A stable lithium-rich surface structure for lithium-rich layered cathode materials
Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook
2016-01-01
Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178
Characterization of BN rich layer on ammonia treated Nextel{trademark}312 fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khasgiwale, N.R.; Butler, E.P.; Tsakalakos, L.
A BN rich layer grown on Nextel{trademark}312 fibers by appropriate ammonia treatments was evaluated using various complimentary techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM)/Parallel Electron Energy Loss Spectroscopy (PEELS in TEM). Three different ammonia treatments were studied. Ammonia treatment resulted in crystallization of the Nextel{trademark}312 fiber. The BN rich surface layer formed due to ammonia treatment was clearly detected in XPS and PEELS both before and after oxidation. The layer thickness was estimated to be between 5--10 nm. The layer was stable after oxidation treatment at 600 C formore » 100 hours. High resolution TEM observations of the fiber surface revealed a variable BN rich layer thickness. Patches of turbostratic BN were observed under certain conditions, however mostly the layer appeared to be amorphous.« less
Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M
2015-09-01
Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.
Boundary layer friction of solvate ionic liquids as a function of potential.
Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob
2017-07-01
Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.
NASA Astrophysics Data System (ADS)
Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo
2018-03-01
Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.
Ramachandran, Dhanya; Egoavil, Ricardo; Crabbe, Amandine; Hauffman, Tom; Abakumov, Artem; Verbeeck, Johan; Vandendael, Isabelle; Terryn, Herman; Schryvers, Dominique
2016-11-01
The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe 2 O 3 , an intermediate layer rich in Cr 2 O 3 with a mixture of FeO.Fe 2 O 3 and an inner oxide layer rich in nickel. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Oh, Pilgun; Oh, Seung -Min; Li, Wangda; ...
2016-05-30
The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less
Magnetic signatures of Heinrich-like detrital layers in the Quaternary of the North Atlantic
NASA Astrophysics Data System (ADS)
Channell, J. E. T.; Hodell, D. A.
2013-05-01
Magnetic parameters are useful for distinguishing North Atlantic Heinrich-like detrital layers from background sediments. Here we compare magnetic properties with XRF scanning data back to 700 ka and 1.3 Ma at IODP Sites U1302-U1303 and U1308, respectively. Multi-domain magnetite, with grain sizes >20 µm, is characteristic of both Ca- and Si-rich detrital layers, as defined by XRF core scanning, confirming the contribution of ice rafting. Reflectance spectra and magnetic parameters distinguish Ca- and Si-rich IRD layers due the presence of high coercivity hematite in Si-rich layers. Heinrich layer 6 (H6) at Site U1302-U1303 is unlike other detrital layers, being marked by a 45-cm thick homogeneous cream-colored clay layer underlain by a thin (5-cm) graded coarse-sand. Comparison of Site U1302/03 and Site U1308 detrital layers implies a dominant Laurentide source for both Ca- and Si-rich detrital layers. At Site U1308, low benthic δ13C values during stadials are in-step with magnetic grain-size coarsening associated with Si-rich detrital layers back to 1.3 Ma, indicating a link between deep-sea ventilation and ice rafting. The surface-sediment tan-colored oxic layer (~2 m thick at Site U1308) yields magnetic hysteresis ratios that are offset from the single-domain to multi-domain (SD-MD) magnetite mixing-line in hysteresis-ratio diagrams. This offset is attributed to maghemite grain-coatings, that form on magnetite in surface sediment, and undergo dissolution as they pass through the oxic/anoxic boundary.
Surface passivation for CdTe devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Matthew O.; Perkins, Craig L.; Burst, James M.
2017-08-01
In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.
NASA Astrophysics Data System (ADS)
Pokrovsky, Oleg S.; Schott, Jacques
2000-10-01
Surfaces of natural and synthetic forsterite (Fo 91 and Fo 100) in aqueous solutions at 25°C were investigated using surface titrations in batch and limited residence time reactors, column filtration experiments, electrokinetic measurements (streaming potential and electrophoresis techniques), Diffuse Reflectance Infrared Spectroscopy (DRIFT), and X-ray Photoelectron Spectroscopy (XPS). At pH < 9, a Mg-depleted, Si-rich layer (<20 Å thick) is formed on the forsterite surface due to a Mg 2+ ↔ H + exchange reaction. Electrokinetic measurements yield a pH IEP value of 4.5 corresponding to the dominance of SiO 2 in the surface layer at pH < 9. In contrast, surface titrations of fresh powders give an apparent pH PZC of about 10 with the development of a large positive charge (up to 10 -4 mol/m 2 or 10 C/m 2) in the acid pH region. This may be explained by penetration of H + into the first unit cells of forsterite surface. The surface charge of acid-reacted forsterite is one or two orders of magnitude lower than that of unreacted forsterite with an apparent pH PZC at around 6.5 and a pH IEP value of 2.1 which is close to that for amorphous silica and reflects the formation of a silica-rich layer on the surface. XPS analyses indicate the penetration of hydrogen into the surface and the polymerization of silica tetrahedra in this leached layer. At pH > 10, a Si-deficient, Mg-rich surface layer is formed as shown by XPS analyses and the preferential Si release from the surface during column filtration experiments.
NSTAR Extended Life Test Discharge Chamber Flake Analysis
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Banks, Bruce A.; Karniotis, Christina A.
2005-01-01
The Extended Life Test (ELT) of the NASA Solar Electric Propulsion Technology Readiness (NSTAR) ion thruster was concluded after 30,352 hours of operation. The ELT was conducted using the Deep Space 1 (DS1) back-up flight engine, a 30 cm diameter xenon ion thruster. Post-test inspection of the ELT engine revealed numerous contaminant flakes distributed over the bottom of the cylindrical section of the anode within the discharge chamber (DC). Extensive analyses were conducted to determine the source of the particles, which is critical to the understanding of degradation mechanisms of long life ion thruster operation. Analyses included: optical microscopy (OM) and particle length histograms, field emission scanning electron microscopy (FESEM) combined with energy dispersive spectroscopy (EDS), and atomic oxygen plasma exposure tests. Analyses of the particles indicate that the majority of the DC flakes consist of a layered structure, typically with either two or three layers. The flakes comprising two layers were typically found to have a molybdenum-rich (Mo-rich) layer on one side and a carbon-rich (C-rich) layer on the other side. The flakes comprising three layers were found to be sandwich-like structures with Mo-rich exterior layers and a C-rich interior layer. The presence of the C-rich layers indicates that these particles were produced by sputter deposition build-up on a surface external to the discharge chamber from ion sputter erosion of the graphite target in the test chamber. This contaminant layer became thick enough that particles spalled off, and then were electro-statically attracted into the ion thruster interior, where they were coated with Mo from internal sputter erosion of the screen grid and cathode components. Atomic oxygen tests provided evidence that the DC chamber flakes are composed of a significant fraction of carbon. Particle size histograms further indicated that the source of the particles was spalling of carbon flakes from downstream surfaces. Analyses of flakes taken from the downstream surface of the accelerator grid provided additional supportive information. The production of the downstream carbon flakes, and hence the potential problems associated with the flake particles in the ELT ion thruster engine is a facility induced effect and would not occur in the space environment.
Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong
2017-01-01
The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.
Formation mechanism of photo-induced nested wrinkles on siloxane-photomonomer hybrid film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazumasa; International Laboratory of Materials Science and Nanotechnology; Laboratorio di Scienz
Nested wrinkle structures, hierarchical surface wrinkles of different periodicities of sub-μm and tens-μm, have been fabricated on a siloxane-photomonomer hybrid film via a photo-induced surface polymerization of acrylamide. The formation mechanism of the nested wrinkle structures is examined based on a time-dependent structure observation and chemical composition analyses. In-situ observation of the evolving surface structure showed that sub-μm scale wrinkles first formed, subsequently the tens-μm scale ones did. In-situ FT-IR analysis indicated that the nested wrinkles formation took place along with the development of siloxane network of under layer. A cross sectional observation of the film revealed that the filmmore » was composed of three layers. FT-IR spectra of the film revealed that the surface and interior layers were polyacrylamide rich layer and siloxane-polymer rich layer, respectively. The intermediate layer formed as a diffusion layer by migration of acrylamide from interior to the surface. These three layers have different chemical compositions and therefore different mechanical characteristics, which allows the wrinkle formation. Shrinkage of siloxane-polymer interior layers, as a result of polycondensation of siloxane network, induced mechanical instabilities at interlayers, to form the nested wrinkle structures.« less
High Temperature Oxidation of Hot-Dip Aluminized T92 Steels
NASA Astrophysics Data System (ADS)
Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok
2018-03-01
The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.
High Temperature Oxidation of Hot-Dip Aluminized T92 Steels
NASA Astrophysics Data System (ADS)
Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok
2018-05-01
The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.
Sun, Shuwei; Yin, Yanfeng; Wan, Ning; ...
2015-06-24
For Li-rich layered cathode materials considerable attention has been paid owing to their high capacity performance for Li-ion batteries (LIBs). In our work, layered Li-rich Li[Li 0.2Ni 0.17Co 0.07Mn 0.56]O 2 nanoparticles are surface-modified with AlF 3 through a facile chemical deposition method. The AlF 3 surface layers have little impact on the structure of the material and act as buffers to prevent the direct contact of the electrode with the electrolyte; thus, they enhance the electrochemical performance significantly. The 3 wt% AlF 3-coated Li-rich electrode exhibits the best cycling capability and has a considerably enhanced capacity retention of 83.1%more » after 50 cycles. Moreover, the rate performance and thermal stability of the 3 wt% AlF3-coated electrode are also clearly improved. Finally, surface analysis indicates that the AlF 3 coating layer can largely suppress the undesirable growth of solid electrolyte interphase (SEI) film and, therefore, stabilizes the structure upon cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohri, Maryam, E-mail: mmohri@ut.ac.ir; Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe; Nili-Ahmadabadi, Mahmoud
The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure ofmore » the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.« less
Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.
Zhang, Liangliang; Guo, Yuzheng; Hassan, Vinayak Vishwanath; Tang, Kechao; Foad, Majeed A; Woicik, Joseph C; Pianetta, Piero; Robertson, John; McIntyre, Paul C
2016-07-27
Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native SiOx/GeOx surface layers, where the GeOx-rich layer is beneath a SiOx-rich surface. Silicon oxide regrows on the SiGe surface during Al2O3 atomic layer deposition, and both SiOx and GeOx regrow during forming gas anneal in the presence of a Pt gate metal. The resulting mixed SiOx-GeOx interface layer causes large interface trap densities (Dit) due to distorted Ge-O bonds across the interface. In contrast, we observe that oxygen-scavenging Al top gates decompose the underlying SiOx/GeOx, in a selective fashion, leaving an ultrathin SiOx interfacial layer that exhibits dramatically reduced Dit.
The behavior of silicon and boron in the surface of corroded nuclear waste glasses : an EFTEM study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E. C.; Smith, K. L.; Blackford, M. G.
1999-11-23
Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51,more » although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials.« less
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
Hedayati, Mohammadhasan; Kipper, Matt J
2018-06-15
Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.
Lu, Ping; Yan, Pengfei; Romero, Eric; ...
2015-01-27
Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Pilgun; Oh, Seung -Min; Li, Wangda
The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less
NASA Astrophysics Data System (ADS)
Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.
2012-07-01
Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.
Denitrification potential in relation to lithology in five headwater riparian zones.
Hill, Alan R; Vidon, Philippe G F; Langat, Jackson
2004-01-01
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.
Water-rich planets: How habitable is a water layer deeper than on Earth?
NASA Astrophysics Data System (ADS)
Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.
2016-10-01
Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.
Nolan, Michael; Tofail, Syed A M
2010-05-01
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
Conductivity fuel cell collector plate and method of fabrication
Braun, James C.
2002-01-01
An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.
Jin, Yi-Chun; Duh, Jenq-Gong
2016-02-17
This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni(2+/4+) redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail.
Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.
2011-01-01
This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yong; Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996; Liu Fengxiao
Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered {eta}-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit ({approx}100 MPa) than the conventional ones undermore » the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides.« less
The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys
NASA Astrophysics Data System (ADS)
Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.
2000-07-01
A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.
NASA Astrophysics Data System (ADS)
Madkour, Sherif; Szymoniak, Paulina; Schick, Christoph; Schönhals, Andreas
2017-05-01
Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.
Water adsorption on the P-rich GaP(100) surface: optical spectroscopy from first principles
NASA Astrophysics Data System (ADS)
May, Matthias M.; Sprik, Michiel
2018-03-01
The contact of water with semiconductors typically changes its surface electronic structure by oxidation or corrosion processes. A detailed knowledge—or even control of—the surface structure is highly desirable, as it impacts the performance of opto-electronic devices from gas-sensing to energy conversion applications. It is also a prerequisite for density functional theory-based modelling of the electronic structure in contact with an electrolyte. The P-rich GaP(100) surface is extraordinary with respect to its contact with gas-phase water, as it undergoes a surface reordering, but does not oxidise. We investigate the underlying changes of the surface in contact with water by means of theoretically derived reflection anisotropy spectroscopy (RAS). A comparison of our results with experiment reveals that a water-induced hydrogen-rich phase on the surface is compatible with the boundary conditions from experiment, reproducing the optical spectra. We discuss potential reaction paths that comprise a water-enhanced hydrogen mobility on the surface. Our results also show that computational RAS—required for the interpretation of experimental signatures—is feasible for GaP in contact with water double layers. Here, RAS is sensitive to surface electric fields, which are an important ingredient of the Helmholtz-layer. This paves the way for future investigations of RAS at the semiconductor–electrolyte interface.
Large-scale molecular dynamics simulations of TiN/TiN(001) epitaxial film growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edström, Daniel, E-mail: daned@ifm.liu.se; Sangiovanni, Davide G.; Hultman, Lars
2016-07-15
Large-scale classical molecular dynamics simulations of epitaxial TiN/TiN(001) thin film growth at 1200 K are carried out using incident flux ratios N/Ti = 1, 2, and 4. The films are analyzed as a function of composition, island size distribution, island edge orientation, and vacancy formation. Results show that N/Ti = 1 films are globally understoichiometric with dispersed Ti-rich surface regions which serve as traps to nucleate 111-oriented islands, leading to local epitaxial breakdown. Films grown with N/Ti = 2 are approximately stoichiometric and the growth mode is closer to layer-by-layer, while N/Ti = 4 films are stoichiometric with N-rich surfaces. As N/Ti is increased from 1 to 4, islandmore » edges are increasingly polar, i.e., 110-oriented, and N-terminated to accommodate the excess N flux, some of which is lost by reflection of incident N atoms. N vacancies are produced in the surface layer during film deposition with N/Ti = 1 due to the formation and subsequent desorption of N{sub 2} molecules composed of a N adatom and a N surface atom, as well as itinerant Ti adatoms pulling up N surface atoms. The N vacancy concentration is significantly reduced as N/Ti is increased to 2; with N/Ti = 4, Ti vacancies dominate. Overall, our results show that an insufficient N/Ti ratio leads to surface roughening via nucleation of small dispersed 111 islands, whereas high N/Ti ratios result in surface roughening due to more rapid upper-layer nucleation and mound formation. The growth mode of N/Ti = 2 films, which have smoother surfaces, is closer to layer-by-layer.« less
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bohang; Li, Wangda; Yan, Pengfei
A facile synthesis method was developed to prepare xLi 2MnO 3·(1-x)LiNi 0.7Co 0.15Mn 0.15O 2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30 as molar ratio) cathode materials, combining the advantages of high specific capacity from Ni-rich layered phase and surface chemical stability from Li-rich layered phase. X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM) and electrochemical charge/discharge performance confirm the formation of a Li-rich layered phase with C2/m symmetry. Most importantly, high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that Li-rich nano-domain islands are integrated into a conventional Ni-rich layered matrix (Rmore » $$\\bar{3}$$m). This is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of layered compounds (Li 1+δNi xMn yM 1-x-y-δO 2, M refers to transition metal elements) is Ni-rich (x > 0.5) rather than Mn-rich (y > 0.5). Remarkably, xLi 2MnO 3·(1-x)LiNi 0.7Co 0.15Mn 0.15O 2 cathode with optimized x value shows superior electrochemical performance at C/3, i.e., 170 mA h g -1 with 90.3 % of capacity retention after 400 cycles at 25 °C and 164 mA h g -1 with 81.3 % capacity retention after 200 cycles at 55 °C.« less
2017-01-24
NASA Mars Reconnaissance Orbiter spies a layer of dry ice covering Mars south polar layer. In the spring, gas created from heating of the dry ice escapes through ruptures in the overlying seasonal ice, entraining material from the ground below. The gas erodes channels in the surface, generally exploiting weaker material. The ground likely started as polygonal patterned ground (common in water-ice-rich surfaces), and then escaping gas widened the channels. Fans of dark material are bits of the surface carried onto the top of the seasonal ice layer and deposited in a direction determined by local winds. http://photojournal.jpl.nasa.gov/catalog/PIA11706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Yan, Pengfei; Romero, Eric
Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Yan, Pengfei; Romero, Eric
Capacity loss, and voltage fade upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2 , TM = Ni, Co or Fe) have recently been identified to be correlated to the gradual phase transformation, featuring the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5 nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LMR) particles, which are identical to those reported due to the charge-dischargemore » cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200 kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by energy dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LMR is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. This study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less
Rezaei, Masoud; Tamjid, Elnaz; Dinari, Ali
2017-10-11
Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.
Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool
NASA Astrophysics Data System (ADS)
Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi
2018-03-01
A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.
Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface
NASA Astrophysics Data System (ADS)
Guerrero-Sánchez, J.; Takeuchi, Noboru
2018-05-01
We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.
Effects of argon sputtering and UV-ozone radiation on the physico-chemical surface properties of ITO
NASA Astrophysics Data System (ADS)
Che, Hui; El Bouanani, M.
2018-01-01
X-ray photoelectron spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) were used to evaluate and determine the effects of 1 KeV Ar+ irradiation (sputtering) on the surface chemical composition and work function of Indium Thin Oxide (ITO). While Ar+ sputtering removes carbon-based surface contaminants, it also modifies the Sn-rich surface of ITO and leads to a reduction of the oxidation state of Sn from Sn4+ to Sn2+. The decrease in the work function of ITO is directly correlated to the decrease of Sn atomic concentration in the Sn-rich top surface layer and the reduction of the oxidation state of surface Sn.
NASA Astrophysics Data System (ADS)
Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei
2015-05-01
The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.
InSAR detects increase in surface subsidence caused by an Arctic tundra fire
Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun
2014-01-01
Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.
Endothelial glycocalyx: permeability barrier and mechanosensor.
Curry, F E; Adamson, R H
2012-04-01
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
NASA Technical Reports Server (NTRS)
Yun, H. M.; Dicarlo, J. A.; Ogbuji, L. T.; Chen, Y. L.
2002-01-01
Tensile stress-strain curves were measured at room temperature and 1315 C for 2D-woven SiC/BN/SiC ceramic matrix composites (CMC) reinforced by two variations of Hi-Nicalon Type-S SiC fibers. These fibers, which contained a thin continuous carbon-rich layer on their as-produced surface, provided the as-fabricated CMC with good composite behavior and an ultimate strength and strain of -350 MPa and -0.5%, respectively. However, after un-stressed burner-rig exposure at 815 C for -100 hrs, CMC tensile specimens with cut edges and exposed interphases showed a significant decrease in ultimate properties with effectively no composite behavior. Microstructural observations show that the degradation was caused by internal fiber-fiber oxide bonding after removal of the carbon-rich fiber surface layer by the high-velocity combustion gases. On the other hand, SiC/BN/SiC CMC with Sylramic-iBN fibers without carbon-rich surfaces showed higher as-fabricated strength and no loss in strength after the same burner rig exposure. Based on the strong role of the carbon layer in these observations, a process method was developed and demonstrated for achieving better strength retention of Hi-Nicalon Type-S CMC during burner rig exposure. Other general approaches for minimizing this current deficiency with as-produced Type-S fibers are discussed.
Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate
NASA Astrophysics Data System (ADS)
Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.
2017-07-01
The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.
NASA Astrophysics Data System (ADS)
Yamasaki, S.; Chigira, M.
2009-04-01
Pelitic schist has been known to be easily deformed by gravitational force to form characteristic topographic and geologic features, but little is known about how they develop. This is mainly due to the fact that deformed politic schist is so fragile that it could not be obtained from subsurface without disturbance. We analyzed high-quality undisturbed cores obtained by using a sophisticated drilling technique from two typical pelitic schist landslide sites in Japan. We made analyses on physical, chemical, mineralogical properties and observations from mesoscopic to microscopic rock textures of these cores and found that a special layering of rock-forming minerals determines the locations of shearing by gravity and that there is specific water-rock interaction processes in pelitic schist. Pelitic schist consists of thinly alternating beds of black layers and quartz-rich layers, and a black layer has numerous microscopic layers containing abundant pyrite and graphite grains (pyrite-graphite layers). Many of the black layers were observed to have microfractures connected to open cracks, suggesting that relatively thick, continuous black layers are easily sheared to form an incipient sliding layer. Thus unevenly distributed pyrite-graphite layers likely to determine the potential location of microscopic slip in a rock mass. Shear displacement along black layers occurs unevenly, depending upon the microscopic heterogeneity in mineral composition as well as undulating shape of the layers. Open micro-cracks nearly perpendicular to the schistosity were commonly observed in quartz-rich layers in contact with black layers, suggesting that the shearing occurred with heterogeneous displacements along the black layer and that it occurred under the low confining pressure. This is in the incipient stage of a fracture zone. When shearing occurs along two thick neighboring black layers, the rock in between would be fractured, rotated and pulverized. In some cases, quartz-rich layers were fractured in a brittle manner and their fragments were rearranged to form micro-folds. Rocks are thus pulverized with multiple shear surfaces. Incipient fracture zones and their surroundings have many voids because they are made under low confining pressures near the ground surface, so oxidizing surface water easily percolates through them. Oxidizing water reacts with pyrite which is contained in pelitic schist, producing sulfuric acid through. The rocks therefore become deteriorated by the water-rock interaction and would be easily deformed. Such a combination of the physical processes of deformation and fracturing and the chemical process of weathering develop a sliding zone.
Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka
2016-06-28
A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure.
Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng
2018-04-17
Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.
Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.
Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian
2018-01-17
Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.
Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croy, Jason R.; Park, Joong Sun; Shin, Youngho
Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.
Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes
Croy, Jason R.; Park, Joong Sun; Shin, Youngho; ...
2016-10-13
Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich “layered-layered-spinel” material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (≳200 mAh/g) and good energy densities (>700 Wh/kg) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.
NASA Astrophysics Data System (ADS)
Foo, Yong-Lim
Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C backbonds. This, in turn, decreases the Si2H6 sticking probability and, hence, the sublayer deposition rate. This continues until a critical C coverage is reached allowing the nucleation and growth of a C-rich sublayer until the excess C is depleted. At this point, the self-organized bilayer process repeats itself.
Wang, Hai; Barceló, Irene; Lana-Villarreal, Teresa; Gómez, Roberto; Bonn, Mischa; Cánovas, Enrique
2014-10-08
We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor-acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.
Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.
Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei
2011-01-01
In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.
Ma, Yulin; Zhou, Yan; Du, Chunyu; ...
2017-02-15
Surface degradation on cycled lithium-ion battery cathode particles is governed not only by intrinsic thermodynamic properties of the material but also, oftentimes more predominantly, by the side reactions with the electrolytic solution. A superior electrolyte inhibits these undesired side reactions on the cathode and at the electrolyte interface, which consequently minimizes the deterioration of the cathode surface. The present study investigates a new boron-based anion receptor, tris(2,2,2-trifluoroethyl)borate (TTFEB), as an electrolyte additive in cells containing a lithium- and manganese-rich layered oxide cathode, Li 1.16Ni 0.2Co 0.1Mn 0.54O 2. Our electrochemical studies demonstrate that the cycling performance and Coulombic efficiency aremore » significantly improved because of the additive, in particular, under elevated temperature conditions. Spectroscopic analyses revealed that the addition of 0.5 wt % TTFEB is capable of reducing the content of lithium-containing inorganic species within the cathode-electrolyte interphase layer and minimizing the reduction of tetravalent Mn4+ at the cathode surface. Furthermore, our work introduces a novel additive highly effective in improving lithium-ion battery performance, highlights the importance in preserving the surface properties of cathode materials, and provides new insights on the working mechanism of electrolyte additives.« less
NASA Astrophysics Data System (ADS)
Chee, Sang-Soo; Lee, Jong-Hyun
2014-05-01
A solderable layer concurrently containing Cu-rich and Ni-rich phases (mixed-phase layer, MPL) was fabricated by direct current electroplating under varying process conditions. Current density was considered as the main parameter to adjust the microstructure and composition of MPL during the electroplating process, and deposit thickness were evaluated as functions of plating time. As a result, it was observed that the coral-like structure that consisted of Cu-rich and Ni-rich phases grew in the thickness direction. The most desirable microstructure was obtained at a relatively low current density of 0.4 mA/cm2. In other words, the surface was the smoothest and defect-free at this current density. The electroplating rate was slightly enhanced with an increase in current density. Investigations of its solid-state reaction properties, including the formation of Kirkendall voids, were also carried out after reflow soldering with Sn-3.0 Ag-0.5 Cu solder balls. In the solid-state aging experiment at 125°C, Kirkendall voids at the normal Sn-3.0 Ag-0.5 Cu solder/Cu interface were easily formed after just 240 h. Meanwhile, the presence of an intermetallic compound (IMC) layer created in the solder/MPL interface indicated a slightly lower growth rate, and no Kirkendall voids were observed in the IMC layer even after 720 h.
Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team.
McCord, T B; Hansen, G B; Fanale, F P; Carlson, R W; Matson, D L; Johnson, T V; Smythe, W D; Crowley, J K; Martin, P D; Ocampo, A; Hibbitts, C A; Granahan, J C
1998-05-22
Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.
Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer
McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.D.; Crowley, J.K.; Martin, P.D.; Ocampo, A.; Hibbitts, C.A.; Granahan, J.C.
1998-01-01
Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.
Theoretical study of the structures and chemical ordering of CoPd nanoalloys supported on MgO(001)
NASA Astrophysics Data System (ADS)
Taran, Songul; Garip, Ali Kemal; Arslan, Haydar
2016-06-01
Metal nanoalloys on oxide surface are a widely studied topic in surface science and technology. In this study, the structures of CoPd nanoalloys adsorbed on MgO(001) have been searched by basin-hopping global optimization method within an atomistic model. Two different sizes (34 and 38 atom) have been considered for all compositions of CoPd/MgO(001) nanoalloys. Co and Pd atoms, for all the compositions, have cube-on-cube (001) epitaxy with substrate at interface. For both sizes, we have found that Pd rich composition nanoalloys have three layers, Co rich composition nanoalloys have four layers in morphology. Excess energy and second difference in energy analyzes have been performed to investigate the relative stability of nanoalloys with respect to their size and composition.
Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces
NASA Astrophysics Data System (ADS)
Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan
2006-04-01
By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.
Alibardi, Lorenzo
2002-02-01
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer. Copyright 2002 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, J. S.; Wyrwas, R. B.; Cooke, G. A.
Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes.more » The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium, and chromium. This layer was removed by a cleaning process that left a pipe surface continuous in iron oxide/hydroxide (corrosion) with pockets of aluminum oxide, possibly gibbsite. The corrosion layer was ~ 50 11m (2 mil) thick over non-continuous pits less than ~ 50 11m deep (2 mils). Small particles of aluminum oxide were also detected under the corrosion layer. The ultrasonic transducer analysis of SN-278, like the previous primary pipes, did not reveal any noticeable thinning of the pipe wall. Analysis of the coupon cut from the pipe showed that the inside surface had a layer of tank waste residue that was partially detached from the pipe wall. This layer was easily scraped from the surface and was composed of two separate layers. The underlying layer was ~ 350 11m (14 mils) thick and composed of a cementation of small aluminum oxide (probably gibbsite) particles. A thinner layer on top of the aluminum oxide layer was rich in carbon and chlorine. Scattered pitting was observed on the inside pipe surface with one pit as deep as 200 11m (8 mils).« less
Sharpe, M.; Shmayda, W. T.; Schroder, W. U.
2016-05-25
The migration of tritium to the surfaces of aluminum 6061, oxygen-free, high-conductivity copper (OFHC), and stainless-steel 316 from the bulk metal was studied using low-pressure Tonks–Langmuir argon plasma. The plasma is shown to be effective at removing tritium from metal surfaces in a controlled manner. Tritium is removed in decreasing quantities with successive plasma exposures, which suggests a depletion of the surface and near-surface tritium inventories. A diffusion model was developed to predict tritium migration from the bulk and its accumulation in the water layers present on the metal surface. The model reproduces the rate of tritium re-growth on themore » surface for all three metals and can be used to calculate the triton solubility in the water layers present on metal surfaces. The ratio of surface-to-bulk solubilities at the water-layer/bulk-metal interface uniquely determines the concentration ratio between these two media. Removing the tritium-rich water layers induces tritium to migrate from the bulk to the surface. Furthermore, this process is driven by a concentration gradient that develops in the bulk because of the perturbation on the surface.« less
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Shelef, E.; Sutfin, N. A.; Piliouras, A.; Andresen, C. G.; Wilson, C. J.
2017-12-01
Movement and storage rates of soil and carbon along permafrost-dominated hillslopes may vary dramatically from long-term steady creeping, at centimeters per year, to rapid gullying, land sliding, and active layer detachments of meter to decimeter sized portions of hillslopes. The rate and drivers of hillslope soil processes may have strong feedbacks on microtopography and hydrology that in turn strongly influence vegetation dynamics and biogeochemistry within watersheds. We observed evidence of both steady soil creep and more catastrophic soil erosion processes occurring across three small watersheds in the southern Seward Peninsula, AK. In these watersheds, we inferred active soil creep processes from the occurrence of solifluction lobes with partially buried shrubs and tilted survey benchmarks on slopes lacking lobes. More dramatic and rapid erosion of soils was evidenced by active layer detachments, extensional cracks in the tundra vegetation, gullying, and both small- and large-scale soil failure scarps. The margins and heads of valley hollows exhibited failure scars up to 4m in height. The spatial distribution of actively eroding areas suggests that some portions of hilllslopes may be more susceptible to rapid erosion. Coring of hillslope soils suggests a possible association between more actively eroding areas and the presence of an ice-rich layer (> 50%) at depths of approximately 90 cm down to the inferred top of bedrock at depths at 170 to 200 cm. We observed that the surface of these hillslope regions appears to have greater microtopographic roughness with a more chaotic and "lumpy" surface than portions of the hillslope were no massive ice layers were encountered. We hypothesize that the extensional cracking and chaotic surface roughness may arise from small-scale soil failures triggered when the seasonal thaw depth intersects the ice-rich layer. It may be possible to identify hillslope regions underlain by ice-rich layers with greater susceptibility for localized erosion and deformation based on a quantitative characterization of the hillslope microtopography. Using drone-based LiDAR topographic data to be acquired in late summer of 2017, we will quantitatively explore the relationship between microtopography and hillslope ice-content.
NASA Astrophysics Data System (ADS)
van der Torren, A. J. H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S. J.
2017-12-01
The two-dimensional electron gas occurring between the band insulators SrTiO3 and LaAlO3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density and due to ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO3 layer at the growth temperature (around 800°C) in oxygen (pressure around 5 ×10-5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO2-rich surface and a conducting interface or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.
NASA Astrophysics Data System (ADS)
Moss, Tyler; Cao, Guoping; Was, Gary S.
2017-04-01
The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.
NASA Astrophysics Data System (ADS)
Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio
2016-05-01
The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.
Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio
2016-01-01
The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs. PMID:27226071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Debasish; Dahlberg, Kevin; King, David M.
2016-05-26
The energy density of current lithium-ion batteries (LIBs) based on layered LiMO 2 cathodes (M=Ni, Mn, Co: NMC; M=Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO 2) and alumina (Al 2O 3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coatingmore » improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1C/₋1C with respectively 4.35V and 4.4V UCV in 2Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al 2O 3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. Lastly, EIS confirmed that Al 2O 3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. In conclusion, the ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.« less
NASA Astrophysics Data System (ADS)
Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.
2014-08-01
The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.
Kioseoglou, J; Kalesaki, E; Lymperakis, L; Karakostas, Th; Komninou, Ph
2013-01-30
First-principles calculations relating to the atomic structure and electronic properties of {101[overline]3} GaN surfaces reveal significant differentiations between the two polarity orientations. The (101[overline]3) surface exhibits a remarkable morphological stability, stabilizing a metallic structure (Ga adlayer) over the entire range of the Ga chemical potential. In contrast, the semiconducting, cleaved surface is favoured on (101[overline]3[overline]) under extremely and moderately N-rich conditions, a Ga bilayer is stabilized under corresponding Ga-rich conditions and various transitions between metallic reconstructions take place in intermediate growth stoichiometries. Efficient growth schemes for smooth, two-dimensional GaN layers and the isolation of {101[overline]3} material from parasitic orientations are identified.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue
2015-11-01
Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2 efflux in karst groundwater-fed reservoir was much higher than that of reservoir in non-karst area due to groundwater of DIC-rich input from karst aquifer and thermal stratification.
NASA Astrophysics Data System (ADS)
Zarian, P.; Casey, J. F.; Miller, J.
2002-12-01
One of the unconventional research efforts that have been directed to reveal the structure of the lower oceanic crust is the application of Formation MicroScanner log in an ultra-slow spreading environment. Hole 1105A was cored during ODP Leg 179 to a depth of 158m on the Atlantis Platform in the Southwest Indian Ridge with a relative high recovery of 82.8% of gabbroic rocks. Open-hole logs, including FMS borehole images were acquired after the coring operation. Detailed modal, grain size and microstructural analyses of 147 thin sections reveal the relationships between deformation intensity, modal composition and rheology. The microstructural analyses showed that the majority of the oxide-rich gabbros exhibit high deformation intensity textures, which are present only in a few of the oxide-free gabbros. The oxide-rich gabbros represent ductile deformation zones and control the location of major deformation zones within these rocks. Oxide-rich layers can be clearly identified on electrical images and enabled the identification of different deformation features.The calibration of borehole images with core data provides us with more detailed information about the geometry of these oxide-rich layers within the magma chamber such as the dip and true pseudo-stratigraphic thickness of these layers. Also within the intervals of no core recovery, electrical images provide valuable information of the borehole wall. Brittle deformation features such as natural mineralized fractures can be documented throughout the borehole. Statistical results show that oxide-rich layers are relatively steep with an average dip of about 50 degrees and have a dominant E-W strike which is parallel to the ridge. These layers may represent the insitu crystallization of cummulate layers on a magma chamber wall elongated parallel to the ridge, or they may represent shear zones associated with near surface high angle normal faults that cut the main low angle detachment surface which caused the unroofing of the lower oceanic crust at the inner corner of the Ridge-Transform Intersection. These ductile shear zones appear to strike in a ridge parallel orientation, may have acted as syntectonic permeable pathways for fractionated melts infiltrated during the unroofing. Core-log integration also demonstrates the capabilities of electrical borehole images for structural analyses within a hard rock environment.
Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.
Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi
2018-05-03
We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.
In vitro bioactivity investigation of alkali treated Ti6Al7Nb alloy foams
NASA Astrophysics Data System (ADS)
Butev, Ezgi; Esen, Ziya; Bor, Sakir
2015-02-01
Biocompatible Ti6Al7Nb alloy foams with 70% porosity manufactured by space holder method were activated via alkali treatment using 5 M NaOH solution at 60 °C. The interconnected pore structures enabled formation of homogenous sodium rich coating on the foam surfaces by allowing penetration of alkali solution throughout the pores which had average size of 200 μm. The resulted coating layer having 500 nm thickness exhibited porous network morphology with 100 nm pore size. On the other hand, heat treatment conducted subsequent to alkali treatment at 600 °C in air transformed sodium rich coating into crystalline bioactive sodium titanate phases. Although the coatings obtained by additional heat treatment were mechanically stable and preserved their morphology, oxidation of the samples deteriorated the compressive strength significantly without affecting the elastic modulus. However, heat treated samples revealed better hydroxyapatite formation when soaked in simulated body fluid (SBF) compared to alkali treated foams. On the other hand, untreated surfaces containing bioactive TiO2 layer were observed to comprise of Ca and P rich precipitates only rather than hydroxyapatite within 15 days. The apatite formed on the treated porous surfaces was observed to have flower-like structure with Ca/P ratio around 1.5 close to that of natural bone.
Influences and interactions of inundation, peat, and snow on active layer thickness
Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; ...
2016-05-18
Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. Here, we investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. Furthermore, the weak ALT sensitivity to subsurface saturation suggests thatmore » changes in Arctic landscape hydrology may only have a minor effect on future ALT. But, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.« less
Helium-induced hardening effect in polycrystalline tungsten
NASA Astrophysics Data System (ADS)
Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang
2017-09-01
In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.
Preservation of Archaeal Surface Layer Structure During Mineralization
NASA Astrophysics Data System (ADS)
Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François
2016-05-01
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
NASA Astrophysics Data System (ADS)
Hughson, K.; Russell, C. T.; Schmidt, B. E.; Chilton, H.; Scully, J. E. C.; Sizemore, H. G.; Byrne, S.; Platz, T.; Raymond, C. A.
2017-12-01
During the Survey, High Altitude Mapping Orbit, and Low Altitude Mapping Orbit phases of the primary mission Dawn's Framing Camera observed a multitude of globally distributed lobate deposits. These flows were broadly interpreted as either similar to ice-cored/ice-cemented flows (Type 1 flows) on Earth and Mars, long run-out terrestrial or martian landslides (Type 2 flows), or highly mobile fluidized ejecta-like deposits (Type 3 flows) (Buczckowski et al., 2016; Schmidt et al., 2017). The Type 3 flows are morphologically similar to layered/pancake ejecta found on Mars and Ganymede where they are thought to be caused by impacts into ground ice rich substrates (Mouginis-Mark, 1979; Boyce et al., 2010). We assess the effects of target material strength, sliding friction, and vapor entrainment on the production of these features by comparing the ejecta mobility (EM: the ratio of the radius of the ejecta blanket to the radius of the parent crater) values for all Type 3 cerean flows to a ballistic/kinematic sliding model similar to the one developed by Weiss et al. (2014) to model EM for impacts into a variety of ground ice rich substrates of differing volatile content on Mars. Initial results suggest that, in order for these features to form, the cerean surface requires a large coefficient of sliding friction (>0.1), and that significant amounts of water be vaporized during impact. However, the model does not tightly constrain the strength of the target material (best-fit values range from granite-like to unconsolidated-sand-like). These results are consistent with a largely dry, rough, and thin surface layer underlain by material rich in pore-filling ground ice, even at low latitudes. Additionally, before the Fall Meeting we will attempt to constrain the thickness of the ice-poor surface layer. This will be done through a combined analysis of model results and morphometric parameters of individual Type 3 flows. Future implementation of this model will further incorporate compositional and geophysical knowledge attained from Dawn in order to better constrain the strength of the cerean surface.
Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.
Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin
2015-10-01
High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.
[Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].
Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui
2013-10-01
To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.
Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale
Wu, Yan; Ma, Cheng; Yang, Jihui; ...
2015-01-21
Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. However, their application is limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 tomore » 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. Thus, this discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.« less
Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying
NASA Astrophysics Data System (ADS)
Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.
2016-12-01
The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.
The influence of ZnO incorporation on the aqueous leaching characteristics of a borosilicate glass
NASA Astrophysics Data System (ADS)
Vance, E. R.; Gregg, D. J.; Karatchevtseva, I.; Griffiths, G. J.; Olufson, K.; Rees, Gregory J.; Hanna, John V.
2017-10-01
With increasing ZnO content, short term aqueous durability enhancement of all elements in borosilicate glasses containing 1.0 and 3.85 wt% ZnO was evident in 7-day PCT-B tests. In 14-day MCC-1 type leach tests conducted at 90 °C, surface alteration was very clear in the undoped glass via the formation of strongly altered amorphous material which tended to spall off the surface. No sign of crystallinity was detected by grazing incidence X-ray diffraction or electron microscopy of the surface layers and the surface material was very rich in silica. For the ZnO-bearing glasses, significant growth of particles following PCT leaching for 7 days was observed, due to a build-up of surface ZnO-containing Si-rich material and possible agglomeration. This alteration layer was also observed in MCC-1 type experiments in which cross-section SEM-EDS data were obtained. Raman, infrared and 11B and 29Si MAS NMR spectroscopy showed only slight changes in boron speciation on the addition of up to 9.1 wt% ZnO. Bulk positron annihilation lifetime spectra (PALS) of glasses containing 0-3.85 wt% ZnO could be analysed with three distinct lifetimes and also showed only slight differences. These results indicate that the basic glass structure was essentially not influenced by the ZnO content and that the passivation of the alteration layer is promoted by ZnO content.
NASA Astrophysics Data System (ADS)
Wang, Duhua
Although current chromate coatings function very well in corrosion protection for aircraft alloys, such as aluminum alloy 2024 T3, the U.S. Environmental Protection Agency is planning to totally ban the use of chromates as coating materials in the next decade or so because of their extremely toxic effect. For this purpose, both self-assembled layers and silicate magnesium-rich primers were tested to provide the corrosion protection for aluminum alloy. The long-term goal of this research is to develop a coating system to replace the current chromate coating for aircraft corrosion protection. Aluminum alloy 2024 T3 substrates were modified with self-assembled monolayer or multilayer thin films from different alkylsilane compounds. Mono-functional silanes, such as octadecyltrichlorosilane (C18SiCl3), can form a mixed hydrophobic monolayer or multilayer thin film on the aluminum oxide surface to provide a barrier to water and other electrolytes, so the corrosion resistance of the SAMs modified surface was increased significantly. On the other hand, the bi-functional silane self-assembly could attach the aluminum surface through the silicon headgroup while using its functional tailgroup to chemically bond the polymer coating, thus improving the adhesion between the aluminum substrate and coating substantially, and seems to contribute more to corrosion protection of aluminum substrate. Organosilanes were also combined with tetraethyl orthosilicate (TEOS) in propel ratios to form a sol-gel binder to make silicate magnesium-rich primers. Analogue to the inorganic zinc-rich coatings, the silicate magnesium-rich primers also showed excellent adhesion and solvent resistance. The sacrificial magnesium pigments and the chemically inert silicate binder both contribute to the anti-corrosion properties. Future studies will be focused on the formula optimization for better toughness, chemical resistance and anticorrosion performance.
NASA Astrophysics Data System (ADS)
Ghods, Pouria
The multi-scale investigation presented in this thesis was carried out to understand better the mechanisms of passivation and chloride-induced depassivation of carbon steel reinforcement in concrete. The study consisted of electrochemical experiments (electrochemical impedance spectroscopy, linear polarization resistance, free corrosion potential, anodic polarization), microscopic examinations (scanning electron microscopy, transmission electron microscopy, selected area diffraction, convergent beam electron diffraction), numerical modeling (finite element method), and spectroscopic studies (x-ray photoelectron, energy dispersed x-ray, electron energy loss). Electrochemical and microscopic studies showed that the composition of the pore solution and the surface conditions of the rebar affect the passivity and depassivation of carbon steel in concrete. It was demonstrated that crevices between mill scale and steel may become potential sites for depassivation and pit nucleation. The numerical investigation that was carried out to test this hypothesis confirmed that the ratio of chloride to hydroxide concentrations, Cl-/OH-, in crevices increased to levels higher than that of the bulk pore solution, making crevices more vulnerable to depassivation. Therefore, it was concluded that the variability associated with reported chloride thresholds might be attributed, at least in part, to the variability in mill scale properties resulting from the variability in manufacturing. The nano-scale microscopic and spectroscopic studies indicated the formation of 4-10 nm-thick passive oxide films on carbon steel in simulated concrete pore solutions, and these films consisted of two layers separated with an indistinct border. The inner layer was mainly composed of protective Fe2+-rich oxides that are in epitaxial relationship with the underlying steel surface; while the outer layer mostly consisted of (possibly porous) Fe3+-rich oxides, through which chlorides can penetrate. It was proposed that, in the presence of chlorides, Fe+2-rich oxides in the inner layer transform into Fe+3-rich oxides and potentially become un-protective. Although how this transformation occurs is still subject of future research, there are evidences showing that the process most likely leads to the formation of local anodic and cathodic sites on the steel surface.
Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.
Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna
2014-10-22
Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.
Tang, Zhongfeng; Bao, Junjie; Du, Qingxia; Shao, Yu; Gao, Minghao; Zou, Bangkun; Chen, Chunhua
2016-12-21
A complete and ordered layered structure on the surface of LiNi 0.815 Co 0.15 Al 0.035 O 2 (NCA) has been achieved via a facile surface-oxidation method with Na 2 S 2 O 8 . The field-emission transmission electron microscopy images clearly show that preoxidation of the hydroxide precursor can eliminate the crystal defects and convert Ni(OH) 2 into layered β-NiOOH, which leads to a highly ordered crystalline NCA, with its (006) planes perpendicular to the surface in the sintering process. X-ray photoelectron spectroscopy and Raman shift results demonstrate that the contents of Ni 2+ and Co 2+ ions are reduced with preoxidization on the surface of the hydroxide precursor. The level of Li + /Ni 2+ disordering in the modified NCA determined by the peak intensity ratio I (003) /I (104) in X-ray diffraction patterns decreases. Thanks to the complete and ordered layered structure on the surface of secondary particles, lithium ions can easily intercalate/extract in the discharging-charging process, leading to greatly improved electrochemical properties.
NASA Astrophysics Data System (ADS)
Fileman, Elaine S.; White, Daniel A.; Harmer, Rachel A.; Aytan, Ülgen; Tarran, Glen A.; Smyth, Tim; Atkinson, Angus
2017-11-01
The near-surface layer of the ocean is a habitat in which plankton are subjected to very different stresses to those in deeper layers. These include high turbulence and illumination, allowing increased visibility to predators, and exposure to harmful UV radiation. To provide insights into stress caused by UV, we examined the occurrence of protective UV-absorbing compounds called mycosporine-like amino acids (MAAs) in seston and zooplankton along an Atlantic Meridional Transect (AMT) between 45°S and 50°N. Seston contained most MAAs per unit phytoplankton carbon in the northern Atlantic gyre and equatorial region and this coincided with distribution of the nitrogen fixing cyanobacterium Trichodesmium spp. and increased UV transparency but not irradiance. Asterina-330 was the most abundant MAA in the seston. MAAs were detected in a third of the zooplankton tested and these taxa varied greatly both in the amount and diversity of the MAAs that they contained with copepods in temperate regions containing highest concentration of MAAs. Most commonly found MAAs in zooplankton were palythine and shinorine. Juvenile copepods were found not to contain any MAAs. We determined abundance and richness of zooplankton inhabiting the top 50 cm of the ocean. Zooplankton abundance and genera richness was low in the surface waters in contrast to the dome-shaped latitudinal trend in genera richness commonly found from depth-integrated zooplankton sampling. The lack of any measurable MAA compounds in nauplii across the whole transect was concomitant with their severe (3-6-fold) reduction in nauplii densities in the near-surface layer, as compared to the underlying water column. Overall we suggest that the UV stress on life near the surface, particularly in the warmer, oligotrophic and brightly-lit low latitudes, imposes radically different pressures on zooplankton communities compared to the rest of the epipelagic.
