NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard
2016-01-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Nkonga, Boniface
2017-10-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.
NASA Astrophysics Data System (ADS)
Ferrari, Alessia; Vacondio, Renato; Dazzi, Susanna; Mignosa, Paolo
2017-09-01
A novel augmented Riemann Solver capable of handling porosity discontinuities in 1D and 2D Shallow Water Equation (SWE) models is presented. With the aim of accurately approximating the porosity source term, a Generalized Riemann Problem is derived by adding an additional fictitious equation to the SWEs system and imposing mass and momentum conservation across the porosity discontinuity. The modified Shallow Water Equations are theoretically investigated, and the implementation of an augmented Roe Solver in a 1D Godunov-type finite volume scheme is presented. Robust treatment of transonic flows is ensured by introducing an entropy fix based on the wave pattern of the Generalized Riemann Problem. An Exact Riemann Solver is also derived in order to validate the numerical model. As an extension of the 1D scheme, an analogous 2D numerical model is also derived and validated through test cases with radial symmetry. The capability of the 1D and 2D numerical models to capture different wave patterns is assessed against several Riemann Problems with different wave patterns.
Visualization Techniques Applied to 155-mm Projectile Analysis
2014-11-01
semi-infinite Riemann problems are used in CFD++ to provide upwind flux information to the underlying transport scheme. Approximate Riemann solvers ...characteristics-based inflow/outflow boundary condition, which is based on solving a Riemann problem at the boundary. 2.3 Numerics Rolling/spinning is the...the solution files generated by the computational fluid dynamics (CFD) solver for the time-accurate rolling simulations at each timestep for the Mach
The unstaggered extension to GFDL's FV3 dynamical core on the cubed-sphere
NASA Astrophysics Data System (ADS)
Chen, X.; Lin, S. J.; Harris, L.
2017-12-01
Finite-volume schemes have become popular for atmospheric transport since they provide intrinsic mass conservation to constituent species. Many CFD codes use unstaggered discretizations for finite volume methods with an approximate Riemann solver. However, this approach is inefficient for geophysical flows due to the complexity of the Riemann solver. We introduce a Low Mach number Approximate Riemann Solver (LMARS) simplified using assumptions appropriate for atmospheric flows: the wind speed is much slower than the sound speed, weak discontinuities, and locally uniform sound wave velocity. LMARS makes possible a Riemann-solver-based dynamical core comparable in computational efficiency to many current dynamical cores. We will present a 3D finite-volume dynamical core using LMARS in a cubed-sphere geometry with a vertically Lagrangian discretization. Results from standard idealized test cases will be discussed.
On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension
NASA Astrophysics Data System (ADS)
Rohde, Christian; Zeiler, Christoph
2018-06-01
We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
Gasdynamic Inlet Isolation in Rotating Detonation Engine
2010-12-01
2D Total Variation Diminishing (TVD): Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Total Variation Diminishing (TVD) limiter: Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Continuous 94 Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate pressure gradient switch: Normal
2014-01-01
with a Riemann flux !"#! (!! ,!!!,), where !!! denotes the solution outside the current element !. Various (approximate) Riemann solvers ...can be used to calculate the Riemann flux, and the Rusanov Riemann solver is adopted in this paper. Then Eq. (7) can be rewritten as !
Adaptive Discontinuous Evolution Galerkin Method for Dry Atmospheric Flow
2013-04-02
standard one-dimensional approximate Riemann solver used for the flux integration demonstrate better stability, accuracy as well as reliability of the...discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the standard one-dimensional approximate Riemann solver used...instead of a standard one- dimensional approximate Riemann solver , the flux integration within the discontinuous Galerkin method is now realized by
Numerical comparison of Riemann solvers for astrophysical hydrodynamics
NASA Astrophysics Data System (ADS)
Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut
2007-11-01
The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.
NASA Astrophysics Data System (ADS)
Navas-Montilla, A.; Murillo, J.
2016-07-01
In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.
On numerical instabilities of Godunov-type schemes for strong shocks
NASA Astrophysics Data System (ADS)
Xie, Wenjia; Li, Wei; Li, Hua; Tian, Zhengyu; Pan, Sha
2017-12-01
It is well known that low diffusion Riemann solvers with minimal smearing on contact and shear waves are vulnerable to shock instability problems, including the carbuncle phenomenon. In the present study, we concentrate on exploring where the instability grows out and how the dissipation inherent in Riemann solvers affects the unstable behaviors. With the help of numerical experiments and a linearized analysis method, it has been found that the shock instability is strongly related to the unstable modes of intermediate states inside the shock structure. The consistency of mass flux across the normal shock is needed for a Riemann solver to capture strong shocks stably. The famous carbuncle phenomenon is interpreted as the consequence of the inconsistency of mass flux across the normal shock for a low diffusion Riemann solver. Based on the results of numerical experiments and the linearized analysis, a robust Godunov-type scheme with a simple cure for the shock instability is suggested. With only the dissipation corresponding to shear waves introduced in the vicinity of strong shocks, the instability problem is circumvented. Numerical results of several carefully chosen strong shock wave problems are investigated to demonstrate the robustness of the proposed scheme.
An HLLC Riemann solver for resistive relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Miranda-Aranguren, S.; Aloy, M. A.; Rembiasz, T.
2018-05-01
We present a new approximate Riemann solver for the augmented system of equations of resistive relativistic magnetohydrodynamics that belongs to the family of Harten-Lax-van Leer contact wave (HLLC) solvers. In HLLC solvers, the solution is approximated by two constant states flanked by two shocks separated by a contact wave. The accuracy of the new approximate solver is calibrated through 1D and 2D test problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelanti, Marica, E-mail: Marica.Pelanti@ens.f; Bouchut, Francois, E-mail: francois.bouchut@univ-mlv.f; Mangeney, Anne, E-mail: mangeney@ipgp.jussieu.f
2011-02-01
We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resultingmore » relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.« less
Numerical Simulations of Aero-Optical Distortions Around Various Turret Geometries
2013-06-12
arbi trary cell topologies. The spatial operator uses the exact Riemann Solver of Gottlieb and Groth, least squares gradient cal- culations using QR...Unstructured Euler/Navier-Stokes Flow Solver ," in A/AA Paper 1999-0786, 1999. [9] J. J. Gottlieb and C. P. T. Groth, "Assessment of Riemann Solvers
An approximate Riemann solver for hypervelocity flows
NASA Technical Reports Server (NTRS)
Jacobs, Peter A.
