Fault geometries in basement-induced wrench faulting under different initial stress states
NASA Astrophysics Data System (ADS)
Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.
Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.
NASA Astrophysics Data System (ADS)
Braun, Jean
1994-08-01
We have developed a three-dimensional finite element model to study wrench deformation of the crust regarded as an elasto-plastic material obeying Murrell's extension of Griffith's failure criterion. Numerical experiments using this model predict that the imposed basal wrenching is accommodated by an array of oblique Riedel-like shears and Y-shears (parallel to the direction of wrenching). The partitioning of deformation between the two types of structure depends on the width of the zone of imposed basal wrenching and the existence of a component of deformation in the x-direction (normal to the direction of wrenching). The Riedel shears are arranged in spiral-like structures that root into the basal wrench zone. In cross-section, the Riedel shears resemble wedge-shaped flower structures similar to those often observed in seismic cross-sections. The 'polarity' of the flower structures is positive (or palm-tree-like) in transpression experiments and negative (or tulip-like) in transtension experiments. The orientation of the Riedel shears throughout the crust obeys Mohr's hypothesis for incipient faulting combined with Murrell's failure criterion. The model also predicts plastic dilatancy inversely proportional to the square root of the confining pressure; this result agrees qualitatively with field observations and the results of sand-box experiments and quantitatively with direct measurement of dilatancy during high-pressure rock-deformation experiments.
Fracture structures of active Nojima fault, Japan, revealed by borehole televiewer imaging
NASA Astrophysics Data System (ADS)
Nishiwaki, T.; Lin, A.
2017-12-01
Most large intraplate earthquakes occur as slip on mature active faults, any investigation of the seismic faulting process and assessment of seismic hazards require an understanding of the nature of active fault damage zones as seismogenic source. In this study, we focus on the fracture structures of the Nojima Fault (NF) that triggered the 1995 Kobe Mw 7.2 earthquake using ultrasonic borehole televiewer (BHTV) images from a borehole wall. The borehole used in this study was drilled throughout the NF at 1000 m in depth by a science project of Drilling into Fault Damage Zone(DFDZ) in 2016 (Lin, 2016; Miyawaki et al., 2016). In the depth of <230 m of the borehole, the rocks are composed of weak consolidated sandstone and conglomerate of the Plio-Pleistocene Osaka-Group and mudstone and sandstone of the Miocene Kobe Group. The basement rock in the depth of >230 m consist of pre-Neogene granitic rock. Based on the observations of cores and analysis of the BHTV images, the main fault plane was identified at a depth of 529.3 m with a 15 cm thick fault gouge zone and a damage zone of 100 m wide developed in the both sides of the main fault plane. Analysis of the BHTV images shows that the fractures are concentrated in two groups: N45°E (Group-1), parallel to the general trend of the NF, and another strikes N70°E (Group-2), oblique to the fault with an angle of 20°. It is well known that Riedel shear structures are common within strike-slip fault zones. Previous studies show that the NF is a right-lateral strike-slip fault with a minor thrust component, and that the fault damage zone is characterized by Riedel shear structures dominated by Y shears (main faults), R shears and P foliations (Lin, 2001). We interpret that the fractures of Group (1) correspond to Y Riedel fault shears, and those of Group (2) are R shears. Such Riedel shear structures indicate that the NF is a right-lateral strike-slip fault which is activated under a regional stress field oriented to the direction close to east-west, coincident with that inferred from geophysical observations (Tsukahara et al., 2001), seismic inversion results (Katao, 1997) and geological structures (Lin, 2001).Katao et al., 1997. J. Phys. Earth, 45, 105.Lin, 2016. AGU, Fall Meeting.Lin, 2001. J. Struc. Geo., 23, 1167.Miyawaki and Uchida, 2016. AGU, Fall Meeting.Tsukahara et al., 2001. Isl. Arc, 10, 261.
Moore, Diane E.; Byerlee, J.D.
1990-01-01
Many of the secondary fault structures developed during triaxial friction experiments have been generally correlated with the structures of natural fault zones. Therefore, any physical differences that can be found between laboratory samples that slide stably and those that show stick-slip motion may help to identify the cause of earthquakes. We have examined petrographically the run products of many triaxial friction experiments using clayey and quartzofeldspathic gouges, which comprise the principal types of natural fault gouge material. The examined samples were tested under a wide range of temperature, confining and fluid pressure, and velocity conditions. The clayey and quartzofeldspathic gouges show some textural differences, owing to their different mineral contents and grain sizes and shapes. In the clayey gouges, for example, a clay mineral fabric and kink band sets are commonly developed, whereas in the quartzofeldspathic gouges fracturing and crushing of the predominately quartz and feldspar grains are important processes. For both types of gouge, however, and whatever the pressure-temperature-velocity conditions of the experiments, the transition from stable sliding to stick-slip motion is correlated with: (i) a change from pervasive deformation of the gouge layer to localized slip in subsidiary shears; and (ii) an increase in the angle betweem the shears that crosscut the gouge layer (Riedel shears) and ones that form along the gouge-rock cylinder boundaries (boundary shears). This suggests that the localization of shear within a fault zone combined with relatively high Riedel-shear angles are somehow connected with earthquakes. Secondary fracture sets similar to Riedel shears have been identified at various scales in major strike-slip faults such as the San Andreas of the western United States (Wallace, 1973) and the Luhuo and Fuyun earthquake faults of China (Deng and Zhang, 1984; Deng et al., 1986). The San Andreas also contains locked and creeping sections that correspond to the stick-slip and stably sliding experimental samples, respectively. We plan to study the physical structure of the San Andreas fault, to see if the experimentally observed differences related to sliding behavior can also be distinguished in the field. ?? 1990.
Volcanic avalanche fault zone with pseudotachylite and gouge in French Massif Central
NASA Astrophysics Data System (ADS)
Bernard, Karine; van Wyk de Vries, Benjamin
2017-11-01
Structures and textures with sedimentological variations at different scales of the lithofacies assemblage help us to constrain the basal kinematic transition from non-depositional to depositional conditions during volcanic avalanche emplacement. In the well-exposed impact-sheared contact along volcanic avalanche fault zone in the French Massif Central, we observe how the granular textures of the pseudotachylite and fault gouge have recorded the propagation of shock wave with granular oscillatory stress. Sequential events of basal aggradation along avalanche fault zone have been established related to fractal D-values, temperature pressure regime and oscillatory stress during slow wave velocity. A typical lithofacies assemblage with a reverse grading shows the pseudotachylite and fault gouge. A cataclastic gradient is characterised by the fractal D-values from 2.7 in jigsaw breccias with pseudotachylite partial melt, to 2.6 in the polymodal gouge. Shock, brecciation and comminution produce cataclastic shear bands in the pseudotachylite and quartz microstructures along the basal contact of the volcanic debris-avalanche deposit. Gouge microstructures show granular segregation, cataclasis with antithetic rotational Riedel shear, and an arching effect between the Riedel shear bands. X-ray microtomography provided 3D microfabrics along the clastic vein in the sandy-gouge. From the available statistical dataset, a few equations have been developed implicating the same cataclastic origin with a co-genetic evolution of lithofacies. An impact wave during primary shear propagation may contribute to produce hydroclastic matrix, pseudotachylite partial melt and proximal gouge thixotropy with v 50m/s and a T < 654 °C. The interseismic period with oscillatory stress is related to crushed clasts and basaltic melt around 800 °C, Riedel shear bands with granular segregation along the fault gouge. The secondary shock by matrix-rich avalanche (ΔP = 10GPa, T ≥ 1000-1500 °C) contributes to quartz microstructures along the avalanche basal contact and quartz spheroids in microscopic cataclastic shear bands. Decompression around 654-800 °C is related to tertiary sub-vertical oscillations with a backward moving shock and antithetic rotational fault megablock. Semi-quantitative analyses of seismogenic fault basement contribute to establish the localised conditions related to sequential aggradation along volcanic avalanche fault zone.
NASA Astrophysics Data System (ADS)
Ueta, K.; Tani, K.
2001-12-01
Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.
Faulting within the Mount St. Helens conduit and implications for volcanic earthquakes
Pallister, John S.; Cashman, Katharine V.; Hagstrum, Jonathan T.; Beeler, Nicholas M.; Moran, Seth C.; Denlinger, Roger P.
2013-01-01
The 2004–2008 eruption of Mount St. Helens produced seven dacite spines mantled by cataclastic fault rocks, comprising an outer fault core and an inner damage zone. These fault rocks provide remarkable insights into the mechanical processes that accompany extrusion of degassed magma, insights that are useful in forecasting dome-forming eruptions. The outermost part of the fault core consists of finely comminuted fault gouge that is host to 1- to 3-mm-thick layers of extremely fine-grained slickenside-bearing ultracataclasite. Interior to the fault core, there is an ∼2-m-thick damage zone composed of cataclastic breccia and sheared dacite, and interior to the damage zone, there is massive to flow-banded dacite lava of the spine interior. Structures and microtextures indicate entirely brittle deformation, including rock breakage, tensional dilation, shearing, grain flow, and microfaulting, as well as gas and fluid migration through intergranular pores and fractures in the damage zone. Slickenside lineations and consistent orientations of Riedel shears indicate upward shear of the extruding spines against adjacent conduit wall rocks.Paleomagnetic directions, demagnetization paths, oxide mineralogy, and petrology indicate that cataclasis took place within dacite in a solidified steeply dipping volcanic conduit at temperatures above 500 °C. Low water content of matrix glass is consistent with brittle behavior at these relatively high temperatures, and the presence of tridymite indicates solidification depths of <1 km. Cataclasis was coincident with the eruption’s seismogenic zone at <1.5 km.More than a million small and low-frequency “drumbeat” earthquakes with coda magnitudes (Md) <2.0 and frequencies <5 Hz occurred during the 2004–2008 eruption. Our field data provide a means with which to estimate slip-patch dimensions for shear planes and to compare these with estimates of slip patches based on seismic moments and shear moduli for dacite rock and granular fault gouge. Based on these comparisons, we find that aseismic creep is achieved by micron-scale displacements on Riedel shears and by granular flow, whereas the drumbeat earthquakes require millimeter to centimeter displacements on relatively large (e.g., ∼1000 m2) slip patches, possibly along observed extensive principal shear zones within the fault core but probably not along the smaller Riedel shears. Although our field and structural data are compatible with stick-slip models, they do not rule out seismic and infrasound models that call on resonance of steam-filled fractures to generate the drumbeat earthquakes. We suggest that stick-slip and gas release processes may be coupled, and that regardless of the source mechanism, the distinctive drumbeat earthquakes are proving to be an effective precursor for dome-forming eruptions.Our data document a continuous cycle of deformation along the conduit margins beginning with episodes of fracture in the damage zone and followed by transfer of motion to the fault core. We illustrate the cycle of deformation using a hypothetical cross section of the Mount St. Helens conduit, extending from the surface to the depth of magmatic solidification.
NASA Astrophysics Data System (ADS)
Bhattacharya, Gourab; Ayan Misra, Achyuta; Bose, Narayan; Mukherjee, Soumyajit
2013-04-01
An E-W extension separated India from the Seychelles micro-continent at ~ 62 Ma. This post-dated the Deccan volcanic eruptions. However, the structures attributed to this extension lack geometrical quantification, especially in the western Indian coast. The Narmada-Tapi region, ~ 400 Km north of Mumbai, experienced a ~ N-S extension prior to and/or concurrent with the volcanism. Normal faults dip towards W. Sub-horizontal lava flows, slickensides, N-S shear zones etc. have been reported from the western part of the Deccan Large Igneous Province (DLIP). This work, for the first time, identifies and investigates a ~ 20°N strike-slip brittle shear zone, traced for ~ 100 Km along the west coast of India from Mumbai to Murud by fieldworks. The W-block moved north through a dextral-slip. Deformation is more enhanced in the south (near Murud). Field observations reveal Y-planes (~ N20°E; abundant), Riedels (~ 0-N30°E; abundant), anti-Riedels (~ N30-50°W; less abundant), asymmetric elevations (~ N15°E; locally abundant), extension and en-echelon fractures (2 sets: ~N-S and ~E-W) with a single miniature pull-apart basin (~ N-S extension). The E-W fractures reactivated locally and around Murud slipped/faulted ~ N-S dykes. Average directions of paleostress tensors were computed for the regime yielding σ1 (trend = 99°; plunge = 0°), σ2 (trend = 196°; plunge = 90°) and σ3 (trend = 10°; plunge = 0°). Associated strain results convincingly display a dominant N-S extension. It was not possible to establish which set of extensions (i.e. between N-S and E-W) occurred earlier. Alongside E-W extension, structurally weak shear zones might have channelized late-stage intrusions of ~ N-S dykes. The DLIP was not subject to any post-rifting deformations regionally, except isostatic adjustments. Hence, based on available data, we postulate that these two extensions were coevally operating in the late phases of the Deccan eruptions. As the Indian plate drifted NE, the strike-slip brittle shear zone might have been a structural adjustment in response to the E-W extension.
NASA Astrophysics Data System (ADS)
Nukman, M.; Moeck, I.
2012-04-01
The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.
NASA Astrophysics Data System (ADS)
Sayab, Mohammad; Khan, Muhammad Asif
2010-10-01
Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.
Revision of the Australian species of the weevil genus Trigonopterus Fauvel
Riedel, Alexander; Tänzler, Rene
2016-01-01
Abstract The Australian species of the genus Trigonopterus Fauvel are revised. Eight previously recognized species are redescribed and 24 additional new species are described: Trigonopterus allaetus Riedel, sp. n., Trigonopterus athertonensis Riedel, sp. n., Trigonopterus australinasutus Riedel, sp. n., Trigonopterus australis Riedel, sp. n., Trigonopterus bisignatus Riedel, sp. n., Trigonopterus bisinuatus Riedel, sp. n., Trigonopterus boolbunensis Riedel, sp. n., Trigonopterus cooktownensis Riedel, sp. n., Trigonopterus daintreensis Riedel, sp. n., Trigonopterus deplanatus Riedel, sp. n., Trigonopterus finniganensis Riedel, sp. n., Trigonopterus fraterculus Riedel, sp. n., Trigonopterus garradungensis Riedel, sp. n., Trigonopterus hasenpuschi Riedel, sp. n., Trigonopterus hartleyensis Riedel, sp. n., Trigonopterus kurandensis Riedel, sp. n., Trigonopterus lewisensis Riedel, sp. n., Trigonopterus montanus Riedel, sp. n., Trigonopterus monteithi Riedel, sp. n., Trigonopterus mossmanensis Riedel, sp. n., Trigonopterus oberprieleri Riedel, sp. n., Trigonopterus robertsi Riedel, sp. n., Trigonopterus terraereginae Riedel, sp. n., Trigonopterus yorkensis Riedel, sp. n.. All new species are authored by the taxonomist-in-charge, Alexander Riedel. Lectotypes are designated for the following names: Idotasia aequalis Pascoe, Idotasia albidosparsa Lea, Idotasia evanida Pascoe, Idotasia laeta Lea, Idotasia rostralis Lea, Idotasia sculptirostris Lea, Idotasia squamosa Lea. A new combination of the name Idotasia striatipennis Lea is proposed: Trigonopterus striatipennis (Lea), comb. n.. A key to the species is provided. Australian Trigonopterus occur in coastal Queensland, narrowly crossing into New South Wales. The southern parts of the range are inhabited by species found on foliage. A rich fauna of 19 edaphic species inhabiting the leaf litter of tropical forests is reported for the first time from the Australian Wet Tropics. PMID:26877696
Sarcoma of the thyroid region mimicking Riedel's thyroiditis
Torres-Montaner, A; Beltran, M; d Romero; Oliva, H
2001-01-01
Because sarcomas of the anterior lower neck region occur so infrequently, they are not usually considered in the differential diagnosis of Riedel's thyroiditis. Riedel's thyroiditis itself may be confused on clinical grounds alone with malignant neoplasms because of its invasive features. Sarcomatoid carcinoma is the main entity to be discarded in this regard. This is accomplished through histological examination by the finding of carcinomatous areas and/or reactivity with epithelial markers. These features also set apart sarcomatoid carcinoma from true sarcomas. This report concerns a patient with a sarcoma of the anterior lower neck region which was initially suspected to be Riedel's thyroiditis or sarcomatoid carcinoma on clinical and radiological grounds. A peroperative biopsy was interpreted by two independent pathologists as consistent with Riedel's thyroiditis. The subsequent clinical course and postmortem examination demonstrated a high grade sarcoma with metastasis to both lungs and the pleura, and invasion of adjacent neck structures. Nevertheless, some areas of the postmortem material showed a microscopic pattern similar to mediastinal fibrosis, raising the possibility of the malignant transformation of a fibrosclerotic lesion. Key Words: Riedel's thyroiditis • sarcomatoid carcinoma • fibrous histiocytoma • differential diagnosis PMID:11429435
Moore, Diane E.; Lockner, D.A.
2004-01-01
We compare the frictional strengths of 17 sheet structure mineral powders, measured under dry and water-saturated conditions, to identify the factors that cause many of them to be relatively weak. The dry coefficient of friction ?? ranges upward from 0.2 for graphite, leveling off at 0.8 for margarite, clintonite, gibbsite, kaolinite, and lizardite. The values of ?? (dry) correlate directly with calculated (001) interlayer bond strengths of the minerals. This correlation occurs because shear becomes localized along boundary and Riedel shears and the platy minerals in them rotate into alignment with the shear planes. For those gouges with ?? (dry) < 0.8, shear occurs by breaking the interlayer bonds to form new cleavage surfaces. Where ?? (dry) = 0.8, consistent with Byerlee's law, the interlayer bonds are sufficiently strong that other frictional processes dominate. The transition in dry friction mechanisms corresponds to calculated surface energies of 2-3 J/m2. Adding water causes ?? to decrease for every mineral tested except graphite. If the minerals are separated into groups with similar crystal structures, ?? (wet) increases with increasing interlayer bond strength within each group. This relationship also holds for the swelling clay montmorillonite, whose water-saturated strength is consistent with the strengths of nonswelling clays of similar crystal structure. Water in the saturated gouges forms thin, structured films between the plate surfaces. The polar water molecules are bonded to the plate surfaces in proportion to the mineral's surface energy, and ?? (wet) reflects the stresses required to shear through the water films. Copyright 2004 by the American Geophysical Union.
Viscous Flow Causes Weakening in Calcite Nanogouges Sheared at Seismic Velocity
NASA Astrophysics Data System (ADS)
Pozzi, G.; De Paola, N.; Nielsen, S. B.; Holdsworth, R.
2016-12-01
Recent experimental studies have suggested that the activation of diffusion creep at high temperatures (T ≥ 800 °C) and strain rates in nanograin aggregates can weaken faults and facilitate earthquake propagation. However, the frictional properties of nanoscale aggregates at high strain rates and T are still poorly investigated and, in particular, their flow laws at these extreme conditions are poorly constrained due to lack of knowledge about the evolution of grain size and strain localization during seismic slip. Experiments performed in a rotary shear apparatus on micro- and nano-metric calcite gouges (d=63-90 µm and d 200nm, respectively) at seismic (up to 1.4 m/s) and subseismic (<10 cm/s) velocities, arrested at different amounts of slip, show that: (i) onset of dynamic weakening in the nanogouge is faster, with a significantly reduced initial phase of slip hardening, (ii) dynamic weakening of the nanogouge is achieved at velocities and temperatures as low as 1.4 cm/s and <300°C, respectively, compared to >10 cm/s and >500°C in the microgouge, (iii) shear strength shows a rate-dependent weakening. Microstructural analysis of samples shows a three stage evolution: (i) cataclastic comminution and development of Riedel shear bands during the pre-weakening slip-hardening stage, (ii) interconnection of Riedel shears to form a continuous horizontal, localised shear band at the onset of weakening and (iii) evolution of the latter into a thin discrete shear zone with thickness <200 µm composed by a low-porosity aggregate of equigranular recrystallized crystals displaying triple junctions, at the attainment of steady-state weakening stage. Microstructures up to stage (i) are achieved in samples that did not undergo weakening. Despite both gouges show the same microstructural evolution, the initial grainsize of nanoparticles allows a more efficient localisation as the development of a discrete slip zone requires smaller amounts of slip. Our experimental results and microstructural observations shed some light on the critical role that extreme comminution and localisation play on the onset of weakening dominated by viscous flow at high strain rate in carbonate gouges.
Two new ductile microscopic shear sense indicators from the Oman Mountains
NASA Astrophysics Data System (ADS)
Scharf, Andreas; Mattern, Frank; Pracejus, Bernhard
2017-04-01
The new shear sense indicators were observed in two different tectonic settings. The first one occurs in mylonitized Jurassic limestone on the northern flank of the Jebel Akhdar Dome (eastern Oman Mountains) and is associated with top-to-the-NNE extension. The second one was discovered in mylonitized plagiogranite (trondhjemite) with vertical to subvertical foliation and strike-slip deformation within harzburgite of the Semail Ophiolite in Wadi Fizh (northwestern Oman Mountains). The carbonate mylonite displays shear planes, in thin, flat and parallel laminations with a compositional aspect as there are alternations between pure calcite laminae and dark laminae of accumulated limestone impurities (iron compounds, clay). Despite the fact that the carbonate mylonite is associated with extension, the shear sense criterion is linked to top-to-the-NNE microthrusts, involving shortening of the dark laminae. The thrusts form an acute angle in relation to the lamination. Thrusting between segments of these, microthrusts created pull-aparts whose voids remained temporarily open cavities but were eventually filled with drusy calcite cement. The shear sense is revealed by (1) the shortening and related imbrication of the thrust laminae, (2) the pull-apart structures and (3) drag folds at either end of the microthrusts. The shear is also confirmed by independent ductile and brittle macroscopic shear sense criteria in the same outcrop, such as drag folds, Riedel shears and mineral steps. These new shear sense fabrics measure approximately 0.5mm in width and 1mm in length. The mylonitized granite contains large (2mm long axis) plagioclase porphyroclasts. We encountered a rotated plagioclase crystal whose twin lamellae have been dragged by the rotational motion during high-temperature conditions. Drag folds occur on either end of the lamellae/crystal. As a result an "S" shape is produced by counterclockwise rotation and sinistral shear, respectively. The observed shear sense is confirmed by synthetically sheared K-feldspar and feldspar porphyroclast systems. "Z" shapes are expected to develop in case of opposite rotation and shearing.
Hepatocellular carcinoma in Riedel's lobe.
Zamfir, R; Braşoveanu, V; Boroş, M; Herlea, V; Popescu, I
2008-01-01
We present a rare case of 65-year female with right abdominal mass and abdominal discomfort; a combination of Doppler ultrasonography, computed tomography and laparotomy was utilized to make a diagnosis of tumoral Riedel's lobe. In our case, laparotomy with resection of Riedel's lobe was the proper therapeutical solution.
[Riedel thyroiditis: two cases report].
Zhou, Rongjin; Wang, Junguo
2014-10-01
Riedel thyroiditis is a benign disease, which is often self-limited. Examinations, such as CT and histologic diagnosis can distinguish it from malignant neoplasms and hashimoto's thyroiditis. Riedel thyroiditis is an uncommon form of chronic thyroiditis in which the thyroid gland is replaced by fibrous tissue. It can be cured by surgery and medicine.
Dahlgren, Mollie; Khosroshahi, Arezou; Nielsen, G Petur; Deshpande, Vikram; Stone, John H
2010-09-01
Riedel's thyroiditis is a chronic fibrosing disorder of unknown etiology often associated with "multifocal fibrosclerosis." IgG4-related systemic disease is characterized by IgG4+ plasma cell infiltration and fibrosis throughout many organs. We hypothesized that Riedel's thyroiditis is part of the IgG4-related systemic disease spectrum. We searched our institution's pathology database using the terms "Riedel's," "struma," "thyroid," and "fibrosis," and identified 3 cases of Riedel's thyroiditis. Riedel's thyroiditis was diagnosed if there was a fibroinflammatory process involving all or a portion of the thyroid gland, with evidence of extension of the process into surrounding tissues. Immunohistochemical stains for IgG4 and IgG were performed. The histopathologic and immunohistochemical features of each involved organ were evaluated. The clinical features of one patient with multiple organ system disease were described. All 3 thyroidectomy samples stained positively for IgG4-bearing plasma cells. One patient had extensive extrathyroidal involvement diagnostic of IgG4-related systemic disease, including cholangitis, pseudotumors of both the lung and lacrimal gland, and a lymph node contiguous to the thyroid that stained intensely for IgG4+ plasma cells. The histologic features of all organs involved were consistent with IgG4-related systemic disease. Patient 3 had 10 IgG4+ plasma cells per high-power field initially, but rebiopsy 2 years later demonstrated no IgG4+ plasma cells. That patient's second biopsy, characterized by fibrosis and minimal residual inflammation, further solidifies the link between IgG4-bearing plasma cells in tissue and the histologic evolution to Riedel's thyroiditis. Riedel's thyroiditis is part of the IgG4-related systemic disease spectrum. In many cases, multifocal fibrosclerosis and IgG4-related systemic disease are probably the same entity.
A misdiagnosed Riedel's thyroiditis successfully treated by thyroidectomy and tamoxifen.
Wang, Chih-Jung; Wu, Ta-Jen; Lee, Chung-Ta; Huang, Shih-Ming
2012-12-01
Riedel's thyroiditis, known as invasive fibrous thyroiditis, is a very rare form of chronic thyroiditis. It is hard to make the diagnosis without surgical biopsy. We present a case of Riedel's thyroiditis in a 52-year-old female with past history of Hashimoto's thyroiditis. She suffered from bilateral neck pain, which radiated to both lower jaws. The erythrocyte sedimentation rate was 125 mm/hour. Subacute thyroiditis superimposed on Hashimoto's thyroiditis was diagnosed and treated with steroid. However the response was poor and she had a history of severe peptic ulcer. To avoid inducing the peptic ulcer by steroid, she received bilateral subtotal thyroidectomy. During surgery, the thyroid had severe adhesion to surrounding soft tissue and the pathology showed Riedel's thyroiditis. The neck pain improved after thyroidectomy. Tamoxifen has been given for 8 months and the size of remnant thyroid decreased to 8 mm. We concluded that combined thyroidectomy and tamoxifen successfully cured a patient with Riedel's thyroiditis. Copyright © 2012. Published by Elsevier B.V.
Clinical review: Riedel's thyroiditis: a clinical review.
Hennessey, James V
2011-10-01
Riedel's thyroiditis is a rare inflammatory process involving the thyroid and surrounding cervical tissues and is associated with various forms of systemic fibrosis. Riedel's presentation is complex, including a thyroid mass associated with local symptoms, characteristic biochemical abnormalities such as hypocalcemia and hypothyroidism, as well as the involvement of a wide range of other organ systems. Diagnosis of Riedel's thyroiditis requires histopathological confirmation, but due to high complication rates, the role of surgical intervention is limited to airway decompression and diagnostic tissue retrieval. Unique among processes of the thyroid, Riedel's is commonly treated with long-term antiinflammatory medications to arrest progression and maintain a symptom-free course. Due to its rarity, Riedel's may not be immediately diagnosed, so clinicians benefit from recognizing the constellation of findings that should make prompt diagnosis possible. A review of print and electronic reviews was conducted. Source references were identified, and available literature was reviewed. A search of the PubMed database using the search term "Riedel's thyroiditis" was cross-referenced with associated clinical findings, systemic fibrosis diagnoses, and therapeutic search terms. Because most of the literature consisted of case reports and very small series, inclusion of identified articles was based on clinical descriptions of the subjects included and the criteria for diagnosis reported. More weight was attributed to series, using contemporary criteria for diagnosis. Case reports were included if the diagnosis was clear and clinical presentation was unique to illustrate the spectrum of disease. Because the majority of therapeutic intervention data were based upon case reports and very small series, an evidence-based approach was problematic, but information is presented as objectively and with as much balance as the limited quality of the data allows. Clinical awareness of the characteristic presentations of Riedel's thyroiditis should enhance our ability to make this diagnosis in a timely and focused manner. Recognition of certain clinical finding patterns will increase the likelihood of recognizing Riedel's thyroiditis promptly. Local restrictive or infiltrative symptoms out of proportion to a demonstrable mass or simultaneous biochemical deficiencies especially of calcium should lead the clinician to consider this diagnosis. Likewise in this setting, the surgeon alert to this possibility may minimize overly aggressive surgical intervention, thus avoiding complications. Once Riedel's thyroiditis is diagnosed, the application of antiinflammatory therapies may greatly enhance the clinical outcome. Understanding the pathophysiological relationship of this entity with other forms of systemic fibrosis and the role that IgG4 may play in this process should result in enhanced diagnostic and therapeutic tools in the future.
The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia
NASA Astrophysics Data System (ADS)
Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry
2005-04-01
Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.
Riedel thyroiditis: Fine needle aspiration findings of a rare entity.
Weidner, Anna-Sophie; Molina, David; DeSimone, Robert A; Cohen, Marc A; Giorgadze, Tamar; Scognamiglio, Theresa; Hoda, Rana S
2015-09-01
Riedel thyroiditis is a rare fibrosing disorder characterized by extension of the fibroinflammatory process beyond the thyroid capsule. Due to the nature of this lesion, fine-needle aspiration often yields scant material and may be interpreted as non-diagnostic. In this report, we describe cytologic features that allow the cytopathologist to favor a diagnosis of Riedel thyroiditis, thereby guiding appropriate further work-up and management. © 2015 Wiley Periodicals, Inc.
Hong, Ji Taek; Lee, Jung Hwan; Kim, So Hun; Hong, Seong Bin; Nam, Moonsuk; Kim, Yong Seong; Chu, Young Chae
2013-03-01
Riedel's thyroiditis (RT) is a rare chronic inflammatory disease of the thyroid gland. It is characterized by a fibroinflammatory process that partially destroys the gland and extends into adjacent neck structures. Its clinical manifestation can mask an accompanying thyroid neoplasm and can mimic invasive thyroid carcinoma. Therefore, diagnosis can be difficult prior to surgical removal of the thyroid, and histopathologic examination of the thyroid is necessary for a definite diagnosis. The concurrent presence of RT and other thyroid diseases has been reported. However, to our knowledge, the association of RT with acute suppurative thyroiditis and micropapillary carcinoma has not been reported. We report a rare case of concurrent RT, acute suppurative thyroiditis, and micropapillary carcinoma in a 48-year-old patient.
Positron emission tomography as an aid in the diagnosis and follow-up of Riedel's thyroiditis.
Kotilainen, Pirkko; Airas, Laura; Kojo, Tiina; Kurki, Timo; Kataja, Kaisa; Minn, Heikki; Nuutila, Pirjo
2004-06-01
We describe the usage of positron emission tomography (PET) as an aid in the initial diagnosis and follow-up of Riedel's thyroiditis. A 41-year-old patient was admitted for an enlarged and tender thyroid gland in association with severe systemic symptoms of inflammation. Imaging with fluorine-18 fluorodeoxyglucose (FDG) and PET demonstrated an intensive uptake of FDG in both lobes of the thyroid gland as an indication of severe inflammation. The diagnosis of Riedel's thyroiditis was confirmed by the histological findings of biopsy specimens taken during a palliative thyroid resection. The inflammatory symptoms and local pain dramatically disappeared after commencement of high-dose corticosteroid therapy. A follow-up PET scan after 2 weeks of corticosteroid treatment showed a 60% decrease in the uptake of FDG in the thyroid. This indicates that FDG metabolic activity can also be used to assess a patient's response to therapy in Riedel's thyroiditis.
NASA Astrophysics Data System (ADS)
Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.
2012-09-01
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.
NASA Astrophysics Data System (ADS)
Mueller, Andreas G.
2017-07-01
The Golden Mile in the 2.7 Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, has produced 385 million tonnes of ore at a head grade of 5.23 g/t gold (1893-2016). Gold-pyrite ore bodies (Fimiston Lodes) trace kilometre-scale shear zone systems centred on the D2 Golden Mile Fault, one of three northwest striking sinistral strike-slip faults segmenting upright D1 folds. The Fimiston shear zones formed as D2a Riedel systems in greenschist-facies (actinolite-albite) tholeiitic rocks, the 700-m-thick Golden Mile Dolerite (GMD) sill and the Paringa Basalt (PB), during left-lateral displacement of up to 12 km on the D2 master faults. Pre-mineralisation granodiorite dykes were emplaced into the D2 shear zones at 2674 ± 6 Ma, and syn-mineralisation diorite porphyries at 2663 ± 11 Ma. The widespread infiltration of hydrothermal fluid generated chlorite-calcite and muscovite-ankerite alteration in the Golden Mile, and paragonite-ankerite-chloritoid alteration southeast of the deposit. Fluid infiltration reactivated the D2 shear zones causing post-porphyry displacement of up to 30 m at principal Fimiston Lodes moving the southwest block down and southeast along lines pitching 20°SE. D3 reverse faulting at the southwest dipping GMD-PB contact of the D1 Kalgoorlie Anticline formed the 1.3-km-long Oroya Shoot during late gold-telluride mineralisation. Syn-mineralisation D3a reverse faulting alternated with periods of sinistral strike-slip (D2c) until ENE-WSW shortening prevailed and was accommodated by barren D3b thrusts. North-striking D4 strike-slip faults of up to 2 km dextral displacement crosscut the Fimiston Lodes and the barren thrusts, and control gold-pyrite quartz vein ore at Mt. Charlotte (2651 ± 9 Ma).
Cai, Wei; Kang, Hua; Hai, Tao
2016-01-01
Riedel's thyroiditis is a rare type of chronic thyroiditis, associated with fibroinflammatory process and invasion into surrounding tissues, leading to compressive symptoms. A 45-year-old man had a left thyroid mass, presenting with hypotension and bradycardia many times. He was diagnosed with vasovagal reflex caused by cervical vessel compression due to a thyroid lesion. We performed the emergency operation, and most of the left thyroid was removed to relieve the compression on cervical vessels. The result of pathology proved to be Riedel's thyroiditis. The vasovagal reflex did not occur any more during the 28-month follow up, except on the 3(rd) day after the surgery. Six months after the thyroidectomy, the patient was found to have retroperitoneal fibrosis, diagnosed by biopsy during a laparotomy for biliary disease. Riedel's thyroiditis can lead to a vasovagal episode and might not be a primary thyroid disease but rather a manifestation of the systemic disorder, multifocal fibrosclerosis. Copyright © 2013. Published by Elsevier Taiwan.
Soh, Shui-Boon; Pham, Alan; O'Hehir, Robyn E; Cherk, Martin; Topliss, Duncan J
2013-09-01
A 42-year-old woman presented with a rapidly enlarging right-sided thyroid mass and underwent hemithyroidectomy. Riedel's thyroiditis was only diagnosed upon surgical decompression of the right carotid artery 2 years later. She became more symptomatic as Riedel's thyroiditis progressed, and mediastinal fibrosclerosis developed over the next 12 months. Oral prednisolone failed to improve her condition, and she was commenced on tamoxifen. Despite initial improvement, her symptoms recurred 2 years later, mainly arising from compression of the trachea and esophagus at the thoracic inlet. Fluorodeoxyglucose positron emission tomographic scan showed locally advanced active invasive fibrosclerosis in the neck and mediastinum. An elevated activin-A level of 218 pg/mL was consistent with active inflammation. IgG subtypes (including IgG4) were normal. Two courses of iv methylprednisolone were given but only produced transient improvement. Subsequently, the patient received 3 doses of i.v. rituximab at monthly intervals and had prompt sustained symptomatic improvement. Activin-A level decreased to 122 pg/mL 10 months after rituximab therapy. Fluorodeoxyglucose positron emission tomographic scan 6 weeks after therapy showed reduction in inflammation. A further scan at 10 months demonstrated ongoing response to rituximab. This is a case of refractory Riedel's thyroiditis with symptomatic, biochemical, and radiological improvement that has persisted 14 months after rituximab. The likelihood and duration of response to rituximab in Riedel's thyroiditis requires further study.
Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra
NASA Astrophysics Data System (ADS)
Nukman, Mochamad; Moeck, Inga
2013-09-01
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.
A rare indication for liver resection.
Popescu, I; Zamfir, R; Braşoveanu, V; Boroş, M; Herlea, V
2005-01-01
We present the rare case of a young female with a right upper abdomen tumoral mass and suffering abdominal discomfort. A combination of ultrasonography, computed tomography, magnetic resonance imaging and laparotomy was utilized to conclude a diagnosis of Riedel's lobe. Laparotomy and a resection of Riedel's lobe were selected as the correct therapeutic solutions.
20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT ...
20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT TO RIGHT: RUDOLF NEBEL, FRANZ RITTER, UNKNOWN, KURT HEINISCH, UNKNOWN, HERMANN OBERTH, UNKNOWN, KLAUS RIEDEL, WERNHER VON BRAUN, UNKNOWN, KLAUS RIEDEL HOLDS EARLY VERSION OR MODEL FOR THE MINIMUM ROCKET, 'MIRAK'. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
NASA Astrophysics Data System (ADS)
Martini, M.; Ferrari, L.; Lopez Martinez, M.; Cerca Martinez, M.; Serrano Duran, L.
2007-05-01
We present new geological, structural, and geochronological data that constrain the timing and geometry of Early Tertiary strike slip deformation in southwestern Mexico and its relation with the concurrent magmatic activity. Geologic mapping in Guerrero and Michoacan States documented two regional WNW trending volcano-tectonic lineaments sub parallel to the present trench. The southernmost lineament runs for ~140 km from San Miguel Totolapan area (NW Guerrero) to Sanchiqueo (SE Michoacan), and passes through Ciudad Altamirano. Its southeastern part is marked by the alignment of at least eleven silicic to intermediate major domes as well as by the course of the Balsas River. The northwestern part of the lineament is characterized by ductile left lateral shear zones in Early Tertiary plutonic rocks observed in the Rio Chiquito valley. Domes near Ciudad Altamirano are unaffected by ductile shearing and yielded a ~42 Ma 40Ar/39Ar age, setting a minimum age for this deformation. The northern volcano-tectonic lineament runs for ~190 km between the areas of Huitzuco in northern Guerrero and the southern part of the Tzitzio fold in eastern Michoacan. The Huautla, Tilzapotla, Taxco, La Goleta and Nanchititla silicic centers (all in the range 37-34 Ma) are emplaced along this lineament, which continues to the WNW trough a mafic dike swarm exposed north of Tiquicheo (37-35 Ma) and the Purungueo subvolcanic body (~42 Ma). These rocks, unaffected by ductile shearing, give a minimum age of deformation similar to the southern Totolapan-Sanquicheo lineament. Post ~42 Ma deformation is essentially brittle and is characterized by several left lateral and right lateral transcurrent faults with typical Riedel patterns. Other trench-parallel left lateral shear zones active in pre-Oligocene times were recently reported in western Oaxaca. The recognizing of Early Tertiary trench-parallel and left-lateral ductile shearing in internal areas of southern Mexico suggest a field of widely distributed flow and shear zones with relatively small individual displacement that might represent an immature stage of the developing North American-Caribbean plate boundary. The documented transition from ductile to brittle deformation and the localization of shearing and volcanism in the Late Eocene may be related to the focusing of inter-plate deformation in a discrete left lateral transcurrent North America-Caribbean boundary. The opening of the Cayman Through at ~49 Ma may have accelerated this process.
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Genser, J.
2012-04-01
The aim of this project is to study the surface expression of strike-slip faults with main aim to find rules how these structures can be extrapolated to depth. In the first step, several basic properties of the fault architecture are in focus: (1) Is it possible to define the fault architecture by studying surface structures of the damage zone vs. the fault core, particularly the width of the damage zone? (2) Which second order structures define the damage zone of strike-slip faults, and how relate these to such reported in basement fault strike-slip analog experiments? (3) Beside classical fault bend structures, is there a systematic along-strike variation of the damage zone width and to which properties relates the variation of the damage zone width. We study the above mentioned properties on the dextral Altyn fault, which is one of the largest strike-slip on Earth with the advantage to have developed in a fully arid climate. The Altyn fault includes a ca. 250 to 600 m wide fault valley, usually with the trace of actual fault in its center. The fault valley is confined by basement highs, from which alluvial fans develop towards the center of the fault valley. The active fault trace is marked by small scale pressure ridges and offset of alluvial fans. The fault valley confining basement highs are several kilometer long and ca. 0.5 to 1 km wide and confined by rotated dextral anti-Riedel faults and internally structured by a regular fracture pattern. Dextral anti-Riedel faults are often cut by Riedel faults. Consequently, the Altyn fault comprises a several km wide damage zone. The fault core zone is a barrier to fluid flow, and the few springs of the region are located on the margin of the fault valley implying the fractured basement highs as the reservoir. Consequently, the southern Silk Road was using the Altyn fault valley. The preliminary data show that two or more orders of structures exist. Small-scale develop during a single earthquake. These finally accumulate to a several 100 m wide fault core, which is in part exposed at surface to arid climate and a km wide damage zone. The basic structures of analog experiments can be well transferred to nature, although along strike changes are common due to fault bending and fracture failure of country rocks.
NASA Astrophysics Data System (ADS)
Dilek, Y.; Oner, Z.; Davis, E. A.
2007-12-01
The Menderes metamorphic massif (MM) in western Anatolia is a classic core complex with exhumed high-grade crustal rocks intruded by granodioritic plutons and overlain by syn-extensional sedimentary rocks. Timing and the mechanism(s) of the initial exhumation of the MM are controversial, and different hypotheses exist in the literature. Major structural grabens (i.e. Alasehir, Buyuk Menderes) within the MM that are bounded by high-angle and seismically active faults are late-stage brittle structures, which characterize the block-faulting phase in the extensional history of the core complex and are filled with Quaternary sediments. On the southern shoulder of the Alasehir graben high-grade metamorphic rocks of the MM are overlain by the Miocene and younger sedimentary rocks above a N-dipping detachment surface. The nearly 100-m-thick cataclastic shear zone beneath this surface contain S-C fabrics, microfaults, Riedel shears, mica-fish structures and shear bands, all consistently indicating top-to-the North shearing. Granodioritic plutons crosscutting the MM and the detachment surface are exposed within this cataclastic zone, displaying extensional ductile and brittle structures. The oldest sedimentary rocks onlapping the cataclastic shear zone of the MM here are the Middle Miocene lacustrine shale and limestone units, unconformably overlain by the Upper Miocene fluvial and alluvial fan deposits. Extensive development of these alluvial fan deposits by the Late Miocene indicates the onset of range-front faulting in the MM by this time, causing a surge of coarse clastic deposition along the northern edge of the core complex. The continued exhumation and uplift of the MM provided the necessary relief and detrital material for the Plio-Pleistocene fluvial systems in the Alasehir supradetachment basin (ASDB). A combination of rotational normal faulting and scissor faulting in the extending ASDB affected the depositional patterns and drainage systems, and produced local unconformities within the basinal stratigraphy. High-angle, oblique-slip scissor faults crosscutting the MM rocks, the detachment surface and the basinal strata offset them for more than few 100 meters and the fault blocks locally show different structural architecture and metamorphic grades, suggesting differential uplift along these scissor faults. This fault kinematics and the distribution of range-parallel and range-perpendicular faults strongly controlled the shape and depth of the accommodation space within the ASDB. At a more regional scale scissor faulting across the MM seems to have controlled the foci of Plio-Pleistocene point-source volcanism in the Aegean extensional province (e.g. Kula area). There are no major interruptions in the syn-extensional depositional history of the ASDB, ruling out the pulsed-extension models suggesting a period of contractional deformation in the late Cenozoic evolution of the MM. The onset of exhumation and extensional tectonics in the MM and western Anatolia was a result of thermal weakening of the orogenic crust, following a widespread episode of post-collisional magmatism in the broader Aegean region during the Eocene through Miocene.