Manuel R. Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell; Rui Zhu; Karl Englund
2016-01-01
Hot water extraction (HWE) partially removes hemicelluloses from wood while leaving the majority of the lignin and cellulose; however, the lignin partially migrates to the inner surfaces of the cell wall where it can be deposited as a layer that is sometimes visible as droplets. This lignin-rich material was isolated via Soxhlet extraction with dichloromethane to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clearfield, Abraham
2014-11-01
In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above andmore » below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.« less
Effects of lead on oxidation behavior of Alloy 690TT within a high temperature aqueous environment
NASA Astrophysics Data System (ADS)
Hou, Qiang; Liu, Zhiyong; Li, Chengtao; Li, Xiaogang
2017-12-01
The chemical compositions, phases and structures of two oxide films on Alloy 690TT following exposure for 4400 h in pure water with and without lead at 320 °C were studied by surface analysis techniques. The analysis of a lead-doped oxide film prepared by a focused ion beam (FIB) demonstrated that both Cr-rich and Ni-rich oxides were alternatively distributed within the outer layer, whereas the inner layer was porous and poorly protected, causing severe corrosion of the alloy and a thicker film was formed. A duplex film model was proposed for the effects discussion of lead on the oxidation mechanism.
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
Geomicrobiology of Fe-rich crusts in Lake Superior sediment
NASA Astrophysics Data System (ADS)
Dittrich, M.; Monreau, L.; Quazi, S.; Raoof, B.; Chesnyuk, A.; Katsev, S.; Fulthorpe, R.
2012-04-01
The limnological puzzles of Lake Superior are increasingly attracting scientists, and very little is known about the sediments and their associated microflora. The sediments are organic poor (less than 5%C) and the lake is deep oligotrophic, with water temperatures at the bottom around 3C. Previous studies reveal Fe-rich layers in the sediments at multiple loccations around the lake. The origin and mechanisms of formation of this layer remain unknown. In this study we investigated geochemical and microbiological processes that may lead to the formation of a two cm thick iron layer about 10 cm below the sediment surface. Sediment cores from two stations (EM, 230m water depth and ED, 310m water depth) in the East Basin were used. We monitored oxygen and pH depth profiles with microsensors, porewater and sediment solid matter were analyzed for nutrient and metal contents. Furthermore, phosphorus and iron sequantial extractions of sediment cores have been perfomed. The total cell count was determined using DAPI epifluoresence microscopy. DNA was extracted from the sediment samples and 16S ribosonal RNA amplicons were analyzed with denaturing gradient gel electrophoresis (DGGE). For a more in depth analysis, DNA samples from 8-10 cm and 10-12 cm were sent to the Research and Testing Lab (Texas) for pyrosequencing of 16S rRNA gene amplicons amplified using barcoded universal primers 27f-519r. The scanning electron microscope (SEM) images from the iron layer 10-12cm show filaments that were encrusted with spheres ca. 20 nm in diameter. SEM observations of thin sections also indicate the presence of very fine particles showing various morphologies. Analyses of the deposit material by SEM and energy dispersive X-ray spectroscopy (EDS) indicate that bacteria cells surfaces served as nucleation surfaces for Fe-oxide formation. EDS line-scans through bacterial cells covered with precipitates reveal phosphorus and carbon peaks at interface between cell surface and Fe-particles. The cluster analysis performed on the DGGE separation of ribosomal RNA gene fragments revealed that the two iron layers were not highly similar to each other. We obtained a total of 26,062 16S rRNA gene sequence reads from the two iron layers and the layers directly above them, which were clustered into operational taxonomic units sharing 80% similarity or more. 64-70% of these clusters could not be classified below the phylum level. While the 8-10 cm sediment layers were dominated (46.5% of reads) by relatives of Paenisporosarcina, the iron layers contained far fewer gram positive organisms, far more proteobacteria, and an a high proportion of Nitrospira species which show relatively high similarity to organisms found in an iron II rich seep.
Is Ceres' deep interior ice-rich? Constraints from crater morphology
NASA Astrophysics Data System (ADS)
Bland, M. T.; Raymond, C. A.; Fu, R.; Marchi, S.; Castillo, J. C.; King, S. D.; Schenk, P.; Preusker, F.; Park, R. S.; Russell, C. T.
2016-12-01
Determining the composition and internal structure of Ceres is critical to understanding its origin and evolution. Analysis of the depths of Ceres' largest impact craters [Bland et al. 2016] and global shape [Fu et al. 2016] using data returned by NASA's Dawn spacecraft indicate that the dwarf planet's subsurface contains no more than 30% water ice by volume, with the other 70% consisting of salts (hydrated and/or anhydrous), clathrates, and phyllosilicates. Despite these findings, Ceres is unlikely to be ice-free. The GRaND instrument has detected probable water ice at decimeter depths (with strong latitudinal variations) [Prettyman et al. 2016], water ice has been detected in fresh [Combe et al. 2016] and permanently shadowed craters [Schorghofer et al. 2016], and the simple-complex morphologic transition diameter is consistent with a weak (icy) surface layer [Schenk et al. 2016]. Furthermore, a cryovolcanic origin for Ahuna Mons requires a source of water-rich material [Ruesch et al. 2016]. Here we use numerical simulations of the viscous relaxation of impact craters to provide new constraints on the water ice content of Ceres as a function of depth that enable a more complete understanding of the thickness and composition of its outer layer. These new simulations include three rheological layers: a high-viscosity near-surface layer, a weaker (possibly ice-rich layer), and an essentially immobile rocky layer at depth. Results are latitude (temperature) dependent; however, we generally find that retaining crater topography requires a high-viscosity (ice-poor) layer with a thickness of 50% the crater radius. For example, retaining a 100-km diameter crater at latitudes below 50o requires a high-viscosity (103x water ice) layer at least 30 km thick, if the underlying layer is pure ice. Deep, low-latitude craters 150 km in diameter are observed on Ceres [Bland et al. 2016], so the high-viscosity layer is likely >40 km thick. However, our results do not exclude the existence of a reservoir enriched in water ice at the base of Ceres' outer layer. We also find that the unique morphology of Ceres' largest crater, Kerwan, may result from viscous relaxation in a thin outer layer, potentially providing a constraint on the local thickness of Ceres outer shell.
NASA Astrophysics Data System (ADS)
Edmonds, Mary; Sardashti, Kasra; Wolf, Steven; Chagarov, Evgueni; Clemons, Max; Kent, Tyler; Park, Jun Hong; Tang, Kechao; McIntyre, Paul C.; Yoshida, Naomi; Dong, Lin; Holmes, Russell; Alvarez, Daniel; Kummel, Andrew C.
2017-02-01
Atomic layer deposition of a silicon rich SiNx layer on Si0.7Ge0.3(001), Si0.5Ge0.5(001), and Si0.5Ge0.5(110) surfaces has been achieved by sequential pulsing of Si2Cl6 and N2H4 precursors at a substrate temperature of 285 °C. XPS spectra show a higher binding energy shoulder peak on Si 2p indicative of SiOxNyClz bonding while Ge 2p and Ge 3d peaks show only a small amount of higher binding energy components consistent with only interfacial bonds, indicating the growth of SiOxNy on the SiGe surface with negligible subsurface reactions. Scanning tunneling spectroscopy measurements confirm that the SiNx interfacial layer forms an electrically passive surface on p-type Si0.70Ge0.30(001), Si0.50Ge0.50(110), and Si0.50Ge0.50(001) substrates as the surface Fermi level is unpinned and the electronic structure is free of states in the band gap. DFT calculations show that a Si rich a-SiO0.4N0,4 interlayer can produce lower interfacial defect density than stoichiometric a-SiO0.8N0.8, substoichiometric a-Si3N2, or stoichiometric a-Si3N4 interlayers by minimizing strain and bond breaking in the SiGe by the interlayer. Metal-oxide-semiconductor capacitors devices were fabricated on p-type Si0.7Ge0.3(001) and Si0.5Ge0.5(001) substrates with and without the insertion of an ALD SiOxNy interfacial layer, and the SiOxNy layer resulted in a decrease in interface state density near midgap with a comparable Cmax value.
Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert
2003-05-13
A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.
Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.
2016-08-01
Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).
Novel graphene-oxide-coated SPR interfaces for biosensing applications
NASA Astrophysics Data System (ADS)
Volkov, V. S.; Stebunov, Yu. V.; Yakubovsky, D. I.; Fedyanin, D. Yu.; Arsenin, A. V.
2017-09-01
Carbon allotropes-based nanomaterials possess unique physical and chemical properties including high surface area, the possibility of pi-stacking interaction with a wide range of biological objects, rich availability of oxygen-containing functional groups in graphene-oxide (GO), and excellent optical properties, which make them an ideal candidate for use as a universal immobilization platform in SPR biosensing. Here, we propose a new surface plasmon resonance (SPR) biosensing interface for sensitive and selective detection of small molecules. This interface is based on the GO linking layers deposited on the gold/copper surface of SPR sensor chips. To estimate the binding capacity of GO layers, modification of carboxyl groups to N-Hydroxysuccinimide esters was performed in the flow cell of SPR instrument. For comparison, the same procedure was applied to commercial sensor chips based on linking layers of carboxymethylated dextran.
Luo, Dong; Fang, Shaohua; Tamiya, Yu; Yang, Li; Hirano, Shin-Ichi
2016-08-01
High-voltage layered lithium transition-metal oxides are very promising cathodes for high-energy Li-ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large-scale application of layered lithium transition-metal oxides. In this work, an ultralong life LiMn1/3 Co1/3 Ni1/3 O2 microspherical cathode is prepared by constructing an Mn-rich surface. Its capacity retention ratio at 700 mA g(-1) is as large as 92.9% after 600 cycles. The energy dispersive X-ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as-prepared cathode is attributed to the mitigation of TM-ions segregation. Additionally, it is discovered that layered lithium transition-metal oxide cathodes with an Mn-rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition-metal oxides and will help to the design and development of high-energy cathodes with ultralong life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparative study on the passivation layers of copper sulphide minerals during bioleaching
NASA Astrophysics Data System (ADS)
Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long
2012-10-01
The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.
NASA Astrophysics Data System (ADS)
Huang, Jiajia; Liu, Haodong; Hu, Tao; Meng, Ying Shirley; Luo, Jian
2018-01-01
WO3 doping and accompanying spontaneous formation of a surface phase can substantially improve the discharge capacity, rate capability, and cycling stability of Co-free Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 cathode material. X-ray photoelectron spectroscopy, in conjunction with ion sputtering, shows that W segregates to the particle surfaces, decreases the surface Ni/Mn ratio, and changes the surface valence state. High-resolution transmission electron microscopy further suggests that W segregation increases surface structural disorder. The spontaneous and simultaneous changes in the surface structure, composition, and valence state represent the formation of a surface phase (complexion) as the preferred surface thermodynamic state. Consequently, the averaged discharge capacity is increased by ∼13% from 251 to 284 mAh g-1 at a low rate of C/20 and by ∼200% from 30 to 90 mAh g-1 at a high rate of 40C, in comparison with an undoped specimen processed under identical conditions. Moreover, after 100 cycles at a charge/discharge rate of 1C, the WO3 doped specimen retained a discharge capacity of 188 mAh g-1, being 27% higher than that of the undoped specimen. In a broader context, this work exemplifies an opportunity of utilizing spontaneously-formed surface phases as a scalable and cost-effective method to improve materials properties.
Surfactant-associated bacteria in the near-surface layer of the ocean.
Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William
2016-01-12
Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.
Surfactant-associated bacteria in the near-surface layer of the ocean
Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William
2016-01-01
Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514
NASA Astrophysics Data System (ADS)
Manakhov, Anton; Makhneva, Ekaterina; Skládal, Petr; Nečas, David; Čechal, Jan; Kalina, Lukáš; Eliáš, Marek; Zajíčková, Lenka
2016-01-01
The performance of immunosensing devices crucially depends on the methodology of antibody or antigen immobilization on the sensor surface. Hence, the stable intermediate layers capable of specific and reproducible binding of antibodies are required. Herein, we introduce the amine rich (NHx concentration of 6 at.%) layers prepared by pulsed plasma polymerization of cyclopropylamine (CPA) for functionalization of the quartz crystal microbalance (QCM) surface by the antibody specific to human serum albumin. In these layers the amine groups serve as anchor for the antibody binding. The sensitivity of QCM sensors prepared in this way surpasses the one for the previously reported sensors functionalized by the thiol-based self-assembled monolayers by the factor of 2. Our results thus show that CPA plasma polymers have a significant potential for further development of the active layers for biosensing applications.
NASA Astrophysics Data System (ADS)
Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.
2016-12-01
The Arctic, including Alaska, is currently undergoing a change in climate, with observed increases in both mean surface temperature and precipitation. The combination of these increases in precipitation and temperature has resulted in a permafrost condition that is susceptible to thermokarst. Changes in the landscape due to thermokarst takes place whenever ice-rich permafrost thaws and the land surface subsides due to the volume loss when ground-ice transitions to water. The important processes associated with thermokarst include surface ponding, changes in topography, vegetation distribution, soil moisture conditions, drainage patterns, and related erosion. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM using a frame-based methodology to track cohorts transitions and their respective proportions within each model grid cell. In the arctic tundra environment, the ATM tracks thermokarst related transitions among wetland tundra, graminoid tundra,shrub tundra and lakes. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The initial landcover distribution is based upon analysis of compiled remote sensing data sets at 30-m resolution. Remote sensing analysis and field measurements from previous and ongoing studies are used to determine the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors which help determine landscape transition rates. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic regions of Alaska.
Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere
NASA Astrophysics Data System (ADS)
Huston, David L.; Logan, Graham A.
2004-03-01
The presence of relatively abundant bedded sulfate deposits before 3.2 Ga and after 1.8 Ga, the peak in iron formation abundance between 3.2 and 1.8 Ga, and the aqueous geochemistry of sulfur and iron together suggest that the redox state and the abundances of sulfur and iron in the hydrosphere varied widely during the Archean and Proterozoic. We propose a layered hydrosphere prior to 3.2 Ga in which sulfate produced by atmospheric photolytic reactions was enriched in an upper layer, whereas the underlying layer was reduced and sulfur-poor. Between 3.2 and 2.4 Ga, sulfate reduction removed sulfate from the upper layer, producing broadly uniform, reduced, sulfur-poor and iron-rich oceans. As a result of increasing atmospheric oxygenation around 2.4 Ga, the flux of sulfate into the hydrosphere by oxidative weathering was greatly enhanced, producing layered oceans, with sulfate-enriched, iron-poor surface waters and reduced, sulfur-poor and iron-rich bottom waters. The rate at which this process proceeded varied between basins depending on the size and local environment of the basin. By 1.8 Ga, the hydrosphere was relatively sulfate-rich and iron-poor throughout. Variations in sulfur and iron abundances suggest that the redox state of the oceans was buffered by iron before 2.4 Ga and by sulfur after 1.8 Ga.
Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy
NASA Astrophysics Data System (ADS)
Ahmad, Maqsood
1987-04-01
The chemical composition of oxide films formed during thermal treatments of an Al-Li-Cu-Mg-Zr alloy has been studied by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. The oxide layers formed after oxidation of 2.5 minutes to 30 minutes at 530 °C in lab air have been characterized. In the early stages of oxidation the surface is composed of both the lithium rich oxides and magnesium rich oxides. However, after longer oxidation times the oxidation of lithium becomes predominant and the air/oxide interface is completely covered by lithium compounds. Oxidation products formed on the alloy surface have been studied by X-ray diffraction analysis. The following three phases, namely, Li2CO3, α-Li5AlO4, and γ-LiAlO2, were identified. During heat treatment in lab air at 530 °C and at atmospheric pressure the dominating reaction product is Li2CO3. Due to the selective oxidation of lithium a soft surface layer is developed. The width of the soft layer formed during solution heat treatments carried out in lab air and in salt bath environments has been determined by microhardness measurements. The lithium concentration profiles were calculated from a diffusion equation. The depletion of alloying elements from the near surface region during heat treatments has been investigated using energy dispersive X-ray analysis. The oxide morphology was examined using scanning electron microscopy and optical microscopy.
Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy
NASA Astrophysics Data System (ADS)
Ahmad, Maqsood
1987-05-01
The chemical composition of oxide films formed during thermal treatments of an Al-Li-Cu-Mg-Zr alloy has been studied by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. The oxide layers formed after oxidation of 2.5 minutes to 30 minutes at 530 °C in lab air have been characterized. In the early stages of oxidation the surface is composed of both the lithium rich oxides and magnesium rich oxides. However, after longer oxidation times the oxidation of lithium becomes predominant and the air/oxide interface is completely covered by lithium compounds. Oxidation products formed on the alloy surface have been studied by X-ray diffraction analysis. The following three phases, namely, Li2CO3, α-Li5AlO4, and γ-LiAlO2, were identified. During heat treatment in lab air at 530 °C and at atmospheric pressure the dominating reaction product is Li2CO3. Due to the selective oxidation of lithium a soft surface layer is developed. The width of the soft layer formed during solution heat treatments carried out in lab air and in salt bath environments has been determined by microhardness measurements. The lithium concentration profiles were calculated from a diffusion equation. The depletion of alloying elements from the near surface region during heat treatments has been investigated using energy dispersive X-ray analysis. The oxide morphology was examined using scanning electron microscopy and optical microscopy.
Structure and morphology of submarine slab slides: clues to origin and behavior
O'Leary, Dennis W.
1991-01-01
Geologic features suggest that some slab slides probably result from long-term strength degradation of weak layers deep in the homoclinal section. Time-dependent strain in clay-rich layers can create potential slide surfaces of low frictional strength. Competent layers are weak in tension and probably fragment in the first instance of, or even prior to, translation, and the allochthonous mass is readily transformed into a high-momentum debris flow. The structure and geomorphology of slab slides provide important clues to their origin and behavior. -from Author
Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China
Shao, Jinchao; Han, Guoqi; Yang, Dezhou
2015-01-01
Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing. PMID:26407324
Geomorphic Evidence for Martian Ground Ice and Climate Change
NASA Technical Reports Server (NTRS)
Kanner, L. C.; Allen, C. C.; Bell, M. S.
2004-01-01
Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (>60 ) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35+/- 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a < km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 deg.N- 65 deg.N).
Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.
Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter
2008-05-01
The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedek, Roy; Iddir, Hakim
The instabilities of Li-rich layered oxide xLi 2MnO 3•(1-x)LiMO 2 (lithium-ion-battery cathode materials) during the first charge are investigated using first-principles dynamical simulation. To complement our earlier simulations for (x = 0.4, M = Ni 0.5Mn 0.5), we address here: pure Li 2MnO 3; small x; M compositions that include Co; a composite with Co spinel: Li 2MnO 3•Li 2M 2O 4; a Li 2MnO 3 slab. Lastly, we discuss how the threshold fraction f of Li 2(1-f)MnO 3 delithiation at which instabilities occur at the surface, fth(surface), differs from that in the bulk, f th(bulk). Approaches to inhibit voltagemore » fade are discussed.« less
Benedek, Roy; Iddir, Hakim
2017-03-08
The instabilities of Li-rich layered oxide xLi 2MnO 3•(1-x)LiMO 2 (lithium-ion-battery cathode materials) during the first charge are investigated using first-principles dynamical simulation. To complement our earlier simulations for (x = 0.4, M = Ni 0.5Mn 0.5), we address here: pure Li 2MnO 3; small x; M compositions that include Co; a composite with Co spinel: Li 2MnO 3•Li 2M 2O 4; a Li 2MnO 3 slab. Lastly, we discuss how the threshold fraction f of Li 2(1-f)MnO 3 delithiation at which instabilities occur at the surface, fth(surface), differs from that in the bulk, f th(bulk). Approaches to inhibit voltagemore » fade are discussed.« less
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.
1998-01-01
To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.
NASA Astrophysics Data System (ADS)
Li, Xiaodong; Gao, Caitian; Wang, Jiangtao; Lu, Bingan; Chen, Wanjun; Song, Jie; Zhang, Shanshan; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing
2012-09-01
Highly transparent nanocrystalline TiO2 films have been fabricated by electrospinning (ES) technique based on a transmutation process from as-spun nanofibers with an appropriate amount of tri-ethanolamine (TEOA) added to the precursor. A possible evolution mechanism of the transparent nanocrystalline TiO2 films is proposed. It is found that the films prepared via transmutation from electrospun nanofibers possess rich bulk oxygen vacancies (BOVs, PL band at 621-640 nm) by using photoluminescence (PL) spectroscopy. Contrastively, the dominant peak in PL spectrum of the spin-coated film is the emission from surface oxygen vacancies (SOVs, PL band at 537-555 nm). The electrospun TiO2 films with rich BOVs induce large open-circuit voltage (Voc) and fill factor (FF) improvements in dye-sensitized solar cells (DSCs), and thus a large improvement of energy conversion efficiency (η). In addition, these performance advantages are maintained for a double-layer cell with a doctor-bladed ˜7 μm top layer (P25 nanometer TiO2, Degussa) and an electrospun ˜3 μm bottom layer. The double-layer cell yields a high η of 6.01%, which has increased by 14% as compared with that obtained from a 10 μm thick P25 film.
Jing, Qiang; Zhang, Mian; Huang, Xiang; Ren, Xiaoming; Wang, Peng; Lu, Zhenda
2017-06-08
In recent years, there has been an unprecedented rise in the research of halide perovskites because of their important optoelectronic applications, including photovoltaic cells, light-emitting diodes, photodetectors and lasers. The most pressing question concerns the stability of these materials. Here faster degradation and PL quenching are observed at higher iodine content for mixed-halide perovskite CsPb(Br x I 1-x ) 3 nanocrystals, and a simple yet effective method is reported to significantly enhance their stability. After selective etching with acetone, surface iodine is partially etched away to form a bromine-rich surface passivation layer on mixed-halide perovskite nanocrystals. This passivation layer remarkably stabilizes the nanocrystals, making their PL intensity improved by almost three orders of magnitude. It is expected that a similar passivation layer can also be applied to various other kinds of perovskite materials with poor stability issues.
Apatite grown in niobium by two-step plasma electrolytic oxidation.
Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue
2017-08-01
Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.
Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001)
NASA Astrophysics Data System (ADS)
Mula, Guido; Adelmann, C.; Moehl, S.; Oullier, J.; Daudin, B.
2001-11-01
We study the adsorption of Ga on (0001) GaN surfaces by reflection high-energy electron diffraction. It is shown that a dynamically stable Ga bilayer can be formed on the GaN surface for appropriate Ga fluxes and substrate temperatures. The influence of the presence of this Ga film on the growth mode of GaN on AlN(0001) by plasma-assisted molecular-beam epitaxy is studied. It is demonstrated that under nearly stoichiometric and N-rich conditions, the GaN layer relaxes elastically during the first stages of epitaxy. At high temperatures the growth follows a Stranski-Krastanov mode, whereas at lower temperatures kinetically formed flat platelets are observed. Under Ga-rich conditions-where a Ga bilayer is rapidly formed due to excess Ga accumulating on the surface-the growth follows a Frank-van der Merwe layer-by-layer mode at any growth temperature and no initial elastic relaxation occurs. Hence, it is concluded that excess Ga acts as a surfactant, effectively suppressing both Stranski-Krastanov islanding and platelet formation. It is further demonstrated that the Stranski-Krastanov transition is in competition with elastic relaxation by platelets, and it is only observed when relaxation by platelets is inefficient. As a result, a growth mode phase diagram is outlined for the growth of GaN on AlN(0001).
Wildfires caused by self-heating ignition of carbon-rich soil
NASA Astrophysics Data System (ADS)
Restuccia, Francesco; Huang, Xinyan; Rein, Guillermo
2017-04-01
Carbon-rich soils, like peat, cover more than 3% of the earth's land surface, and store roughly three times more carbon than the earth's plants. Carbon-rich soils are reactive porous materials, prone to smouldering combustion if the inert and moisture content are low enough. An example of carbon-rich soil combustion happens in peatlands, which are prone to wildfires both in boreal and tropical regions and where combustion is a commonly seen phenomena. The experimental work presented here focuses on understanding one of the ways carbon-rich soil can ignite. The ignition phenomenon is known as self-heating, which is due to soil undergoing spontaneous exothermic reactions in the presence of oxygen. In this work we investigate the effect of soil inorganic content by creating under controlled conditions soil samples with inorganic contents ranging from 3% to 86% of dry weight. Combining oven experiments with the Frank-Kamenetskii theory of ignition, the lumped kinetic and thermal parameters are determined. We then use these parameters to upscale the laboratory experiments to soil layers of different depths for a range of ambient temperatures ranging from 0 °C to 40 °C. Experimental results show that self-heating ignition in the different soil layers is possible. The kinetic analysis predicts the critical soil layer thicknesses required for self-ignition. For example, at 40 °C a soil layer of 3% inorganic content can be ignited through self-heating if it is thicker than 8.8 m. This is also the first experimental quantification of soil self-heating showing that indeed it is possible that wildfires are initiated by self-heating of the soil.
Hydrogen uptake causes molecular "avalanches" in palladium | Argonne
experimental and calculated strain distributions in the hydrogen-poor phase. The strains are consistent with a trapped hydrogen-rich surface layer. Middle: Comparison between experimental and calculated strain transformation. Comparison between experimental and calculated strain distributions in the hydrogen-poor phase
NASA Astrophysics Data System (ADS)
Parvan, V.; Mizrak, A.; Majumdar, I.; Ümsür, B.; Calvet, W.; Greiner, D.; Kaufmann, C. A.; Dittrich, T.; Avancini, E.; Lauermann, I.
2018-06-01
Either metallic Na or NaF were deposited onto Cu(In,Ga)Se2 surfaces and studied by photoelectron spectroscopy and surface photovoltage spectroscopy without breaking the ultra-high vacuum. The deposition of elemental Na at room temperature led to the formation of an intermediate Cu and Ga rich layer at the CIGSe surface, whereas for NaF the composition of the CIGSe surface remained unchanged. A metal like surface induced by an inverted near surface region with a reduced number of defect states was formed after the deposition of Na. Under the chosen experimental conditions, the near surface layer was independent on the amount of Na and stable in time. In contrast, the usage of NaF weakened the inversion and led to an increased band bending compared to the untreated CIGSe sample. The SPV signals decreased with proceeding time after the deposition of NaF.
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
NASA Technical Reports Server (NTRS)
Denis, Kevin L. (Inventor)
2018-01-01
Disclosed are systems, methods, and non-transitory computer-readable storage media for fabrication of silicon on insulator (SOI) wafers with a superconductive via for electrical connection to a groundplane. Fabrication of the SOI wafer with a superconductive via can involve depositing a superconducting groundplane onto a substrate with the superconducting groundplane having an oxidizing layer and a non-oxidizing layer. A layer of monocrystalline silicon can be bonded to the superconducting groundplane and a photoresist layer can be applied to the layer of monocrystalline silicon and the SOI wafer can be etched with the oxygen rich etching plasma, resulting in a monocrystalline silicon top layer with a via that exposes the superconducting groundplane. Then, the fabrication can involve depositing a superconducting surface layer to cover the via.
NASA Astrophysics Data System (ADS)
Wang, Ran; Wang, Jing; Chen, Shi; Gao, Ang; Su, Yuefeng; Wu, Feng
2018-01-01
Ni-rich layered materials have been regarded as competitive candidates for advanced lithium-ion batteries due to their high energy density, relatively low cost and environmentally-friendly nature. However, they suffer from serious degradation of cycling performance after exposing to air during their storage. Here we selected LiNi0.8Co0.1Mn0.1O2 as a typical Ni-rich positive material to study the influence upon exposure to ambient air on surface chemical composition and electrochemical performance. TEM confirms the existence of amorphous surface layer after contacting with atmosphere and the thickness is about 3-4 nm. The fresh LiNi0.8Co0.1Mn0.1O2 sample has capacity retention of 94.6% and 93.3% after 50 cycles at 0.2C and 1C, respectively, comparing to the 91.7% and 82.4% of the exposed sample. The charge-discharge curves and electrochemical impedance spectra indicate that exposure to air lead to increased impedance and polarization, which seriously affects LiNi0.8Co0.1Mn0.1O2 cycling properties. So, it is very important for Ni-rich cathode materials without contacting with atmosphere directly.
The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Bruckner, J.; Cabrol, N. A.; Calvin, W.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.;
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
The opportunity Rover's athena science investigation at Meridiani Planum, Mars
Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Brückner, J.; Cabrol, N.A.; Calvin, W.; Carr, M.H.; Christensen, P.R.; Clark, B. C.; Crumpler, L.; Des Marais, D.J.; D'Uston, C.; Economou, T.; Farmer, J.; Farrand, W.; Folkner, W.; Golombek, M.; Gorevan, S.; Grant, J. A.; Greeley, R.; Grotzinger, J.; Haskin, L.; Herkenhoff, K. E.; Hviid, S.; Johnson, J.; Klingelhofer, G.; Knoll, A.H.; Landis, G.; Lemmon, M.; Li, R.; Madsen, M.B.; Malin, M.C.; McLennan, S.M.; McSween, H.Y.; Ming, D. W.; Moersch, J.; Morris, R.V.; Parker, T.; Rice, J. W.; Richter, L.; Rieder, R.; Sims, M.; Smith, M.; Smith, P.; Soderblom, L.A.; Sullivan, R.; Wanke, H.; Wdowiak, T.; Wolff, M.; Yen, A.
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
NASA Astrophysics Data System (ADS)
Krzyżewski, Filip; Załuska-Kotur, Magdalena A.; Turski, Henryk; Sawicka, Marta; Skierbiszewski, Czesław
2017-01-01
The evolution of surface morphology during the growth of N-polar (000 1 bar) GaN under N-rich conditions is studied by kinetic Monte Carlo (kMC) simulations for two substrates miscuts 2° and 4°. The results are compared with experimentally observed surface morphologies of (000 1 bar) GaN layers grown by plasma-assisted molecular beam epitaxy. The proposed kMC two-component model of GaN(000 1 bar) surface where both types of atoms, nitrogen and gallium, attach to the surface and diffuse independently shows that at relatively high rates of the step flow (miscut angle < 2 °) the low mobility of gallium adatoms causes surface instabilities and leads to experimentally observed roughening while for low rates of the step flow (miscut 4°), smooth surface can be obtained. In the presence of almost immobile nitrogen atoms under N-rich conditions crystal growth is realized by the process of two-dimensional island nucleation and coalescence. Larger crystal miscut, lower growth rate or higher temperature results in similar effect of the surface smoothening. We show that the surface also smoothens for the growth conditions with very high N-excess. In the presence of large number of nitrogen atoms the mobility of gallium atoms changes locally thus providing easier coalescence of separated island.
Geomorphic Evidence for Martian Ground Ice and Climate Change
NASA Technical Reports Server (NTRS)
Kanner, L. C.; Allen, C. C.; Bell, M. S.
2004-01-01
Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (greater than 60) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35 plus or minus 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a less than km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 degrees N- 65 degrees N).
Irreversible transport in the stratosphere by internal waves of short vertical wavelength
NASA Technical Reports Server (NTRS)
Danielsen, Edwin F.; Hipskind, R. S.; Starr, Walter L.; Vedder, James F.; Gaines, Steven E.; Kley, Dieter; Kelley, Ken K.
1991-01-01
Measurements performed during stratospheric flights of the U-2 aircraft confirm that cross-jet transport is dominated by waves, not by large-scale circulations. Monotonic gradients of trace constituents normal to the jet axis, with upper stratospheric tracers increasing poleward and tropospheric tracers increasing equatorward, are augmented by large-scale confluence as the jet intensifies during cyclogenesis. These gradients are rotated, intensified, and significantly increased in areas as their mixing ratio surfaces are folded by the differential transport of a very low frequency transverse wave. The quasi-horizontal transport produces a laminar structure with stable layers rich in upper stratospheric tracers alternating vertically with less stable layers rich in tropospheric tracers. The transport proceeds toward irreversibility at higher frequency, shear-gravity waves extend the folding to smaller horizontal scales.
el-Ghannam, A; Ducheyne, P; Shapiro, I M
1997-02-01
The objective of the study was to examine the effect of alkali ion release, pH control and buffer capacity on the expression of the osteoblastic phenotype. In addition we determined the importance of modifications of the surface of porous bioactive glass (BG) on the activity of rat calvaria osteoblasts in vitro. We found that at a low tissue culture medium (TCM) volume to BG surface area (Vol/SA) ratio, the products of glass corrosion elevated the pH of the TCM to a value that adversely affected cellular activity; thus, the matrix synthesized by the cells was non-mineralized. On the other hand, when the Vol/SA was high and the buffer capacity of the medium was not exceeded, the cells generated a mineralized extracellular matrix. Addressing the second issue, we observed that modification of the composition of the BG surface markedly influenced osteoblast activity. BG that was coated with either a calcium phosphate-rich layer only or a serum protein layer changed the phenotypic characteristics of the osteoblasts. The presence of either of these surfaces lowered the alkaline phosphatase activity of the attached cells; this finding indicated that the osteoblast phenotype was not conserved. However, when the BG was coated with a bilayer of calcium phosphate and serum proteins, the alkaline phosphatase (AP) activity was elevated and the extracellular matrix contained characteristic bone markers. Our findings indicate that the calcium phosphate-rich layer promotes adsorption and concentration of proteins from the TCM, and it is utilized by the osteoblasts to form the mineralized extracellular matrix.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-03-01
In the production of n-type crystalline silicon solar cells with boron diffused emitters, the formation of a boron rich layer (BRL) is a common phenomenon and is largely responsible for bulk lifetime degradation. The phenomenon of BRL formation during diffusion of boron spin-on dopant and its impact on bulk lifetime degradation are investigated in this work. The BRL formed beneath the borosilicate glass layer has thicknesses varying from 10 nm-150 nm depending on the diffusion conditions. The effective and bulk minority carrier lifetimes, measured with Al2O3 deposited layers and a quinhydron-methanol solution, show that carrier lifetime degradation is proportional to the BRL thicknesses and their surface recombination velocities. The controlled diffusion processes and different oxidation techniques used in this work can partially reduce the BRL thickness and improve carrier lifetime by more than 10%. But for BRL thicknesses higher than 50 nm, different etching techniques further lower the carrier lifetime and the degradation in the device cannot be recovered.
Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour
NASA Astrophysics Data System (ADS)
McKinnon, William B.; Nimmo, Francis; Wong, Teresa; Schenk, Paul M.; White, Oliver L.; Roberts, J. H.; Moore, J. M.; Spencer, J. R.; Howard, A. D.; Umurhan, O. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Dalle Ore, C.; Gladstone, R.; Grundy, W.; Howard, A.; Lauer, T.; Linscott, I.; Nimmo, F.; Olkin, C.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; Weaver, H.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; New Horizons Geology, Geophysics and Imaging Theme Team
2016-06-01
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.
Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour.
McKinnon, William B; Nimmo, Francis; Wong, Teresa; Schenk, Paul M; White, Oliver L; Roberts, J H; Moore, J M; Spencer, J R; Howard, A D; Umurhan, O M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E
2016-06-02
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.
Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations
NASA Astrophysics Data System (ADS)
Wong, T.; McKinnon, W. B.; Schenk, P.
2016-12-01
Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.
1991-04-24
2X2) structure caracteristic of a cation rich surface. During the growth we observe intense RHEED oscillations, which show that the growth of Hg...layer which then suffers plastic deformation when the energy stored in the epilayer (proportional to its thickness) is sufficient to create dislocations...table I we present the variation of the in plane lattice mismatch vs. layerthickness. Plastic deformation of the layer starts around 4 to 5 ML, which can
Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuai; Feng, Xin; Wang, Xuelong
The Li-rich layer-structured oxides are regarded one of the most promising candidates of cathode materials for high energy-density Li-ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered materialmore » is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li-rich layer-structured Li 1.2Mo 0.6Fe 0.2O 2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In-depth studies such as aberration-corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X-ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. In conclusion, this new strategy provides revelation for the development of the Li-rich layered oxides with mitigated potential decay and a longer lifespan.« less
Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing
Liu, Shuai; Feng, Xin; Wang, Xuelong; ...
2018-02-12
The Li-rich layer-structured oxides are regarded one of the most promising candidates of cathode materials for high energy-density Li-ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered materialmore » is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li-rich layer-structured Li 1.2Mo 0.6Fe 0.2O 2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In-depth studies such as aberration-corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X-ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. In conclusion, this new strategy provides revelation for the development of the Li-rich layered oxides with mitigated potential decay and a longer lifespan.« less
Surface reflectance anisotropy of indium-terminated GaAs(100) surfaces
NASA Astrophysics Data System (ADS)
Springer, C.; Resch-Esser, U.; Goletti, C.; Richter, W.; Fimland, B. O.
1997-04-01
The growth of thin indium-layers on the GaAs(100) As-rich {(2 × 4)}/{c(2 × 8) } surface has been investigated by reflectance anisotropy spectroscopy (RAS), LEED and AES. Clean surfaces of the {(2 × 4)}/{c(2 × 8) } reconstruction were prepared in UHV by thermal desorption of a protective arsenic layer deposited on homoepitaxially grown MBE layers. Room temperature deposition of indium on the {(2 × 4)}/{c(2 × 8) } surface and subsequent annealing at 450°C leads to a 90° rotation of symmetry in the LEED pattern at a threshold coverage of 0.5 monolayers, i.e. a change from the {(2 × 4)}/{c(2 × 8) } to the {(4 × 2)}/{c(8 × 2) } reconstruction. The RAS spectra show the evolution of a distinct negative feature at 1.8 eV, that shifts to 2.1 eV after annealing, corresponding to optical transitions attributed to In-dimers orientated along the [011]-direction. AES analysis shows a change in growth mode beyond 0.5 ML indicating saturation of all available adsorption sites at this coverage and RAS spectra show a contribution from additional disordered In. The AES spectra display no evidence of a surface exchange reaction between gallium and arsenic atoms, thus indicating a surface termination by In-dimers adsorbed on a layer of As.
Controlling mechanisms of metals release form cement-based waste form in acetic acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kuang Ye.
1991-01-01
The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less
Oie, Tomonori; Suzuki, Hisato; Fukuda, Toru; Murayama, Yoshinobu; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide
2009-11-01
: We demonstrated that the tactile mapping system (TMS) has a high degree of spatial precision in the distribution mapping of surface elasticity of tissues or organs. : Samples used were a circumferential section of a small-caliber porcine artery (diameter: ∼3 mm) and an elasticity test pattern with a line and space configuration for the distribution mapping of elasticity, prepared by regional micropatterning of a 14-μm thick gelatin hydrogel coating on a polyurethane sheet. Surface topography and elasticity in normal saline were simultaneously investigated by TMS using a probe with a diameter of 5 or 12 μm, a spatial interval of 1 to 5 μm, and an indentation depth of 4 μm. : In the test pattern, a spatial resolution in TMS of <5 μm was acquired under water with a minimal probe diameter and spatial interval of the probe movement. TMS was used for the distribution mapping of surface elasticity in a flat, circumferential section (thickness: ∼0.5 mm) of a porcine artery, and the concentric layers of the vascular wall, including the collagen-rich and elastin-rich layers, could be clearly differentiated in terms of surface elasticity at the spatial resolution of <2 μm. : TMS is a simple and inexpensive technique for the distribution mapping of the surface elasticity in vascular tissues at the spatial resolution <2 μm. TMS has the ability to analyze a complex structure of the tissue samples under normal saline.
Submesoscale-selective compensation of fronts in a salinity-stratified ocean.
Spiro Jaeger, Gualtiero; Mahadevan, Amala
2018-02-01
Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.
Vertical ozone characteristics in urban boundary layer in Beijing.
Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi
2013-07-01
Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.
Pleistocene ice-rich yedoma in Interior Alaska
NASA Astrophysics Data System (ADS)
Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.
2011-12-01
Yedoma, or the ice-rich syngenetic permafrost with large ice wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek area, Boot Lake area, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of ice-rich silt with large ice wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding area revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-ice (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between ice wedges are extremely ice-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave ice were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek area) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the area are extremely ice-rich. Thickness of ice-rich silt varies from 10 m to more than 26 m, and volume of wedge-ice reaches 35-45%. Soil between ice wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to climate changes during Holocene or to wildfires, or both. The ice-poor layer of thawed and refrozen sediments (gravimetric moisture content usually does not exceed 40%) was encountered in many boreholes below the thin ice-rich intermediate layer (gravimetric moisture content usually exceeds 100%). These two layers separate ice wedges from the active layer and protect them from further thawing. Such structure of the upper permafrost at different yedoma sites of Interior Alaska can explain a relatively rare occurrence of surface features related to yedoma degradation such as thermokarst mounds and erosional gullies developed along ice wedges.
NASA Astrophysics Data System (ADS)
Wertheimer, Michael R.; St-Georges-Robillard, Amélie; Lerouge, Sophie; Mwale, Fackson; Elkin, Bentsian; Oehr, Christian; Wirges, Werner; Gerhard, Reimund
2012-11-01
In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.
NASA Astrophysics Data System (ADS)
Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang
2018-07-01
High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.
Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.
Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei
2018-04-09
Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.
NASA Astrophysics Data System (ADS)
Laß, K.; Bange, H. W.; Friedrichs, G.
2013-02-01
The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE), southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material) during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance. We suggest that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds are responsible for the pronounced seasonality.
NASA Astrophysics Data System (ADS)
Laß, K.; Bange, H. W.; Friedrichs, G.
2013-08-01
The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE), southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material) during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.
NASA Astrophysics Data System (ADS)
Koschinsky, Andrea
Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.
Turf Hummocks in Arctic Canada: Characteristics and Development
NASA Astrophysics Data System (ADS)
Tarnocai, C.; Walker, D. A.; Broll, G.
2006-12-01
Turf hummocks, which occur commonly in the Arctic, were studied in three ecoclimatic regions, ranging from Banks Island in the Mid-Arctic, through Ellef Ringnes and Prince Patrick islands in the Oceanic High Arctic, to Ellesmere Island in the High Arctic. These hummocks are dome-shaped features that generally occur on 5- 20% slopes and are associated with silty loam soils. They are generally 11-40 cm high, 18-60 cm in diameter, and have a thaw depth of 30-50 cm. The organic carbon and total nitrogen contents of the organic-rich soil horizons are high. Soil temperatures under the tops of hummocks are 3-5°C higher than under the adjoining interhummock troughs. The combination of these factors provides a much more favorable soil environment for biological activity, including plant growth, than does the surrounding area. The vegetation cover on these turf hummocks is dominantly mosses and lichens with Luzula sp. on Prince Patrick and Ellef Ringnes islands and Dryas integrifolia and Cassiope tetragona on Banks and Ellesmere islands. The development of turf hummocks is usually initiated by small polygons, whose diameters determine the initial diameters of the hummocks. Establishment of vegetation on these small polygons provides the next step in their development and, if eolian material is available, the vegetation captures this material and the hummock builds up. The internal morphology of turf hummocks reveals multiple buried, organic-rich layers, representing former hummock surfaces. The stone- and gravel-free silty loam composing the soil horizons between these organic- rich layers is very different from the underlying materials composing the former small polygon. These soil horizons also contain a high amount of well-decomposed organic matter that is dispersed uniformly throughout the horizons. Radiocarbon dates for the buried organic layers suggest a gradual build-up process in which the age of the organic layers increases with depth. A minimum of 1200-2000 years is required for the turf hummocks to develop to their present stage. Data obtained from the multiple organic-rich layers suggest that each former hummock surface was stable for 100 years or more. This paper provides information about the internal and external morphology and thermal properties of the turf hummocks, and a model for their development.
NASA Astrophysics Data System (ADS)
Bockelée-Morvan, Dominique; Crovisier, J.; Erard, S.; Capaccioni, F.; Leyrat, C.; Filacchione, G.; Drossart, P.; Encrenaz, T.; Biver, N.; de Sanctis, M.-C.; Schmitt, B.; Kührt, E.; Capria, M.-T.; Combes, M.; Combi, M.; Fougere, N.; Arnold, G.; Fink, U.; Ip, W.; Migliorini, A.; Piccioni, G.; Tozzi, G.
2016-11-01
Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from 2015 July to September, I.e. around perihelion (2015 August 13), with the high-resolution channel of the Visible and Infrared Thermal Imaging Spectrometer instrument onboard Rosetta. We present the analysis of fluorescence emission lines of H2O, CO2, 13CO2, OCS, and CH4 detected in limb sounding with the field of view at 2.7-5 km from the comet centre. Measurements are sampling outgassing from the illuminated Southern hemisphere, as revealed by H2O and CO2 raster maps, which show anisotropic distributions, aligned along the projected rotation axis. An abrupt increase of water production is observed 6 d after perihelion. In the meantime, CO2, CH4, and OCS abundances relative to water increased by a factor of 2 to reach mean values of 32, 0.47, and 0.18 per cent, respectively, averaging post-perihelion data. We interpret these changes as resulting from the erosion of volatile-poor surface layers. Sustained dust ablation due to the sublimation of water ice maintained volatile-rich layers near the surface until at least the end of the considered period, as expected for low thermal inertia surface layers. The large abundance measured for CO2 should be representative of the 67P nucleus original composition, and indicates that 67P is a CO2-rich comet. Comparison with abundance ratios measured in the Northern hemisphere shows that seasons play an important role in comet outgassing. The low CO2/H2O values measured above the illuminated Northern hemisphere are not original, but the result of the devolatilization of the uppermost layers.
NASA Astrophysics Data System (ADS)
Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Stach, Eric A.; Kim, Seung Min; Chang, Wonyoung
2016-09-01
We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime.