1991-01-01
We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.
High Maneuverability Airframe: Investigation of Fin and Canard Sizing for Optimum Maneuverability
2014-09-01
overset grids (unified- grid); 5) total variation diminishing discretization based on a new multidimensional interpolation framework; 6) Riemann solvers to...Aerodynamics .........................................................................................3 3.1.1 Solver ...describes the methodology used for the simulations. 3.1.1 Solver The double-precision solver of a commercially available code, CFD ++ v12.1.1, 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Gregory H.
2003-08-06
In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in commonmore » practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.« less
The piecewise parabolic method for Riemann problems in nonlinear elasticity.
Zhang, Wei; Wang, Tao; Bai, Jing-Song; Li, Ping; Wan, Zhen-Hua; Sun, De-Jun
2017-10-18
We present the application of Harten-Lax-van Leer (HLL)-type solvers on Riemann problems in nonlinear elasticity which undergoes high-load conditions. In particular, the HLLD ("D" denotes Discontinuities) Riemann solver is proved to have better robustness and efficiency for resolving complex nonlinear wave structures compared with the HLL and HLLC ("C" denotes Contact) solvers, especially in the shock-tube problem including more than five waves. Also, Godunov finite volume scheme is extended to higher order of accuracy by means of piecewise parabolic method (PPM), which could be used with HLL-type solvers and employed to construct the fluxes. Moreover, in the case of multi material components, level set algorithm is applied to track the interface between different materials, while the interaction of interfaces is realized through HLLD Riemann solver combined with modified ghost method. As seen from the results of both the solid/solid "stick" problem with the same material at the two sides of contact interface and the solid/solid "slip" problem with different materials at the two sides, this scheme composed of HLLD solver, PPM and level set algorithm can capture the material interface effectively and suppress spurious oscillations therein significantly.
An approximate Riemann solver for real gas parabolized Navier-Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbano, Annafederica, E-mail: annafederica.urbano@uniroma1.it; Nasuti, Francesco, E-mail: francesco.nasuti@uniroma1.it
2013-01-15
Under specific assumptions, parabolized Navier-Stokes equations are a suitable mean to study channel flows. A special case is that of high pressure flow of real gases in cooling channels where large crosswise gradients of thermophysical properties occur. To solve the parabolized Navier-Stokes equations by a space marching approach, the hyperbolicity of the system of governing equations is obtained, even for very low Mach number flow, by recasting equations such that the streamwise pressure gradient is considered as a source term. For this system of equations an approximate Roe's Riemann solver is developed as the core of a Godunov type finitemore » volume algorithm. The properties of the approximated Riemann solver, which is a modification of Roe's Riemann solver for the parabolized Navier-Stokes equations, are presented and discussed with emphasis given to its original features introduced to handle fluids governed by a generic real gas EoS. Sample solutions are obtained for low Mach number high compressible flows of transcritical methane, heated in straight long channels, to prove the solver ability to describe flows dominated by complex thermodynamic phenomena.« less
Zhang, Peng; Liu, Ru-Xun; Wong, S C
2005-05-01
This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow velocities, that involve spatially varying flux functions. To address this complex physical property, we develop a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway section are given to illustrate the efficiency of these schemes.
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
Addition of Improved Shock-Capturing Schemes to OVERFLOW 2.1
NASA Technical Reports Server (NTRS)
Burning, Pieter G.; Nichols, Robert H.; Tramel, Robert W.
2009-01-01
Existing approximate Riemann solvers do not perform well when the grid is not aligned with strong shocks in the flow field. Three new approximate Riemann algorithms are investigated to improve solution accuracy and stability in the vicinity of strong shocks. The new algorithms are compared to the existing upwind algorithms in OVERFLOW 2.1. The new algorithms use a multidimensional pressure gradient based switch to transition to a more numerically dissipative algorithm in the vicinity of strong shocks. One new algorithm also attempts to artificially thicken captured shocks in order to alleviate the errors in the solution introduced by "stair-stepping" of the shock resulting from the approximate Riemann solver. This algorithm performed well for all the example cases and produced results that were almost insensitive to the alignment of the grid and the shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Christopher J.; Stone, James M.; Gammie, Charles F.
2016-08-01
We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.
A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles
2014-04-01
time integration Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows Multiple Equations of State ◦ Perfect Gas...Loci/CHEM: Chemically reacting compressible flow solver . ◦ Currently in production use by NASA for the simulation of rocket motors, plumes, and...vehicles Loci/DROPLET: Eulerian and Lagrangian multiphase solvers Loci/STREAM: pressure-based solver ◦ Developed by Streamline Numerics and
On the use of kinetic energy preserving DG-schemes for large eddy simulation
NASA Astrophysics Data System (ADS)
Flad, David; Gassner, Gregor
2017-12-01
Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub-grid-scale models on top doesn't change much or in worst case decreases the fidelity even more. Finally, the core of this work is a novel LES strategy based on split form DG methods that are kinetic energy preserving. The scheme offers excellent stability with full control over the amount and shape of the added artificial dissipation. This premise is the main idea of the work and we will assess the LES capabilities of the novel split form DG approach when applied to shock-free, moderate Mach number turbulence. We will demonstrate that the novel DG LES strategy offers similar accuracy as the iLES methodology for well resolved cases, but strongly increases fidelity in case of more realistic coarse resolutions.
A contribution to the great Riemann solver debate
NASA Technical Reports Server (NTRS)
Quirk, James J.
1992-01-01
The aims of this paper are threefold: to increase the level of awareness within the shock capturing community to the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very high resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.