NASA Astrophysics Data System (ADS)
Bankwitz, P.; Schneider, G.; Kämpf, H.; Bankwitz, E.
2003-03-01
The earthquake distribution pattern of Central Europe differs systematically from the neighbouring areas of NW and southern Europe regarding the fault plane kinematics. Within a belt between the French Massif Central and the northern part of the Bohemian Massif (1000 km) sinistral faulting along N-S zones dominates on the contrary to the Alps and their foreland with common bookshelf shears. One of the prominent N-S structures is the Regensburg-Leipzig-Rostock Zone (A) with several epicentral areas, where the main seismic center occurs in the northern Cheb Basin (NW Bohemia). The study demonstrates new structural results for the swarm-quake region in NW-Bohemia, especially for the Nový Kostel area in the Cheb Basin. There the N-S-trending newly found Počatky-Plesná zone (PPZ) is identical with the main earthquake line. The PPZ is connected with a mofette line between Hartušov and Bublák with evidence for CO 2 degassing from the subcrustal mantle. The morphologically more prominent Mariánské Lázně fault (MLF) intersects the PPZ obliquely under an acuate angle. In the past the MLF was supposed to be the tectonic structure connected with the epicentral area of Nový Kostel. But evidence from the relocated hypocentres along the PPZ (at 7-12 kms depth) indicate that the MLF is seismically non-active. Asymmetric drainage patterns of the Cheb Basin are caused by fault related movement along Palaeozoic basement faults which initiate a deformation of the cover (Upper Pliocene to Holocene basin filling). The PPZ forms an escarpment in Pliocene and Pleistocene soft rock and is supposingly acting as an earthquake zone since late Pleistocene time. The uppermost Pleistocene of 0.12-0.01 Ma deposited only in front of the fault scarp dates the fault activity. The crossing faults envelope crustal wedges under different local stress conditions. Their intersection line forms a zone beginning at the surface near Nový Kostel, dipping south with increasing depth, probably down to about 12 km. The intersection zone represents a crustal anomaly. There fault movements can be blocked up and peculiar stress condition influence the behaviour of the adjacent crust. An ENE-WNW striking dextral wrench fault was detected which is to expect as kinematic counterpart to the ca. N-S striking sinistral shear zones. Nearly E-W striking fracture segments were formerly only known as remote sensing lineaments or as joint density zones. The ENE shear zone is characterized by a set of compressional m-scale folds and dm-scale faults scattered within a 20 m wide wrench zone. It is built up of different sets of cleavage-like clay plate pattern of microscopical scale. The associated shear planes fit into a Riedel shear system. One characteristic feature are tiny channels of micrometer scale. They have originated after shear plane bending and are the sites of CO 2 mantle degassing.
NASA Astrophysics Data System (ADS)
Pagano, D. S.; Galliski, M. A.; Márquez-Zavalía, M. F.
2014-03-01
The La Peña alkaline complex (LPC) of Miocene age (18-19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400-2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW-SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N-S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R‧), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW-SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by dikes cross-cutting the clinopyroxenite, (3) a malignite facies that causes a small breccia in the clinopyroxenite, (4) a central syenite facies that develops breccias at the contact with the clinopyroxenite and, finally, (5) porphyry necks and a system of radial dikes intruding all units. At the moment of the emplacement different mechanisms would have acted, they summarized in: 1) opening of discontinuities synchronous to the magma circulation as the principal mechanism for formation of dikes and conduits; 2) stoping processes, that play an important role in the development of the breccia zone and enabling an efficient transference of material during the emplacement of the syenitic magma and 3) shear-related deformation (regional stress), affected the internal fabric of the facies, causing intracrystalline deformation and submagmatic flow, which is very evident in the central syenite intrusive. The kinematic analysis of shear planes allows proposing that emplacement of the LPC took place in a transtensive regime, which would have occurred in the back-arc of the Andes orogen, during a long period spanning from Miocene to the present, of the compressive deformation responsible, westward and at the same latitude, for the development of the Aconcagua fold and thrust belt.
NASA Astrophysics Data System (ADS)
Yassaghi, A.; Naeimi, A.
2011-08-01
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.
Fault gouge rheology under confined, high-velocity conditions
NASA Astrophysics Data System (ADS)
Reches, Z.; Madden, A. S.; Chen, X.
2012-12-01
We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was pressurized through a porous metal (Mott) plug. Comparison with effective stress calculations indicates the same friction coefficient of ~ 1.0 for the sand layer under dry and pressurized conditions. Both kaolinite and quartz sand experiments developed localized shear zones that were examined at the nano- and micro- scales with AFM, SEM and TEM. These zones displayed reduced grain sizes and cementation by local agglomeration. Kaolinite grains sheared in CROC experiment; scale bar = 1 micron.
Tembe, Sheryl; Lockner, David A.; Wong, Teng-Fong
2010-01-01
We investigated the frictional sliding behavior of simulated quartz-clay gouges under stress conditions relevant to seismogenic depths. Conventional triaxial compression tests were conducted at 40 MPa effective normal stress on saturated saw cut samples containing binary and ternary mixtures of quartz, montmorillonite, and illite. In all cases, frictional strengths of mixtures fall between the end-members of pure quartz (strongest) and clay (weakest). The overall trend was a decrease in strength with increasing clay content. In the illite/quartz mixture the trend was nearly linear, while in the montmorillonite mixtures a sigmoidal trend with three strength regimes was noted. Microstructural observations were performed on the deformed samples to characterize the geometric attributes of shear localization within the gouge layers. Two micromechanical models were used to analyze the critical clay fractions for the two-regime transitions on the basis of clay porosity and packing of the quartz grains. The transition from regime 1 (high strength) to 2 (intermediate strength) is associated with the shift from a stress-supporting framework of quartz grains to a clay matrix embedded with disperse quartz grains, manifested by the development of P-foliation and reduction in Riedel shear angle. The transition from regime 2 (intermediate strength) to 3 (low strength) is attributed to the development of shear localization in the clay matrix, occurring only when the neighboring layers of quartz grains are separated by a critical clay thickness. Our mixture data relating strength degradation to clay content agree well with strengths of natural shear zone materials obtained from scientific deep drilling projects.
Active strike-slip faulting in El Salvador, Central America
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn
2005-12-01
Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.
Clinicopathological features of Riedel's thyroiditis associated with IgG4-related disease in Japan.
Takeshima, Ken; Inaba, Hidefumi; Ariyasu, Hiroyuki; Furukawa, Yasushi; Doi, Asako; Nishi, Masahiro; Hirokawa, Mitsuyoshi; Yoshida, Akira; Imai, Ryoukichi; Akamizu, Takashi
2015-01-01
Riedel's thyroiditis (RT) is a rare chronic fibrosing disorder characterized by a hard, infiltrative lesion in the thyroid gland, which is often associated with multifocal fibrosclerosis. Immunoglobulin G4-related disease (IgG4-RD) is typified by infiltration of IgG4-positive plasma cells into multiple organs, resulting in tissue fibrosis and organ dysfunction. In order to evaluate the clinicopathological features of RT and its relationship with IgG4-RD, we performed a Japanese literature search using the keywords "Riedel" and "Riedel's thyroiditis." We used the electronic databases Medline and Igaku Chuo Zasshi, the latter of which is the largest medical literature database in Japan. The diagnosis of RT was based on the presence of a fibroinflammatory process with extension into surrounding tissues. Only 10 patients in Japan fulfilled RT diagnostic criteria during the 25-year period between 1988 and 2012. Two patients with confirmed IgG4/IgG immunohistochemical findings demonstrated 43 and 13 IgG4-positive plasma cells per high-power field, respectively, and the IgG4-positive/IgG-positive plasma cell ratios of 20% and less than 5%. Of the 10 patients with RT, two received glucocorticoids, one of whom experienced marked shrinkage of the thyroid lesion. One patient had extra-thyroid involvement in the form of retroperitoneal fibrosis. Although the clinicopathological features of RT suggest that IgG4-RD may be the underlying condition in some cases, further investigation is needed to clarify the etiology of RT in relation to IgG4-RD.
NASA Astrophysics Data System (ADS)
MacDonald, Ken. C.; Castillo, David A.; Miller, Stephen P.; Fox, Paul J.; Kastens, Kim A.; Bonatti, Enrico
1986-03-01
The Vema transform fault, which slips at a rate of 24 mm/yr, displaces the Mid-Atlantic Ridge (MAR) 320 km in a left-lateral sense. High-resolution deep-tow studies of the Vema ridge-transform intersection (RTI) and the eastern 130 km of the active transform fault reveal a complex pattern of dip-slip and strike-slip faults which evolve in time and space. At the intersection, both the neovolcanic zone and the west wall of the MAR rift valley curve counterclockwise toward the transform fault along trends approximately 30° oblique to the regional north-south trend of the spreading axis. The curving of extensional structures in the rift valley, such as normal faults and the axial zone of dike injection, appears to be related to transmission of transform related shear stresses into the spreading center domain. Intermittent locking of the American and African lithospheric plates across the RTI causes shear stresses to penetrate up to 4 km into the MAR axial neovolcanic zone where the lithosphere is relatively thin and up to 12 km into the block-faulted west wall of the rift valley where the lithosphere is thicker. The degree of shear coupling across the RTI may vary with time due to changes in the thickness of the lithosphere along the axis (0-10 km), the strength of a "mantle weld" at depth, and the presence or absence of an axial magma chamber, so that extensional structures at the RTI may be either spreading center parallel when coupling is weak or oblique when coupling is strong. Oblique extension across the RTI in addition to other factors may account for some of the down dropping of lithosphere within the deep nodal basin. The easternmost 20 km of the active transform fault zone near the RTI displays a braided network of three to nine tectonically active grabens and V-shaped furrows in a zone 2-4 km wide, interpreted to consist of interwoven Riedel shears, P shears, and oblique normal faults. Clay cake deformation experiments and deep-tow observations suggest that P shears and R shears, which are 10°-20° oblique to the transform slip direction, develop during the initial stages of transform faulting near the RTI as the newly accreted lithosphere accelerates to full plate velocity. Some of the R shears propagate along strike and intercept the oblique normal faults resulting in sharply curving scarps at the RTI. Subsequent to this merging of the two fault types, some of the R shears develop a significant component of dip slip, while other R shears merge with P shears creating a complex anastomosing fault pattern up to 4 km wide. A continuous strand within this braided pattern of faults is interpreted to be the principal transform displacement zone near the RTI. Twenty kilometers west of the RTI the active transform fault zone narrows to a furrow generally less than 100 m wide with only a few short discontinuous splays. This narrow groove cuts through thinly sedimented basalt 20-40 km west of the RTI and continues as a narrow furrow (less than 100 m wide) through up to 1.5 km of layered turbidite fill most of the way to the western RTI. Such a narrow zone of deformation typifies the mature stages of transform faulting where the lithosphere on both sides of the transform fault is relatively old, thick, and rigid and has completed its acceleration to full plate velocity. The transform fault zone is closely associated with a partially buried median ridge and widens to 1-2 km where it transects exposed portions of the ridge. The transform parallel median and transverse ridges create the highest topography associated with the transform fault and may be serpentinized ultramafic intrusions capped by displaced crustal blocks of gabbro, metagabbro, and basalt.
Sandbox rheometry: Co-evolution of stress and strain in Riedel- and Critical Wedge-experiments
NASA Astrophysics Data System (ADS)
Ritter, Malte C.; Santimano, Tasca; Rosenau, Matthias; Leever, Karen; Oncken, Onno
2018-01-01
Analogue sandbox experiments have been used for a long time to understand tectonic processes, because they facilitate detailed measurements of deformation at a spatio-temporal resolution unachievable from natural data. Despite this long history, force measurements to further characterise the mechanical evolution in analogue sandbox experiments have only emerged recently. Combined continuous measurements of forces and deformation in such experiments, an approach here referred to as "sandbox rheometry", are a new tool that may help to better understand work budgets and force balances for tectonic systems and to derive constitutive laws for regional scale deformation. In this article we present an experimental device that facilitates precise measurements of boundary forces and surface deformation at high temporal and spatial resolution. We demonstrate its capabilities in two classical experiments: one of strike-slip deformation (the Riedel set-up) and one of compressional accretionary deformation (the Critical Wedge set-up). In these we are able to directly observe a correlation between strain weakening and strain localisation that had previously only been inferred, namely the coincidence of the maximum localisation rate with the onset of weakening. Additionally, we observe in the compressional experiment a hysteresis of localisation with respect to the mechanical evolution that reflects the internal structural complexity of an accretionary wedge.
Viscous Dissipation and Criticality of Subducting Slabs
NASA Astrophysics Data System (ADS)
Riedel, Mike; Karato, Shun; Yuen, Dave
2016-04-01
Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota Supercomputing Institute Research Report, UMSI 99/129: 21 pages, 1999. [2] Karato, S., Riedel, M. R., Yuen, D. A. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127, doi:10.1016/S0031-9201(01)00223-0, 2001. [3] Buffett, B. A., Becker, T. W., Bending stress and dissipation in subducted lithosphere. Journal of Geophysical Research, 117, doi:10.1029/2012JB009205, 2012. [4] Zhan, Z., Kanamori, H., Tsai, V. C., Helmberger, D. V., Wei, S., Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth and Planetary Science Letters, 385, doi:10.1016/j.epsl.2013.10.028, 2014. [5] Meng, L., Ampuero, J.-P., Bürgmann, R., The 2013 Okhotsk deep-focus earthquake: Rupture beyond the metastable olivine wedge and thermally controlled rise time near the edge of a slab. Geophys. Res. Lett., 41, doi:10.1002/2014GL059968, 2014.
NASA Astrophysics Data System (ADS)
Wu, Kongyou; Pei, Yangwen; Li, Tianran; Wang, Xulong; Liu, Yin; Liu, Bo; Ma, Chao; Hong, Mei
2018-03-01
The Daerbute fault zone, located in the northwestern margin of the Junggar basin, in the Central Asian Orogenic Belt, is a regional strike-slip fault with a length of 400 km. The NE-SW trending Daerbute fault zone presents a distinct linear trend in plain view, cutting through both the Zair Mountain and the Hala'alate Mountain. Because of the intense contraction and shearing, the rocks within the fault zone experienced high degree of cataclasis, schistosity, and mylonization, resulting in rocks that are easily eroded to form a valley with a width of 300-500 m and a depth of 50-100 m after weathering and erosion. The well-exposed outcrops along the Daerbute fault zone present sub-horizontal striations and sub-vertical fault steps, indicating sub-horizontal shearing along the observed fault planes. Flower structures and horizontal drag folds are also observed in both the well-exposed outcrops and high-resolution satellite images. The distribution of accommodating strike-slip splay faults, e.g., the 973-pluton fault and the Great Jurassic Trough fault, are in accordance with the Riedel model of simple shear. The seismic and time-frequency electromagnetic (TFEM) sections also demonstrate the typical strike-slip characteristics of the Daerbute fault zone. Based on detailed field observations of well-exposed outcrops and seismic sections, the Daerbute fault can be subdivided into two segments: the western segment presents multiple fault cores and damage zones, whereas the eastern segment only presents a single fault core, in which the rocks experienced a higher degree of rock cataclasis, schistosity, and mylonization. In the central overlapping portion between the two segments, the sediments within the fault zone are primarily reddish sandstones, conglomerates, and some mudstones, of which the palynological tests suggest middle Permian as the timing of deposition. The deformation timing of the Daerbute fault was estimated by integrating the depocenters' basinward migration and initiation of the splay faults (e.g., the Great Jurassic Trough fault and the 973-pluton fault). These results indicate that there were probably two periods of faulting deformation for the Daerbute fault. By integrating our study with previous studies, we speculate that the Daerbute fault experienced a two-phase strike-slip faulting deformation, commencing with the initial dextral strike-slip faulting in mid-late Permian, and then being inversed to sinistral strike-slip faulting since the Triassic. The results of this study can provide useful insights for the regional tectonics and local hydrocarbon exploration.
NASA Astrophysics Data System (ADS)
Carlson, C. W.; Faulds, J. E.
2014-12-01
Positioned between the Sierra Nevada microplate and Basin and Range in western North America, the Walker Lane (WL) accommodates ~20% of the dextral motion between the North American and Pacific plates on predominately NW-striking dextral and ENE to E-W-striking sinistral fault systems. The Terrill Mountains (TM) lie at the northern terminus of a domain of dextral faults accommodating translation of crustal-blocks in the central WL and at the southeast edge of sinistral faults accommodating oroclinal flexure and CW rotation of blocks in the northern WL. As the mechanisms of strain transfer between these disparate fault systems are poorly understood, the thick Oligocene to Pliocene volcanic strata of the TM area make it an ideal site for studying the transfer of strain between regions undergoing differing styles of deformation and yet both accommodating dextral shear. Detailed geologic mapping and paleomagnetic study of ash-flow tuffs in the TM region has been conducted to elucidate Neogene strain accommodation for this transitional region of the WL. Strain at the northernmost TM appears to be transferred from a system of NW-striking dextral faults to a system of ~E-W striking sinistral faults with associated CW flexure. A distinct ~23 Ma paleosol is locally preserved below the tuff of Toiyabe and provides an important marker bed. This paleosol is offset with ~6 km of dextral separation across the fault bounding the NE flank of the TM. This fault is inferred as the northernmost strand of the NW-striking, dextral Benton Spring fault system, with offset consistent with minimums constrained to the south (6.4-9.6 km, Gabbs Valley Range). Paleomagnetic results suggest counter-intuitive CCW vertical-axis rotation of crustal blocks south of the domain boundary in the system of NW-striking dextral faults, similar to some other domains of NW-striking dextral faults in the northern WL. This may result from coeval dextral shear and WNW-directed extension within the left-stepping system of dextral fault. The left steps are analogous to Riedel shears developing above a more through-going shear zone at depth. However, a site directly adjacent to the Benton Springs fault is rotated ~30° CW, likely due to fault drag. These results show the complex and important contribution of vertical-axis rotations in accommodation of dextral shear.
Enigmatic rift-parallel, strike-slip faults around Eyjafjörður, Northern Iceland
NASA Astrophysics Data System (ADS)
Proett, J. A.; Karson, J. A.
2014-12-01
Strike-slip faults along mid-ocean ridge spreading centers are generally thought to be restricted to transform boundaries connecting rift segments. Faults that are parallel to spreading centers are generally assumed to be normal faults associated with tectonic extension. However, clear evidence of north-south (rift-parallel), strike-slip displacements occur widely around the southern portion of Eyjafjörður, northern Iceland about 50 km west of the Northern Rift Zone. The area is south of the southernmost strand (Dalvík Lineament) of the NW-SE-trending, dextral-slip, Tjӧrnes Fracture Zone (where N-S, sinistral, strike-slip "bookshelf" faulting occurs). Faults in the Eyjafjörður area cut 8.5-10 m.y. basaltic crust and are parallel to spreading-related dikes and are commonly concentrated along dike margins. Fault rocks range from fault breccia to gouge. Riedel shears and other kinematic indicators provide unambiguous evidence of shear sense. Most faults show evidence of sinistral, strike-slip movement but smaller proportions of normal and oblique-slip faults also are present. Cross cutting relations among the different types of faults are inconsistent and appear to be related to a single deformation event. Fault slip-line kinematic analysis yields solutions indicating sinistral-normal oblique-slip overall. These results may be interpreted in terms of either previously unrecognized transform-fault bookshelf faulting or slip accommodating block rotation associated with northward propagation of the Northern Rift Zone.
A case of Riedel's thyroiditis with pleural and pericardial effusions.
Erdoğan, Murat Faik; Anil, Cüneyd; Türkçapar, Nuran; Ozkaramanli, Demet; Sak, Serpil Dizbay; Erdoğan, Gürbüz
2009-06-01
Riedel's thyroiditis (RT) is a rare type of chronic thyroiditis of unproven etiology and definite treatment. It can be associated with retroperitoneal, mediastinal, orbital, and hepatic fibrosis. Symptoms arise mainly due to compression of neighboring structures. Surgery is usually required for a definite diagnosis and decompression to relieve the symptoms. Glucocorticoids and tamoxifen are commonly used agents for the pharmacotherapy. We hereby describe the development of pleural and pericardial effusions during the clinical course of an RT case. A 39-year-old woman suffering from neck compression symptoms was admitted to the hospital. After a decompression isthmectomy, RT was diagnosed. She responded well to glucocorticoid therapy after surgery. However, symptoms reoccurred shortly after glucocorticoid withdrawal and the disease process extended to the mediastinum. Tamoxifen was started and the neck and mediastinal mass regressed and her symptoms disappeared considerably for more than 6 months. However, she was readmitted with severe dyspnea and chest pain. Further investigation revealed an exudative pleural and pericardial effusion and mediastinal enlargement. A thorough evaluation of the patient's effusions did not disclose any specific etiological insult. The patient was symptom-free with a considerable reduction of the soft tissue mass and no effusions, and treated successfully with colchicine, azathioprine, and glucocorticoids. To the best of our knowledge, this is the first case reported in the literature as an RT presenting with pleuropericardial effusions.
A small subgroup of Hashimoto's thyroiditis is associated with IgG4-related disease.
Jokisch, Friedrich; Kleinlein, Irene; Haller, Bernhard; Seehaus, Tanja; Fuerst, Heinrich; Kremer, Marcus
2016-03-01
IgG4-related disease is a newly identified syndrome characterized by high serum IgG4 levels and increased IgG4-positive plasma cells in involved organs. The incidence of IgG4-related thyroiditis in the Caucasian population of Europe is unknown. We investigated formalin-fixed thyroid gland samples of 216 patients (191 Hashimoto's thyroiditis, 5 Riedel's thyroiditis, and 20 goiters, as controls), morphologically, and immunohistochemically. Cases were divided into two groups: IgG4-related Hashimoto's thyroiditis (24 cases) together with Riedel thyroiditis (1 case) and 171 non-IgG4-related thyroiditis. Compared to the non-IgG4-related cases, IgG4-related thyroiditis showed a higher IgG4/IgG ratio (0.6 vs. 0.1, p < 0.0001), a higher median IgG4 count (45.2 vs. 6.2, p < 0.0001), an association with younger age (42.1 vs. 48.1 years, p = 0.036), and a lower female-to-male ratio (11:1 vs. 17.5:1). Fibrous variant of Hashimoto's thyroiditis was diagnosed in 23 of the 24 IgG4-related cases (96 %) and in 13 of 167 (18 %, p > 0.001) non-IgG4-related cases. The single case of IgG4-related Riedel's thyroiditis also showed a higher median IgG4 plasma cell count (56.3 vs. 14.3) and a higher IgG4/IgG ratio (0.5 vs. 0.2) than the four cases of non-IgG4-related Riedel's thyroiditis. Our data suggests the incidence of IgG4-related disease (IgG4-RD) of the thyroid gland in Europe is considerably lower than that observed in other studies. A significant elevation of IgG4-positive plasma cells was only found in a small group of Hashimoto's thyroiditis and then accompanied by intense fibrosis, indicating an association with IgG4-RD. Morphologically, IgG4-RD of the thyroid gland differs from that in other organ systems, exhibiting a dense fibrosis without intense eosinophilia or obliterative phlebitis.
Slman, Rouba; Monpeyssen, Hervé; Desarnaud, Serge; Haroche, Julien; Fediaevsky, Laurence Du Pasquier; Fabrice, Menegaux; Seret-Begue, Dominique; Amoura, Zahir; Aurengo, André; Leenhardt, Laurence
2011-07-01
Riedel's thyroiditis (RT) is a rare disease characterized by a chronic inflammatory lesion of the thyroid gland with invasion by a dense fibrosis. Publications of the imaging features of RT are scarce. To our knowledge, ultrasound elastography (USE) findings have not been previously reported. Therefore, we describe two patients with RT who were imaged with ultrasonography (US), USE, and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). Two women were referred for a large, hard goiter with compressive symptoms (dyspnea and dysphagia); in one patient, the goiter was associated with retroperitoneal fibrosis. In both cases, RT was confirmed by surgical biopsy with pathological examination. Thyroid US imaging was performed with a US scan and a 10-13 MHz linear transducer. The hardness of the tissues was analyzed using transient USE (ShearWave, Aixplorer-SuperSonic Imagine). PET/CT scanning was performed with a Philips Gemini GXL camera (GE Medical Systems). In the first patient, US examination revealed a compressive multinodular goiter with large solid hypoechoic and poorly vascularized areas adjacent to the nodules. The predominant right nodule was hypoechoic with irregular margins. The second patient had a hypoechoic goiter with large bilateral hypoechoic areas. In both cases, an unusual feature was observed: the presence of tissue surrounding the primitive carotid artery, associated with thrombi of the internal jugular vein. Further, USE showed heterogeneity in the stiffness values of the thyroid parenchyma varying between 21 kPa and 281 kPa. FDG-PET/CT imaging showed uptake foci in the thyroid gland. In both cases, US showed a decrease in the thyroid gland volume and the disappearance of encasement of the neck vasculature in response to corticosteroid treatment. In contrast, the FDG-PET/CT features remained unchanged. US features, such as vascular encasement and improvement under corticosteroid treatment, seem to be specific to this rare disease. For the first time, USE documents the hardness of RT tissues. Apart from the FDG-PET/CT findings that merit further investigation, US and USE prove useful tools in the assessment of such a rare disease.
Pseudotachylytes of the Deep Crust: Examples from a Granulite-Facies Shear Zone
NASA Astrophysics Data System (ADS)
Orlandini, O.; Mahan, K. H.; Regan, S.; Williams, M. L.; Leite, A.
2013-12-01
The Athabasca Granulite Terrane is an exhumed section of deep continental crust exposed in the western Canadian shield. The terrane hosts the 1.88 Ga Cora Lake shear zone, a 3-5 km wide sinistral and extensional oblique-slip system that was active at high-pressure granulite-grade conditions ( ~1.0 GPa, >800°C to ~0.8 GPa and 700 °C). Pseudotachylyte, a glassy vein-filling substance that results from frictional melting during seismic slip, is common in ultramylonitic strands of the shear zone, where veins run for tens of meters subparallel to foliation. Some but not all PST veins have been overprinted with the Cora Lake shear zone foliation, and undeformed PST locally bears microlitic garnet. The frictional melts that quench into PST may reach >1400 °C, but are extremely localized and cool to country rock temperatures within minutes, resulting in glass and/or microlitic mineral growths. The melt itself is thought by many to be in disequilibrium with the host rock due to its rapid nature, but during cooling equilibrium is probably reached at small scales. This allows for microprobe analysis of adjacent microlites for thermobarometric calculations. Preliminary results from undeformed (e.g., youngest of multiple generations) PST suggest that quenching occurred in upper amphibolite facies ambient conditions and is compatible with later stages of Cora Lake shear zone activity. Host-rock mylonites contain abundant garnet and pyroxene sigma clasts indicating sinistral shear, and where PST-bearing slip surfaces are found at low angles to the foliation, they display sinistral offset. The host rock contains abundant macroscopic and microscopic sinistral shear fracture systems (e.g., Riedel [R], Y, and P displacement surfaces) within the immediate proximity of PST veins, indicating a complex interplay of brittle and ductile behavior that is interpreted to be genetically related to the formation of the PST. The shear fracture systems are characterized by sharply bounded surfaces or zones populated by equant 1-15 μm grains, including orthopyroxene. These grains show no evidence of fracturing under backscatter-electron images and preserve cohesion with all surrounding grains, suggesting crystal-plastic behavior. There is evidence for multiple generations of subparallel shear fracture sets, as R shears of an earlier fracture set are cut by Y shears of a later set. The PST generation veins are overprinted in much the same way, and are consistently found in an orientation that suggests they nucleated on Y shear surfaces. Given that available data on the Cora Lake PST indicates formation under conditions where crystal-plastic deformation typically dominates, the downward propagation of faults from the traditional seismogenic zone seems the most reasonable model for emplacement. The propagation of fault slips to depths of 30-50 km has been actively observed for several Mw >7.5 strike-slip and thrust earthquakes, but the deformation mechanisms and specific conditions that allow PST formation at such depths is not well understood. The almost exclusive contemporaneous localization of brittle PST systems into highly ductile ultramylonites suggests an interesting paradox of rheological response to constant regional strain fields .
Moore, Diane E.; Byerlee, J.
1992-01-01
Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.
Cataclastic flow kinematics inferred from magnetic fabrics at the Heart Mountain Detachment, Wyoming
NASA Astrophysics Data System (ADS)
Heij, G. W.; Ferre, E. C.; Friedman, S. A.
2013-12-01
The Heart Mountain Detachment (HMD) constitutes one of the largest known rock slides (3400 km2) on Earth. This detachment occurred along the stratigraphic boundary between the Big Horn Dolomite at the hanging-wall and the Snowy Range Formation at the footwall. The bedding plane contact between these two carbonate formations dipped >2 deg. at the time of slide. The slide resulted in the formation of an up to 3 m-thick carbonate ultracataclasite (CUC) at the base of the slide. The origin of the CUC and the nature of the triggering mechanism responsible for the initiation of the catastrophic movement have long been a subject of controversy. Absoroka volcanics could have provided the trigger for the catastrophic slide. Here we present a proof of concept study addressing the question of the consistent magnetic fabrics observed in the CUC as well as new observations indicating presence of volcanic solid material within the CUC. The magnetic susceptibility (Klf) ranges narrowly from 1062. [10]^(-6) to 1115 . [10]^(-6) [SI]. Thermomagnetic investigations revealed a Curie temperature of 525C which suggests that magnetite is most likely the dominant magnetic carrier mineral. Energy Dispersive Spectroscopy analyses confirm that this magnetite has a relatively low Ti content. The CUC magnetic hysteresis properties point to an average pseudo-single domain magnetic grain size or, alternatively, a mixture of single domain and multi-domain grains. The average degree of magnetic anisotropy (P' = 1.062) is relatively high and is consistent with a magnetostatic origin for the AMS. The shape parameter T is mostly oblate (average T=0.175). The anisotropy of magnetic susceptibility (AMS) directional data is surprisingly consistent within each specimen and between specimens collected within a few tens of meters of each other with an overall NNE-SSW. The consistency of this magnetic fabric suggests that cataclastic flow corresponded to a dominantly simple shear regime. Generally, cataclastic processes do not result in shape-preferred orientation (SPO) of clasts or matrix however; preliminary data indicates that the HMD ultracataclasite has a consistent magnetic fabric carried by magnetite. The acquisition of an AMS fabric carried by magnetite in the HMD carbonate ultracataclasite could result from one or more processes: (1) A synkinematic plastic deformation of magnetite where magnetite grains are active structural markers being deformed by progressive plastic shear, a process requiring either slow strain rates or high temperature during deformation; (2) A synkinematic rigid rotation of magnetite grains where magnetite grains are passive structural markers being rotated during shear; (3) A synkinematic transgranular cataclastic flow of magnetite grains where magnetite fractures across grains with the resultant magnetite clasts being passively rotated during shear (the resultant magnetite clasts retain the necessary proximity to one another to display distribution anisotropy); (4) A post-kinematic magnetite growth where magnetite precipitates along Riedel fractures. AMS coupled with SPO analysis effectively constrains which deformation mechanism(s) are responsible for the consistent magnetic fabric present in the ultracataclasite. Finally, the presence of magmatic olivine clasts in the CUC strongly support the volcanic blast hypothesis as a triggering mechanism.
Scoppettone, G.G.; Salgado, J.A.; Nielsen, M.B.
2005-01-01
Blue tilapia (Oreochromis aureus), native to North Africa and the Middle East (Courtenay and Robins 1973, Fuller et al. 1999), has been introduced around the world as a human food source, for vegetation control, and as a game fish (Costa-Pierce and Riedel 2000). Blue tilapia has been particularly successful in establishing and spreading in North American waters where it has been reported to change fish community structure and cause native fish decline (Courtenay and Robins 1973, Fuller et al. 1999). Because of these detrimental effects, it is now generally considered an unwelcome introduction into North American waters (Dill and Cordone 1997, Fuller et al. 1999).
VizieR Online Data Catalog: Young star systems observed with SALT (Riedel+, 2017)
NASA Astrophysics Data System (ADS)
Riedel, A. R.; Alam, M. K.; Rice, E. L.; Cruz, K. L.; Henry, T. J.
2017-11-01
The sample of stars was drawn from the TINYMO survey (Riedel 2012PhDT.......100R). In that survey, nearby low-proper-motion M dwarfs in the southern hemisphere were identified in the SuperCOSMOS Science Archive (Hambly+ 2001MNRAS.326.1279H). We have obtained low-resolution optical spectroscopy from the SALT telescope at the South African Astronomical Observatory in Sutherland, South Africa and the Robert Stoble Spectrograph (RSS), which provides optical spectroscopy between 3200 and 9000Å with a resolving power of up to 6000, depending on slit width. Observations were conducted in semesters 2013A and 2013B. In total, there are 165 spectra of the 79 stars: SCR 2237-2622 was only observed once, two stars (SCR 1816-6305, 2MASS 2004-3356) were observed three times, three stars (2MASS 0510-2340B, 2MASS 1207-3247, SCR 1842-5554A) were observed four times, and the remainder were observed twice. (5 data files).
Structure and kinematics of the Sumatran Fault System in North Sumatra (Indonesia)
NASA Astrophysics Data System (ADS)
Fernández-Blanco, David; Philippon, Melody; von Hagke, Christoph
2016-12-01
Lithospheric-scale faults related to oblique subduction are responsible for some of the most hazardous earthquakes reported worldwide. The mega-thrust in the Sunda sector of the Sumatran oblique subduction has been intensively studied, especially after the infamous 2004 Mw 9.1 earthquake, but its onshore kinematic complement within the Sumatran subduction, the transform Sumatran Fault System, has received considerably less attention. In this paper, we apply a combination of analysis of Digital Elevation Models (ASTER GDEM) and field evidence to resolve the kinematics of the leading edge of deformation of the northern sector of the Sumatran Fault System. To this end, we mapped the northernmost tip of Sumatra, including the islands to the northwest, between 4.5°N and 6°N. Here, major topographic highs are related to different faults. Using field evidence and our GDEM structural mapping, we can show that in the area where the fault bifurcates into two fault strands, two independent kinematic regimes evolve, both consistent with the large-scale framework of the Sumatran Fault System. Whereas the eastern branch is a classic Riedel system, the western branch features a fold-and-thrust belt. The latter contractional feature accommodated significant amounts (c. 20%) of shortening of the system in the study area. Our field observations of the tip of the NSFS match a strain pattern with a western contractional domain (Pulau Weh thrust splay) and an eastern extensional domain (Pulau Aceh Riedel system), which are together characteristic of the tip of a propagating strike-slip fault, from a mechanical viewpoint. For the first time, we describe the strain partitioning resulting from the propagation of the NSFS in Sumatra mainland. Our study helps understanding complex kinematics of an evolving strike-slip system, and stresses the importance of field studies in addition to remote sensing and geophysical studies.
Determinants of the Effectiveness of Situation Estimation
1990-06-01
Style on Information Use in Tactical Decision Making, by R. R. Michel and S. L. Riedel, 1988. 20. Ivancevich, J. M.; Szilagyi , A. D., Jr.; and... Wallace , M. J., Jr., Orga- nizational Behavior and Performance, Goodyear Publishing Com- pany, 1977. 21. Associates, Office of Military Leadership, United
Graben formation — the Maltese Islands — a case history
NASA Astrophysics Data System (ADS)
Illies, J. Henning
1981-03-01
The structural setting of the Maltese Islands is governed by two rift systems of different ages and trends and the interference of both. Accompanying faults are exposed at many places along cliffs and belong to the most spectacular phenomena of rift faulting of the world. Malta is part of a wide shelf bridge that connects the Ragusa platform of southern Sicily and the Tripolitanian platform of northern Libya. The archipelago is underlain by a continental crust of African provenance. The older rift generation traversing the islands strikes about 50° to 70° to create a basin-and-range structure on western Malta, Comino and eastern Gozo. This micro-province is framed by two master faults at an average distance of 14 km. Crustal extension started during the Early Miocene, as observed by growth faulting and sedimentary dikes parallel to the future rift. A syndepositional uparching of about 200 m has preceded the physiographical rifting in post-Middle Miocene times. Discrete dip-slip faulting created an external wedge block, split by internal tilt blocks of antithetic character, both compensating an average 15% crustal spreading normal to the rift axis. Shoulder upwarping of approximately 120 m has evolved synchronously with the rifting. Structures of the first generation are crosscut by still active, second-generation rift faults, which on Malta strike about 120°, but on Gozo between 80° and 90°. These faults are associated with the Pantelleria rift, whose deep trough sets immediately south of the islands. Rifting was mainly originated during Late Miocene/Early Pliocene time to continue in parts up to the Present. A set of transform faults runs through the straits on both sides of Comino to form a complicated en echelon or Riedel shear structure on easternmost Gozo and westernmost Malta. Shoulder upwarping related to the Pantelleria rift has considerably tilted the block of Malta NNE-ward and caused the inundated river valleys of the natural harbour of Valletta. The superimposition of two rift structures of different trends has been caused principally by a rotation of the controlling stress regime about 10 m.y. ago. The active Afro—Eurasian collision front is located about 200 km north and northwest of the islands. A contemporary change of plate tectonic stresses is discussed to explain the intraplate rift pattern on Malta as foreland-specific reactions to plate tectonic processes.
Riedel's thyroiditis association with IgG4-related disease.
Stan, Marius N; Sonawane, Vikram; Sebo, Thomas J; Thapa, Prabin; Bahn, Rebecca S
2017-03-01
IgG4-positive (+) plasma cells have been reported in both Riedel's thyroiditis (RT) and Hashimoto's thyroiditis (HT). These cells are the hallmark of IgG4-related disease (IgG4-RD). We sought to determine whether RT is part of IgG4-RD spectrum. This was a case-control study performed at a tertiary medical centre. We included RT cases from the period 1958 to 2008 that had sufficient paraffin-embedded tissue for IgG4 immunostaining. Controls were patients with HT, age and gender matched, with similar pathology criteria. The main outcome measures were the intensity of the IgG4 staining and the clinical and histological correlates with IgG4-RD. Six pairs of RT and HT were analysed. The mean age was 44·7 years. In both groups, 5/6 cases had positive IgG4 staining. The mean number of IgG4 + cells/ HPF, normalized to the degree of inflammation, was 3·2 ± 3·0 SD (RT) vs 0·9 ± 0·7 (HT), P = 0·15, for fibrotic areas and 2·1 ± 2·3 SD vs 1·0 ± 0·8 (P = 0·39) for areas with lymphoid aggregates. We found the number of IgG4 + cells in RT to be inversely correlated with the duration of disease (P = 0·046). Three RT cases had associated comorbidities from the IgG4-RD spectrum while none of the HT cases had such conditions. Riedel's thyroiditis is a component of IgG4-RD with the density of the IgG4 + lymphocytic infiltrate being time dependent. In this small study, we did not identify differences in IgG4 infiltration between RT and HT, minimizing the utility of this marker in RT diagnosis. © 2016 John Wiley & Sons Ltd.
Did the Malaysian Main Range record a weak hot Mega Shear?
NASA Astrophysics Data System (ADS)
Sautter, Benjamin; Pubellier, Manuel
2015-04-01
The Main Range of Peninsular Malaysia is a batholith that extends over more than 500km from Malacca in the South to the Thailand border in the North. It results from the subduction/accretion history of the western margin of Sunda Plate by Late Triassic times. We present a structural analysis based on geomorphology, field observations and geochronological data. While most of the basement fabrics are characterized by N-S structures such as granitic plutons, sutures, and folds, a prominent oblique deformation occurred by the End of the Mesozoics synchronous with a widespread thermal anomaly (eg Tioman, Stong, Gunung Jerai, Khanom, Krabi plutons). Morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), allow us to highlight 2 major groups of penetrative faults in the Central Range Batholith: early NW-SE (5km spaced faults some of which are identified as thrust faults) cross-cut and offset by NNE-SSW dextral normal faults. The regularly spaced NW-SE faults bend toward the flanks of the Batholith and tend to parallel both the Bentong Raub Suture Zone to the East and the strike slip Bok Bak Fault to the West, thus giving the overall fault network the aspect of a large C/S band. Hence, a ductile/brittle behavior can be proposed for the sigmoid faults in the core of the Batholith, whereas the NNE faults are clearly brittle, more linear and are found on the smaller outlying plutons. Radiogenic crystallization ages are homogenous at 190±20Ma (U-Pb Zircon, Tc>1000°C and K-Ar Muscovite, Tc350°C) whereas Zircon fission tracks(Tc=250°C) show specific spatial zoning of the data distribution with ages at 100±10Ma for the outlying plutons and ages at 70±10Ma for the Main Range. We propose a structural mechanism according to which the Main Range would be the ductile core of a Mega-Shear Zone exhumed via transpressive tectonics by the end of Mesozoic Times. A first stage between 100 and 70Ma (Upper Cretaceous) of dextral transpression affected Peninsular Malaysia at a lithospheric scale, accommodated by N-S faults (C planes) such as the Bentong Raub Suture Zone, the Bukit Tinggi fault and the Kledang Fault. This lead to the formation of NW-SE fractures in already exhumed peripheral plutons (< 250°C) and deep level (> 250°C) sigmoid faults (S planes) in the Main range. Later a brittle stage of exhumation occurred in the same system, after 70Ma, leading to NNE-SSW dextral Riedel type faults reactivating pluton flanks, and offsetting older faults as well as quartz dykes. The occurrence of such a structure could be linked to the subduction of the Wharton Ridge at the western margin of Sunda Plate. As a result, a collapse of this hot and thin crust occurred accommodated by LANF's reactivating the basement fabrics including intrusive edges and folds hinges.
Deformation mechanisms of antigorite and strain localization during dehydration
NASA Astrophysics Data System (ADS)
Proctor, B.; Hirth, G.
2012-12-01
Antigorite, the high temperature and pressure serpentine polytype, is thought to exist along subduction zones between the mantle wedge and the subducting oceanic crust (e.g., Wada et al., 2008). Understanding how the rheology of antigorite changes with depth along the slab may be key to understanding seismicity along the upper plate boundary (e.g., Hacker et al., 2003). To explore this phenomenon we are conducting constant strain rate general shear experiments on antigorite-rich serpentinite at shear strain rates of 5*10^-7/s to 10^-5/s, confining pressures from 1-2 GPa and temperatures from 400-700°C. We are using microstructural observations to constrain deformation mechanisms and investigate conditions where strain localization occurs. In some experiments we employ either strain rate stepping or temperature ramping to examine the stress dependence of viscosity (i.e., determine stress exponent) and syntectonic reaction during heating. The results of our general shear experiments suggest the rheologic behavior of antigorite varies significantly with changes in temperature and pressure, similar to previous work in axial compression (e.g., Chernak and Hirth, 2010). At 400°C and 1GPa confining pressure antigorite deforms initially via steady-state ductile flow with strengths as high as 1.4 GPa at a strain rate of 10^-5/s. With increasing strain we observe weakening events that correlate with the development of shear fractures within the sample. At 2GPa pressure, the flow strength of antigorite increases to ~1.8 GPa at 10^-6/s and deformation is distributed at low strain. Strain rate stepping at these conditions suggests a very weak strain rate dependence on strength with a 5-10% change in stress for an order of magnitude strain rate step. At 700C and 1 GPa, above the thermal stability of antigorite, the steady-state strength is ~120 MPa at 10^-5/s. In these samples olivine becomes the dominant phase as antigorite progressively reacts to olivine and pyroxene. At the sample scale, strain is relatively homogeneous. However, microstructural observation indicates that deformation tends to be localized along "Riedel-like" shear zones that develop within the sample with a spacing of ~100 μm and an orientation of ~25° with respect to the sample orientation (45° from σ1). In a temperature ramp, from 400°C to 700°C at 1 GPa and 10^-5/s strain rate, the antigorite strength decreases rapidly to ~120 MPa and strain localizes within shear fractures that correlate with the onset of thermal weakening (similar to Chernak and Hirth, 2010). To a first order our finding suggest complications with the antigorite flow law established by Hilairet et al., (2007). We find that the flow law grossly underestimates the steady-state flow strength of antigorite and we question whether strain can be fully accommodated by crystal plastic deformation.
