] was better than [Formula: see text] for dead time losses up to 28% and [Formula: see text] or smaller for dead time losses up to 69%. The accuracy of the model was also tested for the purpose of material decomposition by estimating material thicknesses from simulated projection data. The estimated attenuator thicknesses generally agreed with the true values within one standard deviation of the statistical uncertainty obtained from multiple noise realizations.

  7. Plasmonic Structure Integrated Single-Photon Detector Configurations to Improve Absorptance and Polarization Contrast

    PubMed Central

    Csete, Mária; Szekeres, Gábor; Szenes, András; Szalai, Anikó; Szabó, Gábor

    2015-01-01

    Configurations capable of maximizing both the absorption component of system detection efficiency and the achievable polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs) consisting of p = 264 nm and P = 792 nm periodic niobium nitride (NbN) patterns on silica substrate. Global effective NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (γ = 90°/0° azimuthal angle) and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nanocavity gratings with different profiles, which is promoted by coupling between localized modes in quarter-wavelength metal-insulator-metal nanocavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations exist. PMID:25654724

  8. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of Dα or Hα lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ˜106 s-1 per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of Dα light emission from the plasma confined in a magnetic trap are presented.

  9. Cross strip anode readouts for large format, photon counting microchannel plate detectors: developing flight qualified prototypes of the detector and electronics

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Raffanti, Rick; Cooney, Michael; Cumming, Harley; Varner, Gary; Seljak, Andrej

    2014-07-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (e.g. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. Laboratory versions of PXS electronics have demonstrated < 20 μm FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector and electronics from 4 to 6 by replacing most of the high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). The first ASICs designed for this program have been fabricated and are undergoing testing. We present the latest progress on these ASIC designs and performance and show imaging results from the new 50 x 50 mm XS detector.

  10. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    SciTech Connect

    Lessard, Francois; Archambault, Louis; Plamondon, Mathieu; and others

    2012-09-15

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  11. Gain determination of non-linear IR detectors with the differential photon transfer curve (dPTC) method

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Hilbert, Bryan; Leisenring, Jarron M.; Misselt, Karl; Rieke, Marcia; Robberto, Massimo

    2016-07-01

    Conversion gain is a basic detector property which relates the raw counts in a pixel in data numbers (DN) to the number of electrons detected. The standard method for determining the gain is called the Photon Transfer Curve (PTC) method and involves the measurement the change in variance as a function of signal level. For non-linear IR detectors, this method depends strongly on the non-linearity correction and is therefore susceptible to systematic biases due to calibration issues. We have developed a new, robust, and fast method, the differential Photon Transfer Curve (dPTC) method, which is independent of non-linearity corrections, but still delivers gain values similar in precision but higher in accuracy.

  12. Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors

    NASA Astrophysics Data System (ADS)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R.

    2005-09-01

    We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.

  13. Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei

    2016-09-01

    Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

  14. Monte Carlo study of the energy and angular dependence of the response of plastic scintillation detectors in photon beams

    SciTech Connect

    Wang, Lilie L. W.; Klein, David; Beddar, A. Sam

    2010-10-15

    Purpose: By using Monte Carlo simulations, the authors investigated the energy and angular dependence of the response of plastic scintillation detectors (PSDs) in photon beams. Methods: Three PSDs were modeled in this study: A plastic scintillator (BC-400) and a scintillating fiber (BCF-12), both attached by a plastic-core optical fiber stem, and a plastic scintillator (BC-400) attached by an air-core optical fiber stem with a silica tube coated with silver. The authors then calculated, with low statistical uncertainty, the energy and angular dependences of the PSDs' responses in a water phantom. For energy dependence, the response of the detectors is calculated as the detector dose per unit water dose. The perturbation caused by the optical fiber stem connected to the PSD to guide the optical light to a photodetector was studied in simulations using different optical fiber materials. Results: For the energy dependence of the PSDs in photon beams, the PSDs with plastic-core fiber have excellent energy independence within about 0.5% at photon energies ranging from 300 keV (monoenergetic) to 18 MV (linac beam). The PSD with an air-core optical fiber with a silica tube also has good energy independence within 1% in the same photon energy range. For the angular dependence, the relative response of all the three modeled PSDs is within 2% for all the angles in a 6 MV photon beam. This is also true in a 300 keV monoenergetic photon beam for PSDs with plastic-core fiber. For the PSD with an air-core fiber with a silica tube in the 300 keV beam, the relative response varies within 1% for most of the angles, except in the case when the fiber stem is pointing right to the radiation source in which case the PSD may over-response by more than 10%. Conclusions: At {+-}1% level, no beam energy correction is necessary for the response of all three PSDs modeled in this study in the photon energy ranges from 200 keV (monoenergetic) to 18 MV (linac beam). The PSD would be even closer

  15. Monte Carlo study of the energy and angular dependence of the response of plastic scintillation detectors in photon beams

    PubMed Central

    Wang, Lilie L. W.; Klein, David; Beddar, A. Sam

    2010-01-01

    Purpose: By using Monte Carlo simulations, the authors investigated the energy and angular dependence of the response of plastic scintillation detectors (PSDs) in photon beams. Methods: Three PSDs were modeled in this study: A plastic scintillator (BC-400) and a scintillating fiber (BCF-12), both attached by a plastic-core optical fiber stem, and a plastic scintillator (BC-400) attached by an air-core optical fiber stem with a silica tube coated with silver. The authors then calculated, with low statistical uncertainty, the energy and angular dependences of the PSDs’ responses in a water phantom. For energy dependence, the response of the detectors is calculated as the detector dose per unit water dose. The perturbation caused by the optical fiber stem connected to the PSD to guide the optical light to a photodetector was studied in simulations using different optical fiber materials. Results: For the energy dependence of the PSDs in photon beams, the PSDs with plastic-core fiber have excellent energy independence within about 0.5% at photon energies ranging from 300 keV (monoenergetic) to 18 MV (linac beam). The PSD with an air-core optical fiber with a silica tube also has good energy independence within 1% in the same photon energy range. For the angular dependence, the relative response of all the three modeled PSDs is within 2% for all the angles in a 6 MV photon beam. This is also true in a 300 keV monoenergetic photon beam for PSDs with plastic-core fiber. For the PSD with an air-core fiber with a silica tube in the 300 keV beam, the relative response varies within 1% for most of the angles, except in the case when the fiber stem is pointing right to the radiation source in which case the PSD may over-response by more than 10%. Conclusions: At ±1% level, no beam energy correction is necessary for the response of all three PSDs modeled in this study in the photon energy ranges from 200 keV (monoenergetic) to 18 MV (linac beam). The PSD would be even closer

  16. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  17. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    SciTech Connect

    Thiede, Christian Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.

  18. 18k Channels single photon counting readout circuit for hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e- and the equivalent noise charge is 168 e- rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  19. Evaluation of a photon-counting x-ray imaging detector based on microchannel plates for mammography applications

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Molloi, Sabee

    2004-05-01

    Experimental prototype of a photon counting scanning slit X-ray imaging system is being evaluated for potential application in digital mammography. This system is based on a recently developed and tested "edge-on" illuminated Microchannel Plate (MCP) detector. The MCP detectors are well known for providing a combination of capabilities such as direct conversion, physical charge amplification, pulse counting, high spatial and temporal resolution, and very low noise. However, their application for medical imaging was hampered by their low detection efficiency. This limitation was addressed using an "edge-on" illumination mode for MCP. The current experimental prototype was developed to investigate the imaging performance of this detector concept for digital mammography. The current prototype provides a 60 mm field of view, 200 kHz count rate with 20% non-paralysable dead time and >7 lp/mm limiting resolution. A 0.3 mm focal spot W target X-ray tube was used for image acquisition. The detector noise is 0.3 count/pixel for 50x50 micron pixels. The count rate of the current prototype is limited by the delay line readout electronics, which causes long scanning times (minutes) and high tube loading. This problem will be addressed using multichannel ASIC electronics for clinical implementation. However, the current readout architecture is adequate for evaluation of the performance parameters of the new detector concept. It is very simple and provides a maximum intrinsic resolution of 28 micron FWHM. The prototype was evaluated using resolution, contrast detail and breast Phantoms. The MTF and DQE of the system are being evaluated at different tube voltages. The design parameters of a scanning multiple slit mammography system are being evaluated. It is concluded that a photon counting, quantum limited and virtually scatter free digital mammography system can be developed based on the proposed detector.

  20. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    SciTech Connect

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  1. A unified statistical framework for material decomposition using multienergy photon counting x-ray detectors

    SciTech Connect

    Choi, Jiyoung; Kang, Dong-Goo; Kang, Sunghoon; Sung, Younghun; Ye, Jong Chul

    2013-09-15

    Purpose: Material decomposition using multienergy photon counting x-ray detectors (PCXD) has been an active research area over the past few years. Even with some success, the problem of optimal energy selection and three material decomposition including malignant tissue is still on going research topic, and more systematic studies are required. This paper aims to address this in a unified statistical framework in a mammographic environment.Methods: A unified statistical framework for energy level optimization and decomposition of three materials is proposed. In particular, an energy level optimization algorithm is derived using the theory of the minimum variance unbiased estimator, and an iterative algorithm is proposed for material composition as well as system parameter estimation under the unified statistical estimation framework. To verify the performance of the proposed algorithm, the authors performed simulation studies as well as real experiments using physical breast phantom and ex vivo breast specimen. Quantitative comparisons using various performance measures were conducted, and qualitative performance evaluations for ex vivo breast specimen were also performed by comparing the ground-truth malignant tissue areas identified by radiologists.Results: Both simulation and real experiments confirmed that the optimized energy bins by the proposed method allow better material decomposition quality. Moreover, for the specimen thickness estimation errors up to 2 mm, the proposed method provides good reconstruction results in both simulation and real ex vivo breast phantom experiments compared to existing methods.Conclusions: The proposed statistical framework of PCXD has been successfully applied for the energy optimization and decomposition of three material in a mammographic environment. Experimental results using the physical breast phantom and ex vivo specimen support the practicality of the proposed algorithm.