NASA Astrophysics Data System (ADS)
Liang, Jiyuan; Qu, Tingting; Kun, Xiang; Zhang, Yu; Chen, Shanyong; Cao, Yuan-Cheng; Xie, Mingjiang; Guo, Xuefeng
2018-04-01
Biomass-derived carbon (BDCs) materials are receiving extensive attention as electrode materials for energy storage because of the considerable economic value offering possibility for practical applications, but the electrochemical capacitance of BDCs are usually relatively low resulted from limited electric double layer capacitance. Herein, an oxygen-rich porous carbon (KMAC) was fabricated through a rapid and convenient microwave assisted carbonization and KOH activation of camellia oleifera shell. The obtained KMAC possesses three-dimensional porous architecture, large surface area (1229 m2/g) and rich oxygen functionalities (C/O ratio of 1.66). As the electrode materials for supercapacitor, KMAC exhibits superior supercapacitive performances as compared to the activated carbon (KAC) derived from direct carbonization/KOH activation method in 2.0 M H2SO4 (315 F/g vs. 202 F/g) and 6.0 M KOH (251 F/g vs. 214 F/g) electrolyte due to the rich oxygen-containing functional groups on the surface of porous carbon resulted from the developed microwave-assisted carbonization/activation approach.
Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert
2002-01-01
A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lii-Rosales, Ann; Zhou, Yinghui; Wallingford, Mark
When using scanning tunneling microscopy, we characterize a surface carbide that forms such that Dy is deposited on the basal plane of graphite. In order to form carbide islands on terraces, Dy is first deposited at 650–800 K, which forms large metallic islands. Upon annealing at 1000 K, these clusters convert to carbide. Deposition directly at 1000 K is ineffective because nucleation on terraces is inhibited. Reaction is signaled by the fact that each carbide cluster is partially or totally surrounded by an etch pit. The etch pit is one carbon layer deep for most carbide clusters. Carbide clusters aremore » also identifiable by striations on their surfaces. Based on mass balance, and assuming that only the surface layer of carbon is involved in the reaction, the carbide has stoichiometry D y 2 C . This is Dy-rich compared with the most common bulk carbide Dy C 2 , which may reflect limited surface carbon transport to the carbide.« less
Geological evidence for solid-state convection in Europa's ice shell.
Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L
1998-01-22
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Geological evidence for solid-state convection in Europa's ice shell
Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.
1998-01-01
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Present-day Exposures of Water Ice in the Northern Mid-latitudes of Mars
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Kanner, Lisa C.
2007-01-01
Water ice is exposed in the martian north polar cap, but is rarely exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60deg. We have examined mid-latitude areas of the northern plains displaying residual ice-rich layers, and report evidence of present-day surface exposures of water ice. These exposures, if confirmed, could con-strain the latitudinal and temporal stability of surface ice on Mars.
NASA Astrophysics Data System (ADS)
Meng, T. X.; Guo, Q.; Xi, W.; Ding, W. Q.; Liu, X. Z.; Lin, N. M.; Yu, S. W.; Liu, X. P.
2018-03-01
Double glow plasma surface alloying was applied to prepare chromizing layer in the surface of AISI440B stainless steel. Prior to chromizing, the stainless steel was etched by microwave plasma chemical vapor deposition to change the surface morphology and composition, and then heated for chromizing at 950 °C for 3 h. The cyclical oxidation of steel after chromizing was carried out at 900 °C for 100 h. Scanning electron microscopy, glow discharge optical emission spectrometer and X-ray diffractometer were used to characterize microstructure, composition and phase structure of alloyed and oxidized samples. The results show that the surface was composed of the Cr-rich top layer and Cr23C6, Cr7C3 and {Cr,Fe}7C3 below layer after chromizing. The bonding between the chromizing layer and the substrate after etching treatment was obviously strengthened. AISI440B steel shows a poor oxidation resistance and the weight gain oxidized for 100 h was up to 31.1 mg/cm2. Weight gains for chromizing and etching + chromizing treated samples were 0.67 mg/cm2 and 8 mg/cm2, respectively. Both oxidized surfaces of chromizing and etching + chromizing were composed of Cr2O3, but the oxide scale of etching + chromizing treated samples was more compact than that of samples without etching.
NASA Astrophysics Data System (ADS)
Kurosawa, Masashi; Taoka, Noriyuki; Ikenoue, Hiroshi; Nakatsuka, Osamu; Zaima, Shigeaki
2014-02-01
We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge1-xSnx (x < 0.02) on SiO2 crystallized by pulsed laser annealing (PLA) in air and water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (˜800 nmϕ) growth of Ge0.98Sn0.02 polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ˜0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.
High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.
Zhao, Jing; Ji, Honghong; Wang, Tiansheng
2017-12-29
The high-cycle, push-pull fatigue fracture behavior of high-C, Si-Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push-pull fatigue limits at 10⁷ cycles were estimated as 710-889 MPa, for the samples isothermally transformed at the temperature range of 220-260 °C through data extrapolation, measured under the maximum cycle number of 10⁵. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.
High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel
Zhao, Jing; Ji, Honghong
2017-01-01
The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325
Park, Kwangwook; Beaton, Daniel; Steirer, Kenneth X.; ...
2017-01-27
Here, we investigate the role of interface initiation conditions on the growth of ZnSe/GaAs heterovalent heterostructures. ZnSe epilayers were grown on a GaAs surface with various degrees of As-termination and the application of either a Zn or Se pre-treatment. Structural analysis revealed that Zn pre-treatment of an As-rich GaAs surface suppresses Ga 2Se 3 formation at the interface and promotes the growth of high crystal quality ZnSe. This is confirmed with low-temperature photoluminescence. However, moderation of Ga-Se bonding through a Se pre-treatment of an As-rich GaAs surface can prevent excessive intermixing at the interface and promote excitonic emission in themore » underlying GaAs layer. These results provide guidance on how best to prepare heterovalent interfaces for various applications.« less
Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei
2017-09-13
In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.
O electrolyte for bio-application
NASA Astrophysics Data System (ADS)
Naddaf, M.; Almariri, A.
2014-09-01
Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.
Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi
2017-04-01
We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Corrosion and Microstructure Correlation in Molten LiCl-KCl Medium
NASA Astrophysics Data System (ADS)
Ravi Shankar, A.; Mathiya, S.; Thyagarajan, K.; Kamachi Mudali, U.
2010-07-01
Pyrochemical reprocessing in molten chloride salt medium has been considered as one of the best options for the reprocessing of spent metallic fuels of future fast breeder reactors. The unit operations such as salt preparation, electrorefining, and cathode processing involve the presence of molten LiCl-KCl eutectic salt from 673 to 1373 K (400 to 1100 °C). The present work discusses the corrosion behavior of electroformed nickel (EF Ni) without and with nickel-tungsten (Ni-W) coating, 316L SS, and INCONEL 625 alloy in molten LiCl-KCl eutectic salt at 673 K, 773 K, and 873 K (400 °C, 500 °C, and 600 °C) in the presence of air. The weight percent loss of the exposed samples was determined by the weight loss method and surface morphology of the salt exposed, and product layers were examined by scanning electron microscopy (SEM). X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) analysis were also carried out on the exposed and corrosion product layers to understand the phases present and the corrosion mechanism involved. The results of the present study indicated that INCONEL 625 alloy showed superior corrosion resistance compared to electroformed nickel (EF Ni), EF Ni with nickel-tungsten (Ni-W) coating (EF Ni-W), and 316L SS. The EF Ni with Ni-W coating exhibits better corrosion resistance than EF Ni without tungsten coating. Based on the surface morphology, XRD, and EDX analysis of corrosion product layers, the mechanism of corrosion of INCONEL 625 and 316L involves formation of chromium-rich compound at the surface and subsequent spallation. For the EF Ni, the porous thick NiO corrosion product allows the penetration of salt, thus accelerating the corrosion. Improved corrosion resistance of EF Ni-W was attributed to the W-rich NiO layer, while for INCONEL 625, the adherent and protective NiO layer improved the corrosion resistance. The article highlights the results of the present investigation.
Modeling and observational occurrences of near-surface drainage in Utopia Planitia, Mars
NASA Astrophysics Data System (ADS)
Costard, F.; Sejourne, A.; Kargel, J.; Godin, E.
2016-12-01
During the past 15 years, evidence for an ice-rich planet Mars has rapidly mounted, become increasingly varied in terms of types of deposits and types of observational data, and has become more widespread across the surface. The mid-latitudes of Mars, especially Utopia Planitia, show many types of interesting landforms similar to those in periglacial landscapes on Earth that suggest the presence of ice-rich permafrost. These include thermal contraction polygonal networks, scalloped terrains similar to thermokarst pits, debris flows, small mounds like pingos and rock glaciers. Here, we address questions concerning the influence of meltwater in the Utopia Planitia (UP) landscape using analogs of near-surface melting and drainage along ice-wedge troughs on Bylot Island, northern Canada. In Utopia Planitia, based on the identification of sinuous channel-like pits within polygonal networks, we suggest that episodic underground melting was possible under severe periglacial climate conditions. In UP, the collapse pattern and morphology of unconnected sinuous elongated pits that follow the polygon crack are similar to underground melting in Bylot Island (Nunavut, Canada). Based on this terrestrial analogue, we develop a thermal model that consists of a thick insulating dusty layer over ice-saturated dust during a period of slight climatic warming relative to today's climate. In the model, the melting point is reached at depths down to 150 m. We suggest that small-scale melting could have occurred below ground within ground-ice polygonal fractures and pooled in underground cavities. Then the water may have been released episodically causing mechanical erosion as well as undermining and collapse. After melting, the dry surface dusty layer might have been blown away, thus exposing the degraded terrain of the substrate layer.
Wu, Feng; Liu, Jianrui; Li, Li; Zhang, Xiaoxiao; Luo, Rui; Ye, Yusheng; Chen, Renjie
2016-09-07
Composites of lithium-rich Li1.2Ni0.2Mn0.6O2 and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) are synthesized through coprecipitation followed by a wet coating method. In the resulting samples, the amorphous conductive polymer films on the surface of the Li1.2Ni0.2Mn0.6O2 particles are 5-20 nm thick. The electrochemical properties of Li1.2Ni0.2Mn0.6O2 are obviously enhanced after PSS coating. The composite sample with an optimal 3 wt % coating exhibits rate capability and cycling properties that are better than those of Li1.2Ni0.2Mn0.6O2, with an excellent initial discharge capacity of 286.5 mA h g(-1) at a current density of 0.1 C and a discharge capacity that remained at 146.9 mA h g(-1) at 1 C after 100 cycles. The improved performances are ascribed to the high conductivity of the PSS coating layer, which can improve the conductivity of the composite material. The PSS layer also suppresses the formation and growth of a solid electrolyte interface. Surface modification with PSS is a feasible approach for improving the comprehensive properties of cathode materials.
Characteristics of surface modified Ti-6Al-4V alloy by a series of YAG laser irradiation
NASA Astrophysics Data System (ADS)
Zeng, Xian; Wang, Wenqin; Yamaguchi, Tomiko; Nishio, Kazumasa
2018-01-01
In this study, a double-layer Ti (C, N) film was successfully prepared on Ti-6Al-4V alloy by a series of YAG laser irradiation in nitrogen atmosphere, aiming at improving the wear resistance. The effects of laser irradiation pass upon surface chemical composition, microstructures and hardness were investigated. The results showed that the surface chemicals were independent from laser irradiation pass, which the up layer of film was a mixture of TiN and TiC0.3N0.7, and the down layer was nitrogen-rich α-Ti. Both the surface roughness and hardness increased as raising the irradiation passes. However, surface deformation and cracks happened in the case above 3 passes' irradiation. The wear resistance of laser modified sample by 3 passes was improved approximately by 37 times compared to the as received substrate. Moreover, the cytotoxic V ion released from laser modified sample was less than that of as received Ti-6Al-4V alloy in SBF, suggesting the potentiality of a new try to modify the sliding part of Ti-based hard tissue implants in future biomedical application.
Analysis of Nb 3Sn surface layers for superconducting radio frequency cavity applications
Becker, Chaoyue; Posen, Sam; Groll, Nickolas; ...
2015-02-23
Here, we present an analysis of Nb 3Sn surface layers grown on a bulk Nb coupon prepared at the same time and by the same vapor diffusion process used to make Nb 3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveal a well developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperature's (T c) up to 16.3K. Transmission electron microscopy (TEM) performed on cross sections of the sample's surface shows a ~ 2 microns thick Nb 3Sn surface layer. The elemental composition map exhibitsmore » a Nb:Sn ratio of 3:1 with buried substoichiometric regions with a ratio of 5:1. Synchrotron diffraction experiments indicate a polycrystalline Nb 3Sn film and confirm the presence of Nb rich regions that occupies about a third of the coating volume. These low T c regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb 3Sn -coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.« less
Effects of oxygen chemical potential on the anisotropy of the adsorption properties of Zr surfaces.
Zhang, Hai-Hui; Xie, Yao-Ping; Yao, Mei-Yi; Xu, Jing-Xiang; Zhang, Jin-Long; Hu, Li-Juan
2018-05-30
The anisotropy of metal oxidation is a fundamental issue, and the oxidation of Zr surfaces also attracts much attention due to the application of Zr alloys as cladding materials for nuclear fuels in nuclear power plants. In this study, we systematically investigate the diagram of O adsorption on low Miller index Zr surfaces by using first-principles calculations based on density functional theory calculations. We find that O adsorption on the basal surface, Zr(0001), is more favourable than that on the prism surfaces, Zr(112[combining macron]0) and Zr(101[combining macron]0), under strong O-reducing conditions, while O adsorption on the prism surface is more favourable than that of the basal surface under weak O-reducing conditions and the O-rich conditions. Our findings reveal that the anisotropy of adsorption properties of O on the Zr surfaces is dependent on the O chemical potential in the environment. Furthermore, the ability of the prism for O adsorption is stronger than that of the basal surface under the O-rich condition, which is consistent with the experimental observation that the oxidation of the prism Zr surface is easier than that of the basal surface. Systematic surveys show the adsorption ability of the surface under strong O-reducing conditions is determined by the low coordination numbers of surface atoms and surface geometrical structures, while the adsorption ability of the surface under weak O-reducing conditions and O-rich conditions is only determined by the low coordination number of surface atoms. These results can provide an atomic scale understanding of the initial oxidation of Zr surfaces, which inevitably affects the growth of protective passivation layers that play critical roles in the corrosion resistance of Zr cladding materials.
Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng
2016-09-14
Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g -1 vs. 28 mA h g -1 , 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g -1 vs. 59 mA h g -1 , -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li + -transportation, and alleviates the structure strain during the cycling procedure.
Luo, Rifang; Tang, Linlin; Xie, Lingxia; Wang, Jin; Huang, Nan; Wang, Yunbing
2016-12-01
Surface properties are considered to be important factors in addressing proper functionalities. In this paper, a multifunctional mussel-inspired coating was prepared via the direct copolymerization of epigallocatechin gallate (EGCG) and arginine. The coating formation was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectra. The EGCG/arginine coating contained diverse functional groups like amines, phenols and carboxyls, whose densities were also tunable. Such mussel-inspired coating could also be applied as an ad-layer for its secondary reactivity, demonstrated by quartz crystal microbalance technique. Moreover, the tunable surface density of phenols showed potential ability in modulating endothelial cell and smooth muscle cell viability. The coatings rich in phenols presented excellent free radical scavenging property. Current results strongly indicated the potential of EGCG/arginine coatings to be applied as an ad-layer for vascular materials.
NASA Astrophysics Data System (ADS)
Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.
2017-06-01
Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.
Sanders, Michael R; Clifton, Luke A; Neylon, Cameron; Frazier, Richard A; Green, Rebecca J
2013-07-17
Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. This study examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b, and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers using a combination of surface pressure measurements, external reflection FTIR spectroscopy, and neutron reflectometry. Results highlighted differences in the protein binding mechanisms and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
NASA Astrophysics Data System (ADS)
Zhou, Xiaowei; Ouyang, Chun
2017-05-01
In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.
Sulfur-Rich Rocks and Dirt (False Color)
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Rover Spirit has been analyzing sulfur-rich rocks and surface materials in the 'Columbia Hills' in Gusev Crater on Mars. This image of a very soft, nodular, layered rock nicknamed 'Peace' in honor of Martin Luther King Jr. shows a 4.5-centimeter-wide (1.8-inch-wide) hole Spirit ground into the surface with the rover's rock abrasion tool. The high sulfur content of the rock measured by Spirit's alpha particle X-ray spectrometer and its softness measured by the abrasion tool are probably evidence of past alteration by water. Spirit's panoramic camera took this false-color image on martian day, or sol, 381 (Jan. 27, 2005), using Pancam filters at wavelengths of 750, 530, and 430 nanometers. Darker red hues in the image correspond to greater concentrations of oxidized soil and dust. Bluer hues correspond to sulfur-rich rock excavated or exposed by the abrasion tool and not as heavily coated with soils or not as highly oxidized.MoS2 interactions with 1.5 eV atomic oxygen
NASA Technical Reports Server (NTRS)
Martin, J. A.; Cross, J. B.; Pope, L. E.
1989-01-01
Exposures of MoS2 to 1.5-eV atomic oxygen in an anhydrous environment reveal that the degree of oxidation is essentially independent of crystallite orientation, and that the surface-adsorbed reaction products are MoO3 and MoO2. A mixture of oxides and sulfide exists over a depth of about 90 A, and this layer has a low diffusion rate for oxygen. It is concluded that a protective oxide layer forms on MoS2 on exposure to the atomic-oxygen-rich environment of LEO.
Clark, Michael D; Jespersen, Michael L; Patel, Romesh J; Leever, Benjamin J
2013-06-12
Blends of poly(3-hexylthiophene) (P3HT) and C61-butyric acid methyl ester (PCBM) are widely used as a model system for bulk heterojunction active layers developed for solution-processable, flexible solar cells. In this work, vertical concentration profiles within the P3HT:PCBM active layer are predicted based on a thermodynamic analysis of the constituent materials and typical solvents. Surface energies of the active layer components and a common transport interlayer blend, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), are first extracted using contact angle measurements coupled with the acid-base model. From this data, intra- and interspecies interaction free energies are calculated, which reveal that the thermodynamically favored arrangement consists of a uniformly blended "bulk" structure capped with a P3HT-rich air interface and a slightly PCBM-rich buried interface. Although the "bulk" composition is solely determined by P3HT:PCBM ratio, composition near the buried interface is dependent on both the blend ratio and interaction free energy difference between solvated P3HT and PCBM deposition onto PEDOT:PSS. In contrast, the P3HT-rich overlayer is independent of processing conditions, allowing kinetic formation of a PCBM-rich sublayer during film casting due to limitations in long-range species diffusion. These thermodynamic calculations are experimentally validated by angle-resolved X-ray photoelectron spectroscopy (XPS) and low energy XPS depth profiling, which show that the actual composition profiles of the cast and annealed films closely match the predicted behavior. These experimentally derived profiles provide clear evidence that typical bulk heterojunction active layers are predominantly characterized by thermodynamically stable composition profiles. Furthermore, the predictive capabilities of the comprehensive free energy approach are demonstrated, which will enable investigation of structurally integrated devices and novel active layer systems including low band gap polymers, ternary systems, and small molecule blends.
Submesoscale-selective compensation of fronts in a salinity-stratified ocean
Spiro Jaeger, Gualtiero; Mahadevan, Amala
2018-01-01
Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity. PMID:29507874
NASA Astrophysics Data System (ADS)
Hartmann, William K.; Werner, Stephanie C.
2010-06-01
Recent controversies about systems of crater-count dating have been largely resolved, and with continuing refinements, crater counts will offer a fundamental geological tool to interpret not only ages, but also the nature of geological processes altering the surface of Mars. As an example of the latter technique, we present data on two debris aprons east of Hellas. The aprons show much shorter survival times of small craters than do the nearby contiguous plains. The order-of-magnitude depths of layers involved in the loss process can be judged from the depths of the affected craters. We infer that ice-rich layers in the top tens of meters of both aprons have lost crater topography within the last few 10 8 yr, probably due to flow or sublimation of ice-rich materials. Mantling by ice-rich deposits, associated with climate change cycles of obliquity change, has probably also affected both the aprons and the plains. The crater-count tool thus adds chronological and vertical dimensional information to purely morphological studies.
Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kvit, A. V.; Yankovich, A. B.; Avrutin, V.; Liu, H.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.; Voyles, P. M.
2012-12-01
We report microstructural characterization of heavily Ga-doped ZnO (GZO) thin films on GaN and sapphire by aberration-corrected scanning transmission electron microscopy. Growth under oxygen-rich and metal-rich growth conditions leads to changes in the GZO polarity and different extended defects. For GZO layers on sapphire, the primary extended defects are voids, inversion domain boundaries, and low-angle grain boundaries. Ga doping of ZnO grown under metal-rich conditions causes a switch from pure oxygen polarity to mixed oxygen and zinc polarity in small domains. Electron energy loss spectroscopy and energy dispersive spectroscopy spectrum imaging show that Ga is homogeneous, but other residual impurities tend to accumulate at the GZO surface and at extended defects. GZO grown on GaN on c-plane sapphire has Zn polarity and no voids. There are misfit dislocations at the interfaces between GZO and an undoped ZnO buffer layer and at the buffer/GaN interface. Low-angle grain boundaries are the only threading microstructural defects. The potential effects of different extended defects and impurity distributions on free carrier scattering are discussed.
Formation of dysprosium carbide on the graphite (0001) surface
Lii-Rosales, Ann; Zhou, Yinghui; Wallingford, Mark; ...
2017-07-12
When using scanning tunneling microscopy, we characterize a surface carbide that forms such that Dy is deposited on the basal plane of graphite. In order to form carbide islands on terraces, Dy is first deposited at 650–800 K, which forms large metallic islands. Upon annealing at 1000 K, these clusters convert to carbide. Deposition directly at 1000 K is ineffective because nucleation on terraces is inhibited. Reaction is signaled by the fact that each carbide cluster is partially or totally surrounded by an etch pit. The etch pit is one carbon layer deep for most carbide clusters. Carbide clusters aremore » also identifiable by striations on their surfaces. Based on mass balance, and assuming that only the surface layer of carbon is involved in the reaction, the carbide has stoichiometry D y 2 C . This is Dy-rich compared with the most common bulk carbide Dy C 2 , which may reflect limited surface carbon transport to the carbide.« less
Li, Panyuan; Wang, Zhi; Li, Wen; Liu, Yanni; Wang, Jixiao; Wang, Shichang
2015-07-22
It is desirable to develop high-performance composite membranes for efficient CO2 separation in CO2 capture process. Introduction of a highly permeable polydimethylsiloxane (PDMS) intermediate layer between a selective layer and a porous support has been considered as a simple but efficient way to enhance gas permeance while maintaining high gas selectivity, because the introduced intermediate layer could benefit the formation of an ultrathin defect-free selective layer owing to the circumvention of pore penetration phenomenon. However, the selection of selective layer materials is unfavorably restricted because of the low surface energy of PDMS. Various highly hydrophilic membrane materials such as amino group-rich polyvinylamine (PVAm), a representative facilitated transport membrane material for CO2 separation, could not be facilely coated over the surface of the hydrophobic PDMS intermediate layer uniformly. Inspired by the hydrophilic nature and strong adhesive ability of polydopamine (PDA), PDA was therefore selected as a versatile molecular bridge between hydrophobic PDMS and hydrophilic PVAm. The PDA coating endows a highly compatible interface between both components with a large surface energy difference via multiple-site cooperative interactions. The resulting multilayer composite membrane with a thin facilitated transport PVAm selective layer exhibits a notably enhanced CO2 permeance (1887 GPU) combined with a slightly improved CO2/N2 selectivity (83), as well as superior structural stability. Similarly, the multilayer composite membrane with a hydrophilic CO2-philic Pebax 1657 selective layer was also developed for enhanced CO2 separation performance.
Chemistry in protoplanetary disks
NASA Astrophysics Data System (ADS)
Semenov, D. A.
2012-01-01
In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.
Influence of interfacial rheology on stabilization of the tear film
NASA Astrophysics Data System (ADS)
Bhamla, M. Saad; Fuller, Gerald G.
2014-11-01
The tear film that protecting the ocular surface is a complex, thin film comprised of a collection of proteins and lipids that come together to provide a number of important functions. Of particular interest in this presentation is meibum, an insoluble layer that is spread from glands lining our eyelids. Past work has focussed on the role of this layer in reducing evaporation, although conflicting evidence on its ability to reduce evaporative loss has been published. We present here the beneficial effects that are derived through the interfacial viscoelasticity of the meibomian lipid film. This is a duplex film is comprised of a rich mixture of phospholipids, long chain fatty esters, and cholesterol esters. Using interfacial rheology measurements, meibum has been shown to be highly viscoelastic. By measuring the drainage and dewetting dynamics of thin aqueous films from hemispherical surfaces where those films are laden with insoluble layers of lipids at controlled surface pressure, we offer evidence that these layers strongly stabilize the films because of their ability to support surface shearing stresses. This alternative view of the role of meibum can help explain the origin of meibomian gland dysfunction, or dry eye disease, where improper compositions of this lipid mixture do not offer the proper mechanical resistance to breakage and dewetting of the tear film.
NASA Astrophysics Data System (ADS)
Quantin-Nataf, Cathy; Carter, John; Thollot, Patrick; Loizeau, Damien; Davis, Joel; Grindrod, Peter; lozach, Loic
2017-04-01
The ExoMars 2018 mission (ESA) has for scientific objectives to search for signs of past and present life on Mars, to investigate the water/geochemical environment as a function of depth in the shallow subsurface, to study to Martian atmospheric trace gases and to characterize the surface environment. The landing site has to be relevant with regard to these objectives while fitting the restrictive engineering constrains. From the scientific point of view, the site must be ancient, from the Early Mars period, for which many scientific evidences favor the existence of a water-related cycle. In this paper, we present the unique location called Oxia Planum, a wide clay bearing plain located between 16° and 19° North and -23° to -28° East proposed as landing site for Exomars 2020 mission. Oxia Planum is located between Ares Vallis and Marwth Vallis in a wide basin just at the outlet of Cogoon Vallis System, with elevations ranging from -2800 m down to -3100 m. The regional compositional mapping of Oxia planum has been achieved based on OMEGA data at 2.5 km/pix well as CRISM multispectral data at 200 m/pix. Mg/Fe phyllosilicates, identified and mapped based on their diagnostic absorptions at 1.4, 1.9 and 2.3 µm are exposed over about 80% of the ellipse surface. The entire unit with phyllosilicates signatures corresponds to a light-toned layered unit that is observed over a large range of elevations (from -2600 m to -3100m) suggesting that like in Marwth Vallis region, the layered and altered formation overlaps a pre-existing topography . The age returned from crater count on the clay rich formation is 3.9 Ga. At the top or embedded within the layered formation, several fluvial morphologies such as former valleys or inverted channels are observed. Also, at the top of the layered clay-rich formation, a deltaic deposit is observed suggesting sub-aqueous episodes postdating the altered layered formation. In terms of mineralogy, the putative delta fan shows layers enriched in hydrated silica. This delta fan implies a second and distinct period of alteration in Oxia Planum signed by a distinct mineralogy. In term of age, the delta has a too small surface to allow a confident age assignment from crater count. We can only state that the delta-fan is older than 3.5 Ga. Oxia Planum recorded at least two clearly distinct alteration environments and contexts: 1) the alteration of the Noachian layers and 2) the fluvio-deltaic system post-dating the Noachian clay rich unit. Deciphering the formation environments for such diverse altered rocks would fulfill the goals of the ExoMars Rover.
Exposure of Water Ice in the Northern Mid-lattitudes of Mars
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Kanner, Lisa C.
2007-01-01
Water ice is exposed in the martian north polar cap, and is occasionally exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60 deg. We have examined midlatitude areas of the northern plains displaying evidence of residual ice-rich layers, and report possible present-day exposures of ice. These exposures, if confirmed, could constrain the latitudinal and temporal stability of surface ice on Mars.
High temperature corrosion of a nickel base alloy by helium impurities
NASA Astrophysics Data System (ADS)
Rouillard, F.; Cabet, C.; Wolski, K.; Terlain, A.; Tabarant, M.; Pijolat, M.; Valdivieso, F.
2007-05-01
High temperature corrosion properties of Haynes 230 were investigated in a purposely-designed facility under a typical very high temperature reactor (VHTR) impure helium medium. The study was focused on the surface oxide scale formation and its stability at about 1223 K. The alloy developed a Mn/Cr rich oxide layer on its surface under impure helium at 1173 K. Nevertheless, a deleterious reaction destructing the chromium oxide was evidenced above a critical temperature, TA. Reagents and products of this last reaction were investigated.
NASA Astrophysics Data System (ADS)
Jallot, E.; Benhayoune, H.; Kilian, L.; Irigaray, J. L.; Balossier, G.; Bonhomme, P.
2000-11-01
Development of bioactive glasses for use as a coating on Ti6Al4V prostheses requires a better understanding of reactions at the bone/bioactive glass interface. Indeed, the bioactive glasses bond to bone through physico-chemical reactions. In vivo, an apatite rich layer is built up on top of a pure silica rich layer at the bioactive glass periphery. In this paper, we have studied Ti6Al4V cylinders coated with a bioactive glass and implanted in sheep femora for two, three and six months. At each time period, the samples were analysed with scanning transmission electron microscopy coupled with energy dispersive x-ray spectroscopy. In vivo, the bioactive glass dissolution led to the formation on its surface of spherical particles with different sizes. The distributions of Si, Al, Ca, P and Mg concentrations across the particles reveal precipitation of apatite with the incorporation of magnesium. Apatite precipitation is governed by diffusion through an Si layer and occurs under specific supersaturation conditions. Measurements of supersaturation for Ca and P demonstrate that the largest precipitates grow and the smallest dissolve. These results allow us to study the growth and dissolution rate of the apatite precipitates and their relevance to bioactivity. Particles with a radius twice the average radius (
Eberl, D.D.; Blum, A.E.; Serravezza, M.
2011-01-01
The illite layer content of mixed-layer illite/smectite (I/S) in a 2.5 m thick, zoned, metabentonite bed from Montana decreases regularly from the edges to the center of the bed. Traditional X-ray diffraction (XRD) pattern modeling using Markovian statistics indicated that this zonation results from a mixing in different proportions of smectite-rich R0 I/S and illite-rich R1 I/S, with each phase having a relatively constant illite layer content. However, a new method for modeling XRD patterns of I/S indicates that R0 and R1 I/S in these samples are not separate phases (in the mineralogical sense of the word), but that the samples are composed of illite crystals that have continuous distributions of crystal thicknesses, and of 1 nm thick smectite crystals. The shapes of these distributions indicate that the crystals were formed by simultaneous nucleation and growth. XRD patterns for R0 and R1 I/S arise by interparticle diffraction from a random stacking of the crystals, with swelling interlayers formed at interfaces between crystals from water or glycol that is sorbed on crystal surfaces. It is the thickness distributions of smectite and illite crystals (also termed fundamental particles, or Nadeau particles), rather than XRD patterns for mixed-layer I/S, that are the more reliable indicators of geologic history, because such distributions are composed of well-defined crystals that are not affected by differences in surface sorption and particle arrangements, and because their thickness distribution shapes conform to the predictions of crystal growth theory, which describes their genesis.
A new attraction-disseverance model for explaining landsliding in clay-rich tephras
NASA Astrophysics Data System (ADS)
Kluger, M. O.; Moon, V.; Kreiter, S.; Lowe, D.; Churchman, J.; Hepp, D. A.; Seibel, D.; Jorat, E.; Mörz, T.
2016-12-01
Altered tephras are highly susceptible to landsliding and account for fatalities and property damage every year. The clay mineral halloysite is often associated with landslide-prone layers within weathered tephra successions, especially in deposits with high sensitivity, which describes the post-failure strength loss. However, the precise role of halloysite on the development of sensitivity and thus sudden and unpredictable landsliding is unknown. Here we show that an abundance of halloysite, dominated by a distinctive ovate mushroom-cap-shaped (MCS) spherical morphology, governs the development of sensitivity, and hence proneness to landsliding, in weathered rhyolitic tephras in eastern North Island, New Zealand. We found that a highly sensitive layer, which was involved in a retrogressive landslide, has an extraordinarily high content of aggregated MCS spheres with imperfectly-closed exterior surfaces, i.e., the MCS spheres have substantial openings on one side. We suggest that short-range electrostatic and van der Waals' interactions enabled the MCS spheres to form interconnected aggregates by attraction between numerous paired silanol and aluminol layers with a weakly positive, or neutral, charge exposed in the openings and the negatively-charged convex silanol faces on the curved exterior surfaces of the spheres. However, if these weak attractions are overcome during slope failure, the prevailing repulsion between two exterior surfaces result in a low remolded shear strength, i.e., a high sensitivity, and thus a high propensity for flow-like landsliding. Our results indicate that this novel electrostatic attraction-disseverance model explains the high sensitivity and therefore contributes to a general understanding of the mechanisms of landsliding in sensitive altered tephras rich in spherical halloysite.
Polarimetry of nacre in iridescent shells
NASA Astrophysics Data System (ADS)
Metzler, R. A.; Burgess, C.; Regan, B.; Spano, S.; Galvez, E. J.
2014-09-01
We investigate the light transmitted or reflected from nacre (mother of pearl) taken from the iridescent shell of the bivalve Pinctad a fucata. These nacre surfaces have a rich structure, composed of aragonite crystals arranged as tablets or bricks, 5 μm wide and 400-500 nm thick, surrounded by 30nm thick organic mortar. The light reflected from these shell surfaces, or transmitted through thin polished layers, is rich in its polarization content, exhibiting a space dependent variation in the state of polarization with a high density of polarization singularities. Our goal is to use the polarization information to infer the structure of the biominerals and the role of the organic layer in determining the orientation of the crystals. In the experiments we send the light from a laser with a uniform state of polarization onto the shell, and analyze the light that is either transmitted or reflected, depending on the type of experiment, imaging it after its passage through polarization filters. We use the images from distinct filters to obtain the Stokes parameters, and hence the state of polarization, of each image point. We also construct the Mueller matrix for each imaged point, via 36 measurements. We do this for distinct physical and chemical treatments of the shell sample. Preliminary data shows that the organic layer may be responsible for organizing a multi-crystalline arrangement of aragonite tablets.
Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators
NASA Astrophysics Data System (ADS)
Li, Min
High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a negative flat band voltage shift and larger hysteresis relative to the HF-dipped samples. The IL EOT reduction by mtridation increases with increasing HE Surface nitridation also induces extra charge, more considerable at the Si/IL interface. The leakage current is reduced in the Hf-rich samples with a nitride layer. Electron mobility degradation by surface nitridation was also observed.
Controlling the surface termination of NdGaO3 (110): the role of the gas atmosphere.
Cavallaro, Andrea; Harrington, George F; Skinner, Stephen J; Kilner, John A
2014-07-07
In this work the effect of gas atmosphere on the surface termination reconstruction of single crystal NdGaO3 (110) (NGO) during thermal annealing was analyzed. Using Low Energy Ion Scattering (LEIS) it has been possible to study the chemical composition of the first atomic layer of treated NGO single crystal samples. NGO has been analyzed both as-received and after a specific thermal treatment at 1000 °C under different gas fluxes (argon, nitrogen, static air, synthetic air, nitrogen plus 5% hydrogen and wet synthetic air respectively). Thermal annealing of perovskite single crystals, as already reported in the literature, is used to obtain a fully A-cation surface termination. Nevertheless the effect of the gas-atmosphere on this process has not been previously reported. By the use of sequential low energy Ar(+) sputtering combined with the primary ion LEIS analysis, the reconstruction of the outermost atomic layers has allowed the clarification of the mechanism of NGO neodymium surface enrichment. It is proposed that the gallium at the surface is submitted to a reduction/evaporation mechanism caused by low oxygen partial pressure and/or high water pressure in the vector gas. Below the first surface atomic layers of an as-received NGO single-crystal a gallium-rich phase has also been observed.
NASA Astrophysics Data System (ADS)
Han, Jangmi; Brearley, Adrian J.
2016-06-01
We have carried out a FIB/TEM study of refractory CAI-like objects in one AOA from the ALHA77307 CO3.0 chondrite. The CAI-like objects in the AOA consist of a zoned sequence with a spinel-rich core through an intergrowth layer of spinel and Al-Ti-rich diopside to a diopside rim. The spinel-rich core consists of polycrystalline aggregates of spinel and ±minor melilite showing equilibrated grain boundary textures. The intergrowth layer contains fine-grained diopside and spinel with minor anorthite with highly curved and embayed grain boundaries. The diopside rim consists of polycrystalline aggregates of diopside. The compositions of pyroxene change significantly outward from Al-Ti-rich diopside in contact with the spinel-rich core to Al-Ti-poor diopside next to the surrounding olivine of the AOA. Overall microstructural and chemical characteristics suggest that the spinel-rich core formed under equilibrium conditions whereas the intergrowth layer is the result of reactions that occurred under conditions that departed significantly from equilibrium. The remarkable changes in formation conditions of the CAI-like objects may have been achieved by transport and injection of refractory objects into a region of a partially-condensed, Ca,Ti-saturated gas which reacted with spinel and melilite to form Al-Ti-rich diopside. Crystallographically-oriented TiO2 nanoparticles decorate the grain boundaries between spinel grains and between spinel and Al-Ti-rich diopside grains. During the disequilibrium back-reaction of spinel with a partially-condensed, Ca,Ti-saturated gas, metastable TiO2 nanoparticles may have condensed by an epitaxial nucleation mechanism and grown on the surface of spinel. These TiO2 nanoparticles are disordered intergrowths of the two TiO2 polymorphs, anatase and rutile. These nanoparticles are inferred to have nucleated as anatase that underwent partial transformation into rutile. The local presence of the TiO2 nanoparticles and intergrowth of anatase and rutile imply that the disequilibrium back-reaction of spinel with the gas occurred on a short timescale, i.e., minutes to hours at maximum.
Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars
NASA Astrophysics Data System (ADS)
Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.
2018-03-01
The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.
Ultrathin phase-change coatings on metals for electrothermally tunable colors
NASA Astrophysics Data System (ADS)
Bakan, Gokhan; Ayas, Sencer; Saidzoda, Tohir; Celebi, Kemal; Dana, Aykutlu
2016-08-01
Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.
Method for rubblizing an oil shale deposit for in situ retorting
Lewis, Arthur E.
1977-01-01
A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.
Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih
2012-12-21
In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.
NASA Astrophysics Data System (ADS)
Fug, Frank; Petry, Adrien; Jost, Hendrik; Ahmed, Aisha; Zamanzade, Mohammad; Possart, Wulff
2017-12-01
Thin layers of polyurethane monomers (diol, triol, diisocyanate) are deposited from gas phase onto native aluminium and copper surfaces. According to infrared external reflection absorption spectra both alcohols undergo only weak physical interactions with both metals. The diisocyanate on the other hand reveals resistance against desorption and rich new spectral features indicate strong adhesion. Preparation of urethane layers by sequential deposition of diisocyanate and diol yields urethane linkages. Urethane is formed faster on Cu than on Al. Scanning force microscopy reveals heterogeneous layers with metal dependent morphology. They show poor resistance against tetrahydrofuran rinsing i.e. most part of the formed urethane containing molecules are removed. Nevertheless, a residue of molecules sticks on the metal. It contains strongly adsorbed isocyanates and few isocyanate units which are bonded to diol units via urethane links. Further improvement of the molecular layer deposition is necessary to achieve well-crosslinked polyurethane layers.
NASA Astrophysics Data System (ADS)
Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.
2018-05-01
In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.
NASA Technical Reports Server (NTRS)
Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.
1990-01-01
A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.
NASA Astrophysics Data System (ADS)
Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.
1990-02-01
A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.
THE ANATOMIC SITE OF THE TRANSEPITHELIAL PERMEABILITY BARRIERS OF TOAD BLADDER
DiBona, Donald R.; Civan, Mortimer M.; Leaf, Alexander
1969-01-01
An examination of the mucosal epithelium of the urinary bladder of the toad reveals that the two major cell types which abut on the urinary surface, the granular and mitochondria-rich cells, also contact the basement membrane. Thus, the epithelium functions as a single cell layer. Although basal cells are interpolated between the granular cells and the basement membrane over a large portion of the epithelium, they do not constitute an additional continuous cell layer. This finding is consistent with extensive physiological data which had assumed that the major permeability barriers of this epithelium were the apical and basal-lateral plasma membranes of a single layer of cells. PMID:5782445
NASA Astrophysics Data System (ADS)
Searls, M. L.; Mellon, M. T.
2008-12-01
Determining the present and past distribution of surface and subsurface ice on Mars is critical for understanding the volatile inventory and climatic history of the planet. An analysis of a latitude-dependent layer of surface material known as the dissected mantle terrain can provide valuable insight into the distribution of ice in the recent past. The dissected mantle terrain is a surface unit that occurs globally in the mid-latitude of Mars. This unit is characterized by a smooth mantle of uniform thickness and albedo that is draped over the existing topography. This smooth mantle is disaggregated and dissected in places resulting in a hummocky pitted appearance. We propose that the mid-latitude dissected terrain results from collapse of a dusty mantle into the void left from desiccation of an underlying ice-rich (pure or dirty ice) layer. During period(s) of high obliquity, it is possible for ice to become stable at lower latitudes. Due to lack of direct solar insolation, surface ice deposits will preferentially accumulate on pole-ward facing slopes first. A mantle of dust and dirt is then deposited on top of these ice-rich deposits. As the climate changes, desiccation of the now buried ice leads to collapse of the overlying dusty layer resulting in a hummocky pitted appearance. This theory is supported by the pole-ward preference for the dissection pits as well an increase in dissection with increasing latitude. A study of the global distribution of the mid-latitude dissected terrain can provide invaluable clues towards unlocking the distribution of ice in the recent past. An analysis of HiRISE images and MOLA data indicate that the distribution of dissection pits varies from one region to the next. Knowing the distribution of ice in conjunction with ice stability modeling can provide a global view of the climate and orbital history of Mars at the time these features formed.
Oxidation study by Mössbauer and optic microscopy of steels from boiler tubes used in sugar industry
NASA Astrophysics Data System (ADS)
Fajardo, M.; Pérez Alcázar, G. A.; Aguilar, Y.
1998-08-01
Optic microscopy and Mössbauer spectroscopy were used to study the fail and the inner rusted surface of two boiler tubes used in the sugar industry, respectively. The studied tubes, of the type ASTM A 192, were found to have cracks. By optic microscopy it was observed that the failure begins in the inner surface with circumferential cracking. Also, inside and around the surface close to the cracks a rusted layer was detected. Powder from these layers was collected for Mössbauer spectroscopy analysis. By this method the presence of two or three types of Fe oxides such as wüstite, magnetite and hematite, was proved. These results permit to conclude that the failure mechanism was the thermal fatigue due to a hot work in an O2 -rich vapor atmosphere. The rusted products are stable at high temperatures.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Impact crater morphology and the Central Pit/Dome of Occator: Ceres as an Ice-rich Body
NASA Astrophysics Data System (ADS)
Schenk, P.; Marchi, S.; O'Brien, D. P.; Platz, T.; Bland, M. T.; Buczkowski, D.; Scully, J. E. C.; Ammannito, E.; Raymond, C. A.; Russell, C. T.
2016-12-01
Pristine crater morphologies on Ceres (at D <40 km) are astonishingly similar to those on midsize icy bodies (e.g., moons of Saturn) but very different from those on silicate-rich Vesta. All these bodies have similar gravity and broadly similar impact velocities, and these patterns reveal that the upper 10s of km of Ceres are much weaker than on silicate-rich Vesta. This stands in contrast to the lack of viscous relaxation (Bland et al., 2016), which implies an upper layer on Ceres capable of resisting flow despite the relatively high surface temperatures. This can be explained as distinct responses of an outer layer partially composed of weak ices and strong silicates that fail during high-strain impact processes (which are apparently controlled by the weak phase) but does not flow under low-strain creep (which is apparently controlled more by the strong phase). Furthermore, comparison with Martian craters indicates that, in contrast to Ceres, the amount of water ice in the crust of Mars results in hybrid morphologies only midway between silicate and ice worlds, indicating that the upper layers of Ceres must have more ice than does Mars. The presence of apparent impact melt deposits and central pits in larger craters (D>40 km and D>75 km, respectively) on Ceres implies either warmer conditions than at Saturn, or the presence of a deeper layer enriched in (weaker) ice at comparable depths, also consistent with partial relaxation in larger craters. The formation of a fractured dome 3-km-wide and 0.75-km-high within recently formed Occator crater may be due to refreezing of a water zone melted after impact, or mobilization of carbonates or ice in the crater center, possibly from such deeper layers.
Erosion patterns in a sediment layer
NASA Astrophysics Data System (ADS)
Daerr, Adrian; Lee, Peter; Lanuza, José; Clément, Éric
2003-06-01
We report here on a laboratory-scale experiment which reproduces a rich variety of natural patterns with few control parameters. In particular, we focus on intriguing rhomboid structures often found on sandy shores and flats. We show that the standard views based on water surface waves do not explain the phenomenon, and we evidence a different mechanism based on mud avalanche instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulot, J.; Faur, M.; Faur, M.
1995-10-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause amore » significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, the authors demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface.« less
Corrosion resistance of titanium ion implanted AZ91 magnesium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Chenglong; Xin Yunchang; Tian Xiubo
2007-03-15
Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has threemore » layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.« less
Instabilities of thin layers of conducting fluids produced by time dependent magnetic fields
NASA Astrophysics Data System (ADS)
Burguete, Javier
2011-11-01
We present the recent results of an experiment where thin layers of conducting fluids are forced by time-dependent magnetic fields perpendicular to their surface. We use as conducting fluid an In-Ga-Sn alloy, immersed in a 5% hydrocloric acid solution to prevent oxidation. The conducting layers have a circular shape, and are placed inside a set-up that produces the vertical magnetic field. Due to MHD effects, the competition between the Lorentz force and gravity triggers an instability of the free surface. The shape of this surface can adopt many different configurations, with a very rich dynamics, presenting azimuthal wave numbers between 3 and 8 for the explored parameters. The magnetic field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects and with a magnitude up to 0.1 T. Different resonant regions have been observed, for narrow windows of the forcing frequency. We have analysed the existence of thresholds for these instabilities, depending on the wave number and experimental parameters. These results are compared with others present in the literature.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
Facet Dependent Disorder in the Pristine High Voltage Lithium-Manganese-Rich Cathode Material
Dixit, Hemant M.; Zhou, Wu; Idrobo Tapia, Juan Carlos; ...