A fast numerical scheme for causal relativistic hydrodynamics with dissipation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamoto, Makoto, E-mail: takamoto@tap.scphys.kyoto-u.ac.jp; Inutsuka, Shu-ichiro
2011-08-01
Highlights: {yields} We have developed a new multi-dimensional numerical scheme for causal relativistic hydrodynamics with dissipation. {yields} Our new scheme can calculate the evolution of dissipative relativistic hydrodynamics faster and more effectively than existing schemes. {yields} Since we use the Riemann solver for solving the advection steps, our method can capture shocks very accurately. - Abstract: In this paper, we develop a stable and fast numerical scheme for relativistic dissipative hydrodynamics based on Israel-Stewart theory. Israel-Stewart theory is a stable and causal description of dissipation in relativistic hydrodynamics although it includes relaxation process with the timescale for collision of constituentmore » particles, which introduces stiff equations and makes practical numerical calculation difficult. In our new scheme, we use Strang's splitting method, and use the piecewise exact solutions for solving the extremely short timescale problem. In addition, since we split the calculations into inviscid step and dissipative step, Riemann solver can be used for obtaining numerical flux for the inviscid step. The use of Riemann solver enables us to capture shocks very accurately. Simple numerical examples are shown. The present scheme can be applied to various high energy phenomena of astrophysics and nuclear physics.« less
A Depth-Averaged 2-D Simulation for Coastal Barrier Breaching Processes
2011-05-01
including bed change and variable flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle...flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle the mixed-regime flows near...18 547 Keulegan equation or the Bernoulli equation, and the breach morphological change is determined using simplified sediment transport models
Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications
NASA Astrophysics Data System (ADS)
Ibanez, Jose M.
2001-12-01
My contribution to these proceedings summarizes a general overview on t High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.
A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method
NASA Astrophysics Data System (ADS)
Shen, Zhijun; Yan, Wei; Yuan, Guangwei
2014-07-01
This article presents a new cell-centered numerical method for compressible flows on arbitrary unstructured meshes. A multi-dimensional Riemann solver based on the HLLC method (denoted by HLLC-2D solver) is established. The work is an extension from the cell-centered Lagrangian scheme of Maire et al. [27] to the Eulerian framework. Similarly to the work in [27], a two-dimensional contact velocity defined on a grid node is introduced, and the motivation is to keep an edge flux consistency with the node velocity connected to the edge intrinsically. The main new feature of the algorithm is to relax the condition that the contact pressures must be same in the traditional HLLC solver. The discontinuous fluxes are constructed across each wave sampling direction rather than only along the contact wave direction. The two-dimensional contact velocity of the grid node is determined via enforcing conservation of mass, momentum and total energy, and thus the new method satisfies these conservation properties at nodes rather than on grid edges. Other good properties of the HLLC-2d solver, such as the positivity and the contact preserving, are described, and the two-dimensional high-order extension is constructed employing MUSCL type reconstruction procedure. Numerical results based on both quadrilateral and triangular grids are presented to demonstrate the robustness and the accuracy of this new solver, which shows it has better performance than the existing HLLC method.
A Lagrangian meshfree method applied to linear and nonlinear elasticity.
Walker, Wade A
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.
A Lagrangian meshfree method applied to linear and nonlinear elasticity
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code. PMID:29045443
2013-09-01
including the interaction effects between the fins and canards. 2. Solution Technique 2.1 Computational Aerodynamics The double-precision solver of a...and overset grids (unified-grid). • Total variation diminishing discretization based on a new multidimensional interpolation framework. • Riemann ... solvers to provide proper signal propagation physics including versions for preconditioned forms of the governing equations. • Consistent and
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Luis; MartI, Jose M; Ibanez, Jose M
2010-05-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, andmore » can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.« less
Riemann tensor of motion vision revisited.
Brill, M
2001-07-02
This note shows that the Riemann-space interpretation of motion vision developed by Barth and Watson is neither necessary for their results, nor sufficient to handle an intrinsic coordinate problem. Recasting the Barth-Watson framework as a classical velocity-solver (as in computer vision) solves these problems.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2015-10-01
dispersion depends on the Riemann solver • Variables are allowed to be discontinuous at the cell interfaces Advantages - Method is conservative...release; distribution unlimited Discontinuous Galerkin (2) • Riemann problems are solved at each interface to compute fluxes • The source of dissipation
NASA Astrophysics Data System (ADS)
Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun
2018-03-01
Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a multi-dimensional scheme with incorporation of both normal and tangential spatial derivatives of flow variables at a cell interface in the flux evaluation. The scheme can be extended straightforwardly to viscous flow computation in unstructured mesh. It provides a promising direction for the development of high-order CFD methods for the computation of complex flows, such as turbulence and acoustics with shock interactions.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Dumbser, Michael
2015-10-01
Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on unstructured meshes. Several stringent two- and three-dimensional problems are shown to work well with the methods presented here.
Modeling dam-break flows using finite volume method on unstructured grid
USDA-ARS?s Scientific Manuscript database
Two-dimensional shallow water models based on unstructured finite volume method and approximate Riemann solvers for computing the intercell fluxes have drawn growing attention because of their robustness, high adaptivity to complicated geometry and ability to simulate flows with mixed regimes and di...
Fast Euler solver for transonic airfoils. I - Theory. II - Applications
NASA Technical Reports Server (NTRS)
Dadone, Andrea; Moretti, Gino
1988-01-01
Equations written in terms of generalized Riemann variables are presently integrated by inverting six bidiagonal matrices and two tridiagonal matrices, using an implicit Euler solver that is based on the lambda-formulation. The solution is found on a C-grid whose boundaries are very close to the airfoil. The fast solver is then applied to the computation of several flowfields on a NACA 0012 airfoil at various Mach number and alpha values, yielding results that are primarily concerned with transonic flows. The effects of grid fineness and boundary distances are analyzed; the code is found to be robust and accurate, as well as fast.
Methods for the computation of the multivalued Painlevé transcendents on their Riemann surfaces
NASA Astrophysics Data System (ADS)
Fasondini, Marco; Fornberg, Bengt; Weideman, J. A. C.
2017-09-01
We extend the numerical pole field solver (Fornberg and Weideman (2011) [12]) to enable the computation of the multivalued Painlevé transcendents, which are the solutions to the third, fifth and sixth Painlevé equations, on their Riemann surfaces. We display, for the first time, solutions to these equations on multiple Riemann sheets. We also provide numerical evidence for the existence of solutions to the sixth Painlevé equation that have pole-free sectors, known as tronquée solutions.
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less
NASA Astrophysics Data System (ADS)
Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.
2004-12-01
We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.