Artificial Hip Simulator with Crystal Models
1966-06-21
Robert Johnson, top, sets the lubricant flow while Donald Buckley adjusts the bearing specimen on an artificial hip simulator at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The simulator was supplemented by large crystal lattice models to demonstrate the composition of different bearing alloys. This this image by NASA photographer Paul Riedel was used for the cover of the August 15, 1966 edition of McGraw-Hill Product Engineering. Johnson was chief of Lubrication Branch and Buckley head of the Space Environment Lubrication Section in the Fluid System Components Division. In 1962 they began studying the molecular structure of metals. Their friction and wear testing revealed that the optimal structure for metal bearings was a hexagonal crystal structure with proper molecular space. Bearing manufacturers traditionally preferred cubic structures over hexagonal arrangements. Buckley and Johnson found that even though the hexagonal structural was not as inherently strong as its cubic counterpart, it was less likely to cause a catastrophic failure. The Lewis researchers concentrated their efforts on cobalt-molybdenum and titanium alloys for high temperatures applications. The alloys had a number of possible uses, included prosthetics. The alloys were similar in composition to the commercial alloys used for prosthetics, but employed the longer lasting hexagonal structure.
NASA Astrophysics Data System (ADS)
Dietrich, Andreas; Gutierrez, Ronald; Nelson, Eric P.; Layer, Paul W.
2012-03-01
The San José district is located in the northwest part of the Deseado massif and hosts a number of epithermal Ag-Au quartz veins of intermediate sulfidation style, including the Huevos Verdes vein system. Veins are hosted by andesitic rocks of the Bajo Pobre Formation and locally by rhyodacitic pyroclastic rocks of the Chon Aike Formation. New 40Ar/39Ar constraints on the age of host rocks and mineralization define Late Jurassic ages of 151.3 ± 0.7 Ma to 144.7 ± 0.1 Ma for volcanic rocks of the Bajo Pobre Formation and of 147.6 ± 1.1 Ma for the Chon Aike Formation. Illite ages of the Huevos Verdes vein system of 140.8 ± 0.2 and 140.5 ± 0.3 Ma are 4 m.y. younger than the volcanic host rock unit. These age dates are among the youngest reported for Jurassic volcanism in the Deseado massif and correlate well with the regional context of magmatic and hydrothermal activity. The Huevos Verdes vein system has a strike length of 2,000 m, with several ore shoots along strike. The vein consists of a pre-ore stage and three main ore stages. Early barren quartz and chalcedony are followed by a mottled quartz stage of coarse saccharoidal quartz with irregular streaks and discontinuous bands of sulfide-rich material. The banded quartz-sulfide stage consists of sulfide-rich bands alternating with bands of quartz and bands of chlorite ± illite. Late-stage sulfide-rich veinlets are associated with kaolinite gangue. Ore minerals are argentite and electrum, together with pyrite, sphalerite, galena, chalcopyrite, minor bornite, covellite, and ruby silver. Wall rock alteration is characterized by narrow (< 3 m) halos of illite and illite/smectite next to veins, grading outward into propylitic alteration. Gangue minerals are dominantly massive quartz intergrown with minor to accessory adularia. Epidote, illite, illite/smectite, and, preferentially at deeper levels, Fe-chlorite gangue indicate near-neutral pH hydrothermal fluids at temperatures of >220°C. Kaolinite occurring with the late sulfide-rich veinlet stage indicates pH < 4 and a temperature of <200°C. The Huevos Verdes system has an overall strike of 325°, dipping on average 65° NE. The orientations of individual ore shoots are controlled by vein strike and intersecting north-northwest-striking faults. We propose a structural model for the time of mineralization of the San José district, consisting of a conjugate shear pair of sinistral north-northwest- and dextral west-northwest-striking faults that correspond to R and R' in the Riedel shear model and that are related to master faults (M) of north-northeast-strike. Veins of 315° strike can be interpreted as nearly pure extensional fractures (T). Variations in vein strike predict an induced sinistral shear component for strike directions of >315°, whereas strike directions of <315° are predicted with an induced dextral strike-slip movement. The components of the structural model appear to be present on a regional scale and are not restricted to the San José district.
HURTLE CELLS IMMUNOHISTOCHEMICAL ACTIVITIES IN HASHIMOTO THYROIDITIS PARENCHYMA.
Tsagareli, Z; Kvachadze, T; Melikadze, E; Metreveli, L; Nikobadze, E; Gogiashvili, L
2016-11-01
The present study was designed to evaluate the participation and utility of Hǘrtle cells morphological requirment and transformation under Hashimoto autoimmune thyroiditis versus Riedel´s struma. Several markers have been evaluated to detect induced activities of Hǘrtle cells. Study subject - specimens (tissue fragments) collected from TG surgery (thyroidectomy) for mollecular (receptor) diagnosis of Hǘrtle cells activities using routine histological and immunohistochemical samples. 89 cases were selected in Hashimoto thyroiditis diagnosis with Hǘrtle cells history (adenoma and adenomatous grouth of oncocytes). Markers as: TSH receptors, TTF-1, S-100 protein, also anti-TPO and anti-TG levels in blood plasm were detected. It was shown that solid cell claster-nests like agregation of oncocytes and adenomatous growth foci in parafollicular areas with anti-TPO and anti-TG antibodies levels arising while Riedel´s struma shown only large intra- and extra glandular inflammatory proliferative fibrosing process. Large positive expression of TTF-1 and S-100 protein and the negative reaction of TSH receptor factor suggest that Thyroid parenchyma disorganization and mollecular biological atypia with Hǘrtle cells are proceses due to hypothyreoidismus, as well as neuroectodermal cells prominent activities in 70% of Hashimoto cases.
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Fukuyama, M.; Ujiie, K.; Hirose, T.; Hamada, Y.; Kitamura, M.; Kamiya, N.
2016-12-01
Although earthquake ruptures in shallow portion of plate boundary have recently been identified (e.g. Tohoku, Nankai, etc.), their mechanisms why the shallow portion of plate boundary composed mainly of clay minerals can accumulate strain and make seismic slip are under controversial. An ancient out-of-sequence thrust which divided the early and late Miocene accretionary complexes in the Boso Peninsula, central Japan records rupture propagation to the shallow portion of accretionary prism (< 2 km). The fault core is composed of black-colored thin (<1 mm) pseudotachylite and fluidized fault gouge. The former is characterized by homogeneous glassy matrix including fragments of quartz/feldspar, submicron-sized Fe-rich spherules, and vesicles. Based on the mineralogy of the host rock and EDS analyses of matrices, origin of the pseudotachylite was apparently frictional melting of smectite containing Fe. Fe-rich spherules formed by rapid cooling of pseudotachylite. On the other hand, overturned fault-related drag fold developed in the footwall, within about 30 m. Although some Riedel sheared normal faults developed in the overturned footwall, no other brittle deformations were identified. These occurrences imply coexistence of low- and high-speed slips along the same thrust fault. The whole-rock major and trace elemental analyses using XRF and ICP-MS show that mudstone in the hangingwall has similar chemical composition to those of pseudotachylite and fluidized fault gouge with REE enriched patterns, whereas the footwall has different chemical characteristics with relatively flat REE pattern and low LOI. Therefore, the protolith of pseudotachylite and fluidized fault gouge is mudstone in the hangingwall. These data imply that rupture propagation preferably occurred in the hangingwall along the fault zone. The footwall was also deformed apparently during slow-slip deformation leading to formation of the overturn, whereas only the hangingwall, just side of the fault zone, slipped under high-speed shear.
Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil
2017-11-22
Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.
Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis
NASA Astrophysics Data System (ADS)
Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya
2018-03-01
In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.
Dr. von Braun With German Rocket Experimenters
NASA Technical Reports Server (NTRS)
1930-01-01
Dr. von Braun was among a famous group of rocket experimenters in Germany in the 1930s. This photograph is believed to be made on the occasion of Herman Oberth's Kegelduese liquid rocket engine being certified as to performance during firing. From left to right are R. Nebel, Dr. Ritter, Mr. Baermueller, Kurt Heinish, Herman Oberth, Klaus Riedel, Wernher von Braun, and an unidentified person.
The effect of shear wall location in resisting earthquake
NASA Astrophysics Data System (ADS)
Tarigan, J.; Manggala, J.; Sitorus, T.
2018-02-01
Shear wall is one of lateral resisting structure which is used commonly. Shear wall gives high stiffness to the structure so as the structure will be stable. Applying shear wall can effectively reduce the displacement and story-drift of the structure. This will reduce the destruction comes from lateral loads such as an earthquake. Earlier studies showed that shear wall gives different performance based on its position in structures. In this paper, seismic analysis has been performed using response spectrum method for different Model of structures; they are the open frame, the shear wall at core symmetrically, the shear wall at periphery symmetrically, and the shear wall at periphery asymmetrically. The results are observed by comparing the displacement and story-drift. Based on the analysis, the placement of shear wall at the core of structure symmetrically gives the best performance to reduce the displacement and story-drift. It can reduce the displacement up to 61.16% (X-dir) and 70.60% (Y-dir). The placement of shear wall at periphery symmetrically will reduce the displacement up to 53.85% (X-dir) and 47.87% (Y-dir) while the placement of shear wall at periphery asymmetrically reducing the displacement up to 59.42% (X-dir) and 66.99% (Y-dir).
Shear flow of one-component polarizable fluid in a strong electric field
NASA Astrophysics Data System (ADS)
Sun, J. M.; Tao, R.
1996-04-01
A shear flow of one-component polarizable fluid in a strong electric field has a structural transition at a critical shear stress. When the shear stress is increased from zero up to the critical shear stress, the flow (in the x direction) has a flowing-chain (FC) structure, consisting of tilted or broken chains along the field (z direction). At the critical shear stress, the FC structure gives way to a flowing-hexagonal-layered (FHL) structure, consisting of several two-dimensional layers which are parallel to the x-z plane. Within one layer, particles form strings in the flow direction. Strings are constantly sliding over particles in strings right beneath. The effective viscosity drops dramatically at the structural change. As the shear stress reduces, the FHL structure persists even under a stress-free state if the thermal fluctuation is very weak. This structure change in the charging and discharging process produces a large hysteresis.
Learning to Adapt to Asymmetric Threats
2005-08-01
College, Carlisle, PA, September 2003. Book, Howard, “Gauge your Awareness,” Inside the Mind of the Leader, January 2004, pp. 32 Bourke , Canice...biblio/b-explrn.htm, February 8, 2005. Lambakis, Steven J., “Reconsidering Asymmetric Warfare,” JFQ, issue 36, Spring 2005. Latour, Sharon M., (USAF...Sword: What if Sun Tzu and John Boyd did a National Defense Review?,” Washington, DC, Center for Defense Information, February 2003. Riedel, Sharon L
Social Resources that Preserve Functional Independence after Memory Loss
2014-05-01
older adults. Ann Behav Med 2005;29:166–173. 15. Klijs B, Mackenbach JP, Kunst AE. Obesity, smoking, alcohol consumption and years lived with disability...Konig, S. G. Riedel-Heller, Prediction of institutionalisation in dementia. A systematic review. Dementia and geriatric cognitive disorders 26, 65...patients living in the community. International journal of geriatric psychiatry 20, 471 (May, 2005). 3. A. M. Jette, Toward a common language for
NASA Astrophysics Data System (ADS)
Liu, Junlai; Tang, Yuan; Tran, My-Dung; Cao, Shuyun; Zhao, Li; Zhang, Zhaochong; Zhao, Zhidan; Chen, Wen
2012-03-01
The structural geology, timing of shearing, and tectonic implications of the ASRR shear zone, one of the most striking lineaments in Southeast Asia, have been the topics of extensive studies over the past few decades. The Xuelong Shan (XLS), Diancang Shan (DCS), Ailao Shan (ALS) and Day Nui Con Voi (DNCV) metamorphic massifs along the shear zone have preserved important information on its structural and tectonic evolution. Our field structural analysis, detailed microstructural and fabric analysis, as well as the quartz, sillimanite and garnet fabric studies of the sheared rocks from the massifs demonstrate the dominant roles of three deformation episodes during Cenozoic tectonic evolution in the shear zone. Among the contrasting structural and microstructural associations in the shear zone, D2 structures, which were formed at the brittle to ductile transition during large-scale left-lateral shearing in the second deformation episode, predominate over the structural styles of the other two deformation episodes. Discrete micro-shear zones with intensive grain size reduction compose the characteristic structural style of D2 deformation. In addition, several types of folds (early shearing folds, F21, and late-shearing folds, F22) were formed in the sheared rocks, including discrete to distributed mylonitic foliation, stretching lineation and shear fabrics (e.g., mica fish, domino structures, as well as sigma and delta fabrics). A sequence of microstructures from syn-kinematic magmatic flow, high-temperature solid-state deformation, to brittle-ductile shearing is well-preserved in the syn-kinematic leucocratic intrusions. Deformation structures from the first episode (D1) are characterized by F1 folds and distributed foliations (S1) in rocks due to pure shearing at high temperatures. They are preserved in weakly sheared (D2) rocks along the eastern margin of the ALS belt or in certain low-strain tectonic enclaves within the shear zone. Furthermore, semi-brittle deformation structures, such as hot striae and discrete retrogression zones, are attributed to normal-slip shearing in the third deformation episode (D3), which was probably locally active, along the eastern flank of the DCS range, for example. There are four quartz c-axis fabric patterns in the mylonitic rocks, including type A point maxima, type B Y point maxima with crossed girdles superimposition, type C quadrant maxima, as well as type D point and quadrant maxima combination. They are consistent with microscopic observations of microstructures of high-temperature pure shearing, low-temperature simple shearing and their superimposition. Integrated microstructural analysis and fabric thermometer studies provide information on both high temperature (up to 750 °C) and dominant low-temperature (300-600 °C) deformations of quartz grains in different rock types. Sillimanite and garnet fabrics, especially the latter, were primarily formed at the peak metamorphism during high-temperature pure shearing. The above structural, microstructural and fabric associations were generated in the tectonic framework of the Indian-Eurasian collision. The low-temperature microstructures and fabrics are attributed to left-lateral shearing along the ASRR shear zone from 27 to 21 Ma during the southeastward extrusion of the Indochina block, which postdated high-temperature deformation at the peak metamorphism during the collision.
Effects of Mixtures on Liquid and Solid Fragment Size Distributions
2016-05-01
bins, too few size bins, fixed bin widths, or inadequately- varying bin widths. Overpopulated bins – which typically occur for smaller fragments...2010 C. V. B. Cunningham, The Kuz-Ram Fragmentation Model – 20 Years On, In R. Holmberg et. al., Editors, Proceedings of the 3 rd World ...1992 P. K. Sahoo and T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, 1998 K. A. Sallam, C. Aalburg, G.M. Faeth
Process for Assessing the Stability of HAN (Hydroxylammonium Nitrate)-Based Liquid Propellants
1989-02-09
Scholz, Guidelines by Messrs. Riedel - de Haen for Titration according to the Karl Fischer Method ), 3. Auflage/3rd Edition 1982 /22/ JANDER; G. and... Potentiometric determination of the equivalence point is the most suitable method /15/. Time is saved by using automatically recording titration 33...propellant. The water content of liquid propellants on the basis of HAN according to Fig. 6 can be determined directly by Karl Fischer titration. This
Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong
2017-07-01
To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lekkas, Efthymios L.; Mavroulis, Spyridon D.
2016-01-01
The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.
Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall
NASA Astrophysics Data System (ADS)
Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan
2018-03-01
Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.
NASA Astrophysics Data System (ADS)
Mukherjee, Soumyajit
2010-05-01
Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya Soumyajit Mukherjee Department of Earth Sciences, Indian Institute of Technology Bombay Powai, Mumbai- 400076, INDIA, e-mail: soumyajitm@gmail.com Mukherjee & Koyi (1,2) evaluated the applicability of channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ) in the Zanskar and the Sutlej sections based on field- and micro-structural studies, analytical- and analog models. Further work on the Dhauliganga and the Goriganga sections of the HHSZ reveal complicated structural geology that is untenable to explain simply in terms of channel flow. For example, in the former section, flexure slip folds exist in a zone spatially separated from the upper strand of the South Tibetan Detachment System (STDSU). On the other hand, in the later section, an STDSU- in the sense of Mukherjee and Koyi (1)- is absent. Instead, a steep extensional shear zone with northeasterly dipping shear plane cuts the pre-existing shear fabrics throughout the HHSZ. However, the following common structural features in the HHSZ were observed in these sections. (1) S-C fabrics are the most ubiquitous ductile shear sense indicators in field. (2) Brittle shearing along the preexisting ductile primary shear planes in a top-to-SW sense. (3) Less ubiquitous ductile compressional shearing in the upper part of the shear zone including the STDSU. (4) A phase of local brittle-ductile extension throughout the shear zone as revealed by boudins of various morphologies. (5) The shear zone is divisible into a southern non-migmatitic and a northern migmatitic zone. No special structural dissimilarity is observed across this lithological boundary. Keywords: Channel flow, Extrusion, Higher Himalaya, Structural Geology, Shear zone, Deformation References 1. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. International Journal of Earth Sciences. 2. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. International Journal of Earth Sciences.
2011-03-01
zirconium. For the standard, Brayton open-cycle, gas turbine, typical of modern aircraft power plants, the thermodynamic efficiency is heavily driven by...linearize the radiation emission term around Ti,j0 from a previous the previous step, Taylor expand, and rearrange Eq. (23) in terms of Ti,j to apply as...York: Wiley. 2004. Nilsson, J. W., and Riedel, S. A. Electric Circuits. Prentice Hall. 2007. 512 Noda, N. Thermal Stresses. Taylor & Francis. 2002
USDA-ARS?s Scientific Manuscript database
As this manuscript is a response to a Letter to the Editor of the Agronomy Journal, no technical abstract exists. Presented below is the technical abstract for the paper in question. Stage-specific economic injury levels form the basis of integrated pest management for soybean aphid (Aphis glycine...
Increased lymphangiogenesis in Riedel thyroiditis (Immunoglobulin G4-related thyroid disease).
Cameselle-Teijeiro, José; Ladra, María Jesús; Abdulkader, Ihab; Eloy, Catarina; Soares, Paula; Barreiro, Francisco; Sobrinho-Simões, Manuel; Beiras-Iglesias, Andrés
2014-09-01
The present study describes in depth a case of Riedel thyroiditis (RT) to clarify its pathogenesis and its putative inclusion in the spectrum of IgG4-related disease. We report the clinicopathological, immunohistochemical, and ultrastructural features of a case of RT in a 39-year-old white Spanish woman, admitted with a hard goiter and cold nodule in the left thyroid lobe. This case represents 0.05 % of a series of 1,973 consecutive thyroidectomies performed in our hospital. More than 80 % of the left thyroid lobe was effaced by fibrosis and inflammation (lymphocytes, 57 IgG4+ plasma cells per 1 high-power field, an IgG4/IgG ratio of 0.67, and eosinophils) with extension into the surrounding tissues and occlusive phlebitis. Immunostaining for podoplanin (D2-40) detected signs of increased lymphangiogenesis in the fibroinflammatory areas that were confirmed by electron microscopy. A strong, diffuse stain for podoplanin and transforming growth factor ß1 was also detected in the same areas. The increased number of lymphatic vessels in RT is reported for the first time. Our findings support the inclusion of RT within the spectrum of IgG4-related thyroid disease (IgG4-RTD). Although the etiology and physiopathology of IgG4-RTD still remain elusive, the results obtained in the present case suggest the participation of lymphatic vessels in the pathogenesis of RT.
Early Hypoparathyroidism Reversibility with Treatment of Riedel's Thyroiditis.
Stan, Marius N; Haglind, Elizabeth G; Drake, Matthew T
2015-09-01
Riedel's thyroiditis (RT) is a rare, fibroinflammatory condition which induces gradual thyroid gland destruction and adjacent soft-tissue fibrous infiltration. About one- seventh of RT cases are associated with hypoparathyroidism, necessitating long-term therapy for symptomatic hypocalcemia. The reversibility of the parathyroid hormone deficit has not been fully described. A 40-year-old woman with no prior history of thyroid disease presented with a six month history of progressive thyroid enlargement complicated by worsening dysphagia and positional dyspnea. Her past medical history was remarkable only for retroperitoneal fibrosis. Physical examination revealed a large, hard, non-mobile goiter. Thyroid indices while maintained on levothyroxine were normal, but marked asymptomatic hypocalcemia with an inappropriately normal parathyroid hormone level was noted. Thyroid imaging and fine needle aspiration were consistent with RT. Isthmectomy and subsequent serial corticosteroid and tamoxifen treatment led to rapid symptom improvement. Serum calcium and parathyroid hormone levels returned to the reference range within three months. We describe a case of RT in which hypoparathyroidism resolved after treatment targeted the mechanical compression and the fibroinflammatory milieu of the patient's thyroidal disease. RT can be associated with hypoparathyroidism that is clinically silent at presentation. Mechanical decompression of the goiter and immunomodulatory therapy can reverse the fibrosclerotic process and lead to rapid recovery of parathyroid gland function, as in this patient. However, in most cases hypoparathyroidism is persistent and requires continued treatment to prevent symptomatic hypocalcemia.
NASA Astrophysics Data System (ADS)
Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.
2018-03-01
In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.
Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow
NASA Astrophysics Data System (ADS)
Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.
2003-05-01
We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.
Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow
NASA Astrophysics Data System (ADS)
Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard
2015-12-01
The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.
NASA Astrophysics Data System (ADS)
Finocchio, Peter M.
The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for shallow layers of upper-level shear. Many of the wind profiles tested in the idealized simulations have shear height or depth values on the tails of these distributions, suggesting that the environmental wind profiles around real TCs do not exhibit enough structural variability to have the clear statistical relationship to intensity change that we expected. In the final part of this dissertation, we use the reanalyzed TC environments to initialize ensembles of idealized simulations. Using a new modeling technique that allows for time-varying environments, these simulations examine the predictability implications of exposing a TC to different structures and magnitudes of vertical wind shear during its life cycle. We find that TCs in more deeply distributed vertical wind shear environments have a more uncertain intensity evolution than TCs exposed to shallower layers of upper-level shear. This higher uncertainty arises from a more marginal boundary layer environment that the deeply distributed shear establishes, which enhances the TC sensitivity to the magnitude of deep-layer shear. Simulated radar reflectivity also appears to evolve in a more uncertain fashion in environments with deeply distributed vertical shear. However, structural predictability timescales, computed as the time it takes for errors in the amplitude or phase of azimuthal asymmetries of reflectivity to saturate, are similar for wind profiles with shallow upper-level shear and deeply distributed shear. Both ensembles demonstrate predictability timescales of two to three days for the lowest azimuthal wavenumbers of amplitude and phase. As the magnitude of vertical wind shear increases to universally destructive levels, structural and intensity errors begin to decrease. Shallow upper-level shear primes the TC for a more pronounced recovery in the predictability of the wavenumber-one precipitation structure in stronger shear. The recovered low-wavenumber predictability of TC precipitation structure and the collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.
Rizzo, Leonardo F L; Mana, Daniela L; Bruno, Oscar D
2014-01-01
The term thyroiditis comprises a group of thyroid diseases characterized by the presence of inflammation, including autoimmune and non-autoimmune entities. It may manifest as an acute illness with severe thyroid pain (subacute thyroiditis and infectious thyroiditis), and conditions in which the inflammation is not clinically evident evolving without pain and presenting primarily thyroid dysfunction and/or goiter (drug-induced thyroiditis and Riedel thyroiditis). The aim of this review is to provide an updated approach on non-autoimmune thyroiditis and its clinical, diagnostic and therapeutic aspects.
Process for Assessing the Stability of HAN (Hydroxylamine)-Based Liquid Propellants.
1987-07-29
liquid propellants on the basis of HAN according to Fig. 1 can be determined directly by Fischer titration. This method requires a special unit, as the...Wasserreagenzien nach Eugen Scholz fUr die Karl - Fischer -Titration (Guidelines by Messrs. Riedel-de Haen for Titration according to the Karl Fischer ...Propellant components 2 2.2 Methods of determination 3 2.3 Acid/base titration and pK values 4 2.4 The Titroprozessor 636 8 2.5 Propellant analyses 10
Embedding memories in colloidal gels though oscillatory shear
NASA Astrophysics Data System (ADS)
Schwen, Eric; Ramaswamay, Meera; Jan, Linda; Cheng, Chieh-Min; Cohen, Itai
While gels are ubiquitous in applications from food products to filtration, their mechanical properties are usually determined by self-assembly. We use oscillatory shear to train colloidal gels, embedding memories of the training protocol in rheological responses such as the yield strain and the gel network structures. When our gels undergo shear, the particles are forced to rearrange until they organize into structures that can locally undergo reversible shear cycles. We utilize a high-speed confocal microscope and a shear cell to image a colloidal gel while simultaneously straining the gel and measuring its shear stresses. By comparing stroboscopic images of the gel, we quantify the decrease in particle rearrangement as the gel develops reversible structures. We analyze and construct a model for the rates at which different regions in the gel approach reversible configurations. Through characterizing the gel network, we determine the structural origins of these shear training memories in gels. These results may allow us to use shear training protocols to produce gels with controllable yield strains and to better understand changes in the microstructure and rheology of gels that undergo repeated shear through mixing or flowing. This research was supported in part by NSF CBET 1509308 and Xerox Corporation.
NASA Astrophysics Data System (ADS)
Takodjou Wambo, Jonas Didero; Ganno, Sylvestre; Djonthu Lahe, Yannick Sthopira; Kouankap Nono, Gus Djibril; Fossi, Donald Hermann; Tchouatcha, Milan Stafford; Nzenti, Jean Paul
2018-06-01
Linear and nonlinear geostatistic is commonly used in ore grade estimation and seldom used in Geographical Information System (GIS) technology. In this study, we suggest an approach based on geostatistic linear ordinary kriging (OK) and Geographical Information System (GIS) techniques to investigate the spatial distribution of alluvial gold content, mineralized and gangue layers thicknesses from 73 pits at the Ngoura-Colomines area with the aim to determine controlling factors for the spatial distribution of mineralization and delineate the most prospective area for primary gold mineralization. Gold content varies between 0.1 and 4.6 g/m3 and has been broadly grouped into three statistical classes. These classes have been spatially subdivided into nine zones using ordinary kriging model based on physical and topographical characteristics. Both mineralized and barren layer thicknesses show randomly spatial distribution, and there is no correlation between these parameters and the gold content. This approach has shown that the Ngoura-Colomines area is located in a large shear zone compatible with the Riedel fault system composed of P and P‧ fractures oriented NE-SW and NNE-SSW respectively; E-W trending R fractures and R‧ fractures with NW-SE trends that could have contributed significantly to the establishment of this gold mineralization. The combined OK model and GIS analysis have led to the delineation of Colomines, Tissongo, Madubal and Boutou villages as the most prospective areas for the exploration of primary gold deposit in the study area.
Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang
2015-01-01
The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules.
Strain gradient drives shear banding in metallic glasses
NASA Astrophysics Data System (ADS)
Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong
2017-09-01
Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.
Displacement-length scaling of brittle faults in ductile shear.
Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius
2011-11-01
Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.
Displacement–length scaling of brittle faults in ductile shear
Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius
2011-01-01
Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996
Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites
NASA Astrophysics Data System (ADS)
Liu, Xiao-guang; Li, Yan; Xue, Wen-dong; Sun, Jia-lin; Tang, Qian
2018-06-01
A cryogenic scanning electron microscopy (cryo-SEM) technique was used to explore the shear-thickening behavior of Fe-ZSM5 zeolite pastes and to discover its underlying mechanism. Bare Fe-ZSM5 zeolite samples were found to contain agglomerations, which may break the flow of the pastes and cause shear-thickening behaviors. However, the shear-thickening behaviors can be eliminated by the addition of halloysite and various boehmites because of improved particle packing. Furthermore, compared with pure Fe-ZSM5 zeolite samples and its composite samples with halloysite, the samples with boehmite (Pural SB or Disperal) additions exhibited network structures in their cryo-SEM images; these structures could facilitate the storage and release of flow water, smooth paste flow, and avoid shear-thickening. By contrast, another boehmite (Versal 250) formed agglomerations rather than network structures after being added to the Fe-ZSM5 zeolite paste and resulted in shear-thickening behavior. Consequently, the results suggest that these network structures play key roles in eliminating the shear-thickening behavior.
Analysis of Slab-column Shearwall Structure of 6000 Tons Cold Storage
NASA Astrophysics Data System (ADS)
He, Dongqing; Song, Pengwei; Jie, Pengyu
2018-05-01
Combining with the functional requirements, the site conditions and the 6000 tons load characteristics of cold storage, so determine its structure system for the slab-column-shear wall structure. The paper recommends the design of foundation, the settings of column cap, the arrangement of shear wall, the punching shear of floor slab and the analysis and calculation results of main structure. By addition shear wall in slab-column structure to increase the overall stiffness of structure and improve the seismic performance of structure. Take the detached form between the main structure and the external wall insulation, while set anchorage beam between in the main floor and the ring beam along the axis of the column grid to enhance the overall stability of the external wall insulation.
Contribution of peculiar shear motions to large-scale structure
NASA Technical Reports Server (NTRS)
Mueler, Hans-Reinhard; Treumann, Rudolf A.
1994-01-01
Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.
Colloidal Aggregate Structure under Shear by USANS
NASA Astrophysics Data System (ADS)
Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.
2015-03-01
Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.
Importance of intrinsic properties of dense caseinate dispersions for structure formation.
Manski, Julita M; van Riemsdijk, Lieke E; van der Goot, Atze J; Boom, Remko M
2007-11-01
Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (> or =15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures during shearing and concurrent enzymatic cross-linking. In contrast, sodium caseinate formed isotropic structures using similar processing conditions. The main difference between the two types of caseinates is the counterion present, and as a consequence, the size of structural elements and their interactions. The rheological behavior of calcium caseinate and sodium caseinate reflected these differences, yielding non-monotonic and shear thinning flow behavior for calcium caseinate whereas sodium caseinate behaved only slightly shear thinning. It appears that the intrinsic properties of the dense caseinate dispersions, which are reflected in their rheological behavior, affect the structure formation that was found after applying shear. Therefore, rheological measurements are useful to obtain an indication of the structure formation potential of caseinate dispersions.
Mapping the Dynamics of Shear Stress—Induced Structural Changes in Endothelial Cells
Mott, Rosalind E.; Helmke, Brian P.
2009-01-01
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and extracellular matrix on a time scale of minutes. Using multi-wavelength 4-D fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and of GFP-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in both subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly towards the downstream direction within one minute after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and extracellular matrix are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction. PMID:17855768
Shear-layer structures in near-wall turbulence
NASA Technical Reports Server (NTRS)
Johansson, A. V.; Alfredsson, P. H.; Kim, J.
1987-01-01
The structure of internal shear layer observed in the near-wall region of turbulent flows is investigated by analyzing flow fields obtained from numerical simulations of channel and boundary-layer flows. It is found that the shear layer is an important contributor to the turbulence production. The conditionally averaged production at the center of the structure was almost twice as large as the long-time mean value. The shear-layer structure is also found to retain its coherence over streamwise distances on the order of a thousand viscous length units, and propagates with a constant velocity of about 10.6 u sub rho throughout the near wall region.
Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyatt, Nicholas B.; O'Hern, Timothy J.; Shelden, Bion
Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made formore » a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.« less
Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann
2014-12-01
Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.
Handedness in shearing auxetics creates rigid and compliant structures
NASA Astrophysics Data System (ADS)
Lipton, Jeffrey Ian; MacCurdy, Robert; Manchester, Zachary; Chin, Lillian; Cellucci, Daniel; Rus, Daniela
2018-05-01
In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.
The Closest M-Dwarf Quadruple System to the Sun
2013-12-24
N. Quinn1, J. R. Cantrell1, A. R. Riedel3,4, J. P. Subasavage5, J. G. Winters1, and C. J. Crockett5 1 Department of Physics and Astronomy, Georgia...period of 1.795±0.017 days. Its velocity semi-amplitude of 21.4±0.5 km s− 1 corresponds to a minimum mass of 61 ± 7MJUP; the new companion, which we...mass Online-only material: color figure 1 . INTRODUCTION Although the processes involved in single star formation have a wide variety of observational and
VizieR Online Data Catalog: Catalog of Suspected Nearby Young Stars (Riedel+, 2017)
NASA Astrophysics Data System (ADS)
Riedel, A. R.; Blunt, S. C.; Lambrides, E. L.; Rice, E. L.; Cruz, K. L.; Faherty, J. K.
2018-04-01
LocAting Constituent mEmbers In Nearby Groups (LACEwING) is a frequentist observation space kinematic moving group identification code. Using the spatial and kinematic information available about a target object (α, δ, Dist, μα, μδ, and γ), it determines the probability that the object is a member of each of the known nearby young moving groups (NYMGs). As with other moving group identification codes, LACEwING is capable of estimating memberships for stars with incomplete kinematic and spatial information. (2 data files).
Structural response of bead-stiffened thermoplastic shear webs
NASA Technical Reports Server (NTRS)
Rouse, Marshall
1991-01-01
The results of an experimental and analytical study of the structural response and failure characteristics of selected bead-stiffened thermoplastic shear-webs are presented. Results are given for specimens with one stiffeneer, with two stiffeners, and different stiffener geometries. Selected analytical results that were obtained with the Computational Structural Mechanics (CSM) Testbed computer code are presented. Analytical results that describe normal and transverse shear stress are also presented.
Shear and shearless Lagrangian structures in compound channels
NASA Astrophysics Data System (ADS)
Enrile, F.; Besio, G.; Stocchino, A.
2018-03-01
Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.
NASA Astrophysics Data System (ADS)
Zhu, W.; Aitken, B. G.; Sen, S.
2017-02-01
All families of inorganic glass-forming liquids display non-Newtonian rheological behavior in the form of shear thinning at high shear rates. Experimental evidence is presented to demonstrate the existence of remarkable universality in this behavior, irrespective of chemical composition, structure, topology, and viscosity. However, contrary to intuition, in all cases the characteristic shear rates that mark the onset of shear thinning in these liquids are orders of magnitude slower than the global shear relaxation rates. Attempt is made to reconcile such differences within the framework of the cooperative structural relaxation model of glass-forming liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less
Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow
NASA Astrophysics Data System (ADS)
Moreira, N.; Dias, R.
2018-05-01
The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.
Deformation structure analysis of material at fatigue on the basis of the vector field
NASA Astrophysics Data System (ADS)
Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.
2017-12-01
In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.
NASA Astrophysics Data System (ADS)
Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.
2012-04-01
Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).
Influence of vibration on structure rheological properties of a highly concentrated suspension
NASA Astrophysics Data System (ADS)
Ouriev Uriev, Boris N.; Uriev, Naum B.
2005-08-01
The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.
Structure of a reattaching supersonic shear flow
NASA Technical Reports Server (NTRS)
Samimy, M.; Abu-Hijleh, B. A. K.
1988-01-01
A Mach 1.83 fully developed turbulent boundary layer with boundary layer thickness, free stream velocity, and Reynolds number of 7.5 mm, 476 m/s, and 6.2 x 10 to the 7th/m, respectively, was separated at a 25.4-mm backward step and formed a shear layer. Fast-response pressure transducers, schlieren photography, and LDV were used to study the structure of this reattaching shear flow. The preliminary results show that large-scale relatively organized structures with limited spanwise extent form in the free shear layer. Some of these structures appear to survive the recompression and reattachment processes, while others break down into smaller scales and the flow becomes increasingly three-dimensional. The survived large-scale structures lose their organization through recompression/reattachment, but regain it after reattachment. The structures after reattachment form a 40-45-degree angle relative to the free stream and deteriorate gradually as they move downstream.
Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids
NASA Astrophysics Data System (ADS)
Ingebrigtsen, Trond S.; Tanaka, Hajime
2018-01-01
Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.
Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.
Ingebrigtsen, Trond S; Tanaka, Hajime
2018-01-02
Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.
Fan-structure waves in shear ruptures
NASA Astrophysics Data System (ADS)
Tarasov, Boris
2016-04-01
This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.
NASA Astrophysics Data System (ADS)
Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo
2018-05-01
This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.
Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.
2001-07-01
We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.
Nadir Ayrilmis; Jerrold E. Winandy
2007-01-01
The influence of four fire-retardant systems on the planar (rolling) shear properties of structural hardwood plywood is evaluated using two possible ASTM D2718 test methodologies: the plate-shear method and the five-point flexural shear method. Knowing the planar shear properties and the potential of the various fire-retardant systems to affect properties is critical...
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1989-01-01
The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.
NASA Astrophysics Data System (ADS)
Lee, Ji-Seok; Song, Ki-Won
2015-11-01
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
Push-out tests and evaluation of FRP perfobond rib shear connectors performance
NASA Astrophysics Data System (ADS)
Kolpasky, Ludvik; Ryjacek, Pavel
2017-09-01
The behavioural characteristics of FRP (fibre-reinforced polymer) perfobond rib shear connector was examined through push-out tests in order to verify the applicability for pedestrian bridge structure. The aim of this study is to determine interaction between high performance concrete slab and handmade FRP plate which represent web of the composite beam. Combination of these modern materials leads to structural system with both great load bearing capacity and also sufficient flexural stiffness of the composite element. Openings cut into the GFRP plate at a variable spacing allow GFRP reinforcement bars to be inserted to act as shear studs. Hand lay-up process can increase suitable properties of FRP for connection by perfobond rib shear connectors. In this study, three push-out tests on fiber-reinforced polymer were performed to investigate their shear behaviour. The results of the push-out tests on FRP perfobond rib shear connector indicates great promise for application in full scale structures.
NASA Astrophysics Data System (ADS)
Liu, Pinzhi; Lu, Jie; Yu, Hualong; Ren, Ning; Lockwood, Frances E.; Wang, Q. Jane
2017-08-01
The shear thinning of a lubricant significantly affects lubrication film generation at high shear rates. The critical shear rate, defined at the onset of shear thinning, marks the transition of lubricant behaviors. It is challenging to capture the entire shear-thinning curve by means of molecular dynamics (MD) simulations owing to the low signal-to-noise ratio or long calculation time at comparatively low shear rates (104-106 s-1), which is likely coincident with the shear rates of interest for lubrication applications. This paper proposes an approach that correlates the shear-thinning phenomenon with the change in the molecular conformation characterized by the radius of gyration of the molecule. Such a correlation should be feasible to capture the major mechanism of shear thinning for small- to moderate-sized non-spherical molecules, which is shear-induced molecular alignment. The idea is demonstrated by analyzing the critical shear rate for squalane (C30H62) and 1-decene trimer (C30H62); it is then implemented to study the behaviors of different molecular weight poly-α-olefin (PAO) structures. Time-temperature-pressure superpositioning (TTPS) is demonstrated and it helps further extend the ranges of the temperature and pressure for shear-thinning behavior analyses. The research leads to a relationship between molecular weight and critical shear rate for PAO structures, and the results are compared with those from the Einstein-Debye equation.
NASA Technical Reports Server (NTRS)
Pitz, R. W.
1981-01-01
A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward-facing step. The mean and rms averages of the turbulent velocity flow field were determined by LDV for both reacting and non-reacting flows. The reaching flow was visualized by high speed schlieren photography. Large scale structures dominate the reacting shear layer. The growth of the large scale structures is tied to the propagation of the flame. The linear growth rate of the reacting shear layer defined by the mean velocity profiles is unchanged by combustion but the virtual origin is shifted downstream. The reacting shear layer based on the mean velocity profiles is shifted toward the recirculation zone and the reattachments lengths are shortened by 30%.
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1988-01-01
The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.
Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia
NASA Astrophysics Data System (ADS)
Fridovsky, Valery; Polufuntikova, Lena
2017-04-01
The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits combined aggregate and intergranular cleavage. The third cataclastic-segregation morphologic type (Cd from 3.0 to 4.5) is distinguished by a wide distribution of lentelliptical grains of rock-forming minerals in a finely-crystalline matrix and by intergranular cleavage. The rocks of the fourth segregation-striate morphologic type (Cd >5.0) contain lenticular segregations of quartz and feldspar in an intensely linearized mylonite groundmass.
Movement sense determination in sheared rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, C.
1985-01-01
Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less
Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan
NASA Astrophysics Data System (ADS)
Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.
2016-06-01
Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.
Yang, Shufan; Phan, Hop V; Bustamante, Heriberto; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D
2017-06-01
Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Wrinkling of Stretched Films: Shear Stress
NASA Technical Reports Server (NTRS)
Zak, M. A.
1982-01-01
Report presents theoretical investigation on nonlinear shearing characteristics of wrinkling films under applied shear stress. Report helps explain force/deflection characteristic of in-planeboom and solar-array blanket structural combinations.
The Flowfield Characteristics of a Mach 2 Diamond Jet
NASA Technical Reports Server (NTRS)
Washington, Donnell; Alvi, Farrukh S.; Krothapalli, Anjanevulu
1997-01-01
The potential for using a novel diamond-shaped nozzle which may allow for superior mixing characteristics of supersonic jets without significant thrust losses is explored. The results of flow visualization and pressure measurements indicate the presence of distinct structures in the shear layers, not normally observed in shear layers of axisymmetric and rectangular jets. As characteristics of these features suggests that they are a manifestation of significant streamwise vorticity in the shear layers. Despite the distinct nature of the flowfield structure of the present shear layer, the global growth rates of this shear layer were found to be very similar to its two-dimensional and axisymmetric counterparts. These and other observations suggest that the presence of streamwise vorticity may not play a significant role in the global development of a compressible shear layer.
Buffet, Camille; Groussin, Lionel
2013-02-01
The diagnosis of thyroiditis encompasses a broad spectrum of thyroid disorders. Analysis of signs and symptoms, biochemical changes, neck ultrasound characteristics and radioactive iodine uptake values allows an accurate diagnosis. Recent studies of the whole genome have helped to identify many susceptibility genes for autoimmune thyroiditis. However, none of these genes contribute to a significant increase in risk of developing this thyroiditis. Clinical awareness of the characteristic presentations of exceptional thyroiditis (acute suppurative thyroiditis, Riedel's thyroiditis) is an important issue. Selenium administration seems to be beneficial for reducing the incidence of thyroiditis. Finally, certain drug-induced thyroiditis remains a therapeutic challenge for the physician.
NASA Astrophysics Data System (ADS)
Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping
2018-04-01
An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.
2007-01-01
The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.
NASA Astrophysics Data System (ADS)
Oriolo, S.; Oyhantçabal, P.; Heidelbach, F.; Wemmer, K.; Siegesmund, S.