2014-11-21
Defects and surface reconstructions are thought to be crucial for the long term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occur under harsh conditions making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Limore » $$_{1.2}$$Ni$$_{0.175}$$Mn$$_{0.525}$$Co$$_{0.1}$$O$$_2$$ (LNMCO) particles. Using atomic resolution Z-contrast imaging and electron energy-loss spectroscopy measurements we show that there are indeed a significant amount of anti-site defects present in this material; with transition metals substituting on Li metal sites. Furthermore, we find a strong tendency of segregation of these types of defects towards open facets (surfaces perpendicular to the layered arrangement of atoms), rather than closed facets (surfaces parallel to the layered arrangement of atoms). First principles calculations identify anti-site defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites were observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni are the predominant cause of disorder. These insights suggests that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.« less
Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)
NASA Astrophysics Data System (ADS)
Zerboni, A.; Guglielmin, M.
2017-12-01
Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental humidity within weathering pits. Rock varnish in the Dry Valleys represents a potential tool to reconstruct past water availability and changes in the aeolian fallout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Nie, Anmin; Zheng, Jianming
Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. Based on atomic level structural imaging, elemental mapping of the pristine and cycled samples and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions towards the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of amore » Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m →I41→Spinel. For the first time, it is found that the surface facet terminated with pure cation is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for designing of cathode materials with both high capacity and voltage stability during cycling.« less
Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids
NASA Technical Reports Server (NTRS)
Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.
1996-01-01
The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.
Structure of the orthorhombic Al13Co4(100) surface using LEED, STM, and ab initio studies
NASA Astrophysics Data System (ADS)
Shin, Heekeun; Pussi, K.; Gaudry, É.; Ledieu, J.; Fournée, V.; Alarcón Villaseca, S.; Dubois, J.-M.; Grin, Yu.; Gille, P.; Moritz, W.; Diehl, R. D.
2011-08-01
In a combined scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and density functional theory (DFT) study of the surface of Al13Co4(100), all techniques have found that after annealing to 1165 K, the surface structure is consistent with a dense Al-rich plane with surface Co atom depletion. Various structure models were considered, and in the LEED study, the best agreement was found with a model that consists of Al-rich terminating planes with no Co atoms, and otherwise a structure similar to the bulk puckered layers. This structure was also found to be stable in the DFT study. The best-fit structural parameters are presented for the two domains of this structure, which contain bipentagons that can be related to the pentagonal bipyramidal structures in the bulk, plus additional glue atoms between them. These domains are not strictly related to each other by symmetry, as they have different surface relaxations. The STM study found significant differences in the surfaces of samples grown by different methods and is able to explain a different interpretation made in an earlier study.
NASA Astrophysics Data System (ADS)
Wang, Peng; Hu, Junhua; Cao, Guoqin; Zhang, Shilin; Zhang, Peng; Liang, Changhao; Wang, Zhuo; Shao, Guosheng
2018-03-01
Different configurations of Sn and C films were deposited and used as a planar anode for Li ion battery. The interplay of carbon layer with Sn as supporting and buffering, respectively, was revealed. The suppression on the allotropic transformation to α phase by a carbon layer results in a significantly improved capacity retention rate, which also avoids the crack of Sn film. As expected, a conductive carbon layer improves rating performance. However, a supporting carbon layer (SC) just contributes to the charge transfer process. A DFT approach was used to assess the allotropic transformation process. An additional barrier (∼0.86 eV) exits on the α-β diagram, which is responsible for the irreversibility of α phase back to β phase. An enhanced persistence of β phase in Sn/C anode contributes to cycling performance. A Li rich condition contributes to the stabilization of β-Sn, which is thermodynamically favored. A nano buffering carbon (BC) layer can evidently alleviate the side reaction on Sn surface, which in turn promotes the diffusion of Li ions in electrode and generates a Li rich condition. The direct contact of Sn with electrolyte leads to serious accumulation of α-Sn during cycling and results in a poor cycling performance. By the synergistic effect of BC and SC, a sandwich C/Sn/C structure demonstrates an enchantment in electrochemical behavior.
Driving forces: Slab subduction and mantle convection
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1988-01-01
Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.
Interactions of phytoplankton, zooplankton and microorganisms
NASA Astrophysics Data System (ADS)
Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.
Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition
NASA Astrophysics Data System (ADS)
Li, H.; Ziolkowski, L. A.
2015-12-01
Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.
Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Shengchang; Kong, Man
2014-01-28
The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less
Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.
Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan
2018-01-05
The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
NASA Astrophysics Data System (ADS)
Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun
2010-06-01
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan
2015-11-10
Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less
Concentric crater fill on Mars - An aeolian alternative to ice-rich mass wasting
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.; Clifford, S. M.; Williams, S. H.
1989-01-01
Concentric crater fill, a distinctive martian landform represented by a concentric pattern of surface undulations confined within a crater rim, has been interpreted as an example of ice-enhanced regolith creep at midlatitudes (e.g., Squyres and Carr, 1986). Theoretical constraints on the stability and mobility of ground ice limit the applicability of an ice-rich soil in effectively mobilizing downslope movement at latitudes poleward of + or - 30 deg, where concentric crater fill is observed. High-resolution images of concentric crater fill material in the Utopia Planitia region (45 deg N, 271 deg W) show it to be an eroded, multiple-layer deposit. Layering should not be preserved if the crater fill material moved by slow deformation throughout its thickness, as envisioned in the ice-enhanced creep model. Multiple layers are also exposed in the plains material surrounding the craters, indicating a recurrent depositional process that was at least regional in extent. Mantling layers are observed in high-resolution images of many other locations around Mars, suggesting that deposition occurred on a global scale and was not limited to the Utopia Planitia region. It is suggested that an aeolian interpretation for the origin and modification of concentric crater fill material is most consistent with morphologic and theoretical constraints.
NASA Astrophysics Data System (ADS)
Feng, Z. J.; Zeng, C. L.
Chromium volatility, poisoning of the cathode material and rapidly decreasing electrical conductivity are the major problems associated with the application of ferritic stainless steel interconnects of solid oxide fuel cells operated at intermediate temperatures. Recently, a novel and simple high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects using a LaCrO 3-Ni rod as deposition electrode. In this work, a Cr-La alloying layer is firstly obtained on the alloy surface by HEMAA using Cr and La as deposition electrode, respectively, followed by oxidation treatment at 850 °C in air to form a thermally grown LaCrO 3 coating. With the formation of a protective scale composed of a thick LaCrO 3 outer layer incorporated with small amounts of Cr-rich oxides and a thin Cr 2O 3-rich sub-layer, the oxidation rate of the coated steel is reduced remarkably. A low and stable electrical contact resistance is achieved with the application of LaCrO 3-based coatings, with a value less than 40 mΩ cm 2 during exposure at 850 °C in air for up to 500 h.
Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming
2016-03-23
A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.
Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming
2016-01-01
A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy. PMID:28773345
Composition and structure of the shallow subsurface of Ceres revealed by crater morphology
NASA Astrophysics Data System (ADS)
Bland, Michael T.; Raymond, Carol A.; Schenk, Paul M.; Fu, Roger R.; Kneissl, Thomas; Pasckert, Jan Hendrik; Hiesinger, Harry; Preusker, Frank; Park, Ryan S.; Marchi, Simone; King, Scott D.; Castillo-Rogez, Julie C.; Russell, Christopher T.
2016-07-01
Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.
Composition and structure of the shallow subsurface of Ceres revealed by crater morphology
Bland, Michael T.; Carol A. Raymond,; Schenk, Paul M.; Roger R. Fu,; Thomas Kneisl,; Hendrick Pasckert, Jan; Hiesinger, Harald; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Castillo-Rogez, Julie C.; Christopher T. Russell,
2016-01-01
Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.
High-fluence Ga-implanted silicon-The effect of annealing and cover layers
NASA Astrophysics Data System (ADS)
Fiedler, J.; Heera, V.; Hübner, R.; Voelskow, M.; Germer, S.; Schmidt, B.; Skorupa, W.
2014-07-01
The influence of SiO2 and SiNx cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case, Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiOx grown during annealing which only can be avoided by the usage of SiNx cover layers.
Ab initio study of friction of graphene flake on graphene/graphite or SiC surface
NASA Astrophysics Data System (ADS)
Gulseren, Oguz; Tayran, Ceren; Sayin, Ceren Sibel
Recently, the rich dynamics of graphene flake on graphite or SiC surfaces are revealed from atomic force microcopy experiments. The studies toward to the understanding of microscopic origin of friction are getting a lot of attention. Despite the several studies of these systems using molecular dynamics methods, density functional theory based investigations are limited because of the huge system sizes. In this study, we investigated the frictional force on graphene flake on graphite or SiC surfaces from pseudopotential planewave calculations based on density functional theory. In both cases, graphene flake (24 C) on graphite or SiC surface, bilayer flake is introduced by freezing the top layer as well as the bottom layer of the surface slab. After fixing the load with these frozen layers, we checked the relative motion of the flake over the surface. A minimum energy is reached when the flake is moved on graphene to attain AB stacking. We also conclude that edge reconstruction because of the finite size of the flake is very critical for frictional properties of the flake; therefore the saturation of dangling bonds with hydrogen is also addressed. Not only the symmetric configurations remaining parameter space is extensively studied. Supported by TUBITAK Project No: 114F162. This work is supported by TUBITAK Project No: 114F162.
2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes
Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.
2016-01-01
Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569
Park, Taehyung; Kwon, Tae-Hyuk
2018-03-06
Natural gas hydrates are found widely in oceanic clay-rich sediments, where clay-water interactions have a profound effect on the formation behavior of gas hydrates. However, it remains unclear why and how natural gas hydrates are formed in clay-rich sediments in spite of factors that limit gas hydrate formation, such as small pore size and high salinity. Herein, we show that polarized water molecules on clay surfaces clearly promote gas hydrate nucleation kinetics. When water molecules were polarized with an electric field of 10 4 V/m, gas hydrate nucleation occurred significantly faster with an induction time reduced by 5.8 times. Further, the presence of strongly polarized water layers at the water-gas interface hindered gas uptake and thus hydrate formation, when the electric field was applied prior to gas dissolution. Our findings expand our understanding of the formation habits of naturally occurring gas hydrates in clay-rich sedimentary deposits and provide insights into gas production from natural hydrate deposits.
Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; ...
2015-10-29
Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and amore » thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.« less
NASA Astrophysics Data System (ADS)
Inogamov, Nail A.; Zhakhovsky, Vasily V.; Petrov, Yurii V.; Khokhlov, Viktor A.; Ashitkov, Sergey I.; Migdal, Kirill P.; Ilnitsky, Denis K.; Emirov, Yusuf N.; Khishchenko, Konstantin V.; Komarov, Pavel S.; Shepelev, Vadim V.; Agranat, Mikhail B.; Anisimov, Sergey I.; Oleynik, Ivan I.; Fortov, Vladimir E.
2013-11-01
Interaction of ultrashort laser pulse with metals is considered. Ultrafast heating in our range of absorbed fluences Fabs > 10 mJjcm2 transfers matter into two-temperature (2T) state and induces expressed thermomechani cal response. To analyze our case, where 2T, thermomechanical, and multidimensional (formation of surface structures) effects are significant, we use density functional theory (DFT), solutions of kinetic equations in τ- approximation, 2T-hydrodynamics, and molecular dynamics simulations. We have studied transition from light absorption in a skin layer to 2T state, and from 2T stage to hydrodynamical motions. We describe (i) formation of very peculiar (superelasticity) acoustic wave irradiated from the laser heated surface layer and (ii) rich com plex of surface phenomena including fast melting, nucleation of seed bubbles in hydrodynamically stretched fluid, evolution of vapor-liquid mixture into very spatially extended foam, mechanical breaking of liquid membranes in foam (foam disintegration), strong surface tension oscillations driven by breaking of membranes, non-equilibrium freezing of overcooled molten metals, transition to nano-domain solid, and formation of surface nanostructures.
Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage.
Reesink, Heidi L; Bonnevie, Edward D; Liu, Sherry; Shurer, Carolyn R; Hollander, Michael J; Bonassar, Lawrence J; Nixon, Alan J
2016-05-09
Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin's mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.
Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage
Reesink, Heidi L.; Bonnevie, Edward D.; Liu, Sherry; Shurer, Carolyn R.; Hollander, Michael J.; Bonassar, Lawrence J.; Nixon, Alan J.
2016-01-01
Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis. PMID:27157803
Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage
NASA Astrophysics Data System (ADS)
Reesink, Heidi L.; Bonnevie, Edward D.; Liu, Sherry; Shurer, Carolyn R.; Hollander, Michael J.; Bonassar, Lawrence J.; Nixon, Alan J.
2016-05-01
Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.
Schlegel, Michel L; Bataillon, Christian; Blanc, Cécile; Prêt, Dimitri; Foy, Eddy
2010-02-15
To understand the process governing iron corrosion in clay over centuries, the chemical and mineralogical properties of solids formed by free or anodically activated corrosion of iron in water-saturated clay at 90 degrees C over 4 months were probed using microscopic and spectroscopic techniques. Free corrosion led to the formation of an internal discontinuous thin (<3 microm thick) magnetite layer, an external layer of Fe-rich phyllosilicate, and a clay transformation layer containing Ca-doped siderite (Ca(0.2)Fe(0.8)CO(3)). The thickness of corroded iron equaled approximately 5-7 microm, consistent with previous studies. Anodic polarization resulted in unequally distributed corrosion, with some areas corrosion-free and others heavily corroded. Activated corrosion led to the formation of an inner magnetite layer, an intermediate Fe(2)CO(3)(OH)(2) (chukanovite) layer, an outer layer of Fe-rich 7 A-phyllosilicate, and a transformed matrix layer containing siderite (FeCO(3)). The corroded thickness was estimated to 85 microm, less than 30% of the value expected from the supplied anodic charge. The difference was accounted for by reoxidation at the anodically polarized surface of cathodically produced H(2)(g). Thus, free or anodically activated corroding conditions led to structurally similar interfaces, indicating that anodic polarization can be used to probe the long-term corrosion of iron in clay. Finally, corrosion products retained only half of Fe oxidized by anodic activation. Missing Fe probably migrated in the clay, where it could interact with radionuclides released by alteration of nuclear glass.
Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.
Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G
2016-01-21
Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.
NASA Technical Reports Server (NTRS)
Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila
1995-01-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.
NASA Technical Reports Server (NTRS)
Moulot, Jacques; Faur, M.; Faur, M.; Goradia, C.; Goradia, M.; Bailey, S.
1995-01-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] (Released 28 June 2002) The Science This THEMIS visible image illustrates the complex terrains within Terra Meridiani. This general region is one of the more complex on Mars, with a rich array of sedimentary, volcanic, and impact surfaces that span a wide range of martian history. This image lies at the eastern edge of a unique geologic unit that was discovered by the Mars Global Surveyor Thermal Emission Spectrometer (TES) Science Team to have high concentrations of a unique mineral called grey (crystalline) hematite. As discussed by the TES Science Team, this mineral typically forms by processes associated with water, and this region appears to have undergone alteration by hydrothermal (hot water) or other water-related processes. As a result of this evidence for water activity, this region is a leading candidate for further exploration by one of NASA's upcoming Mars Exploration Rovers. The brightness and texture of the surface varies remarkably throughout this image. These differences are associated with different rock layers or ?units?, and can be used to map the occurrence of these layers. The number of layers indicates that extensive deposition by volcanic and sedimentary processes has occurred in this region. Since that time, however, extensive erosion has occurred to produce the patchwork of different layers exposed across the surface. Several distinct layers can be seen within the 20 km diameter crater at the bottom (south) of the image, indicating that this crater once contained layers of sedimentary material that has since been removed. THEMIS infrared images of this region show that many of these rock layers have distinctly different temperatures, indicating that the physical properties vary from layer to layer. These differences suggest that the environment and the conditions under which these layers were deposited or solidified varied through time as these layers were formed. The Story Mars exploration is all about following the signs of past or present water on the red planet. That's because water is the key to understanding the history of the Martian environment (climate and geology), the potential for life to have developed there, and the potential for human exploration some day far in the future. All of the missions in the Mars Exploration Program contribute something special to science investigations about water on Mars and complement each other nicely. For instance, take the above image. Given the contrasts, you can tell that this area is pretty complex. You've got a really old crater that's been eroded, and a rich array of volcanic surfaces and layers where material has been deposited through other processes. Now, that might make this area seem like any number of images you've already seen, but this terrain holds special appeal. A science instrument on the Mars Global Surveyor spacecraft recently discovered that this area has really high concentrations of a unique mineral called grey (crystalline) hematite. That discovery was REALLY exciting to scientists, because hematite found on Earth typically develops in the presence of water. So, did this region have water on the surface long enough for the mineral to have formed sometime in the past? And if so, could that water have been around long enough for life to have developed at some point? After all, if water was around long enough for this mineral to have formed, then maybe, just maybe . . . . Studies of this area by Odyssey and Mars Global Surveyor are helping to pave the way for the Mars Exploration Rovers, which are scheduled to land on Mars in 2004. This alluring, hematite-rich area above is called Terra Meridiani, and is one of the leading candidates among potential landing sites. At least one of the rovers may end up exploring this very terrain! While the rover won't have instruments for detecting signs of past or present life, it will be able to use its science instruments to study the rocks up close and to determine better under what environment conditions they formed. By comparing the rover's surface data with the orbital data, scientists will be able to refine their understanding of the area. Depending on what a rover finds if it lands there, who knows what the long line of future missions to this area might look like? In the meantime, the above THEMIS image will give scientists more opportunities to study this exciting area right now. The brightness and texture of the surface varies remarkably throughout. That's because different rock layers settled on top of one another through a long history of changing environmental conditions before extensive erosion came along to strip layers unevenly away. That's what has produce the patchwork of different exposed layers seen above. Perhaps one layer formed during a wet period of history, and then another layer formed on top of it because of volcanic activity, and then another through wind deposits. Or some other combination. Any future rover fortunate enough to go here will have a field day, as it could potentially study them all! THEMIS's concurrent analyses in the infrared also help in understanding the sequence of layering events through time. THEMIS's infrared studies essentially measure the temperatures of all of the rock layers. Not surprisingly, it turns out that they all have varying temperatures, indicating that the physical properties also differ from layer to layer. By mapping what type of material occurs where, scientists can add to their knowledge of climatic and geologic change through time . . . and maybe have even more to say on the question of water!
2011-01-01
Background Hydroxyproline rich glycoproteins (HRGPs) are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs) and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis), and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs), mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs), proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM). This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages) of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP treatment showed aberrant non-compact epidermis with discontinuous ECM at the outer surface as well as much less immunolabelling with the JIM11 antibody. This treatment also decreased the plant regeneration capacity in embryogenic banana cultures. Finally, immunomodulation of surface hydroxyproline rich glycoproteins by co-culture of embryos with the JIM11 antibody resulted in a much lower germination capacity of these embryos. Conclusions These results suggest that hydroxyproline rich glycoproteins play an important developmental role, especially in the process of regeneration and germination of embryos during plant regeneration via somatic embryogenesis. Proper content and localization of hydroxyproline rich glycoproteins seem to be essential for the formation and regeneration of banana somatic embryos. PMID:21349190
The Multi-Stage History of Mt. Sharp
NASA Technical Reports Server (NTRS)
Allen, C.; Dapremont, A.
2013-01-01
The Curiosity rover is exploring Gale crater and Mt. Sharp, Gale's 5-km high central mound. We are investigating the history of alteration and erosion of Mt. Sharp using orbital imagery, spectroscopy and rover observations. Our results suggest a significant time gap between emplacement of the upper and lower sections of the mound. Crater counts show that the lower mound was formed soon after Gale itself, and that it contains distinct units ranging in altitude from approximately -4,500 to -1,800 m. Spectral data suggest that many units contain phyllosilicates. We found that these clay-bearing rocks occur in distinct layers concentrated below -2,900 m. Parts of the lower mound exhibit a transition from clays to sulfates with increasing altitude. The lower mound shows evidence of flowing water, including canyons and inverted channels. Wind erosion produced km-scale yardangs and scalloped cliffs. Our mapping shows that many yardangs in the lower mound are clay-bearing, with a predominant orientation of around N-S. Curiosity's ground-level images show myriad fine-scale, mainly horizontal layers in the lower mound. The rover has found stream beds and conglomerates, indicating that water once flowed on the crater floor. Drilling near the deepest point in Gale produced abundant clay, providing additional evidence of aqueous alteration. Upper mound units range in altitude from -2,100 m to +500 m, and mantle the lower mound above an angular unconformity. Most upper mound units are composed of layers. The formation age of the upper mound is unknown, since few craters are preserved. Clay-bearing layers are detectable in several locations, mainly at altitudes near -2,000 m. There is no evidence of water flow, but wind erosion has scalloped the surfaces and edges of layers, and fine-scale yardangs are common. Correlations between yardangs and clay spectra are apparent only in the lowermost units of the upper mound. Yardang orientations vary, and include N-S, NW-SE, and NE-SW. Upper mound units resemble the planet-wide Medusae Fossae formation, dated as Hesperian and argued to be composed of ignimbrites. Medusae Fossae layers are easily eroded by wind, and our mapping demonstrates their resemblance to upper mound fine-scale yardangs. The history of Mt. Sharp started with deposition and lithification of sediments shortly after crater formation. Some lower mound layers were partially altered to clays and sulfates, and water formed streams and canyons. Wind erosion of the lower mound produced large-scale yardangs, particularly in clay-rich layers, oriented generally N-S. Upper mound units were emplaced following a considerable period of wind erosion. The absence of water flow on the upper mound suggests that these units were emplaced after atmospheric loss rendered water unstable at the surface. The shift in dominant wind direction, as indicated by yardang orientations, also argues for a time gap between erosion of the lower and upper mound. These observations are consistent with upper mound units being related to the Hesperian Medusae Fossae formation. During 2014 Curiosity is expected to reach the foot of Mt. Sharp and ascend through the clay-rich layers, into the sulfate-rich layers, and possibly past the interface with the upper mound. This will be a unique opportunity to field check geologic models on the surface of Mars.
Thompson, David; Kranbuehl, David; Espuche, Eliane
2016-10-18
This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H.; Lee, S.M.; Lee, J.Y.
1999-10-01
AB{sub 2} type Zr-based Laves phase alloys have been studied for possible use as negative electrodes of Ni/MH batteries with high hydrogen storage capacity. However, these alloys have the serious problem of slow activation owing to the formation of surface oxide films. To overcome this problem, alloys with multiphase microstructures have been developed. These alloys become electrochemically active via the creation of micropores by the dissolution of soluble oxide components such as vanadium oxide. However, this phenomenon has been described based only on changes in the chemical composition of the oxide layer. In the present study, this phenomenon is approachedmore » with respect to interactions between the constituent phases. An electrochemical analysis of constituent phases showed that the second phase, resulting in localized Ni-rich pits on the alloy surface. The presence of microcracks at the periphery of the Ni-rich pits after 30 h exposure to KOH electrolyte implies that hydrogen is absorbed preferentially at Ni-rich pits, thereby forming a large active surface area. However, such multiphase alloys have poor cycle durability due to the persistent dissolution of components in the second phase. Through Cr substitution, the authors have developed a family of durable alloys to prevent this unwanted dissolution from the second phase.« less
The atomic level structure of the TiO(2)-NiTi interface.
Nolan, M; Tofail, S A M
2010-09-07
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.
Leme, Ariene A.; Vidal, Cristina M. P.; Hassan, Lina Saleh; Bedran-Russo, Ana K.
2015-01-01
Degradation of the adhesive interface contributes to the failure of resin composite restorations. The hydrophilicity of the dentin matrix during and after bonding procedures may result in an adhesive interface that is more prone to degradation over time. This study assessed the effect of chemical modification of dentin matrix on the wettability and the long-term reduced modulus of elasticity (Er) of the adhesive interfaces. Human molars were divided into groups according to the priming solutions: distilled water (control), 6.5% Proanthocyanidin-rich grape seed extract (PACs), 5.75% 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/1.4% n-hydroxysuccinimide (EDC/NHS) and 5% Glutaraldehyde (GA). The water-surface contact angle was verified before and after chemical modification of the dentin matrix. The demineralized dentin surface was treated with the priming solutions and restored with One Step Plus (OS) and Single Bond Plus (SB) and resin composite. The Er of the adhesive, hybrid layer and underlying dentin was evaluated after 24 h and 30 months in artificial saliva. The dentin hydrophilicity significantly decreased after application of the priming solutions. Aging significantly decreased the Er in the hybrid layer and underlying dentin of control groups. The Er of GA groups remained stable over time at the hybrid layer and underlying dentin. Significant higher Er was observed for PACs and EDC/NHS groups at the hybrid layer after 24 h. The decreased hydrophilicity of the modified dentin matrix likely influence the immediate mechanical properties of the hybrid layer. Dentin biomodification prevented substantial aging at the hybrid layer and underlying dentin after 30 months storage. PMID:25869721
Constraints on Mercury's Core-Mantle Boundary Region
NASA Astrophysics Data System (ADS)
Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.
2014-12-01
Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.
Stability of Li- and Mn-Rich Layered-Oxide Cathodes within the First-Charge Voltage Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iddir, Hakim; Bareño, Javier; Benedek, Roy
Li and Mn rich layered oxides xLi 2MnO 3•(1-x)LiMO 2 enable high capacity and energy density Li-ion batteries, but undergo structural transformations during the first charge that degrade their performance, and result in Voltage Fade upon cycling. First-principles density-functional-theory simulations reveal atomic transformations that occur in the bulk during the first charge. The simulations and experiment (particularly XRD) show that the O and Mn sublattices remain intact during the early part of the voltage plateau, and significant transformations occur only well into the voltage plateau, with perhaps close to half of the Li in the Li 2MnO 3 domains removed.more » That Voltage Fade is actually observed experimentally for a first charge with only minimal activation (extending only slightly beyond the onset of the voltage plateau) may be a consequence of surface and interface instabilities. Implications for the achievement of high energy-density, low-fade battery operation are discussed.« less
Proscene: A feature-rich framework for interactive environments
NASA Astrophysics Data System (ADS)
Charalambos, Jean Pierre
We introduce Proscene, a feature-rich, open-source framework for interactive environments. The design of Proscene comprises a three-layered onion-like software architecture, promoting different possible development scenarios. The framework innermost layer decouples user gesture parsing from user-defined actions. The in-between layer implements a feature-rich set of widely-used motion actions allowing the selection and manipulation of objects, including the scene viewpoint. The outermost layer exposes those features as a Processing library. The results have shown the feasibility of our approach together with the simplicity and flexibility of the Proscene framework API.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, Allison; Harder, Ross J.; Kanan, Matthew W.
Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325more » nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.« less
High-fluence Ga-implanted silicon—The effect of annealing and cover layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, J., E-mail: jan.fiedler@hzdr.de; Heera, V.; Hübner, R.
2014-07-14
The influence of SiO{sub 2} and SiN{sub x} cover layers on the dopant distribution as well as microstructure of high fluence Ga implanted Si after thermal processing is investigated. The annealing temperature determines the layer microstructure and the cover layers influence the obtained Ga profile. Rapid thermal annealing at temperatures up to 750 °C leads to a polycrystalline layer structure containing amorphous Ga-rich precipitates. Already after a short 20 ms flash lamp annealing, a Ga-rich interface layer is observed for implantation through the cover layers. This effect can partly be suppressed by annealing temperatures of at least 900 °C. However, in this case,more » Ga accumulates in larger, cone-like precipitates without disturbing the surrounding Si lattice parameters. Such a Ga-rich crystalline Si phase does not exist in the equilibrium phase diagram according to which the Ga solubility in Si is less than 0.1 at. %. The Ga-rich areas are capped with SiO{sub x} grown during annealing which only can be avoided by the usage of SiN{sub x} cover layers.« less
Initial Conceptualization and Application of the Alaska Thermokarst Model
NASA Astrophysics Data System (ADS)
Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.
2015-12-01
Thermokarst topography forms whenever ice-rich permafrost thaws and the ground subsides due to the volume loss when ground ice transitions to water. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM uses a frame-based methodology to track transitions and proportion of cohorts within a 1-km2 grid cell. In the arctic tundra environment, the ATM tracks thermokarst-related transitions among wetland tundra, graminoid tundra, shrub tundra, and thermokarst lakes. In the boreal forest environment, the ATM tracks transitions among forested permafrost plateau, thermokarst lakes, collapse scar fens and bogs. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance (i.e. large precipitation event or fires), or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The rate of terrain transition in our model is determined by a set of rules that are based upon the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic (the Barrow Peninsula) and boreal (the Tanana Flats) regions of Alaska.
NASA Technical Reports Server (NTRS)
2006-01-01
This frame from the microscopic imager on NASA's Mars Exploration Rover Opportunity shows spherules up to about 5 millimeters (one-fifth of an inch) in diameter. The camera took this image during the 924th Martian day, or sol, of Opportunity's Mars-surface mission (Aug. 30, 2006), when the rover was about 200 meters (650 feet) north of 'Victoria Crater.' Opportunity discovered spherules like these, nicknamed 'blueberries,' at its landing site in 'Eagle Crater,' and investigations determined them to be iron-rich concretions that formed inside deposits soaked with groundwater. However, such concretions were much smaller or absent at the ground surface along much of the rover's trek of more than 5 kilometers (3 miles) southward to Victoria. The big ones showed up again when Opportunity got to the ring, or annulus, of material excavated and thrown outward by the impact that created Victoria Crater. Researchers hypothesize that some layer beneath the surface in Victoria's vicinity was once soaked with water long enough to form the concretions, that the crater-forming impact dispersed some material from that layer, and that Opportunity might encounter that layer in place if the rover drives down into the crater.NASA Astrophysics Data System (ADS)
Wu, Xiao; Wang, Houjie; Bi, Naishuang; Song, Zhenjie; Zang, Zhengchen; Kineke, Gail C.
2016-12-01
Based on the combination of synchronous satellite and in-situ observations, we here, for the first time, provide the compelling evidence of bio-physical response of coastal environment in the Bohai Sea (China) to the passage of Typhoon Meari over the northern Yellow Sea on June 26, 2011. Strong sustained winds induced a tongue-like intrusion of cool water from the northern Yellow Sea into the Bohai Sea, resulting in significant surface cooling and an anomalous increase in sea surface height along the coast of the western Bohai Sea. This, in return, produced downwelling and transport of the warm and nutrient-rich coastal water from the western coast to the central Bohai Sea, as driven by the barotropic pressure gradient force. In-situ observational data confirmed the cooling of both surface and bottom layers with salinity increase; however, the measured temperature increase by 2-3 °C, concomitant salinity decrease by 0.3 PSU and two-fold increase in chlorophyll-a in the middle layers suggested an influence from coastal downwelling. Ekman transport and typhoon-enhanced mixing redistributed the nutrients and thus resulted in higher chlorophyll-a concentrations in the upper layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, J.A.
1979-06-15
Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less
Electroless Cu Plating on Anodized Al Substrate for High Power LED.
Rha, Sa-Kyun; Lee, Youn-Seoung
2015-03-01
Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.
A View of the Painted Desert Near Mawrth Vallis
2017-08-07
The clay-rich terrain surrounding Mawrth Vallis is one of the most scenic regions of Mars, a future interplanetary park, as seen by NASA's Mars Reconnaissance Orbiter. Here, we cut a long, oblique view into strips to see the full color coverage in more compact form. The origin of these altered layers is the subject of continued debates, perhaps to be resolved by a future rover on the surface. We do know that these layers are very ancient, dating back to a time when the environment of Mars was wetter and more habitable, if there were any inhabitants. https://photojournal.jpl.nasa.gov/catalog/PIA21871
Defect-free erbium silicide formation using an ultrathin Ni interlayer.
Choi, Juyun; Choi, Seongheum; Kang, Yu-Seon; Na, Sekwon; Lee, Hoo-Jeong; Cho, Mann-Ho; Kim, Hyoungsub
2014-08-27
An ultrathin Ni interlayer (∼1 nm) was introduced between a TaN-capped Er film and a Si substrate to prevent the formation of surface defects during thermal Er silicidation. A nickel silicide interfacial layer formed at low temperatures and incurred uniform nucleation and the growth of a subsequently formed erbium silicide film, effectively inhibiting the generation of recessed-type surface defects and improving the surface roughness. As a side effect, the complete transformation of Er to erbium silicide was somewhat delayed, and the electrical contact property at low annealing temperatures was dominated by the nickel silicide phase with a high Schottky barrier height. After high-temperature annealing, the early-formed interfacial layer interacted with the growing erbium silicide, presumably forming an erbium silicide-rich Er-Si-Ni mixture. As a result, the electrical contact property reverted to that of the low-resistive erbium silicide/Si contact case, which warrants a promising source/drain contact application for future high-performance metal-oxide-semiconductor field-effect transistors.
Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces
NASA Astrophysics Data System (ADS)
Mattson, E. C.; Michalak, D. J.; Veyan, J. F.; Chabal, Y. J.
2017-02-01
Cobalt-iron-boron (CoFeB) thin films are the industry standard for ferromagnetic layers in magnetic tunnel junction devices and are closely related to the relevant surfaces of CoFe-based catalysts. Identifying and understanding the composition of their surfaces under relevant processing conditions is therefore critical. Here we report fundamental studies on the interaction of nitrogen plasma with CoFeB surfaces using infrared spectroscopy, x-ray photoemission spectroscopy, and low energy ion scattering. We find that, upon exposure to nitrogen plasma, clean CoFeB surfaces spontaneously reorganize to form an overlayer comprised of Fe2N3 and BN, with the Co atoms moved well below the surface through a chemically driven process. Subsequent annealing to 400 °C removes nitrogen, resulting in a Fe-rich termination of the surface region.
NASA Astrophysics Data System (ADS)
Nielsen, T. F.; Bernstein, S.
2009-12-01
The 54 Ma. old Skaergaard intrusion ( East Greenland) is a type example for fractionation of basaltic melt along the Fenner Trend. The Triple Group is the upper most 100 m of the Middle Zone and consists of FeTi-oxide rich layered gabbro with three distinct leugabbro layers 2-5 m thick ( L-layers; L1-L3, 2-5m thick) and a less marked layer (L0) c.20 m below L1. These are the most marked of many such layers. Apart from the pronounced layering the lower part of the Triple Group also hosts a world class Au-PGE mineralization. The mineralization is perfectly concordant with the L-layers, and the Triple Group invites investigation of the relationship between host and mineralization. The mineralization includes 5 main levels defined by palladium concentration. The chemical variation across the mineralization is covered by ca. 250 bulk major and trace element compositions, each representing 25cm of stratigraphy giving a continuum of ca. 60m. Proportions of normative plagioclase (plag) and pyroxene (px, including cpx and opx) are complementary, except in mineralized gabbro which is rich in FeTi-oxides. Cumulus ilmenite (ilm) is strongly enriched in layers (7m apart). They occur in both plag- and px-rich gabbro, whereas magnetite (mt) shows no simple correlation with ilm and is mainly a poikilitic intercumulus phase. The L-layers are composed of an upper part rich in plag and px and poor in FeTi-oxides, and a lower part rich in plag and FeTi-oxides and poor in px. The marked breaks in the mineralogy in the L-layers separate one layered succession from the next. The layered successions consist of a lower oxide-poor px-plag adcumulate, followed by complex mesocratic orthocumulate with poikilitic interstitial FeTi-oxide, and an upper part of increasingly simple plag-rich adcumulate with decreasing content of interstitial mt. The Au-PGE mineralized levels are found in the complex FeTi-rich gabbros at and in the base of the leucogabbro layers. The stratigraphic variation in density and densities of melt and liquidus phases suggest plag to have neutral buoyancy (floating), whereas all other phases would sink. The repeated successions are suggested to be the result of repeated “self-stratification” in the mush zone at the crystallization front, characterized by separation of px and plag leaving a transitional zone enriched in Fe-rich melt. In this melt, crystallization of mt led to S-saturation and formation of immiscible sulfide globules (30µm) in which PGE-minerals crystallize. During solidification, residual or immiscible Si-rich melt and volatiles rose from the transitional zone and took Au, Ag, Pt, Te, As, Pb, Sb, Sn, a.o. along to the main magma above and at late stage to granophyric veins. The Fe-enriched gabbros in the transitional zone are commonly accepted as average gabbros, but are in the Triple Group mixes of cumulus phases and evolved Fe-rich melt and should be used with care in the modeling of lines of liquid descent.
Method of coating an iron-based article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.
A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Key, Baris; Lapidus, Saul H.
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Han, Binghong; Key, Baris; Lapidus, Saul H.; ...
2017-11-01
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels.
Süss, Jacqueline; Herrmann, Kerstin; Seidel, Michael; Cypionka, Heribert; Engelen, Bert; Sass, Henrik
2008-04-01
Eastern Mediterranean sediments are characterized by the periodic occurrence of conspicuous, organic matter-rich sapropel layers. Phylogenetic analysis of a large culture collection isolated from these sediments revealed that about one third of the isolates belonged to the genus Photobacterium. In the present study, 22 of these strains were examined with respect to their phylogenetic and metabolic diversity. The strains belonged to two distinct Photobacterium populations (Mediterranean cluster I and II). Strains of cluster I were isolated almost exclusively from organic-rich sapropel layers and were closely affiliated with P. aplysiae (based on their 16S rRNA gene sequences). They possessed almost identical Enterobacterial Repetitive Intergenic Consensus (ERIC) and substrate utilization patterns, even among strains from different sampling sites or from layers differing up to 100,000 years in age. Strains of cluster II originated from sapropels and from the surface and carbon-lean intermediate layers. They were related to Photobacterium frigidiphilum but differed significantly in their fingerprint patterns and substrate spectra, even when these strains were obtained from the same sampling site and layer. Temperature range for growth (4 to 33 degrees C), salinity tolerance (5 to 100 per thousand), pH requirements (5.5-9.3), and the composition of polar membrane lipids were similar for both clusters. All strains grew by fermentation (glucose, organic acids) and all but five by anaerobic respiration (nitrate, dimethyl sulfoxide, anthraquinone disulfonate, or humic acids). These results indicate that the genus Photobacterium forms subsurface populations well adapted to life in the deep biosphere.
Jia, Zhen Yu; Zhang, Jun Hua; Ding, Sheng Yan; Feng, Shu; Xiong, Xiao Bo; Liang, Guo Fu
2016-04-22
Soil phosphorus is an important indicator to measure the soil fertility, because the content of soil phosphorus has an important effect on physical and chemical properties of soil, plant growth, and microbial activity in soil. In this study, the soil samples collecting and indoor analysis were conducted in Zhoukou City located in the flooded area of the Yellow River. By using GIS combined with geo-statistics, we tried to analyze the spatial variability and content distribution of soil total phosphorus (TP) and soil available phosphorus (AP) in the study area. Results showed that TP and AP of both soil layers (0-20 cm and 20-40 cm) were rich, and the contents of TP and AP in surface layer (0-20 cm) were higher than in the second layer (20-40 cm). TP and AP of both soil layers exhibited variation at medium level, and AP had varied much higher than TP. TP of both layers showed medium degree of anisotropy which could be well modeled by the Gaussian model. TP in the surface layer showed strong spatial correlation, but that of the second layer had medium spatial correlation. AP of both layers had a weaker scope in anisotropy which could be simulated by linear model, and both soil layers showed weaker spatial correlations. TP of both soil layers showed a slowly rising change from southwest to northeast of the study area, while it gradually declined from northwest to southeast. AP in soil surface layer exhibited an increase tendency firstly and then decrease from southwest to the northeast, while it decreased firstly and then increased from southeast to the northwest. AP in the second soil layer had an opposite change in the southwest to the northeast, while it showed continuously increasing tendency from northwest to the southeast. The contents of TP and AP in the surface layer presented high grades and the second layer of TP belonged to medium grade, but the second layer of AP was in a lower grade. The artificial factors such as land use type, cropping system, irrigation and fertilization were the main factors influencing the distribution and spatial variation of soil phosphorus in this area.
NASA Astrophysics Data System (ADS)
Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François
2016-04-01
In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.
NASA Technical Reports Server (NTRS)
Asunmaa, S. K.; Haack, R.
1977-01-01
An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.
Mercury's surface: Preliminary description and interpretation from Mariner 10 pictures
Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.E.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.
1974-01-01
The surface morphology and optical properties of Mercury resemble those of the moon in remarkable detail and record a very similar sequence of events. Chemical and mineralogical similarity of the outer layers of Mercury and the moon is implied; Mercury is probably a differentiated planet with a large iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of landforms has been found. Large-scale scarps and ridges unlike lunar or martian features may reflect a unique period of planetary compression near the end of heavy bombardment by small planetesimals.
The geochemical record in rock glaciers
Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H.
1998-01-01
A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.
Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe 2
Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; ...
2015-11-16
Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe 2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as themore » phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less
Sequential and competitive adsorption of peptides at pendant PEO layers.
Wu, Xiangming; Ryder, Matthew P; McGuire, Joseph; Snider, Joshua L; Schilke, Karl F
2015-06-01
Earlier work provided direction for development of responsive drug delivery systems based on modulation of the structure, amphiphilicity, and surface density of bioactive peptides entrapped within pendant polyethylene oxide (PEO) brush layers. In this work, we describe the sequential and competitive adsorption behavior of such peptides at pendant PEO layers. Three cationic peptides were used for this purpose: the arginine-rich, amphiphilic peptide WLBU2, a peptide chemically identical to WLBU2 but of scrambled sequence (S-WLBU2), and the non-amphiphilic peptide poly-L-arginine (PLR). Optical waveguide lightmode spectroscopy (OWLS) was used to quantify the rate and extent of peptide adsorption and elution at surfaces coated with PEO. UV spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to quantify the extent of peptide exchange during the course of sequential and competitive adsorption. Circular dichroism (CD) was used to evaluate conformational changes after adsorption of peptide mixtures at PEO-coated silica nanoparticles. Results indicated that amphiphilic peptides are able to displace adsorbed, non-amphiphilic peptides in PEO layers, while non-amphiphilic peptides were not able to displace more amphiphilic peptides. In addition, peptides of greater amphiphilicity dominated the adsorption at the PEO layer from mixtures with less amphiphilic or non-amphiphilic peptides. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.
2015-12-01
The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.
NASA Astrophysics Data System (ADS)
Li, Jianhui; Xing, Lidan; Zhang, Liping; Yu, Le; Fan, Weizhen; Xu, Mengqing; Li, Weishan
2016-08-01
Self-discharge behavior of layered lithium-rich oxide as cathode of lithium ion battery in a carbonated-based electrolyte is understood, and a simple boron-containing compound, trimethyl borate (TMB), is used as an electrolyte additive to suppress this self-discharge. It is found that layered lithium-rich oxide charged under 4.8 V in additive-free electrolyte suffers severe self-discharge and TMB is an effective electrolyte additive for self-discharge suppression. Physical characterizations from XRD, SEM, TEM, XPS and ICP-MS demonstrate that the crystal structure of the layered lithium-rich oxide collapses due to the chemical interaction between the charged oxide and electrolyte. When TMB is applied, the structural integrity of the oxide is maintained due to the protective cathode film generated from the preferential oxidation of TMB.
Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils
NASA Astrophysics Data System (ADS)
Weitzman, Julie N.; Kaye, Jason P.
2017-05-01
While eutrophication is often attributed to contemporary nutrient pollution, there is growing evidence that past practices, like the accumulation of legacy sediment behind historic milldams, are also important. Given their prevalence, there is a critical need to understand how N flows through, and is retained in, legacy sediments to improve predictions and management of N transport from uplands to streams in the context of climatic variability and land-use change. Our goal was to determine how nitrate (NO3-) is cycled through the soil of a legacy-sediment-strewn stream before and after soil drying. We extracted 10.16 cm radius intact soil columns that extended 30 cm into each of the three significant soil horizons at Big Spring Run (BSR) in Lancaster, Pennsylvania: surface legacy sediment characterized by a newly developing mineral A horizon soil, mid-layer legacy sediment consisting of mineral B horizon soil and a dark, organic-rich, buried relict A horizon soil. Columns were first preincubated at field capacity and then isotopically labeled nitrate (15NO3-) was added and allowed to drain to estimate retention. The columns were then air-dried and subsequently rewet with N-free water and allowed to drain to quantify the drought-induced loss of 15NO3- from the different horizons. We found the highest initial 15N retention in the mid-layer legacy sediment (17 ± 4 %) and buried relict A soil (14 ± 3 %) horizons, with significantly lower retention in the surface legacy sediment (6 ± 1 %) horizon. As expected, rewetting dry soil resulted in 15N losses in all horizons, with the greatest losses in the buried relict A horizon soil, followed by the mid-layer legacy sediment and surface legacy sediment horizons. The 15N remaining in the soil following the post-drought leaching was highest in the mid-layer legacy sediment, intermediate in the surface legacy sediment, and lowest in the buried relict A horizon soil. Fluctuations in the water table at BSR which affect saturation of the buried relict A horizon soil could lead to great loses of NO3- from the soil, while vertical flow through the legacy-sediment-rich soil profile that originates in the surface has the potential to retain more NO3-. Restoration that seeks to reconnect the groundwater and surface water, which will decrease the number of drying-rewetting events imposed on the relict A horizon soils, could initially lead to increased losses of NO3- to nearby stream waters.
Astrobiology Investigations at a Martian Hematite Site
NASA Technical Reports Server (NTRS)
Allen, Carlton, C.; Westall, Frances; Schelble, Rachel T.
2001-01-01
Christensen et al, using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Sinus Meridiani. The deposit corresponds closely to the low-albedo highlands unit 'sm', mapped as a wind-eroded, ancient, subaqueous sedimentary deposit. Christensen et al interpreted the Sinus Meridiani deposit to be 'an in-place, rock-stratigraphic sedimentary unit characterized by smooth, friable layers composed primarily of basaltic sediments with approximately 10 to 15 % crystalline gray hematite.' Christensen et al discussed five possible mechanisms for the formation of this deposit: direct precipitation from standing, oxygenated, Fe-rich water; precipitation from Fe-rich hydrothermal fluids; low-temperature dissolution and precipitation through mobile groundwater leaching; surface weathering and coatings; thermal oxidation of magnetite-rich lavas. Four of these mechanisms involve the interactions of rock with water, and thus have implications in the search for evidence of microbial life.
Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres
NASA Astrophysics Data System (ADS)
Fowlkes, J. D.; Pedraza, A. J.; Lowndes, D. H.