  2. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  3. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and

  4. Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-08-10

    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. Furthermore, the reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Furthermore, different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.

  5. Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-08-10

    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. Furthermore, the reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In themore » barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Furthermore, different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.« less

  6. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    SciTech Connect

    Jafari Salim, A. Eftekharian, A.; Hamed Majedi, A.

    2014-02-07

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potential barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.

  7. SU-E-I-77: A Noise Reduction Technique for Energy-Resolved Photon-Counting Detectors

    SciTech Connect

    Lam Ng, A; Ding, H; Cho, H; Molloi, S

    2014-06-01

    Purpose: Finding the optimal energy threshold setting for an energy-resolved photon-counting detector has an important impact on the maximization of contrast-to-noise-ratio (CNR). We introduce a noise reduction method to enhance CNR by reducing the noise in each energy bin without altering the average gray levels in the projection and image domains. Methods: We simulated a four bin energy-resolved photon-counting detector based on Si with a 10 mm depth of interaction. TASMIP algorithm was used to simulate a spectrum of 65 kVp with 2.7 mm Al filter. A 13 mm PMMA phantom with hydroxyapatite and iodine at different concentrations (100, 200 and 300 mg/ml for HA, and 2, 4, and 8 mg/ml for Iodine) was used. Projection-based and Image-based energy weighting methods were used to generate weighted images. A reference low noise image was used for noise reduction purposes. A Gaussian-like weighting function which computes the similarity between pixels of interest was calculated from the reference image and implemented on a pixel by pixel basis for the noisy images. Results: CNR improvement compared to different methods (Charge-Integrated, Photon-Counting and Energy-Weighting) and after noise reduction was highly task-dependent. The CNR improvement with respect to the Charge-Integrated CNR for hydroxyapatite and iodine were 1.8 and 1.5, respectively. In each of the energy bins, the noise was reduced by approximately factor of two without altering their respective average gray levels. Conclusion: The proposed noise reduction technique for energy-resolved photon-counting detectors can significantly reduce image noise. This technique can be used as a compliment to the current energy-weighting methods in CNR optimization.

  8. Use of single photon counting detector arrays in combined PET/MR: Characterization of LYSO-SiPM detector modules and comparison with a LSO-APD detector

    NASA Astrophysics Data System (ADS)

    Spanoudaki, V. C.; Mann, A. B.; Otte, A. N.; Konorov, I.; Torres-Espallardo, I.; Paul, S.; Ziegler, S. I.

    2007-12-01

    We propose in this study a novel PET detector concept as insert for simultaneous PET/MR imaging, using arrays of Silicon Photomultipliers (SiPMs) as photodetectors, read out by a data acquisition system based on sampling ADCs. A 2 × 2 LSO-SiPM detector array and four single channel LYSO-SiPM detectors have been evaluated and compared to a LSO-APD detector. A 17.9% energy resolution and a 1.4 ns time resolution have been measured. No degradation of these values could be detected when simultaneous MR acquisitions were performed. The non-linear detector behaviour due to the limited dynamic range and recovery time effects has been studied. In addition, the contribution of dark counts and optical crosstalk for PET applications was also addressed. The feasibility for position localization of the incident light to a SiPM array using Anger logic has been investigated.

  9. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  10. Optimized acquisition time for x-ray fluorescence imaging of gold nanoparticles: a preliminary study using photon counting detector

    NASA Astrophysics Data System (ADS)

    Ren, Liqiang; Wu, Di; Li, Yuhua; Chen, Wei R.; Zheng, Bin; Liu, Hong

    2016-03-01

    X-ray fluorescence (XRF) is a promising spectroscopic technique to characterize imaging contrast agents with high atomic numbers (Z) such as gold nanoparticles (GNPs) inside small objects. Its utilization for biomedical applications, however, is greatly limited to experimental research due to longer data acquisition time. The objectives of this study are to apply a photon counting detector array for XRF imaging and to determine an optimized XRF data acquisition time, at which the acquired XRF image is of acceptable quality to allow the maximum level of radiation dose reduction. A prototype laboratory XRF imaging configuration consisting of a pencil-beam X-ray and a photon counting detector array (1 × 64 pixels) is employed to acquire the XRF image through exciting the prepared GNP/water solutions. In order to analyze the signal to noise ratio (SNR) improvement versus the increased exposure time, all the XRF photons within the energy range of 63 - 76KeV that include two Kα gold fluorescence peaks are collected for 1s, 2s, 3s, and so on all the way up to 200s. The optimized XRF data acquisition time for imaging different GNP solutions is determined as the moment when the acquired XRF image just reaches a quality with a SNR of 20dB which corresponds to an acceptable image quality.

  11. Fast time-correlated multi-element photon detector and method

    DOEpatents

    Hayden, Carl C.; Chandler, David W.; Luong, A. Khai

    2007-12-18

    Photons emitted from a sample responsive to being excited by laser pulses are directed through a prism onto a photomultiplier tube having several spaced-apart anodes. The prism alters the path of each photon as a function of its wavelength so that the wavelength determines the anode to which the photon is directed. Taps of first and second delay lines that are coupled to respective alternating anodes. When an anode receives the photon, it generates a pulse that propagates through the delay line in opposite directions from its associated tap. A timer determines first and second times from the laser pulse to the pulse reaching the first and second ends of the delay line. The difference between the first and second times corresponds to the wavelength of the emitted photon and the sum of the first and second times corresponds to the emission delay of the emitted photon.

  12. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    PubMed Central

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-01-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks. PMID:26404010

  13. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  14. Two-dimensional multiwire gas proportional detector for X-ray photon correlation spectroscopy of condensed matter

    NASA Astrophysics Data System (ADS)

    Shin, Tae Joo; Dierker, Steven B.; Smith, Graham C.

    2008-03-01

    Details of a two-dimensional (2-D) multiwire gas proportional detector for X-ray photon correlation spectroscopy (XPCS) of condensed matter are described. The characteristics of the gas proportional detector at 8 keV, 0.3 pC anode charge, and 3 bar (absolute) of Xe/10%CO 2 are as follows: 8.5×10 -7 counts/s (100×100 μm 2) dark count rate, ˜μs time resolution, ˜48 and 73 μm position resolution (FWHM) along and across the anode wire direction, respectively, and ˜80% quantum efficiency. The effects of incident photon energy, anode charge (i.e., gain), gas drift depth, and gas pressure on position resolution are discussed. Static and dynamic speckle patterns, measured from disordered aerogel and polystyrene/polybutadiene blends by a partially coherent synchrotron X-ray source, demonstrate that a 2-D multiwire gas proportional detector is very suitable for the dynamic study of condensed matter with relaxation times in the order of μs to 10 3 s and atomic length scale.

  15. Enhancement of light extraction in silicon-rich oxide light-emitting diodes by one-dimensional photonic crystal gratings

    NASA Astrophysics Data System (ADS)

    Llorens, J. M.; Postigo, P. A.; Juvert, J.; González, A.; Domínguez, C.

    2013-09-01

    In this work we show the design of one-dimensional nanophotonic structures (photonic crystal gratings) for enhancement of extraction of light with specific wavelengths in light-emitting diodes (LEDs). The LEDs are made of silicon-rich oxide embedding silicon nanolayers with emission in the visible spectrum. The LED structure consists of a poly-silicon top layer 310 nm thick, a silicon-rich oxide layer with nanoparticles and a silicon substrate. The gratings are formed by grooves separated with periods ranging from 200 nm to 600 nm and widths 0.72 times the period engraved on the top layer. We have performed two dimensional finite-difference time-domain simulations to obtain the values for the internal and external quantum efficiency (EQE) in the normal direction in a spectral window from 400 nm to 500 nm. The results show that it is possible to achieve a strong enhancement in the EQE in the short wavelength region (400 nm) while it reaches 5-fold enhancement at longer wavelengths.

  16. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  17. Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors

    NASA Astrophysics Data System (ADS)

    Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, Roman

    2008-03-01

    Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 μm2 in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 μm and 1.55 μm telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-heliumstorage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be < 1.5 ns and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is < 35 ps and their dark-count rate is below 1s-1. The presented performance parameters show that our single-photon receivers are fully applicable for quantum correlation-type QC systems, including practical quantum cryptography.

  18. Real-World Two-Photon Interference and Proof-of-Principle Quantum Key Distribution Immune to Detector Attacks

    NASA Astrophysics Data System (ADS)

    Rubenok, A.; Slater, J. A.; Chan, P.; Lucio-Martinez, I.; Tittel, W.

    2013-09-01

    Several vulnerabilities of single-photon detectors have recently been exploited to compromise the security of quantum-key-distribution (QKD) systems. In this Letter, we report the first proof-of-principle implementation of a new quantum-key-distribution protocol that is immune to any such attack. More precisely, we demonstrated this new approach to QKD in the laboratory over more than 80 km of spooled fiber, as well as across different locations within the city of Calgary. The robustness of our fiber-based implementation, together with the enhanced level of security offered by the protocol, confirms QKD as a realistic technology for safeguarding secrets in transmission. Furthermore, our demonstration establishes the feasibility of controlled two-photon interference in a real-world environment and thereby removes a remaining obstacle to realizing future applications of quantum communication, such as quantum repeaters and, more generally, quantum networks.

  19. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  20. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo; Liu, Peng

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 μm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 μm×150 μm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-μm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e- rms after bump bonding and a threshold dispersion of 55 e- rms after calibration.