2015-10-01
The Sarandí del Yí Shear Zone is a crustal-scale shear zone that separates the Piedra Alta Terrane from the Nico Pérez Terrane and the Dom Feliciano Belt in southern Uruguay. It represents the eastern margin of the Río de la Plata Craton and, consequently, one of the main structural features of the Precambrian basement of Western Gondwana. This shear zone first underwent dextral shearing under upper to middle amphibolite facies conditions, giving rise to the reactivation of pre-existing crustal fabrics in the easternmost Piedra Alta Terrane. Afterwards, pure-shear-dominated sinistral shearing with contemporaneous magmatism took place under lower amphibolite to upper greenschist facies conditions. The mylonites resulting from this event were then locally reactivated by a cataclastic deformation. This evolution points to strain localization under progressively retrograde conditions with time, indicating that the Sarandí del Yí Shear Zone represents an example of a thinning shear zone related to the collisional to post-collisional evolution of the Dom Feliciano Belt that occurred between the Meso- to Neoproterozoic (>600 Ma) and late Ediacaran-lower Cambrian times.
Measuring Interlayer Shear Stress in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Wang, Guorui; Dai, Zhaohe; Wang, Yanlei; Tan, PingHeng; Liu, Luqi; Xu, Zhiping; Wei, Yueguang; Huang, Rui; Zhang, Zhong
2017-07-01
Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers and interfaces between 2D materials. Herein, we report the first measurement of the interlayer shear stress of bilayer graphene based on pressurized microscale bubble loading devices. We demonstrate continuous growth of an interlayer shear zone outside the bubble edge and extract an interlayer shear stress of 40 kPa based on a membrane analysis for bilayer graphene bubbles. Meanwhile, a much higher interfacial shear stress of 1.64 MPa was determined for monolayer graphene on a silicon oxide substrate. Our results not only provide insights into the interfacial shear responses of the thinnest structures possible, but also establish an experimental method for characterizing the fundamental interlayer shear properties of the emerging 2D materials for potential applications in multilayer systems.
Analysis of passive damping in thick composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.
1993-01-01
Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
NASA Astrophysics Data System (ADS)
Lemone, Margaret A.; Zipser, Edward J.; Trier, Stanley B.
1998-12-01
A collection of case studies is used to elucidate the influence of environmental soundings on the structure and evolution of the convection in the mesoscale convective systems sampled by the turboprop aircraft in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE). The soundings were constructed primarily from aircraft data below 5-6 km and primarily from radiosonde data at higher altitudes.The well-documented role of the vertical shear of the horizontal wind in determining the mesoscale structure of tropical convection is confirmed and extended. As noted by earlier investigators, nearly all convective bands occurring in environments with appreciable shear below a low-level wind maximum are oriented nearly normal to the shear beneath the wind maximum and propagate in the direction of the low-level shear at a speed close to the wind maximum; when there is appreciable shear at middle levels (800-400 mb), convective bands form parallel to the shear. With appreciable shear at both levels, the lower-level shear determines the orientation of the primary convective bands. If the midlevel shear is opposite the low-level shear, secondary bands parallel to the midlevel shear will extend rearward from the primary band in later stages of its evolution; if the midlevel shear is 90 degrees to the low-level shear, the primary band will retain its two-dimensional mesoscale structure. Convection has no obvious mesoscale organization on days with little shear or days with widespread convection.Environmental temperatures and humidities have no obvious effect on the mesoscale convective pattern, but they affect COARE convection in other ways. The high tops of COARE convection are related to high parcel equilibrium levels, which approach 100 mb in some cases. Convective available potential energies are larger than those in the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) mainly because of the higher equilibrium levels. The buoyancy integrated over the lowest 500 mb is similar for the two experiments. Convective inihibitions are small, enabling convection to propagate with only weak forcing. Comparison of slow-moving shear-parallel bands in COARE and GATE suggests that lower relative humidities between the top of the mixed layer and 500 mb can shorten their lifetimes significantly.COARE mesoscale organization and evolution differs from what was observed in GATE. Less-organized convection is more common in COARE. Of the convective bands observed, a greater fraction in COARE are faster-moving, shear-perpendicular squall lines. GATE slow-moving lines tend to be longer lived than those for COARE. The differences are probably traceable to differences in environmental shear and relative humidity, respectively.
NASA Technical Reports Server (NTRS)
Gatski, Thomas B. (Editor); Sarkar, Sutanu (Editor); Speziale, Charles G. (Editor)
1992-01-01
Various papers on turbulence are presented. Individual topics addressed include: modeling the dissipation rate in rotating turbulent flows, mapping closures for turbulent mixing and reaction, understanding turbulence in vortex dynamics, models for the structure and dynamics of near-wall turbulence, complexity of turbulence near a wall, proper orthogonal decomposition, propagating structures in wall-bounded turbulence flows. Also discussed are: constitutive relation in compressible turbulence, compressible turbulence and shock waves, direct simulation of compressible turbulence in a shear flow, structural genesis in wall-bounded turbulence flows, vortex lattice structure of turbulent shear slows, etiology of shear layer vortices, trilinear coordinates in fluid mechanics.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Dilatancy induced ductile-brittle transition of shear band in metallic glasses.
Zeng, F; Jiang, M Q; Dai, L H
2018-04-01
Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.
Dilatancy induced ductile-brittle transition of shear band in metallic glasses
NASA Astrophysics Data System (ADS)
Zeng, F.; Jiang, M. Q.; Dai, L. H.
2018-04-01
Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marín-Santibáñez, Benjamín M.; Pérez-González, José, E-mail: jpg@esfm.ipn.mx; Rodríguez-González, Francisco
2014-11-01
The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shearmore » stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics.« less
Driscoll, Tristan P.; Nerurkar, Nandan L.; Jacobs, Nathan T.; Elliott, Dawn M.; Mauck, Robert L.
2011-01-01
Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2–4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that deposited ECM contributes to the construct shear properties. Collectively, these findings show that aligned electrospun PCL scaffolds are a promising tool for engineering fibrocartilage tissues, and that the shear properties of both acellular and cell-seeded formulations can match or exceed native tissue benchmarks. PMID:22098865
NASA Astrophysics Data System (ADS)
Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.
2016-03-01
On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed by "magnetic" superconductors Sm, which have singlet pairing and are separated from the normal n wire by spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in particular that both the "nematic" and the "magnetic" cases can be realized in these junctions. In a two-terminal structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations of the "magnetic" superconductors with attached additional singlet superconductor, we find a nonmonotonic temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak like dependence on the exchange field in the "magnetic" superconductors. Although there is no current through the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in the superconuctor S is shown to affect the Josephson current in a multiterminal structure.
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
NASA Astrophysics Data System (ADS)
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
Johnson, P.R.; Kattan, F.H.; Wooden, J.L.
2001-01-01
The Asir terrane consists of north-trending belts of variably metamorphosed volcanic, sedimentary, and plutonic rocks that are cut by numerous shear zones (Fig. 1). Previous workers interpreted the shear zones as sutures, structures that modify earlier sutures, or structures that define the margins of tectonic belts across which there are significant lithologic differences and along which there may have been major transposition (Frisch and Al-Shanti, 1977; Greenwood et al., 1982; Brown et al., 1989). SHRIMP data from zircons (Table 1) and sense-of-shear data recently acquired from selected shear zones in the terrane help to constrain the minimum ages and kinematics of these shearing events and lead to an overall model of terrane assembly that is more complex than previously proposed.
Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.
Le Crom, Bénédicte; Castaings, Michel
2010-04-01
This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.
Structure of high and low shear-stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, G.; de Kat, R.; Ganapathisubramani, B.
2018-01-01
Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.
Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear
NASA Astrophysics Data System (ADS)
Labib, Moheb
The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads. The applied out-of-plane shear load was resolved in two equal out-of-plane shear components to construct tri-directional shear interaction diagrams.
Scaling of Energy Absorption in Composites to Enhance Survivability
2006-08-01
structures very weak in shear, such as the naval-type foam-laminate sandwich plates, has been solved. Various competing formulas have been subject to...for the case of general homogenized orthotropic structures very soft in shear, including layered structures that are loaded tranversely to the
Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D
2018-05-01
We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
Kish, Laszlo B; Abbott, Derek; Granqvist, Claes G
2013-01-01
Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law-Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged.
Kish, Laszlo B.; Abbott, Derek; Granqvist, Claes G.
2013-01-01
Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law–Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged. PMID:24358129
Structural control of co-continuous poly(L-lactide)/poly(butylene succinate)/clay nanocomposites.
Zhao, Li; Li, Yongjin; Shimizu, Hiroshi
2009-04-01
Poly(L-lactide) (PLLA)/poly(butylene succinate) (PBS) (55/45 w/w) blends with different amounts of nanoclay loadings were prepared using a specially designed high-shear extruder, HSE3000mini, which can reach a maximum shear rate of 4400 sec(-1). The resulted co-continuous structural morphologies were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM observation revealed that through the combination of various amounts of nanoclay loadings and processing under various shear conditions, the phase size of co-continuous structures of PLLA/PBS blends can be controlled over a wide range from several tens of micrometers to submicrometers. TEM observation shows that all the nanoclays are selectively dispersed in the PBS phase. We also found that clays in low-shear processed sample were mainly located at the interface of PBS phase, while in high-shear sample, the clays were mainly located inside of the PBS phase. It was considered that the dependence of nanoclay location in the PBS phase on the shear conditions, as well as the changing of the viscosity ratio of PBS and PLLA phase with different amounts of clay loading, play important roles in controlling the phase size of the co-continuous structures of PLLA/PBS blends.
The experimental verification on the shear bearing capacity of exposed steel column foot
NASA Astrophysics Data System (ADS)
Xijin, LIU
2017-04-01
In terms of the shear bearing capacity of the exposed steel column foot, there are many researches both home and abroad. However, the majority of the researches are limited to the theoretical analysis sector and few of them make the experimental analysis. In accordance with the prototype of an industrial plant in Beijing, this paper designs the experimental model. The experimental model is composed of six steel structural members in two groups, with three members without shear key and three members with shear key. The paper checks the shear bearing capacity of two groups respectively under different axial forces. The experiment shows: The anchor bolt of the exposed steel column foot features relatively large shear bearing capacity which could not be neglected. The results deducted through calculation methods proposed by this paper under two situations match the experimental results in terms of the shear bearing capacity of the steel column foot. Besides, it also proposed suggestions on revising the Code for Design of Steel Structure in the aspect of setting the shear key in the steel column foot.
NASA Astrophysics Data System (ADS)
Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan
2015-04-01
Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing pinch and swell structures.
Long range stress correlations in the inherent structures of liquids at rest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Sadrul; Abraham, Sneha; Hudson, Toby
2016-03-28
Simulation studies of the atomic shear stress in the local potential energy minima (inherent structures) are reported for binary liquid mixtures in 2D and 3D. These inherent structure stresses are fundamental to slow stress relaxation and high viscosity in supercooled liquids. We find that the atomic shear stress in the inherent structures (IS’s) of both liquids at rest exhibits slowly decaying anisotropic correlations. We show that the stress correlations contribute significantly to the variance of the total shear stress of the IS configurations and consider the origins of the anisotropy and spatial extent of the stress correlations.
The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation
Spicer; Keller; Pratsinis
1996-12-01
The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45° pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing
2015-04-01
Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures. Electronic supplementary information (ESI) available: Movies show the evolution of different grain boundaries under shear deformation: S-0, S-54.74, S-70.53-A, S-70.53-B, S-90. See DOI: 10.1039/c4nr07496c
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls
NASA Astrophysics Data System (ADS)
Lu, Xilin; Yang, Boya; Zhao, Bin
2018-04-01
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
NASA Astrophysics Data System (ADS)
Ritvanen, J.; Jalali, P.
2009-06-01
Rapid granular shear flow is a classical example in granular materials which exhibits both fluid-like and solid-like behaviors. Another interesting feature of rapid granular shear flows is the formation of ordered structures upon shearing. Certain amount of granular material, with uniform size distribution, is required to be loaded in the container in order to shear it under stable conditions. This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous rotation of the plate over the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height from three symmetric locations and rotational speed of the shearing plate are measured. The annulus has a capacity of up to 15 kg of spherical steel balls of 3 mm in diameter. Rapid shear flow experiments are performed in one compressive force and rotation rate. The sensitivity of fluctuations is then investigated by different means through monodisperse packing. In this work, we present the results of the experiments showing how the flow properties depend on the amount of loaded granular material which is varied by small amounts between different experiments. The flow can exist in stable (fixed behavior) and unstable (time-dependent behavior) regimes as a function of the loaded material. We present the characteristics of flow to detect the formation of any additional structured layer in the annulus. As a result, an evolution graph for the bed height has been obtained as material is gradually added. This graph shows how the bed height grows when material increases. Using these results, the structure inside the medium can be estimated at extreme stable and unstable conditions.
Porosity modification during and following deposition of deep-water sediments
NASA Astrophysics Data System (ADS)
Butler, R. W.; McCaffrey, W. D.; Haughton, P.; del Pino Sanchez, A.; Barker, S.; Hailwood, E.; Hakes, B.
2005-12-01
Deposition and early burial of sediments, especially sandy turbidites, are commonly accompanied by the reorganization of porosity structure through the localized expulsion of interstitial fluid. Fluid escape structures are preserved as thin sheets and pipes. Coeval sediment remobilization may be represented by shear structures, commonly taken to indicate down-slope creep and slumping. The history of shearing vs dewatering may be established from cross-cutting structures preserved in outcrop and/or core. Although these relationships are known for gravity-driven soft-sediment deformation on submarine slopes, they can also develop during deposition itself due to shear from the over-riding flow. Such deformation features, including pseudo s-c fabrics and distributed shear, together may previously have been misinterpreted as indicators of palaeoslope (slumps) or even of tectonic deformation. Progressive aggradation of sandy turbidites can show complex banded facies within which soft-sediment deformation is tiered. Syn-deposition micro-growth strata testify to ongoing seabed deformation occurring beneath active flows, while the bedforms themselves provide direct measurements of the magnitude of shear stresses imparted into the seabed and estimates of the shear strength of this substrate. Such banded facies may be interpreted in terms of cyclic partitioning of shear stress into the flow and the substrate. The modified porosity structures and related heterogeneities in permeability of such materials may persist during deeper burial, influencing the rheology of the sediment. These bed-scale processes are reflected in the quality and flow rates of hydrocarbon reservoirs. The reorganization of sand-body architecture through remobilization, by traction and/or down-slope failure, also has a strong impact on the permeability on the multi-bed scale (10s-100s m). Examples will be presented from hydrocarbon reservoirs in the subsurface and from outcrops of Tertiary turbidites in the Alpine-Apennine orogenic system.
Structures Formed in Experimentally Sheared Artificial Fault Gouge: Precise Statistical Measurements
NASA Astrophysics Data System (ADS)
Dilov, T.; Yoshida, S.; Kato, A.; Nakatani, M.; Mochizuki, H.; Otsuki, K.
2004-12-01
The physical parameters governing earthquakes change with the ongoing formation and evolution of structures, formed in the course of a single or multiple earthquakes, within a particular fault zone or in a broad volume containing interacting tectonic faults. Our precise knowledge of these complex phenomena is still elusive. Especially, works considering geometrical evolution of shear structures under controlled conditions are rare. In order to gain some insights we accomplished a set of 12 laboratory experiments using a servo-controlled direct-shear apparatus, under room temperature and without controlling the air humidity. Two fault gouge layers (industrially produced quartz powder, average particle size of 5 μ m, and pre-shear thickness of 1.5, 2.0 and 3.0 mm,) were sandwiched between three granite blocks. The middle block was slid in order to create frictional structures within the simulated gouge. The total imposed shear strain varies between 0.14 and 11.80. The post-shear gouge layer thickness ranges from 0.99-2.11 mm. Each experiment was run under a constant normal stress (varying from 10-44 MPa through the experiments) and at a constant shear velocity (0.07, 0.7 and 7 μ m/s, through the experiments). Later, in cross-sections of solidified by epoxy glue gouge (parallel to the shear direction, normal to the gouge walls,) we quantified the numerous R-shears, according to their density distribution, fracture thickness (measured perpendicularly to the fracture walls), fracture angle and morphology, and fracture length. In gouge views parallel to the sliding blocks, we measured fracture length and along-strike R-shear morphology. Although the latter data are with lower quality, both observational sets provide precise statistical fracture data as well snapshots of evolving 3D structures. We observe shear localization with decreasing gouge layer thickness and with increasing normal stress. The average density of major fractures increases from 2.83 to 3.67 [fracture/cm] for decrease of the post-shear gouge layer thickness. This is at the expense of a considerable decrease of visible more diffusive minor fractures. On the other hand, the fractures formed at lower normal stress are more irregular and show average fracture density of 4.48 [fracture/cm]. The latter decreases down to 3.64 at higher normal stress, as the fracture morphology becomes more regular. The fracture density increases abruptly from zero, after a small total shear strain (0.15-0.50), and later the change is slower or none with the increase of the total shear strain; the fractures are already localized and they accommodate most of the brittle deformation. Also we observe weak polarity in fracture development in accordance to the sliding sense, especially in the subset of fractures starting from the gouge wall and dying out within the gouge layer. More such fractures are developed along the leading part of the sliding blocks. Our results throw new light over the formation and development of fault-related structures and their dependency on the earthquake-governing physical parameters.
Ideal strength of bcc molybdenum and niobium
NASA Astrophysics Data System (ADS)
Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.
2002-09-01
The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211}<111> and {011}<111> slip systems and the ideal tensile strength in the <100> direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along <100>, it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in <100> becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.
NASA Astrophysics Data System (ADS)
Courbin, L.; Benayad, A.; Panizza, P.
2006-01-01
By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.
NASA Astrophysics Data System (ADS)
Lee, Young Ki; Ahn, Kyung Hyun; Lee, Seung Jong
2014-12-01
The local shear stress of non-Brownian suspensions was investigated using the lattice Boltzmann method coupled with the smoothed profile method. Previous studies have only focused on the bulk rheology of complex fluids because the local rheology of complex fluids was not accessible due to technical limitations. In this study, the local shear stress of two-dimensional solid particle suspensions in Couette flow was investigated with the method of planes to correlate non-Newtonian fluid behavior with the structural evolution of concentrated particle suspensions. Shear thickening was successfully captured for highly concentrated suspensions at high particle Reynolds number, and both the local rheology and local structure of the suspensions were analyzed. It was also found that the linear correlation between the local particle stress and local particle volume fraction was dramatically reduced during shear thickening. These results clearly show how the change in local structure of suspensions influences the local and bulk rheology of the suspensions.
Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure
NASA Astrophysics Data System (ADS)
Zhang, Zhuangnan; Zhang, Yan
2018-03-01
With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.
Metal Flow in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2006-01-01
The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.
Shear-induced aggregation dynamics in a polymer microrod suspension
NASA Astrophysics Data System (ADS)
Kumar, Pramukta S.
A non-Brownian suspension of micron scale rods is found to exhibit reversible shear-driven formation of disordered aggregates resulting in dramatic viscosity enhancement at low shear rates. Aggregate formation is imaged at low magnification using a combined rheometer and fluorescence microscope system. The size and structure of these aggregates are found to depend on shear rate and concentration, with larger aggregates present at lower shear rates and higher concentrations. Quantitative measurements of the early-stage aggregation process are modeled by a collision driven growth of porous structures which show that the aggregate density increases with a shear rate. A Krieger-Dougherty type constitutive relation and steady-state viscosity measurements are used to estimate the intrinsic viscosity of complex structures developed under shear. Higher magnification images are collected and used to validate the aggregate size versus density relationship, as well as to obtain particle flow fields via PIV. The flow fields provide a tantalizing view of fluctuations involved in the aggregation process. Interaction strength is estimated via contact force measurements and JKR theory and found to be extremely strong in comparison to shear forces present in the system, estimated using hydrodynamic arguments. All of the results are then combined to produce a consistent conceptual model of aggregation in the system that features testable consequences. These results represent a direct, quantitative, experimental study of aggregation and viscosity enhancement in rod suspension, and demonstrate a strategy for inferring inaccessible microscopic geometric properties of a dynamic system through the combination of quantitative imaging and rheology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.
The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubularmore » structure.« less
Shear Induced Structural Relaxation in a Supercooled Colloidal Liquid
NASA Astrophysics Data System (ADS)
Chen, Dandan; Semwogerere, Denis; Weeks, Eric R.
2009-11-01
Amorphous materials include many common products we use everyday, such as window glass, moisturizer, shaving cream and peanut butter. These materials have liquid-like disordered structure, but keep their shapes like a solid. The rheology of dense amorphous materials under large shear strain is not fully understood, partly due to the difficulty of directly viewing the microscopic details of such materials. We use a colloidal suspension to simulate amorphous materials, and study the shear- induced structural relaxation with fast confocal microscopy. We quantify the plastic rearrangements of the particles using standard analysis techniques based on the motion of the particles.
A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows
NASA Astrophysics Data System (ADS)
Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.
2011-01-01
In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters M and M should be used to model significant structural compressibility effects at high-speed shear flow.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui
2017-04-01
A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.
Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys
NASA Technical Reports Server (NTRS)
Troeger, Lillianne P.; Domack, Marcia S.; Wagner, John A.
2000-01-01
Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationships for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which had undergone various amounts of shear-forming strain were studied to correlate the grain structure, texture, and mechanical properties developed during and after shear forming.
Spatial correlation of shear-wave velocity within San Francisco Bay Sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2006-01-01
Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.
A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress
NASA Astrophysics Data System (ADS)
Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi
2014-11-01
A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.
Vertical structures in vibrated wormlike micellar solutions
NASA Astrophysics Data System (ADS)
Epstein, Tamir; Deegan, Robert
2008-11-01
Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.
Microscopic Observations of Adiabatic Shear Bands in Three Different Steels
1988-09-01
low thermal conductivity, and a high thermal softening rate. Examples include alloys of titanium. aluminum, copper , as well as steels [5-221... steels : 1 (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and deformation in shear was impo.ed to produce shear bands...stecls: (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and (3) an AISI 4340 VAR steel tempered
A homogeneous 2D deformation of geological interest: Rotation shear
NASA Astrophysics Data System (ADS)
Bastida, Fernando; Bobillo-Ares, Nilo C.; Aller, Jesús; Lisle, Richard J.
2018-07-01
We define a simple two-dimensional deformation called "rotation shear". It has one line of no finite longitudinal strain with invariant direction and another one that rotates with the deformation. An analysis of this deformation is carried out. Rotation shear superficially resembles simple shear but the analysis reveals that the two deformations have very different properties. In general, lines deformed by simple shear show a more complex deformation history and undergo greater longitudinal strain, i.e. are more extended, than lines deformed by rotation shear. Rotation shear is used to explain the development of geological structures such as kink bands, ideal similar folds, crenulation and crenulation cleavage and shear zones.
On the linear stability of sheared and magnetized jets without current sheets - relativistic case
NASA Astrophysics Data System (ADS)
Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.
2018-03-01
In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.
2012-08-01
loaded joints including bearing -type shear loaded joints and friction type shear loaded joints . Appendix Figure 2f.A-3 shows an illustration of each... Loaded Joint Bearing Type Shear Loaded Joint Friction Type Shear Loaded Joint Tension Loaded Joint 62 Approved for public release...Joining of materials and structures: from pragmatic process to enabling technology.
Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method
NASA Astrophysics Data System (ADS)
Guo, Xin; Wang, Qiang
The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.
Modifications to intermittent turbulent structures by sheared flow in LAPD
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Schaffner, David; Carter, Troy; Guice, Danny; Bengtson, Roger
2012-10-01
Turbulence in the edge of the Large Plasma Device is generally observed to be intermittent with the production of filamentary structures. Density-enhancement events (called ``blobs'') are localized to the region radially outside the edge of the cathode source while density-depletion events (called ``holes'') are localized to the region radially inward. A flow-shear layer is also observed to be localized to this same spatial region. Control over the edge flow and shear in LAPD is now possible using a biasable limiter. Edge intermittency is observed to be strongly affected by variations in the edge flow, with intermittency (as measured by skewness of the fluctuation amplitude PDF) increasing with edge flow (in either direction) and reaching a minimum when spontaneous edge flow is zeroed-out using biasing. This trend is counter to the observed changes in turbulent particle flux, which peaks at low flow/shear. Two-dimensional cross-conditional averaging confirms the blobs to be detached filamentary structures with a clear dipolar potential structure and a geometry also dependent on the magnitude of sheared flow. More detailed measurements are made to connect the occurrence of these blobs to observed flow-driven coherent modes and their contribution to radial particle flux.
Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Priezjev, Nikolai
2010-03-01
The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.
NASA Astrophysics Data System (ADS)
Axen, Gary J.; Bartley, John M.; Selverstone, Jane
1995-12-01
The kinematic and temporal sequence of structures observed to overprint mylonites along the Brenner Line low-angle normal fault may record passage of the footwall through two rolling hinges, at the top and bottom of a ramp in the shear zone. The structures comprise west down brittle and brittle-ductile structures and east down brittle structures. PT conditions of formation (250° to >400°C and 2-23 km depth), obtained from analysis of oriented fluid inclusion planes, indicate that west down structures were formed at greater depths and temperatures, and therefore earlier, than the east down structures. These data suggest that the brittle structures formed under conditions that permit crystal-plastic deformation at long-term geologic strain rates and therefore probably reflect transient rapid strain rates and/or high fluid pressure. Structures inferred to have formed at a lower hinge are consistent with viscous flow models of rolling-hinge deformation and support the concept of a crustal asthenosphere. Such high temperatures at shallow crustal depth also suggest significant upward advection of heat by extensional unroofing of warm rocks, which may have reduced the flexural rigidity of the footwall and thus affected mechanical behavior at the upper rolling hinge. Exposed mylonitic foliation within a few hundred meters of the Brenner line and on top of the east-west trending anticlines in the footwall dips ˜15° west. Our data favor a ramp dip of ˜25° but permit a dip as great as 45°. Fluid inclusion data suggest that structures related to the hinge at the base of the ramp formed at depths of 12-25 km. If the average dip of the Brenner shear zone to those depths was 20°, intermediate between the favored ramp dip and the dip of exposed foliation, then the horizontal component of slip could be as high as 33-63 km. The two discrete sets of structures with opposite shear senses, formed in the temporal sequence indicated by PT data, are consistent with subvertical simple shear models of rolling-hinge strain. This kinematic pattern is not predicted by the flexural-failure model for rolling hinges. However, the predominance of normal slip at the upper hinge, which extends rather than shortens the mylonitic foliation, fails to match the subvertical simple shear model, which predicts shortening of the foliation there. One possible solution is that superposition of regional extension upon hinge-related stresses modified the rolling-hinge kinematics. Such a modified subvertical shear model can account for the observed small foliation-parallel extensional strains if the foliation was bent <5°-10° passing through the upper hinge. If more bending than that occurred, the data suggest rolling-hinge kinematics in which deformation is achieved by uniform-sense simple shear across the shear zone as in the subvertical simple shear model but in which material lines parallel to the shear-zone foliation and the detachment fault undergo very small length changes, presumably indicating that footwall rocks retained significant resistance to shear and underwent minimal permanent strain. The mechanics that would generate such a rolling hinge are uncertain but may incorporate aspects of both subvertical simple shear and flexural failure. An important kinematic consequence of such a rolling hinge is that all of the net slip across a normal fault, not only its horizontal component, is converted into horizontal extension. This implies a significantly larger magnitude of crustal extension across dipping normal faults whose footwalls passed through a rolling hinge than for those that did not develop along with a hinge.
Tseng, Huan-Chang; Chang, Rong-Yeu; Wu, Jiann-Shing
2011-01-28
Extensive computer experiments have been conducted in order to shed light on the macroscopic shear flow behavior of liquid n-hexadecane fluid under isobaric-isothermal conditions through the nonequilibrium molecular dynamic methodology. With respect to shear rates, the accompanying variations in structural properties of the fluid span the microscopic range of understanding from the intrinsic to extrinsic characteristics. As drawn from the average value of bond length and bond angle, the distribution of dihedral angle, and the radius distribution function of intramolecular and intermolecular van der Waals distances, these intrinsic structures change with hardness, except in the situation of extreme shear rates. The shear-induced variation of thermodynamic state curve along with the shear rate studied is shown to consist of both the quasiequilibrium state plateau and the nonequilibrium-thermodynamic state slope. Significantly, the occurrence of nonequilibrium-thermodynamic state behavior is attributed to variations in molecular potential energies, which include bond stretching, bond bending, bond torsion, and intra- and intermolecular van der Waals interactions. To unfold the physical representation of extrinsic structural deformation, under the aggressive influence of a shear flow field, the molecular dimension and appearance can be directly described via the squared radius of gyration and the sphericity angle, R(g)(2) and ϕ, respectively. In addition, a specific orientational order S(x) defines the alignment of the molecules with the flow direction of the x-axis. As a result, at low shear rates, the overall molecules are slightly stretched and shaped in a manner that is increasingly ellipsoidal. Simultaneously, there is an obvious enhancement in the order. In contrast to high shear rates, the molecules spontaneously shrink themselves with a decreased value of R(g)(2), while their shape and order barely vary with an infinite value of ϕ and S(x). It is important to note that under different temperatures and pressures, these three parameters are integrated within a molecular description in response to thermodynamic state variable of density and rheological material function of shear viscosity.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh
2018-02-01
One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate mechanism, especially in the core of diapir with higher pure shear component relative to simple shear component, whilst a Couette flow at the margins of diapir is the dominate mechanism with higher simple shear component relative to pure shear component. The obtained kinematic vorticity number reflects spatial partitioning of dominantly Poiseuille flow in core and Couette flow along edges of diapir. These two mechanisms reflect a persistent flow governed by a simultaneous combination of pure shear and simple shear in a hybrid Poiseuille-Coutte Flow.
A finite element formulation with combined loadings for shear dominant RC structures.
DOT National Transportation Integrated Search
2008-08-01
Inelastic failure of reinforced concrete (RC) structures under seismic loadings can be due either to loss of flexural, shear or bond : capacity. Specifically, the effect of combined loadings can lead to a complex failure mechanism that plays a vital ...
Shear induced structures in crystallizing cocoa butter
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.
2004-03-01
Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Bhattacharjee, A.
2014-12-10
We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region ofmore » space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.« less
Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor
NASA Technical Reports Server (NTRS)
Chandrasekharan, Vijay (Inventor); Sells, Jeremy (Inventor); Sheplak, Mark (Inventor); Arnold, David P. (Inventor)
2014-01-01
A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection.
NASA Astrophysics Data System (ADS)
Kuchenbecker, Matheus; Sanglard, Júlio Carlos Destro
2018-07-01
Sedimentary rocks usually show a significant mechanical anisotropy due to its layered nature. Because of this, they play an important role controlling rock deformation and the study of the deformation partitioning caused by rheological heterogeneities becomes a crucial step to understand the inversion of sedimentary basins. The detachment and interlayer shear zones, described at southern Espinhaço range, correspond to part of the structural collection that records the compressive deformation which is associated to the Brazilian-Pan African orogeny during Gondwana amalgamation. The mechanical contrast between lithological units is the main parameter of control for the occurrence of these zones which can be found with variable thickness from millimeter interlayer shear zones to regional-sized basement-cover detachment zones. The phyllitic layers are the most incompetent lithotype among metasedimentary rocks and they play an important role in the ductile-brittle regional deformation by accommodating much of the deformation during faulting and/or folding. Even though being a more competent rock, internal interlayer shear zones and other shear structures can be found in quartzite when in contact with weaker rocks. These structures accommodate a significant amount of deformation at the southern Espinhaço range and, because of this, they are of great value in understanding the inversion of the Espinhaço basins during West Gondwana assembly. The focus of the present paper is to discuss the main situations where interlayer shear occurs, to present a brief compendium of the main structures associated to this process and to add parameters to its recognition and interpretation.
Three-dimensional simulations of cumulus congestus clouds on GATE day 261
NASA Technical Reports Server (NTRS)
Simpson, J.; Van Helvoirt, G.; Mccumber, M.
1982-01-01
Schlesinger's (1978) three-dimensional cumulus model is applied to showering congestus clouds on day 261 of GATE. Model results are compared with each other and with observations to analyze the effects of varying shear and altered sounding. Relationships between shear, mesovortices and dynamic entrainment are examined, as well as the model clouds' impact on the environment as a function of shear. The simulations appear to resemble reality in many important aspects. Altostratus layers observed on day 261 are found to be a by-product of convection in three-dimensional shear. Rapid erosion of cloud base to 3.6 km is related to the ambient thermal structure, with wind shear and initial perturbation playing a secondary role. Some of the apparent conflict regarding lateral versus cloud-top entrainment is clarified, as well as some factors governing convective downdraft structure and intensity.
Robust Kalman filter design for predictive wind shear detection
NASA Technical Reports Server (NTRS)
Stratton, Alexander D.; Stengel, Robert F.
1991-01-01
Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.
NASA Astrophysics Data System (ADS)
Calabrese, Michelle A.
Surfactant wormlike micelles (WLMs) are of particular scientific interest due to their ability to branch, break, and reform under shear, which can lead to shear banding flow instabilities. The tunable self-assembly of WLMs makes them ubiquitous in applications ranging from consumer products to energy recovery fluids. Altering the topology of WLMs by inducing branching provides a microstructural pathway to design and optimize the flow properties for such targeted applications. The goal of this thesis is to understand the role of micellar branching on the resulting equilibrium and non-equilibrium properties, while advancing instrumentation and analysis methods in rheology and neutron scattering. The degree of branching in the mixed cationic/anionic surfactant solutions is controlled by the addition of sodium tosylate. The equilibrium properties are characterized via small angle neutron scattering (SANS), linear viscoelastic rheology, neutron spin echo, and dynamic light scattering. Combining rheology with spatiotemporally-resolved SANS enables unambiguous identification of non-equilibrium rheological and scattering signatures of branching and shear banding. The nonlinear WLM response is characterized via flow-SANS under steady shear, shear startup, and large amplitude oscillatory shear. New methods of time-resolved data analysis are developed, which improve experimental resolution by several-fold. Shear-induced orientation is a complex function of branching level, radial position, and deformation type. The structural mechanisms behind shear band formation are elucidated for steady and dynamic flows, which depend on branching level. Shear banding disappears at high branching levels for all deformation types. These responses are used to validate constitutive modeling predictions of dynamic shear banding for the first time. Finally, quantitative metrics to predict shear banding from rheology or flow-induced orientation are developed. Together, advanced rheological and neutron techniques provide a platform for creating structure-property relationships that predict flow and structural phenomena in WLMs and other soft materials. These methods have enabled characteristic differences in linear versus branched WLMs to be determined. This research is part of a broader effort to characterize branching in polymers and self-assembled systems, and may aid in the formulation of WLMs for specific applications. Finally, this work provides a basis for testing and developing microstructure-based constitutive equations that incorporate micellar breakage and branching.
Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals
NASA Astrophysics Data System (ADS)
Panizza, Pascal; Archambault, Pascal; Roux, Didier
1995-02-01
The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).
Evolution of finite-amplitude localized vortices in planar homogeneous shear flows
NASA Astrophysics Data System (ADS)
Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob
2017-02-01
An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.
NASA Astrophysics Data System (ADS)
Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon
2014-07-01
Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.
Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway
NASA Astrophysics Data System (ADS)
Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon
2016-10-01
Pre-existing structures within crystalline basement may exert a significant influence over the evolution of rifts. However, the exact manner in which these structures reactivate and thus their degree of influence over the overlying rift is poorly understood. Using borehole-constrained 2D and 3D seismic reflection data from offshore southern Norway we identify and constrain the three-dimensional geometry of a series of enigmatic intrabasement reflections. Through 1D waveform modelling and 3D mapping of these reflection packages, we correlate them to the onshore Caledonian thrust belt and Devonian shear zones. Based on the seismic-stratigraphic architecture of the post-basement succession, we identify several phases of reactivation of the intrabasement structures associated with multiple tectonic events. Reactivation preferentially occurs along relatively thick (c. 1 km), relatively steeply dipping (c. 30°) structures, with three main styles of interactions observed between them and overlying faults: i) faults exploiting intrabasement weaknesses represented by intra-shear zone mylonites; ii) faults that initiate within the hangingwall of the shear zones, inheriting their orientation and merging with said structure at depth; or iii) faults that initiate independently from and cross-cut intrabasement structures. We demonstrate that large-scale discrete shear zones act as a long-lived structural template for fault initiation during multiple phases of rifting.
Exact coherent structures in an asymptotically reduced description of parallel shear flows
NASA Astrophysics Data System (ADS)
Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith
2015-02-01
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
Crystal-to-Crystal Transition of Ultrasoft Colloids under Shear
NASA Astrophysics Data System (ADS)
Ruiz-Franco, J.; Marakis, J.; Gnan, N.; Kohlbrecher, J.; Gauthier, M.; Lettinga, M. P.; Vlassopoulos, D.; Zaccarelli, E.
2018-02-01
Ultrasoft colloids typically do not spontaneously crystallize, but rather vitrify, at high concentrations. Combining in situ rheo-small-angle-neutron-scattering experiments and numerical simulations we show that shear facilitates crystallization of colloidal star polymers in the vicinity of their glass transition. With increasing shear rate well beyond rheological yielding, a transition is found from an initial bcc-dominated structure to an fcc-dominated one. This crystal-to-crystal transition is not accompanied by intermediate melting but occurs via a sudden reorganization of the crystal structure. Our results provide a new avenue to tailor colloidal crystallization and the crystal-to-crystal transition at the molecular level by coupling softness and shear.
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Wu, Liguang
2006-01-01
A high-resolution numerical simulation of Hurricane Erin (2001) is used to examine the organization of vertical motion in the eyewall and how that organization responds to a large and rapid increase in the environmental vertical wind shear and subsequent decrease in shear. During the early intensification period, prior to the onset of significant shear, the upward motion in the eyewall was concentrated in small-scale convective updrafts that formed in association with regions of concentrated vorticity (herein termed mesovortices) with no preferred formation region in the eyewall. Asymmetric flow within the eye was weak. As the shear increased, an azimuthal wavenumber 1 asymmetry in storm structure developed with updrafts tending to form on the downshear to downshear-left side of the eyewall. Continued intensification of the shear led to increasing wavenumber 1 asymmetry, large vortex tilt, and a change in eyewall structure and vertical motion organization. During this time, the eyewall structure was dominated by a vortex couplet with a cyclonic (anticyclonic) vortex on the downtilt-left (downtilt-right) side of the eyewall and strong asymmetric flow across the eye that led to strong mixing of eyewall vorticity into the eye. Upward motion was concentrated over an azimuthally broader region on the downtilt side of the eyewall, upstream of the cyclonic vortex, where low-level environmental inflow converged with the asymmetric outflow from the eye. As the shear diminished, the vortex tilt and wavenumber 1 asymmetry decreased, while the organization of updrafts trended back toward that seen during the weak shear period.
NASA Astrophysics Data System (ADS)
Bazhin, P. M.; Stolin, A. M.; Konstantinov, A. S.; Mukhina, N. I.; Pazniak, A.
2018-04-01
The results of an experimental study of TiB2-based powder material obtained under the combination of SHS processes with shear deformation are presented. The effects of the rotor velocity and the delay time before shear deformation application upon the structure of the synthesized powder are studied. The grain structure of titanium diboride is shown to become predominantly round with particles size of 1-5 μm with increasing the rotor velocity from 120 to 600 rpm. At the same time, particles of 200-400 nm size can be observed on the surface of the agglomerates.
NASA Technical Reports Server (NTRS)
Gatski, T. B.
1979-01-01
The sound due to the large-scale (wavelike) structure in an infinite free turbulent shear flow is examined. Specifically, a computational study of a plane shear layer is presented, which accounts, by way of triple decomposition of the flow field variables, for three distinct component scales of motion (mean, wave, turbulent), and from which the sound - due to the large-scale wavelike structure - in the acoustic field can be isolated by a simple phase average. The computational approach has allowed for the identification of a specific noise production mechanism, viz the wave-induced stress, and has indicated the effect of coherent structure amplitude and growth and decay characteristics on noise levels produced in the acoustic far field.
Yamaguchi, Tsuyoshi
2016-03-28
Theoretical calculations of the rheological properties of coarse-grained model ionic liquids were performed using mode-coupling theory. The nonpolar part of the cation was systematically increased in order to clarify the effects of the heterogeneous structure on shear viscosity. The shear viscosity showed a minimum as the function of the size of the nonpolar part, as had been reported in literatures. The minimum was ascribed to the interplay between the increase in the shear relaxation time and the decrease in the high-frequency shear modulus with increasing the size of the nonpolar part of the cation. The ionic liquids with symmetric charge distribution of cations were less viscous than those with asymmetric cations, which is also in harmony with experiments. The theoretical analysis demonstrated that there are two mechanisms for the higher viscosity of the asymmetric model. The first one is the direct coupling between the domain dynamics and the shear stress. The second one is that the microscopic dynamics within the polar domain is retarded due to the nonlinear coupling with the heterogeneous structure.
Microgravity Foam Structure and Rheology
NASA Technical Reports Server (NTRS)
Durian, Douglas J.
1997-01-01
To exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest is in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of static shear strain, shear strain rate, and time following a step strain; such data will be analyzed in terms of a yield stress, a static shear modulus, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which these macroscopic non-Newtonian properties presumably arise, will be obtained non-invasively by novel multiple-light scattering diagnostics such as Diffusing-Wave Spectroscopy (DWS). Quantitative trends with materials parameters, such as average bubble size, and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.
Preparation and Characterization of Cellulose Gels from Corn Cobs
USDA-ARS?s Scientific Manuscript database
Aqueous cellulose gels were prepared by extraction of ground corn cobs with hot aqueous sodium hydroxide/sodium hypochlorite and shearing. Initial shearing in a blender broke up cob tissue structure into individual cells and resulted in a gel. Subsequent shearing in a high pressure homogenizer incre...
Preparation and characterization of cellulose gels from corn cobs
USDA-ARS?s Scientific Manuscript database
Aqueous cellulose gels were prepared by extraction of ground corn cobs with hot aqueous sodium hydroxide/sodium hypochlorite and shearing. Initial shearing in a blender broke up cob tissue structure into individual cells and resulted in a gel. Subsequent shearing in a high pressure homogenizer incre...
NASA Astrophysics Data System (ADS)
Xie, Jun; Chu, Risheng; Yang, Yingjie
2018-05-01
Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (< 50 s) surface wave from ambient noise, while studies using long period surface wave from ambient noise are limited. In this paper, we demonstrate the feasibility of using long-period surface wave from ambient noise to study the lithospheric structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
NASA Astrophysics Data System (ADS)
Kirst, Frederik; Leiss, Bernd
2017-01-01
Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.
Impact of vertical wind shear on roll structure in idealized hurricane boundary layers
NASA Astrophysics Data System (ADS)
Wang, Shouping; Jiang, Qingfang
2017-03-01
Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
2015-08-01
Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less
NASA Astrophysics Data System (ADS)
Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing
2015-12-01
Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Karrech, A.; Schaubs, P. M.; Regenauer-Lieb, K.; Poulet, T.; Cleverley, J. S.