Riemann solvers and Alfven waves in black hole magnetospheres
NASA Astrophysics Data System (ADS)
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
2014-09-06
as the Riemann solver . The primitive-variable vector Ts kTwvupW ],,,,,,[ ω= is used in the reconstruction. The initial step in the PPM...University’s (NCSU) REACTMB flow solver is used in the present effort. REACTMB solves the Navier-Stokes equations governing a multi-component
The Osher scheme for real gases
NASA Technical Reports Server (NTRS)
Suresh, Ambady; Liou, Meng-Sing
1990-01-01
An extension of Osher's approximate Riemann solver to include gases with an arbitrary equation of state is presented. By a judicious choice of thermodynamic variables, the Riemann invariats are reduced to quadratures which are then approximated numerically. The extension is rigorous and does not involve any further assumptions or approximations over the ideal gas case. Numerical results are presented to demonstrate the feasibility and accuracy of the proposed method.
Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations
NASA Technical Reports Server (NTRS)
Shiuhong, Lui; Xu, Jun
1999-01-01
Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.
George, D.L.
2011-01-01
The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Murillo, J.; García-Navarro, P.
2012-02-01
In this work, the source term discretization in hyperbolic conservation laws with source terms is considered using an approximate augmented Riemann solver. The technique is applied to the shallow water equations with bed slope and friction terms with the focus on the friction discretization. The augmented Roe approximate Riemann solver provides a family of weak solutions for the shallow water equations, that are the basis of the upwind treatment of the source term. This has proved successful to explain and to avoid the appearance of instabilities and negative values of the thickness of the water layer in cases of variable bottom topography. Here, this strategy is extended to capture the peculiarities that may arise when defining more ambitious scenarios, that may include relevant stresses in cases of mud/debris flow. The conclusions of this analysis lead to the definition of an accurate and robust first order finite volume scheme, able to handle correctly transient problems considering frictional stresses in both clean water and debris flow, including in this last case a correct modelling of stopping conditions.
Assimilation of Wave and Current Data for Prediction of Inlet and River Mouth Dynamics
2013-07-01
onto the Delft3D computational grid and the specification of Riemann -type boundary conditions for the boundary-normal velocity and surface elevation...conditions from time- history data from in situ tide gages. The corrections are applied to the surface-elevation contribution to the Riemann boundary...The algorithms described above are all of the strong-constraint variational variety, and make use of adjoint solvers corresponding to the various
Upwind and symmetric shock-capturing schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1987-01-01
The development of numerical methods for hyperbolic conservation laws has been a rapidly growing area for the last ten years. Many of the fundamental concepts and state-of-the-art developments can only be found in meeting proceedings or internal reports. This review paper attempts to give an overview and a unified formulation of a class of shock-capturing methods. Special emphasis is on the construction of the basic nonlinear scalar second-order schemes and the methods of extending these nonlinear scalar schemes to nonlinear systems via the extact Riemann solver, approximate Riemann solvers, and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows is discussed. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas dynamics problems.
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
Non-oscillatory central differencing for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Nessyahu, Haim; Tadmor, Eitan
1988-01-01
Many of the recently developed high resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block for these schemes is the averaging of an appropriate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the direction of the wind. Instead, the use of the more robust Lax-Friedrichs (LxF) solver is proposed. The main advantage is simplicity: no Riemann problems are solved and hence field-by-field decompositions are avoided. The main disadvantage is the excessive numerical viscosity typical to the LxF solver. This is compensated for by using high-resolution MUSCL-type interpolants. Numerical experiments show that the quality of results obtained by such convenient central differencing is comparable with those of the upwind schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Balsara, Dinshaw S., E-mail: dbalsara@nd.edu
In this paper a new, simple and universal formulation of the HLLEM Riemann solver (RS) is proposed that works for general conservative and non-conservative systems of hyperbolic equations. For non-conservative PDE, a path-conservative formulation of the HLLEM RS is presented for the first time in this paper. The HLLEM Riemann solver is built on top of a novel and very robust path-conservative HLL method. It thus naturally inherits the positivity properties and the entropy enforcement of the underlying HLL scheme. However, with just the slight additional cost of evaluating eigenvectors and eigenvalues of intermediate characteristic fields, we can represent linearlymore » degenerate intermediate waves with a minimum of smearing. For conservative systems, our paper provides the easiest and most seamless path for taking a pre-existing HLL RS and quickly and effortlessly converting it to a RS that provides improved results, comparable with those of an HLLC, HLLD, Osher or Roe-type RS. This is done with minimal additional computational complexity, making our variant of the HLLEM RS also a very fast RS that can accurately represent linearly degenerate discontinuities. Our present HLLEM RS also transparently extends these advantages to non-conservative systems. For shallow water-type systems, the resulting method is proven to be well-balanced. Several test problems are presented for shallow water-type equations and two-phase flow models, as well as for gas dynamics with real equation of state, magnetohydrodynamics (MHD & RMHD), and nonlinear elasticity. Since our new formulation accommodates multiple intermediate waves and has a broader applicability than the original HLLEM method, it could alternatively be called the HLLI Riemann solver, where the “I” stands for the intermediate characteristic fields that can be accounted for. -- Highlights: •New simple and general path-conservative formulation of the HLLEM Riemann solver. •Application to general conservative and non-conservative hyperbolic systems. •Inclusion of sub-structure and resolution of intermediate characteristic fields. •Well-balanced for single- and two-layer shallow water equations and multi-phase flows. •Euler equations with real equation of state, MHD equations, nonlinear elasticity.« less
Predictive Flow Control to Minimize Convective Time Delays
2013-08-19
simulation. The CFO solver used is Cobalt, an unstructured finite-volume code developed for the solution of the compress- ible Navier-Stokes...cell-centered fin ite volume approach applicable to arbitrary cell topologies (e.g, hexahedra, prisms, tetrahedra). The spatial operator uses a Riemann ... solver , least squares gradient calculations using QR factorizati on to provide second order accuracy in space. A point implicit method using
2015-04-01
Computational Engineering unstructured RANS/LES/DES solver , Tenasi, was used to predict drag and simulate the free surface flow around the ACV over a...using a second-order accurate Roe approximate Riemann scheme, while viscous fluxes are evaluated using a second-order directional derivative approach...Predictions of rigid body ship motions for the SI75 container ship in incident waves and methodology for a one-way coupling of the Tenasi flow solver
NASA Astrophysics Data System (ADS)
Paardekooper, S.-J.
2017-08-01
We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2017-11-01
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.