  1. A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Xiang, Ping; Xie, Xiaopeng; Huang, Yang

    2016-06-01

    This paper presents a new modeling and simulation method to predict the important statistical performance of single photon avalanche diode (SPAD) detectors, including photon detection efficiency (PDE), dark count rate (DCR) and afterpulsing probability (AP). Three local electric field models are derived for the PDE, DCR and AP calculations, which show analytical dependence of key parameters such as avalanche triggering probability, impact ionization rate and electric field distributions that can be directly obtained from Geiger mode Technology Computer Aided Design (TCAD) simulation. The model calculation results are proven to be in good agreement with the reported experimental data in the open literature, suggesting that the proposed modeling and simulation method is very suitable for the prediction of SPAD statistical performance.

  2. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors

    PubMed Central

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  3. Photon detectors with high quantum efficiency at NUV range using a confinement of wavelength-shifted signals and optical couplers

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hadaway, J.; Pakhomov, A.; Takizawa, Y.

    Near-UV wavelengths 300 - 400 nm have been in a death-valley for photon detectors due to very low quantum efficiencies QE in this range Conventional bi-alkali photocathodes of PMTs do not have QE better than 20-26 Much better photo-cathodes like GaAsP GaN and similar give better efficiencies but only at wavelengths 400nm and are severely plagued by very short lifetimes Avalanche Photo-diodes perform better at low temperatures but no better than 35 QE in the NUV region Silicon Photo-multipliers at Geiger mode SiPM with micro-pixels have high QEs 90 like CCD and CMOS as bare silicon but are severely plagued by very poor geometrical fill-factors 30 and their overallQMis limited to no better than 20 at NUV regime An optical interference-filter works as a half-mirror passing more than 90 of NUV lights 300-400 nm and reflect more than 90 of longer wavelength lights 400 nm UV photons after converted into blue-green lights by wavelength-shifter are reflected back and confined without much loss back into space A specific dichroic interference mirror with WLS was made by RIKEN Japan H Shimizu Y Takahashi Y Takizawa Patent pending 2000-399940 for this optical principle It also allows a better use of limited photo-sensitive micro-cells of SiPM overcoming the past serious problem of its very poor fill-factor As a result Half-mirror SiPM yields high final efficiency for NUV photons This new detector TRAPPER with optical couplers for SiPM or by GaAsP PMTs could be used for photon-hungry space experiments at NUV range TRAPPER

  4. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector

    PubMed Central

    Boso, Gianluca; Ke, Damei; Korzh, Boris; Bouilloux, Jordan; Lange, Norbert; Zbinden, Hugo

    2015-01-01

    In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy. PMID:26819830

  5. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    SciTech Connect

    Korzh, B. Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.

    2014-02-24

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of −110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  6. Discrimination between normal breast tissue and tumor tissue using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Okamoto, Chizuru; Ihori, Akiko; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Kato, Misa; Nakajima, Ai; Kodera, Yoshie

    2016-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) series photon-counting detector, having high absorption efficiency over a wide energy range. In a previous study, we showed that the use of high X-ray energy in digital mammography is useful from the viewpoint of exposure dose and image quality. In addition, the CdTe series detector can acquire X-ray spectrum information following transmission through a subject. This study focused on the tissue composition identified using spectral information obtained by a new photon-counting detector. Normal breast tissue consists entirely of adipose and glandular tissues. However, it is very difficult to find tumor tissue in the region of glandular tissue via a conventional mammogram, especially in dense breast because the attenuation coefficients of glandular tissue and tumor tissue are very close. As a fundamental examination, we considered a simulation phantom and showed the difference between normal breast tissue and tumor tissue of various thicknesses in a three-dimensional (3D) scatter plot. We were able to discriminate between both types of tissues. In addition, there was a tendency for the distribution to depend on the thickness of the tumor tissue. Thinner tumor tissues were shown to be closer in appearance to normal breast tissue. This study also demonstrated that the difference between these tissues could be made obvious by using a CdTe series detector. We believe that this differentiation is important, and therefore, expect this technology to be applied to new tumor detection systems in the future.

  7. Solid-state photon-counting hybrid detector array for high-resolution multi-energy X-ray imaging

    NASA Astrophysics Data System (ADS)

    Sia, R.; Kleinfelder, S.; Nagarkar, V. V.

    2011-10-01

    We present in this article the development of a photon-counting, energy-discriminating modular detector based on a pixelated CdZnTe sensor coupled pixel-by-pixel to a novel Digital Pixel Sensor (DPS) readout. The detector is designed for munitions inspection, breast X-ray CT and SPECT/MRI. The current DPS design can also be used to read out other solid-state sensors. The prototype detector is 5.5 mm×5.5 mm in size, and consists of 19×19 pixels on a 250 μm pitch. The DPS is designed in a 0.35 μm process, and every pixel includes a preamplifier, a leakage-current subtraction circuit, an auto-zeroed programmable-gain stage, five comparators, a variable-delay reset circuit and five 16 bit counters. The module is expected to operate at high X-ray fluence exceeding 80 MHz/mm 2, and to improve resolution and contrast in images, while significantly enhancing their signal-to-noise ratio, and assist in identifying material composition via dual-energy imaging. The detector design, fabrication and anticipated performance are discussed.

  8. Study of the response of plastic scintillation detectors in small-field 6 MV photon beams by Monte Carlo simulations

    PubMed Central

    Wang, Lilie L. W.; Beddar, Sam

    2011-01-01

    Purpose: To investigate the response of plastic scintillation detectors (PSDs) in a 6 MV photon beam of various field sizes using Monte Carlo simulations. Methods: Three PSDs were simulated: A BC-400 and a BCF-12, each attached to a plastic-core optical fiber, and a BC-400 attached to an air-core optical fiber. PSD response was calculated as the detector dose per unit water dose for field sizes ranging from 10×10 down to 0.5×0.5 cm2 for both perpendicular and parallel orientations of the detectors to an incident beam. Similar calculations were performed for a CC01 compact chamber. The off-axis dose profiles were calculated in the 0.5×0.5 cm2 photon beam and were compared to the dose profile calculated for the CC01 chamber and that calculated in water without any detector. The angular dependence of the PSDs’ responses in a small photon beam was studied. Results: In the perpendicular orientation, the response of the BCF-12 PSD varied by only 0.5% as the field size decreased from 10×10 to 0.5×0.5 cm2, while the response of BC-400 PSD attached to a plastic-core fiber varied by more than 3% at the smallest field size because of its longer sensitive region. In the parallel orientation, the response of both PSDs attached to a plastic-core fiber varied by less than 0.4% for the same range of field sizes. For the PSD attached to an air-core fiber, the response varied, at most, by 2% for both orientations. Conclusions: The responses of all the PSDs investigated in this work can have a variation of only 1%–2% irrespective of field size and orientation of the detector if the length of the sensitive region is not more than 2 mm long and the optical fiber stems are prevented from pointing directly to the incident source. PMID:21520871

  9. SU-F-BRE-02: Characterization of a New Commercial Single Crystal Diamond Detector in Photon, Electron and Proton Beams

    SciTech Connect

    Akino, Y; Das, I

    2014-06-15

    Purpose: Diamond detectors even with superior characteristics have become obsolete due to poor design, selection of crystal and cost. Recently, microDiamond using synthetic single crystal diamond detector (SCDD) is commercially available which is characterized in various radiation beams in this study. Methods: The characteristics of a commercial SCDD model 60019 (PTW) to a 6- and 15-MV photon beams, 6- and 20-MeV electron beams, and 208 MeV proton beams were investigated and compared to the pre-characterized detectors: TN31010 (0.125 cm{sup 3}) and TN30006 (pinpoint) ionization chambers (PTW), EDGE detector (Sun Nuclear Corp), and SFD Stereotactic Dosimetry Diode Detector (IBA). The depth-dose and profiles data were collected for various field sizes and depths. The dose linearity and dose rate dependency were also evaluated. To evaluate the effects of the preirradiation, the diamond detector which had not been irradiated on the day was set up in the water tank and the response to 100 MU was measured every 20 s. The temperature dependency was tested for the range of 4–60 °C. Angular dependency was evaluated in water phantom by rotating the SCDD. Results: For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curve to those of ionization chambers. The profile of the diamond detector was very similar to those of the Edge and SFD detectors, although the 0.125 cm{sup 3} and pinpoint chambers showed averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy were needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. Conclusion: The type 60019 SCDD detector showed suitable characteristics for depth-dose and profile measurements for wide range of field sizes. However, at least 1000 cGy of pre-irradiation is needed for accurate measurements.

  10. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    PubMed Central

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  11. Modeling CZT/CdTe x-ray photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Makeev, Andrey; Rodrigues, Miesher; Wang, Gin-Chung; Glick, Stephen J.

    2015-03-01

    Software for modeling x-ray signals, as detected by a semiconductor radiation detector, has been developed. We model a generic signal generation/collection/processing sequence using Monte Carlo and finite-element analysis software. The suggested framework will allow one to simulate x-ray pulse-height spectrum, various triggering schemes, and can be used for detector optimization.

  12. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT

    PubMed Central

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.