2012-03-01
This study simulates rock deformation around high temperature granite intrusions and explores how gold bearing shear zones near intrusions were developed in the Yilgarn, using a new continuum damage mechanics algorithm that considers the temperature and time dependent elastic-visco-plastic constitutive behaviour of crustal materials. The results demonstrate that strain rates have the most significant effects on structural patterns for both extensional and compressional cases. Smaller strain rates promote the formation of narrow high-strain shear zones and strong strain localisation along the flank or shoulder areas of the intrusion and cold granite dome. Wider diffuse shear zones are developed under higher strain rates due to strain hardening. The cooling of the intrusion to background temperatures occurred over a much shorter time interval when compared to the duration of deformation and shear zones development. Strong strain localisation near the intrusion and shear zone development in the crust occurred under both extensional and compressional conditions. There is always clear strain localisation around the shoulders of the intrusion and the flanks of the "cold" granitic dome in early deformation stages. In the models containing a pre-existing fault, strain localisation near the intrusion became asymmetric with much stronger localisation and the development of a damage zone at the shoulder adjacent to the reactivated fault. At higher deformation stages, the models produced a range of structural patterns including graben and half graben basin (extension), "pop-up" wedge structures (compression), tilted fault blocks and switch of shear movement from reverse to normal on shear zones. The model explains in part why a number of gold deposits (e.g. Wallaby and Paddington deposits) in the Yilgarn were formed near the flank of granite-cored domes and deep "tapping" faults, and shows that the new modelling approach is capable of realistically simulating high strain localisation and shear zone development.
The mean and turbulent flow structure of a weak hydraulic jump
NASA Astrophysics Data System (ADS)
Misra, S. K.; Kirby, J. T.; Brocchini, M.; Veron, F.; Thomas, M.; Kambhamettu, C.
2008-03-01
The turbulent air-water interface and flow structure of a weak, turbulent hydraulic jump are analyzed in detail using particle image velocimetry measurements. The study is motivated by the need to understand the detailed dynamics of turbulence generated in steady spilling breakers and the relative importance of the reverse-flow and breaker shear layer regions with attention to their topology, mean flow, and turbulence structure. The intermittency factor derived from turbulent fluctuations of the air-water interface in the breaker region is found to fit theoretical distributions of turbulent interfaces well. A conditional averaging technique is used to calculate ensemble-averaged properties of the flow. The computed mean velocity field accurately satisfies mass conservation. A thin, curved shear layer oriented parallel to the surface is responsible for most of the turbulence production with the turbulence intensity decaying rapidly away from the toe of the breaker (location of largest surface curvature) with both increasing depth and downstream distance. The reverse-flow region, localized about the ensemble-averaged free surface, is characterized by a weak downslope mean flow and entrainment of water from below. The Reynolds shear stress is negative in the breaker shear layer, which shows that momentum diffuses upward into the shear layer from the flow underneath, and it is positive just below the mean surface indicating a downward flux of momentum from the reverse-flow region into the shear layer. The turbulence structure of the breaker shear layer resembles that of a mixing layer originating from the toe of the breaker, and the streamwise variations of the length scale and growth rate are found to be in good agreement with observed values in typical mixing layers. All evidence suggests that breaking is driven by a surface-parallel adverse pressure gradient and a streamwise flow deceleration at the toe of the breaker. Both effects force the shear layer to thicken rapidly, thereby inducing a sharp free surface curvature change at the toe.
NASA Astrophysics Data System (ADS)
Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.
2015-10-01
Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.
Avalanches, and evolution of stress and fabric for a cyclically sheared granular material
NASA Astrophysics Data System (ADS)
Wang, Dengming; Bares, Jonathan; Wang, Dong; Behringer, Bob
2015-03-01
Granular materials yield for large enough shear stress, leading to avalanches. We seek to understand the relation between macroscopic avalanches and the the microscopic granular structure. We present an experimental study of a 2D granular material subjected to cyclic pure shear, which we visualized by a photo-elastic technique. We start from a stress-free sample of frictional particles in the shear-jamming regime (ϕS <= ϕ <=ϕJ). We apply multiple cycles of pure shear: shear in one direction, followed by a reversal to the original boundary configuration. The strain is made in small quasi-static steps: after each small step, we obtain polarized and unpolarized images yielding particle-scale forces and locations. Statistical measures of the avalanches are in reasonable agreement with recent mean-field avalanche models by Dahmen et al. (Nature Physics 7, 554 (2011)) The system structure evolves slowly to reduce the stress at the extrema of strain, similar to the relaxation observed by Ren et al. (Phys. Rev. Lett. 110, 018302 (2013)) in a simple shear experiment. To understand how this relaxation occurs, we track the stress and fabric tensors and measures of the strain field over many cycles of shear. Supported by NASA Grant NNX10AU01G, and NSF Grants DMR1206351 and DMS1248071.
NASA Astrophysics Data System (ADS)
Llana-Fúnez, Sergio; de Paola, Nicola; Pozzi, Giacomo; Lopez-Sanchez, Marco Antonio
2017-04-01
The current level of erosion in NW Iberian peninsula exposes Variscan mid-crustal depths, where widespread deformation during orogenesis produced dominantly ductile structures. It constitutes an adequate window for the observation of structures close to the brittle-plastic transition in the continental crust. The shear zone object of this work is the Malpica-Lamego line (MLL), a major Variscan structure formed in the late stages of the Variscan collision. The MLL is a mostly strike-slip major structure that offsets laterally by several kilometres the assembly of allochthonous complexes, that contain a sub-horizontal suture zone, which are the remnants of the plate duplication during the Variscan convergence. The shear zone is exposed along the northern coast of Galicia (NW Spain). It is characterized by phyllonites and quartz-mylonites in a zone which is tens of meters in thickness. Within the phyllonites, a few seams of cataclastic rocks have been found in bands along the main fabric. Their cohesive character, the parallelism between the different bands, the fact that host rocks maintain mineral assemblage and that no cross-cutting relations in the field were identified, are considered indicative of these brittle structures forming coetaneously with the ductile shearing producing the phyllonites. Samples from the phyllonites, also from quartz-mylonites, were prepared and powdered to characterize friction properties in a rotary shear apparatus at high, seismic velocities (m/s). Preliminary experiments run at room temperature and effective normal stresses between 10 to 25 MPa, show that friction coefficients µ are relatively high and a limited drop in friction coefficient occurs after 10-20 cm of slip, with µ decreasing from 0.7 to 0.5. Fracturing seems coetaneous with dominant ductile shearing within the shear zone, however, given the frictional properties of the phyllonites, it is unlikely that brittle deformation nucleates within these fault rocks. Instead, it seems that faulting originated in other sectors of the fault zone, and then propagated through the studied section.
Large-scale ordering of nanoparticles using viscoelastic shear processing.
Zhao, Qibin; Finlayson, Chris E; Snoswell, David R E; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P; Petukhov, Andrei V; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J
2016-06-03
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.
Large-scale ordering of nanoparticles using viscoelastic shear processing
Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.
2016-01-01
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808
The beaming of subhalo accretion
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.
2016-10-01
We examine the infall pattern of subhaloes onto hosts in the context of the large-scale structure. We find that the infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (~ 10 Mpc) scale - a scale accessible by current surveys of peculiar velocities - it follows that findings presented here open a new window into the relation between the observed large scale structure unveiled by current surveys of peculiar velocities and the preferential infall direction of the Local Group. This may shed light on the unexpected alignments of dwarf galaxies seen in the Local Group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Squire, A Bhattacharjee
We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr
2016-06-15
The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less
Fan-structure wave as a source of earthquake instability
NASA Astrophysics Data System (ADS)
Tarasov, Boris
2015-04-01
Today frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength at confined compression corresponding to the seismogenic layer. This determines the lithospheric strength and the primary earthquake mechanism associated with frictional stick-slip instability on pre-existing faults. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism the rock failure, associated with consecutive creation of small slabs (known as 'domino-blocks') from the intact rock in the rupture tip, is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new domino-blocks), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the lower limit of the lithospheric strength and favours the generation of new faults in pristine rocks in preference to frictional stick-slip instability along pre-existing faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength. However, the proximity of the pre-existing discontinuities to the area of instability caused by the fan mechanism creates the illusion of stick-slip instability on the pre-existing faults, thus concealing the real situation.
Seismic performance evaluation of RC frame-shear wall structures using nonlinear analysis methods
NASA Astrophysics Data System (ADS)
Shi, Jialiang; Wang, Qiuwei
To further understand the seismic performance of reinforced concrete (RC) frame-shear wall structures, a 1/8 model structure is scaled from a main factory structure with seven stories and seven bays. The model with four-stories and two-bays was pseudo-dynamically tested under six earthquake actions whose peak ground accelerations (PGA) vary from 50gal to 400gal. The damage process and failure patterns were investigated. Furthermore, nonlinear dynamic analysis (NDA) and capacity spectrum method (CSM) were adopted to evaluate the seismic behavior of the model structure. The top displacement curve, story drift curve and distribution of hinges were obtained and discussed. It is shown that the model structure had the characteristics of beam-hinge failure mechanism. The two methods can be used to evaluate the seismic behavior of RC frame-shear wall structures well. What’s more, the NDA can be somewhat replaced by CSM for the seismic performance evaluation of RC structures.
Transition of dislocation glide to shear transformation in shocked tantalum
Hsiung, Luke L.; Campbell, Geoffrey H.
2017-02-28
A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less
A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation
Wilkinson, Darren J.; Jayathilake, Pahala Gedara; Rushton, Steve P.; Bridgens, Ben; Li, Bowen; Zuliani, Paolo
2018-01-01
We investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation. We observe that the hydrodynamic shear force affects biofilm deformation in line with some literature. Sensitivity results also showed that the expected number of shear events, shear flow, yield coefficient for heterotrophic bacteria and extracellular polymeric substance (EPS) stiffness per unit EPS mass are the four principal mechanisms governing the bacteria detachment in this study. The sensitivity of the model parameters is temporally dynamic, emphasising the significance of conducting the sensitivity analysis across multiple time points. The surrogate models are shown to perform well, and produced ≈ 480 fold increase in computational efficiency. We conclude that a surrogate-based approach is effective, and resulting biofilm structure is determined primarily by a balance between bacteria growth, viscoelastic parameters and applied shear stress. PMID:29649240
The exploration technology and application of sea surface wave
NASA Astrophysics Data System (ADS)
Wang, Y.
2016-12-01
In order to investigate the seismic velocity structure of the shallow sediments in the Bohai Sea of China, we conduct a shear-wave velocity inversion of the surface wave dispersion data from a survey of 12 ocean bottom seismometers (OBS) and 377 shots of a 9000 inch3 air gun. With OBS station spacing of 5 km and air gun shot spacing of 190 m, high-quality Rayleigh wave data were recorded by the OBSs within 0.4 5 km offset. Rayleigh wave phase velocity dispersion for the fundamental mode and first overtone in the frequency band of 0.9 3.0 Hz were retrieved with the phase-shift method and inverted for the shear-wave velocity structure of the shallow sediments with a damped iterative least-square algorithm. Pseudo 2-D shear-wave velocity profiles with depth to 400 m show coherent features of relatively weak lateral velocity variation. The uncertainty in shear-wave velocity structure was also estimated based on the pseudo 2-D profiles from 6 trial inversions with different initial models, which suggest a velocity uncertainty < 30 m/s for most parts of the 2-D profiles. The layered structure with little lateral variation may be attributable to the continuous sedimentary environment in the Cenozoic sedimentary basin of the Bohai Bay basin. The shear-wave velocity of 200 300 m/s in the top 100 m of the Bohai Sea floor may provide important information for offshore site response studies in earthquake engineering. Furthermore, the very low shear-wave velocity structure (200 700 m/s) down to 400 m depth could produce a significant travel time delay of 1 s in the S wave arrivals, which needs to be considered to avoid serious bias in S wave traveltime tomographic models.
Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains
NASA Astrophysics Data System (ADS)
Mandare, Prashant N.
2007-12-01
Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.
Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst
2016-02-04
A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure-driven turbulence in ``No man's Land''
NASA Astrophysics Data System (ADS)
Kosuga, Yusuke; Diamond, Patrick
2012-10-01
Structures are often observed in many physical systems. In tokamaks, for example, such structures are observed as density blobs and holes. Such density blobs and holes are generated at the tokamak edge, where strong gradient perturbations generate an outgoing blob and an incoming hole. Since density holes can propagate from the edge to the core, such structures may play an important role in understanding the phenomenology of the edge-core coupling region, so-called ``No Man's Land.'' In this work, we discuss the dynamics of such structures in real space. In particular, we consider the dynamics of density blobs and holes in the Hasegawa-Wakatani system. Specific questions addressed here include: i) how these structures extract free energy and enhance transport? how different is the relaxation driven by such structures from that driven by linear drift waves? ii) how these structures interact with shear flows? In particular, how these structures interact with a shear layer, which can absorb structures resonantly? iii) how can we calculate the coupled evolution of structures and shear flows? Implications for edge-core coupling problem are discussed as well.
Mechanical History Dependence in Carbon Black Suspensions for Flow Batteries: A Rheo-Impedance Study
2017-01-01
We studied the effects of shear and its history on suspensions of carbon black (CB) in lithium ion battery electrolyte via simultaneous rheometry and electrical impedance spectroscopy. Ketjen black (KB) suspensions showed shear thinning and rheopexy and exhibited a yield stress. Shear step experiments revealed a two time scale response. The immediate effect of decreasing the shear rate is an increase in both viscosity and electronic conductivity. In a much slower secondary response, both quantities change in the opposite direction, leading to a reversal of the initial change in the conductivity. Stepwise increases in the shear rate lead to similar responses in the opposite direction. This remarkable behavior is consistent with a picture in which agglomerating KB particles can stick directly on contact, forming open structures, and then slowly interpenetrate and densify. The fact that spherical CB particles show the opposite slow response suggests that the fractal structure of the KB primary units plays an important role. A theoretical scheme was used to analyze the shear and time-dependent viscosity and conductivity. Describing the agglomerates as effective hard spheres with a fractal architecture and using an effective medium approximation for the conductivity, we found the changes in the derived suspension structure to be in agreement with our qualitative mechanistic picture. This behavior of KB in flow has consequences for the properties of the gel network that is formed immediately after the cessation of shear: both the yield stress and the electronic conductivity increase with the previously applied shear rate. Our findings thus have clear implications for the operation and filling strategies of semisolid flow batteries. PMID:28122184
On the self-organizing process of large scale shear flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, Andrew P. L.; Kim, Eun-jin; Liu, Han-Li
2013-09-15
Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2Dmore » hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.« less
Wang, Baoxiang; Yin, Yichao; Liu, Chenjie; Yu, Shoushan; Chen, Kezheng
2013-07-21
Flower-like BaTiO3/Fe3O4 hierarchically structured particles composed of nano-scale structures on micro-scale materials were synthesized by a simple solvothermal approach and characterized by the means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic testing and rotary viscometer. The influences on the morphology and structure of solvothermal times, type and amount of surfactant, EG : H2O ratio, etc. were studied. Magnetic testing results show that the samples have strong magnetism and they exhibit superparamagnetic behavior, as evidenced by no coercivity and the remanence at room temperature, due to their very small sizes, observed on the M-H loop. The saturation magnetization (M(s)) value can achieve 18.3 emu g(-1). The electrorheological (ER) effect was investigated using a suspension of the flower-like BaTiO3/Fe3O4 hierarchically structured particles dispersed in silicone oil. We can observe a slight shear-thinning behavior of shear viscosity at a low shear rate region even at zero applied electric field and a Newtonian fluid behavior at high shear rate regions.
Shear-Panel Test Fixture Eliminates Corner Stresses
NASA Technical Reports Server (NTRS)
Kiss, J. J.; Farley, G. L.; Baker, D. J.
1984-01-01
New design eliminates corner stresses while maintaining uniform stress across panel. Shear panel test fixture includes eight frames and eight corner pins. Fixture assembled in two halves with shear panel sandwiched in between. Results generated from this fixture will result in good data base for design of efficient aircraft structures and other applications.
D'Ancona, Giuseppe; Amaducci, Andrea; Rinaudo, Antonino; Pasta, Salvatore; Follis, Fabrizio; Pilato, Michele; Baglini, Roberto
2013-01-01
We present preliminary data on the flow-induced haemodynamic and structural loads exerted on a penetrating atherosclerotic aortic ulcer (PAU). Specifically, one-way fluid–structure interaction analysis was performed on the aortic model reconstructed from a 66-year-old male patient with a PAU that evolved into an intramural haematoma and rupture of the thoracic aorta. The results show that elevated blood pressure (117 mmHg) and low flow velocity at the aortic wall (0.15 m/s2) occurred in the region of the PAU. We also found a low value of time-averaged wall shear stress (1.24 N/m2) and a high value of the temporal oscillation in the wall shear stress (oscillatory shear index = 0.13) in the region of the PAU. After endovascular treatment, these haemodynamic parameters were distributed uniformly on the luminal surface of the stent graft. These findings suggest that wall shear stress could be considered one of the major haemodynamic factors indicating the structural fragility of the PAU wall, which ultimately lead to PAU growth and rupture. PMID:23736658
Shear-induced laning transition in a confined colloidal film
NASA Astrophysics Data System (ADS)
Gerloff, Sascha; Vezirov, Tarlan A.; Klapp, Sabine H. L.
2017-06-01
Using Brownian dynamics simulations, we investigate a dense system of charged colloids exposed to shear flow in a confined (slit-pore) geometry. The equilibrium system at zero flow consists of three well-pronounced layers with a squarelike crystalline in-plane structure. We demonstrate that, for sufficiently large shear rates, the middle layer separates into two sublayers where the particles organize into moving lanes with opposite velocities. The formation of this "microlaned" state results in a destruction of the applied shear profile; it also has a strong impact on the structure of the system, and on its rheology as measured by the elements of the stress tensor. At higher shear rates, we observe a disordered state and finally a recrystallization reminiscent of the behavior of bilayer films. We also discuss the system size dependence and the robustness of the microlaned state against variations of the slit-pore width. In fact, for a pore width allowing for four layers, we observe a similar shear-induced state in which the system splits into two domains with opposite velocities.
X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.
2015-12-15
X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less
NASA Astrophysics Data System (ADS)
Moore, Johnathan; Crandall, Dustin; Gill, Magdalena; Brown, Sarah; Tennant, Bryan
2018-04-01
Fluid flow in the subsurface is not well understood in the context of "impermeable" geologic media. This is especially true of formations that have undergone significant stress fluctuations due to injection or withdrawal of fluids that alters the localized pressure regime. When the pressure regime is altered, these formations, which are often already fractured, move via shear to reduce the imbalance in the stress state. While this process is known to happen, the evolution of these fractures and their effects on fluid transport are still relatively unknown. Numerous simulation and several experimental studies have been performed that characterize the relationship between shearing and permeability in fractures; while many of these studies utilize measurements of fluid flow or the starting and ending geometries of the fracture to characterize shear, they do not characterize the intermediate stages during shear. We present an experimental apparatus based on slight modifications to a commonly available Hassler core holder that allows for shearing of rocks, while measuring the hydraulic and mechanical changes to geomaterials during intermediate steps. The core holder modification employs the use of semi-circular end caps and structural supports for the confining membrane that allow for free movement of the sheared material while preventing membrane collapse. By integrating this modified core holder with a computed tomography scanner, we show a new methodology for understanding the interdependent behavior between fracture structure and flow properties during intermediate steps in shearing. We include a case study of this device function which is shown here through shearing of a fractured shale core and simultaneous observation of the mechanical changes and evolution of the hydraulic properties during shearing.
Moore, Johnathan; Crandall, Dustin; Gill, Magdalena; Brown, Sarah; Tennant, Bryan
2018-04-01
Fluid flow in the subsurface is not well understood in the context of "impermeable" geologic media. This is especially true of formations that have undergone significant stress fluctuations due to injection or withdrawal of fluids that alters the localized pressure regime. When the pressure regime is altered, these formations, which are often already fractured, move via shear to reduce the imbalance in the stress state. While this process is known to happen, the evolution of these fractures and their effects on fluid transport are still relatively unknown. Numerous simulation and several experimental studies have been performed that characterize the relationship between shearing and permeability in fractures; while many of these studies utilize measurements of fluid flow or the starting and ending geometries of the fracture to characterize shear, they do not characterize the intermediate stages during shear. We present an experimental apparatus based on slight modifications to a commonly available Hassler core holder that allows for shearing of rocks, while measuring the hydraulic and mechanical changes to geomaterials during intermediate steps. The core holder modification employs the use of semi-circular end caps and structural supports for the confining membrane that allow for free movement of the sheared material while preventing membrane collapse. By integrating this modified core holder with a computed tomography scanner, we show a new methodology for understanding the interdependent behavior between fracture structure and flow properties during intermediate steps in shearing. We include a case study of this device function which is shown here through shearing of a fractured shale core and simultaneous observation of the mechanical changes and evolution of the hydraulic properties during shearing.
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Qiao, Qiyun; Ma, Heng
2016-03-02
The seismic performance of recycled aggregate concrete (RAC) composite shear walls with different expandable polystyrene (EPS) configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC) protective layer (EPS modules as the external insulation layer), and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Qiao, Qiyun; Ma, Heng
2016-01-01
The seismic performance of recycled aggregate concrete (RAC) composite shear walls with different expandable polystyrene (EPS) configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC) protective layer (EPS modules as the external insulation layer), and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls. PMID:28773274
Dilatancy of Shear Transformations in a Colloidal Glass
NASA Astrophysics Data System (ADS)
Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.
2018-01-01
Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.
Rodríguez Patino, Juan M; Cejudo Fernández, Marta; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario
2007-09-01
The structural and shear characteristics of mixed monolayers formed by an adsorbed Na-caseinate film and a spread monoglyceride (monopalmitin or monoolein) on the previously adsorbed protein film have been analyzed. Measurements of the surface pressure (pi)-area (A) isotherm and surface shear viscosity (eta(s)) were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The structural and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. At surface pressures lower than the equilibrium surface pressure of Na-caseinate (at pi
Phase behavior of a simple dipolar fluid under shear flow in an electric field.
McWhirter, J Liam
2008-01-21
Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.
Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting
NASA Astrophysics Data System (ADS)
Huismans, R. S.; Duclaux, G.; May, D.
2017-12-01
Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jingli; Chen, Cun; Wang, Gang
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Alfredsson, P. Henrik
2018-06-01
Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.
Shear fabrics reveal orogen-parallel deformations, NW Lesser Garhwal Himalaya, Uttarakhand, India
NASA Astrophysics Data System (ADS)
Biswas, T.; Bose, N.; Mukherjee, S.
2017-12-01
Shear deformation along the Himalayan belt is poorly understood unlike that across the orogen. Field observations and structural analysis along Bhagirathi river section along the National Highway 34 reveals NW Lesser Himalaya (Garhwal region, India) suffered both compression and extension parallel to the orogenic belt and thus forms a unique venue of great structural and tectonic interest. Meso-scale ductile- and brittle shear fabrics, such as S-C, C-P, Y-P, Y-S; are emphasized describing such deformations. Extensional shear fabric strikes N43oE and compressional shear fabrics N39.5oE, which are at a low-angle with the orogenic trend. Our study reviews orogen parallel deformation, both extension as well as compression, taking examples from other part of the world (e.g., Central Andes, N Apennines and SW Alps) and from other terrains in the Himalaya. Proposed models are evaluated and compared with the study area. The results shows that the pre-existing remnant structures (e.g., the Delhi-Haridwar ridge) on the under-thrusting Indian shield/plate plays a vital role in modifying thin-skinned tectonics along with migration of the eastward extrusion of the Tibetian plateau (hinterland deformation) into the Himalayan foreland.
Structure and rheological characteristics of fucoidan from sea cucumber Apostichopus japonicus.
Yu, Long; Xue, Changhu; Chang, Yaoguang; Hu, Yanfang; Xu, Xiaoqi; Ge, Lei; Liu, Guanchen
2015-08-01
Sea cucumber is a traditional health food consumed in East Asia. In this study, fucoidan from sea cucumber Apostichopus japonicus (Aj-FUC) was isolated, and its structure and rheological characteristics were elucidated for the first time. Aj-FUC was a branched polysaccharide mainly composed of a novel repeating unit [α-L-Fucp2(OSO3(-))-1 → 3,(α-L-Fucp-1 → 4-α-L-Fucp-1 →)4-α-L-Fucp2(OSO3(-))-1 → 3-α-L-Fucp2(OSO3(-))], clarified by using a combination of infrared spectroscopy, methylation analysis, enzymatic degradation and nuclear magnetic resonance. In steady shear measurement, Aj-FUC manifested a non-Newtonian shear-thinning behaviour at low shear rate (1-100 S(-1)) while exhibiting a non-Newtonian shear-thickening behaviour at high shear rate (100-1000 S(-1)); salts had limited impact on its flow curve. Comparative study on viscosity and rheological behaviour of Aj-FUC and a linear fucoidan extracted from sea cucumber Acaudina molpadioides suggested that the presence of branch structure might significantly influence the rheological characteristics of fucoidan. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compact forced simple-shear sample for studying shear localization in materials
Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica
2015-11-06
In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less
NASA Astrophysics Data System (ADS)
Bergamini, A.; Christen, R.; Motavalli, M.
2007-04-01
The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.
A Two-Axis Direct Fluid Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Adcock, Edward E.; Scott, Michael A.; Bajikar, Sateesh S.
2010-01-01
This innovation is a miniature or micro sized semiconductor sensor design that provides two axis direct non-intrusive measurement of skin friction or wall shear stress in fluid flow. The sensor is fabricated by micro-electro-mechanical system (MEMS) technology, enabling small size and low cost reproductions. The sensors have been fabricated by utilizing MEMS fabrication processes to bond a sensing element wafer to a fluid coupling wafer. This layering technique provides for an out of plane dimension that is on the same order of length as the inplane dimensions. The sensor design has the following characteristics: a shear force collecting plate with dimensions that can be tailored to various application specific requirements such as spatial resolution, temporal resolution and shear force range and resolution. This plate is located coplanar to both the sensor body and flow boundary, and is connected to a dual axis gimbal structure by a connecting column or lever arm. The dual axis gimbal structure has torsional hinges with embedded piezoresistive torsional strain gauges which provide a voltage output that is correlated to the applied shear stress (and excitation current) on force collection plate that is located on the flow boundary surface (hence the transduction method). This combination of design elements create a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from the small shear stress on the flow boundary wall. This design as well as the use of back side electrical contacts establishes a non-intrusive method to quantitatively measure the shear force vector on aerodynamic bodies.
Shear and friction between carbon nanotubes in bundles and yarns.
Paci, Jeffrey T; Furmanchuk, Al'ona; Espinosa, Horacio D; Schatz, George C
2014-11-12
We perform a detailed density functional theory assessment of the factors that determine shear interactions between carbon nanotubes (CNTs) within bundles and in related CNT and graphene structures including yarns, providing an explanation for the shear force measured in recent experiments (Filleter, T. etal. Nano Lett. 2012, 12, 73). The potential energy barriers separating AB stacked structures are found to be irrelevant to the shear analysis for bundles and yarns due to turbostratic stacking, and as a result, the tube-tube shear strength for pristine CNTs is estimated to be <0.24 MPa, that is, extremely small. Instead, it is pinning due to the presence of defects and functional groups at the tube ends that primarily cause resistance to shear when bundles are fractured in weak vacuum (∼10(-5) Torr). Such defects and groups are estimated to involve 0.55 eV interaction energies on average, which is much larger than single-atom vacancy defects (approximately 0.039 eV). Furthermore, because graphitic materials are stiff they have large coherence lengths, and this means that push-pull effects result in force cancellation for vacancy and other defects that are internal to the CNTs. Another important factor is the softness of cantilever structures relative to the stiff CNTs in the experiments, as this contributes to elastic instability transitions that account for significant dissipation during shear that has been observed. The application of these results to the mechanical behavior of yarns is discussed, providing general guidelines for the manufacture of strong yarns composed of CNTs.
Shear layer excitation, experiment versus theory
NASA Technical Reports Server (NTRS)
Bechert, D. W.; Stahl, B.
1984-01-01
The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema; ...
2018-05-20
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
Etude hydromecanique d'une fracture en cisaillement sous contrainte normale constante
NASA Astrophysics Data System (ADS)
Lamontagne, Eric
This research study deals with the effects of shear direction and injection flow rate on the flow directional anisotropy for a given normal stress. It presents experimental works on hydromechanical shear behaviour of a fracture under constant normal stress conditions that permits the characterisation of the intrinsic hydraulic transmissivity in relation with the directional anisotropy of the roughness morphology on the fracture surfaces. Tests were performed on mortar replicas of a natural fracture so that the fracture roughness and void space geometry were kept the same for each test. The experimental work program was performed through direct shear tests on the fracture replicas in four shear directions under four constant normal stress levels. The application of the normal stress was followed by several injections of fluid under constant flow rate. Then, for each defined shear displacement, several injections of fluid were done at different flow rate but under constant flow rate. The test results show that: (1) for the whole shear tests, the global intrinsic transmissivity is included within an enveloping zone of about one order of size. The transmissivity curves within the enveloping zone has a particularity to increase about two orders of size in the first millimetre of shear displacement and subsequently stabilised rapidly; (2) the highest dilatancy do not correspond necessarily with the highest intrinsic transmissivity so that, the behaviour of the global intrinsic transmissivity is not directly proportional to the fracture dilatancy during shear; (3) after the peak shear stress, the divergence is more marked between the global intrinsic transmissivity curves at various flow rate; (4) after peak shear strength and the beginning of asperity degradation, the gradual passage to residual friction shear behaviour causes a directional flow anisotropy and a reorientation of the flow chenalisation direction sub perpendicularly to the shear direction; (5) the anisotropy is not to develop equally between the two sense in the perpendicular direction to shear direction. In order to characterise the dynamics of the flow pattern in the fracture, a statistical analysis of the surfaces morphology of the fracture and the casting of void space geometry were performed before and after shear. A statistical analysis of asperity heights, on the global scale of the fracture surfaces, permits to characterise the fracture morphology and put in evidence a large morphological structure on which are superposed smaller asperities of variable dimensions. This large dimension structure generate a higher level landing occupying more than half of the fracture area. The study of the surfaces morphology of the fracture, performed with the geostatistical mean asperity heights variogram by direction before shearing, show the presence of two entangled morphologic structure families (28 and 15 mm). This same study done after shearing shows that the asperity degradation seems associated with the reduction of the global intrinsic transmissivity of the fracture. Finally, the void spaces morphology evaluated by casting techniques, during the shear tests, has permitted to verify the contacts evolution with the increasing shear displacement and visualised flow chenalisation during fracture shearing.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.
Cheng, Xiang; McCoy, Jonathan H; Israelachvili, Jacob N; Cohen, Itai
2011-09-02
The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.
Sivaramakrishnan, Sivaraj; Schneider, Jaime L.; Sitikov, Albert; Goldman, Robert D.
2009-01-01
Keratin intermediate filaments (KIFs) form a fibrous polymer network that helps epithelial cells withstand external mechanical forces. Recently, we established a correlation between the structure of the KIF network and its local mechanical properties in alveolar epithelial cells. Shear stress applied across the cell surface resulted in the structural remodeling of KIF and a substantial increase in the elastic modulus of the network. This study examines the mechanosignaling that regulates the structural remodeling of the KIF network. We report that the shear stress–mediated remodeling of the KIF network is facilitated by a twofold increase in the dynamic exchange rate of KIF subunits, which is regulated in a PKC ζ and 14-3-3–dependent manner. PKC ζ phosphorylates K18pSer33, and this is required for the structural reorganization because the KIF network in A549 cells transfected with a dominant negative PKC ζ, or expressing the K18Ser33Ala mutation, is unchanged. Blocking the shear stress–mediated reorganization results in reduced cellular viability and increased apoptotic levels. These data suggest that shear stress mediates the phosphorylation of K18pSer33, which is required for the reorganization of the KIF network, resulting in changes in mechanical properties of the cell that help maintain the integrity of alveolar epithelial cells. PMID:19357195
Yielding of a model glass former: An interpretation with an effective system of icosahedra
NASA Astrophysics Data System (ADS)
Pinney, Rhiannon; Liverpool, Tanniemola B.; Royall, C. Patrick
2018-03-01
We consider the yielding under simple shear of a binary Lennard-Jones glass former whose super-Arrhenius dynamics are correlated with the formation of icosahedral structures. We recast this glass former as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015), 10.1063/1.4938424]. Looking at the small-strain region of sheared simulations, we observe that shear rates affect the shear localization behavior particularly at temperatures below the glass transition as defined with a fit to the Vogel-Fulcher-Tamman equation. At higher temperature, shear localization starts immediately on shearing for all shear rates. At lower temperatures, faster shear rates can result in a delayed start in shear localization, which begins close to the yield stress. Building from a previous work which considered steady-state shear [Pinney et al., J. Chem. Phys. 143, 244507 (2015), 10.1063/1.4938424], we interpret the response to shear and the shear localization in terms of a local effective temperature with our system of icosahedra. We find that the effective temperatures of the regions undergoing shear localization increase significantly with increasing strain (before reaching a steady-state plateau).
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
Liu, C.; Roddatis, V.; Kenesei, P.; ...
2017-08-14
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Roddatis, V.; Kenesei, P.
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
Statistical assessment of optical phase fluctuations through turbulent mixing layers
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.
1995-09-01
A lateral shearing interferometer is used to measure the slope of perturbed wavefronts after propagating through turbulent shear flows. This provides a two-dimensional flow visualization technique which is nonintrusive. The slope measurements are used to reconstruct the phase of the turbulence-corrupted wave front. Experiments were performed on a plane shear mixing layer of helium and nitrogen gas at fixed velocities, for five locations in the flow development. The two gases, having a density ratio of approximately seven, provide an effective means of simulating compressible shear layers. Statistical autocorrelation functions and structure functions are computed on the reconstructed phase maps. The autocorrelation function results indicate that the turbulence-induced phase fluctuations are not wide-sense stationary. The structure functions exhibit statistical homogeneity, indicating the phase fluctuation are stationary in first increments. However, the turbulence-corrupted phase is not isotropic. A five-thirds power law is shown to fit one-dimensional, orthogonal slices of the structure function, with scaling coefficients related to the location in the flow.
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Roth, Roland
2018-06-01
By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.
Modelling Force Transfer Around Openings of Full-Scale Shear Walls
Tom Skaggs; Borjen Yeh; Frank Lam; Minghao Li; Doug Rammer; James Wacker
2011-01-01
Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateralload-resisting elements in wood-frame construction. The historical performance of lightframe structures in North America has been very good due, in part, to model building codes that are designed to preserve life safety. These model building codes have spawned continual improvement...
USDA-ARS?s Scientific Manuscript database
We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...
Linear Instability of a Uni-Directional Transversely Sheared Mean Flow
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.
Implications of Orientation in Sheared Cocoa Butter
NASA Astrophysics Data System (ADS)
Guthrie, Sarah E.; Mazzanti, Gianfranco; Marangoni, Alejandro; Idziak, Stefan H. J.
2004-03-01
We will present x-ray and mechanical studies of oriented phases of cocoa butter. The structural elements of foods play an important role in determining such things as quality and shelf stability. The specific structure and properties of cocoa butter, however, are complicated due to the ability of the cocoa butter to form crystals in six polymorphic forms. Recent work has shown that the application of shear not only accelerates the transitions to more stable polymorphs, but also causes orientation of the crystallites[1]. The implications of orientation on the structures formed under conditions of shear and cooling will be described using x-ray diffraction and mechanical measurements. 1 G. Mazzanti, S. E. Guthrie, E. B. Sirota et al., Crystal Growth & Design 3 (5), 721 (2003).
Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress
Denais, Celine; Chan, Maxine F.; Wang, Zhexiao; Lammerding, Jan
2015-01-01
Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs. PMID:26447202
Smooth affine shear tight frames: digitization and applications
NASA Astrophysics Data System (ADS)
Zhuang, Xiaosheng
2015-08-01
In this paper, we mainly discuss one of the recent developed directional multiscale representation systems: smooth affine shear tight frames. A directional wavelet tight frame is generated by isotropic dilations and translations of directional wavelet generators, while an affine shear tight frame is generated by anisotropic dilations, shears, and translations of shearlet generators. These two tight frames are actually connected in the sense that the affine shear tight frame can be obtained from a directional wavelet tight frame through subsampling. Consequently, an affine shear tight frame indeed has an underlying filter bank from the MRA structure of its associated directional wavelet tight frame. We call such filter banks affine shear filter banks, which can be designed completely in the frequency domain. We discuss the digitization of affine shear filter banks and their implementations: the forward and backward digital affine shear transforms. Redundancy rate and computational complexity of digital affine shear transforms are also investigated in this paper. Numerical experiments and comparisons in image/video processing show the advantages of digital affine shear transforms over many other state-of-art directional multiscale representation systems.
Shear properties evaluation of a truss core of sandwich beams
NASA Astrophysics Data System (ADS)
Wesolowski, M.; Ludewicz, J.; Domski, J.; Zakrzewski, M.
2017-10-01
The open-cell cores of sandwich structures are locally bonded to the face layers by means of adhesive resin. The sandwich structures composed of different parent materials such as carbon fibre composites (laminated face layers) and metallic core (aluminium truss core) brings the need to closely analyse their adhesive connections which strength is dominated by the shear stress. The presented work considers sandwich beams subjected to the static tests in the 3-point bending with the purpose of estimation of shear properties of the truss core. The main concern is dedicated to the out-of plane shear modulus and ultimate shear stress of the aluminium truss core. The loading of the beam is provided by a static machine. For the all beams the force - deflection history is extracted by means of non-contact optical deflection measurement using PONTOS system. The mode of failure is identified for each beam with the corresponding applied force. A flexural rigidity of the sandwich beams is also discussed based on force - displacement plots.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
Does viscosity or structure govern the rate at which starch granules are digested?
Hardacre, Allan K; Lentle, Roger G; Yap, Sia-Yen; Monro, John A
2016-01-20
The rates of in vitro digestion of incompletely or fully gelatinised potato and corn starch were measured at 37 °C over 20 min in a rheometer fitted with cup and vane geometry at shear rates of 0.1, 1 and 10 s(-1). Shear rate did not influence the rate of starch digestion provided it was close to physiological levels. However, rates of digestion were significantly reduced when shear rates were below the physiological range (0.1 s(-1)) or when gelatinisation was incomplete. At physiological shear rates the relationship between starch digestion and viscosity was sigmoid in form and following a short initial slow phase a rapid decline in viscosity occurred as starch was digested and the structural integrity of the granules was lost. Conversely, when shear rate was reduced below physiological levels or gelatinisation was incomplete, digestion was hindered, granule integrity was maintained and the relationship between starch and viscosity became linear. Copyright © 2015 Elsevier Ltd. All rights reserved.
Refined Zigzag Theory for Laminated Composite and Sandwich Plates
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco
2009-01-01
A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.
Exsolution of Ca-clinopyroxene from orthopyroxene aided by deformation
Kirby, S.H.; Etheridge, M.A.
1981-01-01
Monoclinic calcium-poor shear-transformation lamellae and calcium-rich exsolution lamellae occur parallel to (100) in orthopyroxene. The formation of both structures from an orthopyroxene host involves a shear on (100) parallel to [001], with additional cation exchange in the exsolution case. The shear transformation involves a macroscopic simple shear angle of 13.3?? (shear strain of 0.236) and produces a specific a-axis orientation with respect to the sense of shear; we have found that this orientation dominates in exsolution lamellae in kinked orthopyroxene, where the sense of shear is known. In undeformed orthopyroxene, there is generally no preferred sense of orientation of the monoclinic a axes. We advance a specific model for exsolution involving nucleation and growth by shear transformation combined with cation exchange, thus circumventing the classical nucleation barrier and permitting exsolution at lower solute supersaturations. ?? 1981 Springer-Verlag.
Method for shearing spent nuclear fuel assemblies
Weil, Bradley S.; Watson, Clyde D.
1977-01-01
A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.
Order - disorder transitions in granular sphere packings
NASA Astrophysics Data System (ADS)
Panaitescu, Andreea M.
Granular materials are ubiquitous in many industrial and natural processes, yet their complex behaviors characterized by unusual static and dynamic properties are still poorly understood. In this dissertation we investigate both the geometrical structure and the dynamical properties (the response to shear deformations, disorder-order transition and crystallization) of packings of mono-sized spheres as a function of the packing volume fraction. Different average packing fractions were obtained by submitting a dense granular material to periodic shear deformations and by epitaxy. Using advanced imaging techniques including the refractive index matched imaging (RIM) and X-ray computed tomography (CT) enables us to determine the three dimensional particles position inside the packing. From positions we obtain the Voronoi tessellation corresponding to the particles in the bulk and calculate the radial distribution and the bond-order metric. These two parameters are widely used to quantify the structure of the spherical particle systems. A granular packing undergoing periodic shear deformations is observed to slowly evolve towards crystallization and the packing fraction is correspondingly observed to increase smoothly from loose packing fraction, 0.59, well above the random close packing fraction, 0.637. Tracking the particles over several shear cycles allows us to obtain the probability distributions of particle displacements and the mean-square displacements and to compute the components of the diffusion tensor. We find that in a shear flow, the initial self-diffusion of the particles is anisotropic with diffusion greater in the flow direction compared with the velocity gradient direction which in turn is greater than in the vorticity direction. We further find that the granular matter under cyclic shear shows reversible as well as irreversible or plastic response for small enough strain amplitude. The appearance and the propagation of the crystalline order were studied using the orientational order metric. By following the evolution of the nucleating crystallites, we identified critical nuclei, determined their size and symmetry, and measured the average surface free energy. The structure of the nuclei was found to be random hexagonal close-packed, their average shape was non-spherical and they were oriented preferentially along the shear axis. When the packing volume fraction approaches a value close to the random close packing, crystallites with face centered cubic (fcc) order are observed with increasing probability, and ordered domains grow rapidly. A polycrystalline phase with domains of fcc and hcp order is obtained after hundreds of thousands of shear cycles. Depositing spheres on a substrate under the influence of gravity gives rise to a wide range of volume fractions and packing structures by simply controlling the nature of the substrate, the deposition rate and the energy of the particles. We analyzed the structures formed and investigate the development of the disordered phases as a function of the deposition rate. Furthermore, by comparing these structures with packings obtained by cyclic shear we showed that the structure of a granular packing depends strongly on the protocol used.
Transpressional regime in southern Arabian Shield: Insights from Wadi Yiba Area, Saudi Arabia
NASA Astrophysics Data System (ADS)
Hamimi, Zakaria; El-Shafei, Mohamed; Kattu, Ghazi; Matsah, Mohammed
2013-10-01
Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1-D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (-WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.
Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow
NASA Astrophysics Data System (ADS)
Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.
2005-01-01
Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.
NASA Astrophysics Data System (ADS)
Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.
2014-11-01
The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).
NASA Astrophysics Data System (ADS)
Yazdanpanah Moghadam, Peyman; Quaegebeur, Nicolas; Masson, Patrice
2015-01-01
Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dharodi, Vikram; Das, Amita, E-mail: amita@ipr.res.in; Patel, Bhavesh
2016-01-15
The strongly coupled dusty plasma has often been modelled by the Generalized Hydrodynamic (GHD) model used for representing visco-elastic fluid systems. The incompressible limit of the model which supports transverse shear wave mode is studied in detail. In particular, dipole structures are observed to emit transverse shear waves in both the limits of sub- and super-luminar propagation, where the structures move slower and faster than the phase velocity of the shear waves, respectively. In the sub-luminar limit the dipole gets engulfed within the shear waves emitted by itself, which then backreacts on it and ultimately the identity of the structuremore » is lost. However, in the super-luminar limit the emission appears like a wake from the tail region of the dipole. The dipole, however, keeps propagating forward with little damping but minimal distortion in its form. A Poynting-like conservation law with radiative, convective, and dissipative terms being responsible for the evolution of W, which is similar to “enstrophy” like quantity in normal hydrodynamic fluid systems, has also been constructed for the incompressible GHD equations. The conservation law is shown to be satisfied in all the cases of evolution and collision amidst the nonlinear structures to a great accuracy. It is shown that monopole structures which do not move at all but merely radiate shear waves, the radiative term, and dissipative losses solely contribute to the evolution of W. The dipolar structures, on the other hand, propagate in the medium and hence convection also plays an important role in the evolution of W.« less
NASA Astrophysics Data System (ADS)
Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua
2018-06-01
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.