An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James Russell
2015-03-05
This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equationmore » of state and for the JWL equation of state.« less
Nonequilibrium flow computations. 1: An analysis of numerical formulations of conservation laws
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
1988-01-01
Modern numerical techniques employing properties of flux Jacobian matrices are extended to general, nonequilibrium flows. Generalizations of the Beam-Warming scheme, Steger-Warming and van Leer Flux-vector splittings, and Roe's approximate Riemann solver are presented for 3-D, time-varying grids. The analysis is based on a thermodynamic model that includes the most general thermal and chemical nonequilibrium flow of an arbitrary gas. Various special cases are also discussed.
NASA Astrophysics Data System (ADS)
Carraro, F.; Valiani, A.; Caleffi, V.
2018-03-01
Within the framework of the de Saint Venant equations coupled with the Exner equation for morphodynamic evolution, this work presents a new efficient implementation of the Dumbser-Osher-Toro (DOT) scheme for non-conservative problems. The DOT path-conservative scheme is a robust upwind method based on a complete Riemann solver, but it has the drawback of requiring expensive numerical computations. Indeed, to compute the non-linear time evolution in each time step, the DOT scheme requires numerical computation of the flux matrix eigenstructure (the totality of eigenvalues and eigenvectors) several times at each cell edge. In this work, an analytical and compact formulation of the eigenstructure for the de Saint Venant-Exner (dSVE) model is introduced and tested in terms of numerical efficiency and stability. Using the original DOT and PRICE-C (a very efficient FORCE-type method) as reference methods, we present a convergence analysis (error against CPU time) to study the performance of the DOT method with our new analytical implementation of eigenstructure calculations (A-DOT). In particular, the numerical performance of the three methods is tested in three test cases: a movable bed Riemann problem with analytical solution; a problem with smooth analytical solution; a test in which the water flow is characterised by subcritical and supercritical regions. For a given target error, the A-DOT method is always the most efficient choice. Finally, two experimental data sets and different transport formulae are considered to test the A-DOT model in more practical case studies.
Lagrangian solution of supersonic real gas flows
NASA Technical Reports Server (NTRS)
Loh, Ching-Yuen; Liou, Meng-Sing
1993-01-01
The present extention of a Lagrangian approach of the Riemann solution procedure, which was originally proposed for perfect gases, to real gases, is nontrivial and requires the development of an exact real-gas Riemann solver for the Lagrangian form of the conservation laws. Calculations including complex wave interactions of various types were conducted to test the accuracy and robustness of the approach. Attention is given to the case of 2D oblique waves' capture, where a slip line is clearly in evidence; the real gas effect is demonstrated in the case of a generic engine nozzle.
NASA Astrophysics Data System (ADS)
Du, Zhifang; Li, Jiequan
2018-02-01
This paper develops a new fifth order accurate Hermite WENO (HWENO) reconstruction method for hyperbolic conservation schemes in the framework of the two-stage fourth order accurate temporal discretization in Li and Du (2016) [13]. Instead of computing the first moment of the solution additionally in the conventional HWENO or DG approach, we can directly take the interface values, which are already available in the numerical flux construction using the generalized Riemann problem (GRP) solver, to approximate the first moment. The resulting scheme is fourth order temporal accurate by only invoking the HWENO reconstruction twice so that it becomes more compact. Numerical experiments show that such compactness makes significant impact on the resolution of nonlinear waves.
Advanced numerical methods for three dimensional two-phase flow calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less
NASA Astrophysics Data System (ADS)
Chuvakhov, P. V.
2014-01-01
An exact expression for a system of both eigenvalues and right/left eigenvectors of a Jacobian matrix for a convective two-equation differential closure RANS operator split along a curvilinear coordinate is derived. It is shown by examples of numerical modeling of supersonic flows over a flat plate and a compression corner with separation that application of the exact system of eigenvalues and eigenvectors to the Roe approach for approximate solution of the Riemann problem gives rise to an increase in the convergence rate, better stability and higher accuracy of a steady-state solution in comparison with those in the case of an approximate system.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Käppeli, Roger
2017-05-01
In this paper we focus on the numerical solution of the induction equation using Runge-Kutta Discontinuous Galerkin (RKDG)-like schemes that are globally divergence-free. The induction equation plays a role in numerical MHD and other systems like it. It ensures that the magnetic field evolves in a divergence-free fashion; and that same property is shared by the numerical schemes presented here. The algorithms presented here are based on a novel DG-like method as it applies to the magnetic field components in the faces of a mesh. (I.e., this is not a conventional DG algorithm for conservation laws.) The other two novel building blocks of the method include divergence-free reconstruction of the magnetic field and multidimensional Riemann solvers; both of which have been developed in recent years by the first author. Since the method is linear, a von Neumann stability analysis is carried out in two-dimensions to understand its stability properties. The von Neumann stability analysis that we develop in this paper relies on transcribing from a modal to a nodal DG formulation in order to develop discrete evolutionary equations for the nodal values. These are then coupled to a suitable Runge-Kutta timestepping strategy so that one can analyze the stability of the entire scheme which is suitably high order in space and time. We show that our scheme permits CFL numbers that are comparable to those of traditional RKDG schemes. We also analyze the wave propagation characteristics of the method and show that with increasing order of accuracy the wave propagation becomes more isotropic and free of dissipation for a larger range of long wavelength modes. This makes a strong case for investing in higher order methods. We also use the von Neumann stability analysis to show that the divergence-free reconstruction and multidimensional Riemann solvers are essential algorithmic ingredients of a globally divergence-free RKDG-like scheme. Numerical accuracy analyses of the RKDG-like schemes are presented and compared with the accuracy of PNPM schemes. It is found that PNPM retrieve much of the accuracy of the RKDG-like schemes while permitting a larger CFL number.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
2006-03-01
2000. http://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html. Toro , Eleuterio F . Riemann Solvers and Numerical Methods for Fluid Dynamics...Invariants along the characteristics are used ( Toro , 1999:120). A generalized pressure function, ( )* f p ,ξ ξW , whereξ indicates the appropriate...dx dt ,⎡ ⎤− =⎢ ⎥⎣ ⎦∫ U F U 0 (4.9) where the line integration is performed, counter-clockwise, along the boundary of the domain ( Toro , 1999:62
NASA Astrophysics Data System (ADS)
Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J.