2000-09-01
The microstructures formed at the surface of silicon during pulsed-laser irradiation in SF6-rich atmospheres consist of an array of microholes surrounded by microcones. It is shown that there is a dynamic interplay between the formation of microholes and microcones. Fluorine produced by the laser-induced decomposition of SF6 is most likely responsible for the etching/ablation process. It is proposed that silicon-rich molecules and clusters that form in and are ejected from the continually deepening microholes sustain the axial and lateral growth of the microcones. The laser-melted layer at the tip and sides of the cones efficiently collects the silicon-rich products formed upon ablation. The total and partial pressures of SF6 in the chamber play a major role in cone development, a clear indication that it is the laser-generated plasma that controls the growth of these cones.
Characterization of strain relaxation behavior in Si1- x Ge x epitaxial layers by dry oxidation
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Park, Seran; Ko, Dae-Hong
2017-11-01
We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.
NASA Astrophysics Data System (ADS)
Liang, Shoudeng
We describe the recent implementation of a synchrotron radiation based scanning soft X-ray photoemission microscope - MAXIMUM, and discuss its application to the investigation of corrosion-induced microstructures in Al-Cu-Si thin films. The microscope employs a Mo/Si multilayer-coated Schwarzschild objective to focus 95eV X-rays from an undulator beamline. The photoelectrons are energy-analyzed by a CMA, and the sample is rastered to produce an image. We have achieved 980A spatial and 250meV energy resolution. Recent addition of a sample preparation and transfer system to the microscope enables us to perform surface and materials studies under UHV conditions. Since the spatial resolution of the microscope is determined by the spot size of the focused X-rays, any electrostatic potential from surface charging will not affect the image quality. This allowed the study of highly insulating films with the use of an electron flood gun to compensate for spectral shifts. We have employed MAXIMUM to investigate corrosion -induced surface microstructures in the Al-Cu-Si thin films commonly utilized in VLSI metallization. Spectromicroscopy was performed to characterize the chemical species and their distribution on the film surface after corrosion under 85% relative humidity at 85^circ C. The experimental images demonstrated that Cu -rich precipitates were formed near the surface region beneath the oxide layer upon annealing. We also observed a correlation between the precipitates and the increased corrosion in the alloy film: the localized corrosion occurs only at those sites where precipitation has taken place. This implies that the surface oxide layer is modified by the underlying Cu-rich phase such that it loses protection against moisture. After pitting, the Cu-rich phase acts as a cathode to facilitate corrosion of the surrounding Cu-deficient Al matrix via galvanic action. The corrosion -induced microstructures show characteristic circular features in the micrographs of energy-specific photoelectrons from Cu 3d and O 2p valence bands. Such characteristic structures were observed only when the film was annealed below the solvus temperatures in the Al-Cu binary phase diagram, i.e., when a phase separation occurred. These results demonstrated the usefulness of spectromicroscopy in corrosion studies.
Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching
NASA Astrophysics Data System (ADS)
Engstrom, James R.; Kummel, Andrew C.
2017-02-01
Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.
Engstrom, James R; Kummel, Andrew C
2017-02-07
Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.
Seismic evidence for silicate melt atop the 410-km mantle discontinuity
Revenaugh, Justin; Sipkin, S.A.
1994-01-01
LABORATORY results demonstrating that basic to ultrabasic melts become denser than olivine-rich mantle at pressures above 6 GPa (refs 1-3) have important implications for basalt petrogenesis, mantle differentiation and the storage of volatiles deep in the Earth. A density cross-over between melt and solid in the extensively molten Archaean mantle has been inferred from komatiitic volcanism and major-element mass balances, but present-day evidence of dense melt below the seismic low-velocity zone is lacking. Here we present mantle shear-wave impedance profiles obtained from multiple-ScS reverberation mapping for corridors connecting western Pacific subduction zone earthquakes with digital seismograph stations in eastern China, imaging a ~5.8% impedance decrease roughly 330 km beneath the Sea of Japan, Yellow Sea and easternmost Asia. We propose that this represents the upper surface of a layer of negatively buoyant melt lying on top of the olivine ??? ??- phase transition (the 410-km seismic discontinuity). Volatile-rich fluids expelled from the partial melt zone as it freezes may migrate upwards, acting as metasomatic agents and perhaps as the deep 'proto-source' of kimberlites. The remaining, dense, crystalline fraction would then concentrate above 410 km, producing a garnet-rich layer that may flush into the transition zone.
Oshima, Kaori; Haeger, Sarah M.; Hippensteel, Joseph A.; Herson, Paco S.
2017-01-01
Advances in tissue fixation and imaging techniques have yielded increasing appreciation for the glycosaminoglycan-rich endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer (ESL). Pathological loss of the ESL during critical illness promotes local endothelial dysfunction and, consequently, organ injury. Glycosaminoglycan fragments, such as heparan sulfate, are released into the plasma of animals and humans after ESL degradation and have thus served as a biomarker of endothelial injury. The development of state-of-the-art glycomic techniques, however, has revealed that these circulating heparan sulfate fragments are capable of influencing growth factor and other signaling pathways distant to the site of ESL injury. This review summarizes the current state of knowledge concerning the local (i.e. endothelial injury) and systemic (i.e. para- or endocrine) consequences of ESL degradation and identifies opportunities for future, novel investigations. PMID:29199903
Atomic structure of (111) SrTiO3/Pt interfaces
NASA Astrophysics Data System (ADS)
Schmidt, Steffen; Klenov, Dmitri O.; Keane, Sean P.; Lu, Jiwei; Mates, Thomas E.; Stemmer, Susanne
2006-03-01
Atomic resolution high-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy was used to investigate the interface atomic structure of epitaxial, (111) oriented SrTiO3 films on epitaxial Pt electrodes grown on (0001) sapphire. The cube-on-cube orientation relationship of SrTiO3 on Pt was promoted by the use of a Ti adhesion layer underneath the Pt electrode. While a Ti-rich Pt surface was observed before SrTiO3 growth, HAADF images showed an atomically abrupt SrTiO3/Pt interface with no interfacial layers. The SrTiO3 films contained two twin variants that were related by a 180° rotation about the ⟨111⟩ surface normal. HAADF images showed two different interface atomic arrangements for the two twins. The role of Ti in promoting (111) epitaxy and the implications for the dielectric properties are discussed.
Gao, Zhan; Henthorn, David B.; Kim, Chang-Soo
2009-01-01
In this work, we detail a method whereby a polymeric hydrogel layer is grafted to the negative tone photoresist SU-8 in order to improve its wettability. A photoinitiator is first immobilized on freshly prepared SU-8 samples, acting as the starting point for various surface modifications strategies. Grafting of a 2-hydroxyethylmethacrylate-based hydrogel from the SU-8 surface resulted in the reduction of the static contact angle of a water droplet from 79 ± 1° to 36 ± 1°, while addition of a poly(ethylene glycol)-rich hydrogel layer resulted in further improvement (8 ± 1°). Wettability is greatly enhanced after 30 minutes of polymerization, with a continued but more gradual decrease in contact angle up to approximately 50 minutes. Hydrogel formation is triggered by exposure to UV irradiation, allowing for the formation of photopatterned structures using existing photolithographic techniques. PMID:19756177
Effects of excess oxygen on the 4.5-6.3 eV absorption spectra of oxygen-rich high purity silica
NASA Astrophysics Data System (ADS)
Magruder, R. H.; Robinson, S. J.
2016-05-01
Type III silica samples were implanted with O using a multi-energy process that produced a layer of constant concentration to within ±5% beginning ∼80 nm from the surface and extending to ∼640 nm below the surfaces of the samples. The concentrations of excess oxygen in the layer ranged from 0.035 to ∼2.1at.%. In these samples we show that E‧ centers and NBOHCs, as well as the normal cadre of ODC (II) centers, were suppressed, and the optical absorption from 4.7 to 6.4 eV was primarily due to oxygen excess defects. Using Gaussian fitting techniques to examine the optical difference spectra, we have been able to identify four defect centers that are related to excess oxygen defect bands at 4.76 eV, 5.42 eV, 5.75 eV and 6.25 eV.
NASA Astrophysics Data System (ADS)
Rokicki, Ryszard; Haider, Waseem; Maffi, Shivani Kaushal
2015-01-01
Research was undertaken to determine the influence of the increased content of chromium in the outermost passive layer of magneto-electrochemically refined Co-Cr alloy L-605 surface on its hemocompatibility. The chemistry, roughness, surface energy, and wettability of conventionally electropolished (EP) and magnetoelectropolished (MEP) samples were studied with x-ray photoelectron spectroscopy (XPS), open circuit potential, atomic force microscopy, and contact angle meter. In vitro hemocompatibility of tested material surfaces was assessed using two important indicators of vascular responses to biomaterial, namely endothelialization and platelets adhesion. The endothelialization was assessed by seeding and incubating samples with human umbilical vein endothelial cells (HUVEC) for 3 days before counting and observing them under a fluorescent microscope. The platelet (rich plasma blood) adhesion and activation test on EP and MEP L-605 alloy surfaces was assessed using a laser scanning confocal microscope. The XPS analysis of MEP samples showed significant enrichment of the passive layer with Cr and O when compared with the EP one. The amount of other elements in the passive layer did not show a significant difference between EP and MEP treatments. The adhesion of HUVEC cells shows remarkable affinity to surfaces enriched in Cr (MEP) with almost 100% confluency. In addition, the number of platelets that adhered to standard EP surfaces was higher compared to the MEP surface. The present study shows that the chromium-enriched surface of cobalt-chromium alloy L-605 by the magnetoelectropolishing process tremendously improves surface hemocompatibility with regard to stent functionality by enhanced endothelialization and lower platelet adhesion and should be taken under consideration as an alternative surface of biodegradable polymer drug-eluting stents, polymer-free drug-eluting stents as well as bare-metal stents.
The role of SO{sub 4}{sup 2−} surface distribution in arsenic removal by iron oxy-hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tresintsi, S.; Simeonidis, K., E-mail: ksime@physics.auth.gr; Department of Mechanical Engineering, University of Thessaly, 38334 Volos
2014-05-01
This study investigates the contribution of chemisorbed SO{sub 4}{sup 2−} in improving arsenic removal properties of iron oxy-hydroxides through an ion-exchange mechanism. An analytical methodology was developed for the accurate quantification of sulfate ion (SO{sub 4}{sup 2−}) distribution onto the surface and structural compartments of iron oxy-hydroxides synthesized by FeSO{sub 4} precipitation. The procedure is based on the sequential determination of SO{sub 4}{sup 2−} presence in the diffuse and Stern layers, and the structure of these materials as defined by the sulfate-rich environments during the reaction and the variation in acidity (pH 3–12). Physically sorbed SO{sub 4}{sup 2−}, extracted inmore » distilled water, and physically/chemically adsorbed ions on the oxy-hydroxide's surface leached by a 5 mM NaOH solution, were determined using ion chromatography. Total sulfate content was gravimetrically measured by precipitation as BaSO{sub 4}. To validate the suggested method, results were verified by X-ray photoelectron and Fourier-transformed infrared spectroscopy. Results showed that low precipitation pH-values favor the incorporation of sulfate ions into the structure and the inner double layer, while under alkaline conditions ions shift to the diffuse layer. - Graphical abstract: An analytical methodology for the accurate quantification of sulfate ions (SO{sub 4}{sup 2−}) distribution onto the diffuse layer, the Stern layer and the structure of iron oxy-hydroxides used as arsenic removal agents. - Highlights: • Quantification of sulfate ions presence in FeOOH surface compartments. • Preparation pH defines the distribution of sulfates. • XPS and FTIR verify the presence of SO{sub 4}{sup 2−} in the structure, the Stern layer the diffuse layer of FeOOH. • Chemically adsorbed sulfates control the arsenic removal efficiency of iron oxyhydroxides.« less
Preservation of layered paleodeposits in high-latitude pedestal craters on Mars
NASA Astrophysics Data System (ADS)
Kadish, Seth J.; Head, James W.
2011-06-01
An outstanding question in Mars' climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions.
Ancient Aqueous Conditions on Mars as Inferred from Spirit and Opportunity Rover Data
NASA Astrophysics Data System (ADS)
Arvidson, R. E.
2017-12-01
The Spirit and Opportunity rover missions have added significantly to our understanding of the availability of surface and subsurface waters on Mars over a range of timescales, from the Noachian Period until the present. The most important discoveries from Spirit's traverses and measurements are focused around Home Plate in the Noachian-aged Columbia Hills, Gusev Crater. Home Plate is postulated to be a largely eroded volcanoclastic construct. Spirit's wheels excavated a variety of hydrated sulfate minerals and iron oxides just beneath the surface in the vicinity of Home Plate, likely reworked hydrothermal deposits. Spirit also explored silica-rich deposits found adjacent to Home Plate of likely hydrothermal origin, perhaps deposited as sinters. Opportunity's exploration of the Burns formation sulfate-rich sandstones that underlie Meridiani Planum provided the key observations to infer an origin as sulfate-rich muds accumulating in shallow, ephemeral lakes during the late Noachian to early Hesperian Periods. Fluvial and aeolian activity reworked the muds into sandstones, to be later cemented and altered by rising groundwaters. Opportunity's exploration of the Noachian-aged 22 km diameter Endeavour Crater, combined with mineral mapping using Mars Reconnaissance Orbiter CRISM hyperspectral data, led to the discovery and characterization of ferric smectite-bearing layered outcrops and Al-rich smectites in fractures, both in the Matijevic formation that underlies Endeavour's ejecta (Shoemaker formation). In addition, Opportunity observations led to the discovery and characterization of: (a) extensive Ca sulfate veins in the above mentioned formations and in the overlying Grasberg formation, (b) Shoemaker formation rocks excavated from a soil-filled fracture coated by sulfates and Mn oxides, and (c) extensive Fe-Mg smectites in outcrops and strings of hematite-rich pebbles in sulfate-rich soil-filled fractures in Marathon Valley. Spirit and Opportunity observations thus add to the mounting evidence for significant subsurface aqueous alteration along fractures, in addition to the sustained presence of surface water during the Noachian to early Hesperian Eras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Junjun; Zhang, Shiran; Choksi, Tej
2016-12-05
Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis weremore » explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.« less
Meeus, Joke; Chen, Xinyong; Scurr, David J; Ciarnelli, Valeria; Amssoms, Katie; Roberts, Clive J; Davies, Martyn C; van Den Mooter, Guy
2012-09-01
Injectable controlled-release formulations are of increasing interest for the treatment of chronic diseases. This study aims to develop and characterize a polymeric matrix for intramuscular or subcutaneous injection, consisting of two biocompatible polymers, particularly suitable for formulating poorly soluble drugs. For this matrix, the water-insoluble polymer poly(lactic-co-glycolic acid) (PLGA) is combined with the water-soluble polymer polyvinylpyrrolidone (PVP). Microparticles of these two polymers were prepared by spray drying. The phase behavior of the samples was studied by means of modulated differential scanning calorimetry and the results showed that phase separation occurred in the bulk sample through evidence of two mixed amorphous phases, namely, a PLGA-rich phase and a PVP-rich phase. Characterization of the samples by scanning electron microscopy demonstrated that the spray-dried particles were hollow with a thin shell. Because of the importance in relation to stability and drug release, information about the surface of the microparticles was collected by different complementary surface analysis techniques. Atomic force microscopy gathered information about the morphology and phase behavior of the microparticle surface. Time-of-flight secondary ion mass spectrometry analysis of the particles revealed that the surface consisted mainly of the PLGA-rich phase. This was confirmed by X-ray photoelectron spectroscopy at an increased sampling depth (≈ 10 nm). Nanothermal analysis proved to be an innovative way to thermally detect the presence of the PLGA-dominated surface layer and the underlying PVP phase. Taken together, this information provides a rational basis for predicting the likely drug release behavior this formulation will display. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng
2013-06-01
The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.
The Skaergaard trough layering: sedimentation in a convecting magma chamber
NASA Astrophysics Data System (ADS)
Vukmanovic, Z.; Holness, M. B.; Monks, K.; Andersen, J. C. Ø.
2018-05-01
The upper parts of the floor cumulates of the Skaergaard Intrusion, East Greenland, contain abundant features known as troughs. The troughs are gently plunging synformal structures comprising stacks of crescentic modally graded layers with a sharply defined mafic base that grades upward into plagioclase-rich material. The origin of the troughs and layering is contentious, attributed variously to deposition of mineral grains by magmatic currents descending from the nearby walls, or to in situ development by localised recrystallisation during gravitationally-driven compaction. They are characterised by outcrop-scale features such as mineral lineations parallel to the trough axis, evidence of erosion and layer truncation associated with migration of the trough axis, and disruption of layering by syn-magmatic slumping. A detailed microstructural study of the modal trough layers, using electron backscatter diffraction together with geochemical mapping, demonstrates that these rocks do not record evidence for deformation by either dislocation creep or dissolution-reprecipitation. Instead, the troughs are characterised by the alignment of euhedral plagioclase crystals with unmodified primary igneous compositional zoning. We argue that the lineations and foliations are, therefore, a consequence of grain alignment during magmatic flow. Post-accumulation amplification of the modal layering occurred as a result of differential migration of an unmixed immiscible interstitial liquid, with upwards migration of the Si-rich conjugate into the plagioclase-rich upper part of the layers, whereas the Fe-rich immiscible conjugate remained in the mafic base. Both field and microstructure evidence support the origin of the troughs as the sites of repeated deposition from crystal-rich currents descending from the nearby chamber walls.
Use of gas-phase ethanol to mitigate extreme UV/water oxidation of extreme UV optics
NASA Astrophysics Data System (ADS)
Klebanoff, L. E.; Malinowski, M. E.; Clift, W. M.; Steinhaus, C.; Grunow, P.
2004-03-01
A technique is described that uses a gas-phase species to mitigate the oxidation of a Mo/Si multilayer optic caused by either extreme UV (EUV) or electron-induced dissociation of adsorbed water vapor. It is found that introduction of ethanol (EtOH) into a water-rich gas-phase environment inhibits oxidation of the outermost Si layer of the Mo/Si EUV reflective coating. Auger electron spectroscopy, sputter Auger depth profiling, EUV reflectivity, and photocurrent measurements are presented that reveal the EUV/water- and electron/water-derived optic oxidation can be suppressed at the water partial pressures used in the tests (~2×10-7-2×10-5 Torr). The ethanol appears to function differently in two time regimes. At early times, ethanol decomposes on the optic surface, providing reactive carbon atoms that scavenge reactive oxygen atoms before they can oxidize the outermost Si layer. At later times, the reactive carbon atoms form a thin (~5 Å), possibly self-limited, graphitic layer that inhibits water adsorption on the optic surface. .
Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve
2013-01-01
A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter is stronger than for most common clay minerals. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter. However, active sites on clay mineral surfaces are easily blocked by water. As a consequence, organic-rich shales possess a larger CH4-sorption capacity than clay-rich rocks lacking organic matter. The thermodynamic parameters obtained in this study can be incorporated into model predictions of the maximum Langmuir pressure and CH4- sorption capacity of shales under reservoir temperature and pressure conditions.
Hein, J.R.; Koschinsky, A.; McIntyre, B.R.
2005-01-01
Mercury- and silver-enriched ferromanganese oxide crusts were recovered at water depths of 1,750 tol,300 m from La Victoria knoll, located about 72 km off the coast of northern Baja California. No other ferromanganese precipitate found so far in the modern ocean basins is similarly enriched in Hg and Ag. The precipitates consist of submetallic gray, brecciated, Mn oxide layers overlain by brown earthy, laminated Fe-Mn oxide crusts. Both oxide types are rich in Hg (to 10 ppm) and Ag (to 5.5 ppm). The Mn-rich layers are composed of ??MnO2, with lesser amounts of 10A?? and 7A?? manganates, whereas the Mn phase in the Fe-Mn crusts is solely ??MnO2. The Fe phase in both layers is X-ray amorphous. Established criteria for distinguishing hydrothermal versus hydrogenetic crusts indicate that the Mn-rich layers are predominantly of low-temperature hydrothermal origin, whereas the Fe-Mn crusts are hydrogenetic, although there is some overlap in the source of chemical components in both types. La Victoria knoll is uplifted continental basement rock with basalt, andesite, and schist cropping out at the surface; the knoll may have an intrusive core. The Hg and Ag were derived from leaching by hydrothermal fluids of organic matter-rich sediments in basins adjacent to La Victoria knoll and, to a lesser extent, from continental basement rocks underlying the knoll and adjacent basins. Both rock types are notably enriched in Ag and Hg. Faults were the main fluid transport pathway, and hydrothermal circulation was driven by high heat flow associated with thinned crust. Other elements derived from the hydrothermal fluids include Tl, Cd, Cr, and Li. The main host for Hg and Ag is FeOOH, although MnO2 likely hosts some of the Ag. Minor sulfide and barite also may contain small amounts of these metals. Possible analogs in the geologic record for this deposit type are found in the Basin and Range province of the western United States and Mexico. The discovery highlights the fact that fluids circulating along faults in the offshore California borderland are transporting potentially toxic metals (Hg, Ag, Tl, As, Cd, Cr, Pb, and Ni) and depositing them on and just below the ocean floor. ?? 2005 Society of Economic Geologists, Inc.
Marshall, Nicholas; Locklin, Jason
2011-11-01
In this Article, we describe a protocol for surface functionalization of benzenediazonium hexafluorophosphate monolayers by in situ electrochemical reduction of bis(benzenediazonium) hexafluorophosphate. Due to the considerable difference in potential between the first and second reduction of this species, it is possible to form a high density of surface-bound diazonium groups by use of a mild potential which selectively reduces only one diazonium group per ring. The resulting diazonium-containing monolayer reacts readily with solutions of electron-rich aromatic compounds. The reaction with ferrocene produces a dense (2.7 × 10(-10) mol/cm(2)) ferrocene-containing monolayer through a Gomberg-Bachmann type arylation. The resulting ferrocene group exhibits relatively rapid electron transfer to the electrode due to the conjugated linker layer as measured by alternating current voltammetry (ACV) and cyclic voltammetry. Aromatic systems with π-donor substitutents (N,N-dimethylaniline, N,N,N',N'-tetramethyldiaminobenzophenone, and hydroquinone) react through an azo-coupling to form monolayers linked to the surface through an azobenzene moiety. The redox properties of these electron-rich species tethered to the surface were observed and quantified using cyclic voltammetry. This simple and versatile functionalization procedure has a wide variety of potential applications in surface science and materials research.
NASA Astrophysics Data System (ADS)
Steckloff, Jordan; Soderblom, Jason M.
2017-10-01
Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations.
Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice
NASA Astrophysics Data System (ADS)
Soderblom, J. M.; Steckloff, J. K.
2017-12-01
Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations. [1] Turtle et al. 2009, GRL; 2011, Science; [2] Soderblom et al. 2014, DPS; [3] Barnes et al. 2013 Planet. Sci
Evolution of Occator Crater on (1) Ceres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathues, A.; Platz, T.; Thangjam, G.
2017-03-01
The dwarf planet Ceres (diameter 939 km) is the largest object in the main asteroid belt. Recent investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body which was never completely molten but possibly differentiated into a rocky core, an ice-rich mantle, and which may contain remnant internal liquid water. Thermal alteration and exogenic material infall contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of Occator crater derived from the Framing Camera and the Visible and Infrared Spectrometer onboard Dawn. We found that themore » central bright spot (Cerealia Facula) of Occator is ∼30 Myr younger than the crater itself. The central spot is located in a central pit which contains a dome that is spectrally homogenous, exhibiting absorption features that are consistent with carbonates. Multiple radial fractures across the dome indicate an extrusive formation process. Our results lead us to conclude that the floor region was subject to past endogenic activity. Dome and bright material in its vicinity formed likely due to a long-lasting, periodic, or episodic ascent of bright material from a subsurface reservoir rich in carbonates. Originally triggered by an impact event, gases, possibly dissolved from a subsurface water/brine layer, enabled material rich in carbonates to ascend through fractures and be deposited onto the surface.« less
The Cretaceous glauconitic sandstones of Abu Tartur, Egypt
NASA Astrophysics Data System (ADS)
Pestitschek, Brigitte; Gier, Susanne; Essa, Mahmoud; Kurzweil, Johannes
2010-05-01
The Abu Tartur mine is located in the Western Desert of Egypt, 50 km west of El Kharga City. Geologically, the Abu Tartur plateau is built by a sequence of Upper Cretaceous (Campanian - Maastrichtian) phosphorites, black shales and glauconitic sandstones. The phosphate deposits are of great economic importance and have been mined since their discovery in 1967. Outcrop sections were measured, sampled, sedimentologically characterized and described. One specific glaucony layer was investigated mineralogically and chemically in detail and compared to a subsurface sample from the mine. Two depositional regimes can be interpreted based on sedimentary architecture and structures: 1) a deeper-water hemipelagic environment, where phosphorites and organic carbon-rich shales were deposited and 2) a shallower, prograding higher energy shelf environment with glauconies. From a sequence stratigraphic perspective 1) was deposited during the transgressive systems tract and the early highstand while 2) was deposited during the remaining highstand and a lowstand prograding wedge (Glenn & Arthur, 1990). Petrographic and SEM investigations show that the glaucony grains are of authochtonous origin. XRF, EMPA and thin-section analyses show that the glaucony grains from the outcrop differ significantly in their chemical composition, morphology and color from the grains of the mine sample. The fresh glauconies are enriched in Fe2O3 and K2O compared to the surface samples. XRD analyses of the clay fraction of the six outcrop samples and the mine sample show that the grains consist of illite(glauconite)/smectite mixed-layers, with more illite layers (80 %) in the mine sample. The charge distribution diagram muscovite-pyrophyllite-celadonite shows a clear trend from smectitic glaucony to illitic glaucony, the mine sample plots exactly in the field for glauconites. All these features indicate that the surface samples are strongly altered by weathering and that glauconite progressively transforms into iron-rich illte/smectite mixed layers and then into smectites. For any chemical and mineralogical characterization of glauconites at surface, these weathering effects have to be taken into consideration. GLENN, C. R. & ARTHUR, M. A. (1990): Anatomy and origin of a Cretaceous phosphorites-greensand giant, Egypt. Sedimentology, 37, 123-154.
Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.
2009-01-01
We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Eilhard, Nicole; Schreuer, Jürgen; Stöckhert, Bernhard
2016-04-01
Sanidine megacrystals were ejected by a late stage explosive eruption at the Quaternary Rockeskyll volcanic complex, Eifel volcanic field, Germany. The homogeneous distribution of barium (about 1 % wt BaO equivalent to about 2 mole % celsian component) indicates that the nearly perfect single crystals must have crystallized in the Ostwald-Miers range from a huge reservoir, probably in the roof of a magma chamber. Irregularities during crystal growth caused trapping of hydrous melt inclusions, which are the objective of the present study. The inclusions show a characteristic concentric microstructure, in the following described from the sanidine host towards the inclusion center: (1) Ba is enriched by a factor of 2 to 3 in a ca. 0.01 mm wide rim, compared to the otherwise homogeneous sanidine host; (2) inwards, the continuous rim is overgrown by a thin crust of Ba enriched sanidine with irregular surface; (3) a layer of glass with a composition similar to sanidine; (4) a second, thinner layer of glass slightly reduced in Na2O and K2O, separated from the first glass layer by a sharp interface with approximately spherical shape; (5) a bubble containing a fluid phase, composed of H2O and minor CO2. This record is interpreted as follows: After crystallization of the sanidine megacrystals, a rise in temperature within the magmatic system caused some re-melting of the Ba-rich sanidine around the inclusions. Partitioning of Ba between the small included melt reservoir and the host caused formation of the Ba-rich rim (layer 1) by diffusive exchange. The onset of cooling lead to crystallization of the thin sanidine crust (layer 2). Finally, very rapid decompression and cooling during the subsequent explosive eruption caused sequential phase separation (two stages) in the remaining melt, the denser melt phase (layers 3 and 4) quenched to glass, the complementary low-density volatile-rich phase forming the central bubble. In summary, the microstructure and phase composition of the inclusions in the sanidine megacrystals recorded information on the history of the volcanic system prior to and during explosive eruption.
Three-Phase Coexistence in Colloidal Rod-Plate Mixtures.
Woolston, Phillip; van Duijneveldt, Jeroen S
2015-09-01
Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a MMT-rich middle layer, which is weakly birefringent and probably a gel, and a dilute top phase. Analysis of phase volumes suggests that the middle layer may contain as much as 6 vol % MMT.
Reductive precipitation of neptunium on iron surfaces under anaerobic conditions
NASA Astrophysics Data System (ADS)
Yang, H.; Cui, D.; Grolimund, D.; Rondinella, V. V.; Brütsch, R.; Amme, M.; Kutahyali, C.; Wiss, A. T.; Puranen, A.; Spahiu, K.
2017-12-01
Reductive precipitation of the radiotoxic nuclide 237Np from nuclear waste on the surface of iron canister material at simulated deep repository conditions was investigated. Pristine polished as well as pre-corroded iron specimens were interacted in a deoxygenated solution containing 10-100 μM Np(V), with 10 mM NaCl and 2 mM NaHCO3 as background electrolytes. The reactivity of each of the two different systems was investigated by analyzing the temporal evolution of the Np concentration in the reservoir. It was observed that pre-oxidized iron specimen with a 40 μm Fe3O4 corrosion layer are considerably more reactive regarding the reduction and immobilization of aqueous Np(V) as compared to pristine polished Fe(0) surfaces. 237Np immobilized by the reactive iron surfaces was characterized by scanning electron microscopy as well as synchrotron-based micro-X-ray fluorescence and X-ray absorption spectroscopy. At the end of experiments, a 5-8 μm thick Np-rich layer was observed to be formed ontop of the Fe3O4 corrosion layer on the iron specimen. The findings from this work are significant in the context of performance assessments of deep geologic repositories using iron as high level radioactive waste (HLW) canister material and are of relevance regarding removing pollutants from contaminated soil or groundwater aquifer systems.
Characterization and corrosion behavior of F6NM stainless steel treated in high temperature water
NASA Astrophysics Data System (ADS)
Li, Zheng-yang; Cai, Zhen-bing; Yang, Wen-jin; Shen, Xiao-yao; Xue, Guo-hong; Zhu, Min-hao
2018-03-01
F6NM martensitic stainless steel was exposed to 350 °C water condition for 500, 1500, and 2500 h to simulate pressurized water reactor (PWR) condition. The characterization and corrosion behavior of the oxide film were investigated. Results indicate that the exposed steel surface formed a double-layer oxide film. The outer oxide film is Fe-rich and contains two type oxide particles. However, the inner oxide film is Cr-rich, and two oxide films, whose thicknesses increase with increasing exposure time. The oxide film reduces the corrosion behavior because the outer oxide film has many crack and pores. Finally, the mechanism and factors affecting the formation of the oxide film were investigated.
Kuppan, Saravanan; Shukla, Alpesh Khushalchand; Membreno, Daniel; ...
2017-01-06
Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium-ion batteries. Through the use of carefully prepared Li 1.2Ni 0.13Mn 0.54Co 0.13O 2 crystal samples with six distinct morphologies, surface transition-metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth-profiled core-level spectroscopy, namely, X-ray absorption spectroscopy, electron energy loss spectroscopy, and atomic-resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well-definedmore » model system of battery materials. Here, we report the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition-metal reduction. Finally, the intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.« less
Crystal growth of YBa2Cu3O(7-x) and reaction of gold crucible with Ba-Cu-rich flux
NASA Technical Reports Server (NTRS)
Tao, Y. K.; Chen, H. C.; Martini, L.; Bechtold, J.; Huang, Z. J.; Hor, P. H.
1991-01-01
YBa2Cu3O(7-x) crystals are grown in a gold crucible by a self-flux method. The flux moves along the gold surface due to surface wetting and leaves Y123 crystals behind. The obtained crystals are clean and have a size up to two millimeters and a Tc is greater than 90 K. In an effort to recycle the used crucibles, it is found that the used gold is contaminated by copper. A CuO thin film is easily formed on the surface of the crucible that is made of the used gold. This film provides good surface wetting and a buffer layer, which reduces the reaction between gold and the Y-Ba-Cu-oxide melt.
NASA Astrophysics Data System (ADS)
St-Jean, Philippe; Ethier-Majcher, Gabriel; Bergeron, Alaric; Francoeur, Sebastien
2013-03-01
We report (i)- results from ac impedance measurements obtained for intrinsic indium oxide films, grown under O2-rich conditions, (ii)- current-voltage (I-V) curves for p-n homojunctions fabricated by sequential growth of a 200 nm thick p-type In2O3 layer on a 400 nm thick n-type In2O3, and (iii)- capacitance-voltage (C-V) curves for these junctions. Impedance as well as I-V and C-V measurements were performed under UV irradiation and in darkness. We find two distinct contributions to the ac conductivity. One of them is brought about by grain boundaries, and the other one by inversion layers, which are on grain surfaces. In addition, we have found that photocurrents relax extremely slowly in these films. All of this fits consistently within a model in which mobile holes in inversion layers are responsible for p-type dc conductivity in intrinsic indium oxide films grown under O2-rich conditions. Such mechanism might be important in other polycrystalline thin films which have a large number of oxidizing defects at grain boundaries. We acknowledge support from grant MAT2012-38213-C02-01, from the Ministerio de Economia y Competividad, Spain.
Shen, ShouYu; Hong, YuHao; Zhu, FuChun; Cao, ZhenMing; Li, YuYang; Ke, FuSheng; Fan, JingJing; Zhou, LiLi; Wu, LiNa; Dai, Peng; Cai, MingZhi; Huang, Ling; Zhou, ZhiYou; Li, JunTao; Wu, QiHui; Sun, ShiGang
2018-04-18
Owing to high specific capacity of ∼250 mA h g -1 , lithium-rich layered oxide cathode materials (Li 1+ x Ni y Co z Mn (3- x-2 y-3 z)/4 O 2 ) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li 1.13 Ni 0.275 Mn 0.580 O 2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.
Distribution of organic matrix in calcium oxalate renal calculi.
Warpehoski, M A; Buscemi, P J; Osborn, D C; Finlayson, B; Goldberg, E P
1981-01-01
The quantity of protein and carbohydrate comprising the matrix of calcium oxalate monohydrate (COM) renal stones was found to decrease with distance from the surface of the stone. The average organic concentration of stones 3 to 30 mm in diameter ranged from 5.7% at the surface to 2.7% at the core. This concentration gradient suggests matrix involvement in a "growth front" on stone surfaces with migration of organic material from the "older" interior. The matrix distribution was not readily correlated with density variations or with the presence of hydroxyapatite or calcium oxalate dihydrate. Surface matrix concentrations were greater than amounts predicted by physical adsorption. Electron microscopy confirmed the presence of the organic-rich surface layer and also suggested that increase in stone size occurs predominantly by crystal growth with microcrystal aggregates as growth centers.
Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel
2016-02-01
Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Liu, Siyang; Chen, Xiang; Zhao, Jiayue; Su, Junming; Zhang, Congcong; Huang, Tao; Wu, Jianhua; Yu, Aishui
2018-01-01
Ni-rich cathode materials attract ongoing interest due to their high specific capacity (∼200 mAh g-1). However, these materials suffer rapid capacity fading when charged to a high voltage and cycled at elevated temperature. In this study, we propose a facile method to reconstruct the surface structure of LiNi0.6Co0.2Mn0.2O2 via Nb modification, which integrates the merits of partial Nb5+ doping in the pristine structure and surface Li3NbO4 coating. The obtained results from Rietveld refinement and high resolution transmission electron microscopy confirm that Nb5+ is partially doped into Li+ sites within the surface lattice. Further ex-situ powder X-ray diffraction and kinetic analysis using electrochemical impedance spectroscopy reveal that Nb modification stabilizes the layered structure and facilitates the charge transfer process. Owing to the robust surface structure, 1 mol% Nb modified LiNi0.6Co0.2Mn0.2O2 delivers a discharge capacity of 160.9 mAh g-1 with 91% capacity retention after 100 cycles at 3.0-4.5 V, whereas the discharge capacity of the pristine sample drops to 139.6 mAh g-1, corresponding to 78% of its initial value. The presence of Nb5+ in the Li layer exhibits positive effects on stability of layered structure, and the surface Li3NbO4 coating layer increases interfacial stability, which results in superior electrochemical performance.
Magnesium-Assisted Continuous Growth of Strongly Iron-Enriched Incisors.
Srot, Vesna; Bussmann, Birgit; Salzberger, Ute; Deuschle, Julia; Watanabe, Masashi; Pokorny, Boštjan; Jelenko Turinek, Ida; Mark, Alison F; van Aken, Peter A
2017-01-24
Teeth are an excellent example where optimally designed nanoarchitectures with precisely constructed components consist of simple compounds. Typically, these simple constituent phases with insignificant properties show mechanical property amplifications when formed into composite architectures. Material properties of functional composites are generally regulated on the nanoscale, which makes their characterization particularly demanding. Using advanced analytical and imaging transmission electron microscopy techniques, we identified innovative microstructural adjustments combined with astonishing compositional adaptations in incisors of coypu. Unique constituents, recognized as an additional amorphous Fe-rich surface layer followed by a transition zone covering pigmented enamel, provide the required structural stability to withstand repeated mechanical load. The chemically diverse Fe-rich surface layer, including ferrihydrite and iron-calcium phosphates, gives the typical orange-brown coloration to the incisors. Within the spaces between elongated hydroxyapatite crystals in the pigmented enamel, only ferrihydrite was found, implying that enamel pigmentation is a very strictly controlled process. Most significantly, an unprecedentedly high amount of Mg was measured in the amorphous flake-like material within the dentinal tubules of the incisors, suggesting the presence of a (Mg,Ca) phosphate phase. This unusually high influx of Mg into the dentin of incisors, but not molars, suggests a substantial functionality of Mg in the initial formation stages and constant growth of incisors. The present results emphasize the strong mutual correlation among the microstructure, chemical composition, and mechanical properties of mineralized dental tissues.
Ma, Meng; He, Zhoukun; Li, Yuhan; Chen, Feng; Wang, Ke; Zhang, Qing; Deng, Hua; Fu, Qiang
2012-12-01
Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent. Copyright © 2012 Elsevier Inc. All rights reserved.
Sulfur-Rich Rocks and Dirt (True Color)
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Mars Rover Spirit has been analyzing sulfur-rich rocks and surface materials in the 'Columbia Hills' in Gusev Crater on Mars. This image of a very soft, nodular, layered rock nicknamed 'Peace' in honor of Martin Luther King Jr. shows a 4.5-centimeter-wide (1.8-inch-wide) hole Spirit ground into the surface with the rover's rock abrasion tool. The high sulfur content of the rock measured by Spirit's alpha particle X-ray spectrometer and its softness measured by the abrasion tool are probably evidence of past alteration by water. Spirit's panoramic camera took this image on martian day, or sol, 381 (Jan. 27, 2005). The image represents the panoramic camera team's best current attempt at generating a true color view of what this scene would look like if viewed by a human on Mars. The image was generated from a combination of six calibrated, left-eye Pancam images acquired through filters ranging from 430-nanometer to 750-nanometer wavelengths.NASA Astrophysics Data System (ADS)
Schnell, Russell C.; Johnson, Bryan J.; Oltmans, Samuel J.; Cullis, Patrick; Sterling, Chance; Hall, Emrys; Jordan, Allen; Helmig, Detlev; Petron, Gabrielle; Ahmadov, Ravan; Wendell, James; Albee, Robert; Boylan, Patrick; Thompson, Chelsea R.; Evans, Jason; Hueber, Jacques; Curtis, Abigale J.; Park, Jeong-Hoo
2016-09-01
As part of the Uinta Basin Winter Ozone Study, January-February 2013, we conducted 937 tethered balloon-borne ozone vertical and temperature profiles from three sites in the Uinta Basin, Utah (UB). Emissions from oil and gas operations combined with snow cover were favorable for producing high ozone-mixing ratios in the surface layer during stagnant and cold-pool episodes. The highly resolved profiles documented the development of approximately week-long ozone production episodes building from regional backgrounds of 40 ppbv to >165 ppbv within a shallow cold pool up to 200 m in depth. Beginning in midmorning, ozone-mixing ratios increased uniformly through the cold pool layer at rates of 5-12 ppbv/h. During ozone events, there was a strong diurnal cycle with each succeeding day accumulating 4-8 ppbv greater than the previous day. The top of the elevated ozone production layer was nearly uniform in altitude across the UB independent of topography. Above the ozone production layer, mixing ratios decreased with height to 400 m above ground level where they approached regional background levels. Rapid clean-out of ozone-rich air occurred within a day when frontal systems brought in fresh air. Solar heating and basin topography led to a diurnal flow pattern in which daytime upslope winds distributed ozone precursors and ozone in the Basin. NOx-rich plumes from a coal-fired power plant in the eastern sector of the Basin did not appear to mix down into the cold pool during this field study.
Field-controllable second harmonic generation at a graphene oxide heterointerface
NASA Astrophysics Data System (ADS)
Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy
2018-03-01
We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.
NASA Astrophysics Data System (ADS)
Shirazi-HD, M.; Diaz, R. E.; Nguyen, T.; Jian, J.; Gardner, G. C.; Wang, H.; Manfra, M. J.; Malis, O.
2018-04-01
AlxGa1-xN layers with Al-composition above 0.6 (0.6 < x < 0.9) grown under metal-rich conditions by plasma-assisted molecular beam epitaxy on m-plane GaN miscut towards the -c axis are kinetically unstable. Even under excess Ga flux, the effective growth rate of AlGaN is drastically reduced, likely due to suppression of Ga-N dimer incorporation. The defect structure generated during these growth conditions is studied with energy dispersive x-ray spectroscopy scanning transmission electron microscopy as a function of Al flux. The AlGaN growth results in the formation of thin Al(Ga)N layers with Al-composition higher than expected and lower Al-composition AlGaN islands. The AlGaN islands have a flat top and are elongated along the c-axis (i.e., stripe-like shape). Possible mechanisms for the observed experimental results are discussed. Our data are consistent with a model in which Al-N dimers promote release of Ga-N dimers from the m-plane surface.
Study of α-Cu 0.82Al 0.18(100) using low energy ion scattering
NASA Astrophysics Data System (ADS)
Zhu, L.; Muhlen, E. Zur; O'Connor, D. J.; King, B. V.; MacDonald, R. J.
1996-07-01
The clean α-Cu 0.82Al 0.18(100) surface has been investigated using low energy ion scattering. The surface structure was found to be similar to the structure of the Cu(100) surface. By measuring the first layer concentration of Al using He + and Ne + beams and standard calibration procedure, the α-Cu 0.82Al 0.18(100) surface was found to be slightly Al-rich. Analysis of multiple scattering of ions suggests that Al atoms do not form islands. It was also found that Al atoms sit higher than the Cu atoms on the surface. By comparison with computer simulations (SABRE and FAN2D), the buckling of Al was found to be 0.16 ± 0.07 Å. No reconstructions were observed on the surface by low energy ion scattering which is in agreement with previous LEED studies.
Rathnasekara, Renuka; El Rassi, Ziad
2017-07-28
Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.
Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results.
Christensen, Philip R; Bandfield, Joshua L; Bell, James F; Gorelick, Noel; Hamilton, Victoria E; Ivanov, Anton; Jakosky, Bruce M; Kieffer, Hugh H; Lane, Melissa D; Malin, Michael C; McConnochie, Timothy; McEwen, Alfred S; McSween, Harry Y; Mehall, Greg L; Moersch, Jeffery E; Nealson, Kenneth H; Rice, James W; Richardson, Mark I; Ruff, Steven W; Smith, Michael D; Titus, Timothy N; Wyatt, Michael B
2003-06-27
The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results
Christensen, P.R.; Bandfield, J.L.; Bell, J.F.; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C.; McConnochie, T.; McEwen, A.S.; McSween, H.Y.; Mehall, G.L.; Moersch, J.E.; Nealson, K.H.; Rice, J. W.; Richardson, M.I.; Ruff, S.W.; Smith, M.D.; Titus, T.N.; Wyatt, M.B.
2003-01-01
The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidaka, Hiroshi; Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp
2014-05-10
The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), {sup 84}Sr, {sup 130}Ba, {sup 132}Ba, {sup 136}Ce, {sup 138}Ce, and {sup 144}Sm, were observed, particularly in the first chemical separate, whichmore » possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.« less
NASA Astrophysics Data System (ADS)
Nadesalingam, Manori Prasadika
Transition metal oxides (TMOs) exhibit a rich collection of interesting and intriguing properties which can be used for wide variety of applications. In this dissertation, I will discuss the first PAES measurements on vacuum anneal induced changes in the surface layers of Cu2O/Ta, Cu 2O/TCO and oxidized Cu(100) prepared by spray coated, electrochemically deposition and thermal oxidation techniques respectively. PAES measurements on Cu2O/TCO shows that the a very large increase in the intensity of the Cu (M2,3 VV) Auger peak after annealing at 250°C. Similar but significantly smaller changes were observed in the EAES spectra consistent with the fact that PAES is primarily sensitive to the top-most atomic layer due to the fact that the positrons are trapped just outside the surface prior to annihilation while EAES samples several atomic layers. While PAES measurements on oxidized Cu(100) show a large monotonic increase in the intensity of the annihilation induced Cu (M2,3 VV) Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300°C. The intensity then decreases monotonically as the annealing temperature is increase to ˜500°C. These results provide a clear demonstration of the thermal reduction of the copper oxide surface after annealing at 300°C followed by re-oxidation of the copper surface at the higher annealing temperatures presumably due to the diffusion of subsurface oxygen to the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Likith, S. R. J.; Farberow, C. A.; Manna, S.
Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less
Likith, S. R. J.; Farberow, C. A.; Manna, S.; ...
2017-12-20
Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less
Formation of brucite and cronstedtite-bearing mineral assemblages on Ceres
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail Yu.
2014-01-01
Dwarf planet Ceres is the largest body in the main asteroid belt with a rocky surface and uncertain internal structure. Spectra of Ceres in near- and mid-infrared wavelengths are consistent with the occurrence of brucite, Mg-bearing carbonates, and an Fe-rich phyllosilicate cronstedtite. Spectra of 10 Hygiea and 324 Bamberga imply similar compositions. Here, we considered stabilities of these minerals to constrain their origin. Cronstedtite is most stable at the temperature of ˜0 °C at moderately oxidizing aqueous conditions and at high water/rock ratios. Although cronstedtite could form on planetesimals, the apparent lack of serpentine may indicate its formation by Ceres' temporary surface solutions. Brucite forms at a low activity of dissolved SiO2, at a low fugacity of CO2, and at highly alkaline pH. Brucite and cronstedtite do not form together and may not form deep in the Ceres' interior. The absence of Mg serpentine from Ceres' surface materials and the unlikely occurrence of very olivine-rich rocks do not indicate a formation of brucite through serpentinization of such rocks. Brucite could form by transient near-surface fluids which do not equilibrate with silicates. Temporary fluids could deposit Mg carbonates before, after, or together with brucite at near-surface conditions that favor CO2 degassing. Regardless of Ceres' internal structure, internal thermal and aqueous processes may not affect cold near-surface layers. Percolation of interior fluids is not consistent with the lack of detection of low-solubility salts. However, impacts of ice-rich targets during the Late Heavy Bombardment could account for transient aqueous environments and unusual surface mineralogies of Ceres, Hygiea, and Bamberga. Brucite and Mg carbonates could have formed through hydration and carbonation of MgO evaporated from silicates. Apparently abundant carbonates may indicate an ample impact oxidation of organic matter, and the occurrence of brucite with cronstedtite may reflect turbulent and disequilibrium environments. Clay-like homogeneous surface materials on Ceres could be gravitationally sorted deposits of impact clouds.