    2015-01-01

    Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100  μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200  μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194

  13. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  14. Three Temperature Regimes in Superconducting Photon Detectors: Quantum, Thermal and Multiple Phase-Slips as Generators of Dark Counts

    PubMed Central

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  15. High efficiency and rapid response superconducting NbN nanowire single photon detector based on asymmetric split ring metamaterial

    SciTech Connect

    Li, Guanhai; Chen, Xiaoshuang; Wang, Shao-Wei Lu, Wei

    2014-06-09

    With asymmetric split ring metamaterial periodically placed on top of the niobium nitride (NbN) nanowire meander, we theoretically propose a kind of metal-insulator-metallic metamaterial nanocavity to enhance absorbing efficiency and shorten response time of the superconducting NbN nanowire single photon detector (SNSPD) operating at wavelength of 1550 nm. Up to 99.6% of the energy is absorbed and 96.5% dissipated in the nanowire. Meanwhile, taking advantage of this high efficiency absorbing cavity, we implement a more sparse arrangement of the NbN nanowire of the filling factor 0.2, which significantly lessens the nanowire and crucially boosts the response time to be only 40% of reset time in previous evenly spaced meander design. Together with trapped mode resonance, a standing wave oscillation mechanism is presented to explain the high efficiency and broad bandwidth properties. To further demonstrate the advantages of the nanocavity, a four-pixel SNSPD on 10 μm × 10 μm area is designed to further reduce 75% reset time while maintaining 70% absorbing efficiency. Utilizing the asymmetric split ring metamaterial, we show a higher efficiency and more rapid response SNSPD configuration to contribute to the development of single photon detectors.

  16. Photon counting X-ray imaging with CdTe pixel detectors based on XPAD2 circuit

    NASA Astrophysics Data System (ADS)

    Franchi, Romain; Glasser, Francis; Gasse, Adrien; Clemens, Jean-Claude

    2006-07-01

    A semiconductor hybrid pixel detector for photon counting X-ray imaging has been developed and tested under radiation. The sensor is based on recent uniform CdTe single crystal associated with XPAD 2 counting chip via innovative processes of interconnection. The building detector is 1 mm thick, with an area of 1 cm 2 and consists of 600 square pixels cells 330 μm side. The readout chip working in electron collection mode is capable of setting homogeneous threshold with only a dispersion of 730 e -. Maximum noise level has been evaluated around 15 keV. First experiments under X-rays demonstrate a very good efficiency of detection. Moreover, imaging system allows excellent linearity over a large-scale achieving count rate of 3×10 6 photons/s/mm 2. Spectrometric measurements point up the system potential in multi-energies applications by locating and resolving X-rays lines of 241Am and 57Co sources.

  17. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-04-15

    Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.

  18. Dynamics of isolated-photon plus jet production in pp collisions at √{s}=7 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Damiani, D. S.; Daniells, A. C.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Eckweiler, S.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Engelmann, R.; Engl, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gandrajula, R. P.; Gao, Y. S.; Gaponenko, A.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gunther, J.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmgren, S. O.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. K.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2013-10-01

    The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb. Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle.

  19. Micron resolution of MÖNCH and GOTTHARD, small pitch charge integrating detectors with single photon sensitivity

    NASA Astrophysics Data System (ADS)

    Cartier, S.; Bergamaschi, A.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann, J. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.; Stampanoni, M.; Sun, J.; Tinti, G.

    2014-05-01

    MÖNCH, a charge integrating readout ASIC (Application Specific Integrated Circuit) prototype with a pixel pitch of 25 μm developed at PSI, allows new imaging applications in the field of micron resolution and spectral imaging. The small pixel size of this system facilitates charge sharing between pixels, which then can be exploited to gain additional information about the photon absorption position and photon energy. However, for reconstructing complete images from this information, sufficient hits need to be recorded and therefore acquisition times are potentially long. We present a fast read-out system, that is capable of acquiring enough statistics for an image in a few hours in combination with a position reconstruction algorithm, which has the potential to run in a similar amount of time on a fast computing node. We further present results of experiments with a comparable strip detector (small-pitch GOTTHARD system) showing that with the aid of single photon interpolation algorithms micron resolution is achievable. Additionally, we show that a similar position reconstruction algorithm works in the two dimensional case for MÖNCH.

  20. A positron-sensitive photon detector for the UV or X-ray range

    NASA Astrophysics Data System (ADS)

    Zutavern, F. J.; Schnatterly, S. E.; Källne, E.; Franck, C. P.; Aton, T.; Rife, J.

    1980-05-01

    This paper describes the conversion of a light sensitive self-scanning silicon photodiode array into a soft X-ray detector. We combine a photodiode array, a UHV compatible soft X-ray sensitive phosphor and read out electronics. The detector has been tested in the soft X-ray and UV regions. The results indicate a high quantum efficiency in the soft X-ray region.

  1. The CLEO-III ring imaging Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Mountain, R. J.; Artuso, M.; Ayad, R.; Azfar, F.; Efimov, A.; Kopp, S.; Majumder, G.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Wang, J. C.; Anderson, S.; Smith, A.; Kubota, Y.; Lipeles, E.; Coan, T.; Staeck, J.; Fadeyev, V.; Volobouev, I.; Ye, J.

    1999-08-01

    The CLEO-III detector upgrade for charged particle identification is discussed. The RICH design uses solid LiF crystal radiators coupled with multi-wire chamber photon detectors, using TEA as the photosensor, and low-noise Viking readout electronics. Results from our beam test at Fermilab are presented.

  2. On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  3. Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity

    NASA Astrophysics Data System (ADS)

    Kagias, M.; Cartier, S.; Wang, Z.; Bergamaschi, A.; Dinapoli, R.; Mozzanica, A.; Schmitt, B.; Stampanoni, M.

    2016-06-01

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

  4. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting

    NASA Astrophysics Data System (ADS)

    Sottile, G.; Russo, F.; Agnetta, G.; Belluso, M.; Billotta, S.; Biondo, B.; Bonanno, G.; Catalano, O.; Giarrusso, S.; Grillo, A.; Impiombato, D.; La Rosa, G.; Maccarone, M. C.; Mangano, A.; Marano, D.; Mineo, T.; Segreto, A.; Strazzeri, E.; Timpanaro, M. C.

    2013-06-01

    UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320-900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.

  5. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    PubMed

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  6. An ultra-sensitive coherent detector capable of single photon detection for lidar applications

    NASA Technical Reports Server (NTRS)

    Amimoto, Sherwin; Gross, Rolf; Lacy, Bob; Garman-Duvalle, Lissa; Good, Tom

    1992-01-01

    The properties of Ultra-Sensitive Coherent Detectors (USCD's) are nearly that of an ideal detector for lidar applications. Recent progress in the development of USCD's is briefly reviewed, and its imaging capability is demonstrated. These new detectors possess properties with significant improvements over conventional technology. These improvements include a high quantum efficiency of 0.95, gain in excess of 10 exp 13, a narrow bandwidth of 180-300 MHz at 1 micron, imaging capability, and phase conjugation ability. We have constructed a USCD using two Nd:YAG laser amplifiers and a four-wave Brillouin mirror (FWBM) using SnCl4 as the Brillouin medium. Using a 10 Hz repetitively-pulsed single frequency laser, we have shown that the Brillouin medium is free from thermal blooming and from optical breakdown.

  7. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  8. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Jaggi, A; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  9. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    SciTech Connect

    Jungmann-Smith, J. H. Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.; Cartier, S.; Medjoubi, K.

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  10. The effects of extending the spectral information acquired by a photon-counting detector for spectral CT

    NASA Astrophysics Data System (ADS)

    Gilat Schmidt, Taly; Zimmerman, Kevin C.; Sidky, Emil Y.

    2015-02-01

    Photon-counting x-ray detectors with pulse-height analysis provide spectral information that may improve material decomposition and contrast-to-noise ratio (CNR) in CT images. The number of energy measurements that can be acquired simultaneously on a detector pixel is equal to the number of comparator channels. Some spectral CT designs have a limited number of comparator channels, due to the complexity of readout electronics. The spectral information could be extended by changing the comparator threshold levels over time, sub pixels, or view angle. However, acquiring more energy measurements than comparator channels increases the noise and/or dose, due to differences in noise correlations across energy measurements and decreased dose utilisation. This study experimentally quantified the effects of acquiring more energy measurements than comparator channels using a bench-top spectral CT system. An analytical and simulation study modeling an ideal detector investigated whether there was a net benefit for material decomposition or optimal energy weighting when acquiring more energy measurements than comparator channels. Experimental results demonstrated that in a two-threshold acquisition, acquiring the high-energy measurement independently from the low-energy measurement increased noise standard deviation in material-decomposition basis images by factors of 1.5-1.7 due to changes in covariance between energy measurements. CNR in energy-weighted images decreased by factors of 0.92-0.71. Noise standard deviation increased by an additional factor of \\sqrt{2} due to reduced dose utilisation. The results demonstrated no benefit for two-material decomposition noise or energy-weighted CNR when acquiring more energy measurements than comparator channels. Understanding the noise penalty of acquiring more energy measurements than comparator channels is important for designing spectral detectors and for designing experiments and interpreting data from prototype systems with a

  11. The effects of extending the spectral information acquired by a photon-counting detector for spectral CT.

    PubMed

    Schmidt, Taly Gilat; Zimmerman, Kevin C; Sidky, Emil Y

    2015-02-21

    Photon-counting x-ray detectors with pulse-height analysis provide spectral information that may improve material decomposition and contrast-to-noise ratio (CNR) in CT images. The number of energy measurements that can be acquired simultaneously on a detector pixel is equal to the number of comparator channels. Some spectral CT designs have a limited number of comparator channels, due to the complexity of readout electronics. The spectral information could be extended by changing the comparator threshold levels over time, sub pixels, or view angle. However, acquiring more energy measurements than comparator channels increases the noise and/or dose, due to differences in noise correlations across energy measurements and decreased dose utilisation. This study experimentally quantified the effects of acquiring more energy measurements than comparator channels using a bench-top spectral CT system. An analytical and simulation study modeling an ideal detector investigated whether there was a net benefit for material decomposition or optimal energy weighting when acquiring more energy measurements than comparator channels. Experimental results demonstrated that in a two-threshold acquisition, acquiring the high-energy measurement independently from the low-energy measurement increased noise standard deviation in material-decomposition basis images by factors of 1.5-1.7 due to changes in covariance between energy measurements. CNR in energy-weighted images decreased by factors of 0.92-0.71. Noise standard deviation increased by an additional factor of [Formula: see text] due to reduced dose utilisation. The results demonstrated no benefit for two-material decomposition noise or energy-weighted CNR when acquiring more energy measurements than comparator channels. Understanding the noise penalty of acquiring more energy measurements than comparator channels is important for designing spectral detectors and for designing experiments and interpreting data from prototype

  12. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  13. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films

    NASA Astrophysics Data System (ADS)

    Verma, V. B.; Korzh, B.; Bussières, F.; Horansky, R. D.; Dyer, S. D.; Lita, A. E.; Vayshenker, I.; Marsili, F.; Shaw, M. D.; Zbinden, H.; Mirin, R. P.; Nam, S. W.