2017-02-01
We present estimates of spectral resolution power for under-resolved turbulent Euler flows obtained with high-order discontinuous Galerkin (DG) methods. The '1% rule' based on linear dispersion-diffusion analysis introduced by Moura et al. (2015) [10] is here adapted for 3D energy spectra and validated through the inviscid Taylor-Green vortex problem. The 1% rule estimates the wavenumber beyond which numerical diffusion induces an artificial dissipation range on measured energy spectra. As the original rule relies on standard upwinding, different Riemann solvers are tested. Very good agreement is found for solvers which treat the different physical waves in a consistent manner. Relatively good agreement is still found for simpler solvers. The latter however displayed spurious features attributed to the inconsistent treatment of different physical waves. It is argued that, in the limit of vanishing viscosity, such features might have a significant impact on robustness and solution quality. The estimates proposed are regarded as useful guidelines for no-model DG-based simulations of free turbulence at very high Reynolds numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu; Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Garain, Sudip, E-mail: sgarain@nd.edu
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equationsmore » is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.« less
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor
NASA Astrophysics Data System (ADS)
Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.
2017-09-01
The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.
NASA Astrophysics Data System (ADS)
Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.
2016-06-01
A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.
The High-Resolution Wave-Propagation Method Applied to Meso- and Micro-Scale Flows
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.
2012-01-01
The high-resolution wave-propagation method for computing the nonhydrostatic atmospheric flows on meso- and micro-scales is described. The design and implementation of the Riemann solver used for computing the Godunov fluxes is discussed in detail. The method uses a flux-based wave decomposition in which the flux differences are written directly as the linear combination of the right eigenvectors of the hyperbolic system. The two advantages of the technique are: 1) the need for an explicit definition of the Roe matrix is eliminated and, 2) the inclusion of source term due to gravity does not result in discretization errors. The resulting flow solver is conservative and able to resolve regions of large gradients without introducing dispersion errors. The methodology is validated against exact analytical solutions and benchmark cases for non-hydrostatic atmospheric flows.
Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer
NASA Astrophysics Data System (ADS)
Surov, V. S.
2018-05-01
Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.
Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer
NASA Astrophysics Data System (ADS)
Surov, V. S.
2018-03-01
Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.
Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach
NASA Astrophysics Data System (ADS)
Antón, Luis; Zanotti, Olindo; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Font, José A.; Pons, José A.
2006-01-01
We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e., Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic MHD equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic MHD in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick disks accreting onto a black hole and subject to the magnetorotational instability.
Comparative study of high-resolution shock-capturing schemes for a real gas
NASA Technical Reports Server (NTRS)
Montagne, J.-L.; Yee, H. C.; Vinokur, M.
1987-01-01
Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30%. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.
An equation of state for polyurea aerogel based on multi-shock response
NASA Astrophysics Data System (ADS)
Aslam, T. D.; Gustavsen, R. L.; Bartram, B. D.
2014-05-01
The equation of state (EOS) of polyurea aerogel (PUA) is examined through both single shock Hugoniot data as well as more recent multi-shock compression experiments performed on the LANL 2-stage gas gun. A simple conservative Lagrangian numerical scheme, utilizing total variation diminishing (TVD) interpolation and an approximate Riemann solver, will be presented as well as the methodology of calibration. It will been demonstrated that a p-a model based on a Mie-Gruneisen fitting form for the solid material can reasonably replicate multi-shock compression response at a variety of initial densities; such a methodology will be presented for a commercially available polyurea aerogel.
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, I; Pember, R; Greenough, J
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less
A high-order gas-kinetic Navier-Stokes flow solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Qibing, E-mail: lqb@tsinghua.edu.c; Xu Kun, E-mail: makxu@ust.h; Fu Song, E-mail: fs-dem@tsinghua.edu.c
2010-09-20
The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to itsmore » spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.« less
An Equation of State for Polymethylpentene (TPX) including Multi-Shock Response
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Gustavsen, Richard; Sanchez, Nathaniel; Bartram, Brian
2011-06-01
The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total-variation-diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Gruneisen EOS based off a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.
An equation of state for polymethylpentene (TPX) including multi-shock response
NASA Astrophysics Data System (ADS)
Aslam, Tariq D.; Gustavsen, Rick; Sanchez, Nathaniel; Bartram, Brian D.
2012-03-01
The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's two-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total variation diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Grüneisen EOS based on a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.
A new Lagrangian method for three-dimensional steady supersonic flows
NASA Technical Reports Server (NTRS)
Loh, Ching-Yuen; Liou, Meng-Sing
1993-01-01
In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional, steady supersonic flow computation. The derivation of the conservation form and the solution of the local Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) scheme is presented. This new approach is accurate and robust, capable of handling complicated geometry and interactions between discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid generation). In this report, we also suggest a novel three dimensional Riemann problem in which interesting and intricate flow features are present.
Clawpack: Building an open source ecosystem for solving hyperbolic PDEs
Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.
2016-01-01
Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.
MUSTA fluxes for systems of conservation laws
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2006-08-01
This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.
NASA Astrophysics Data System (ADS)
Owolabi, Kolade M.
2018-03-01
In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.
An Equation of State for Foamed Divinylbenzene (DVB) Based on Multi-Shock Response
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Schroen, Diana; Gustavsen, Richard; Bartram, Brian
2013-06-01
The methodology for making foamed Divinylbenzene (DVB) is described. For a variety of initial densities, foamed DVB is examined through multi-shock compression and release experiments. Results from multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme, utilizing total-variation-diminishing interpolation and an approximate Riemann solver, will be presented as well as the methodology of calibration. It has been previously demonstrated that a single Mie-Gruneisen fitting form can replicate foam multi-shock compression response at a variety of initial densities; such a methodology will be presented for foamed DVB.
Numerical Hydrodynamics in General Relativity.
Font, José A
2000-01-01
The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented. Supplementary material is available for this article at 10.12942/lrr-2000-2.
2008-09-01
Element Method. Wellesley- Cambridge Press, Wellesly, MA, 1988. [97] E. F. Toro . Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical...introducing additional state variables, are generally asymptotically dual consistent. Numerical results are presented to confirm the results of the analysis...dependence on the state gradient is handled by introducing additional state variables, are generally asymptotically dual consistent. Numerical results are
Focusing of noncircular self-similar shock waves.