Spatial variability of hillslope water balance, wolf creek basin, subarctic yukon
NASA Astrophysics Data System (ADS)
Carey, Sean K.; Woo, Ming-Ko
2001-11-01
A hydrological study was conducted between 1997 and 1999 in the subalpine open woodland of the Wolf Creek Basin, Yukon, to assess the interslope water balance variability. The water balance during the snowmelt and summer periods on four hillslopes revealed strong contrasts in process magnitudes and highlighted important factors including frost, vegetation, soils and microclimate that controlled vertical and lateral fluxes of water. Snow accounted for approximately half the annual water input, while differences in accumulation among hillslopes were related to interception properties of vegetation. Available energy at the snow surface controlled the melt sequence and the snow on some slopes disappeared up to two months earlier than others. Snowmelt runoff was confined to slopes with ice-rich substrates that inhibited deep percolation, with the runoff magnitude governed by the snow storage and the antecedent moisture of the desiccated organic soils prior to melt. During summer, evapotranspiration exceeded rainfall, largely sustained by water from the soil moisture reservoir recharged during the melt period. Differences in net radiation on slopes controlled the potential evapotranspiration, with the actual rates limited by the phenology of the deciduous forests and shrubs. Evapotranspiration was further suppressed on slopes where the organic soils became dry in late summer. Summer runoff was confined to slopes with porous organic layers overlying mineral soils to form a two-layer flow system: (1) quickflow in the surface organic layer and (2) slowflow in the mineral soil. Differences in the rates of flow were related to the position of the water table which may rise into the organic layer to activate quickflow. The presence of ice-rich frost and permafrost impeded vertical drainage and indirectly regulated the position of the water table. The location of the hillslope within a basin influenced recharge and discharge dynamics. Slope segments with large inflows sustained discharge throughout the summer to enhance basin runoff. In this way, the present study provides insight into basin hydrology.
Finite element simulation of thickness changes in laminate during thermoforming
NASA Astrophysics Data System (ADS)
White, K. D.; Sherwood, J. A.
2017-10-01
This paper discusses a numerical investigation of thickness changes of Dyneema HB80, a cross-ply thermoplastic lamina, during a helmet thermoforming process. The main mode of deformation during the preform phase of manufacture is in-plane shearing of the fabric. A laminate undergoes varying degrees of shear to conform to the geometric variations over the surface of the preform shape. Decreases in areal coverage that occur with increases in the local shear angle will lead to a resulting increase in local thickness. During the consolidation phase, multiple preform layers are compressed in a set of matched tools, and the compounding of the thickness variations can adversely affect the uniformity of pressure distribution between matched die tooling. Pressure variations over the surface of the part can lead to incomplete consolidation of the ply stack, as well as weakened, resin-rich areas. Because wrinkling of the composite reinforcement, incomplete consolidation and resin-rich areas can result in a compromised structural performance, it is important that the manufacturing process be well understood so it can be designed to mitigate formation of such defects. In the current work, the material properties derived from shear, bending and tensile tests are implemented in a finite element model of the cross-ply lamina. The finite element model uses a hybrid discrete mesoscopic approach, and deep-draw forming of the material is simulated to investigate its formability to a hemispherical geometry. Thickening of the lamina resulting from shear deformation is investigated and incorporated into models single-layer preform simulations. The simulation results are used to inform the design of multiple-layer preforms to mitigate the development of thin regions and out-of-plane waves to ensure complete, uniform consolidation.
Understanding the Intrinsic Electrochemistry of Ni-Rich Layered Cathodes
NASA Astrophysics Data System (ADS)
Sallis, Shawn
The demand for energy is continually increasing overtime and the key to meeting future demand in a sustainable way is with energy storage. Li-ion batteries employing layered transition metal oxide cathodes are one of the most technologically important energy storage technologies. However, current Li-ion batteries are unable to access their full theoretical capacity and suffer from performance limiting degradation over time partially originating from the cathode and partially from the interface with the electrolyte. Understanding the fundamental limitations of layered transition metal oxide cathodes requires a complete understanding of the surface and bulk of the materials in their most delithiated state. In this thesis, we employ LiNi0.8Co0.15Al 0.05O2 (NCA) as a model system for Ni-rich layered oxide cathodes. Unlike its parent compound, LiCoO2, NCA is capable of high states of delithiation with minimal structural transitions. Furthermore, commercially available NCA has little to no transition metals in the Li layer. X-ray spectroscopies are an ideal tool for studying cathodes at high states of delithiation due their elemental selectivity, range of probing depths, and sensitivity to both chemical and electronic state information. The oxidation state of the transition metals at the surface can be probed via X-ray photoelectron spectroscopy (XPS) while both bulk and surface oxidation states as well as changes in metal oxygen bonding can be probed using X-ray absorption spectroscopy (XAS). Using X-ray spectroscopy in tandem with electrochemical, transport and microscopy measurements of the same materials, the impedance growth with increasing delithiation was correlated with the formation of a disordered NiO phase on the surface of NCA which was precipitated by the release of oxygen. Furthermore, the surface degradation was strongly impacted by the type of Li salt used in the electrolyte, with the standard commercial salt LiPF6 suffering from exothermic decomposition at high voltages and temperatures. Substituting LiPF6with LiBF4 suppressed NCA surface degradation and the dissolution of the transition metals into the electrolyte which is responsible for the impedance growth. Even in the most extreme conditions (4.75V vs Li +/Li0 at 60 °C for > 100 hrs) the degradation (i.e. metal reduction) was restricted to the first 10-30 nm and no evidence of oxygen loss was observed in the bulk. However, the transition metal ions were found to cease oxidizing above 4.25 V vs Li+/Li0 despite it being possible to extract 20% more lithium. Using a newly developed high efficiency resonant inelastic x-ray scattering (RIXS) spectrometer to probe the O K-edge of NCA electrodes at various conditions, it was concluded that oxygen participates in the charge compensation at the highest states of delithiation instead of the transition metals. These results are intrinsic to the physical and electronic structure of NCA and appear general to the other layered transition metal oxides currently under consideration for use as cathodes in Li-ion batteries.
NASA Astrophysics Data System (ADS)
Cobo, S. J.; Rainforth, W. M.
2008-10-01
The hot rolling of austenitic stainless steels in Steckel Mills introduces particular characteristics to the development of oxides scales and surface structures. In this work, the formation of oxide structures during multipass hot rolling of 302 steel was studied under different sets of processing parameters in a laboratory system designed for the simulation of the Steckel process. The resulting surface structures were characterized by a set of complementary techniques involving scanning electron microscopy, energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and glow discharge optical spectroscopy (GDOS). The surface analysis revealed two alternative surface structures: one consisting in a thin protective oxide layer rich in Cr2O3 and the other consisting in thick complex structures containing several successive nonprotective oxide scale and metal layers resulting from a cyclic oxidation pattern involving stages of protective oxidation, chemical breakaway, and duplex oxidation. The critical condition that determined the activation of one mechanism or the other was identified associated with the parabolic rate constant for Cr2O3 growth and the diffusivity of Cr in the alloy. The effects of changes in temperature, deformation, and furnace atmosphere are discussed. Alternatives for controlling scale development are presented.
The optimal SAM surface functional group for producing a biomimetic HA coating on Ti.
Liu, D P; Majewski, P; O'Neill, B K; Ngothai, Y; Colby, C B
2006-06-15
Commercial interest is growing in biomimetic methods that employ self assembled mono-layers (SAMs) to produce biocompatible HA coatings on Ti-based orthopedic implants. Recently, separate studies have considered HA formation for various SAM surface functional groups. However, these have often neglected to verify crystallinity of the HA coating, which is essential for optimal bioactivity. Furthermore, differing experimental and analytical methods make performance comparisons difficult. This article investigates and evaluates HA formation for four of the most promising surface functional groups: --OH, --SO(3)H, --PO(4)H(2) and --COOH. All of them successfully formed a HA coating at Ca/P ratios between 1.49 and 1.62. However, only the --SO(3)H and --COOH end groups produced a predominantly crystalline HA. Furthermore, the --COOH end group yielded the thickest layer and possessed crystalline characteristics very similar to that of the human bone. The --COOH end group appears to provide the optimal SAM surface interface for nucleation and growth of biomimetic crystalline HA. Intriguingly, this finding may lend support to explanations elsewhere of why human bone sialoprotein is such a potent nucleator of HA and is attributed to the protein's glutamic acid-rich sequences.
Phoebe: A Surface Dominated by Water
NASA Astrophysics Data System (ADS)
Fraser, Wesley C.; Brown, Michael E.
2018-07-01
The Saturnian irregular satellite, Phoebe, can be broadly described as a water-rich rock. This object, which presumably originated from the same primordial population shared by the dynamically excited Kuiper Belt Objects (KBOs), has received high-resolution spectral imaging during the Cassini flyby. We present a new analysis of the Visual Infrared Mapping Spectrometer observations of Phoebe, which critically, includes a geometry correction routine that enables pixel-by-pixel mapping of visible and infrared spectral cubes directly onto the Phoebe shape model, even when an image exhibits significant trailing errors. The result of our re-analysis is a successful match of 46 images, producing spectral maps covering the majority of Phoebe’s surface, roughly a third of which is imaged by high-resolution observations (<22 km per pixel resolution). There is no spot on Phoebe’s surface that is absent of water absorption. The regions richest in water are clearly associated with the Jason and south pole impact basins. Phoebe exhibits only three spectral types, and a water–ice concentration that correlates with physical depth and visible albedo. The water-rich and water-poor regions exhibit significantly different crater size frequency distributions and different large crater morphologies. We propose that Phoebe once had a water-poor surface whose water–ice concentration was enhanced by basin-forming impacts that exposed richer subsurface layers. The range of Phoebe’s water–ice absorption spans the same range exhibited by dynamically excited KBOs. The common water–ice absorption depths and primordial origins, and the association of Phoebe’s water-rich regions with its impact basins, suggests the plausible idea that KBOs also originated with water-poor surfaces that were enhanced through stochastic collisional modification.
The Geographic Distribution of Boulder Halo Craters at Mid-to-High Latitudes on Mars
NASA Technical Reports Server (NTRS)
Rader, L. X.; Fassett, C. I.; Levy, J. S.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.;
2017-01-01
Extensive evidence exists for ground ice at mid-to-high latitudes on Mars, including results from neutron spectroscopy [1-3], thermal properties [4-5], geomorphology [e.g., 6-9], and the in situ observations of Mars Phoenix [10]. This ground ice has been hypothesized to be emplaced diffusively and fill pores [11], or to have accumulated by ice and dust deposition that draped or mantled the terrain [7, 12]. These two processes are not mutually exclusive; both potentially have occurred on Mars [5]. One of the landforms found in areas where ground ice is common on Mars are boulder halo craters [e.g., 13-15] (Figure 1), which are topographically muted impact craters that are filled by ice-rich regolith. They are outlined by boulders that trace a circular outline of the original crater rim. Boulder halos generally have distinctly higher boulder densities than the surrounding background plains and have few boulders in their interiors. The mechanism of boulder halo crater formation is somewhat uncertain. Our working model is that an impact event occurs with sufficient size to excavate to a depth greater than the boulder-poor, ice-rich soils. Excavated boulders are deposited around the crater's rim and in its proximal ejecta. Quite rapidly [14], the crater becomes infilled by icy soil. Rather than being buried, boulders in the halo remain at the surface, perhaps be-cause they 'float' relative to finer-grained materials [14, 16]. Regardless of the details of this process, the life-time of boulders at the surface is much greater than the timescale needed to remove most of the craters' topography. Physical weathering of rocks must be greatly out-paced by crater infilling (the opposite of what is typical, e.g., on the Moon [17]). The rapidity of this infilling is easiest to understand if icy mantling material is deposited and accumulates, rather than simply being added by pore filling of soils. If this model is correct, boulder halos only form when they excavate rock-producing materials from beneath the upper surface. Thus, the distribution and size of craters that result in boulders halos may provide in-sight into the thickness of the ice-rich surface layer in different locations. Note that this thickness is necessarily that of the ice-rich layer at the time of impact, not at present. This study is an initial survey of boulder halo crater locations in the 50deg to 80degN and 50deg to 80degS latitude bands on Mars.
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
Ni-rich layered oxides (LiNi1-xMxO2; M = Co, Mn, ...) are appealing alternatives to conventional LiCoO2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi1-xMxO2 with ordered layer structure and high reversible capacity, has proven difficult due to cation mixing in octahedral sites. Herein, in situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO2 and the Co-substituted variant, LiNi0.8Co0.2O2, are made, to gain insights into synthetic control of the structure and electrochemical properties of Ni-rich layered oxides. Results from this study indicatemore » a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O-2 upon further heat treatment. Optimal conditions are identified from the in situ studies and utilized to obtain stoichiometric LiNi0.8Co0.2O2 that exhibits high capacity (up to 200 mA h g(-1) ) with excellent retention. The findings shed light on designing high performance Ni-rich layered oxide cathodes through synthetic control of the structural ordering in the materials.« less
Remote sensing studies of the Dionysius region of the Moon
Giguere, T.A.; Hawke, B.R.; Gaddis, L.R.; Blewett, D.T.; Gillis-Davis, J. J.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J.
2006-01-01
The Dionysius region is located near the western edge of Mare Tranquillitatis and is centered on Dionysius crater, which exhibits a well-developed dark ray system. Proposed origins for these dark rays included impact melt deposits and dark primary ejecta. The region also contains extensive deposits of Cayley-type light plains. Clementine multispectral images and a variety of spacecraft photography were utilized to investigate the composition and origin of geologic units in the Dionysius region. The portions of the dark rays for which spectral and chemical data were obtained are composed of mare debris contaminated with minor amounts of highland material. Both five-point spectra and values of the optical maturity (OMAT) parameter indicate that the dark rays are dominated by mare basalts, not glassy impact melts. The high-albedo rays associated with Dionysius exhibit FeO and TiO2 values that are lower than those of the adjacent dark ray surfaces and OMAT values that indicate that bright ray surfaces are not fully mature. The high-albedo rays are bright largely because of the contrast in albedo between ray material containing highlands-rich ejecta and the adjacent mare-rich surfaces. The mafic debris ejected by Dionysius was derived from a dark, iron-rich unit exposed high on the inner wall of the crater. This layer probably represents a mare deposit that was present at the surface of the preimpact target site. With one possible exception, there is no evidence for buried mare basalts associated with Cayley plains in the region. Copyright 2006 by the American Geophysical Union.
Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk
2014-01-01
Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279
Synthesis and characterization of 2D graphene sheets from graphite powder
NASA Astrophysics Data System (ADS)
Patel, Rakesh V.; Patel, R. H.; Chaki, S. H.
2018-05-01
Graphene is 2D material composed of one atom thick hexagonal layer. This material has attracted great attention among scientific community because of its high surface area, excellent mechanical properties and conductivity due to free electrons in the 2D lattice. There are various approaches to prepare graphene nanosheets such as top-down approach where graphite exfoliation and nanotube unwrapping can be done. The bottom up approach involves deposition of hydrocarbon through CVD, epitaxial method and organo-synthesis etc.. In present studies top down approach method was used to prepare graphene. The graphite powder with around 20 µm to 150µm particle size was subjected to concentrated strong acid in presence of strong oxidizing agent in order to increase the d-spacing between layers which leads to the disruption of crystal lattice as confirmed by XRD (X'pert Philips). FT Raman spectra taken via (Renishaw InVia microscope) of pristine powder and Graphene oxide revealed the increase in D-band and reduction in G-Band. These exfoliated sheets have oxygen rich complexes at the surface of the layers as characterised by FTIR technique. The GO powder was ultrasonicated to prepare the stable suspension of Graphene. The graphene layers were observed under TEM (Philips Tecnai 20) as 2dimensional sheets with around 1µm sizes.
NASA Astrophysics Data System (ADS)
Uhlemann, Sebastian; Kuras, Oliver; Richards, Laura A.; Naden, Emma; Polya, David A.
2017-10-01
Despite being rich in water resources, many areas of South East Asia face difficulties in securing clean water supply. This is particularly problematic in regions with a rapidly growing population. In this study, the spatial variability of the thickness of a clay layer, controlling surface - groundwater interactions that affect aquifer vulnerability, was investigated using electrical resistivity tomography (ERT). Data were acquired along two transects, showing significant differences in the imaged resistivities. Borehole samples were analyzed regarding particle density and composition, and linked to their resistivity. The obtained relationships were used to translate the field electrical resistivities into lithologies. Those revealed considerable variations in the thickness of the clay layer, ranging from 0 m up to 25 m. Geochemical data, highlighting zones of increased ingress of surface water into the groundwater, confirmed areas of discontinuities in the clay layer, which act as preferential flow paths. The results may guide urban planning of the Phnom Penh city expansion, in order to supply the growing population with safe water. The presented approach of using geophysics to estimate groundwater availability, accessibility, and vulnerability is not only applicable to Kandal Province, Cambodia, but also to many other areas of fast urbanization in South East Asia and beyond.
NASA Technical Reports Server (NTRS)
Parmentier, E. M.; Hess, P. C.
1992-01-01
Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite.
Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)–Water Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang Soo; Schmidt, Moritz; Fister, Timothy T.
2016-01-19
The formation of Al (oxy)hydroxide on the basal surface of muscovite mica was investigated to understand how the structure of the substrate controls the nucleation and growth of secondary phases. Atomic force microscopy images showed that solid phases nucleated on the surface initially as two-dimensional islands that were <= 10 angstrom in height and <= 200 angstrom in diameter after 16-50 h of reaction in a 100 mu M AlCl3 solution at pH 4.2 at room temperature. High-resolution X-ray reflectivity data indicated that these islands were gibbsite layers whose basic unit is composed of a plane of Al ions octahedrallymore » coordinated to oxygen or hydroxyl groups. The formation of gibbsite layers is likely favored because of the structural similarity between its basal plane and the underlying mica surface. After 700-2000 h of reaction, a thicker and continuous film had formed on top of the initial gibbsite layers. X-ray diffraction data showed that this film was composed of diaspore that grew predominantly with its [040] and [140] crystallographic directions oriented along the muscovite [001] direction. These results show the structural characteristics of the muscovite (001) and Al (oxy)hydroxide film interface where presumed epitaxy had facilitated nucleation of metastable gibbsite layers which acted as a structural anchor for the subsequent growth of thermodynamically stable diaspore grown from a mildly acidic and Al-rich solution.« less
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco
2018-06-07
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
NASA Astrophysics Data System (ADS)
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco
2018-06-01
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
Martian Surface Compositions and Spectral Unit Mapping From the Thermal Emission Imaging System
NASA Astrophysics Data System (ADS)
Bandfield, J. L.; Christensen, P. R.; Rogers, D.
2005-12-01
The Thermal Emission Imaging System (THEMIS) on board the Mars Odyssey spacecraft observes Mars at nine spectral intervals between 6 and 15 microns and at 100 meter spatial sampling. This spectral and spatial resolution allows for mapping of local spectral units and coarse compositional determination of a variety of rock-forming materials such as carbonates, sulfates, and silicates. A number of data processing and atmospheric correction techniques have been developed to ease and speed the interpretation of multispectral THEMIS infrared images. These products and techniques are in the process of being made publicly available via the THEMIS website and were used to produce the results presented here. Spectral variability at kilometer scales in THEMIS data is more common in the southern highlands than in the northern lowlands. Many of the spectral units are associated with a mobile surface layer such as dune fields and mantled dust. However, a number of spectral units appear to be directly tied to the local geologic rock units. These spectral units are commonly associated with crater walls, floors, and ejecta blankets. Other surface compositions are correlated with layered volcanic materials and knobby remnant terrains. Most of the spectral variability observed to date appears to be tied to a variation in silicate mineralogy. Olivine rich units that have been previously reported in Nili Fossae, Ares Valles, and the Valles Marineris region appear to be sparse but common in a number of regions in the southern highlands. Variations in silica content consistent with previously reported global surface units also appear to be present in THEMIS images, allowing for an examination of their local geologic context. Previously reported quartz and feldspar rich exposures in northern Syrtis Major appear more extensive in the region than previously reported. A coherent global and local picture of the mineralogy of the Martian surface is emerging from THEMIS measurements along with other orbital thermal and near infrared spectroscopy measurements from the Mars Express and Mars Global Surveyor spacecraft.
A proposition for the classification of carbonaceous chondritic micrometeorites
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1994-01-01
Classification of interplanetary dust particles (IDP's) should be unambiguous and, if possible, provide an opportunity to interrelate these ultrafine IDP's with the matrices of undifferentiated meteorites. I prefer a scheme of chemical groupings and petrologic classes that is based on primary IDP properties that can be determined without prejudice by individual investigators. For IDP's of 2-50 microns these properties are bulk elemental chemistry, morphology, shape, and optical properties. The two major chemical groups are readily determined by energy dispersive spectroscopic analysis using the scanning or analytical electron microscope. Refinement of chondritic IDP classification is possible using the dominant mineral species, e.g. olivine, pyroxene, and layer silicates, and is readily inferred from FTIR, and automated chemical analysis. Petrographic analysis of phyllosilicate-rich IDP's will identify smectite-rich and serpentine-rich particles. Chondritic IDP's are also classified according to morphology, viz., CP and CF IDP's are aggregate particles that differ significantly in porosity, while the dense CS IDP's have a smooth surface. The CP IDP's are characterized by an anhydrous silicate mineralogy, but small amounts of layer silicates may be present. Distinction between the CP and CF IDP's is somewhat ambiguous, but the unique CP IDP's are fluffy, or porous, ultrafine-grained aggregates. The CP IDP's, which may contain silicate whiskers, are the most carbon-rich extraterrestrial material presently known. The CF IDP's are much less porous that CP IDP's. Using particle type definitions, CP IDP's in the NASA JSC Cosmic Dust Catalogs are approx. 15 percent of all IDP's that include nonchondritic spheres. Most aggregate particles are of the CF type.
NASA Astrophysics Data System (ADS)
Li, Yang; He, Yongyong; Zhang, Shangzhou; Wang, Wei; Zhu, Yijie
2018-01-01
Nitriding treatments have been successfully applied to austenitic stainless steels to improve their hardness and tribological properties. However, at temperatures above 450 °C, conventional plasma nitriding processes decrease the corrosion resistance due to the formation of CrN phases within the modified layer. In this work, AISI 304 austenitic stainless steels were efficiently treated by rapid plasma nitriding at a high temperature of 530 °C in a hollow cathode discharge. The enhanced ionization obtained in the hollow cathode configuration provided a high current density and, consequently, a high temperature could be attained in a short time. The nitrided layers were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicated that the dual-layer structure of the nitrided layer consists of a high-N face-centered cubic structure with a free CrN precipitate outer (top) layer and a nitrogen-expanded austenite S-phase bottom layer. The rapid nitriding-assisted hollow cathode discharge technique permits the use of high temperatures, as high as 530 °C, without promoting degradation in the corrosion resistance of stainless steel.
Prospecting for Martian Ice from Orbit
NASA Technical Reports Server (NTRS)
Kanner, L. C.; Bell, M. S.; Allen, C. C.
2003-01-01
Recent data from the Gamma-Ray Spectrometer (GRS) on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in high latitudes on Mars. This hydrogen-rich layer correlates to previously determined regions of ice stability. It has been suggested that the subsurface hydrogen is ice and constitutes 35 plus or minus 15% by weight near the north and south polar regions. This study constrains the location of subsurface ice deposits on the scale of kilometers or smaller by combining GRS data with surface features indicative of subsurface ice. The most recognizable terrestrial geomorphic indicators of subsurface ice, formed in permafrost and periglacial environments, include thermokarst pits, pingos, pseudocraters and patterned ground. Patterned ground features have geometric forms such as circles, polygons, stripes and nets. This study focuses on the polygonal form of patterned ground, selected for its discernable shape and subsurface implications. Polygonal features are typically demarcated by troughs, beneath which grow vertical ice-wedges. Ice-wedges form in thermal contraction cracks in ice-rich soil and grow with annual freezing and thawing events repeated over tens of years. Ice wedges exist below the depth of seasonal freeze-thaw. Terrestrial ice wedges can be several meters deep and polygons can be tens of meters apart, and, on rare occasions, up to 1 km. The crack spacing of terrestrial polygons is typically 3 to 10 times the crack depth.
Raman microscopy of lithium-manganese-rich transition metal oxide cathodes
Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; ...
2014-11-15
Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi 2MnO 3·(1-x)LiMO 2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopymore » is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less
Cd doping at PVD-CdS/CuInGaSe 2 heterojunctions
He, Xiaoqing; Paulauskas, Tadas; Ercius, Peter; ...
2017-02-20
In this paper, we report on direct evidence of Cd doping of the CuInGaSe 2 (CIGS) surface in physical vapor deposited (PVD) CdS/CIGS heterojunctions by scanning transmission electron microscopy (STEM) and related techniques. We find Cd doping of the CIGS near-surface region regardless of the presence or absence of Cu rich domains in the CdS for both zinc-blende (zb) and wurtzite (wz) CdS. However, we find that the Cd penetrates much farther into the CIGS when Cu-rich domains are present in the CdS. This suggests that Cu exchanges with Cd, increasing the concentration gradient for Cd in the CIGS andmore » thus driving Cd into the CIGS surface. The Cd doping is clearly resolved at atomic resolution in aberration-corrected STEM-high angle annular dark field images. In zb-CdS/CIGS heterojunctions, Cd is shown to substitute for both Cu and Ga atoms, while in wz-CdS/CIGS heterojunctions Cd seems to predominantly occupy Cu sites. Finally, Cd doping in the CIGS surface layer suggests the formation of a p-n homojunction in the CIGS, which may account for the high device efficiencies, comparable to CBD-CdS/CIGS processed structures.« less
How Well Does the Present Surface Inventory of Water on Mars Constrain the Past?
NASA Technical Reports Server (NTRS)
Clifford, S. M.; McCubbin, F. M.
2016-01-01
Over the past 40 years, estimates of the total outgassed inventory of water on Mars have ranged from a global equivalent layer (GEL) approximately 7-1000 m deep. However, Carr and Head have recently argued that it is not the total inventory of outgassed water that is important, but the amount that exists in climatically exchangeable surface and near surface reservoirs - suggesting that any exchange with water in the deep subsurface is precluded by the existence of a thick cryosphere, at least during the Amazonian and Hesperian. Based on this assumption and their estimate of the present day near-surface inventory of H2O (approximately 34 m GEL, stored as ice in the polar layered deposits (PLD), lobate debris aprons, ice-rich latitude dependent mantles, and as shallow ground ice), they extrapolate the evolution of this inventory backward in time, taking into account the introduction of new water by volcanism, outflow channel activity, and the loss of water by exospheric escape. They conclude that, at the end of the Noachian, Mars had a near-surface water inventory of approximately 24 m and approximately 62 m by the end of the Hesperian - inventories that Carr and Head argue were incompatible with the existence of a former ocean.
NASA Astrophysics Data System (ADS)
Hodyss, R. P.
2017-12-01
The surface of Titan presents a complex, varied surfaced, with mountains, plains, dunes, rivers, lakes and seas, composed of a layer of organics over a water ice bedrock. Over the past 10 years, our group at JPL has developed a variety of techniques to study the chemistry of Titan's organic surface under relevant temperature and pressure conditions (90-100 K, 1.5 bar). Dissolution, precipitation, and both covalent and non-covalent chemical processes are examined using Raman and infrared spectroscopy, mass spectrometry, optical microscopy, and synchrotron X-ray powder diffraction. Despite the low temperatures, our experiments are revealing that a rich and active organic chemistry is possible on Titan's surface. Laboratory experiments like these can provide crucial insights into the geological processes occurring Titan's surface, and help explain the wealth of observational data returned by the Cassini/Huygens mission. This type of data is also critical for the development of future missions to Titan.
Band Formation and Ocean-Surface Interaction on Europa and Ganymede
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2018-05-01
Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.
Geomorphological evidence for ground ice on dwarf planet Ceres
Schmidt, Britney E.; Hughson, Kynan H.G.; Chilton, Heather T.; Scully, Jennifer E. C.; Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Bland, Michael T.; Byrne, Shane; Marchi, Simone; O'Brien, David; Schorghofer, Norbert; Hiesinger, Harald; Jaumann, Ralf; Hendrick Pasckert, Jan; Lawrence, Justin D.; Buzckowski, Debra; Castillo-Rogez, Julie C.; Sykes, Mark V.; Schenk, Paul M.; DeSanctis, Maria-Cristina; Mitri, Giuseppe; Formisano, Michelangelo; Li, Jian-Yang; Reddy, Vishnu; Le Corre, Lucille; Russell, Christopher T.; Raymond, Carol A.
2017-01-01
Five decades of observations of Ceres suggest that the dwarf planet has a composition similar to carbonaceous meteorites and may have an ice-rich outer shell protected by a silicate layer. NASA’s Dawn spacecraft has detected ubiquitous clays, carbonates and other products of aqueous alteration across the surface of Ceres, but surprisingly it has directly observed water ice in only a few areas. Here we use Dawn Framing Camera observations to analyse lobate morphologies on Ceres’ surface and we infer the presence of ice in the upper few kilometres of Ceres. We identify three distinct lobate morphologies that we interpret as surface flows: thick tongue-shaped, furrowed flows on steep slopes; thin, spatulate flows on shallow slopes; and cuspate sheeted flows that appear fluidized. The shapes and aspect ratios of these flows are different from those of dry landslides—including those on ice-poor Vesta—but are morphologically similar to ice-rich flows on other bodies, indicating the involvement of ice. Based on the geomorphology and poleward increase in prevalence of these flows, we suggest that the shallow subsurface of Ceres is comprised of mixtures of silicates and ice, and that ice is most abundant near the poles.
NASA Astrophysics Data System (ADS)
Kadish, Seth J.; Barlow, Nadine G.; Head, James W.
2009-10-01
We report on the results of a survey to document and characterize pedestal craters on Mars equatorward of ˜60°N and 65°S latitude. The identification of 2696 pedestal craters reveals a strong latitude dependence, with the vast majority found poleward of 33°N and 40°S. This latitudinal extent is correlated with many climate indicators consistent with the presence of an ice-rich substrate and with climate model predictions of where ice is deposited during periods of higher obliquity in the Amazonian. We have measured key physical attributes of pedestal craters, including the farthest radial extents of the pedestals, pedestal heights, and the circularity of the pedestal margins. In conjunction with the geographic distribution, our measurements strongly support a sublimation-related formation mechanism. This is in contrast to previous hypotheses, which have relied on eolian deflation to produce the elevated plateaus. The identification of marginal pits on the scarps of some pedestal craters, interpreted to be sublimation pits, provide direct evidence for the presence of ice-rich material underlying the armored surface of pedestal craters. On the basis of our findings, we propose a formation mechanism whereby projectiles impact into a volatile-rich dust/snow/ice substrate tens to hundreds of meters thick overlying a dominantly fragmental silicate regolith. The area surrounding the resulting crater becomes armored. Pedestals extend to a distance of multiple crater radii, farther than typical ejecta deposits, necessitating an armoring mechanism that is capable of indurating the surface to a distance greater than the reach of the ejecta. Return to low obliquity causes sublimation of the volatile-rich layer from the intercrater plains, lowering the elevation of the regional terrain. This yields generally circular pedestal craters elevated above the surrounding plains. As a result, the armored surfaces of pedestal craters have preserved a significant record of Amazonian climate history in the form of ice-rich deposits.
NASA Astrophysics Data System (ADS)
Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao
2018-06-01
Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.
Structural investigation of re-deposited layers in JET
NASA Astrophysics Data System (ADS)
Likonen, J.; Vainonen-Ahlgren, E.; Khriachtchev, L.; Coad, J. P.; Rubel, M.; Renvall, T.; Arstila, K.; Hole, D. E.; Contributors to the EFDA-JET Work-programme
2008-07-01
JET Mk-II Gas Box divertor tiles exposed in 1998-2001 have been analysed with various ion beam techniques, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. Inner divertor wall tiles removed in 2001 were covered with a duplex film. The inner layer was very rich in metallic impurities, with Be/C ˜ 1 and H-isotopes only present at low concentrations. The outer layer contained higher concentrations of D than normal for plasma-facing surfaces in JET (D/C ˜ 0.4), and Be/C ˜ 0.14. Raman and SIMS analyses show that the deposited films on inner divertor tiles are hydrogenated amorphous carbon with low sp 3 fractions. The deposits have polymeric structure and low density. Both Raman scattering and SIMS indicate that films on inner divertor wall Tiles 1 and 3, and on floor Tile 4 have some differences in the chemical structure of the deposited films
NASA Astrophysics Data System (ADS)
Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.
2018-04-01
We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.
Superconducting Ga/GaSe layers grown by van der Waals epitaxy
NASA Astrophysics Data System (ADS)
Desrat, W.; Moret, M.; Briot, O.; Ngo, T.-H.; Piot, B. A.; Jabakhanji, B.; Gil, B.
2018-04-01
We report on the growth of GaSe films by molecular beam epitaxy on both (111)B GaAs and sapphire substrates. X-ray diffraction reveals the perfect crystallinity of GaSe with the c-axis normal to the substrate surface. The samples grown under Ga rich conditions possess an additional gallium film on top of the monochalcogenide layer. This metallic film shows two normal-to-superconducting transitions which are detected at T c ≈ 1.1 K and 6.0 K. They correspond likely to the β and α-phases of gallium in the form of bulk and droplets respectively. Our results demonstrate that van der Waals epitaxy can lead to future high quality hybrid superconductor/monochalcogenide heterostructures.
Rocks of the early lunar crust
NASA Technical Reports Server (NTRS)
James, O. B.
1980-01-01
Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.
NASA Technical Reports Server (NTRS)
2006-01-01
This HiRISE image is of the north polar layered deposits (PLD) and underlying units exposed along the margins of Chasma Boreale. Chasma Boreale is the largest trough in the north PLD, thought to have formed due to outflow of water from underneath the polar cap, or due to winds blowing off the polar cap, or a combination of both. At the top and left of the image, the bright area with uniform striping is the gently sloping surface of the PLD. In the middle of the image this surface drops off in a steeper scarp, or cliff. At the top of this cliff we see the bright PLD in a side view, or cross-section. From these two perspectives of the PLD it is evident that the PLD are a stack of roughly horizontal layers. The gently sloping top surface cuts through the vertical sequence of layers at a low angle, apparently stretching the layers out horizontally and thus revealing details of the brightness and texture of individual layers. The surface of the PLD on the scarp is also criss-crossed by fine scale fractures. The layers of the PLD are probably composed of differing proportions of ice and dust, believed to be related to the climate conditions at the time they were deposited. In this way, sequences of polar layers are records of past climates on Mars, as ice cores from terrestrial ice sheets hold evidence of past climates on Earth. Further down the scarp in the center of the image the bright layers give way suddenly to a much darker section where a few layers are visible intermittently amongst aprons of dark material. The darkest material, with a smooth surface suggestive of loose grains, is thought to be sandy because similar exposures elsewhere show it to be formed into dunes by the wind. An intermediate-toned material also appears to form aprons draped over layers in the scarp, but its surface contains lobate structures that appear hardened into place and its edges are more abrupt in places, suggesting it may contain some ice or other cementing agent that makes it more competent, or resistant. At the base of the cliff, especially visible on the right side of the image, are several prominent bright layers with regular, rectangular-shaped polygons. Due to similarities in brightness and surface fracturing with the upper PLD, these bottom layers are also likely to be ice rich. The presence of sandy material sandwiched in between the upper PLD and these bottom layers suggests that the climate was once much different from the times during which the icier layers were deposited. The scattered bright and dark points are boulder-sized blocks that are likely pieces of the fractured PLD or other darker layers that have broken off and fallen downhill. At the bottom and right of the image, the floor of Chasma Boreale is dark, with a knobby texture and irregular polygons. Several circular features surrounded by an area that is slightly smoother, lighter, and raised relative to the chasm floor may be impact craters that have been modified after their formation in ice-rich ground. Image PSP_001412_2650 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 14, 2006. The complete image is centered at 84.7 degrees latitude, 4.0 degrees East longitude. The range to the target site was 320.9 km (200.6 miles). At this distance the image scale ranges from 32.1 cm/pixel (with 1 x 1 binning) to 128.4 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 12:52 PM and the scene is illuminated from the west with a solar incidence angle of 67 degrees, thus the sun was about 23 degrees above the horizon. At a solar longitude of 135.3 degrees, the season on Mars is Northern Summer. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.NASA Astrophysics Data System (ADS)
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-12-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-01-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832
Effects of surface hydroxylation on adhesion at zinc/silica interfaces.
Le, Ha-Linh Thi; Goniakowski, Jacek; Noguera, Claudine; Koltsov, Alexey; Mataigne, Jean-Michel
2018-06-06
The weak interaction between zinc and silica is responsible for the poor performance of anti-corrosive galvanic zinc coatings on modern advanced high-strength steels, which are fundamental in the automotive industry, and important for rail transport, shipbuilding, and aerospace. With the goal of identifying possible methods for its improvement, we report an ab initio study of the effect of surface hydroxylation on the adhesion characteristics of model zinc/β-cristobalite interfaces, representative of various surface hydroxylation/hydrogenation conditions. We show that surface silanols resulting from dissociative water adsorption at the most stable stoichiometric (001) and (111) surfaces prevent strong zinc-silica interactions. However, dehydrogenation of such interfaces produces oxygen-rich zinc/silica contacts with excellent adhesion characteristics. These are due to partial zinc oxidation and the formation of strong iono-covalent Zn-O bonds between zinc atoms and the under-coordinated excess anions, remnant of the hydroxylation layer. Interestingly, these interfaces appear as the most thermodynamically stable in a wide range of realistic oxygen-rich and hydrogen-lean environments. We also point out that the partial oxidation of zinc atoms in direct contact with the oxide substrate may somewhat weaken the cohesion in the zinc deposit itself. This fundamental analysis of the microscopic mechanisms responsible for the improved zinc wetting on pre-hydroxylated silica substrates provides useful guidelines towards practical attempts to improve adhesion.
Deposition of Fibrinogen on the Surface of in vitro Thrombi Prevents Platelet Adhesion
Owaynat, Hadil; Yermolenko, Ivan S.; Turaga, Ramya; Lishko, Valeryi K.; Sheller, Michael R.; Ugarova, Tatiana P.
2015-01-01
The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion. PMID:26482763
Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion.
Owaynat, Hadil; Yermolenko, Ivan S; Turaga, Ramya; Lishko, Valeryi K; Sheller, Michael R; Ugarova, Tatiana P
2015-12-01
The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yonghu; Chang, Xingping; Xu, Qunjie; Lai, Chunyan; Liu, Xinnuan; Yuan, Xiaolei; Liu, Haimei; Min, Yulin
2018-02-01
In an attempt to overcome the irreversible capacity loss occurred during the first cycle and stabilize the surface structure, an alumina coating layer has been triumphantly prepared on the surface of 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 cathode material with different amounts (1, 2, and 3 wt%) through a simple hydrolysis reaction, followed by an annealing process. The results reveal that the coated materials have a higher crystallinity and the particles are evenly distributed. As a cathode material for lithium-ion batteries, the 2-wt% coated sample delivers initial discharge specific capacity of 211.7 mAh g-1 at a rate of 1 C between 2.0 and 4.8 V with an initial columbic efficiency of 73.2%. Meanwhile, it exhibits the highest discharge specific capacity of 206.2 mAh g-1 with 97.4% capacity retention after 100 cycles at and much elevated rate capability compared to uncoated material. The excellent cycling stability and more superior rate property can be ascribed to alumina coating layer, which has a surface stabilization effect on these cathode materials, lessening the dissolution of metal ions. The electrochemical impedance and cyclic voltammetry studies indicate that coated by alumina improved the kinetic performance for lithium-rich layered materials, showing a prospect for practical lithium battery application.
Structure, biomimetics, and fluid dynamics of fish skin surfaces*
NASA Astrophysics Data System (ADS)
Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia
2016-10-01
The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer develops over the denticle surface and we propose that there is limited flow under the expanded surfaces of shark denticles. The diversity of fish scale types and textures and the effect of these surfaces on boundary layer flows and fish locomotor energetics is a rich area for future investigation.
Ultrastructural characteristics of the cranial dura mater-arachnoid interface layer.
Angelov, D N
1990-01-01
The ultrastructural features of the encephalic dura mater-arachnoid borderline (interface) layer (zone) of rats, rabbits, cats and humans were studied. The rat's interface zone included the electron-lucent epithelium-like arranged fibroblasts of the inner dural layer, the rich in filaments cells of the dural neurothelium, a 20 nm wide intercellular cleft filled with electron-dense material and the dark mitochondria-rich cells of the outer arachnoidal layer; in rabbits and cats, this laminar distinction was less prominent, while in man, it was almost absent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, J.; Peters, M.; Lottspeich, F.
1987-11-01
The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less
NASA Astrophysics Data System (ADS)
Chen, X. D.; Zhang, C. K.; Zhou, Z.; Gong, Z.; Zhou, J. J.; Tao, J. F.; Paterson, D. M.; Feng, Q.
2017-12-01
Biofilms, consisting of microorganisms and their secreted extracellular polymeric substances (EPSs), serve as "ecosystem engineers" stabilizing sedimentary environments. Natural sediment bed provides an excellent substratum for biofilm growth. The porous structure and rich nutrients allow the EPS matrix to spread deeper into the bed. A series of laboratory-controlled experiments were conducted to investigate sediment colonization of Bacillus subtilis and the penetration of EPS into the sediment bed with incubation time. In addition to EPS accumulation on the bed surface, EPS also penetrated downward. However, EPS distribution developed strong vertical heterogeneity with a much higher content in the surface layer than in the bottom layer. Scanning electron microscope images of vertical layers also displayed different micromorphological properties of sediment-EPS matrix. In addition, colloidal and bound EPSs exhibited distinctive distribution patterns. After the full incubation, the biosedimentary beds were eroded to test the variation of bed stability induced by biological effects. This research provides an important reference for the prediction of sediment transport and hence deepens the understanding of the biologically mediated sediment system and broadens the scope of the burgeoning research field of "biomorphodynamics."
Cryptic oxygen cycling in anoxic marine zones.
Garcia-Robledo, Emilio; Padilla, Cory C; Aldunate, Montserrat; Stewart, Frank J; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter
2017-08-01
Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O 2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O 2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O 2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O 2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.
Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface
NASA Astrophysics Data System (ADS)
Dettenrieder, Fabian; Bodony, Daniel
2016-11-01
Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Raz, Majid; Rezvani, Hamideh
2016-08-01
Bioactive glasses in the system SiO2-CaO-Na2O-P2O5-MgO with different amounts of zinc (Zn) and silver (Ag) were synthesized by the sol-gel technique and characterized. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP) studies were performed after immersion in vitro assays. Also, the antibacterial and antifungal activities of glass samples against Pseudomonas aeruginosa (ATCC 27853), E. coli (ATCC 25922), and Candida albicans were measured by the halo zone test. Introduction of zinc and silver as the trace elements induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer, and the crystallization of the HCA layer were affected. Samples with the higher content of zinc and silver exhibited an excellent antibacterial/antifungal activity.
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
Ni-rich layered oxides (LiNi 1-xM xO 2; M=Co, Mn, …) are appealing alternatives to conventional LiCoO 2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi 1-xM xO 2 with ordered layer structure and high reversible capacity, has proven difficult due to Ni 2+/Li + cation mixing in octahedral sites. Herein, we report on in-situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO 2 and the Co-substituted variant, LiNi 0.8Co 0.2O 2, thereby gaining insights into synthetic control of the structuremore » and electrochemical properties of Ni-rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O 2 upon heat treatment in a highly oxidation environment. Optimal conditions were identified from the in-situ studies and utilized in obtaining stoichiometric LiNi 0.8Co 0.2O 2 that exhibits high capacity of about 200 mAh/g with excellent retention. The findings shed light on designing Ni-rich layered oxide cathodes with enhanced electrochemical properties through synthetic control of the structural ordering in the materials.« less
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia; ...
2016-10-17
Ni-rich layered oxides (LiNi 1-xM xO 2; M=Co, Mn, …) are appealing alternatives to conventional LiCoO 2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi 1-xM xO 2 with ordered layer structure and high reversible capacity, has proven difficult due to Ni 2+/Li + cation mixing in octahedral sites. Herein, we report on in-situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO 2 and the Co-substituted variant, LiNi 0.8Co 0.2O 2, thereby gaining insights into synthetic control of the structuremore » and electrochemical properties of Ni-rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O 2 upon heat treatment in a highly oxidation environment. Optimal conditions were identified from the in-situ studies and utilized in obtaining stoichiometric LiNi 0.8Co 0.2O 2 that exhibits high capacity of about 200 mAh/g with excellent retention. The findings shed light on designing Ni-rich layered oxide cathodes with enhanced electrochemical properties through synthetic control of the structural ordering in the materials.« less
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.
Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M
2017-10-11
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer
2017-01-01
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Flohr, M.J.K.; Huebner, J.S.