NASA Astrophysics Data System (ADS)
Adebiyi, Babatunde Mattew
Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance, are required. A computational material modeling methodology is investigated and demonstrated for a key cement hydrated component material chemistry structure of Calcium-Silicate-Hydrate (C-S-H) Jennite in this work. The effect of material ion exchanges on the mechanical stiffness properties and shear deformation behavior of hydrated cement material chemistry structure of Calcium Silicate Hydrate (C-S-H) Jennite was studied. Calcium ions were replaced with Magnesium ions in Jennite structure of the C-S-H gel. Different level of substitution of the ions was used. The traditional Jennite structure was obtained from the American Mineralogist Crystal Structure Database and super cells of the structures were created using a Molecular Dynamics Analyzer and Visualizer Material Studio. Molecular dynamics parameters used in the modeling analysis were determined by carrying out initial dynamic studies. 64 unit cell of C-S-H Jennite was used in material modeling analysis studies based on convergence results obtained from the elastic modulus and total energies. NVT forcite dynamics using COMPASS force field based on 200 ps dynamics time was used to determine mechanical modulus of the traditional C-S-H gel and the Magnesium ion modified structures. NVT Discover dynamics using COMPASS forcefield was used in the material modeling studies to investigate the influence of ionic exchange on the shear deformation of the associated material chemistry structures. A prior established quasi-static deformation method to emulate shear deformation of C-S-H material chemistry structure that is based on a triclinic crystal structure was used, by deforming the triclinic crystal structure at 0.2 degree per time step for 75 steps of deformation. It was observed that there is a decrease in the total energies of the systems as the percentage of magnesium ion increases in the C-S-H Jennite molecular structure systems. Investigation of effect of ion exchange on the elastic modulus shows that the elastic stiffness modulus tends to decrease as the amount of Mg in the systems increases, using either COMPASS or universal force field. On the other hand, shear moduli obtained after deforming the structures computed from the stress-strain curve obtained from material modeling increases as the amount of Mg increases in the system. The present investigations also showed that ultimate shear stress obtained from predicted shear stress---strain also increases with amount of Mg in the chemistry structure. Present study clearly demonstrates that computational material modeling following molecular dynamics analysis methodology is an effective way to predict and understand the effective material chemistry and additive changes on the stiffness and deformation characteristics in cementitious materials, and the results suggest that this method can be extended to other materials.
Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min
2017-04-01
The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.
NASA Technical Reports Server (NTRS)
Laakso, J. H.; Straayer, J. W.
1974-01-01
A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs.
Bicuspid aortic valve hemodynamics: a fluid-structure interaction study
NASA Astrophysics Data System (ADS)
Chandra, Santanu; Seaman, Clara; Sucosky, Philippe
2011-11-01
The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.
Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon
2017-01-01
Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921
F-actin and microtubule suspensions as indeterminate fluids.
Buxbaum, R E; Dennerll, T; Weiss, S; Heidemann, S R
1987-03-20
The viscosity of F-actin and microtubule suspensions has been measured as a function of shear rate with a Weissenberg rheogoniometer. At shear rates of less than 1.0 per second the viscosity of suspensions of these two structural proteins is inversely proportional to shear rate. These results are consistent with previous in vivo measurements of the viscosity of cytoplasm. This power law implies that shear stress is independent of shear rate; that is, shear stress is a constant at all shear rates less than 1.0 per second. Thus the flow profile of these fluids is indeterminate, or nearly so. This flow property may explain several aspects of intracellular motility in living cells. Possible explanations for this flow property are based on a recent model for semidilute suspensions of rigid rods or a classical friction model for liquid crystals.
Full-scale shear wall tests for force transfer around openings
Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker
2010-01-01
Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...
Some observations of a sheared Rayleigh-Taylor/Benard instability
NASA Technical Reports Server (NTRS)
Humphrey, J. A. C.; Marcus, D. L.
1987-01-01
An account is provided of preliminary flow visualization observations made in an unstably stratified flow with shear superimposed. The structures observed appear to be the superposition of a Rayleigh-Taylor/Benard instability and a Kelvin-Helmholtz instability. Aside from its intrinsic fundamental value, the study of these structures is of special interest to theoreticians developing nonlinear stability calculation methodologies.
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1990-01-01
Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints
NASA Astrophysics Data System (ADS)
Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.
2013-09-01
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
Structural properties of impact ices accreted on aircraft structures
NASA Technical Reports Server (NTRS)
Scavuzzo, R. J.; Chu, M. L.
1987-01-01
The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C.
Interfacial Shear Strength of Multilayer Graphene Oxide Films.
Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer
2016-02-23
Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.
Shear load transfer in high and low stress tendons.
Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray
2015-05-01
Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructures (helical versus linear) may redistribute loads differently. This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20% to 60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shear Load Transfer in High and Low Stress Tendons
Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray
2016-01-01
Background Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructure (helical versus linear) may redistribute loads differently. Method of Approach This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20-60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Results and Conclusions Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. PMID:25700261
Magnetic Shear Damped Polar Convective Fluid Instabilities
NASA Astrophysics Data System (ADS)
Atul, Jyoti K.; Singh, Rameswar; Sarkar, Sanjib; Kravchenko, Oleg V.; Singh, Sushil K.; Chattopadhyaya, Prabal K.; Kaw, Predhiman K.
2018-01-01
The influence of the magnetic field shear is studied on the E × B (and/or gravitational) and the Current Convective Instabilities (CCI) occurring in the high-latitude F layer ionosphere. It is shown that magnetic shear reduces the growth rate of these instabilities. The magnetic shear-induced stabilization is more effective at the larger-scale sizes (≥ tens of kilometers) while at the scintillation causing intermediate scale sizes (˜ a few kilometers), the growth rate remains largely unaffected. The eigenmode structure gets localized about a rational surface due to finite magnetic shear and has broken reflectional symmetry due to centroid shift of the mode by equilibrium parallel flow or current.
Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations
NASA Astrophysics Data System (ADS)
Li, Jiquan; Y, Kishimoto; Dong, Jiaqi; N, Miyato; T, Matsumoto
2006-01-01
The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.
NASA Astrophysics Data System (ADS)
Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe
2014-09-01
In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.
NASA Astrophysics Data System (ADS)
Kaulina, Tatiana
2013-04-01
The possibility of direct dating of the deformation process is critical for understanding of orogenic belts evolution. Establishing the age of deformation by isotopic methods is indispensable in the case of uneven deformation overlapping, when later deformation inherits the structural plan of the early strains, and to distinguish them on the basis of the structural data only is impossible. A good example of zircon from the shear zones is zircon formed under the eclogite facies conditions. On the one hand, the composition of zircon speaks about its formation simultaneously to eclogitic paragenesis (Rubatto, Herman, 1999; Rubatto et al., 2003). On the other hand, geological studies show that mineral reactions of eclogitization are often held only in areas of shear deformations, which provides access of fluid to the rocks (Austrheim, 1987; Jamtveit et al., 2000; Bingen et al., 2004). Zircons from mafic and ultramafic rocks of the Tanaelv and Kolvitsa belts (Kola Peninsula, the Baltic Shield) have showed that the metamorphic zircon growth is probably controlled by the metamorphic fluid regime, as evidenced by an increase of zircon quantity with the degree of shearing. The internal structure of zircon crystals can provide an evidence of zircon growth synchronous with shearing. The studied crystals have a sector zoning and often specific "patchy" zoning (Fig. 1), which speaks about rapid change of growth conditions. Such internal structure can be compared with the "snowball" garnet structure reflecting the rotation of crystals during their growth under a shift. Rapidly changing crystallization conditions can also be associated with a small amount of fluid, where supersaturation is changing even at a constant temperature. Thus, the growth of metamorphic zircon in shear zones is more likely to occur in the fluid flow synchronous with deformation. A distinctive feature of zircons in these conditions is isometric shape and sector "patchy" zoning. The work was supported by Russian Foundation of Basic Research (project: 13-05-00035.) and the DES-6 program.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi
2007-08-01
The seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Most of the data for this study come from the Ethiopia broadband seismic experiment, conducted between 2000 and 2002. Shear velocity models obtained from the joint inversion show crustal structure that is similar to previously published models, with crustal thicknesses of 35 to 44 km beneath the Ethiopian Plateau, and 25 to 35 km beneath the Main Ethiopian Rift (MER) and the Afar. The lithospheric mantle beneath the Ethiopian Plateau has a maximum shear wave velocity of about 4.3 km/s and extends to a depth of ˜70-80 km. Beneath the MER and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the Ethiopian Plateau lithosphere can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30-50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure.
NASA Astrophysics Data System (ADS)
Bose, Subham; Gupta, Saibal
2018-05-01
During Indo-Antarctic collision at c. 1.0 Ga, Eastern Ghats Province (EGP) granulites amalgamated with the Archean Indian craton. The northern boundary of the EGP was subsequently reworked, undergoing dextral strike-slip shearing at 0.5 Ga. This study documents a phase of dextral shearing within the EGP along WNW-ESE trending shear planes in c. 0.5 Ga mylonites of the Mahanadi Shear Zone. Regional structural trends in the EGP show a swing from NE-SW to the south of the shear zone, to WNW-ESE to its north. The mylonitic shear zone foliation has a sub-horizontal lineation associated with a prominent dextral shear sense in near-horizontal sections. Electron Back Scatter Diffraction (EBSD) studies on quartz confirm that mylonitisation was associated with dextral strike-slip movement in the greenschist facies. North of the Mahanadi Shear Zone, strain was partitioned into narrow dextral strike-slip shear zones along which the older granulite fabrics were transposed parallel to later WNW-ESE trending shear planes at lower grades of metamorphism. This regional-scale shearing at ∼ 500 Ma possibly resulted in a significant dextral shift of the northern EGP with respect to the south. The shear zone was reactivated in the Permian time during deposition of Gondwana sediments in the Mahanadi basin.
NASA Astrophysics Data System (ADS)
Yin, Congyuan; Zhang, Bo; Han, Bao-Fu; Zhang, Jinjiang; Wang, Yang; Ai, Sheng
2017-01-01
The presence of the Yingba (Yinggete-Bagemaode) metamorphic core complex (MCC) is confirmed near the Sino-Mongolian border in China. We report its structural evolution and the rheological features of ductile shear zones within this complex. Three deformations (Ds, Dm, and Db) since the Late Jurassic are identified. Ds is characterized by ductile structures that resulted from early NW-oriented, low-angle, extensional ductile shearing. Dm is associated with partial melting and magmatic diapirism, which accelerated the formation of the dome-like geometry of the Yingba MCC. Synchronously with or slightly subsequently to Ds and Dm, the Yingba MCC was subjected to brittle, extensional faulting (Db), which was accompanied by the exhumation of the lower crust and the formation of supracrustal basins. The ductile shearing (Ds) developed under greenschist-to amphibolite-facies metamorphic conditions (400-650 °C), as indicated by microstructures in quartz and feldspar, quartz [c] axis fabrics, and two-feldspar geothermometry. The mean kinematic vorticity estimates of 48-62% show a pure shear-preferred flow during Ds. The Yingba MCC provides an excellent sample that recorded an intermediate to high temperature shearing, which also implies the widely extensional regime in northeastern Asia at that time.
Schultz, R.A.; Soliva, R.; Fossen, H.; Okubo, C.H.; Reeves, D.M.
2008-01-01
Displacement-length data from faults, joints, veins, igneous dikes, shear deformation bands, and compaction bands define two groups. The first group, having a power-law scaling relation with a slope of n = 1 and therefore a linear dependence of maximum displacement and discontinuity length (Dmax = ??L), comprises faults and shear (non-compactional or non-dilational) deformation bands. These shearing-mode structures, having shearing strains that predominate over volumetric strains across them, grow under conditions of constant driving stress, with the magnitude of near-tip stress on the same order as the rock's yield strength in shear. The second group, having a power-law scaling relation with a slope of n = 0.5 and therefore a dependence of maximum displacement on the square root of discontinuity length (Dmax = ??L0.5), comprises joints, veins, igneous dikes, cataclastic deformation bands, and compaction bands. These opening- and closing-mode structures grow under conditions of constant fracture toughness, implying significant amplification of near-tip stress within a zone of small-scale yielding at the discontinuity tip. Volumetric changes accommodated by grain fragmentation, and thus control of propagation by the rock's fracture toughness, are associated with scaling of predominantly dilational and compactional structures with an exponent of n = 0.5. ?? 2008 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca
2016-01-15
Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jonesmore » potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.« less
Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram
2015-11-01
Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.
Foam rheology at large deformation
NASA Astrophysics Data System (ADS)
Géminard, J.-C.; Pastenes, J. C.; Melo, F.
2018-04-01
Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.
Wave models for turbulent free shear flows
NASA Technical Reports Server (NTRS)
Liou, W. W.; Morris, P. J.
1991-01-01
New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Moosavi, E.; Rasouli-Jamadi, F.
2018-03-01
The Paleo-Tethys suture zone in northern Iran was formed when the Paleo-Tethys Ocean, (between Gonwana-derived Alborz Microcontinent and the Turan Plate), closed during the Eocimmerian orogeny and after they collided together in the Mid-Late Triassic. The NW-striking Boghrov-Dagh basement Fault Zone that lies in the vicinity of Masuleh village and the southern boundary of Gasht Metamorphic Complex is a part of the Eocimmerian suture zone in the Western Alborz. Along this part of the suture zone, tourmaline leucogranites intruded in metamorphic rocks. We recognize three distinct deformation stages (D1 to D3) in the study area especially in the Masuleh Shear Zone. D1 which was synchronous with formation of the main metamorphic minerals, such as sillimanite and staurolite under medium- to high-grade metamorphic conditions probably during the Hercynian event and a NE-directed shortening. The slaty cleavage in metamorphosed Upper Paleozoic rocks and crenulation cleavage and folds in the older rocks were produced due to D2 deformation during the Eocimmerian event under greenschist facies conditions. The Masuleh Shear Zone formed as a result of a ductile strike-slip shear during the Early-Middle Jurassic Mid-Cimmerian D3 event with a pure dextral to transtension shear sense at low to locally medium-grade conditions. All of the D3 structural features agree with a NNW-directed compression and an ENE-directed extension caused by overall dextral shear parallel to the Masuleh shear zone and the Boghrov-Dagh Fault Zone. Based on the available evidence, especially cross-cutting relationships between structural fabrics and rock units, emplacement of the Gasht-Masuleh leucogranites occurred after the D2 collisional event coeval to the possible slab break-off and before the D3 event, between Eocimmerian and Mid-Cimmerian movements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Wagner, Norman J.; Porcar, Lionel
2015-05-15
The rheology and three-dimensional microstructure of a concentrated viscoelastic solution of the triblock copolymer poly(ethylene oxide){sub 106}-poly(propylene oxide){sub 68}-poly(ethylene oxide){sub 106} (Pluronic F127) in the protic ionic liquid ethylammonium nitrate are measured by small angle neutron scattering (SANS) under flow in three orthogonal planes. This solution's shear-thinning viscosity is due to the formation of two-dimensional hexagonal close-packed (HCP) sliding layer structure. Shear-melting of the crystalline structure is observed without disruption of the self-assembled micelles, resulting in a change in flow properties. Spatially resolved measurements in the 1–2 plane reveal that both shear-melting and sliding are not uniform across the Couettemore » gap. Melting and recrystallization of the HCP layers occur cyclically during a single large amplitude oscillatory shear (LAOS) cycle, in agreement with the “stick-slip” flow mechanism proposed by Hamley et al. [Phys. Rev. E 58, 7620–7628 (1998)]. Analysis of 3D “structural” Lissajous curves show that the cyclic melting and sliding are direct functions of the strain rate amplitude and show perfect correlation with the cyclic stress response during LAOS. Both viscosity and structural order obey the Delaware–Rutgers rule. Combining rheology with in situ spatiotemporally resolved SANS is demonstrated to elucidate the structural origins of the nonlinear rheology of complex fluids.« less
Non-linear coherent mode interactions and the control of shear layers
NASA Technical Reports Server (NTRS)
Nikitopoulos, D. E.; Liu, J. T. C.
1990-01-01
A nonlinear integral formulation, based on local linear stability considerations, is used to study the collective interactions between discrete wave-modes associated with large-scale structures and the mean flow in a developing shear layer. Aspects of shear layer control are examined in light of the sensitivity of these interactions to the initial frequency parameter, modal energy contents and modal phases. Manipulation of the large-scale structure is argued to be an effective means of controlling the flow, including the small-scale turbulence dominated region far downstream. Cases of fundamental, 1st and 2nd subharmonic forcing are discussed in conjunction with relevant experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcoline, J.
1993-03-01
Greenville-age rocks are exposed in the Beaver Creek area in the Northwest Lowlands of New York State. The prominent structural grain in the area strikes approximately N40E and is defined by a series of metasedimentary and metaigneous rocks elongate parallel to the Beaver Creek Fault Zone. A series of 7 granitic augen gneiss bodies lies to the west of the fault. These bodies are elongate parallel to the Beaver Creek Fault Zone and are bordered by metasedimentary units. Structural analysis of the 7 granitic gneiss bodies shows that the bodies underwent several phases of ductile shear. These shearing events aremore » responsible for both fabric development and the overall shape of the bodies. The granitic gneiss is a well-foliated and lineated augen gneiss. The foliation is defined by biotite alignment, quartz ribbons, and feldspar augen. The foliation has a strike of N42E, with dips ranging from 85SE to vertical. Quartz ribbon lineations plunge 20--25 NE. The gneiss exhibits three distinct ductile shear fabrics showing oblique slip with a large strike-slip component. Fabric asymmetry indicates oblique slip with a large component of sinistral shear. The second shear fabric is somewhat recovered but not annealed. Quartz ribbons are dominantly monogranular and many show pronounced undulose extinction. Feldspar porphyroclasts form well-defined sigma grains showing a component of sinistral shear. The youngest ductile shear fabric is defined by quartz grain shape preferred orientation and mica fish. This third fabric exhibits a component of dextral shear, rather than sinistral shear. A late cataclastic texture crosscuts the earlier ductile fabrics. The elongate character of the 7 bodies and their NE/SE alignment is probably due to the regional shearing processes responsible for forming the fabric in the rocks.« less
Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California
NASA Astrophysics Data System (ADS)
Brenneman, M. J.; Bykerk-Kauffman, A.
2012-12-01
The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial deposits. We interpret these faults as Riedel shears of the Elsinore Fault that distribute dextral strain over an area at least 2 km wide. Finally, our mapping of the Elsinore Fault itself reveals two releasing bends that are superimposed on the overall transpressive regime in the area. Axen, G.J. and Fletcher, J.M., 1998, Hall Volume, GSA, p. 365-392. Dorsey, R.J., Housen, B.A., Janecke, S.U., Fanning, C. M., Spears, A.L.F., 2011, GSA Bulletin, v. 123, p. 771-793. Winker, C.D. and Kidwell, S.M., 1996, Field Conference Guide, Pacific Section AAPG/SEPM, Book 80, p. 295-336.
The response of dense dry granular material to the shear reversal
NASA Astrophysics Data System (ADS)
Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert
2008-11-01
We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.
Nucleation of shear bands in amorphous alloys
Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio
2014-01-01
The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599
NASA Astrophysics Data System (ADS)
Zibra, I.; White, J. C.; Menegon, L.; Dering, G.; Gessner, K.
2018-05-01
The Neoarchean Cundimurra Pluton (Yilgarn Craton, Western Australia) was emplaced incrementally along the transpressional Cundimurra Shear Zone. During syndeformational cooling, discrete networks of cataclasites and ultramylonites developed in the narrowest segment of the shear zone, showing the same kinematics as the earlier synmagmatic structures. Lithological boundaries between aplite/pegmatite veins and host granitic gneiss show more intense pre-cataclasite fabrics than homogeneous material, and these boundaries later became the preferred sites of shear rupture and cataclasite nucleation. Transient ductile instabilities established along lithological boundaries culminated in shear rupture at relatively high temperature (∼500-600 °C). Here, tensile fractures at high angles from the fault plane formed asymmetrically on one side of the fault, indicating development during seismic rupture, establishing the oldest documented earthquake on Earth. Tourmaline veins were emplaced during brittle shearing, but fluid pressure probably played a minor role in brittle failure, as cataclasites are in places tourmaline-free. Subsequent ductile deformation localized in the rheologically weak tourmaline-rich aggregates, forming ultramylonites that deformed by grain-size sensitive creep. The shape and width of the pluton/shear zone and the regime of strain partitioning, induced by melt-present deformation and established during pluton emplacement, played a key role in controlling the local distribution of brittle and then ductile subsolidus structures.
Shear Viscosity Coefficient of 5d Liquid Transition Metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.
2011-07-01
In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.
Dynamo action and magnetic buoyancy in convection simulations with vertical shear
NASA Astrophysics Data System (ADS)
Guerrero, G.; Käpylä, P.
2011-10-01
A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also observed in lower values of the turbulent velocity and in perturbations of approximately three per cent on the shear profile.
Predicting Shear Transformation Events in Metallic Glasses
NASA Astrophysics Data System (ADS)
Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.
2018-03-01
Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.
Predicting Shear Transformation Events in Metallic Glasses.
Xu, Bin; Falk, Michael L; Li, J F; Kong, L T
2018-03-23
Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu_{64}Zr_{36} metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.
Two-axis direct fluid shear stress sensor
NASA Technical Reports Server (NTRS)
Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)
2011-01-01
A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.
Zhao, Jisong
2018-05-17
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.
Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating
Zhao, Jisong
2018-01-01
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822
Rosado-Mendez, Ivan M.; Palmeri, Mark L.; Drehfal, Lindsey C.; Guerrero, Quinton W.; Simmons, Heather; Feltovich, Helen; Hall, Timothy J.
2016-01-01
Shear Wave Elasticity Imaging (SWEI) shows promise for evaluating the pregnant cervix. Changes in shear wave group velocity have been attributed exclusively to changes in stiffness. This assumes homogeneity within the region of interest and purely elastic tissue behavior. However, the cervix is structurally/microstructurally heterogeneous and viscoelastic. We therefore developed strategies to investigate these complex tissue properties. SWEI was performed ex vivo on 14 unripened and 13 misoprostol-ripened cervix specimens from Rhesus macaques. After application of tests of significant and uniform shear wave displacement, as well as reliability of estimates, group velocity decreased significantly from the distal (vaginal) to proximal (uterine) end of unripened, but not ripened, specimens. Viscosity was quantified by the slope of the phase velocity vs. frequency. Dispersion was observed in both groups (median 5.5 m/s/kHz, interquartile range: 1.5–12.0 m/s/kHz), also decreasing towards the proximal cervix. This work suggests that comprehensive assessment of complex tissues such as cervix requires consideration of structural heterogeneity and viscosity. PMID:28189282
Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Thomas, Job; Ramadass, S.
2016-09-01
Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.
Modeling shear-induced particle ordering and deformation in a dense soft particle suspension
NASA Astrophysics Data System (ADS)
Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long
2017-11-01
We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca = 0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ = 0.61, the structure maintains layered HCP for Ca = 0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.
The Najd Fault System of Saudi Arabia
NASA Astrophysics Data System (ADS)
Stüwe, Kurt; Kadi, Khalid; Abu-Alam, Tamer; Hassan, Mahmoud
2014-05-01
The Najd Fault System of the Arabian-Nubian Shield is considered to be the largest Proterozoic Shear zone system on Earth. The shear zone was active during the late stages of the Pan African evolution and is known to be responsible for the exhumation of fragments of juvenile Proterozoic continental crust that form a series of basement domes across the shield areas of Egypt and Saudi Arabia. A three year research project funded by the Austrian Science Fund (FWF) and supported by the Saudi Geological Survey (SGS) has focused on structural mapping, petrology and geochronology of the shear zone system in order to constrain age and mechanisms of exhumation of the domes - with focus on the Saudi Arabian side of the Red Sea. We recognise important differences in comparison with the basement domes in the Eastern desert of Egypt. In particular, high grade metamorphic rocks are not exclusively confined to basement domes surrounded by shear zones, but also occur within shear zones themselves. Moreover, we recognise both exhumation in extensional and in transpressive regimes to be responsible for exhumation of high grade metamorphic rocks in different parts of the shield. We suggest that these apparent structural differences between different sub-regions of the shield largely reflect different timing of activity of various branches of the Najd Fault System. In order to tackle the ill-resolved timing of the Najd Fault System, zircon geochronology is performed on intrusive rocks with different cross cutting relationships to the shear zone. We are able to constrain an age between 580 Ma and 605 Ma for one of the major branches of the shear zone, namely the Ajjaj shear zone. In our contribution we present a strain map for the shield as well as early geochronological data for selected shear zone branches.
Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.
Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long
2017-11-01
We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca = 0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ = 0.61, the structure maintains layered HCP for Ca = 0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.
Human endothelial cell responses to cardiovascular inspired pulsatile shear stress
NASA Astrophysics Data System (ADS)
Watson, Matthew; Baugh, Lauren; Black, Lauren, III; Kemmerling, Erica
2016-11-01
It is well established that hemodynamic shear stress regulates blood vessel structure and the development of vascular pathology. This process can be studied via in vitro models of endothelial cell responses to pulsatile shear stress. In this study, a macro-scale cone and plate viscometer was designed to mimic various shear stress waveforms found in the body and apply these stresses to human endothelial cells. The device was actuated by a PID-controlled DC gear-motor. Cells were exposed to 24 hours of pulsatile shear and then imaged and stained to track their morphology and secretions. These measurements were compared with control groups of cells exposed to constant shear and no shear. The results showed that flow pulsatility influenced levels of secreted proteins such as VE-cadherin and neuroregulin IHC. Cell morphology was also influenced by flow pulsatility; in general cells exposed to pulsatile shear stress developed a higher aspect ratio than cells exposed to no flow but a lower aspect ratio than cells exposed to steady flow.
Pinney, Rhiannon; Liverpool, Tanniemola B; Royall, C Patrick
2016-12-21
We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of particles organized into icosahedra under simple steady state shear. We recast this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)]. From the observed population of icosahedra in each steady state, we obtain an effective temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding, the system separates into a region of high shear rate and a region of low shear rate. The effective temperatures obtained in each case show that the low shear regions correspond to a significantly lower temperature than the high shear regions. Taking a weighted average of the effective temperature of these regions (weight determined by region size) yields an estimate of the effective temperature which compares well with an effective temperature based on the global mesocluster population of the whole system.
NASA Astrophysics Data System (ADS)
Martina, Federico; Canelo, Horacio N.; Dávila, Federico M.; de Hollanda, María Helena M.; Teixeira, Wilson
2018-04-01
In the Famatina range, Sierras Pampeanas of Argentina (SW Gondwana), subvertical calc-alkaline lamprophyric dike swarms crop out through >300 km. The dikes cut Ordovician units with a prominent NW-SE trending and are covered by continental sedimentary successions of Pennsylvanian to Permian age. The dikes show a strong structural control associated with Riedel fault systems. Detailed field analysis suggested a ∼N-S opening direction oblique to the attitude of dike walls and a left-lateral transtensional tectonics during the emplacement. 40Ar/39Ar geochronology of a lamprophyric sample defined a crystallization age (plateau; whole rock) of 357.1 ± 7.1 Ma (MSWD = 2.3). Coetaneous ductile zones with dominant strike-slip motion, documented along western Argentina for >600 km, suggest a regional event in SW Gondwana during the Mississippian. We propose that this deformation was the result of the counterclockwise fast rotation of Gondwana between 365 and 345 Ma, when the Famatina range and western Argentina occupied a sub-polar position. A transform margin along SW Gondwana better explains our (and others) data rather than a subduction margin. This scenario is also consistent with the occurrence of A-type granites and normal-fault basins within the foreland as well as bimodal volcanics.
NASA Technical Reports Server (NTRS)
Thomson, D. W.; Syrett, William J.; Fairall, C. W.
1991-01-01
In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.
Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions
NASA Technical Reports Server (NTRS)
Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.
1997-01-01
By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the presence of a polarity inversion in the magnetic field near at least one of the loop footpoints; (2) is greatly aided by the presence of strong shear in the core magnetic field along that neutral line; and (3) is controlled by some variable process that acts in this magnetic environment. We infer that this variable process is low-lying reconnection accompanying flux cancellation.
Applying a Stiffened Stitched Concept to Shear-Loaded Structure
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2014-01-01
NASA and The Boeing Company have worked to develop new low-cost, lightweight composite structures for aircraft. A stitched carbon-epoxy material system was developed to reduce the weight and cost of transport aircraft structure, first in the NASA Advanced Composites Technology (ACT) Program in the 1990's and now in the Environmentally Responsible Aviation (ERA) Project. By stitching through the thickness of a dry carbon fiber material prior to cure, the need for mechanical fasteners is almost eliminated. Stitching also provides the benefit of reducing or eliminating delaminations, including those between stiffener flanges and skin. The stitched panel concept used in the ACT program used simple blade-stiffeners as stringers, caps, and clips. Today, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed for application to advanced vehicle configurations. PRSEUS provides additional weight savings through the use of a stiffener with a thin web and a unidirectional carbon rod at the top of the web which provides structurally efficient stiffening. Comparisons between stitched and unstitched structure and between blade-stiffened and rod-stiffened structure are presented focusing on a panel loaded in shear. Shear loading is representative of spar loading in wing structures.
Strain heterogeneity in sheared colloids revealed by neutron scattering
Chen, Kevin; Wu, Bin; He, Lilin; ...
2018-02-07
Recent computational and theoretical studies have shown that the deformation of colloidal suspensions under a steady shear is highly heterogeneous at the particle level and demonstrate a critical influence on the macroscopic deformation behavior. Despite its relevance to a wide variety of industrial applications of colloidal suspensions, scattering studies focusing on addressing the heterogeneity of the non-equilibrium colloidal structure are scarce thus far. Here in this paper, we report the first experimental result using small-angle neutron scattering. From the evolution of strain heterogeneity, we conclude that the shear-induced deformation transforms from nearly affine behavior at low shear rates, to plasticmore » rearrangements when the shear rate is high.« less
NASA Astrophysics Data System (ADS)
Sen, S.; Zhu, W.; Aitken, B. G.
2017-07-01
The steady and oscillatory shear rate dependence of viscosity of a supercooled chalcogenide liquid of composition As10Se90 is measured at Newtonian viscosities ranging between 103 and 107 Pa s using capillary and parallel plate rheometry. The liquid displays strong violation of the Cox-Merz rule in the non-Newtonian regime where the viscosity under steady shear is nearly an order of magnitude lower than that under oscillatory shear. This behavior is argued to be related to the emergence of unusually large (6-8 nm) cooperatively rearranging regions with long relaxation times in the liquid that result from significant structural rearrangements under steady shear.
Influence of Freestream and Forced Disturbances on the Shear Layers of a Square Prism
NASA Astrophysics Data System (ADS)
Lander, Daniel Chapman
Flow around the square prism, an archetypal bluff body, has applications in all areas of fluid mechanics: vibration, mixing, combustion and noise production to name a few. It also has distinct importance to wind loading on architectural and industrial structures such as tall buildings, bridges, and towers. The von-Karman (VK) vortex street is a major reason for its significance: a flow phenomenon which has received intense scrutiny from scientific and engineering communities for more than 100 years! However, the characteristics of the shear layers separating from the sharp edges, essential to the vortex shedding, have received comparatively little attention. This is surprising considering the Kelvin-Helmholtz (KH) instability of shear layers produce the first signatures of turbulence in the wake. Furthermore, the shear layers are conduits for the passage of vorticity between the boundary layer and the turbulent wake. Many details of their structure and role in the shedding process remain unexplored. This dissertation aims to address this deficiency. Specifically, this project considered the influence of three variables on the characteristics of the transition-to-turbulence in the square prism shear layers. These are: (1) Reynolds number; (2) freestream disturbances and (3) forced disturbances. In each case, the dynamics of the shear layer-wake interaction were considered. Particle image velocimetry and constant temperature anemometry measurements were used to document the shear layer during inception and evolution as it passes into the wake. With increasing Reynolds number, ReD = UinfinityD/nu, in the range 16,700-148,000, the transition-to-turbulence in the initially laminar shear layer moves toward separation. A coordinate system local to the time-averaged shear layer axis was used such that the tangent and normal velocities, turbulent stresses and gradient quantities could be obtained for the curved shear layer. Characteristic frequencies, lengths and transition points of the KH instability were documented and shown to exhibit features distinct from the plane mixing layer. The evolution of the integrated turbulent kinetic energy was documented and a linear region of growth was associated with the amplification of the KH instability. A scaling relationship of the Kelvin-Helmholtz to von-Karman frequencies was established for the square prism shear layer. ƒKH/ƒ VK was shown to be a power-law function of Re D, with differing characteristics to the much more studied circular cylinder. Increasing ReD up to ˜ 70,000 bolsters the Reynolds stresses in the shear layers as they enter the wake, shortening the wake formation length, LF. The shear layer diffusion length, LD was quantified and the Gerrard-Product, LF x LD, was introduced to account for constant St D in the presence of the reduced LF as function of ReD. A freestream disturbance condition with intensity □ u¯¯ 2¯ / U infinity = 0.065 and longitudinal integral length scale, Lxu = 0.33 was considered for the case of ReD = 50,000. Disturbances were introduced by means of small circular cylinder placed upstream of the stagnation streamline. The disturbance moved the time-averaged position of the shear layer towards the body but did not substantially alter the growth rate of its width. The "normal" transition-to-turbulence pathway, via laminar vortex formation and subsequent pairing of vortices in the initial stages of the shear layer was shown to be highly sensitive to external disturbances. The disturbance interrupted the typical transition pathway and was associated with a Bypass-transition mechanism, which subsequently increased the likelihood of intermittent shear layer reattachment on the downstream surface of the body. Triple decomposition was used to study the random and coherent components of the VK structures in the wake. Data indicated a narrowing and lengthening of the wake, which was accompanied by a rise in base pressure and a reduction in time-averaged drag. The unsteady coherent vorticity field revealed a streamwise elongation of the VK vortex structures, which complemented the time-averaged wake lengthening. It appears that the influence of freestream disturbances, in particular, by their stochastic nature, is to suppress the formation of the coherent structures in the shear layer. Forced disturbances imposed on the shear layers at the leading edges of the square prism were considered at ReD=16,700 for excitation frequencies ƒe = ƒ KH, ƒVK and 0. The response of the shear layer to forcing at steady and ƒVK frequencies had little impact on the time-averaged position or growth.
NASA Astrophysics Data System (ADS)
Cao, S.; Neubauer, F.
2012-04-01
One of the apparently best investigated metamorphic core complexes all over world is that of Naxos in the Aegean Sea and numerous high-quality data on structures and microfabrics have been published. Among these structures is the Naxos-Paros ductile low-angle fault (Gautier et al., 1993), which is located along the northern margin of Naxos and which is part of the North Cycladic Detachment System (Jolivet et al., 2010). There, structural evidence indicates that the hanging wall of the core complex experienced large-scale top-to-the-north (ca. 010°) transport along a low-angle detachment fault. Interestingly no attention has been paid on the well exposed boundary fault on the eastern margin of the Naxos Island, which is even not mentioned in the lierarure. We denote this fault as Moutsounas shear zone, which represents the lateral boundary of the Naxos metamorphic core complex. The Naxos metamorphic core complex is a N-trending elongated dome, which exposes on its eastern side moderately E-dipping micaschists and marbles, which are largely well annealed due to late heating. These annealed rocks grade towards the Moutsounas Peninsula in retrogressed sheared rocks, mostly phyllonitic micaschists and phyllites with an E-dipping foliation and a ca. NNE-trending subhorizontal stretching lineation. Shear bands, asymmetric fringes around rigid clasts and oblique mineralized extension veins consistently indicate top-to-the-NNE shear. The shear zone is structurally overlain by hydrothermally altered Miocene conglomerates, which contain no pebbles from the Naxos metamorphic core complex but exclusively from the ophiolitic hangingwall unit. Miocene rocks are exposed both on the northern and southern edge of the Moutsounas Peninsula. Their bedding is variable but dips generally towards NW, oblique to the detachment fault, which dips with a medium-angle towards east indicating therefore a rollover structure. The Miocene succession is overlain by subhorizontal conglomerates of Pliocene age, which form the main portion of the Moutsounas Peninsula and which contain numerous clasts, mainly marble, of the metamorphic core complex. These sedimentary data indicate that exhumation of the Naxos metamorphic core complex postdate deposition of Miocene successions and predate Pliocene rocks. We interpret the Moutsounas shear zone as a lateral boundary of the Naxos migmatite dome and relate their main activity with top NNE-shear with the main stage of updoming during migmatite formation and granite uplift between ca. 15 and 11 Ma.
Mechanisms for the Crystallization of ZBLAN
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Tucker, Dennis S.; Kaukler, William; Antar, Basil
2003-01-01
The objective of this ground based study is to test the hypothesis that shear thinning (the non-Newtonian response of viscosity to shear rate) is a viable mechanism to explain the observation of enhanced glass formation in numerous low-g experiments. In 1-g, fluid motion results from buoyancy forces and surface tension driven convection. This fluid flow will introduce shear in undercooled liquids in 1-g. In low-g it is known that fluid flows are greatly reduced so that the shear rate in fluids can be extremely low. It is believed that some fluids may have weak structure in the absence of flow. Very small shear rates could cause this structure to collapse in response to shear resulting in a lowering of the viscosity of the fluid. The hypothesis of this research is that: Shear thinning in undercooled liquids decreases the viscosity, increasing the rate of nucleation and crystallization of glass forming melts. Shear in the melt can be reduced in low-g, thus enhancing undercooling and glass formation. The viscosity of a model glass (lithium di-silicate, L2S) often used for crystallization studies has been measured at very low shear rates using a dynamic mechanical thermal analyzer. Our results are consistent with increasing viscosity with a lowering of shear rates. The viscosity of L2S may vary as much as an order of magnitude depending on the shear rate in the temperature region of maximum nucleation and crystal growth. Classical equations for nucleation and crystal growth rates, are inversely related to the viscosity and viscosity to the third power respectively. An order of magnitude variation in viscosity (with shear) at a given temperature would have dramatic effects on glass crystallization Crystallization studies with the heavy metal fluoride glass ZBLAN (ZrF2-BaF2-LaF3-AlF3-NaF) to examine the effect of shear on crystallization are being initiated. Samples are to be melted and quenched under quiescent conditions at different shear rates to determine the effect on crystallization. The results from this study are expected to advance the current scientific understanding of glass formation in low-g and glass crystallization under glass molding conditions and will improve the scientific understanding of technological processes such as fiber pulling, bulk amorphous alloys, and glass fabrication processes.
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang
2018-01-01
The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Spangler, Jan L.
2003-01-01
A variational principle is formulated for the inverse problem of full-field reconstruction of three-dimensional plate/shell deformations from experimentally measured surface strains. The formulation is based upon the minimization of a least squares functional that uses the complete set of strain measures consistent with linear, first-order shear-deformation theory. The formulation, which accommodates for transverse shear deformation, is applicable for the analysis of thin and moderately thick plate and shell structures. The main benefit of the variational principle is that it is well suited for C(sup 0)-continuous displacement finite element discretizations, thus enabling the development of robust algorithms for application to complex civil and aeronautical structures. The methodology is especially aimed at the next generation of aerospace vehicles for use in real-time structural health monitoring systems.
Krieger, Christine C.; An, Xiuli; Tang, Hsin-Yao; Mohandas, Narla; Speicher, David W.; Discher, Dennis E.
2011-01-01
Questions of if and when protein structures change within cells pervade biology and include questions of how the cytoskeleton sustains stresses on cells—particularly in mutant versus normal cells. Cysteine shotgun labeling with fluorophores is analyzed here with mass spectrometry of the spectrin–actin membrane skeleton in sheared red blood cell ghosts from normal and diseased mice. Sheared samples are compared to static samples at 37 °C in terms of cell membrane intensity in fluorescence microscopy, separated protein fluorescence, and tryptic peptide modification in liquid chromatography–tandem mass spectrometry (LC-MS/MS). Spectrin labeling proves to be the most sensitive to shear, whereas binding partners ankyrin and actin exhibit shear thresholds in labeling and both the ankyrin-binding membrane protein band 3 and the spectrin–actin stabilizer 4.1R show minimal differential labeling. Cells from 4.1R-null mice differ significantly from normal in the shear-dependent labeling of spectrin, ankyrin, and band 3: Decreased labeling of spectrin reveals less stress on the mutant network as spectrin dissociates from actin. Mapping the stress-dependent labeling kinetics of α- and β-spectrin by LC-MS/MS identifies Cys in these antiparallel chains that are either force-enhanced or force-independent in labeling, with structural analyses indicating the force-enhanced sites are sequestered either in spectrin’s triple-helical domains or in interactions with actin or ankyrin. Shear-sensitive sites identified comprehensively here in both spectrin and ankyrin appear consistent with stress relief through forced unfolding followed by cytoskeletal disruption. PMID:21527722
Evaluation of punching shear strength of flat slabs supported on rectangular columns
NASA Astrophysics Data System (ADS)
Filatov, Valery
2018-03-01
The article presents the methodology and results of an analytical study of structural parameters influence on the value of punching force for the joint of columns and flat reinforced concrete slab. This design solution is typical for monolithic reinforced concrete girderless frames, which have a wide application in the construction of high-rise buildings. As the results of earlier studies show the punching shear strength of slabs at rectangular columns can be lower than at square columns with a similar length of the control perimeter. The influence of two structural parameters on the punching strength of the plate is investigated - the ratio of the side of the column cross-section to the effective depth of slab C/d and the ratio of the sides of the rectangular column Cmax/Cmin. According to the results of the study, graphs of reduction the control perimeter depending on the structural parameters are presented for columns square and rectangular cross-sections. Comparison of results obtained by proposed approach and MC2010 simplified method are shown, that proposed approach gives a more conservative estimate of the influence of the structural parameters. A significant influence of the considered structural parameters on punching shear strength of reinforced concrete slabs is confirmed by the results of experimental studies. The results of the study confirm the necessity of taking into account the considered structural parameters when calculating the punching shear strength of flat reinforced concrete slabs and further development of code design methods.
Shear weakening for different lithologies observed at different saturation stages
NASA Astrophysics Data System (ADS)
Diethart-Jauk, Elisabeth; Gegenhuber, Nina
2018-01-01
For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.
Mantle Flow in the Western United States Constrained by Seismic Anisotropy
NASA Astrophysics Data System (ADS)
Niday, W.; Humphreys, E.
2017-12-01
Shear wave splitting, caused by the lattice preferred orientation (LPO) of olivine crystals under shear deformation, provide a useful constraint on numerical models of mantle flow. Although it is sometimes assumed that shear wave splitting fast directions correspond with mantle flow directions, this is only true in simple shear flows that do not vary strongly with space or time. Observed shear wave splitting in the western United States is complex and inconsistent with simple shear driven by North American and Pacific plate motion, suggesting that the effects of time-dependent subduction history and spatial heterogeneity are important. Liu and Stegman (2011) reproduce the pattern of fast seismic anomalies below the western US from Farallon subduction history, and Chaparro and Stegman (2017) reproduce the circular anisotropy field below the Great Basin. We extend this to consider anisotropic structure outside the Great Basin and evaluate the density and viscosity of seismic anomalies such as slabs and Yellowstone. We use the mantle convection code ASPECT to simulate 3D buoyancy-driven flow in the mantle below the western US, and predict LPO using the modeled flow fields. We present results from a suite of models varying the sub-lithospheric structures of the western US and constraints on density and viscosity variations in the upper mantle.