Betelu, S I; Aronson, D G
2001-08-13
We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.
Relaxation approximations to second-order traffic flow models by high-resolution schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.
2015-03-10
A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reportedmore » demonstrate the simplicity and versatility of relaxation schemes as numerical solvers.« less
Study of the Issues of Computational Aerothermodynamics Using a Riemann Solver
2008-07-01
storage is from the translational energy resulting from the translational motion of the center of mass of the molecule. A molecule also has a rotational ...energy storage mode since the molecules can rotate about their center of mass. The third energy storage mode of molecules is from the atoms of...is the sum of the four energy modes mentioned above, namely the translational, rotational , vibrational and electronic energies. For monoatomic
Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and advantage of the FVS scheme are closely observed. The subtle dissipative mechanism of the Godunov method in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and odd-even decoupling, is presented.
NASA Astrophysics Data System (ADS)
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
NASA Astrophysics Data System (ADS)
White, Christopher Joseph
We describe the implementation of sophisticated numerical techniques for general-relativistic magnetohydrodynamics simulations in the Athena++ code framework. Improvements over many existing codes include the use of advanced Riemann solvers and of staggered-mesh constrained transport. Combined with considerations for computational performance and parallel scalability, these allow us to investigate black hole accretion flows with unprecedented accuracy. The capability of the code is demonstrated by exploring magnetically arrested disks.
Numerical Hydrodynamics in Special Relativity.
Martí, José Maria; Müller, Ewald
2003-01-01
This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.
Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh
NASA Astrophysics Data System (ADS)
Wenhua, Wang; Yanying, Wang
2010-05-01
This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
A Shallow Layer Approach for Geo-flow emplacement
NASA Astrophysics Data System (ADS)
Costa, A.; Folch, A.; Mecedonio, G.
2009-04-01
Geophysical flows such as lahars or lava flows severely threat the communities located on or near the volcano flanks. Risks and damages caused by the propagation of this kind of flows require a quantitative description of this phenomenon and reliable tools for forecasting their emplacement. Computational models are a valuable tool for planning risk mitigation countermeasures, such as human intervention to force flow diversion, artificial barriers, and allow for significant economical and social benefits. A FORTRAN 90 code based on a Shallow Layer Approach for Geo-flows (SLAG) for describing transport and emplacement of diluted lahars, water and lava was developed in both serial and parallel version. Three rheological models, such as those describing i) a viscous, ii) a turbulent, and iii) a dilatant flow respectively, were implemented in order to describe transport of lavas, water and diluted lahars. The code was made user-friendly by creating some interfaces that allow the user to easily define the problem, extract and interpolate the topography of the simulation domain. Moreover SLAG outputs can be written in both GRD format (e.g., Surfer), NetCDF format, or visualized directly in GoogleEarth. In SLAG the governing equations were treated using a Godunov splitting method following George (2008) algorithm based on a Riemann solver for the shallow water equations that decomposes an augmented state variable the depth, momentum, momentum flux, and bathymetry into four propagating discontinuities or waves. For our application, the algorithm was generalized for solving the energy equation. For validating the code in simulating real geophysical flows, we performed few simulations the lava flow event of the the 3rd and 4th January 1992 Etna eruption, the July 2001 Etna lava flows, January 2002 Nyragongo lava flows and few test cases for simulating transport of diluted lahars. Ref: George, D.L. (2008), Augmented Riemann Solvers for the Shallow Water Equations over Variable Topography with Steady States and Inundation, J. Comput. Phys., 227 (6), 3089-3113, doi:10.1016/j.jcp.2007.10.027.
2016-06-08
forces. Plasmas in hypersonic and astrophysical flows are one of the most typical examples of such conductive fluids. Though MHD models are a low...remain powerful tools in helping researchers to understand the complex physical processes in the geospace environment. For example, the ideal MHD...vertex level within each physical time step. For this reason and the method’s DG ingredient, the method was named as the space-time discontinuous Galerkin
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-09
Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less
Development and acceleration of unstructured mesh-based cfd solver
NASA Astrophysics Data System (ADS)
Emelyanov, V.; Karpenko, A.; Volkov, K.
2017-06-01
The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.
The CRONOS Code for Astrophysical Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kissmann, R.; Kleimann, J.; Krebl, B.; Wiengarten, T.
2018-06-01
We describe the magnetohydrodynamics (MHD) code CRONOS, which has been used in astrophysics and space-physics studies in recent years. CRONOS has been designed to be easily adaptable to the problem in hand, where the user can expand or exchange core modules or add new functionality to the code. This modularity comes about through its implementation using a C++ class structure. The core components of the code include solvers for both hydrodynamical (HD) and MHD problems. These problems are solved on different rectangular grids, which currently support Cartesian, spherical, and cylindrical coordinates. CRONOS uses a finite-volume description with different approximate Riemann solvers that can be chosen at runtime. Here, we describe the implementation of the code with a view toward its ongoing development. We illustrate the code’s potential through several (M)HD test problems and some astrophysical applications.
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
Adaptive mesh fluid simulations on GPU
NASA Astrophysics Data System (ADS)
Wang, Peng; Abel, Tom; Kaehler, Ralf
2010-10-01
We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA's CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge-Kutta time integration scheme, piecewise linear reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.
Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.
Wang, Kevin G
2017-10-01
A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p max = 35.0MPa, p min =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior. Copyright © 2016 John Wiley & Sons, Ltd.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-01-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
Analysis of an Hp-Non-conforming Discontinuous Galerkin Spectral Element Method for Wave
2011-04-01
Scientific Computing, 36 (2008), pp. 351–390. [25] Eleuterio F . Toro , Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 1999. [26...denoted by ñ, and the contravariant flux [15] is defined as F̃i = Jeai · F , i = 1, 2, 3, with ai as the contravariant basis vectors. We now describe...wave propagation case by the following definitions, q = ( E v ) ∈ V, Q = ( I 0 0 ρI ) , g = ( 0 f ) ∈ V, with I denoting the fourth-order identity tensor
Computing 3-D steady supersonic flow via a new Lagrangian approach
NASA Technical Reports Server (NTRS)
Loh, C. Y.; Liou, M.-S.
1993-01-01
The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.
Minerva: Cylindrical coordinate extension for Athena
NASA Astrophysics Data System (ADS)
Skinner, M. Aaron; Ostriker, Eve C.