    2015-12-01

    We demonstrate high-efficiency superconducting nanowire single-photon detectors (SNSPDs) fabricated from MoSi thin-films. We measure a maximum system detection efficiency (SDE) of 87 +- 0.5 % at 1542 nm at a temperature of 0.7 K, with a jitter of 76 ps, maximum count rate approaching 10 MHz, and polarization dependence as low as 3.4 +- 0.7 % The SDE curves show saturation of the internal efficiency similar to WSi-based SNSPDs at temperatures as high as 2.3 K. We show that at similar cryogenic temperatures, MoSi SNSPDs achieve efficiencies comparable to WSi-based SNSPDs with nearly a factor of two reduction in jitter.

  14. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    PubMed

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit. PMID:27519105

  15. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  16. High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K

    SciTech Connect

    Verma, V. B.; Horansky, R. D.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Korzh, B.; Bussières, F.; Zbinden, H.; Marsili, F.; Shaw, M. D.

    2014-09-22

    We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ∼70% of the superconducting transition temperature (T{sub C}) of 3.4 K. We demonstrate saturation of the system detection efficiency at 78 ± 2% at a wavelength of 1310 nm, with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to T{sub C} appears to be a unique property of amorphous WSi.

  17. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

  18. Experimental determination of the effective point of measurement for various detectors used in photon and electron beam dosimetry

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2011-07-01

    The subject of this study is the 'shift of the effective point of measurement', Δz, well known as a method of correction compensating for the 'displacement effect' in photon and electron beam dosimetry. Radiochromic EBT 1 films have been used to measure the 'true' TPR curves of 6 and 15 MV photons and 6 and 9 MeV electrons in the solid water-equivalent material RW3. For the Roos and Markus chambers, the cylindrical 'PinPoint', 'Semiflex' and 'Rigid-Stem' chambers, the 2D-Array and the E-type silicon diode (all from PTW-Freiburg), the positions of the effective points of measurement have been determined by direct or indirect comparison between their TPR curves and those of the EBT 1 film. Both for the Roos and Markus chambers, we found Δz = (0.4 ± 0.1) mm, which confirms earlier experimental and Monte Carlo results, but means a shortcoming of the 'water-equivalent window thickness' formula. For the cylindrical chambers, the ratio Δz/r was observed to increase with r, confirming a recent Monte Carlo prediction by Tessier (2010 E2-CN-182, Paper no 147, IDOS, Vienna) as well as the experimental observations by Johansson et al (1978 IAEA Symp. Proc. (Vienna) IAEA-SM-222/35 pp 243-70). According to a theoretical consideration, the shift of the effective point of measurement from the reference point of the detector is caused by a gradient of the fluence of the ionizing particles. As the experiments have shown, the value of Δz depends on the construction of the detector, but remains invariant under changes of radiation quality and depth. Other disturbances, which do not belong to the class of 'gradient effects', are not corrected by shifting the effective point of measurement.

  19. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  20. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  1. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    SciTech Connect

    Li Zhichao; Guo Liang; Jiang Xiaohua; Liu Shenye; Huang Tianxuan; Yang Jiamin; Li Sanwei; Zhao Xuefeng; Du Huabin; Song Tianming; Yi Rongqing; Liu Yonggang; Jiang Shaoen; Ding Yongkun; Zheng Jian

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  2. NaNet-10: a 10GbE network interface card for the GPU-based low-level trigger of the NA62 RICH detector.

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Fiorini, M.; Frezza, O.; Lonardo, A.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2016-03-01

    A GPU-based low level (L0) trigger is currently integrated in the experimental setup of the RICH detector of the NA62 experiment to assess the feasibility of building more refined physics-related trigger primitives and thus improve the trigger discriminating power. To ensure the real-time operation of the system, a dedicated data transport mechanism has been implemented: an FPGA-based Network Interface Card (NaNet-10) receives data from detectors and forwards them with low, predictable latency to the memory of the GPU performing the trigger algorithms. Results of the ring-shaped hit patterns reconstruction will be reported and discussed.

  3. Electro-magnetic physics studies at RHIC: Neutral pion production, direct photon HBT, photon elliptic flow in gold-gold collisions at sqrt(s_NN) = 200 GeV and the Muon Telescope Detector simulation

    NASA Astrophysics Data System (ADS)

    Lin, Guoji

    Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 < pT < 12 GeV/c near mid-rapidity (0 < eta < 0.8) in 200 GeV Au+Au collisions. The spectra and nuclear modification factors RCP and RAA are compared to earlier pi+/- and pi0 results. Direct photon Hanbury-Brown and Twiss (HBT) correlations can reveal information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate

  4. Long-haul and high-resolution optical time domain reflectometry using superconducting nanowire single-photon detectors

    PubMed Central

    Zhao, Qingyuan; Xia, Lan; Wan, Chao; Hu, Junhui; Jia, Tao; Gu, Min; Zhang, Labao; Kang, Lin; Chen, Jian; Zhang, Xuping; Wu, Peiheng

    2015-01-01

    In classical optical time domain reflectometries (OTDRs), for sensing an 200-km-long fiber, the optical pulses launched are as wide as tens of microseconds to get enough signal-to-noise ratio, while it results in a two-point resolution of kilometers. To both reach long sensing distance and sub-kilometer resolution, we demonstrated a long-haul photon-counting OTDR using a superconducting nanowire single-photon detector. In a 40-minute-long measurement, we obtained a dynamic range of 46.9 dB, corresponding to a maximum sensing distance of 246.8 km, at a two-point resolution of 0.1 km. The time for measuring fiber after 100 km was reduced to one minute, while the fiber end at 217 km was still distinguished well from noise. After reducing the pulse width to 100 ns, the experimental two-point resolution was improved to 20 m while the maximum sensing distance was 209.47 km. PMID:26020163

  5. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector.

    PubMed

    Bina, Matteo; Allevi, Alessia; Bondani, Maria; Olivares, Stefano

    2016-01-01

    Phase estimation represents a crucial challenge in many fields of Physics, ranging from Quantum Metrology to Quantum Information Processing. This task is usually pursued by means of interferometric schemes, in which the choice of the input states and of the detection apparatus is aimed at minimizing the uncertainty in the estimation of the relative phase between the inputs. State discrimination protocols in communication channels with coherent states also require the monitoring of the optical phase. Therefore, the problem of phase estimation is relevant to face the issue of coherent states discrimination. Here we consider a quasi-optimal Kennedy-like receiver, based on the interference of two coherent signals, to be discriminated, with a reference local oscillator. By means of the Bayesian processing of a small amount of data drawn from the outputs of the shot-by-shot discrimination protocol, we demonstrate the achievement of the minimum uncertainty in phase estimation, also in the presence of uniform phase noise. Moreover, we show that the use of photon-number resolving detectors in the receiver improves the phase-estimation strategy, especially with respect to the usually employed on/off detectors. From the experimental point of view, this comparison is realized by employing hybrid photodetectors. PMID:27189140

  6. Performance of a compact position-sensitive photon counting detector with image charge coupling to an air-side anode

    NASA Astrophysics Data System (ADS)

    Jagutzki, O.; Czasch, A.; Schössler, S.

    2013-05-01

    We discuss a novel micro-channel plate (MCP) photomultiplier with resistive screen (RS-PMT) as a detection device for space- and time-correlated single photon counting, illustrated by several applications. The photomultiplier tube resembles a standard image intensifier device. However, the rear phosphor screen is replaced by a ceramic "window" with resistive coating. The MCP output is transferred through the ceramic plate to the read-out electrode (on the air side) via capacity-coupling of the image charge. This design allows for an easy reconfiguration of the read-out electrode (e.g. pixel, charge-sharing, cross-strip, delay-line) without breaking the vacuum for optimizing the detector performance towards a certain task. It also eases the design and manufacturing process of such a multi-purpose photomultiplier tube. Temporal and spatial resolutions well below 100 ps and 100 microns, respectively, have been reported at event rates as high as 1 MHz, for up to 40 mm effective detection diameter. In this paper we will discuss several applications like wide-field fluorescence microscopy and dual γ/fast-neutron radiography for air cargo screening and conclude with an outlook on large-area detectors for thermal neutrons based on MCPs.

  7. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  8. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector

    PubMed Central

    Bina, Matteo; Allevi, Alessia; Bondani, Maria; Olivares, Stefano

    2016-01-01

    Phase estimation represents a crucial challenge in many fields of Physics, ranging from Quantum Metrology to Quantum Information Processing. This task is usually pursued by means of interferometric schemes, in which the choice of the input states and of the detection apparatus is aimed at minimizing the uncertainty in the estimation of the relative phase between the inputs. State discrimination protocols in communication channels with coherent states also require the monitoring of the optical phase. Therefore, the problem of phase estimation is relevant to face the issue of coherent states discrimination. Here we consider a quasi-optimal Kennedy-like receiver, based on the interference of two coherent signals, to be discriminated, with a reference local oscillator. By means of the Bayesian processing of a small amount of data drawn from the outputs of the shot-by-shot discrimination protocol, we demonstrate the achievement of the minimum uncertainty in phase estimation, also in the presence of uniform phase noise. Moreover, we show that the use of photon-number resolving detectors in the receiver improves the phase-estimation strategy, especially with respect to the usually employed on/off detectors. From the experimental point of view, this comparison is realized by employing hybrid photodetectors. PMID:27189140

  9. First experimental charge density study using a Bruker CMOS-type PHOTON 100 detector: the case of ammonium tetraoxalate dihydrate.