1992-01-01
Laminated to massive rhodochrosite, hausmannite, and Mn-silicates from the Smith prospect and Manga-Chrome mine, Sierra Nevada, California were deposited as ocean floor sediments associated with chert and shale. The principal lithologies at Smith are chert, argillite, rhodochrosite-, hausmannite- and chlorite-rich layers, and relatively uncommon layers of jacobsite. The Manga-Chrome mine also contains layers rich in manganoan calcite and caryopilite. Tephroite, rhodonite, spessartine, and accessory alleghanyite and sonolite formed during metamorphism. Volcaniclastic components are present at Manga-Chrome as metavolcanic clasts and as Mn-poor, red, garnet- and hematite-rich layers. There is no evidence, such as relict lithologies, that Mn was introduced into Mn-poor lithologies such as chert, limestone or mudstone. Replacement of Mn-poor phases by Mn-rich phases is observed only in the groundmass of volcanic clasts that appear to have fallen into soft Mn-rich mud. Manganiferous samples from the Smith prospect and Manga-Chrome mine have high Mn Fe and low concentrations of Ni, Cu, Zn, Co, U, Th and the rare-earth elements that are similar to concentrations reported from other ancient Mn deposits found in chert-greenstone complexes and from manganiferous sediments and crusts that are forming near modern sea floor vents. The Sierra Nevada deposits formed as precipitates of Mn-rich sediments on the sea floor, probably from mixtures of circulating hydrothermal fluids and seawater. The composition of a metabasalt from the Smith prospect is consistent with those of island-arc tholeiites. Metavolcanic clasts from the Manga-Chrome mine are compositionally distinct from the Smith metabasalt and have alkaline to calc-alkaline affinities. A back-arc basin is considered to be the most likely paleoenvironment for the formation of the Mn-rich lenses at the Manga-Chrome mine and, by association, the Smith prospect. Layers of rhodochrosite, hausmannite and chert preserve the composition and some textures of the sedimentary protoliths at both Sierra Nevada deposits. Jacobsite-rich layers probably represent a Fe-rich protolith. Caryopilite and manganoan calcite represent additional protoliths at the Manga-Chrome mine. The metamorphic assemblage prehnite-chlorite-epidote-calcite in a metabasalt from the Smith prospect constrains regional metamorphic conditions to a maximum temperature of 325??C and a pressure of 2 kbar. Slightly higher temperatures are indicated by the presence of actinolite in another metabasalt. Compositions of Mn-rich minerals in Smith samples are consistent with these metamorphic conditions. ?? 1992.
Mechanistic insights into the oxidation behavior of Ni alloys in high-temperature CO 2
Oleksak, Richard P.; Baltrus, John P.; Nakano, Jinichiro; ...
2017-06-01
We present results of a Ni superalloy oxidized for short times in high purity CO 2 and similarly in Ar containing ≤ 1 ppb O 2. A detailed analysis of the oxidized surfaces reveals striking similarities for the two exposure environments, suggesting O 2 impurities control the oxidation process in high-temperature CO 2. Selective oxidation results in Cr-rich oxide layers grown by 2 outward diffusion, while Cr vacancies left in the metal contribute to significant void formation at the oxide/metal interface. Unlike for most of the alloy surface, the oxidation behavior of secondary phase metal carbides is considerably different inmore » the two environments.« less
NASA Technical Reports Server (NTRS)
Kleteschka, Gunther; Taylor, Patrick T.; Wasilewski, Peter J.; Hill, Hugh G. M.
2000-01-01
Carbonados are a type of diamond, which are made up of many aggregrates of small crystalline diamonds or microdiamonds. The term "carbonado" comes from the Portuguese word carbonated. They are only found in sedimentary deposits in the Central African Republic (CAR) and the Bahia Province of Brazil. They were once the source of the world's supply of industrial diamonds. Their origin is uncertain but several mutually exclusive hypotheses have been proposed. This theories are: (1) extraterrestrial, that is they formed from the dust cloud of original solar nebulae; (2) produced by the high temperatures and pressures of the Earth's mantle; (3) or as the result of an extra-terrestrial impact into a carbon rich layer of sediment. Our study was done to further the understanding of their origin. We measured the magnetic properties on some twenty samples from the CAR. An earlier study was done on whole samples of carbonados and the "common" or kimberlitic diamond. Our work differed in that we started at the surface and subsequently removed the surface layers (by days of acid immersion) into the interior; measuring the magnetic properties at each interval. This procedure permits us to monitor the distribution of magnetic substances within the samples. Our results showed that the magnetic carriers are distributed on the surface including the open pores and that the carbonado interior is essentially non-magnetic. This result suggests that the initial formation environment was deficient in magnetic particles. Such a situation could indicate that their formation was the result of an extra-terrestrial body impacting carbon-rich sediment. Obviously, more work will be required on isotopic and chemical analyses before a more detailed ori-in can be determined.
Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes
Hu, E.; Lyu, Y.; Xin, H.; ...
2016-09-26
Li- and Mn-rich (LMR) cathode materials have been considered as promising candidates for energy storage applications due to high energy density. However, these materials suffer from a serious problem of voltage fade. Oxygen loss and the layer to spinel phase transition are two major contributors of such voltage fade. In this paper, using a combination of x-ray diffraction (XRD), pair distribution function (PDF), x-ray absorption (XAS) techniques and aberration-corrected scanning transmission electron microscopy (STEM), we studied the effects of micro structural defects, especially the grain boundaries on the oxygen loss and layered-to-spinel phase transition through prelithiation of a model compoundmore » Li2Ru0.5Mn0.5O3. It is found that the nano-sized micro structural defects, especially the large amount of grain boundaries created by the prelithiation can greatly accelerate the oxygen loss and voltage fade. Defects (such as nano-sized grain boundaries) and oxygen release form a positive feedback loop, promote each other during cycling, and accelerate the two major voltage fade contributors: the transition metal reduction and layered-to-spinel phase transition. These results clearly demonstrate the important relationships among the oxygen loss, microstructural defects and voltage fade. The importance of maintaining good crystallinity and protecting the surface of LMR material are also suggested.« less
NASA Astrophysics Data System (ADS)
Tong, Jingnan; To, Alexander; Lennon, Alison; Hoex, Bram
2017-08-01
Silicon nitride (SiN x ) synthesised by low-temperature plasma enhanced chemical vapour deposition (PECVD) is the most extensively used antireflection coating for crystalline silicon solar cells because of its tunable refractive index in combination with excellent levels of surface and bulk passivation. This has attracted a significant amount of research on developing SiN x films towards an optimal electrical and optical performance. Typically, recipes are first optimised in lab-scale reactors and subsequently, the best settings are transferred to high-throughput reactors. In this paper, we show that for one particular, but widely used, PECVD reactor configuration this upscaling is severely hampered by an important experimental artefact. Specifically, we report on the unintentional deposition of a dual layer structure in a dual mode AK 400 plasma reactor from Roth & Rau which has a significant impact on its surface passivation performance. It is found that the radio frequency (RF) substrate bias ignites an unintentional depositing plasma before the ignition of the main microwave (MW) plasma. This RF plasma deposits a Si-rich intervening SiN x layer (refractive index = 2.4) while using a recipe for stoichiometric SiN x . This layer was found to be 18 nm thick in our case and had an extraordinary impact on the Si surface passivation, witnessed by a reduction in effective surface recombination velocity from 22.5 to 6.2 cm/s. This experimental result may explain some “out of the ordinary” excellent surface passivation results reported recently for nearly stoichiometric SiN x films and has significant consequences when transferring these results to high-throughput deposition systems.
Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi
2014-06-11
Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.
Micromechanics of Friction in a Detailed Study of Mg-rich Phyllosilicates
NASA Astrophysics Data System (ADS)
Sanchez Roa, C.; Faulkner, D.; Boulton, C. J.; Jimenez Millan, J.; Nieto, F.
2016-12-01
Phyllosilicate minerals commonly occur within faults, which may accommodate slip either aseismically via creep mechanisms or seismically in earthquakes. The Mg-rich phyllosilicates talc, saponite, sepiolite, and palygorskite have different crystallography and habits. Sepiolite and palygorskite are fibrous due to their discontinuous tetrahedral layers, while saponite and talc are platy due to the continuity of their TOT and water layers. Friction experiments were conducted in a triaxial apparatus under 95 MPa effective normal stress with water and argon as pore fluids. Results show a marked contrast between friction coefficients of fibrous phyllosilicates, 0.57 to 0.63 for argon experiments and 0.4 to 0.5 for water-saturated experiments, and platy Mg-rich phyllosilicates, as low as 0.22 for argon experiments and 0.04 for water-saturated experiments. During velocity steps (where sliding velocity is increased or decreased by one order of magnitude), the two mineral groups exhibit distinctly dissimilar behaviours. After the direct effect of the change in sliding rate, fibrous phyllosilicates show a rapid exponential decay towards a new friction coefficient (a positive b value). Meanwhile, the friction coefficient of the platy phyllosilicates has a more linear evolution (a zero, or negative b value). This effect could be related to a difference in the sliding strength of the contact asperities which would be much higher for crystal surfaces of fibrous minerals with an indented surface due to the silicon tetrahedra inversions. The fibre-shaped crystals may consequently require higher amounts of volumetric work against the normal stress (dilatancy). SEM and TEM observations of the deformed samples showed a well-developed network of R1 Riedel shears in the fibrous materials; planar phyllosilicates show a more homogeneous matrix and incipient development of P foliation. Planar phyllosilicate grains align on their basal planes facilitating intergranular sliding, in contrast, the fibrous phyllosilicates appear to form an interlocking grid-like network that may promote dilatancy during velocity steps. The contrasting strength of Mg-rich phyllosilicates and analysis of their microstructures imply that phyllosilicate habit strongly influences the micromechanics of frictional sliding.
Dekov, V.M.; Kamenov, George D.; Savelli, C.; Stummeyer, Jens; Thiry, M.; Shanks, Wayne C.; Willingham, A.L.; Boycheva, T.B.; Rochette, P.; Kuzmann, E.; Fortin, D.; Vertes, A.
2009-01-01
A sediment core taken from the south-east slope of the Eolo Seamount is composed of alternating red-brown and light-brown to bluish-grey layers with signs of re-deposition in the middle-upper section. The red-brown layers are Fe-rich metalliferous sediments formed as a result of low-temperature (??? 77????C) hydrothermal discharge, whereas the bluish-grey layers most probably originated from background sedimentation of Al-rich detrital material. The metalliferous layers are composed mainly of Si-rich goethite containing some Al. Co-precipitation of hydrothermally released SiO44- and Fe2+ as amorphous or poorly crystalline Fe-Si-oxyhydroxides explains the high Si concentration in goethite. The elevated Al content of the goethite is fairly unusual, but reflects the extremely high background Al content of the Tyrrhenian seawater due to the high eolian terrigenous flux from the Sahara desert. The Sr and Nd isotope data suggest that the Eolo metalliferous sediments are the product of a 3-component mixture: hydrothermal fluid, seawater, and detrital material (Saharan dust and Aeolian Arc material). The enrichment in Fe, P, As, Mo, Cd, Be, Sb, W, Y, V, depletion in REE and transition elements (Cu, Co, Ni, Zn) and the REE distribution patterns support the low-temperature hydrothermal deposition of the metalliferous layers. The hydrothermal field is located in a seawater layer of relative O2 depletion, which led to a significant fractionation of the hydrothermally emitted Fe and Mn. Fe-oxyhydroxides precipitated immediately around the vents whereas Mn stayed in solution longer and the Mn-oxides precipitated higher up on the seamount slope in seawater with relatively higher O2 levels. High seismic activity led to sediment re-deposition and slumping of the Mn-rich layers down slope and mixing with the Fe-rich layers. ?? 2009 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
McKay, Christopher P.; Rask, Jon C.; Detweiler, Angela M.; Bebout, Brad M.; Everroad, R. Craig; Chanton, Jeffrey P.; Mayer, Marisa H.; Caraballo, Adrian A. L.; Kapili, Bennett
2016-01-01
Salt flats (sabkha) are a recognized habitat for microbial life in desert environments and as analogs for habitats for life on Mars. Here we report on the physical setting and microbiology of interdune sabkhas among the large dunes in the Rub' al Khali (the Empty Quarter) in Liwa Oasis, United Arab Emirates. The salt flats, composed of gypsum and halite, between the dunes are moistened by relatively fresh ground water from below. The result is a salinity gradient that is inverted compared to most salt flat communities with the hypersaline layer at the top and freshwater layers below. We describe and characterize a rich photosynthetically-based microbial ecosystem that is protected from the arid outside environment below the translucent salt crust. Gases collected from sediments under shallow ponds in the sabkha contain methane in concentrations as high as 3400 ppm. The salt layer provides environmental protection to the habitat below and could preserve biomarkers and other evidence for life in the salt after it dries out. Chloride-filled depressions have been identified on Mars and although the surface flow of water is unlikely on Mars today, ground water is possible. Such a near surface system with modern groundwater flowing under ancient salt deposits could be present on Mars and could be accessed by surface rovers.
Wang, Alian; Bell, J.F.; Li, Ron; Johnson, J. R.; Farrand, W. H.; Cloutis, E.A.; Arvidson, R. E.; Crumpler, L.; Squyres, S. W.; McLennan, S.M.; Herkenhoff, K. E.; Ruff, S.W.; Knudson, A.T.; Chen, Wei; Greenberger, R.
2008-01-01
Light-toned soils were exposed, through serendipitous excavations by Spirit Rover wheels, at eight locations in the Columbia Hills. Their occurrences were grouped into four types on the basis of geomorphic settings. At three major exposures, the light-toned soils are hydrous and sulfate-rich. The spatial distributions of distinct types of salty soils vary substantially: with centimeter-scaled heterogeneities at Paso Robles, Dead Sea, Shredded, and Champagne-Penny, a well-mixed nature for light-toned soils occurring near and at the summit of Husband Hill, and relatively homogeneous distributions in the two layers at the Tyrone site. Aeolian, fumarolic, and hydrothermal fluid processes are suggested to be responsible for the deposition, transportation, and accumulation of these light-toned soils. In addition, a change in Pancam spectra of Tyrone yellowish soils was observed after being exposed to current Martian surface conditions for 175 sols. This change is interpreted to be caused by the dehydration of ferric sulfates on the basis of laboratory simulations and suggests a relative humidity gradient beneath the surface. Si-rich nodules and soils were observed near the major exposures of S-rich soils. They possess a characteristic feature in Pancam visible near-infrared (Vis-NIR) spectra that may be diagnostic of hydrated species, and this spectral feature can be used to search for additional Si-rich species. The exposures of hydrated salty soils within various geomorphic settings imply the potential existence of hydrous minerals in similar settings over a much wider area. Hydrous sulfates represent one of the candidates that may contribute the high level of water equivalent hydrogen in equatorial regions detected by the Neutron Spectrometer on Mars Odyssey.
Effect of Coatings on the Uptake Rate and HONO Yield in Heterogeneous Reaction of Soot with NO2
NASA Astrophysics Data System (ADS)
Cruz-Quiñones, M.; Khalizov, A. F.; Zhang, R.
2009-12-01
Heterogeneous reaction of nitrogen dioxide on carbon soot aerosols has been suggested as a possible source of nighttime nitrous acid (HONO) in atmosphere boundary layer. Available laboratory data show significant variability in the measured reaction probabilities and HONO yields, making it difficult to asses the atmospheric significance of this process. Moreover, little is known of how aging of soot aerosol through internal mixing with other atmospheric trace constituents will affect the heterogeneous reactivity and HONO production. In this work, the heterogeneous reaction of NO2 on fresh and aged soot films leading to HONO formation was studied through a series of kinetic uptake experiments and HONO yield measurements. Soot samples were prepared by incomplete combustion of propane and kerosene fuels under lean and rich flame conditions. Experiments were performed in a low-pressure, fast-flow reactor coupled to a chemical ionization mass spectrometer (CIMS), using atmospheric-level NO2 concentrations. Heterogeneous uptake coefficients, γ(geom) and γ(BET), were calculated using geometric and internal BET soot surface areas, respectively. The uptake coefficient and the HONO yield depend on the type of fuel and combustion regime and are the highest for soot samples prepared using rich kerosene flame. Although, the internal surface area of soot measured by BET method is a factor of 50 to 500 larger than the geometric surface area, only the top soot layers are involved in heterogeneous reaction with NO2 as follows from the observed weak dependence of γ(geom) and decrease in γ(BET) with increasing sample mass. Heating the soot samples before exposure to NO2 increases the BET surface area, the HONO yield, and the NO2 uptake coefficient due to the removal of the organic fraction from the soot backbone that unblocks active sites and makes them accessible for physical adsorption and chemical reactions. Our results support the oxidation-reduction mechanism involving adsorptive and reactive centers on soot surface where NO2 is converted into HONO and other products. Coating the soot surface by different materials to simulate atmospheric aging has a strong impact on the reactivity of soot toward NO2. Sulfuric acid coating reduces the uptake coefficient and HONO production by physically blocking the soot active sites and initiating decomposition of HONO in the aqueous acid layer. Furthermore, the HONO yield can be reduced to zero after exposure to elevated relative humidity or partially restored when sulfuric acid is removed by heating. Coatings made of glutaric and succinic acids increase HONO yields and NO2 uptake coefficients, similarly as in the case of pre-heated soot samples. We propose that the organic acids change the top layer morphology, opening up the pores and making the internal soot surface more accessible for heterogeneous interaction with NO2. The implications of our study regarding the contribution of freshly emitted and aged soot aerosols to nighttime HONO production will be discussed.
Crystallization dynamics and interface stability of strontium titanate thin films on silicon.
Hanzig, Florian; Hanzig, Juliane; Mehner, Erik; Richter, Carsten; Veselý, Jozef; Stöcker, Hartmut; Abendroth, Barbara; Motylenko, Mykhaylo; Klemm, Volker; Novikov, Dmitri; Meyer, Dirk C
2015-04-01
Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO 2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO 3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO 3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO 3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO 3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Pang, Shengli; Xu, Kaijie; Wang, Yonggang; Shen, Xiangqian; Wang, Wenzhi; Su, Yanjing; Zhu, Meng; Xi, Xiaoming
2017-10-01
Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1·2Mn0·54Ni0·13Co0·13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg-1 and 47.7% for LMNC to 572.0 Wh kg-1 and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-δ component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling.
Erosional origin of drumlins and megaridges
NASA Astrophysics Data System (ADS)
Eyles, Nick; Putkinen, Niko; Sookhan, Shane; Arbelaez-Moreno, Lina
2016-06-01
The erodent layer hypothesis (ELH) proposes that drumlinization leaves no substantial stratigraphic record because it is primarily an erosional process that cuts an unconformity across pre-existing bed materials. Drumlins most commonly have autochthonous cores of antecedent till(s), other stiff and coarse-grained sediment and rock or any combination thereof, and are also found closely juxtaposed with rock drumlins within the same flow sets ('mixed beds'). This is at odds with the suggested growth of drumlins by vertical accretion ('emergence') from deforming subglacial till ('soft beds'). ELH argues that drumlins 'grow down' by erosional carving of pre-existing stiff till, sediment and/or rock by a thin (< 1 m) layer of deforming subglacial debris which abrades its substrate. This process is well known to the science of tribology (the study of wearing surfaces) where remnant micro-drumlins, ridges and grooves comparable to drumlins and megaridges are cut by debris ('erodent layers') between surfaces in relative motion. In the subglacial setting the erodent layer comprises deforming diamict containing harder 'erodents' such as boulders, clast-rich zones or frozen rafts. Similar, till-like erodent layers (cataclasites) cut streamlined surfaces below gravity-driven mass flows such as rock avalanches, landslides and slumps, pyroclastic flows and debris flows; streamlined surfaces including drumlin-like 'ellipsoidal bumps' and ridges are also common on the surfaces of faults. Megadrumlins, drumlins and megaridges comprise an erosional continuum in many flow sets. This records the progressive dissection of large streamlined bedforms to form successively more elongate daughter drumlins and megaridges ('clones') as the bed is lowered to create a low-slip surface that allows fast ice flow and ice streaming. Clones are the 'missing links' in the continuum. ELH predicts preservation within drumlins of antecedent remnant tills and stratigraphies deposited earlier in the glacial cycle under sluggish or steady-state ice flows that were then streamlined by erosion under streaming ice flows. The erodent layer may be preserved as a relatively thin, loosely-consolidated surficial till that drapes the streamlined bedform (the 'upper till', 'cap till', 'till veneer', 'till mantle', 'retreat till', or 'englacial debris' of many previous reports). ELH suggests that there is a fundamental commonality of all forms of erosional wear and streamlining on sliding interfaces from the microscopic scale to the macroscopic scale of ice sheet beds.
NASA Astrophysics Data System (ADS)
Urlaub, M.; Krastel, S.; Geersen, J.; Schwenk, T.
2017-12-01
Numerous studies invoke weak layers to explain the occurrence of large submarine landslides (>100 km³), in particular those on very gentle slopes (<3°). Failure conditions are thought to be met only within this layer, which is embedded between stable sediments. Although key to understanding failure mechanisms, little is known about the nature and composition of such weak layers, mainly because they are (1) often destroyed with the landslide and (2) difficult to reach with ship-based gravity and piston coring. The Northwest African continental slope hosts numerous large submarine landslides that are translational, such that failure takes place along bedding-parallel surfaces at different stratigraphic depths. This suggests that failure occurs along weak layers, which are deposited repeatedly over time. Using high resolution seismic reflection data we trace several failure surfaces of the Cap Blanc Slide complex offshore Northwest Africa to ODP-Site 658. Core-seismic integration shows that the failure surfaces coincide with diatom oozes that are topped by clay. Along Northwest Africa diatom-rich sediments are typically deposited at the end of glacial periods. In the seismic data these oozes show up as distinct high amplitude reflectors due to their characteristic low densities. Similar high-amplitude reflectors embedded into low-reflective seismic units are commonly observed in shallow sediments (<100 m below seafloor) along the entire Northwest African continental slope. The failure surfaces of at least three large landslides coincide with such reflectors. As the most recent Pleistocene glacial periods likely influenced sediment deposition along the entire Northwest African margin in a similar manner we hypothesize that diatom oozes play a critical role for the generation of submarine landslides off Northwest Africa as well as globally within subtropical regions. An initiative to drill the Northwest African continental slope with IODP is ongoing, within which this hypothesis shall be tested.
Qiu, Bao; Yin, Chong; Xia, Yonggao; Liu, Zhaoping
2017-02-01
As rechargeable Li-ion batteries have expanded their applications into on-board energy storage for electric vehicles, the energy and power must be increased to meet the new demands. Li-rich layered oxides are one of the most promising candidate materials; however, it is very difficult to make them compatible with high volumetric energy density and power density. Here, we develop an innovative approach to synthesize three-dimensional (3D) nanoporous Li-rich layered oxides Li[Li 0.144 Ni 0.136 Co 0.136 Mn 0.544 ]O 2 , directly occurring at deep chemical delithiation with carbon dioxide. It is found that the as-prepared material presents a micrometer-sized spherical structure that is typically composed of interconnected nanosized subunits with narrow distributed pores at 3.6 nm. As a result, this unique 3D micro-/nanostructure not only has a high tap density over 2.20 g cm -3 but also exhibits excellent rate capability (197.6 mA h g -1 at 1250 mA g -1 ) as an electrode. The excellent electrochemical performance is ascribed to the unique nanoporous micro-nanostructures, which facilitates the Li + diffusion and enhances the structural stability of the Li-rich layered cathode materials. Our work offers a comprehensive designing strategy to construct 3D nanoporous Li-rich layered oxides for both high volumetric energy density and power density in Li-ion batteries.
Characterization of Ti6Al7Nb alloy foams surface treated in aqueous NaOH and CaCl2 solutions.
Bütev, Ezgi; Esen, Ziya; Bor, Şakir
2016-07-01
Ti6Al7Nb alloy foams having 53-73% porosity were manufactured via evaporation of magnesium space holders. A bioactive 1µm thick sodium hydrogel titanate layer, NaxH2-xTiyO2y+1, formed after 5M NaOH treatment, was converted to crystalline sodium titanate, Na2TiyO2y+1, as a result of post-heat treatment. On the other hand, subsequent CaCl2 treatment of NaOH treated specimens induced calcium titanate formation. However, heat treatment of NaOH-CaCl2 treated specimens led to the loss of calcium and disappearance of the titanate phase. All of the aforementioned surface treatments reduced yield strengths due to the oxidation of the cell walls of the foams, while elastic moduli remained mostly unchanged. Accordingly, equiaxed dimples seen on the fracture surfaces of as-manufactured foams turned into relatively flat and featureless fracture surfaces after surface treatments. On the other hand, Ca- and Na-rich coating preserved their mechanical stabilities and did not spall during fracture. The relation between mechanical properties of foams and macro-porosity fraction were found to obey a power law. The foams with 63 and 73% porosity met the desired biocompatibility requirements with fully open pore structures and elastic moduli similar to that of bone. In vitro tests conducted in simulated body fluid (SBF) showed that NaOH-heat treated surfaces exhibit the highest bioactivity and allow the formation of Ca-P rich phases having Ca/P ratio of 1.3 to form within 5 days. Although Ca-P rich phases formed only after 15 days on NaOH-CaCl2 treated specimens, the Ca/P ratio was closer to that of apatite found in bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geological Evidence for Recent Ice Ages on Mars
NASA Astrophysics Data System (ADS)
Head, J. W.; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R.
2003-12-01
A primary cause of ice ages on Earth is orbital forcing from variations in orbital parameters of the planet. On Mars such variations are known to be much more extreme. Recent exploration of Mars has revealed abundant water ice in the near-surface at high latitudes in both hemispheres. We outline evidence that these near-surface, water-ice rich mantling deposits represent a mixture of ice and dust that is layered, meters thick, and latitude dependent. These units were formed during a geologically recent major martian ice age, and were emplaced in response to the changing stability of water ice and dust on the surface during variations in orbital parameters. Evidence for these units include a smoothing of topography at subkilometer baselines from about 30o north and south latitudes to the poles, a distinctive dissected texture in MOC images in the +/-30o-60o latitude band, latitude-dependent sets of topographic characteristics and morphologic features (e.g., polygons, 'basketball' terrain texture, gullies, viscous flow features), and hydrogen concentrations consistent with the presence of abundant ice at shallow depths above 60o latitude. The most equatorward extent of these ice-rich deposits was emplaced down to latitudes equivalent to Saudi Arabia and the southern United States on Earth during the last major martian ice age, probably about 0.4-2.1 million years ago. Mars is currently in an inter-ice age period and the ice-rich deposits are presently undergoing reworking, degradation and retreat in response to the current stability relations of near-surface ice. Unlike Earth, martian ice ages are characterized by warmer climates in the polar regions and the enhanced role of atmospheric water ice and dust transport and deposition to produce widespread and relatively evenly distributed smooth deposits at mid-latitudes during obliquity maxima.
NASA Astrophysics Data System (ADS)
Yamagiwa, Kiyofumi
2018-02-01
Carbon nanotubes (CNTs) and related nanocarbons were selectively synthesized on commercially available alloy substrates by a simple liquid-phase technique. Fe- and Ni-rich stainless-steel (JIS SUS316L and Inconel®600, respectively) and Ni-Cu alloy (Monel®400) substrates were used for the synthesis, and each substrate was preheated in air to promote the self-formation of catalyst nanolayers on the surface. The substrates were resistance heated in ethanol without any addition of catalysts to grow CNTs. The yield of the CNTs effectively increased when the preheating process was employed. Highly aligned CNT arrays grew on the SUS316L substrate, while non-aligned CNTs and distinctive twisted fibers were observed on the other substrates. An Fe oxide layer was selectively formed on the preheated SUS316L substrate promoting the growth of the CNT arrays. Characterizations including cyclic voltammetry for the arrays revealed that the CNTs possess a comparatively defect-rich surface, which is a desirable characteristic for its application such as electrode materials for capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chagas, L.H., E-mail: lhchagas-prometro@inmetro.gov.br; Instituto Nacional de Metrologia Qualidade e Tecnologia, Divisão de Metrologia de Materiais, 25250-020 Duque de Caxias, RJ; De Carvalho, G.S.G.
Highlights: • We synthesized MgCoAl and NiCoAl LDHs by the urea hydrolysis method. • Aluminum rich and crystalline materials have been formed. • The calcination of the LDHs generated mixed oxides with high surface areas. - Abstract: Layered double hydroxides (LDHs) with Mg/Co/Al and Ni/Co/Al were synthesized for the first time by the urea hydrolysis method. The experimental conditions promoted aluminum rich and crystalline materials. The formation of LDHs was investigated by powder X-ray diffraction (XRD), chemical analysis, solid state nuclear magnetic resonance with magic angle spinning ({sup 27}Al-MAS-NMR), simultaneous thermogravimetric/differential thermal analysis (TGA/DTA), FTIR spectroscopy, scanning electron microscopy (SEM),more » and N{sub 2} adsorption–desorption experiments. A single phase corresponding to LDH could be obtained in all the investigated compositions. Thermal calcination of these LDHs at 500 °C resulted in the formation of solid solutions in which Al{sup 3+} was dissolved. All the calcined materials have rock-salt like structures and high surface areas.« less
Mars mission relevant investigations on a ~ 3.5 Ga Mars analogue rock from the Pilbara and Barberton
NASA Astrophysics Data System (ADS)
Westall, F.; Pullan, D.; Schröder, C.; Klingelhöfer, G.; Fernández-Sánchez, J.; Jorge, S.; Edwards, H.; Cressey, G.
2007-08-01
Volcaniclastic sediments deposited in shallow water basins on the early Earth represent ideal analogues for Noachian volcanic sediments since the environmental conditions and settings for both were quite similar: important volcanic and hydrothermal activity (somewhat less on Mars), period of late heavy bombardment (~4.0 Ga), water bodies with a slightly acidic pH, higher salt content, atmosphere with minimal O2 (<0.2 % PAL), high UV flux to the surface. Life apparently thrived in these conditions on Earth, leaving structural and geochemical signatures in the Early Archaean sediments. Within the framework of the PAFS-net* programme, using space qualified instrumentation, we analysed previously well-characterised volcanic sedimentary rocks from a number of locations in the 3.5-3.3 Ga-old greenstone belts of the Pilbara (Australia) and Barberton (South Africa). They included mud flat sediments containing traces of probable chemolithotrophic and anoxygenic photosynthetic microorganisms, a small stromatolite (some microfossil traces) and a banded iron formation sample (also some microfossil traces). All the sediments were silicified by early diagenetic processes. The instruments used were the Beagle2 Development Model (DM) stereo camera for proximal (~100 cm) and macroscopic (~10 cm) imaging, the Beagle 2 microscope for microscopic (~1 cm) imaging, a Nuance multi-spectral imager, a TN Technologies Spectrace 9000 commercial energy dispersive XRF spectrometer, a Philips PW1710 diffractometer for XRD, and the Beagle2 spare Mössbauer spectrometer. The camera systems were well able to depict the fine-scale sedimentological structures of the rock samples that, in the case of the volcaniclastic sediment and the stromatolite, can be used to interpret a shallow water environment of deposition (the flaser-linsen bedding of the former and the convex, sinuous layering of the latter). The massively quartz-rich (chert) composition of the silicified sediments was picked up by the XRD and the Raman spectrometers. The silicified volcanics also contain feldspar, identified by the Raman, whereas the XRF analyses showed that they are K-feldspars. The traces of Ba and Cu in this sample are probably related to the mostly hydothermal origin of the silica that cemented the volcanic sediments. Raman spectroscopy also identified a greater abundance of carbon (matured kerogen) in the black layers of this sample (finer grained volcaniclastics). The stromatolite sample, on the other hand, consists largely of quartz although Raman showed some dolomite and carbon (mature kerogen) in the grey layers (silicified stromatolitic layers). The layering in the laminated volcaniclastic sediment was too fine for the Mössbauer spectrometer to pick up any details. The Mössbauer was able to detect a very thin layer of Fe oxide <<0.2 mm on the surface of the stromatolite. Compositional layering in the BIF was clearly visible using multispectral imaging with the Nuance camera and the Mössbauer could identify highly crystalline and chemically pure goethite in the Fe-rich layers with minor goethite and hematite occurring in the quartz-rich layers. The combination of the instrumentation used for imaging and chemical analysis was quite sufficient to identify the sedimentary origin of the finely laminated volcaniclastic and stromatolite rocks and to demonstrate their pervasive silicification. The presence of carbon in these rocks would, in a Mars scenario, make them ideal subjects for organo-geochemical analysis. The same suite of instruments was also able to demonstrate the origin of the BIF, again, a suitable candidate for further analysis. * Planetary Analogue Field Study network (main coordinator D. Pullan)
Chlorination of zirconium (0001) surface: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.; Weck, Philippe F; Poineau, F.
The mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl 2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by 3 eV/Cl for dissociative adsorption of a single Cl 2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism formore » Zr(0001) surface dissolution. Finally, consistent with experimental findings, formation of ZrCl 4 molecular products is also found to be dominant during Zr(0001) chlorination.« less
Chlorination of zirconium (0001) surface: A first-principles study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunja; Weck, Philippe F; Borjas, Rosendo
Here, the mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl 2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by ~3 eV/Cl for dissociative adsorption of a single Cl 2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanismmore » for Zr(0001) surface dissolution. Consistent with experimental findings, formation of ZrCl 4 molecular products is also found to be dominant during Zr(0001) chlorination.« less
Chemistry of surface nanostructures in lead precursor-rich PbZr0.52Ti0.48O3 sol-gel films
NASA Astrophysics Data System (ADS)
Gueye, I.; Le Rhun, G.; Gergaud, P.; Renault, O.; Defay, E.; Barrett, N.
2016-02-01
We present a study of the chemistry of the nanostructured phase at the surface of lead zirconium titanate PbZr0.52Ti0.48O3 (PZT) films synthesized by sol-gel method. In sol-gel synthesis, excess lead precursor is used to maintain the target stoichiometry. Surface nanostructures appear at 10% excess whereas 30% excess inhibits their formation. Using the surface-sensitive, quantitative X-ray photoelectron spectroscopy and glancing angle X-ray diffraction we have shown that the chemical composition of the nanostructures is ZrO1.82-1.89 rather than pyrochlore often described in the literature. The presence of a possibly discontinuous layer of wide band gap ZrO1.82-1.89 could be of importance in determining the electrical properties of PZT-based metal-insulator-metal heterostructures.
Tuning cationic composition of La:EuTiO{sub 3−δ} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkabko, Andrey, E-mail: shkabko@gmail.com; Empa, Solid State Chemistry and Catalysis, CH-8600 Dübendorf; Xu, Chencheng
2013-11-01
Eu{sub 1−x}La{sub x}TiO{sub 3−δ} (x = 0, 0.3, 0.5) films were deposited in a p(Ar(96%)/H{sub 2}(4%)) = 4 × 10{sup −4} mbar atmosphere on (LaAlO{sub 3}){sub 0.3}-(Sr{sub 2}AlTaO{sub 6}){sub 0.7} vicinal substrates (0.1°). Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm{sup 2} independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the filmsmore » are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu{sup 3+} rich for films deposited at low laser fluence.« less
Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei
2017-07-01
Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co 9 S 8 ) system. The embedment of metal sulfide species (Co 9 S 8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co 9 S 8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Die Soldering in Aluminium Die Casting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Q.; Kenik, E.A.; Viswanathan, S.
2000-03-15
Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-richmore » phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.« less
Giant and switchable surface activity of liquid metal via surface oxidation
Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.
2014-01-01
We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767
Searching for Prebiotically Important Molecules in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Gibb, Erika L.; Brown, L. R.; Sudholt, E.
2012-05-01
Understanding how prebiotic molecules form and are distributed around young stars is an important step in determining how and where life can form in planetary systems. In general, protoplanetary disks consist of a cold, dense midplane where, beyond the frost line, water and organic molecules will condense onto dust grains as icy coatings. The surface of the disk is exposed to stellar and interstellar radiation, giving rise to a photon-dominated region characterized by ionization and dissociation products. Between these two layers is a warm molecular layer where a rich molecular chemistry is predicted to occur. The warm molecular layer is somewhat protected from ionizing radiation by the dust and polycyclic aromatic hydrocarbons (PAHs) in the surface region. We present a high-resolution (λ / Δλ 25,000), near-infrared spectroscopic survey of the L-band toward T Tauri star GV Tau N. The data were acquired with the NIRSPEC instrument on the Keck II telescope, located on Mauna Kea, HI. We detected strong HCN absorption lines that we interpret to be located in the warm molecular layer of a nearly edge-on protoplanetary disk. We discuss significant differences in spectra acquired in 2006 and 2010 and implications for the material in the disk of GV Tau N, including rotational temperatures, abundances, and inferred location. This work was supported by the NSF Stellar Astronomy Program (Grant #0908230) and the NASA Exobiology program (NNX11AG44G).
Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; George, T.; Pike, W. T.
1992-01-01
We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unal, Baris
2008-01-01
The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Ourmore » STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd +(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd +. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.« less
Investigation of Coatings for Langmuir Probes in an Oxygen-Rich Space Environment
NASA Astrophysics Data System (ADS)
Samaniego, J. I.; Wang, X.; Andersson, L.; Malaspina, D.; Ergun, R.; Horanyi, M.
2017-12-01
The surface properties of the Langmuir probes, such as the one on the MAVEN mission, will change after exposure to upper planetary atmospheres where high concentrations of atomic oxygen and other oxidizing compounds are present. TiN (Titanium Nitride) or DAG (a resin based graphite dispersion) are the most common coatings for current Langmuir probes, yet both of these coatings pose issues when exposed to oxygen-rich space environment. TiN showed reduced surface conductivity while the DAG layers erode with exposure to oxygen. It is known that Iridium (Ir) and Rhenium (Rh) are difficult to oxidize and maintain high conductivity even in their oxidized forms, suggesting them to be good candidates for probe coatings. Oxidation of most metals creates a resistive layer on the surface of the probe that will affect the amount of current being collected at a given voltage during the probe sweep and therefore affect the accuracy of plasma parameters determined by the Langmuir probe (e.g. density, temperature). We present the results of the oxidation effect on the current-voltage curves (I-V curves) and therefore the resulting measured plasma parameters of Ir and Rh wire probes compared with other control metals and coatings (Cu, Ni, TiN) in controlled plasma environments. The oxidation process is performed in an oxygen plasma chamber in which both O+ and O2+ are created and accelerated toward the probes with energies < 10 eV. An argon plasma chamber is used to compare the probe's I-V curves before and after the oxidation process. Our preliminary results indicate that iridium shows the least effect of oxidation on the probe measurements. The second objective of this study is to identify methods that can be used in orbit to clean the surface of Langmuir probes to minimize the effect of exposure to oxidizing compounds.
Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins
NASA Astrophysics Data System (ADS)
Neish, Catherine; Somogyi, Á.; Smith, M. A.
2009-09-01
Titan, Saturn's largest moon, is a world rich in the "stuff of life". Reactions occurring in its dense nitrogen-methane atmosphere produce a wide variety of organic molecules, which subsequently rain down onto its surface. Water - thought to be another important ingredient for life - is likewise abundant on Titan. Theoretical models of Titan's formation predict that its interior consists of an ice I layer several tens of kilometers thick overlying a liquid ammonia-rich water layer several hundred kilometers thick (Tobie et al., 2005). Though its surface temperature of 94K dictates that Titan is on average too cold for liquid water to persist at its surface, melting caused by impacts and/or cryovolcanism may lead to its episodic availability. Impact melt pools on Titan would likely remain liquid for 102 - 104 years before freezing (O'Brien et al., 2005). The combination of complex organic molecules and transient locales of liquid water make Titan an interesting natural laboratory for studying prebiotic chemistry. In this work, we sought to determine what biomolecules might be formed under conditions analogous to those found in transient liquid water environments on Titan. We hydrolyzed Titan organic haze analogues, or "tholins", in 13 wt. % ammonia-water at 253K and 293K for a year. Using a combination of high resolution mass spectroscopy and tandem mass spectroscopy fragmentation techniques, four amino acids were identified in the hydrolyzed tholin sample. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions similar to those found in impact melt pools and cryolavas on Titan. Future missions to Titan should therefore carry instrumentation capable of detecting amino acids and other prebiotically relevant molecules on its surface This work was supported by the NASA Exobiology Program.
NASA Technical Reports Server (NTRS)
Kimura, Yuki; Nuth, Joseph A., III
2005-01-01
We will demonstrate that CaO and Ca(OH)2 are excellent candidates to explain the 6.8 microns feature, which is one of the most obscure features in young stellar objects. We discuss the condensation of CaO grains and the potential formation of a Ca(OH)2 surface layer. The infrared spectra of these grains are compared with the spectra of fifteen young stellar objects. We note that CaO-rich grains are seen in all meteoritic CAIs (calcium-aluminum-rich inclusions) and the 6.8 micron feature has only been observed in young stellar objects. Therefore, we consider CaO grains to be a plausible candidate to explain the 6.8 microns feature and hypothesize that they are produced in the hot interiors of young stellar environments.
Vegetation succession among and within structural layers following wildfire in managed forests
Lori J. Kayes; Paul D. Anderson; Klaus J. Puettmann
2010-01-01
In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non-metric multidimensional scaling, multi-...
Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang
2017-07-03
The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang
The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less
Making molecular balloons in laser-induced explosive boiling of polymer solutions.
Leveugle, Elodie; Sellinger, Aaron; Fitz-Gerald, James M; Zhigilei, Leonid V
2007-05-25
The effect of the dynamic molecular rearrangements leading to compositional segregation is revealed in coarse-grained molecular dynamics simulations of short pulse laser interaction with a polymer solution in a volatile matrix. An internal release of matrix vapor at the onset of the explosive boiling of the overheated liquid is capable of pushing polymer molecules to the outskirts of a transient bubble, forming a polymer-rich surface layer enclosing the volatile matrix material. The results explain unexpected "deflated balloon" structures observed in films deposited by the matrix-assisted pulsed laser evaporation technique.
NASA Technical Reports Server (NTRS)
Kargel, Jeffrey S.; Wessels, Rick; Beget, James E.; Eddy, Thomas; Lloyd, Sandra; Macaulay, Don; Proch, Mark; Skinner, Jim; Tanaka, Kenneth L.
2004-01-01
A geomorphic landscape analog in the Bering Land Bridge National Preserve (Alaska) offers a model for Mars where (1) fluvial and alluvial deposition, volcanism, and other processes first produced a layered ice-rich upper crust, and then (2) severe permafrost conditions (mild by today's Martian standards) and heterogeneous heat flow and volcanism have modified this terrain to produce a geomorphic areal mosaic that is alternately dominated by (a) geothermal meltwater and sublimation (bottom-up heat flow) and (b) surface-driven meltwater and sublimation (top-down heat flow).
ELECTROMAGNETIC STIRRING IN ZONE REFINING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, I.; Frank, F.C.; Marshall, S.
1958-02-01
The efficiency of the zone refining process can obviously be increased by stirring the molten zone to disperse the impurity-rich layer at the solid- liquid surface. Induction heating is sometimes preferred to radiant heat because it produces more convection, but no marked improvement has been reported. Pfann and Dorsi(1967) have described a method of stirring the melt by passing an electric current through the ingot and compressing a magnetic field across the molten zone. Preliminary results obtained by using a rotating magnetic field us the stirring agent during the purification of aluminum are described. (A.C.)
Television observations of Mercury by Mariner 10
NASA Technical Reports Server (NTRS)
Murray, B. C.; Belton, M. J. S.; Danielson, E. G.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.
1977-01-01
The morphology and optical properties of the surface of Mercury resemble those of the Moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.
Television observations of Mercury by Mariner 10
NASA Technical Reports Server (NTRS)
Murray, B. C.; Belton, M. J. S.; Danielson, G. E.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.
1974-01-01
The morphology and optical properties of the surface of Mercury resemble that of the moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.
NASA Astrophysics Data System (ADS)
Ganzhorn, Anne-Céline; Trap, Pierre; Arbaret, Laurent; Champallier, Rémi; Fauconnier, Julien; Labrousse, Loic; Prouteau, Gaëlle
2015-04-01
Partial melting of continental crust is a strong weakening process controlling its rheological behavior and ductile flow of orogens. This strength weakening due to partial melting is commonly constrained experimentally on synthetic starting material with derived rheological law. Such analog starting materials are preferentially used because of their well-constrained composition to test the impact of melt fraction, melt viscosity and melt distribution upon rheology. In nature, incipient melting appears in particular locations where mineral and water contents are favorable, leading to stromatic migmatites with foliation-parallel leucosomes. In addition, leucosomes are commonly located in dilatants structural sites like boudin-necks, in pressure shadows, or in fractures within more competent layers of migmatites. The compositional layering is an important parameter controlling melt flow and rheological behavior of migmatite but has not been tackled experimentally for natural starting material. In this contribution we performed in-situ deformation experiments on natural rock samples in order to test the effect of initial gneissic layering on melt distribution, melt flow and rheological response. In-situ deformation experiments using a Paterson apparatus were performed on two partially melted natural gneissic rocks, named NOP1 & PX28. NOP1, sampled in the Western Gneiss Region (Norway), is biotite-muscovite bearing gneiss with a week foliation and no gneissic layering. PX28, sampled from the Sioule Valley series (French Massif Central), is a paragneiss with a very well pronounced layering with quartz-feldspar-rich and biotite-muscovite-rich layers. Experiments were conducted under pure shear condition at axial strain rate varying from 5*10-6 to 10-3 s-1. The main stress component was maintained perpendicular to the main plane of anisotropy. Confining pressure was 3 kbar and temperature ranges were 750°C and 850-900°C for NOP1 and PX28, respectively. For the 750°C experiments NOP1 was previously hydrated at room pressure and temperature. According to melt fraction, deformation of partially molten gneiss induced different strain patterns. For low melt fraction, at 750°C, deformation within the initially isotropic gneiss NOP1 is localized along large scales shear-zones oriented at about 60° from main stress component σ1. In these zones quartz grains are broken and micas are sheared. Melt is present as thin film (≥20 µm) at muscovite-quartz grain boundaries and intrudes quartz aggregates as injections parallel to σ1. For higher melt fraction, at 850°C, deformation is homogeneously distributed. In the layered gneiss PX28, deformation is partitioned between mica-rich and quartz-rich layers. For low melt fraction, at 850°C, numerous conjugate shear-bands crosscut mica-rich layers. Melt is present around muscovite grains and intrudes quartz grains in the favor of fractures. For high melt fractions, at 900°C, melt assisted creep within mica-rich layers is responsible for boudinage of the quartz-feldspar rich layers. Melt-induced veining assists the transport of melt toward inter-boudin zones. Finite strain pattern and melt distribution after deformation of PX28 attest for appearance of strong pressure gradients leading to efficient melt flow. The subsequent melt redistribution strongly enhance strain partitioning and strength weakening, as shown by differential stress vs. strain graphs. Our experiments have successfully reproduced microstructures commonly observed in migmatitic gneisses like boudinage of less fertile layers. Comparison between non-layered and layered gneisses attest for strong influence of compositional anisotropies inherited from the protolith upon melt distribution and migmatite strength.