NASA Astrophysics Data System (ADS)
Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.
2017-06-01
The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.
NASA Astrophysics Data System (ADS)
Li, Peng; Thurber, Clifford
2018-06-01
We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.
NASA Astrophysics Data System (ADS)
Garnero, Edward J.; Lay, Thorne
2003-11-01
The D″ region in the lowermost mantle beneath the Caribbean and Central America is investigated using shear waves from South American earthquakes recorded by seismic stations in North America. We present a large-scale, composite study of volumetric shear velocity heterogeneity, anisotropy, and the possible presence of a D″ discontinuity in the region. Our data set includes: 328 S( Sdiff)- SKS differential travel times, 300 ScS-S differential travel times, 125 S( Sdiff) and 120 ScS shear wave splitting measurements, and 297 seismograms inspected for Scd, the seismic phase refracted from a high-velocity D″ layer. Broadband digital data are augmented by high-quality digitized analog WWSSN data, providing extensive path coverage in our study area. In all, data from 61 events are utilized. In some cases, a given seismogram can be used for velocity heterogeneity, anisotropy, and discontinuity analyses. Significant mid-mantle structure, possibly associated with the ancient subducted Farallon slab, affects shear wave travel times and must be corrected for to prevent erroneous mapping of D″ shear velocity. All differential times are corrected for contributions from aspherical mantle structure above D″ using a high-resolution tomography model. Travel time analyses demonstrate the presence of pervasive high velocities in D″, with the highest velocities localized to a region beneath Central America, approximately 500-700 km in lateral dimension. Short wavelength variability overprints this general high-velocity background. Corrections are also made for lithospheric anisotropy beneath the receivers. Shear wave splitting analyses of the corrected waveforms reveal D″ anisotropy throughout the study area, with a general correlation with heterogeneity strength. Evidence for Scd arrivals is pervasive across the study area, consistent with earlier work, but there are a few localized regions (100-200 km) lacking clear Scd arrivals, which indicates heterogeneity in the thickness or velocity gradients of the high-velocity layer. While small-scale geographic patterns of heterogeneity, anisotropy, and discontinuity are present, the details appear complex, and require higher resolution array analyses to fully characterize the structure. Explanations for the high-shear wave speeds, anisotropy, and reflector associated with D″ beneath the Caribbean and Central America must be applicable over a lateral scale of roughly 1500 km 2, the dimension over which we observe coherent wavefield behavior in the region. A slab graveyard appears viable in this regard.
Turbulent kinetic energy equation and free mixing
NASA Technical Reports Server (NTRS)
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
Wood, Richard J.; Schwartz, Eric L.
1999-03-01
Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.
Mantle shear-wave tomography and the fate of subducted slabs.
Grand, Steven P
2002-11-15
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
NASA Astrophysics Data System (ADS)
Wang, Shubin; Zheng, Yu
2014-02-01
Hexagonal boron nitride (h-BN) coatings with different thickness were prepared on quartz fibers to improve mechanical properties of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite. Scanning electron microscopy (SEM), push-out test and single edge notched beam (SENB) in three point bending test were employed to study morphology, interface shear strength and fracture toughness of the composite. The results showed that h-BN coatings changed the crack growth direction and weaken the interface shear strength efficiently. When the h-BN coating was 308.2 nm, the interface shear strength was about 5.2 MPa, which was about one-quarter of that of the sample without h-BN coatings. After the heating process for obtaining composite, the h-BN nanometer-sized grains would grow up to micron-sized hexagonal grains. Different thickness h-BN coatings had different structure. When the coatings were relatively thin, the hexagonal grains were single layer structure, and when the coatings were thicker, the hexagonal grains were multiple layer structure. This multiple layer interface phase would consume more power of cracks, thus interface shear strength of the composite decreased steadily with the increasing of h-BN coatings thickness. When the coating thickness was 238.8 nm, KIC reaches the peak value 3.8 MPa m1/2, which was more than two times of that of composites without h-BN coatings.
NASA Astrophysics Data System (ADS)
Tavani, Stefano; Granado, Pablo; Cantanero, Irene; Balsamo, Fabrizio; Corradetti, Amerigo; Muñoz, Josep
2017-04-01
In this contribution we describe deformation bands developed due to the interplay between shearing and mechanical and chemical compaction in Paleocene quartz-rich calcarenites. The studied structures are located in the footwall of the Cotiella Thrust (Spanish Pyrennes) and form anastomosed, mm-thick tabular bands, composed of high concentration of quartz grains. The bands strike perpendicular to the local transport direction of the regional thrust sheet, thus indicating a tectonic origin, and are organized in three sets. One set is perpendicular to the shallow-dipping bedding surface, while the other two are roughly perpendicular to each other and form an angle of 45°, in opposite directions, with the bedding. No macroscopic evidence of shearing is found along these bands. Optical microscope and SEM investigations on both undeformed and deformed rocks indicate that the high concentration of quartz within the deformation bands was caused by the localized pressure-enhanced dissolution of calcite grains, which determined the enrichment of the less soluble quartz grains. Quartz grains fracturing, fragmentation and crushing was observed along in all deformation bands, whereas cataclasis and shear occurs only along oblique oblique-to-bedding sets. All these features indicate that studied deformation bands are hybrid structures most likely developed during layer-parallel shortening. In detail, bedding perpendicular and bedding oblique structures can be interpreted as pure compaction and shear-enhanced compaction bands, respectively.
Zou, Y.; Wang, X.; Chen, T.; ...
2015-06-01
Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Y.; Wang, X.; Chen, T.
Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂B S/∂P = 3.81(3) andmore » ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G 0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions.« less
Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Xiong, Y. Y.; Chen, S. Y., E-mail: sychen531@163.com
2016-04-15
The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognizedmore » as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.« less
Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media.
Finlayson, Chris E; Baumberg, Jeremy J
2017-06-22
We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid "gum-like" media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or "polymer opals") with intense tunable structural color. The further engineering of this shear-ordering using a controllable "roll-to-roll" process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics.
Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media
Finlayson, Chris E.; Baumberg, Jeremy J.
2017-01-01
We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid “gum-like” media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or “polymer opals”) with intense tunable structural color. The further engineering of this shear-ordering using a controllable “roll-to-roll” process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics. PMID:28773044
NASA Astrophysics Data System (ADS)
Mao, Chenxi; Dong, Jinzhi; Li, Hui; Ou, Jinping
2012-04-01
Shear wall system is widely adopted in high rise buildings because of its high lateral stiffness in resisting earthquakes. According to the concept of ductility seismic design, coupling beams in shear wall structure are required to yield prior to the damage of wall limb. However, damage in coupling beams results in repair cost post earthquake and even in some cases it is difficult to repair the coupling beams if the damage is severe. In order to solve this problem, a novel passive SMA damper was proposed in this study. The coupling beams connecting wall limbs are split in the middle, and the dampers are installed between the ends of the two cantilevers. Then the relative flexural deformation of the wall limbs is transferred to the ends of coupling beams and then to the SMA dampers. After earthquakes the deformation of the dampers can recover automatically because of the pseudoelasticity of austenite SMA material. In order to verify the validity of the proposed dampers, seismic responses of a 12-story coupled shear wall with such passive SMA dampers in coupling beams was investigated. The additional stiffness and yielding deformation of the dampers and their ratios to the lateral stiffness and yielding displacements of the wall limbs are key design parameters and were addressed. Analytical results indicate that the displacement responses of the shear wall structure with such dampers are reduced remarkably. The deformation of the structure is concentrated in the dampers and the damage of coupling beams is reduced.
NASA Astrophysics Data System (ADS)
Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore
2013-04-01
Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.
Experimental evaluation of two 36 inch by 47 inch graphite/epoxy sandwich shear webs
NASA Technical Reports Server (NTRS)
Bush, H. G.
1975-01-01
The design is described and test of two large (36 in. x 47 in.) graphite/epoxy sandwich shear webs. One sandwich web was designed to exhibit strength failure of the facings at a shear load of 7638 lbs/in., which is a characteristic loading for the space shuttle orbiter main engine thrust beam structure. The second sandwich web was designed to exhibit general instability failure at a shear load of 5000 lbs/in., to identify problem areas of stability critical sandwich webs and to assess the adequacy of contemporary analysis techniques.
Elementary Mechanisms of Shear-Coupled Grain Boundary Migration
NASA Astrophysics Data System (ADS)
Rajabzadeh, A.; Mompiou, F.; Legros, M.; Combe, N.
2013-06-01
A detailed theoretical study of the elementary mechanisms occurring during the shear-coupled grain boundary (GB) migration at low temperature is performed focusing on both the energetic and structural characteristics. The migration of a Σ13(320) GB in a copper bicrystal in response to external shear displacements is simulated using a semiempirical potential. The minimum energy path of the shear-coupled GB migration is computed using the nudge elastic band method. The GB migration occurs through the nucleation and motion of GB steps identified as disconnections. Energy barriers for the GB and disconnection migrations are evaluated.
Piezoelectric shear wave resonator and method of making same
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1988-01-01
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Method of making a piezoelectric shear wave resonator
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1987-02-03
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
NASA Astrophysics Data System (ADS)
Walter, Bastien; Géraud, Yves; Diraison, Marc; Oliot, Emilien
2013-04-01
The late-Miocene monzogranitic pluton of Porto Azzurro (PA) on Elba Island (Italy), was emplaced in the footwall of the N-S striking Zuccale Fault (ZF), a Low-Angle Normal Fault (LANF). In the Barbarossa outcrop, this poorly exposed pluton shows few NNE-SSW and WNW-ESE striking shear bands, respectively moderately dipping eastward and steeply dipping northward, which appear to be associated to the brittle fracturation, and no clear relationship between all these structures and the ZF is described. In order to get information about possible relationship between these shear bands, brittle structures and prior fabric of this igneous stock, and about the timing of formation of these ductile deformations relative to the pluton emplacement, rock fabrics were studied on samples taken both inside and outside of one of these shear bands. The magnetic fabric was analyzed with anisotropy of magnetic susceptibility measurements (AMS), and the crystallographic preferred orientations of dynamically recrystallized quartz were measured with the electron back-scattered diffraction (EBSD) method. Quartz CPOs are directly compared, after EBSD data processing, with the macroscopic ductile structures orientation, according to the geographical North. The pooling of data of these two methods reveals two distinct petrofabrics within the Barbarossa monzogranite. The first fabric, with a low dip angle, is identified only on samples taken outside of the influence of the shear bands. Orientation of paramagnetic minerals, with biotite as the main magnetic mineral carrier, and quartz CPOs are consistent, pervasive within the whole outcrop and are linked to the eastward extension produced by the LANF Zuccale Fault. This fabric suggests that the dynamic of the magmatic supplies during emplacement of the pluton of PA was controlled by the LANF's extension, and confirms this magmatic intrusion to be likely syn-tectonic. The second fabric is identified close or within the studied shear bands with a similar orientation to them. Our data show that these ductile structures impose a local new tectonic fabric overprinting the pre-existing one. The common re-orientation of the magnetic minerals, of the recrystallized quartz and of the brittle structures suggest a strain localization and a continuous strain process localized along stain bands from late-magmatic flowing, highlighted by biotite orientation, then during shear bands activation, at temperature around 350-400° C. Finally, these structures would have remained active through the ductile-brittle transition, leading to the localized intense fracturation of the Barbarossa outcrop.
Lightweight concrete modification factor for shear friction.
DOT National Transportation Integrated Search
2013-10-01
This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...
Structural identification of a real-world shear-critical prestressed concrete highway bridge.
DOT National Transportation Integrated Search
2012-08-01
A typical span of the Little River overflow bridge located in McCurtain County, Oklahoma, a shear-critical prestressed concrete bridge identified by the Oklahoma Department of Transportation (ODOT) Bridge Division, is studied using a multidisciplinar...
Structural Properties of Silk Electro-Gels
NASA Astrophysics Data System (ADS)
Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.
2013-03-01
The interest in Bombyx Mori silk emerges from its biocompatibility and its structural superiority to synthetic polymers. Our particular interest lies in understanding the capabilities of silk electro-gels because of their reversibility and tunable adhesion. We create an electro-gel by applying a DC electric potential across a reconstituted silk fibroin solution derived directly from Bombyx Mori cocoons. This process leads to the intermolecular self-assembly of fibroin proteins into a weak gel. In this talk we will present our results on the effects of applied shear on electro-gels. We quantify the structural properties while dynamically imaging shear induced fiber formation; known as fibrillogenesis. It is observed that the mechanical properties and microstructure of these materials are highly dependent on shear history. We will also discuss the role of surface modification, through micro-patterning, on the observed gel structure. Our results provide an understanding of both the viscoelastiticity and microstucture of reconstituted silks that are being utilized as tissue scaffolds. This work is supported by a grant from the AFOSR FA9550-07-1-0130.
Determination of billows and other turbulent structures, part 4.1A
NASA Technical Reports Server (NTRS)
Rastogi, P. K.
1984-01-01
Billows are regular, wave-like arrays of cross-flow vortices that develop in stratified oceanic or atmospheric flows with large shear. Atmospheric billows can become manifest through condensation. Billows are frequently seen in their characteristic cloud forms in the lower atmosphere. Under suitable viewing conditions, billows can also be seen in noctilucent clouds that form near the polar mesosphere during the summer months. Other turbulent structures -- related to billows -- are the Kelvin-Helmholtz instability (KHI) and cat's eye structures that occur in fully developed turbulent shear flows. Shear flows may contain perturbations at many different horizontal wavelengths and vertical scales. Realistic theoretical models have been constructed to study the stability and growth of these perturbations. The extent to which billows and Kelvin-Helmholtz instability have been observed in the atmosphere with the use of radars is outlined. Most of these observations are confined to the troposphere. Suggestions are made for improved radar experiments that are required to detect these structures at higher altitudes.
The role of discrete intrabasement shear zones during multiphase continental rifting
NASA Astrophysics Data System (ADS)
Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon
2016-04-01
Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with overlying rift-related faults: (i) Faults exploit planes of weakness internally within the shear zones; (ii) faults initiate within the hangingwall and subsequently merge along the intrabasement structure at depth; and (iii) faults initiate independently from and cross-cut intrabasement structure. We find that reactivation preferentially occurs along the thicker, steeper intrabasement structures, the Devonian Shear Zones, with individual faults exploiting internal mylonite layers. Using a detailed 3D interpretation of intrabasement structures, correlated with the onshore geology, we show that large-scale Devonian shear zones act as a long-lived structural template for fault initiation throughout multiple rift phases. Rift-related faults inherit the orientation and location of underlying intrabasement structures.
Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha
2017-01-01
With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.
Entrainment-Zone Restratification and Flow Structures in Stratified Shear Turbulence
NASA Technical Reports Server (NTRS)
Reif, B. Anders Pettersson; Werne, Joseph; Andreassen, Oyvind; Meyer, Christian; Davis-Mansour, Melissa
2002-01-01
Late-time dynamics and morphology of a stratified turbulent shear layer are examined using 1) Reynolds-stress and heat-flux budgets, 2) the single-point structure tensors introduced by Kassinos et al. (2001), and 3) flow visualization via 3D volume rendering. Flux reversal is observed during restratification in the edges of the turbulent layer. We present a first attempt to quantify the turbulence-mean-flow interaction and to characterize the predominant flow structures. Future work will extend this analysis to earlier times and different values of the Reynolds and Richardson numbers.
Pahranagat Shear System, Lincoln County, Nevada
NASA Technical Reports Server (NTRS)
Liggett, M. A. (Principal Investigator); Ehrenspreck, H. E.
1974-01-01
The author has identified the following significant results. A structural model which relates strike-slip deformation to Basin Range extensional tectonics was formulated on the basis of analysis and interpreatation of ERTS-1 MSS imagery over southern Lincoln County, Nevada. Study of published geologic data and field reconnaissance of key areas has been conducted to support the ERTS-1 data interpretation. The structural model suggests that a left-lateral strike-slip fault zone, called the Pahranagat Shear System, formed as a transform fault separating two areas of east-west structural extension.
Shear-modulated electroosmotic flow on a patterned charged surface.
Wei, Hsien-Hung
2005-04-15
The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow structures exhibit either saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electric field. The formation of closed streamlines could be advantageous for trapping nondiffusive particles at desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined to assess strategies for creating efficient mixing.
Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian
2000-01-01
Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.
Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow
NASA Astrophysics Data System (ADS)
Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca
2017-10-01
The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.
Impact of Wind Shear Characteristics on Roll Structure in Idealized Hurricane Boundary Layers
NASA Astrophysics Data System (ADS)
Wang, S.; Jiang, Q.
2016-12-01
The hurricane boundary layer (HBL) is well known for its critical role in evolutions of tropical cyclones (TCs) as the air-sea interaction represents both the most important source and sink of the moist available energy and the kinetic energy, respectively. One of the frequently occurring features in the HBL is horizontal roll vortices, which have quasi-two dimensional coherent and banded structure extending from the surface to the top of the HBL. It is believed that this highly coherent structure, caused by the inflection point instability in the basic wind profiles, plays an important role in organizing turbulent transport. To understand this role, large-eddy simulations are conducted to investigate how the wind shear characteristics such as the shear strength and inflection-point level can impact the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind profile nudging approach is used in the simulations to maintain the required mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential. The most robust rolls are produced in a simulation with the highest inflection-point level and strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40% in the middle of the boundary layer.
NASA Astrophysics Data System (ADS)
Plavsa, Diana; Collins, Alan S.; Foden, John D.; Clark, Chris
2015-05-01
Gondwana amalgamated along a suite of Himalayan-scale collisional orogens, the roots of which lace the continents of Africa, South America, and Antarctica. The Southern Granulite Terrane of India is a generally well-exposed, exhumed, Gondwana-forming orogen that preserves a record of the tectonic evolution of the eastern margin of the East African Orogen during the Ediacaran-Cambrian (circa 600-500 Ma) as central Gondwana formed. The deformation associated with the closure of the Mozambique Ocean and collision of the Indian and East African/Madagascan cratonic domains is believed to have taken place along the southern margin of the Salem Block (the Palghat-Cauvery Shear System, PCSS) in the Southern Granulite Terrane. Investigation of the structural fabrics and the geochronology of the high-grade shear zones within the PCSS system shows that the Moyar-Salem-Attur shear zone to the north of the PCSS system is early Paleoproterozoic in age and associated with dextral strike-slip motion, while the Cauvery shear zone (CSZ) to the south of the PCSS system can be loosely constrained to circa 740-550 Ma and is associated with dip-slip dextral transpression and north side-up motion. To the south of the proposed suture zone (the Cauvery shear zone), the structural fabrics of the Northern Madurai Block suggest four deformational events (D1-D4), some of which are likely to be contemporaneous. The timing of high pressure-ultrahigh temperature metamorphism and deformation (D1-D3) in the Madurai Block (here interpreted as the southern extension of Azania) is constrained to circa 550-500 Ma and interpreted as representing collisional orogeny and subsequent orogenic collapse of the eastern margin of the East African Orogen. The disparity in the nature of the structural fabrics and the timing of the deformation in the Salem and the Madurai Blocks suggest that the two experienced distinct tectonothermal events prior to their amalgamation along the Cauvery shear zone during the Ediacaran/Cambrian.
The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear
NASA Technical Reports Server (NTRS)
Ritchie, Elizabeth A.
2003-01-01
The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.
Wind Shear Effects on the Structure and Dynamics of the Daytime Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Haghshenas, Armin; Mellado, Juan Pedro
2017-04-01
The daytime atmospheric boundary layer (ABL), in which the positive buoyancy flux at the surface creates convective instability and generates turbulence, has been a subject of extensive research during the last century. However, fewer studies have considered wind shear in detail and most of them are single-case studies. So most of the available theories and parameterizations have not been sufficiently tested over a wide range of atmospheric conditions. Moreover, since previous numerical studies were mostly carried out by large eddy simulation, a complete understanding of the physics of the problem is still missing due to the lack of information about the small-scale dynamics. Specifically, despite the consensus in the community that wind shear enhances the entrainment process, the amount of enhancement is still matter of contention. In order to investigate the effects of wind shear on the structure and dynamics of the ABL in detail, direct numerical simulations are used in this study. Shear is prescribed by a height-constant velocity in the troposphere and the simulation runs until a fully turbulent, quasi-equilibrium regime is observed. Despite the simplification of neglecting the Coriolis force, our configuration reproduces the main features observed in the previous studies, which had taken the Coriolis force into account. As a novelty compared to previous single-case studies, we introduce a dimensionless parameter that allows us to study systematically any combination of surface buoyancy flux, buoyancy stratification, and wind shear; We refer to this dimensionless number as shear number. Seven simulations with shear numbers ranging from 0 (no wind) to 20 (moderate wind) are conducted; this range of shear numbers corresponds to wind strength from 0 to 15 m/s in the free troposphere for typical midday atmospheric conditions. In general, we find that shear effects are negligibly small when the shear number is below 10, and for larger values the effects remain constrained inside the entrainment zone and surface layer. This critical shear number is justified by scrutinizing the turbulence regimes (convective and mechanical) within the entrainment zone in the sense that, for this shear number, the turbulence transport of turbulence kinetic energy inside the entrainment zone equals the shear-production rate. Following this analysis a critical flux Richardson number of 0.6 inside the entrainment zone is found. In particular, we observe the following: First, the mean buoyancy and total buoyancy flux inside the mixed layer remain invariant under a change of shear number and they follow the free-convection scaling laws. Second, the height of minimum buoyancy flux increases due to shear effects, but just moderately (less than 5%). Nevertheless, this increment represents a growth of entrainment zone's thickness by 50% for shear numbers of the order of 20. Third, we observe that for shear numbers larger than 10, the entrainment flux ratio grows by up to 50% in an early state of ABL development. We provide explicit parameterizations of all these shear effects.
ITG modes in the presence of inhomogeneous field-aligned flow
NASA Astrophysics Data System (ADS)
Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.
2010-02-01
In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.
NASA Astrophysics Data System (ADS)
Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung
2018-04-01
Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.
Reynolds number invariance of the structure inclination angle in wall turbulence.
Marusic, Ivan; Heuer, Weston D C
2007-09-14
Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.
Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Jordan, Jacqueline; Fraga, Denise N.
2007-01-01
A process has been developed for the rapid tissue engineering of multicellular-tissue-equivalent assemblies by the controlled enzymatic degradation of polymeric beads in a low-fluid-shear bioreactor. In this process, the porous polymeric beads serve as temporary scaffolds to support the assemblies of cells in a tissuelike 3D configuration during the critical initial growth phases of attachment of anchorage-dependent cells, aggregation of the cells, and formation of a 3D extracellular matrix. Once the cells are assembled into a 3D array and enmeshed in a structural supportive 3D extracellular matrix (ECM), the polymeric scaffolds can be degraded in the low-fluid-shear environment of the NASA-designed bioreactor. The natural 3D tissuelike assembly, devoid of any artificial support structure, is maintained in the low-shear bioreactor environment by the newly formed natural cellular/ECM. The elimination of the artificial scaffold allows normal tissue structure and function.
NASA Astrophysics Data System (ADS)
Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong
2018-02-01
In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.
Dynamic characteristics of Non Newtonian fluid Squeeze film damper
NASA Astrophysics Data System (ADS)
Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.
2016-09-01
The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.
NASA Astrophysics Data System (ADS)
Attar, M.; Karrech, A.; Regenauer-Lieb, K.
2014-05-01
The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.
NASA Astrophysics Data System (ADS)
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
A new perspective on the significance of the Ranotsara shear zone in Madagascar
NASA Astrophysics Data System (ADS)
Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin
2010-12-01
The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara Zone shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.
Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions
NASA Astrophysics Data System (ADS)
McKinley, Gareth
2008-03-01
Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon
2015-04-01
The NW-SE Irtysh Shear Zone represents a major tectonic boundary in the Central Asian Orogenic Belt, recording the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan orogenic system. The structural evolution and geodynamics of this shear zone is still poorly documented. Here we present new structural data complemented by chronological data in an attempt to unravel the geodynamic significance of the Irtysh Shear Zone in the context of accretion history of the Central Asian Orogenic Belt. Our results show three episodes of deformation for the shear zone. D1 foliation is locally recognized in low strain area and recorded by garnet inclusions, whereas D2 is represented by a sub-horizontal fabric and related NW-SE lineation. D3 is characterized by a transpersonal deformation event, to form a series of NW-SE mylonitic belts with sinistral kinematics, and to overprint D2 fabric forming regional-scale NW-SE upright folds. A paragneiss sample from the shear zone yielded the youngest detrital zircon peaks in the late Carboniferous, placing a maximum age constraint on the deformation, which overlaps in time with the late Paleozoic collision between the Chinese Altai and the intraoceanic arc system of the East Junggar and West Junggar. We interpret three episodes of deformation to represent orogenic thickening (D1), collapse (D2) and thickening (D3) in response to this collisional event. Sinistral shearing (D3) together with the coeval dextral shearing in the Tianshan accommodate eastward extrusion of the Kazakhstan orogenic system during the late Paleozoic amalgamation of the Central Asian Orogenic Belt. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048, 41273012) and a HKU CRCG grant. The work is a contribution of the Joint Laboratory of Chemical Geodynamics between HKU and CAS (Guangzhou Institute of Geochemistry), IGCP 592 and PROCORE France/Hong Kong Joint Research Scheme.
Interaction of monopoles, dipoles, and turbulence with a shear flow
NASA Astrophysics Data System (ADS)
Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.
2016-09-01
Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.
A master dynamic flow diagram for the shear thickening transition in micellar solutions.
Bautista, F; Tepale, N; Fernández, V V A; Landázuri, G; Hernández, E; Macías, E R; Soltero, J F A; Escalante, J I; Manero, O; Puig, J E
2016-01-07
The shear thickening behavior of dilute micellar solutions of hexadecyltrimethylammonium-type surfactants with different counterions (tosylate, 3- and 4-fluorobenzoate, vinylbenzoate and salicylate) and of n-alkyltetradecylammonium bromide (CnTAB), with n = 14, 16 and 18, is examined here. These solutions undergo a shear thickening transition due to the formation of shear-induced structures (SISs) in the shear range studied. Here we report a relationship between the shear thickening intensity and the differences in the hydrophobicity of counterions according to the Hofmeister-like anion series, which leads to a master flow diagram. This master flow diagram is produced by plotting a normalized shear thickening intensity (Iη - 1)/(Imax - 1) versus CD/CD,max, where Iη is the shear-thickening intensity, defined as the largest viscosity obtained in the shear-thickening transition (STT) at a given surfactant concentration CD divided by the Newtonian viscosity η0, and Imax is the largest intensity value obtained in the STT at a surfactant concentration CD,max. The master flow diagram is built using several cetyltrimethylammonium-type surfactants with different counterions, according to a Hofmeister-like series, and by n-alkyltetradecylammonium bromide surfactants with different alkyl chain lengths.
NASA Astrophysics Data System (ADS)
Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming
2016-10-01
Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid-soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.
Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S; Zhong, Gan-Ji; Li, Zhong-Ming
2016-10-03
Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders' spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the "rigid-soft" system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.
Bounded energy states in homogeneous turbulent shear flow: An alternative view
NASA Technical Reports Server (NTRS)
Bernard, Peter S.; Speziale, Charles G.
1990-01-01
The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.
NASA Astrophysics Data System (ADS)
Laó-Dávila, Daniel A.; Anderson, Thomas H.
2009-12-01
Faults and shear zones recorded in the Monte del Estado and Río Guanajibo serpentinite masses in southwestern Puerto Rico show previously unrecognized southwestward tectonic transport. The orientations of planar and linear structures and the sense of slip along faults and shear zones determined by offset rock layers, drag folds in foliations, and steps in slickensided surfaces and/or S-C fabrics from 1846 shear planes studied at more than 300 stations reveal two predominant groups of faults: 1) northwesterly-striking thrust faults and easterly-striking left-lateral faults and, 2) northwesterly-striking right-lateral faults and easterly-striking thrust faults. Shortening and extension (P and T) axes calculated for geographic domains within the serpentinite reveal early north-trending shortening followed by southwestward-directed movement during which older structures were re-activated. The SW-directed shortening is attributed to transpression that accompanied Late Eocene left-lateral shearing of the serpentinite. A third, younger, group comprising fewer faults consists of northwesterly-striking left-lateral faults and north-directed thrusts that also may be related to the latest transpressional deformation within Puerto Rico. Deformational events in Puerto Rico correlate to tectonic events along the Caribbean-North American plate boundary.
NASA Technical Reports Server (NTRS)
Falcone, Anthony; Laakso, John H.
1993-01-01
Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).
Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming
2016-01-01
Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid−soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight. PMID:27694989
Shear-lag effect and its effect on the design of high-rise buildings
NASA Astrophysics Data System (ADS)
Thanh Dat, Bui; Traykov, Alexander; Traykova, Marina
2018-03-01
For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.
Shear zone reactivation during South Atlantic rifting in NW Namibia
NASA Astrophysics Data System (ADS)
Koehn, D.; Passchier, C. W.; Salomon, E.
2013-12-01
Reactivation of inherited structures during rifting as well as an influence of inherited structures on the orientation of a developing rift has long been discussed (e.g. Piqué & Laville, 1996; Younes & McClay, 2002). Here, we present a qualitative and quantitative study of shear zone reactivation during the South Atlantic opening in NW Namibia. The study area comprises the Neo-Proterozoic rocks of the Kaoko Belt which was formed during the amalgamation of Gondwana. The Kaoko Belt encompasses the prominent ~500 km long ductile Purros shear zone and the Three Palms shear zone, both running sub-parallel to the present continental margin. The Kaoko Belt is partly overlain by the basalts of the Paraná-Etendeka Large Igneous Province, which with an age of ~133 Ma were emplaced just before or during the onset of the Atlantic rifting at this latitude. Combining the analysis of satellite imagery and digital elevation models with extensive field work, we identified numerous faults tracing the old shear zones along which the Etendeka basalts were down-faulted. The faults are often listric, yet we also found evidence for a regional scale basin formation. Our analysis allowed for constructing the geometry of three of these faults and we could thus estimate the vertical offsets to ~150 m, ~500 m, and ~1100 m, respectively. Our results contribute to the view that the basement inheritance plays a significant role on rifting processes and that the reactivation of shear zones can accumulate significant amounts of displacement. References: Pique, A. and E. Laville (1996). The Central Atlantic rifting: Reactivation of Paleozoic structures?. J. Geodynamics, 21, 235-255. Younes, I.A. and K. McClay (2002). Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. AAPG Bulletin, 86, 1003-1026.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Cai, Keda; Chen, Ming; He, Yulin
2016-06-01
Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.
A shear localization mechanism for lubricity of amorphous carbon materials
Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui
2014-01-01
Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998
Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Geller, Marvin A.
1994-01-01
The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.
Improving substructure identification accuracy of shear structures using virtual control system
NASA Astrophysics Data System (ADS)
Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui
2018-02-01
Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.
Tectonic controlled submarine slidings and dewatering structures
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Hirono, T.; Takahashi, M.
2003-04-01
Geologic structures associated with mass movements processes such as slumping, sliding, and creeping can be the key to understanding the tectonic or geologic constraints in the time they were formed. Because they are sensitively reflected by the paleo-topography which must be associated with active tectonics. It must be very useful if the direction of paleo-slope instability is known easily in a wide area. We paid attentions to convolute lamination and flame structure which might be associated with dewatering and loading, respectively. Some recent researches report the possibility that well regulated flame structures might be formed in relation to paleo-slope instability. However, there is an alternative idea that they were reflection of heterogeneous loading associated with ripple marks on the sandy layers. This controversy has not been settled. Accordingly, to evaluate the reliability of the relationship between formation of such structures with well regulated arrays and paleo-slope instability, the Pliocene Chikura Group in the southern part of the Boso Peninsula, central Japan, was studied. The Chikura Group overlying the Miura Group, Miocene accretionary prism, is composed of trench-fill sediments in the lowermost and of trench-slope basin sediments in the upper. The Chikura Group was deposited on an east-west extended sedimentary basin during east-west trending folds and faults development. These indicate the direction of paleo-slope in the Chikura Group due north or south. Flame structures and convolute laminations were recognized over 60 sites in the Chikura Group. They have well-regulated planar arrays which extend almost east west, perpendicular to the direction of paleo-slope instability. Some examples of such structures and slump deposit were observed in the same outcrop. Vergence of these slump deposits were toward north or south, and ridges of flame structures and convolute laminations extend east-west. Experimental study of direct imaging of dewatering under shear stress regime by using X-ray CT and X-ray microscope shows similar arrays of dewatering paths. Water escapes through the foliation which might be a tension fracture caused by direct shear strain. The foliation has vertical trends to the applied shear stress and has high angle dippings with approximately 65 to 75 degrees to the direct shear plane. These field-based study and experiment indicate that well regulated flame structures and convolute laminations were formed by dewatering or mud liquidization by which water escapes through the tension fractures associated with shear stress corresponding to the paleo-slope instability. These structures are very important because we can identify easily the paleo-slope directions, direction of synsedimentary shear and also macro-scopic geologic constraints on tectonics around a study area.
Extremely high wall-shear stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pan, Chong; Kwon, Yongseok
2018-04-01
The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.
The impact of wall shear stress and pressure drop on the stability of the atherosclerotic plaque.
Li, Zhi-Yong; Taviani, Valentina; Gillard, Jonathan H
2008-01-01
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.
NASA Astrophysics Data System (ADS)
Juliyana, M.; Santhana Krishnan, R.
2018-02-01
The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.
Fluid dynamic effects on staphylococci bacteria biofilms
NASA Astrophysics Data System (ADS)
Sherman, Erica; Bayles, Kenneth; Endres, Jennifer; Wei, Timothy
2016-11-01
Staphylococcus aureus bacteria are able to form biofilms and distinctive tower structures that facilitate their ability to tolerate treatment and to spread within the human body. The formation of towers, which break off, get carried downstream and serve to initiate biofilms in other parts of the body are of particular interest here. It is known that flow conditions play a role in the development, dispersion and propagation of biofilms in general. The influence of flow on tower formation, however, is not at all understood. This work is focused on the effect of applied shear on tower development. The hypothesis being examined is that tower structures form within a specific range of shear stresses and that there is an as yet ill defined fluid dynamic phenomenon that occurs hours before a tower forms. In this study, a range of shear stresses is examined that brackets 0.6 dynes/cm2, the nominal shear stress where towers seem most likely to form. This talk will include µPTV measurements and cell density data indicating variations in flow and biofilm evolution as a function of the applied shear. Causal relations between flow and biofilm development will be discussed.
Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin
1997-01-01
The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.
A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys
Hamad, Kotiba; Ko, Young Gun
2016-01-01
Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685
NASA Astrophysics Data System (ADS)
Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.
2017-12-01
A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.
Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds
NASA Astrophysics Data System (ADS)
Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.
2018-06-01
First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.
Filament cooling and condensation in a sheared magnetic field
NASA Technical Reports Server (NTRS)
Van Hoven, Gerard
1990-01-01
Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.
Modeling the initial mechanical response and yielding behavior of gelled crude oil
NASA Astrophysics Data System (ADS)
Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang
2018-05-01
The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.
Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout
2007-10-01
We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.
Evidence for Seismic and Aseismic Slip along a Foreland Thrust Fault, Southern Appalachians
NASA Astrophysics Data System (ADS)
Newman, J.; Wells, R. K.; Holyoke, C. W.; Wojtal, S. F.
2013-12-01
Studies of deformation along ancient thrust faults form the basis for much of our fundamental understanding of fault and shear zone processes. These classic studies interpreted meso- and microstructures as formed during aseismic creep. Recent experimental studies, and studies of naturally deformed rocks in seismically active regions, reveal similar microstructures to those observed locally in a carbonate foreland thrust from the southern Appalachians, suggesting that this thrust fault preserves evidence of both seismic and aseismic deformation. The Copper Creek thrust, TN, accommodated 15-20 km displacement, at depths of 4-6 km, as estimated from balanced cross-sections. At the Diggs Gap exposure of the Copper Creek thrust, an approximately 2 cm thick, vein-like shear zone separates shale layers in the hanging wall and footwall. The shear zone is composed of anastomosing layers of ultrafine-grained calcite and/or shale as well as aggregate clasts of ultrafine-grained calcite or shale. The boundary between the shear zone and the hanging wall is sharp, with slickensides along the boundary, parallel to the shear zone movement direction. A 350 μm-thick layer of ultrafine-grained calcite separates the shear zone and the footwall. Fault parallel and perpendicular calcite veins are common in the footwall and increase in density towards the shear zone. Microstructures within the vein-like shear zone that are similar to those observed in experimental studies of unstable slip include: ultrafine-grained calcite (~0.34 μm), nano-aggregate clasts (100-300 nm), injection structures, and vein-wrapped and matrix-wrapped clasts. Not all structures within the shear zone and ultrafine-grained calcite layer suggest seismic slip. Within the footwall veins and calcite aggregate clasts within the shear zone, pores at twin-twin intersections suggest plasticity-induced fracturing as the main mechanism for grain size reduction. Interpenetrating grain boundaries in ultrafine-grained calcite and a lack of a lattice preferred orientation suggest ultrafine-grained calcite deformed by diffusion creep accommodated grain boundary sliding. These structures suggest a strain-rate between 10-15 - 10-11 s-1, using calcite flow laws at temperatures 150-250 °C. Microstructures suggest both seismic and aseismic slip along this ancient fault zone. During periods of aseismic slip, deformation is accommodated by plasticity-induced fracturing and diffusion creep. Calcite veins suggest an increase in pore-fluid pressure, contributing to fluidized and unstable flow, but also providing the calcite that deformed by diffusion creep during aseismic creep.
Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.
2017-12-01
Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.
Modeling interface shear behavior of granular materials using micro-polar continuum approach
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.
2018-01-01
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.
2016-11-01
The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.
Deformation of a Capsule in a Power-Law Shear Flow
2016-01-01
An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values. PMID:27840656
NASA Astrophysics Data System (ADS)
Saintilan, Nicolas J.; Stephens, Michael B.; Spikings, Richard; Schneider, Jens; Chiaradia, Massimo; Spangenberg, Jorge E.; Ulianov, Alexey; Fontboté, Lluís
2017-08-01
The Åkerlandet, Järvsand, and Laisvall deposits in Sweden are calcite-fluorite-sulfide vein deposits and occurrences located close to the current erosional front of the Caledonian orogen and hosted by crystalline basement rocks in the Fennoscandian Shield. At Laisvall, basement-hosted veinlets occur beneath Ediacaran to Cambrian sandstones that host a strata-bound Pb-Zn deposit. The mineralized fractures at Åkerlandet and Järvsand occur along fault systems oriented N-S to NNW-SSE. Veins or veinlets strike NNW-SSE and NW-SE at Åkerlandet, NNE-SSW at Järvsand, and NNW-SSE and NNE-SSW to NE-SW at Laisvall. At Åkerlandet and Järvsand, fractures acted as conduits for hydrothermal fluids of variable composition and formed during separate tectonic events. At Åkerlandet, the fault zone with NNW-SSE strike shows kinematic indicators consistent with NE-SW bulk horizontal extension. At Järvsand, the calcite-fluorite-galena veins formed along R-Riedel shears related to the host N-S to NNW-SSE fault system. The kinematic indicators are consistent with NW-SE bulk horizontal extension, similar to the extensional deformation during the later part of the Caledonian orogeny (Silurian to Devonian). At Åkerlandet, adularia-quartz deposition was followed by sphalerite ± galena and finally by precipitation of fluorite and calcite. 40Ar-39Ar thermochronology of a single adularia sample did not yield a well-defined plateau age but the gas released at higher temperatures suggests an early Tonian (980 to 950 Ma) crystallization age, i.e., during the later part of the Sveconorwegian orogeny, although the data do not exclude other less likely interpretations. Previous fluid inclusion microthermometry and geochronological studies and new petrographic and geochemical results suggest that sphalerite ± galena mineralization formed from saline, relatively oxidizing, moderate-temperature, and slightly acidic hydrothermal fluids, either during the Ediacaran or the Middle Ordovician. Metals and H2S were derived from local basement rocks. Based on petrographic evidence, rare earth element composition, and S, C, and O isotope data, fluorite and calcite precipitated under near neutral and relatively reducing conditions. Occurrence of solid bitumen in veins at Åkerlandet and C and O isotope data of calcite at Åkerlandet and in the Laisvall basement veinlets suggest that the precipitation of calcite and fluorite was triggered by interaction of hot and evolved hydrothermal fluids (87Sr/86Sr = 0.718-0.732) with organic matter. Structural, petrographic, and geochemical data at Laisvall suggest that the basement structures hosting calcite-fluorite ± pyrite veinlets were utilized in the Middle Ordovician as the plumbing system for the oxidizing, slightly acidic, metal-bearing brines that caused the economic Pb-Zn mineralization in the overlying sandstones.
Mechanical Anisotropic and Electronic Properties of Amm2-carbon under Pressure*
NASA Astrophysics Data System (ADS)
Xing, Meng-Jiang; Li, Xiao-Zhen; Yu, Shao-Jun; Wang, Fu-Yan
2017-09-01
Structural, electronic properties and mechanical anisotropy of Amm2-carbon are investigated utilizing frist-principles calculations by Cambridge Serial Total Energy Package (CASTEP) code. The work is performed with the generalized gradient approximation in the form of Perdew-Burke-Ernzerhof (PBE), PBEsol, Wu and Cohen (WC) and local density approximation in the form of Ceperley and Alder data as parameterized by Perdew and Zunger (CA-PZ). The mechanical anisotropy calculations show that Amm2-carbon exhibit large anisotropy in elastic moduli, such as Poisson’s ratio, shear modulus and Young’s modulus, and other anisotropy factors, such as the shear anisotropic factor and the universal anisotropic index AU. It is interestingly that the anisotropy in shear modulus and Young’s modulus, universal anisotropic index and the shear anisotropic factor all increases with increasing pressure, but the anisotropy in Poisson’s ratio decreases. The band structure calculations reveal that Amm2-carbon is a direct-band-gap semiconductor at ambient pressure, but with the pressure increasing, it becomes an indirect-band-gap semiconductor.
Pashin, Jack; Carroll, R.E.; Hatch, Joseph R.; Goldhaber, Martin B.
1999-01-01
Natural fractures provide most of the interconnected macroporosity in coal. Therefore, understanding the characteristics of these fractures and the associated mechanisms of formation is essential for effective coalbed methane exploration and field management. Natural fractures in coal can be divided into two general types: cleat and shear structures. Cleat has been studied for more than a century, yet the mechanisms of cleat formation remain poorly understood (see reviews by Close, 1993; Laubach et al.,1998). An important aspect of cleating is that systematic fracturing of coal is takes place in concert with devolatization and concomitant shrinkage of the coal matrix during thermal maturation (Ammosov and Eremin, 1960). Coal, furthermore, is a mechanically weak rock type that is subject to bedding-plane shear between more competent beds like shale, sandstone, and limestone. Yet, the significance of shear structures in coal has only begun to attract scientific interest (Hathaway and Gayer, 1996; Pashin, 1998).