    PubMed

    Jarzembska, Katarzyna N; Kamiński, Radosław; Dobrzycki, Lukasz; Cyrański, Michał K

    2014-10-01

    The aim of this study was to test the applicability of a Bruker AXS CMOS-type PHOTON 100 detector for the purpose of a fine charge density quality data collection. A complex crystal containing oxalic acid, ammonium oxalate and two water molecules was chosen as a test case. The data was collected up to a resolution of 1.31 Å(-1) with high completeness (89.1%; Rmrg = 0.0274). The multipolar refinement and subsequent quantum theory of atoms in molecules (QTAIM) analysis resulted in a comprehensive description of the charge density distribution in the crystal studied. The residual density maps are flat and almost featureless. It was possible to derive reliable information on intermolecular interactions to model the anharmonic motion of a water molecule, and also to observe the fine details of the charge density distribution, such as polarization on O and H atoms involved in the strongest hydrogen bonds. When compared with our previous statistical study on oxalic acid data collected with the aid of CCD cameras, the complementary metal-oxide semiconductor (CMOS) detector can certainly be classified as a promising alternative in advanced X-ray diffraction studies.

  10. New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Villa, F.; Guerrieri, F.; Rech, I.; Gulinatti, A.; Tisa, S.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain. PMID:24729836

  11. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  12. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response

    SciTech Connect

    Weng, Q. C.; An, Z. H. E-mail: luwei@mail.sitp.ac.cn; Xiong, D. Y.; Zhu, Z. Q.; Zhang, B.; Chen, P. P.; Li, T. X.; Lu, W. E-mail: luwei@mail.sitp.ac.cn

    2014-07-21

    We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).

  13. On the analogy between pulse-pile-up in energy-sensitive, photon-counting detectors and level-crossing of shot noise

    NASA Astrophysics Data System (ADS)

    Roessl, Ewald; Bartels, Matthias; Daerr, Heiner; Proksa, Roland

    2016-03-01

    Shot noise processes are omnipresent in physics and many of their properties have been extensively studied in the past, including the particular problem of level crossing of shot noise. Energy-sensitive, photon-counting detectors using comparators to discriminate pulse-heights are currently heavily investigated for medical applications, e.g. for x-ray computed tomography and x-ray mammography. Surprisingly, no mention of the close relation between the two topics can be found in the literature on photon-counting detectors. In this paper, we point out the close analogy between level crossing of shot noise and the problem of determining count rates of photon- counting detectors subject to pulse pile-up. The latter is very relevant for obtaining precise forward models for photon-counting detectors operated under conditions of very high x-ray flux employed in clinical x-ray computed tomography. Although several attempts have been made to provide reasonably accurate, approximative models for the registered number of counts in x-ray detectors under conditions of high flux and arbitrary x-ray spectra, see, e.g., no exact, analytic solution is given in the literature for general continuous pulse shapes. In this paper we present such a solution for arbitrary response functions, x-ray spectra and continuous pulse shapes based on a result from the theory of level crossing. We briefly outline the theory of level crossing including the famous Rice theorem and translate from the language of level crossing to the language of photon-counting detection.

  14. Optical communication with two-photon coherent states. III - Quantum measurements realizable with photoemissive detectors

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1980-01-01

    Homodyne detection is shown to achieve the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes linear modulation TCS performance gain. The full equivalence of homodyne detection and single-quadrature field measurement is established. A heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. Results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

  15. Design and testing of an active quenching circuit for an avalanche photodiode photon detector

    NASA Technical Reports Server (NTRS)

    Arbel, D.; Schwartz, J. A.

    1991-01-01

    The photon-detection capabilities of avalanche photodiodes (APDs) operating above their theoretical breakdown voltages are described, with particular attention given to the needs and methods of quenching an avalanche once breakdown has occurred. A brief background on the motives of and previous work with this mode of operation is presented. Finally, a description of the design and testing of an active quenching circuit is given. Although the active quenching circuit did not perform as expected, knowledge was gained as to the signal amplitudes necessary for quenching and the need for a better model for the above-breakdown circuit characteristics of the Geiger-mode APD.

  16. Adaptive optics wavefront sensors based on photon-counting detector arrays

    NASA Astrophysics Data System (ADS)

    Aull, Brian F.; Schuette, Daniel R.; Reich, Robert K.; Johnson, Robert L.

    2010-07-01

    For adaptive optics systems, there is a growing demand for wavefront sensors that operate at higher frame rates and with more pixels while maintaining low readout noise. Lincoln Laboratory has been investigating Geiger-mode avalanche photodiode arrays integrated with CMOS readout circuits as a potential solution. This type of sensor counts photons digitally within the pixel, enabling data to be read out at high rates without the penalty of readout noise. After a brief overview of adaptive optics sensor development at Lincoln Laboratory, we will present the status of silicon Geigermode- APD technology along with future plans to improve performance.

  17. Study of the signal response of the MÖNCH 25μm pitch hybrid pixel detector at different photon absorption depths

    NASA Astrophysics Data System (ADS)

    Cartier, S.; Bergamaschi, A.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Shi, X.; Tinti, G.; Schmitt, B.; Stampanoni, M.

    2015-03-01

    MÖNCH is a 25 μm pitch hybrid silicon pixel detector with a charge integrating analog read-out front-end in each pixel. The small pixel size brings new challenges in bump-bonding, power consumption and chip design. The MÖNCH02 prototype ASIC, manufactured in UMC 110 nm technology with a field of view of 4×4 mm2 and 160×160 pixels, has been characterized in the single photon regime, i.e. with less than one photon acquired per frame on average on a 3×3 pixel cluster. The low noise and small pixel size allow spatial interpolation with high resolution. Understanding charge sharing as a function of the photon absorption depth and sensor bias is a key for optimal processing of single photon data for high resolution imaging. To characterize the charge collection of the detector, the sensor was illuminated with a 20 keV photon beam in edge-on configuration at the SYRMEP beamline of Elettra. By slicing the beam by means of a 5 μm slit and scanning through the 320 μm silicon sensor depth, the charge collection is characterized as a function of the photon absorption depth for different sensor bias voltages.

  18. Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors

    NASA Technical Reports Server (NTRS)

    Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.

    1981-01-01

    The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.

  19. High efficiency photon counting detectors for the FAUST Spacelab far ultraviolet astronomy payload

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Vallerga, J.; Bowyer, S.

    1987-01-01

    The performances of sealed tube microchannel-plate position sensitive detectors having transmission CsI photocathodes or opaque CsI photocathodes are compared. These devices were developed for the FAUST Spacelab payload to accomplish imaging surveys in the band between 1300 A and 1800 A. It is demonstrated that photocathode quantum efficiencies in excess of 40 percent at 1216 A have been achieved with the transmission and the opaque CsI photocathodes. The effect of the photoelectron trajectory on the spatial resolution is assessed. Spatial resolution of less than 70 microns FWHM has been obtained and is maintained up to event rates of 50,000/sec. Background rates of 0.55 events sq cm per sec have been achieved and low distortion (less than 1 percent) imaging has been demonstrated.

  20. Objective assessment of image quality. V. Photon-counting detectors and list-mode data

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.

    2012-01-01

    A theoretical framework for detection or discrimination tasks with list-mode data is developed. The object and imaging system are rigorously modeled via three random mechanisms: randomness of the object being imaged, randomness in the attribute vectors, and, finally, randomness in the attribute vector estimates due to noise in the detector outputs. By considering the list-mode data themselves, the theory developed in this paper yields a manageable expression for the likelihood of the list-mode data given the object being imaged. This, in turn, leads to an expression for the optimal Bayesian discriminant. Figures of merit for detection tasks via the ideal and optimal linear observers are derived. A concrete example discusses detection performance of the optimal linear observer for the case of a known signal buried in a random lumpy background. PMID:22673432

  1. A systematic characterization of the low-energy photon response of plastic scintillation detectors.

    PubMed

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to (137)Cs and (60)Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators' volume. The scintillators' expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator's light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams ((137)Cs and (60)Co), the scintillators' response was corrected for the Cerenkov stem effect. The scintillators' response increased by a factor of approximately 4 from a 20 kVp to a (60)Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about [Formula: see text] between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  2. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  3. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  4. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  5. HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.

    2014-05-01

    A multi-element HgCdTe electron initiated avalanche photodiode (e-APD) array has been developed for space lidar. The detector array was fabricated with 4.3μm cutoff HgCdTe with a spectral response from 0.4 to 4.3 μm. We have demonstrated a 4x4 e-APD array with 80 μm square elements followed by a custom cryogenic CMOS read-out integrated circuit (ROIC). The device operates at 77K inside a small closed-cycle cooler-Dewar with the support electronics integrated in a field programmable gate array. Measurements showed a unity gain quantum efficiency of about 90% at 1.5-1.6 μm wavelength. The bulk dark current of the HgCdTe e-APD at 77K was less than 50,000 input referred electrons/s at 12 V APD bias where the APD gain was 620 and the measured noise equivalent power (NEP) was 0.4 fW/Hz1/2. The electrical bandwidth of the device was about 6 MHz, mostly limited by the ROIC, but sufficient for the lidar application. Although the devices were designed for low bandwidth pulse detections, the high gain and low dark current enabled them to be used for single photon detections. Because the APD was biased below the break-down voltage, the output is linear to the input signal and there were no nonlinear effect such as dead-time and afterpulsing, and no need for gated operation. A new series of HgCdTe e-APDs have also been developed with a much wider bandwidth ROIC and higher APD gain, which is expected to give a much better performance in single photon detections.