Creation of fluorocarbon barriers on surfaces of starch-based products through cold plasma treatment
NASA Astrophysics Data System (ADS)
Han, Yousoo
Two kinds of starch foam trays (starch and aspen-starch foam trays) were produced using a lab model baking machine. Surfaces of the trays were treated with CF4 and SF6 plasma to create fluorine-rich layers on the surfaces, which might show strong water resistance. The plasma parameters, such like RF power, gas pressure and reaction time, were varied to evaluate the effects of each parameter on fluorination of surfaces. The atomic concentrations of fluorine, oxygen and carbon on samples' surfaces were earned from ESCA (electron spectroscopy for chemical analysis) and contact angles of sample surfaces were measured for hydrophobicity. For water resistance of plasma treated surfaces, liquid water uptake and water vapor uptake test were performed. Also, equilibrium moisture contents of unmodified and plasma treated samples were measured to evaluate biodegradability of plasma treated samples. Fluorine-rich barriers were created on sample surfaces treated with CF 4 and SF6 plasma. The fluorine atomic concentrations of treated sample surfaces were ranged from 34.4% to 64.4% (CF4 treatment) and 43.6% to 57.9% (SF6 treatment). It was found at both plasma gases that plasma parameters affected total fluorine concentration and carbon-peak shapes in ESCA surveys, which imply different distributions of mono- or multi-fluoro carbon's contents. In various reaction times, it was found that total fluorine contents were decreased after a critical point as the reaction time was prolonged, which may imply that a dominant mechanism has been changed from deposition or functionalization to etching. Oxygen atomic concentration was decreased at sample surfaces treated by both plasmas. In the case of SF6 plasma, it was proved that the removal of oxygen surely occurred because there was no addition of sulfur species. Plasma treated sample surfaces had high contact angles with distilled water up to 150° and the high values of angles have been kept constant up to for 15 minutes. Fluorine-rich barriers created by plasma showed lower water liquid and vapor permeability than untreated surfaces did. Plasma treated samples had similar moisture contents with untreated samples at all relative humidity tested. AFM and SEM images were taken for sample surfaces' morphology and topography.
Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight
Lopes dos Santos, Adriana; Marie, Dominique; Helena Pellizari, Vivian; Pereira Brandini, Frederico; Vaulot, Daniel
2016-01-01
Pico and nanoplankton communities from the Southwest Atlantic Ocean along the Brazilian Bight are poorly described. The hydrography in this region is dominated by a complex system of layered water masses, which includes the warm and oligotrophic Tropical Water (TW), the cold and nutrient rich South Atlantic Central Water (SACW) and the Coastal Water (CW), which have highly variable properties. In order to assess how pico- and nanoplankton communities are distributed in these different water masses, we determined by flow cytometry the abundance of heterotrophic bacteria, Prochlorococcus, Synechococcus and autotrophic pico and nanoeukaryotes along three transects, extending from 23°S to 31°S and 39°W to 49°W. Heterotrophic bacteria (including archaea, maximum of 1.5 × 106 cells mL−1) were most abundant in Coastal and Tropical Water whereas Prochlorococcus was most abundant in open-ocean oligotrophic waters (maximum of 300 × 103 cells mL−1). Synechococcus(up to 81 × 103 cells mL−1), as well as autotrophic pico and nanoeukaryotes seemed to benefit from the influx of nutrient-rich waters near the continental slope. Autotrophic pico and nanoeukaryotes were also abundant in deep chlorophyll maximum (DCM) layers from offshore waters, and their highest abundances were 20 × 103 cells mL−1 and 5 × 103 cells mL−1, respectively. These data are consistent with previous observations in other marine areas where Synechococcus and autotrophic eukaryotes dominate mesotrophic waters, whereas Prochlorococcus dominate in more oligotrophic areas. Regardless of the microbial community structure near the surface, the carbon stock dominance by autotrophic picoeukaryotes near the DCM is possibly linked to vertical mixing of oligotrophic surface waters with the nutrient-rich SACW and their tolerance to lower light levels. PMID:27867760
Haigh, Sarah; Lyon, Ian
2014-01-01
Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a layer of iron oxides/hydroxides. Carbonates, halite, and sulfates were deposited last within interstitial spaces and along fractures. Among three plausible competing hypotheses here, this particular abiotic scenario is considered to be the most reasonable explanation for the formation of the ovoid structure in Nakhla, and although compelling evidence for a biotic origin is lacking, it is evident that the martian subsurface contains niche environments where life could develop. Key Words: Biomorph—Clays—Search for life (biosignatures)—Martian meteorites—Hydrothermal systems. Astrobiology 14, 651–693. PMID:25046549
NASA Astrophysics Data System (ADS)
Clifford, S.; McCubbin, F.
2015-10-01
Over the past 40 years, estimates of the total outgassed inventory of water on Mars have ranged from a global equivalent layer (GEL) ~7-1000 m deep [1, 2]. However, Carr and Head [3] have recently argued that it is not the total inventory of outgassed water that is important, but the amount that exists in climatically exchangeable surface and near- surface reservoirs - suggesting that any exchange with water in the deep subsurface is precluded by the existence of a thick cryosphere, at least during the Amazonian and Hesperian. Based on this assumption, and their estimate of the present day near-surface inventory of H2O (~34 m GEL, stored as ice in the polar layered deposits (PLD), lobate debris aprons, ice-rich latitude dependent mantles, and as shallow ground ice), they then extrapolate the evolution of this inventory backward in time, taking into account the introduction of new water by volcanism and outflow channel activity and the loss of water by exospheric escape. They conclude that, at the end of the Noachian, Mars had a near-surface water inventory of ~24 m and ~62 m by the end of the Hesperian - inventories that Carr and Head [3] argue were incompatible with the existence of a former ocean.
Nanoscale Seebeck effect at hot metal nanostructures
NASA Astrophysics Data System (ADS)
Ly, Aboubakry; Majee, Arghya; Würger, Alois
2018-02-01
We theoretically study the electrolyte Seebeck effect in the vicinity of a heated metal nanostructure, such as the cap of an active Janus colloid in an electrolyte, or gold-coated interfaces in optofluidic devices. The thermocharge accumulated at the surface varies with the local temperature, thus modulating the diffuse part of the electric double layer. On a conducting surface with non-uniform temperature, the isopotential condition imposes a significant polarization charge within the metal. Surprisingly, this does not affect the slip velocity, which takes the same value on insulating and conducting surfaces. Our results for specific-ion effects agree qualitatively with recent observations for Janus colloids in different electrolyte solutions. Comparing the thermal, hydrodynamic, and ion diffusion time scales, we expect a rich transient behavior at the onset of thermally powered swimming, extending to microseconds after switching on the heating.
A Study of the Physical Processes of an Advection Fog BoundaryLayer
NASA Astrophysics Data System (ADS)
Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.
2016-12-01
Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2014-09-01
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.
NASA Astrophysics Data System (ADS)
Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.
2017-12-01
Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.
Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong
2016-11-30
Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al 2 O 3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.
Kim, Hyejung; Kim, Min Gyu; Jeong, Hu Young; Nam, Haisol; Cho, Jaephil
2015-03-11
Structural degradation of Ni-rich cathode materials (LiNi(x)M(1-x)O2; M = Mn, Co, and Al; x > 0.5) during cycling at both high voltage (>4.3 V) and high temperature (>50 °C) led to the continuous generation of microcracks in a secondary particle that consisted of aggregated micrometer-sized primary particles. These microcracks caused deterioration of the electrochemical properties by disconnecting the electrical pathway between the primary particles and creating thermal instability owing to oxygen evolution during phase transformation. Here, we report a new concept to overcome those problems of the Ni-rich cathode material via nanoscale surface treatment of the primary particles. The resultant primary particles' surfaces had a higher cobalt content and a cation-mixing phase (Fm3̅m) with nanoscale thickness in the LiNi0.6Co0.2Mn0.2O2 cathode, leading to mitigation of the microcracks by suppressing the structural change from a layered to rock-salt phase. Furthermore, the higher oxidation state of Mn(4+) at the surface minimized the oxygen evolution at high temperatures. This approach resulted in improved structural and thermal stability in the severe cycling-test environment at 60 °C between 3.0 and 4.45 V and at elevated temperatures, showing a rate capability that was comparable to that of the pristine sample.
Christensen, P.R.; Bandfield, J.L.; Clark, R.N.; Edgett, K.S.; Hamilton, V.E.; Hoefen, T.; Kieffer, H.H.; Kuzmin, R.O.; Lane, M.D.; Malin, M.C.; Morris, R.V.; Pearl, J.C.; Pearson, R.; Roush, T.L.; Ruff, S.W.; Smith, M.D.
2000-01-01
The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite (α-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350–750 km in size centered near 2°S latitude between 0° and 5°W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and >525 cm−1 and by the absence of silicate fundamentals in the 1000 cm−1 region. Spectral features resulting from atmospheric CO2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (>5–10 μm). Diameters up to and greater than hundreds of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles 30 μm diameter) to 40–60% (10 μm diameter). The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter <5–10 μm), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it might be a late stage sedimentary unit or a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse-grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: the first is chemical precipitation that includes origin by (1) precipitation from standing, oxygenated, Fe-rich water (oxide iron formations), (2) precipitation from Fe-rich hydrothermal fluids, (3) low-temperature dissolution and precipitation through mobile ground water leaching, and (4) formation of surface coatings, and the second is thermal oxidation of magnetite-rich lavas. Weathering and alteration processes, which produce nanophase and red hematite, are not consistent with the coarse, crystalline hematite observed in Sinus Meridiani. We prefer chemical precipitation models and favor precipitation from Fe-rich water on the basis of the probable association with sedimentary materials, large geographic size, distance from a regional heat source, and lack of evidence for extensive groundwater processes elsewhere on Mars. The TES results thus provide mineralogic evidence for probable large-scale water interactions. The Sinus Meridiani region may be an ideal candidate for future landed missions searching for biotic and prebiotic environments, and the physical characteristics of this site satisfy all of the engineering requirements for the missions currently planned.
Release of Methane from Bering Sea Sediments During the Last Glacial Period
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mea Cook; Lloyd Keigwin
2007-11-30
Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers producedmore » by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.« less
Permafrost on Mars: distribution, formation, and geological role
NASA Technical Reports Server (NTRS)
Nummedal, D.
1984-01-01
The morphology of channels, valleys, chaotic and fretted terrains and many smaller features on Mars is consistent with the hypothesis that localized deterioration of thick layers of ice-rich permafrost was a dominant geologic process on the Martian surface. Such ground ice deterioration gave rise to large-scale mass movement, including sliding, slumping and sediment gravity flowage, perhaps also catastropic floods. In contrast to Earth, such mass movement processes on Mars lack effective competition from erosion by surface runoff. Therefore, Martian features due to mass movement grew to reach immense size without being greatly modified by secondary erosional processes. The Viking Mission to Mars in 1976 provided adequate measurements of the relevant physical parameters to constrain models for Martian permafrost.
Scanning probe microscopy for the analysis of composite Ti/hydrocarbon plasma polymer thin films
NASA Astrophysics Data System (ADS)
Choukourov, A.; Grinevich, A.; Slavinska, D.; Biederman, H.; Saito, N.; Takai, O.
2008-03-01
Composite Ti/hydrocarbon plasma polymer films with different Ti concentration were deposited on silicon by dc magnetron sputtering of titanium in an atmosphere of argon and hexane. As measured by Kelvin force microscopy and visco-elastic atomic force microscopy, respectively, surface potential and hardness increase with increasing Ti content. Adhesion force to silicon and to fibrinogen molecules was stronger for the Ti-rich films as evaluated from the AFM force-distance curves. Fibrinogen forms a very soft layer on these composites with part of the protein molecules embedded in the outermost region of the plasma polymer. An increase of the surface charge due to fibrinogen adsorption has been observed and attributed to positively charged αC domains of fibrinogen molecule.
Understanding the laminated layer of larval Echinococcus I: structure.
Díaz, Alvaro; Casaravilla, Cecilia; Irigoín, Florencia; Lin, Gerardo; Previato, José O; Ferreira, Fernando
2011-05-01
Echinococcus larvae are protected by a massive carbohydrate-rich acellular structure, called the laminated layer. In spite of being widely considered the crucial element of these host-parasite interfaces, the laminated layer has been historically poorly understood. In fact, it is still often called 'chitinous', 'hyaline' or 'cuticular' layer, or said to be composed of polysaccharides. However, over the past few years the laminated layer was found to be comprised of mucins bearing defined galactose-rich carbohydrates, and accompanied, in the case of Echinococcus granulosus, by calcium inositol hexakisphosphate deposits. In this review, the architecture and biosynthesis of this unusual structure is discussed at depth in terms of what is known and what needs to be discovered. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ancient Aqueous Environments at Endeavour Crater, Mars
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Squyres, S. W.; Bell, J. F.; Catalano, J. G.; Clark, B. C.; Crumpler, L. S.; de Souza, P. A.; Fairen, A. G.; Farrand, W. H.; Fox, V. K.;
2014-01-01
Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
Ancient aqueous environments at Endeavour crater, Mars
Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.
2014-01-01
Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
Zinc-blende MnN bilayer formation on the GaN(111) surface
NASA Astrophysics Data System (ADS)
Gutierrez-Ojeda, S. J.; Guerrero-Sánchez, J.; Garcia-Diaz, R.; Ramirez-Torres, A.; Takeuchi, Noboru; H. Cocoletzi, Gregorio
2017-07-01
Atomic layers of manganese nitride, deposited on the cubic gallium nitride (111) surface, are investigated using spin polarized periodic density functional theory calculations. The adsorption of a manganese atom has been evaluated at different high symmetry sites. Incorporation into the GaN substrate by replacing gallium atoms drives the formation of a site in which the displaced Ga atom forms bonds with Ga atoms at the surface. This energetically favorable configuration shows a ferromagnetic alignment. Surface formation energy calculations demonstrate that when a full Mn ML is incorporated into the GaN structure, a Ga ML on top of a MnN bilayer may be formed for very Ga-rich conditions. On the other hand, when a full Mn ML is deposited on top of the nitrogen terminated surface, an epitaxial MnN bilayer is formed with antiferromagnetic characteristics. Density of states and partial density of states are reported to show the antiferromagnetic alignment in both structures. This behavior is mainly induced by the Mn-d orbitals.
Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...
2016-01-11
Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi 0.4Mn 0.4Co 0.2O 2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. Themore » subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less
NASA Astrophysics Data System (ADS)
Gali, Olufisayo A.
Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.
Meridiani Planum Hematite Deposit: Potential for Preservation of Microfossils
NASA Technical Reports Server (NTRS)
Allen, C. C.; Westall, F.; Longazo, T. G.; Schelble, R. T.; Probst, L. W.; Flood, B. F.
2003-01-01
Christensen et al., using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Meridiani Planum. The deposit corresponds closely to the low-albedo highlands unit sm, mapped as a wind-eroded, ancient, subaqueous sedimentary deposit. Christensen et al. interpreted the Meridiani Planum deposit to be an in-place, rock-stratigraphic sedimentary unit characterized by smooth, friable layers composed primarily of basaltic sediments with approximately 10 to 15% crystalline gray hematite. The Meridiani Planum hematite deposit has recently been designated as the prime landing site for one of the two Mars Exploration Rover (MER) spacecraft. The MER landings are scheduled for January, 2004. Christensen et al. discussed five possible mechanisms for the formation of this deposit: direct precipitation from standing, oxygenated, Fe-rich water; precipitation from Fe-rich hydrothermal fluids; low-temperature dissolution and precipitation through mobile groundwater leaching; surface weathering and coatings; thermal oxidation of magnetite-rich lavas. Four of these mechanisms involve the interactions of rock with water, and thus have implications in the search for evidence of microbial life.
Cryptic oxygen cycling in anoxic marine zones
Padilla, Cory C.; Stewart, Frank J.; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter
2017-01-01
Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30–50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling. PMID:28716941
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe 2
Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...
2016-02-29
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe 2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe 2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spinmore » and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe 2 is not strictly two dimensional.« less
Microstructural analysis of Ti/Al/Ti/Au ohmic contacts to n-AlGaN/GaN
NASA Astrophysics Data System (ADS)
Chen, J.; Ivey, D. G.; Bardwell, J.; Liu, Y.; Tang, H.; Webb, J. B.
2002-05-01
To develop high quality AlGaN/GaN heterostructure field effect transistors for use in high power, high frequency, and high temperature applications, low resistance, thermal stable ohmic contacts with good surface morphology are essential. Low specific contact resistances have been achieved using an Au/Ti/Al/Ti contact: a minimum value of 6.33×10-6 Ω cm2 was attained after annealing at 700 °C for 30 s. Microstructural analysis using transmission electron microscopy indicated that there is significant interaction between the metallization components and the semiconductor during annealing. The optimum electrical properties correspond to a microstructure that consists of Au2Ti and TiAl layers as well as of a thin Ti-rich layer (~10 nm thick) at the metallization/AlGaN interface. Degradation of the contact occurred for annealing temperatures in excess of 750 °C, and was accompanied by decomposition of the AlGaN layer and formation of a Au-Ti-Al-Ga quaternary phase.
NASA Astrophysics Data System (ADS)
Chen, Tao; Li, Xiang; Wang, Hao; Yan, Xinxiu; Wang, Lei; Deng, Bangwei; Ge, Wujie; Qu, Meizhen
2018-01-01
A gradient boracic polyanion-doping method is applied to Ni-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode material in this study to suppress the capacity/potential fade during charge-discharge cycling. Scanning electron microscope (SEM) results show that all samples present spherical morphology and the secondary particle size increases with increasing boron content. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results demonstrate that boracic polyanions are successfully introduced into the bulk material and more enriched in the outer layer. XPS analysis further reveals that the valence state of Ni3+ is partly reduced to Ni2+ at the surface due to the incorporation of boracic polyanions. From the electrochemical measurements, B0.015-NCA electrode exhibits excellent cycling performance, even at high potential and elevated temperature. Moreover, the SEM images illustrate the presence of cracks and a thick SEI layer on pristine particles after 100 cycles at high temperature, while the B0.015-NCA particles show an intact structure and thin SEI layer. Electrochemical impedance spectroscopy confirms that the boracic polyanion doping could hinder the impedance increase during cycling at elevated temperature. These results clearly indicate that the gradient boracic polyanion-doping contributes to the remarkable enhancement of structure stability and cycling performance of NCA.
Constraints on the Composition of Trojan Asteroid 624 Hektor
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.; DalleOre, Cristina M.; Roush, Ted L.; Geballe, Thomas R.; Owen, Tobias C.; deBergh, Catherine; Cash, Michael D.; Hartmann, William K.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
We present a composite spectrum of Trojan asteroid 624 Hektor, 0.3-3.6 microns, which shows that there is no discernible 3-micron absorption band. Such a band would indicate the presence of OH or H2O- bearing silicate minerals, or macromolecular carbon-rich organic material of the kind seen on the low-albedo hemisphere of Saturn's satellite Iapetus (Owen et al. 2000). The absence of spectral structure is itself indicative of the absence of the nitrogen-rich tholins (which show a distinctive absorption band attributed to N-H). The successful models in this study all incorporate the mineral pyroxene (Mg, Fe SiO3, the composition of hypersthene), which matches the red color of Hektor. Pyroxene is a mafic mineral common in terrestrial and lunar lavas, and is also seen in Main Belt asteroid spectra. An upper limit to the amount of crystalline H20 ice (30-micron grains) in the surface layer of Hektor is 3 weight percent. The upper limit for serpentine, as a representative of hydrous silicates, is much less stringent, at 40 percent, based on the shape of the spectral region around 3 gm. Thus, the spectrum at 3 gm does not preclude the presence of a few weight percent of volatile material in the surface layer of Hektor. All of the models we calculated require elemental carbon to achieve the low geometric albedo that matches Hektor. This carbon could be of organic or inorganic origin. By analogy, other D-type asteroids could achieve their red color, low albedo, and apparent absence of phyllosilicates, from compositions similar to the models presented here.
NASA Astrophysics Data System (ADS)
Lemay, Jonathan; Thomas, Helmuth; Craig, Susanne E.; Burt, William J.; Fennel, Katja; Greenan, Blair J. W.
2018-04-01
The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2), even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC) slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net) CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.
NASA Astrophysics Data System (ADS)
Aravena, J.; Dussaillant, A. R.
2006-12-01
Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).
Deep UV Native Fluorescence Imaging of Antarctic Cryptoendolithic Communities
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, M. C.; Douglas, S.; Sun, H.; McDonald, G. D.; Bhartia, R.; Nealson, K. H.; Hug, W. F.
2001-01-01
An interdisciplinary team at the Jet Propulsion Laboratory Center for Life Detection has embarked on a project to provide in situ chemical and morphological characterization of Antarctic cryptoendolithic microbial communities. We present here in situ deep ultraviolet (UV) native fluorescence and environmental scanning electron microscopy images transiting 8.5 mm into a sandstone sample from the Antarctic Dry Valleys. The deep ultraviolet imaging system employs 224.3, 248.6, and 325 nm lasers to elicit differential fluorescence and resonance Raman responses from biomolecules and minerals. The 224.3 and 248.6 nm lasers elicit a fluorescence response from the aromatic amino and nucleic acids. Excitation at 325 nm may elicit activity from a variety of biomolecules, but is more likely to elicit mineral fluorescence. The resultant fluorescence images provide in situ chemical and morphological maps of microorganisms and the associated organic matrix. Visible broadband reflectance images provide orientation against the mineral background. Environmental scanning electron micrographs provided detailed morphological information. The technique has made possible the construction of detailed fluorescent maps extending from the surface of an Antarctic sandstone sample to a depth of 8.5 mm. The images detect no evidence of microbial life in the superficial 0.2 mm crustal layer. The black lichen component between 0.3 and 0.5 mm deep absorbs all wavelengths of both laser and broadband illumination. Filamentous deep ultraviolet native fluorescent activity dominates in the white layer between 0.6 mm and 5.0 mm from the surface. These filamentous forms are fungi that continue into the red (iron-rich) region of the sample extending from 5.0 to 8.5 mm. Using differential image subtraction techniques it is possible to identify fungal nuclei. The ultraviolet response is markedly attenuated in this region, apparently from the absorption of ultraviolet light by iron-rich particles coating the filaments. Below 8.5 mm the filamentous morphology of the upper layers gives way to punctate 1-2 micron particles evidencing fluorescent activity following excitation at both deep ultraviolet wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foullon, C.; Nakariakov, V. M.
2010-05-01
The discovery that p-mode frequencies of low degree do not follow changes of solar surface activity during the recent solar minimum offers the possibility of a new diagnostic signature of the responsible pressure perturbation in the wave guiding medium, potentially rich of information regarding the structure of the Sun and the cause of the unusually long solar minimum. Magnetic fields, as well as temperature changes, introduce equilibrium pressure deviations that modify the resonant frequencies of p-mode oscillations. Assuming the perturbation to be caused by a horizontal layer of magnetic field located in a plane-stratified model of the Sun, we compilemore » analytical frequency shifts and process them to allow direct comparison with observations. The effect of magnetism itself on the central p-mode frequencies can be neglected in comparison with the thermal effect of a perturbative layer buried in the solar interior. A parametric study shows that a layer as thin as 2100 km at subsurface depths is able to reproduce reported mean anomalous frequency shifts (not correlated with the surface activity), while a layer of size around 4200 km increasing by a small amount at depths near 0.08 R {sub sun} can explain individual low-degree shifts. It is also possible to obtain the mean shifts via the upward motion through depths near 0.03 R {sub sun} of a rising perturbative layer of thickness around 7000 km. Hence, the anomalous frequency shifts are best explained by thermal effects in the upper regions of the convection zone. The effects of latitudinal distribution are not treated here.« less
Supramolecular engineering of carbon nanostructures
NASA Astrophysics Data System (ADS)
Jian, Kengqing
This thesis identifies a new and flexible route to control graphene layer structure in carbons, which is the key to carbon properties and applications, and focuses on the synthesis, structure-property relationships, and potential applications of new "supramolecular" carbon nanomaterials. This new approach begins with the studies of surface anchoring and assembly mechanisms among planar discotic liquid crystals. The results show that disk-like polyaromatics exhibit weak noncovalent interactions with most surfaces and prefer edge-on anchoring at these surfaces; only on a few surfaces such as graphite and platinum, they prefer face-on anchoring. A theory of pi-pi bond preservation has been proposed to explain the wetting, anchoring, and assembly phenomena. Based on the assembly study, a supramolecular approach was developed, which uses surfaces, flows, and confinement to create well-defined order in discotic liquid crystals, which can then be covalently captured by cross-linking and converted into a carbon material whose structure is an accurate replica of the molecular order in the precursor. This technique has been successfully applied to create innovative nanocarbons with controllable nanostructures. The new nanomaterials synthesized by supramolecular route include organic and carbon films with precise crystal structure control using surface anchoring and flow. Lithographic techniques were employed to make micro-patterned surfaces with preprogrammed molecular orientations. Fully dense and ordered carbon thin films were prepared from lytropic liquid crystals. These films exhibit surfaces rich in edge-sites and are either anisotropic unidirectional or multi-domain. In addition, four different types of high-aspect-ratio nanocarbons were synthesized and analyzed: (1) "orthogonal" carbon nanofibers with perpendicular graphene layers, (2) "concentric" C/C-composite nanofibers with graphene layers parallel to the fiber axis, (3) "inverted" nanotubes exhibiting graphene edge planes at both inner and outer surfaces, and (4) nanoribbons. Finally, a set of mesoporous carbons were synthesized with both porous structure and interfacial structure systematically controlled by liquid crystal templating. A quantitative model was developed for carbon surface area prediction. In addition to synthesis, this thesis includes extensive structural analysis and some surface characterization of these nanomaterials, and offers ideas to exploit their unique properties for applications in composites, displays, nanomedicine, and the environment.
Layers in Burns Cliff Examined by Opportunity
2011-11-21
NASA Mars Exploration Rover Opportunity studied layers in the Burns Cliff slope of Endurance Crater in 2004. The layers show different types of deposition of sulfate-rich sediments. Opportunity panoramic camera recorded this image.
HST-STIS Spectra of Saturn's Rings and Implications for Their Reddening Agent
NASA Technical Reports Server (NTRS)
Cuzzi, Jeff
2016-01-01
We obtained HST-STIS spectra of Saturn's main rings in May 2011, using the G230L (and G430L) gratings, with final averaged radial resolution of 160 (and 330) km/pixel. The dataset filled a previous 200-330nm "spectral gap" between Cassini and ground-based spectra. The data provide radial profiles as a function of wavelength, but our most basic product at this point is a set of very low-noise spectra, radially averaged over broad regions of the rings (A, B, C, and Cassini Division). The raw spectra required special processing to remove artifacts due to extended-source grating scatter. We have modeled the spectra using a new particle surface model, which corrects for on-surface shadowing due to the likely very rough ring particle surfaces, and avoids overestimation of intra-mixed "neutral absorber". We correct for non-classical layer effects and finite ring optical depth, and relate our observed reflectivities to the spherical albedos of individual smooth particles. We model these smooth particle albedos using standard Hapke theory for regolith grain mixtures that are either homogeneous and "intramixed" (nonicy absorbers dispersed in water ice regolith grains) or heterogeneous "intimate" mixtures. As candidates for the nonicy contaminants we have considered amorphous carbon, aromatic-rich and aliphatic-rich organic tholins, silicates, hematite and iron metal. For the A and B rings, we find that iron metal (including a new theoretical estimate of the refractive indices of nanometer-sized grains of iron) is not spectrally steep enough in the 200-300nm range, and that aliphatic-rich tholins are either too steep at short wavelengths or too flat at long wavelengths. However, less than 1% by mass of aromatic-rich tholins provides a very good fit across the entire spectral range with no gratuitous "neutral absorber" needed, and a minimum of additional free parameters. The best fits require forward-scattering regolith grains. For the C Ring and Cassini Division, additional absorbers are needed (updated results will be given).
Characterization and origin of spongillite-hosting sediment from João Pinheiro, Minas Gerais, Brazil
NASA Astrophysics Data System (ADS)
Almeida, A. C. S.; Varajão, A. F. D. C.; Gomes, N. S.; Varajão, C. A. C.; Volkmer-Ribeiro, C.
2010-03-01
Spongillite from João Pinheiro, Minas Gerais, Brazil is mainly known for its use in brick production and in the refractory industry. Very few studies have focused on its geological context. Spongillite-rich deposits occur in shallow ponds on a karstic planation surface developed on rocks of the Neoproterozoic São Francisco Supergroup. Cenozoic siliciclastic sediments are related to this surface. A field study of these deposits and analysis of multispectral images showed a SE-NW preferential drainage system at SE, suggesting that Mesozoic Areado Group sandstones were the source area of the spongillite-hosting sediments. Mineralogical and textural characterization by optical microscopic analysis, X-ray diffraction (XRD), differential and gravimetric thermal analysis (DTA-GTA), infrared spectroscopy (IR) and scanning electron microscopy (SEM) of seven open-pit spongillite-rich deposits (Avião, Carvoeiro, Vânio, Preguiça, Divisa, Severino, Feijão) showed a sedimentological similarity between the deposits. They are lens-shaped and are characterized at the bottom by sand facies, in the middle by spicules-rich muddy-sand facies and at the top by organic matter-rich muddy-sand facies. Petrographically, the spongillite-hosting sediments and the siliclastic sediments of the Areado Group show detrital phases with similar mineralogical and textural features, such as the presence of well-sorted quartz grains and surface features of abrasion typical of aeolian reworking that occurred in the depositional environment in which the sandstones of the Areado Group were formed. Detrital heavy minerals, such as staurolite, zircon, tourmaline, and clay minerals, such as kaolinite, low amounts of illite, scarce chlorite and mixed-layer chlorite/smectite and illite/smectite occur in the spongillite-hosting sediments and in sandstones from the Areado Group. In both formations, staurolite has similar chemical composition. These mineralogical and textural features show that the sediments of the Areado Group constitute the main source of the pond sediments that host spongillite.
The deposition of corrosion products in Pb17Li
NASA Astrophysics Data System (ADS)
Barker, Marten G.; Capaldi, Michael J.
1994-09-01
A series of simple deposition tests has been carried out in Pb17Li contained in type 316 stainless steel tubes under a temperature gradient. Two basic types of deposit have been identified from all 316 steel systems. The first type which is dendritic in form is composed mainly of iron and chromium and deposits in the temperature region 673 to 823 K. Deposits at the lower temperature were chromium rich whilst those at the higher temperature were iron-rich. The second type found at temperatures below 623 K shows a temperature dependence being composed of nickel and manganese at 573 K and nickel, iron and chromium at 623 K. Pure nickel only deposits if the alloy is at near saturation in nickel at the highest temperature of the system (873 K). Aluminium mass transfers readily in Pb17Li and in solution causes the formation of aluminide layers on the steel surface in the high temperature zone.
Remote sensing studies of the terrain northwest of Humorum basin
NASA Technical Reports Server (NTRS)
Hawke, B. R.; Peterson, Chris A.; Lucey, Paul G.; Taylor, G. J.; Blewett, David T.; Campbell, Bruce A.; Coombs, Cassandra R.; Spudis, Paul D.
1993-01-01
We have used near-infrared reflectance spectra and Earth-based radar data to investigate the composition and origin of the various geologic units northwest of Humorum basin as well as the stratigraphy of the Humorum preimpact target site. The results of our spectral analysis indicate that at least a portion of the inner, mare-bounding ring is composed of pure anorthosite. Other highlands units in the region are dominated by noritic anorthosite. The anorthosites on the inner ring may have been derived from a layer of anorthosite that exists at depth beneath a more pyroxene-rich unit. Both Gassendi G and F craters expose mare material from beneath a highlands-rich surface unit that was emplaced as a result of the Letronne, Gassendi, and other impact events. This ancient basalt unit was emplaced after the formation of Humorum basin but prior to the Orientale impact.
NASA Astrophysics Data System (ADS)
Li, Jili; Jia, Tiekun; Liu, Kai; Zhao, Junwei; Chen, Jian; Cao, Chuanbao
2016-11-01
Li-ion batteries with high-energy and high-power density are pursued to apply in the electronic vehicles and renewable energy storage systems. In this work, layered Li-rich transition-metal oxide cathode Li1.2Ni0.2Mn0.6O2 nanoplates with enhanced growth of {010} planes (LNMO-NP) is successfully synthesized through a facile and versatile strategy. Ethylene glycol plays an important role in the formation of LNMO-NP nanoplates with {010} electrochemically active surface planes exposure. As cathode for Li-ion batteries, LNMO-NP demonstrates a high specific discharge capacity of 270.2 mAh g-1 at 0.1 C (1 C = 300 mA g-1) and an excellent rate capability. The good electrochemical performance can be attributed to the nanoplates with the growth of {010} electrochemically active planes which is in favor of Li+ intercalation/deintercalation.
A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features.
Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang
2016-12-01
Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.
A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features
NASA Astrophysics Data System (ADS)
Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang
2016-04-01
Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.
NASA Astrophysics Data System (ADS)
Moss, Joseph A.; McCurry, Chelsea; Tominack, Sarah; Romero, Isabel C.; Hollander, David; Jeffrey, Wade H.; Snyder, Richard A.
2015-12-01
Benthic marine protists have been well documented from shallow marine benthic habitats but remain understudied in deeper habitats on continental shelves and slopes, particularly in the Northeastern Gulf of Mexico (NEGOM). This region was affected by a deep water oil well failure (BP-Deepwater Horizon, 2010). The combination of a lack of information on deep sea microbenthic communities and the potential for benthic microbial petroleum mineralization prompted this investigation. Water column and nepheloid layer samples were obtained via Niskin bottles and a multicorer respectively at stations across the NEGOM to: (1) determine whether nepheloid and water column communities are distinct and (2) assess benthic species richness relative to sediment PAH contamination. Phylum specific 18S rRNA gene amplification was used to construct clone libraries of ciliate assemblages. BLAST searches in the NCBI database indicated that a majority (~75%) of the clone sequences corresponded (94-100% similarity) with listed, yet unclassified sequences. Several putative species were common at most site locations and depths. Many known benthic ciliates, such as Uronychia transfuga, Uronychia setigera, and Spirotrachelostyla tani, were common in the nepheloid layer samples and not recovered in water column samples. Ciliated protist species richness increased with PAH levels found in surface sediments, suggesting a positive microbial response to petroleum enrichment of the benthos. The presence of previously unknown microbenthic communites in the nephaloid layer over oceanic clay-silt muds alters our view of microbial processes in the deep sea and merits investigation of the microbial processes and rates of microbial mineralization and biomass production important to global biogeochemistry.
NASA Astrophysics Data System (ADS)
Matsuda, Toshihiro; Hattori, Fumihiro; Iwata, Hideyuki; Ohzone, Takashi
2018-04-01
Color tunable electroluminescence (EL) from metal-oxide-semiconductor devices with the rare-earth elements Tb and Eu is reported. Organic compound liquid sources of (Tb + Ba) and Eu with various Eu/Tb ratios from 0.001 to 0.4 were spin-coated on an n+-Si substrate and annealed to form an oxide insulator layer. The EL spectra had only peaks corresponding to the intrashell Tb3+/Eu3+ transitions in the spectral range from green to red, and the intensity ratio of the peaks was appropriately tuned using the appropriate Eu/Tb ratios in liquid sources. Consequently, the EL emission colors linearly changed from yellowish green to yellowish orange and eventually to reddish orange on the CIE chromaticity diagram. The gate current +I G current also affected the EL colors for the medium-Eu/Tb-ratio device. The structure of the surface insulator films analyzed by cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS) has four layers, namely, (Tb4O7 + Eu2O3), [Tb4O7 + Eu2O3 + (Tb/Eu/Ba)SiO x ], (Tb/Eu/Ba)SiO x , and SiO x -rich oxide. The EL mechanism proposed is that electrons injected from the Si substrate into the SiO x -rich oxide and Tb/Eu/Ba-silicate layers become hot electrons accelerated in a high electric field, and then these hot electrons excite Tb3+ and Eu3+ ions in the Tb4O7/Eu2O3 layers resulting in EL emission from Tb3+ and Eu3+ intrashell transitions.
Li, Xiaozhou; Lv, Junping; Li, Dehuai; Wang, Lin
2017-08-01
Agricultural plastic films capable of shielding UV, filtering visible light and antifog are important to prolong their life and protect safeties of agriculturists and crops. In this work, high stable and small size TiO 2 @polymer nanoparticles (NPs) were prepared by an efficient one-pot microwave synthesis using titanic sulfate as Ti resource, carboxymethyl cellulose sodium (CMC) as complexing agent and stabilizer. The TiO 2 @CMC NPs obtained were then utilized to fabricate poly(ethylene imine) (PEI)/TiO 2 @CMC coatings on the surface of polypropylene films by a layer-by-layer assembly technique. The TiO 2 @CMC NPs show rapid deposition rate because small, spherical and anion-rich TiO 2 @CMC NPs possess large specific surface area and fast diffusion rate. More importantly, property experiments confirm that (PEI/TiO 2 @CMC)*15 coatings can not only effectively shield UV rays, filter visible light and prevent fogging but also delay the aging of their supports. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems.
Guo, Kun; Soeriyadi, Alexander H; Feng, Huajun; Prévoteau, Antonin; Patil, Sunil A; Gooding, J Justin; Rabaey, Korneel
2015-11-01
This work reports a simple and scalable method to convert stainless steel (SS) felt into an effective anode for bioelectrochemical systems (BESs) by means of heat treatment. X-ray photoelectron spectroscopy and cyclic voltammetry elucidated that the heat treatment generated an iron oxide rich layer on the SS felt surface. The iron oxide layer dramatically enhanced the electroactive biofilm formation on SS felt surface in BESs. Consequently, the sustained current densities achieved on the treated electrodes (1 cm(2)) were around 1.5±0.13 mA/cm(2), which was seven times higher than the untreated electrodes (0.22±0.04 mA/cm(2)). To test the scalability of this material, the heat-treated SS felt was scaled up to 150 cm(2) and similar current density (1.5 mA/cm(2)) was achieved on the larger electrode. The low cost, straightforwardness of the treatment, high conductivity and high bioelectrocatalytic performance make heat-treated SS felt a scalable anodic material for BESs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on Si(111)
NASA Astrophysics Data System (ADS)
Lüpke, Felix; Just, Sven; Bihlmayer, Gustav; Lanius, Martin; Luysberg, Martina; Doležal, Jiří; Neumann, Elmar; Cherepanov, Vasily; Ošt'ádal, Ivan; Mussler, Gregor; Grützmacher, Detlev; Voigtländer, Bert
2017-07-01
We present a combined experimental and theoretical analysis of a Te rich interface layer which represents a template for chalcogenide-based van der Waals epitaxy on Si(111). On a clean Si(111)-(1 ×1 ) surface, we find Te to form a Te/Si(111)-(1 ×1 ) reconstruction to saturate the substrate bonds. A problem arising is that such an interface layer can potentially be highly conductive, undermining the applicability of the on-top grown films in electric devices. We perform here a detailed structural analysis of the pristine Te termination and present direct measurements of its electrical conductivity by in situ distance-dependent four-probe measurements. The experimental results are analyzed with respect to density functional theory calculations and the implications of the interface termination with respect to the electrical conductivity of chalcogenide-based topological insulator thin films are discussed. In detail, we find a Te/Si(111)-(1 ×1 ) interface conductivity of σ2D Te=2.6 (5 ) ×10-7S /□ , which is small compared to the typical conductivity of topological surface states.
Kuppa, V; Foley, T M D; Manias, E
2003-09-01
In this paper we review molecular modeling investigations of polymer/layered-silicate intercalates, as model systems to explore polymers in nanoscopically confined spaces. The atomic-scale picture, as revealed by computer simulations, is presented in the context of salient results from a wide range of experimental techniques. This approach provides insights into how polymeric segmental dynamics are affected by severe geometric constraints. Focusing on intercalated systems, i.e. polystyrene (PS) in 2 nm wide slit-pores and polyethylene-oxide (PEO) in 1 nm wide slit-pores, a very rich picture for the segmental dynamics is unveiled, despite the topological constraints imposed by the confining solid surfaces. On a local scale, intercalated polymers exhibit a very wide distribution of segmental relaxation times (ranging from ultra-fast to ultra-slow, over a wide range of temperatures). In both cases (PS and PEO), the segmental relaxations originate from the confinement-induced local density variations. Additionally, where there exist special interactions between the polymer and the confining surfaces ( e.g., PEO) more molecular mechanisms are identified.
Jin, Fangwei; Ren, Zhongming; Ren, Weili; Deng, Kang; Zhong, Yunbo; Yu, Jianbo
2008-01-01
The migration of primary Si grains during the solidification of Al–18 wt%Si alloy under a high-gradient magnetic field has been investigated experimentally. It was found that under a gradient magnetic field, the primary Si grains migrated toward one end of the specimen, forming a Si-rich layer, and the thickness of the Si-rich layer increased with increasing magnetic flux density. No movement of Si grains was apparent under a magnetic field below 2.3 T. For magnetic fields above 6.6 T, however, the thickness of the Si-rich layer was almost constant. It was shown that the static field also played a role in impeding the movement of the grains. The primary Si grains were refined in the Si layer, even though the primary silicon grains were very dense. The effect of the magnetic flux density on the migratory behavior is discussed. PMID:27877953
Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A
2017-10-01
Chardonnay grape pomace was treated with pressurized heat followed by enzymatic hydrolysis, with commercial or pure enzymes, in buffered conditions. The pomace was unfermented as commonly found for white winemaking wastes and treatments aimed to simulate biovalorization processing. Cell wall profiling techniques showed that the pretreatment led to depectination of the outer layers thereby exposing xylan polymers and increasing the extractability of arabinans, galactans, arabinogalactan proteins and mannans. This higher extractability is believed to be linked with partial degradation and opening-up of cell wall networks. Pectinase-rich enzyme preparations were presumably able to access the inner rhamnogalacturonan I dominant coating layers due to the hydrothermal pretreatment. Patterns of epitope abundance and the sequential release of cell wall polymers with specific combinations of enzymes led to a working model of the hitherto, poorly understood innermost xyloglucan-rich hemicellulose layers of unfermented grape pomace. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G
2016-03-10
Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.
Hydrology of two slopes in subarctic Yukon, Canada
NASA Astrophysics Data System (ADS)
Carey, Sean K.; Woo, Ming-Ko
1999-11-01
Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.
NASA Astrophysics Data System (ADS)
Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.
2003-11-01
The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.
Serkebaeva, Yulia M; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N
2013-01-01
Northern peatlands play a key role in the global carbon and water budget, but the bacterial diversity in these ecosystems remains poorly described. Here, we compared the bacterial community composition in the surface (0-5 cm depth) and subsurface (45-50 cm) peat layers of an acidic (pH 4.0) Sphagnum-dominated wetland, using pyrosequencing of 16S rRNA genes. The denoised sequences (37,229 reads, average length ∼430 bp) were affiliated with 27 bacterial phyla and corresponded to 1,269 operational taxonomic units (OTUs) determined at 97% sequence identity. Abundant OTUs were affiliated with the Acidobacteria (35.5±2.4% and 39.2±1.2% of all classified sequences in surface and subsurface peat, respectively), Alphaproteobacteria (15.9±1.7% and 25.8±1.4%), Actinobacteria (9.5±2.0% and 10.7±0.5%), Verrucomicrobia (8.5±1.4% and 0.6±0.2%), Planctomycetes (5.8±0.4% and 9.7±0.6%), Deltaproteobacteria (7.1±0.4% and 4.4%±0.3%), and Gammaproteobacteria (6.6±0.4% and 2.1±0.1%). The taxonomic patterns of the abundant OTUs were uniform across all the subsamples taken from each peat layer. In contrast, the taxonomic patterns of rare OTUs were different from those of the abundant OTUs and varied greatly among subsamples, in both surface and subsurface peat. In addition to the bacterial taxa listed above, rare OTUs represented the following groups: Armatimonadetes, Bacteroidetes, Chlamydia, Chloroflexi, Cyanobacteria, Elusimicrobia, Fibrobacteres, Firmicutes, Gemmatimonadetes, Spirochaetes, AD3, WS1, WS4, WS5, WYO, OD1, OP3, BRC1, TM6, TM7, WPS-2, and FCPU426. OTU richness was notably higher in the surface layer (882 OTUs) than in the anoxic subsurface peat (483 OTUs), with only 96 OTUs common to both data sets. Most members of poorly studied phyla, such as the Acidobacteria, Verrucomicrobia, Planctomycetes and the candidate division TM6, showed a clear preference for growth in either oxic or anoxic conditions. Apparently, the bacterial communities in surface and subsurface layers of northern peatlands are highly diverse and taxonomically distinct, reflecting the different abiotic conditions in microhabitats within the peat profile.
Environmental correlates of plant diversity in Korean temperate forests
NASA Astrophysics Data System (ADS)
Černý, Tomáš; Doležal, Jiří; Janeček, Štěpán; Šrůtek, Miroslav; Valachovič, Milan; Petřík, Petr; Altman, Jan; Bartoš, Michael; Song, Jong-Suk
2013-02-01
Mountainous areas of the Korean Peninsula are among the biodiversity hotspots of the world's temperate forests. Understanding patterns in spatial distribution of their species richness requires explicit consideration of different environmental drivers and their effects on functionally differing components. In this study, we assess the impact of both geographical and soil variables on the fine-scale (400 m2) pattern of plant diversity using field data from six national parks, spanning a 1300 m altitudinal gradient. Species richness and the slopes of species-area curves were calculated separately for the tree, shrub and herb layer and used as response variables in regression tree analyses. A cluster analysis distinguished three dominant forest communities with specific patterns in the diversity-environment relationship. The most widespread middle-altitude oak forests had the highest tree richness but the lowest richness of herbaceous plants due to a dense bamboo understory. Total richness was positively associated with soil reaction and negatively associated with soluble phosphorus and solar radiation (site dryness). Tree richness was associated mainly with soil factors, although trees are frequently assumed to be controlled mainly by factors with large-scale impact. A U-shaped relationship was found between herbaceous plant richness and altitude, caused by a distribution pattern of dwarf bamboo in understory. No correlation between the degree of canopy openness and herb layer richness was detected. Slopes of the species-area curves indicated the various origins of forest communities. Variable diversity-environment responses in different layers and communities reinforce the necessity of context-dependent differentiation for the assessment of impacts of climate and land-use changes in these diverse but intensively exploited regions.
Rayleigh-Taylor instability in soft elastic layers
NASA Astrophysics Data System (ADS)
Riccobelli, D.; Ciarletta, P.
2017-04-01
This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
NASA Astrophysics Data System (ADS)
Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.
2017-07-01
The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).