Increase in Mechanical Resistance to Force in a Shear-Activated Protein
NASA Astrophysics Data System (ADS)
Botello, Eric; Harris, Nolan; Choi, Huiwan; Zhou, Zhou; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa
2009-03-01
von Willebrand factor (VWF) is the largest multimeric adhesion ligand found in human blood. Plasma VWF (pVWF) must be exposed to shear stress, like at sites of vascular injury, to be activated to bind platelets to induce blood clotting. In addition, adhesion activity of VWF is related to its polymer size, with the ultra-large form of VWF (ULVWF) being hyper-active, and forming fibers even without exposure to shear stress. We used the AFM to stretch pVWF, sheared VWF (sVWF) and ULVWF, and monitor the forces as a function of molecular extension. We showed a similar increase in force resistance to unfolding for sVWF and ULVWF when compared to pVWF. The increase in force is reduced when other molecules that are known to disrupt their fibril formation are present. Our results provide evidence that the common higher order structure of sVWF and ULVWF may affect the domain structure that causes difference in their adhesion activity compared to pVWF.
NASA Astrophysics Data System (ADS)
Kim, Hansang
2015-01-01
The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.
NASA Astrophysics Data System (ADS)
Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.
2018-01-01
Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.
NASA Technical Reports Server (NTRS)
Troeger, L. P.; Domack, M. S.; Wagner, J. A.
1998-01-01
Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationship for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which have undergone various amounts of shear-forming strain have been studied to assess the microstructure and mechanical properties developed during and after shear forming.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1985-05-20
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1983-10-25
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
The growth of radiative filamentation modes in sheared magnetic fields
NASA Technical Reports Server (NTRS)
Vanhoven, Gerard
1986-01-01
Observations of prominences show them to require well-developed magnetic shear and to have complex small-scale structure. Researchers show here that these features are reflected in the results of the theory of radiative condensation. Researchers studied, in particular, the influence of the nominally negligible contributions of perpendicular (to B) thermal conduction. They find a large number of unstable modes, with closely spaced growth rates. Their scale widths across B show a wide range of longitudinal and transverse sizes, ranging from much larger than to much smaller than the magnetic shear scale, the latter characterization applying particularly in the direction of shear variation.
NASA Astrophysics Data System (ADS)
Takeuchi, Christopher S.
In this dissertation, I study the influence of transform faults on the structure and deformation of the lithosphere, using shipboard and geodetic observations as well as numerical experiments. I use marine topography, gravity, and magnetics to examine the effects of the large age-offset Andrew Bain transform fault on accretionary processes within two adjacent segments of the Southwest Indian Ridge. I infer from morphology, high gravity, and low magnetization that the extremely cold and thick lithosphere associated with the Andrew Bain strongly suppresses melt production and crustal emplacement to the west of the transform fault. These effects are counteracted by enhanced temperature and melt production near the Marion Hotspot, east of the transform fault. I use numerical models to study the development of lithospheric shear zones underneath continental transform faults (e.g. the San Andreas Fault in California), with a particular focus on thermomechanical coupling and shear heating produced by long-term fault slip. I find that these processes may give rise to long-lived localized shear zones, and that such shear zones may in part control the magnitude of stress in the lithosphere. Localized ductile shear participates in both interseismic loading and postseismic relaxation, and predictions of models including shear zones are within observational constraints provided by geodetic and surface heat flow data. I numerically investigate the effects of shear zones on three-dimensional postseismic deformation. I conclude that the presence of a thermally-activated shear zone minimally impacts postseismic deformation, and that thermomechanical coupling alone is unable to generate sufficient localization for postseismic relaxation within a ductile shear zone to kinematically resemble that by aseismic fault creep (afterslip). I find that the current record geodetic observations of postseismic deformation do not provide robust discriminating power between candidate linear and power-law rheologies for the sub-Mojave Desert mantle, but longer observations may potentially allow such discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z Xu; C Chen; Y Wang
Combined effects of graphene nanosheets (GNSs) and shear flow on the crystallization behavior of isotactic polypropylene (iPP) were investigated by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. For crystallization under quiescent condition (at 145 C), the half-crystallization time (t{sub 1/2}) of nanocomposites containing 0.05 and 0.1 wt % GNSs was reduced to at least 50% compared to that of neat iPP, indicating the high nucleation ability of GNSs. The crystallization rate of iPP was directly proportional to the GNS content. Under a relatively weak shear flow (at a rate of 20 s{sup -1} for 5more » s duration) and a low degree of supercooling, the neat iPP exhibited an isotropic structure due to the relaxation of row nuclei. However, visible antisotropic crystals appeared in sheared iPP/GNSs nanocomposites, indicating that GNSs induced a network structure hindering the mobility of iPP chains and allowing the survival of oriented row nuclei for a long period of time. The presence of GNSs clearly enhanced the effects of shear-induced nucleation as well as orientation of iPP crystals. Two kinds of nucleating origins coexisted in the sheared nanocomposite melt: heterogeneous nucleating sites initiated by GNSs and homogeneous nucleating sites (row nuclei) induced by shear. The difference of t{sub 1/2} of nanocomposites with and without shear was significantly larger than that of neat iPP. The presence of GNSs and shear flow exhibited a synergistic interaction on promoting crystallization kinetics of iPP, although the effect of GNS concentration was not apparent. From WAXD results of isothermal and nonisothermal crystallization of sheared iPP, it was found that the appearance of {beta}-crystals depended on the preservation of row nuclei, where the {alpha}-crystals were predominant in the iPP/GNSs nanocomposites, indicating that GNSs could directly induce {alpha}-crystals of iPP.« less
Contact force structure and force chains in 3D sheared granular systems
NASA Astrophysics Data System (ADS)
Mair, Karen; Jettestuen, Espen; Abe, Steffen
2010-05-01
Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.
NASA Astrophysics Data System (ADS)
Garber, Joshua M.; Roeske, Sarah M.; Warren, Jessica; Mulcahy, Sean R.; McClelland, William C.; Austin, Lauren J.; Renne, Paul R.; Vujovich, Graciela I.
2014-07-01
The Bajo Pequeño Shear Zone (BPSZ) is a lower-crustal shear zone that records shortening and exhumation associated with the establishment of a new plate boundary, and its placement in a regional structural context suggests that local- to regional-scale strain localization occurred with progressive deformation. A kilometer-scale field and analytical cross section through the 80 m thick BPSZ and its adjacent rocks indicates an early Devonian (405-400 Ma) phase of deformation on the western margin of Gondwanan continental crust. The earliest stages of the BPSZ, recorded by metamorphic and microstructural data, involved thrusting of a hotter orthogneiss over a relatively cool pelitic unit, which resulted in footwall garnet growth and reset footwall white mica 40Ar/39Ar ages in proximity to the shear zone. Later stages of BPSZ activity, as recorded by additional microstructures and quartz c-axis opening angles, were characterized by strain localization to the center of the shear zone coincident with cooling and exhumation. These and other data suggest that significant regional tectonism persisted in the Famatinian orogenic system for 60-70 million years after one microplate collision (the Precordillera) but ceased 5-10 million years prior to another (Chilenia). A survey of other synchronous structures shows that strain was accommodated on progressively narrower structures with time, indicating a regional pattern of strain localization and broad thermal relaxation as the Precordillera collision evolved.
NASA Astrophysics Data System (ADS)
Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman
2018-02-01
Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.
NASA Astrophysics Data System (ADS)
Vorotnikov, K.; Starosvetsky, Y.
2018-01-01
The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.
NASA Astrophysics Data System (ADS)
Hagag, W.; Moustafa, R.; Hamimi, Z.
2018-01-01
The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Yoshida, Naoki
2018-04-01
Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.
Okubo, Chris H.
2014-01-01
The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.
Structure-rheology relationship in a sheared lamellar fluid.
Jaju, S J; Kumaran, V
2016-03-01
The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.
Spatially modulated interferometer and beam shearing device therefor
NASA Technical Reports Server (NTRS)
Reininger, Francis M. (Inventor)
2004-01-01
A spatially modulated interferometer incorporates a beam shearing system having a plurality of reflective surfaces defining separate light paths of equal optical path length for two separate output beams. The reflective surfaces are arranged such that when the two beams emerge from the beam shearing system they contain more than 50 percent of the photon flux within the selected spectral pass band. In one embodiment, the reflective surfaces are located on a number of prism elements combined to form a beam shearing prism structure. The interferometer utilizing the beam sharing system of the invention includes fore-optics for collecting light and focusing it into a beam to be sheared, and a detector located at an exit pupil of the device. In a preferred embodiment, the interferometer has no moving parts.
NASA Astrophysics Data System (ADS)
Pitarka, A.
2015-12-01
Arben Pitarka, Souheil M. Ezzedine, Oleg Y. Vorobiev, Tarabay H. Antoun, Lew A. Glenn, William R. Walter, Robert J. Mellors, and Evan Hirakawa. We have analyzed effects of wave scattering due to near-source structural complexity and sliding joint motion on generation of shear waves from SPE-4Pprime, a shallow chemical explosion conducted at the Nevada National Security Site. In addition to analyzing far-field ground motion recorded on three-component geophones, we performed high-frequency simulations of the explosion using a finite difference method and heterogeneous media with stochastic variability. The stochastic variations of seismic velocity were modeled using Gaussian correlation functions. Using simulations and recorded waveforms we demonstrate the implication of wave scattering on generation of shear motion, and show the gradual increase of shear motion energy as the waves propagate through media with variable scattering. The amplitude and duration of shear waves resulting from wave scattering are found to be dependent on the model complexity and to a lesser extent to source distance. Analysis of shear-motion generation due to joint motion were conducted using numerical simulations performed with GEODYN-L, a parallelized Lagrangian hydrocode, while a stochastic approach was used in depicting the properties of joints. Separated effects of source and wave scattering on shear motion generation will be shown through simulated motion. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Release Number: LLNL-ABS-675570
NASA Astrophysics Data System (ADS)
Frassi, Chiara
2016-04-01
Three main tectono-metamorphic units are classically recognized along the Himalayan belt: the Lesser Himalayan (LH), the Greater Himalayan sequence (GHS) and the Tibetan Sedimentary sequence (TSS). The GHS may be interpreted as a low-viscosity tabular body of mid-crustal rocks extruded southward in Miocene times beneath the Tibetan plateau between two parallel and opposite-sense crustal-scale shear zones: the Main Central thrust at the base, and the South Tibetan Detachment system at the top. The pre-/syn-shearing mineral assemblage documented within these crustal-scale shear zones indicates that the metamorphic grade increases toward the core of the GHS producing an inverted and a normal thermal gradient respectively on the top and on the bottom of the slab. In addition, thermal profiles estimated using both petrology- and microstructures/fabrics-based thermometers indicate that the metamorphic isograds are condensed. Although horizontal extension and vorticity estimates collected across the GHS could be strongly biased by the criteria used to define the map position of the MCT, published vorticity data document general shear flow (1>Wk>0) within the slab with a pure-shear component of flow slightly predominant within the core of the GHS whereas the simple-shear component seems to dominate at the top of the slab. The lower boundary of the GHS records a general shear flow with a comparable contribution of simple and pure shearing. The associated crustal extrusion is compatible with Couette - Poiseuille velocity flow profile as assumed in crustal-scale channel flow-type models In this study, the quartz c-axis petrofabrics, vorticity and deformation-temperature studies are integrated with microstructures and metamorphic studies to individuate the location of the MCT and to document the spatial distribution of ductile deformation patterns across the lower portion of the GHS exposed in the Chaudabise river valley in western Nepal. My results indicate that the Main Central Thrust is located ˜5 km structurally below the previous mapped locations. Deformation temperature increases up structural section from ˜450°C to ˜650°C and overlaps with peak metamorphic temperature indicating that penetrative shearing was responsible for the exhumation of the GHS occurred at "close" to peak metamorphic conditions. I interpreted the telescoping and the inversion of the paleo-isotherms at the base of the GHS as produced mainly by a sub-simple shearing (Wm = 0.88-1) pervasively distributed through the lower portion of the GHS. The results are consistent with hybrid channel flow-type models where the boundary between lower and upper portions of the GHS, broadly corresponding to the tectono-metamorphic discontinuity recently documented in west Nepal, represents the limit between buried material, affected by dominant simple shearing, and exhumed material affected by a general flow dominates by pure shearing. This interpretation is consistent with the recent models suggesting the simultaneous operation of channel flow- and critical wedge-type processes at different structural depth.
Observation of Shear-Induced Turbulence Using HARLIE
NASA Technical Reports Server (NTRS)
Miller, David O.; Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason; Guerra, David; Moody, Steven
2000-01-01
Ground-based measurements of atmospheric aerosol structure were made using the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) during the HOLO-1 field campaign. The scanning ability of HARLIE affords a unique opportunity to view various atmospheric phenomena. Shear-induced turbulence plays an important role in the transport of kinetic energy in the atmosphere and on March 10, 1999, several instances of shear-induced turbulence were observed via HARLIE. Using the data collected and upper-air wind profiles the nature of the instabilities is discussed.
Sheared boundary layers in turbulent Rayleigh-Benard convection
NASA Astrophysics Data System (ADS)
Solomon, T. H.; Gollub, J. P.
1990-05-01
Thermal boundary layers in turbulent Rayleigh-Benard convection are studied experimentally using a novel system in which the convecting fluid is sheared from below with a flowing layer of mercury. Oscillatory shear substantially alters the spatial structure and frequency of the eruptions, with minimal effect on the heat flux (less than 5 percent). The temperature probability distribution function (PDF) just above the lower boundary layer changes from Gaussian to exponential without significant changes in the interior PDF. Implications for theories of 'hard' turbulence are discussed.
MHD Turbulence Sheared in Fixed and Rotating Frames
NASA Technical Reports Server (NTRS)
Kassinos, S. C.; Knaepen, B.; Wray, A.
2004-01-01
We consider homogeneous turbulence in a conducting fluid that is exposed to a uniform external magnetic field while being sheared in fixed and rotating frames. We take both the frame-rotation axis and the applied magnetic field to be aligned in the direction normal to the plane of the mean shear. Here a systematic parametric study is carried out in a series of Direct Numerical Simulations (DNS) in order to clarify the main effects determining the structural anisotropy and stability of the flow.
NASA Astrophysics Data System (ADS)
Laurent, Valentin; Jolivet, Laurent; Roche, Vincent; Augier, Romain; Scaillet, Stéphane; Cardello, Giovanni Luca
2016-03-01
Syros Island is worldwide known for its preservation of HP-LT parageneses in the Cycladic Blueschist Unit (CBU) providing one of the best case-studies to understand the tectonometamorphic evolution of a subduction channel. Conflicting structural interpretations have been proposed to explain the geological architecture of Syros, in part reflecting a lack of consensus about the tectonic structure of the CBU. In this study, the geological and tectonometamorphic maps of Syros have been entirely redrawn in order to decipher the structure of a fossilized subduction channel. Based on structural and petrological observations, the CBU has been subdivided into three subunits separated by major ductile shear zones. New observations of the Vari Unit confirm that it rests on top of the CBU through a detachment or exhumation fault. While retrograde top-to-the E/NE shearing overprinting prograde deformation is widespread across the island, the prograde deformation has been only locally preserved within the less retrograded units. We show that after the prograde top-to-the S/SW shearing deformation, the CBU was exhumed by an overall top-to-the E/NE shearing from the depth of the eclogite-facies all the way to the depth of the greenschist-facies and finally, to the brittle crust. The exhumation process encompassed the syn-orogenic stage (contemporaneous of subduction, within the subduction channel - Eocene) to the post-orogenic stage (contemporaneous with the formation of the Aegean Sea - Oligocene to Miocene). From syn-orogenic to post-orogenic exhumation, deformation progressively localized toward the base of the CBU, along large-scale ductile shear zones, allowing the preservation of earlier HP-LT structures and HP-LT metamorphic parageneses. Finally, this study brings new insights on the tectonometamorphic evolution of a subduction channel showing how strain localizes during the history of an accretionary complex, both during the prograde and retrograde history.
NASA Astrophysics Data System (ADS)
Ryan, James Joseph
The Elbow-Cranberry-Iskwasum lakes area comprises a large portion of the eastern Amisk collage in the Palaeoproterozoic Flin Flon Belt (southern Trans-Hudson Orogen) of Manitoba, Canada. Deformation episodes recorded in the Flin Flon Belt are divided into pre-, early, late and post-Hudsonian orogeny, and are distinguished by the orientation of structures and changes in metamorphic conditions. Detailed structural analysis, petrography, geochemistry and U-Pb geochronology indicate a structural history spanning 180 m.y. in the Amisk collage. Accretion of the 1.92--1.88 Ga tectonostratigraphic assemblages that constitute the Amisk collage began prior to 1.868 Ga, the age of the oldest dyke to cross-cut the earliest mylonitic fabrics. The deformational history has been discerned, in which six generations of ductile structures F1 - F6 were followed by development of brittle-ductile and brittle structures F7 . Movements along the late structures may have continued until 1.690 Ga, during exhumation of the collage. The macroscopic structural grain in the central Flin Flon Belt is steeply dipping, generally trends north to north-northeast, and is dominated by two regionally pervasive foliations ( S2 and S5 ). Its grain contrasts strongly with the shallowly-dipping, east--west-trending grain in the adjacent Kisseynew domain. Foliations of different generations have been distinguished by their age relative to regional metamorphic mineral growth. Regional metamorphism in the Flin Flon Belt is interpreted as having culminated at moderate pressure and temperature, between 1.820 and 1.805 Ga. The development of S2 between 1.868 and 1.845 Ga was associated with east--west shortening of the successor magmatic arc that overprinted the Amisk collage. S3 and S4 were associated with shear zones, and are not regionally widespread. The S5 regional-scale Elbow Lake shear zone, and a pervasive crenulation cleavage in the wall rocks, developed during an episode of sinistral transpression that postdated regional metamorphism. The Elbow Lake shear zone appears to have triclinic symmetry. Most of the tectonostratigraphic assemblages, and subordinate formations, in the study area are structurally bound; the boundaries vary in age from early accretionary to post-collisional. Maximum displacements between assemblages occurred along the early shear zones. A high-strain corridor south of Elbow Lake, with four generations of near-parallel foliations ( S1,S 2,S3 and S5 ), records multiple reactivations. Vertical extension was important in post- S1 deformations, even in the later stages. Post-orogenic, low-angle extensional features, common in many mountain belts, appear to be absent in the southern portion of the Trans-Hudson Orogen. This may indicate that erosion was the dominant unroofing mechanism. The regional-scale Berry Creek shear zone transects the southern portion of the field area. Though covered by Ordovician limestone for most of its length, the Berry Creek shear zone is well imaged in regional geophysical maps. The latest portion of the brittle history on the Berry Creek shear zone probably controlled the sharp truncation of the geophysically imaged anomalies.
NASA Astrophysics Data System (ADS)
Riedel, Adric Richard
2012-05-01
Since the first successful measurements of stellar trigonometric parallax in the 1830s, the study of nearby stars has focused on the highest proper motion stars (micro > 0.18″ yr-1). Those high proper motion stars have formed the backbone of the last 150 years of study of the Solar Neighborhood and the composition of the Galaxy. Statistically speaking, though, there is a population of stars that will have low proper motions when their space motions have been projected onto the sky. At the same time, over the last twenty years, populations of relatively young stars (less than ˜ 100 Myr), most of them with low proper motions, have been revealed near (< 100 pc) the Sun. This dissertation is the result of two related projects: A photometric search for nearby (< 25pc) southern-hemisphere M dwarf stars with low proper motions (micro < 0.18″ yr-1), and a search for nearby (< 100 pc) pre-main-sequence (< 125 Myr old) M dwarf systems. The projects rely on a variety of photometric, spectroscopic, and astrometric analyses (including parallaxes from our program) using data from telescopes at CTIO via the SMARTS Consortium and at Lowell Observatory. Within this dissertation, I describe the identification and confirmation of 23 new nearby low proper motion M dwarf systems within 25 pc, 8 of which are within 15 pc (50% of the anticipated low-proper-motion 15 pc sample). I also report photometric, spectroscopic, and astrometric parameters and identifications for a selection of 25 known and new candidate nearby young M dwarfs, including new low-mass members of the TW Hydra, beta Pictoris, Tucana-Horologium, Argus, and AB Doradus associations, following the methods of my Riedel et al. (2011) paper and its discovery of AP Col, the closest pre-main-sequence star to the Solar System. These low proper motion and nearby star discoveries are put into the context of the Solar Neighborhood as a whole by means of the new RECONS 25 pc Database, to which I have now added (including my Riedel et al. (2010) paper) 81 star systems (4% of the total). INDEX WORDS: Astronomy, Astrometry, Photometry, Spectroscopy, Kinematics, Proper motion, Parallax, Nearby stars, Low-mass stars, Young stars, Pre-main-sequence stars.
NASA Astrophysics Data System (ADS)
Riedel, M. R.
2007-12-01
Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999) Grain Boundary Migration in Metals, CRC Press, 385 pp., New York. Riedel MR, Karato S (1997) Grain-Size Evolution in Subducted Oceanic Lithosphere Associated with the Olivine- Spinel Transformation and Its Effects on Rheology. EPSL 148: 27-43. Liou JG, Hacker BR, Zhang RY (2000) Into the forbidden zone. Science 287, 1215-1216.
NASA Astrophysics Data System (ADS)
Xu, Feng; Rao, Qiuhua; Ma, Wenbo
2018-03-01
The sinkage of a moving tracked mining vehicle is greatly affected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based on soft deep-sea sediment from a C-C poly-metallic nodule mining area in the Pacific Ocean. Compressive creep tests and shear creep tests are combined to obtain compressive and shear rheological parameters to establish a combined compressive-shear rheological constitutive model and a compression-sinkage rheological constitutive model. The combined compression-shear rheological sinkage of the tracked mining vehicle at different speeds is calculated using the RecurDyn software with a selfprogrammed subroutine to implement the combined compression-shear rheological constitutive model. The model results are compared with shear rheological sinkage and ordinary sinkage (without consideration of rheological properties). These results show that the combined compression-shear rheological constitutive model must be taken into account when calculating the sinkage of a tracked mining vehicle. The combined compression-shear rheological sinkage decrease with vehicle speed and is the largest among the three types of sinkage. The developed subroutine in the RecurDyn software can be used to study the performance and structural optimization of moving tracked mining vehicles.
Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Akanksha; Ganesh, Rajaraman, E-mail: ganesh@ipr.res.in; Joy, Ashwin
2016-07-15
It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamicsmore » of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.« less
Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J
2017-11-07
The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.
Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation
He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay
2016-01-01
At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922
29 CFR 1926.754 - Structural steel assembly.
Code of Federal Regulations, 2013 CFR
2013-07-01
... connectors on composite floors, roofs and bridge decks. When shear connectors are used in construction of composite floors, roofs and bridge decks, employees shall lay out and install the shear connectors after the... requirements of paragraph (e)(3)(i) of this section. (4) Decking gaps around columns. Wire mesh, exterior...
29 CFR 1926.754 - Structural steel assembly.
Code of Federal Regulations, 2012 CFR
2012-07-01
... connectors on composite floors, roofs and bridge decks. When shear connectors are used in construction of composite floors, roofs and bridge decks, employees shall lay out and install the shear connectors after the... requirements of paragraph (e)(3)(i) of this section. (4) Decking gaps around columns. Wire mesh, exterior...
29 CFR 1926.754 - Structural steel assembly.
Code of Federal Regulations, 2014 CFR
2014-07-01
... connectors on composite floors, roofs and bridge decks. When shear connectors are used in construction of composite floors, roofs and bridge decks, employees shall lay out and install the shear connectors after the... requirements of paragraph (e)(3)(i) of this section. (4) Decking gaps around columns. Wire mesh, exterior...
Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA
NASA Astrophysics Data System (ADS)
Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu
Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.
Nonlinear thermal dynamic analysis of graphit/aluminum composite plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenneti, R.; Chandrashekhara, K.
1994-09-01
Because of the increased application of composite materials in high-temperature environments, the thermoelastic analysis of laminated composite structures is important. Many researchers have applied the classical lamination theory to analyze laminated plates under thermomechanical loading, which neglects shear deformation effects. The transverse shear deformation effects are not negligible as the ratios of inplane elastic modulus to transverse shear modulus are relatively large for fiber-reinforced composite laminates. The application of first-order shear deformation theory for the thermoelastic analysis of laminated plates has been reported by only a few investigators. Reddy and Hsu have considered the thermal bending of laminated plates. Themore » analytical and finite element solutions for the thermal bucking of laminated plates have been reported by Tauchert and Chandrashekara, respectively. However, the first-order shear deformation theory, based on the assumption of constant distribution of transverse shear through the thickness, requires a shear correction factor to account for the parabolic shear strain distribution. Higher order theories have been proposed which eliminate the need for a shear correction factor. In the present work, nonlinear dynamic analysis of laminated plates subjected to rapid heating is investigated using a higher order shear deformation theory. A C(sup 0) finite element model with seven degrees of freedom per node is implmented and numerical results are presented for laminated graphite/aluminum plates.« less
NASA Astrophysics Data System (ADS)
Wang, Gang; Zhang, Yongzheng; Jiang, Yujing; Liu, Peixun; Guo, Yanshuang; Liu, Jiankang; Ma, Ming; Wang, Ke; Wang, Shugang
2018-06-01
To study shear failure, acoustic emission counts and characteristics of bolted jointed rock-like specimens are evaluated under compressive shear loading. Model joint surfaces with different roughnesses are made of rock-like material (i.e. cement). The jointed rock masses are anchored with bolts with different elongation rates. The characteristics of the shear mechanical properties, the failure mechanism, and the acoustic emission parameters of the anchored joints are studied under different surface roughnesses and anchorage conditions. The shear strength and residual strength increase with the roughness of the anchored joint surface. With an increase in bolt elongation, the shear strength of the anchored joint surface gradually decreases. When the anchored structural plane is sheared, the ideal cumulative impact curve can be divided into four stages: initial emission, critical instability, cumulative energy, and failure. With an increase in the roughness of the anchored joint surface, the peak energy rate and the cumulative number of events will also increase during macro-scale shear failure. With an increase in the bolt elongation, the energy rate and the event number increase during the shearing process. Furthermore, the peak energy rate, peak number of events and cumulative energy will all increase with the bolt elongation. The results of this study can provide guidance for the use of the acoustic emission technique in monitoring and predicting the static shear failure of anchored rock masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com; Pramumijoyo, Subagyo; Wilopo, Wahyu
In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.
Foam structure, rheology and coarsening : the shape, feel and aging of random soap froth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinelt, Douglas A.; van Swol, Frank B.; Hilgenfeldt, Sascha
2010-05-01
Simulations are in excellent agreement with experiments: structure - Matzke, shear modulus - Princen and Kiss E = 3.30 {sigma}/R{sub 32} = 5.32/(1 + p) {sigma}/(V){sup 1/2}, G {approx} 0.155 E = 0.512 {sigma}/R{sub 32}. IPP theory captures dependence of cell geometry on V and F. Future challenges are: simulating simple shearing flow is very expensive because of frequent topological transitions. Random wet foams require very large simulations.
2008-09-01
improved resolution for shallow geologic structures . Jointly inverting these datasets with seismic body wave (S) travel times provides additional...constraints on the shallow structure and an enhanced 3D shear wave model for our study area in western China. 2008 Monitoring Research Review...for much of Eurasia, although the Arabian Shield and Arctic are less well recovered. The upper velocity gradient was tested for 10-degree cells
Literature Review of Shear Performance of Light-weight Steel Framing Wall Panels
NASA Astrophysics Data System (ADS)
Zhang, Zhuangnan; Liu, Shen; Liu, Hong
2018-03-01
In this paper, a comprehensive review of light-weight steel framing wall panels was carried out. The structure and force characteristics of light-weight steel framing wall panels were introduced. The testing and theoretical research results on the shear behaviour of light-weight steel framing wall panels were summarized in the domestic and foreign. And combined with the existing standards in China, the author's views and ideas are put forward to the problems in the research field of this kind of structural system.
Recent development in the design, testing and impact-damage tolerance of stiffened composite panels
NASA Technical Reports Server (NTRS)
Williams, J. G.; Anderson, M. S.; Rhodes, M. D.; Starnes, J. H., Jr.; Stroud, W. J.
1979-01-01
Structural technology of laminated filamentary-composite stiffened-panel structures under combined inplane and lateral loadings is discussed. Attention is focused on: (1) methods for analyzing the behavior of these structures under load and for determining appropriate structural proportions for weight-efficient configurations; and (2) effects of impact damage and geometric imperfections on structural performance. Recent improvements in buckling analysis involving combined inplane compression and shear loadings and transverse shear deformations are presented. A computer code is described for proportioning or sizing laminate layers and cross-sectional dimensions, and the code is used to develop structural efficiency data for a variety of configurations, loading conditions, and constraint conditions. Experimental data on buckling of panels under inplane compression is presented. Mechanisms of impact damage initiation and propagation are described.
Shear wave propagation in anisotropic soft tissues and gels
Namani, Ravi; Bayly, Philip V.
2013-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987
Magnetic field generation from shear flow in flux ropes
NASA Astrophysics Data System (ADS)
Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.
2012-10-01
In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.
Low void content autoclave molded titanium alloy and polyimide graphite composite structures.
NASA Technical Reports Server (NTRS)
Vaughan, R. W.; Jones, R. J.; Creedon, J. F.
1972-01-01
This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.
Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.
Kim, Daehyeon; Ha, Sungwoo
2014-02-07
In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.
Chandrapala, Jayani; Martin, Gregory J O; Kentish, Sandra E; Ashokkumar, Muthupandian
2014-09-01
The effect of shear on the solubilization of a range of dairy powders was investigated. The rate of solubilization of low solubility milk protein concentrate and micellar casein powders was examined during ultrasonication, high pressure homogenization and high-shear rotor-stator mixing and compared to low-shear overhead stirring. The high shear techniques were able to greatly accelerate the solubilization of these powders by physically breaking apart the powder agglomerates and accelerating the release of individual casein micelles into solution. This was achieved without affecting the structure of the solubilized proteins. The effect of high shear on the re-establishment of the mineral balance between the casein micelles and the serum was examined by monitoring the pH of the reconstituted skim milk powder after prior exposure to ultrasonication. Only minor differences in the re-equilibration of the pH were observed after sonication for up to 3 min, suggesting that the localized high shear forces exerted by sonication did not significantly affect the mass transfer of minerals from within the casein micelles. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bachoo, Richard; Bridge, Jacqueline
2018-06-01
Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.
Design and Optimization of an Austenitic TRIP Steel for Blast and Fragment Protection
NASA Astrophysics Data System (ADS)
Feinberg, Zechariah Daniel
In light of the pervasive nature of terrorist attacks, there is a pressing need for the design and optimization of next generation materials for blast and fragment protection applications. Sadhukhan used computational tools and a systems-based approach to design TRIP-120---a fully austenitic transformation-induced plasticity (TRIP) steel. Current work more completely evaluates the mechanical properties of the prototype, optimizes the processing for high performance in tension and shear, and builds models for more predictive power of the mechanical behavior and austenite stability. Under quasi-static and dynamic tension and shear, the design exhibits high strength and high uniform ductility as a result of a strain hardening effect that arises with martensitic transformation. Significantly more martensitic transformation occurred under quasi-static loading conditions (69% in tension and 52% in shear) compared to dynamic loading conditions (13% tension and 5% in shear). Nonetheless, significant transformation occurs at high-strain rates which increases strain hardening, delays the onset of necking instability, and increases total energy absorption under adiabatic conditions. Although TRIP-120 effectively utilizes a TRIP effect to delay necking instability, a common trend of abrupt failure with limited fracture ductility was observed in tension and shear at all strain rates. Further characterization of the structure of TRIP-120 showed that an undesired grain boundary cellular reaction (η phase formation) consumed the fine dispersion of the metastable gamma' phase and limited the fracture ductility. A warm working procedure was added to the processing of TRIP-120 in order to eliminate the grain boundary cellular reaction from the structure. By eliminating η formation at the grain boundaries, warm-worked TRIP-120 exhibits a drastic improvement in the mechanical properties in tension and shear. In quasi-static tension, the optimized warm-worked TRIP-120 with an Mssigma( u.t.) of -13°C has a yield strength of 180 ksi (1241 MPa), uniform ductility of 0.303, and fracture ductility of 0.95, which corresponds to a 48% increase in yield strength, a 43% increase in uniform ductility, and a 254% increase in fracture ductility relative to the designed processing of TRIP-120. The highest performing condition of warm-worked TRIP-120 in quasi-static shear with an Mssigma( sh) of 58°C exhibits a shear yield strength of 95.1 ksi (656 MPa), shear fracture strain of 144%, and energy dissipation density of 1099 MJ/m3, which corresponds to a shear yield strength increase of 61%, a shear fracture strain increase of 55%, and an energy dissipation density increase of 76%. A wide range of austenite stabilities can be achieved by altering the heat treatment times and temperatures, which significantly alters the mechanical properties. Although performance cannot be optimized for tension and shear simultaneously, different heat treatments can be applied to warm-worked TRIP-120 to achieve high performance in tension or shear. Parametric models calibrated with three-dimensional atom probe data played a crucial role in guiding the predictive process optimization of TRIP-120. Such models have been built to provide the predictive capability of inputting warm working and aging conditions and outputting the resulting structure, austenite stability, and mechanical properties. The predictive power of computational models has helped identify processing conditions that have improved the performance of TRIP-120 in tension and shear and can be applied to future designs that optimize for adiabatic conditions.
NASA Astrophysics Data System (ADS)
Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.
2017-01-01
We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.
How pattern is selected in drift wave turbulence: Role of parallel flow shear
NASA Astrophysics Data System (ADS)
Kosuga, Y.
2017-12-01
The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.
Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E
2013-04-01
Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.
NASA Astrophysics Data System (ADS)
Shen, Yu; Wang, Ziyuan; Wen, Huaihai; Zhou, Zhi
2014-11-01
Fiber optic sensor (FOS) has received much attention in the field of Structure Health Monitoring (SHM) due to its advantages of low weight, small size, high sensitivity multiplexing ability, free of electromagnetic interference and long durability. However, in harsh environments, structures often undergo large strain where few traditional fiber optic sensors could survive. This paper report a novel material with features of light-transparent, chemically inert, thermally stable material Polydimethylsiloxane(PDMS) fabricated large axial/shearing strain sensor. The sensor was fabricated by directly coupling a conventional signal mode fiber into half cured PDMS material using a translation stage under the inspection of a microscope. Meanwhile, a laser diode and a photo detector were used in the fabrication process to make sure the sensor achieved minimum light loss. An experiment was conducted later to investigate the sensor's transmission characteristic in 1310nm infrared laser relating with the applied axial/shearing strain. The results show that the proposed sensor survived an axial strain of 6 7.79 x 106 μɛ ; a shear of 4 6.49 x 104 μɛ with good linearity and repetition. The experiment indicates that the proposed sensor can potentially be used as strain sensing elements in Structure Health Monitoring systems under earthquake or explosion.
NASA Astrophysics Data System (ADS)
Xu, Feng; Ge, Binghui; Chen, Jing; Nathan, Arokia; Xin, Linhuo L.; Ma, Hongyu; Min, Huihua; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Wu, Lijun; Cui, Yiping; Sun, Litao; Zhu, Yimei
2016-06-01
Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). However, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. We further demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ˜1.25 × 104 s-1. The results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs.
Xu, Feng; Ge, Binghui; Chen, Jing; ...
2016-03-30
Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). But, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. Furthermore, we demonstrate thatmore » few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ~1.25 × 10 4 s -1. Our results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs.« less
Zonal Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence
NASA Astrophysics Data System (ADS)
Johansen, A.; Youdin, A.; Klahr, H.
2009-06-01
We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short timescales creates zonal flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.
NASA Astrophysics Data System (ADS)
Radice, Stefania; Lince Klinger, Federico; Maffini, M. Natalia; Pinotti, Lucio P.; Demartis, Manuel; D´Eramo, Fernando J.; Giménez, Mario; Coniglio, Jorge E.
2018-03-01
The Guacha Corral shear zone (GCSZ) is represented by mylonites that were developed under amphibolites facies conditions from migmatitic protoliths. In this contribution, geophysical, petrological and structural data were combined to determine the 3D geometry of the GCSZ. New gravimetric, magnetometric and structural studies, along an E-W profile, were integrated with existing magnetotelluric and seismological data from a representative regional database of the Eastern Sierras Pampeanas. The zonation of different fabrics across the GCSZ suggests that the pre-existing heterogeneities of the protoliths played a key role in governing the degree of metamorphism of different regions. The low gravity anomalies observed in the GCSZ suggest a transitional boundary zone between the migmatitic and mylonitic domains, where highly deformed shear bands are interspersed with undeformed rocks, presenting gradual contacts. The mylonites in this shear zone show a considerably reduced density when compared to the migmatite protoliths. The density of the rocks gradually increases with depth until it reaches that of the protolith. These changes in the gravity values in response to density changes allowed us to infer a listric geometry at depth of the GCSZ. Low gravity anomalies in the profiles, in regions where high density rocks (migmatites) outcrop at the surface, modeled as buried granitic plutons.
Alsaddique, Jihad A; Pabari, Ritesh M; Ramtoola, Zebunnissa
The influence of thermal and shear stressors on the stability of the anti-TNF-α monoclonal antibody (mAb), Infliximab® (INF) was investigated. INF at concentrations of 1, 4 and 10 mg/ml was subjected to thermal stress at temperatures of 25-65°C and to shear force by sonication for 1 and 3 minutes. The stressed samples were analysed for physical properties by particle size, zeta potential, for structural integrity by gel electrophoresis (SDS-PAGE) and circular dichroism, INF content by UV spectroscopy and for biological activity by ELISA. Results show no change in physical properties or structural integrity of INF at any concentration tested, when subjected to a temperature of up to 50°C. At 65°C, aggregation and precipitation of INF was observed. When subjected to shear stress, higher concentrations of INF at 4 and 10mg/ml maintained their physical properties and structural integrity. However, the biological activity of INF was found to decrease with increasing temperature and sonication time, and was concentration dependent (ANOVA; p<0.05). Interestingly, lyophilisation of INF at 1mg/ml did not affect its physical properties, structural integrity or its biological activity. These findings have important implications with respect to pharmaceutical processing of INF and mAbs including formulation as polymeric micro and nanoparticle systems for sustained or targeted delivery. These findings also have important implications with respect to the handling and storage of INF and mAbs for clinical use.
Permeability and strength structure around an ancient exhumed subduction-zone fault
NASA Astrophysics Data System (ADS)
Kato, A.; Sakaguchi, A.; Yoshida, S.; Kaneda, Y.
2003-12-01
Investigating the transporting properties of subduction zone faults is crucial for understanding shear strength and slip-stability, or instability, of subduction zone faults. Despite the influence of pore pressure on a wide range of subduction-zone fault processes, few previous studies have evaluated the permeability structure around the fault placed in a well-defined structural context. In this study, the aim is to gain the entire permeability and the shear strength structure around the ancient subduction zone fault. We have conducted a series of permeability measurements and shear failure experiments in seismogenic environments using intact rocks sampled at the outcrop of an exhumed fault zone in the Cretaceous Shimanto accretionary complex, in Shikoku, SW Japan, where a typical evidence for seismic fault rock of pseudotachylyte has been demonstrated [Ikesawa et al., 2003]. This fault zone is located at boundary between the sandstone-dominant coherent unit of the Nonokawa Formation and the Okitsu mélange. The porosity of each rock sample is less than 1 %, except for the shear zone. Cylindrical test specimens (length = 40 mm, diameter = 20 mm) were cored to an accuracy of within 0.02 mm. Most of values of permeability were evaluated at confining pressure Pc of 140 MPa and pore pressure Pp of 115 MPa simulating the depth of 5 km (suprahydrostatic pore pressure). It is found that the permeability at room temperature shows the heterogeneous structure across the fault zone. The permeability of sandstone-dominant coherent unit is the lowest (10-19 m2) across the fault zone. In contrast, high shear zone has the highest permeability (10-16 m2). Following the increase in temperature, permeability evolution has been investigated. The permeability at 250oC continuously decreases with hold time for all types of rock specimens, and the reduction rate of permeability against hold time seems to become small with hold time. It seems that the reduction rate does not significantly depend on the rock types. The specimen was loaded at a strain rate of 2*E-6 /s under the conditions (Pc, Pp, T) = (140 MPa, 105 MPa, 250oC) to conduct the shear fracture experiments. High shear zone has a minimum value in strength profile. In contrast, the largest shear strength is observed at sandstone in coherent unit. From the seismic reflection surveys in the Nankai Trough, Park et al. [2002] delineated reflections with negative polarities beneath the Nankai accretionary prism 20-60 km landward of the frontal thrust, which are located deeper than the negative polarity décollement near the frontal thrust. They interpreted that the DSRs indicate the elevated fluid pressures. The fault zone studied in this paper is consistent with the duplex-model, and corresponds to the area where the décollement near the frontal thrust stepped down. Present results show the possibility that the coherent sandstone acts as a cap rock for fluid flow, and shear zone as a conduit for the flow, which leads to the elevated pore pressures along the roof thrust.
NASA Astrophysics Data System (ADS)
Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.
2017-12-01
We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.
Streamline curvature in supersonic shear layers
NASA Technical Reports Server (NTRS)
Kibens, V.
1992-01-01
Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.
A study of the rheology and micro-structure of dumbbells in shear geometries
NASA Astrophysics Data System (ADS)
Mandal, Sandip; Khakhar, D. V.
2018-01-01
We study the flow of frictional, inelastic dumbbells made of two fused spheres of different aspect ratios down a rough inclined plane and in a simple shear cell, using discrete element simulations. At a fixed inclination angle, the mean velocity decreases, and the volume fraction increases significantly with increasing aspect ratio in the chute flow. At a fixed solid fraction, the shear stress and pressure decrease significantly with increasing aspect ratio in the shear cell flow. The micro-structure of the flow is characterized. The translational diffusion coefficient in the normal direction to the flow is found to scale as Dy y=b γ ˙ d2, independent of aspect ratio, where b is a constant, γ ˙ is the shear rate, and d is the diameter of the constituent spheres of the dumbbells. The effective friction coefficient (μ, the ratio of shear stress to pressure) increases by 30%-35% on increasing the aspect ratio λ, from 1.0 to 1.7, for a fixed inertial number I. The volume fraction (ϕ) also increases significantly with increasing aspect ratio, especially at high inertial numbers. The effective friction coefficient and volume fraction are found to follow simple scalings of the form μ = μ(I, λ) and ϕ = ϕ(I, λ) for all the data from both systems, and the results are in reasonable agreement with kinetic theory predictions at low I. The computational results are in reasonable agreement with the experimental data for flow in a rotating cylinder.
A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzanti,G.; Guthrie, S.; Marangoni, A.
2007-01-01
We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 {sup o}C under shear rates from 45 to 1440 s{sup -1} and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process.more » As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material.« less
NASA Astrophysics Data System (ADS)
Wilcoski, James; Fischer, Chad; Allison, Tim; Malach, Kelly Jo
2002-04-01
Shear panels are used in light wood construction to resist lateral loads resulting from earthquakes or strong winds. These panels are typically made of wooden sheathing nailed to building frame members, but this standard panel design interferes with the installation of sheet insulation. A non-insulated shear panel conducts heat between the building interior and exterior wasting considerable amounts of energy. Several alternative shear panel designs were developed to avoid this insulation-mounting problem and sample panels were tested according to standard cyclic test protocols. One of the alternative designs consisted of diagonal steel straps nailed directly to the structural framing. Several others consisted of sheathing nailed to 2 x 4 framing then set into a larger 2 x 6 structural frame in such a way that no sheathing protruded beyond the edge of the 2 x 6 members. Also samples of industry-standard shear panels were constructed and tested in order to establish a performance baseline. Analytical models were developed to size test panels and predict panel behavior. A procedure was developed for establishing design capacities based on both test data and established baseline panel design capacity. The behavior of each panel configuration is documented and recommended design capacities are presented.