  6. Search for Double Higgs Production in the Final State with Two Photons and Two Bottom Quarks at the CMS Detector

    NASA Astrophysics Data System (ADS)

    Hebda, Philip Robert

    A search for the production of Higgs pairs in the decay channel with two photons and two bottom quarks is reported for both resonant and nonresonant cases. The data corresponds to an integrated luminosity of 19.7 /fb of proton-proton collisions at a center-of-mass energy of 8 TeV collected by the CMS detector at the CERN Large Hardron Collider. The candidate events are selected by requiring two photons and two jets and are classified according to the number of jets tagged as coming from the hadronization of a bottom quark. The search for resonance production of two Higgs bosons through a new particle as hypothesized in extensions to the Standard Model involving a Radion or KK-graviton from models with warped extra dimensions or involving a heavy Higgs from models with supersymmetry, is performed on the resonant mass range from 260 GeV to 1100 GeV. The search for Standard Model nonresonant production of two Higgs bosons is performed; in addition a theoretical framework is explored for the analysis of anomalous values of the couplings tt¯H, HHH, and tt¯HH. The observations are consistent with background expectations. Upper limits at the 95% confidence level are extracted on the production cross section of resonant and SM nonresonant production. In particular, the Radion with a vacuum expectation of 1 TeV is observed (expected) to be excluded with masses below 0.97 TeV (0.88 TeV), while the analysis is not sensitive to the Radion with a vacuum expectation of 3 TeV. The nonresonant double Higgs cross section is observed (expected) to be excluded at 1.91 fb (1.59 fb) or 72.9 (60.7) times the NNLO Standard Model value.

  7. Feasibility study of sparse-angular sampling and sinogram interpolation in material decomposition with a photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeon; Jo, Byungdu; Park, Su-Jin; Kim, Hyemi; Kim, Hee-Joung

    2016-03-01

    Spectral computed tomography (SCT) is a promising technique for obtaining enhanced image with contrast agent and distinguishing different materials. We focused on developing the analytic reconstruction algorithm in material decomposition technique with lower radiation exposure and shorter acquisition time. Sparse-angular sampling can reduce patient dose and scanning time for obtaining the reconstruction images. In this study, the sinogram interpolation method was used to improve the quality of material decomposed images in sparse angular sampling. A prototype of spectral CT system with 64 pixels CZT-based photon counting detector was used. The source-to-detector distance and the source-tocenter of rotation distance were 1200 and 1015 mm, respectively. The x-ray spectrum at 90 kVp with a tube current of 110 μA was used. Two energy bins (23-33 keV and 34-44 keV) were set to obtain the two images for decomposed iodine and calcification. We used PMMA phantom and its height and radius were 50 mm and 17.5 mm, respectively. The phantom contained 4 materials including iodine, gadolinium, calcification, and liquid state lipid. We evaluated the signal to noise ratio (SNR) of materials to examine the significance of sinogram interpolation method. The decomposed iodine and calcification images were obtained by projection based subtraction method using two energy bins with 36 projection data. The SNR in decomposed images were improved by using sinogram interpolation method. And these results indicated that the signal of decomposed material was increased and the noise of decomposed material was reduced. In conclusion, the sinogram interpolation method can be used in material decomposition method with sparse-angular sampling.

  8. Non-Markovian Property of Afterpulsing Effect in Single-Photon Avalanche Detector

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Xiang; Chen, Wei; Li, Ya-Ping; He, De-Yong; Wang, Chao; Han, Yun-Guang; Wang, Shuang; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-08-01

    The single-photon avalanche photodiode(SPAD) has been widely used in research on quantum optics. The afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (The avalanche photodiode model is: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markovian, with a memory effect in the avalanching history. Theoretical analysis and experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. This conclusion makes the principle of the afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as a fundamental premise to handle the afterpulsing signals in many applications, such as quantum communication and quantum random number generation.

  9. A systematic characterization of the low-energy photon response of plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  10. A systematic characterization of the low-energy photon response of plastic scintillation detectors.

    PubMed

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to (137)Cs and (60)Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators' volume. The scintillators' expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator's light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams ((137)Cs and (60)Co), the scintillators' response was corrected for the Cerenkov stem effect. The scintillators' response increased by a factor of approximately 4 from a 20 kVp to a (60)Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about [Formula: see text] between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology. PMID:27384872

  11. SU-F-18C-05: Characterization of a Silicon Strip Photon-Counting Detector in the Presence of Compton Scatter: A Simulation Study

    SciTech Connect

    Ziemer, B; Ding, H; Cho, H

    2014-06-15

    Purpose: To investigate the effect of Compton scatter on detection efficiency and charge-sharing for a Si strip photon-counting detector as a function of pixel pitch, slice thickness and total pixel length. Methods: A CT imaging system employing a silicon photon-counting detector was implemented using the GATE Monte Carlo package. A focal spot size of 300 µm, magnification of 1.33, and pixel pitches of 0.1 and 0.5mm were initially investigated. A 60 kVp spectrum with 3 mm Al filter was used and energy spectral degradation based on a prototype detector was simulated. To study charge-sharing, a single pixel was illuminated, and the detector response in neighboring pixels was investigated. A longitudinally semiinfinite detector was simulated to optimize the quantum detection efficiency of the imaging system as a function of pixel pitch, slice thickness and depth of interaction. A 2.5 mm thick tungsten plate with a 0.01 mm by 1.5 mm slit was implemented to calculate the modulation transfer function (MTF) from projection-based images. A threshold of 15 keV was implemented in the detector simulation. The preliminary charge sharing investigation results considered only scattering effects and the detector electronics related factors were neglected. Results: Using a 15 keV threshold, 1% of the pixel charge migrated into neighboring pixels with a pixel size of 0.1×0.1 mm{sup 2}. The quantum detection efficiency was 77%, 84%, 87% and 89% for 15 mm, 22.5 mm, 30 mm, and 45 mm length silicon detector pixels, respectively. For a pixel pitch of 0.1 mm, the spatial frequency at 10% of the maximum MTF was found to be 5.2 lp/mm. This agreed with an experimental MTF measurement of 5.3 lp/mm with a similar detector configuration. Conclusion: Using optimized design parameters, Si strip photon-counting detectors can offer high detection efficiency and spatial resolution even in the presence of Compton scatter.

  12. CAN AN ENERGY-COMPENSATED SOLID-STATE X-RAY DETECTOR BE USED FOR RADIATION PROTECTION APPLICATIONS AT HIGHER PHOTON ENERGIES?

    PubMed

    Ören, Ünal; Herrnsdorf, Lars; Gunnarsson, Mikael; Mattsson, Sören; Rääf, Christopher L

    2016-06-01

    The objective of this study was to investigate the characteristics of a solid-state detector commonly available at hospitals for parallel use as a real-time personal radiation monitor following radiation emergency situations. A solid-state detector probe with an inherent filtration (R100, RTI Electronics AB, Mölndal, Sweden) was chosen for evaluation. The energy dependence and the linearity in signal response with kerma in air were examined, and the detector was exposed to both X-ray beams using a conventional X-ray unit with effective photon energies ranging between 28.5 and 48.9 keV and to gamma rays 1.17 and 1.33 MeV from (60)Co. The R100 exhibited ∼1.7 times over-response at the lowest X-ray energy relative to the (60)Co source. The detector demonstrated a linear response (R(2) = 1) when irradiated with (60)Co to air kerma values in the range of 20-200 mGy. The conclusion is that high-energy photons such as those from (60)Co can be detected by the R100 with an energy response within a factor of <2 over the energy range examined and that the detector can provide real-time dose measurements following nuclear or radiological events.

  13. Detector photon response and absorbed dose and their applications to rapid triage techniques

    NASA Astrophysics Data System (ADS)

    Voss, Shannon Prentice

    As radiation specialists, one of our primary objectives in the Navy is protecting people and the environment from the effects of ionizing and non-ionizing radiation. Focusing on radiological dispersal devices (RDD) will provide increased personnel protection as well as optimize emergency response assets for the general public. An attack involving an RDD has been of particular concern because it is intended to spread contamination over a wide area and cause massive panic within the general population. A rapid method of triage will be necessary to segregate the unexposed and slightly exposed from those needing immediate medical treatment. Because of the aerosol dispersal of the radioactive material, inhalation of the radioactive material may be the primary exposure route. The primary radionuclides likely to be used in a RDD attack are Co-60, Cs-137, Ir-192, Sr-90 and Am-241. Through the use of a MAX phantom along with a few Simulink MATLAB programs, a good anthropomorphic phantom was created for use in MCNPX simulations that would provide organ doses from internally deposited radionuclides. Ludlum model 44-9 and 44-2 detectors were used to verify the simulated dose from the MCNPX code. Based on the results, acute dose rate limits were developed for emergency response personnel that would assist in patient triage.

  14. Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stem, Jeffrey A.; Farr, William H.; Leduc, Henry G.; Bumble, Bruce

    2008-01-01

    Superconducting-nanowire singlephoton detectors (SNSPDs) in which Nb(x)Ti(1-x)N (where x<1) films serve as the superconducting materials have shown promise as superior alternatives to previously developed SNSPDs in which NbN films serve as the superconducting materials. SNSPDs have potential utility in optical communications and quantum cryptography. Nb(x)Ti(1-x)N is a solid solution of NbN and TiN, and has many properties similar to those of NbN. It has been found to be generally easier to stabilize NbxTi1 xN in the high-superconducting-transitiontemperature phase than it is to so stabilize NbN. In addition, the resistivity and penetration depth of polycrystalline films of Nb(x)Ti(1-x)N have been found to be much smaller than those of films of NbN. These differences have been hypothesized to be attributable to better coupling at grain boundaries within Nb(x)Ti(1-x)N films.

  15. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles

    NASA Astrophysics Data System (ADS)

    Poppinga, D.; Meyners, J.; Delfs, B.; Muru, A.; Harder, D.; Poppe, B.; Looe, HK

    2015-12-01

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with

  16. Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector.

    PubMed

    Xia, Haiyun; Shentu, Guoliang; Shangguan, Mingjia; Xia, Xiuxiu; Jia, Xiaodong; Wang, Chong; Zhang, Jun; Pelc, Jason S; Fejer, M M; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2015-04-01

    A micro-pulse lidar at eye-safe wavelength is constructed based on an upconversion single-photon detector. The ultralow-noise detector enables using integration technique to improve the signal-to-noise ratio of the atmospheric backscattering even at daytime. With pulse energy of 110 μJ, pulse repetition rate of 15 kHz, optical antenna diameter of 100 mm and integration time of 5 min, a horizontal detection range of 7 km is realized. In the demonstration experiment, atmospheric visibility over 24 h is monitored continuously, with results in accordance with the weather forecasts.

  17. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  18. Contrast-enhanced spectral mammography with a photon-counting detector

    SciTech Connect

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  19. AlSb photonic detectors for gamma-ray spectroscopy. Progress report, October 1994--August 1995

    SciTech Connect

    Becla, P.; Witt, A.F.

    1995-12-31

    Aluminum antimony (AlSb) is an indirect band gap semiconductor with Eg of about 1.62 eV at 300 K and about 1.75 eV at 77 K. This material, is extremely difficult to obtain in single crystal form because of the very high reactivity of aluminum with oxygen, and the high volatility of antimony. Moreover, molten AlSb reacts with nearly all crucible materials available. Since Welker`s first attempts in 1952, only very few different experimental approaches have been used to grow single crystals of AlSb, e.g. by Bridgman, Czochralski and MBE. All experimental results, however, indicate that many of the properties of AlSb, e.g. carrier concentration, electron-hole mobility and carrier life-time, differ significantly from the theoretically predicted values. The main objective of this research period has been to develop a method leading to improved crystallographic and electronic quality of AlSb crystals, making them more suitable for device applications. The research program was aimed along the following two directions: (1) study the growth of AlSb via Bridgman, Czochralski and THM techniques; (2) comprehensive characterization of grown material, related to the use of compounds for high energy gamma detectors. Variables in the growth study were growth temperature, equilibrium pressure, growth rate, doping, crucible material, seeding and encapsulation. The characterization study included crystallographic quality (grain size, etch pits, precipitates, inclusions), electronic quality (conductivity type, carrier concentration and mobility), optical properties (spectral absorption, photoconductivity, persistent absorption) and others (SIMS, EPR).

  20. Cryogenic detectors based on superconducting transition-edge sensors for time-energy-resolved single-photon counters and for dark matter searches

    NASA Astrophysics Data System (ADS)

    Cabrera, B.; Clarke, R.; Miller, A.; Nam, S. W.; Romani, R.; Saab, T.; Young, B.

    2000-05-01

    We present the recent progress using transition-edge sensors (TES) for cryogenic particle detectors. First, by directly absorbing photons in tungsten TES devices, an instrument has been made which time stamps (0.1μs) and energy resolves (0.15 eV FWHM) each photon at rates up to 10 kHz. Observations of the Crab pulsar are the first broad spectrum infrared through full optical and time resolved on any astronomical object. Second, in the CDMS (cryogenic dark matter search) experiment looking for WIMPs, large crystals of silicon and germanium are instrumented with QET (quasiparticle-trap-assisted electrothermal-feedback transition-edge sensors) phonon sensors which provide the recoil energy and location in /x,y and /z for each event. Together with an ionization readout, these detectors provide powerful discrimination capabilities against known backgrounds and they are now probing new regions for WIMP dark matter.

  1. Search for new phenomena in events with at least three photons collected in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-04-01

    Results of a search for new phenomena in events with at least three photons are reported. Data from proton–proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1, were collected with the ATLAS detector at the LHC. The observed data are well described by the Standard Model. Limits at the 95 % confidence level on new phenomena are presented based on the rate of events in an inclusive signal region and a restricted signal region targeting the rare decay Z→3γ, as well as di-photon and tri-photon resonance searches. For a Standard Model Higgsmore » boson decaying to four photons via a pair of intermediate pseudoscalar particles (a), limits are found to be σ× BR (h→aa)× BR (a→γγ)2<10-3σSM for 10 GeV a< 62 GeV. Finally, limits are also presented for Higgs boson-like scalars (H) for mH> 125 GeV, and for a Z' decaying to three photons via Z'→a+γ→3γ. Additionally, the observed limit on the branching ratio of the Z boson decay to three photons is found to be BR(Z→3γ)<2.2×10-6, a result five times stronger than the previous result from LEP.« less

  2. Search for new phenomena in events with at least three photons collected in pp collisions at √{s} = 8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-04-01

    Results of a search for new phenomena in events with at least three photons are reported. Data from proton-proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb^{-1}, were collected with the ATLAS detector at the LHC. The observed data are well described by the Standard Model. Limits at the 95 % confidence level on new phenomena are presented based on the rate of events in an inclusive signal region and a restricted signal region targeting the rare decay Z→ 3γ , as well as di-photon and tri-photon resonance searches. For a Standard Model Higgs boson decaying to four photons via a pair of intermediate pseudoscalar particles ( a), limits are found to be σ × {{ BR }}(h → aa) × {{ BR }}(a → γ γ )2 < 10^{-3} σ _{ {SM}} for 10 GeV < ma < 62 GeV. Limits are also presented for Higgs boson-like scalars ( H) for mH > 125 GeV, and for a Z' decaying to three photons via Z' → a+γ → 3γ . Additionally, the observed limit on the branching ratio of the Z boson decay to three photons is found to be BR(Z → 3γ ) < 2.2 × 10^{-6}, a result five times stronger than the previous result from LEP.

  3. Measurement of the inclusive isolated prompt photon cross section in pp collisions at √s=7 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2011-03-18

    A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy √s=7 TeV is presented. The measurement covers the pseudorapidity ranges |ηγ|<1.37 and 1.52≤|ηγ|<1.81 in the transverse energy range 15≤EγT<100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrowmore » cone around the photon candidate. The results are compared to predictions from next-to-leading-order perturbative QCD calculations.« less

  4. Measurement of the inclusive isolated prompt photon cross section in pp collisions at s=7TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Ackers, M.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arms, K. E.; Armstrong, S. R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocci, A.; Bock, R.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bona, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Booth, P.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Bright-Thomas, P. G.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.

    2011-03-01

    A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy s=7TeV is presented. The measurement covers the pseudorapidity ranges |ηγ|<1.37 and 1.52≤|ηγ|<1.81 in the transverse energy range 15≤ETγ<100GeV. The results are based on an integrated luminosity of 880nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading-order perturbative QCD calculations.

  5. Search for nonpointing photons in the diphoton and ETmiss final state in s=7TeV proton-proton collisions using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhandari, R.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Damiani, D. S.; Daniells, A. C.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Eckweiler, S.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Engelmann, R.; Engl, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gandrajula, R. P.; Gao, Y. S.; Gaponenko, A.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gunther, J.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmgren, S. O.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G.-Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. K.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A.; South, D.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2013-07-01

    A search has been performed for photons originating in the decay of a neutral long-lived particle, exploiting the capabilities of the ATLAS electromagnetic calorimeter to make precise measurements of the flight direction of photons, as well as the calorimeter’s excellent time resolution. The search has been made in the diphoton plus missing transverse energy final state, using the full data sample of 4.8fb-1 of 7 TeV proton-proton collisions collected in 2011 with the ATLAS detector at the LHC. No excess is observed above the background expected from Standard Model processes. The results are used to set exclusion limits in the context of gauge mediated supersymmetry breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying with a lifetime in excess of 0.25 ns into a photon and a gravitino.

  6. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    NASA Astrophysics Data System (ADS)

    Comandar, L. C.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Lucamarini, M.; Yuan, Z. L.; Penty, R. V.; Shields, A. J.

    2015-02-01

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with an increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns.

  7. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    SciTech Connect

    Comandar, L. C.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Lucamarini, M.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2015-02-28

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with an increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns.

  8. Time differential 57Fe Mössbauer spectrometer with unique 4π YAP:Ce 122.06 keV gamma-photon detector

    NASA Astrophysics Data System (ADS)

    Novak, Petr; Pechousek, Jiri; Prochazka, Vit; Navarik, Jakub; Kouril, Lukas; Kohout, Pavel; Vrba, Vlastimil; Machala, Libor

    2016-10-01

    This paper presents a conceptually new design of the 57Fe Time Differential Mössbauer Spectrometer (TDMS) with the gamma-photon detector optimized for registration of a radiation emitted in a maximum solid angle. A high detection efficiency of 80% in 4π region was achieved for 122.06 keV photons emitted from 57Co source. Detector parameters have been optimized for the use in the Time Differential Mössbauer Spectroscopy where the high time resolution in range of 176-200 ns is highly required. Technical concept of the TDMS is based on the virtual instrumentation technique and uses fast digital oscilloscope. Performance and detector utilization have been clarified by decreasing the Mössbauer spectral line-width of K2MgFe(CN)6 reference sample from 0.33 mm/s (integral mode) to 0.23 mm/s (time differential mode). This report also describes characterization and utilization of the detector together with additional electronic blocks and two-channel fast data-acquisition system construction.