2013-02-01
Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.
A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows
NASA Astrophysics Data System (ADS)
Lei, Xin; Li, Jiequan
2018-04-01
This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraysse, F., E-mail: francois.fraysse@rs2n.eu; E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid; Redondo, C.
This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is appliedmore » to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.« less
NASA Technical Reports Server (NTRS)
Yee, H. C.
1995-01-01
Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.
Finite volume model for two-dimensional shallow environmental flow
Simoes, F.J.M.
2011-01-01
This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources 98 (2016) 70-96.
NASA Astrophysics Data System (ADS)
Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team
2017-11-01
We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.
A hybrid model for traffic flow and crowd dynamics with random individual properties.
Schleper, Veronika
2015-04-01
Based on an established mathematical model for the behavior of large crowds, a new model is derived that is able to take into account the statistical variation of individual maximum walking speeds. The same model is shown to be valid also in traffic flow situations, where for instance the statistical variation of preferred maximum speeds can be considered. The model involves explicit bounds on the state variables, such that a special Riemann solver is derived that is proved to respect the state constraints. Some care is devoted to a valid construction of random initial data, necessary for the use of the new model. The article also includes a numerical method that is shown to respect the bounds on the state variables and illustrative numerical examples, explaining the properties of the new model in comparison with established models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelanti, Marica, E-mail: marica.pelanti@ensta-paristech.fr; Shyue, Keh-Ming, E-mail: shyue@ntu.edu.tw
2014-02-15
We model liquid–gas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of Saurel–Petitpas–Berry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxationmore » terms to model heat and mass transfer and hence liquid–vapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquid–vapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.« less
Real Gas Computation Using an Energy Relaxation Method and High-Order WENO Schemes
NASA Technical Reports Server (NTRS)
Montarnal, Philippe; Shu, Chi-Wang
1998-01-01
In this paper, we use a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition into two parts: one part is associated with a simpler pressure law and the other part (the nonlinear deviation) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the first part. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.
NASA Astrophysics Data System (ADS)
Yue, Zhiyuan; Cao, Zhixian; Li, Xin; Che, Tao
2008-09-01
Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river models based on simplified conservation equations are not applicable. A two-dimensional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equations closed with Manning roughness for boundary resistance and empirical relationships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.
Well balancing of the SWE schemes for moving-water steady flows
NASA Astrophysics Data System (ADS)
Caleffi, Valerio; Valiani, Alessandro
2017-08-01
In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.
A new approach for solving the three-dimensional steady Euler equations. I - General theory
NASA Technical Reports Server (NTRS)
Chang, S.-C.; Adamczyk, J. J.
1986-01-01
The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.
NASA Technical Reports Server (NTRS)
Rumsey, Christopher Lockwood
1991-01-01
A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.
A new approach for solving the three-dimensional steady Euler equations. I - General theory
NASA Astrophysics Data System (ADS)
Chang, S.-C.; Adamczyk, J. J.
1986-08-01
The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.
Porting a Hall MHD Code to a Graphic Processing Unit
NASA Technical Reports Server (NTRS)
Dorelli, John C.
2011-01-01
We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.
NASA Astrophysics Data System (ADS)
Vilar, François; Shu, Chi-Wang; Maire, Pierre-Henri
2016-05-01
One of the main issues in the field of numerical schemes is to ally robustness with accuracy. Considering gas dynamics, numerical approximations may generate negative density or pressure, which may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore, most of the problems studied in this framework contain very intense rarefaction and shock waves. In this paper, the admissibility of numerical solutions obtained by high-order finite-volume-scheme-based methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory (ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-dimensional Lagrangian gas dynamics framework. After briefly recalling how to derive Lagrangian forms of the 1D gas dynamics system of equations, a discussion on positivity-preserving approximate Riemann solvers, ensuring first-order finite volume schemes to be positive, is then given. This study is conducted for both ideal gas and non-ideal gas equations of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Mie-Grüneisen (MG) EOS, and relies on two different techniques: either a particular definition of the local approximation of the acoustic impedances arising from the approximate Riemann solver, or an additional time step constraint relative to the cell volume variation. Then, making use of the work presented in [89,90,22], this positivity study is extended to high-orders of accuracy, where new time step constraints are obtained, and proper limitation is required. Through this new procedure, scheme robustness is highly improved and hence new problems can be tackled. Numerical results are provided to demonstrate the effectiveness of these methods. This paper is the first part of a series of two. The whole analysis presented here is extended to the two-dimensional case in [85], and proves to fit a wide range of numerical schemes in the literature, such as those presented in [19,64,15,82,84].
Finite-volume application of high order ENO schemes to multi-dimensional boundary-value problems
NASA Technical Reports Server (NTRS)
Casper, Jay; Dorrepaal, J. Mark
1990-01-01
The finite volume approach in developing multi-dimensional, high-order accurate essentially non-oscillatory (ENO) schemes is considered. In particular, a two dimensional extension is proposed for the Euler equation of gas dynamics. This requires a spatial reconstruction operator that attains formal high order of accuracy in two dimensions by taking account of cross gradients. Given a set of cell averages in two spatial variables, polynomial interpolation of a two dimensional primitive function is employed in order to extract high-order pointwise values on cell interfaces. These points are appropriately chosen so that correspondingly high-order flux integrals are obtained through each interface by quadrature, at each point having calculated a flux contribution in an upwind fashion. The solution-in-the-small of Riemann's initial value problem (IVP) that is required for this pointwise flux computation is achieved using Roe's approximate Riemann solver. Issues to be considered in this two dimensional extension include the implementation of boundary conditions and application to general curvilinear coordinates. Results of numerical experiments are presented for qualitative and quantitative examination. These results contain the first successful application of ENO schemes to boundary value problems with solid walls.
A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension
NASA Astrophysics Data System (ADS)
Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.
2017-06-01
Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.
A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu
Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Taflove, Allen; Garain, Sudip; Montecinos, Gino
2017-11-01
While classic finite-difference time-domain (FDTD) solutions of Maxwell's equations have served the computational electrodynamics (CED) community very well, formulations based on Godunov methodology have begun to show advantages. We argue that the formulations presented so far are such that FDTD schemes and Godunov-based schemes each have their own unique advantages. However, there is currently not a single formulation that systematically integrates the strengths of both these major strains of development. While an early glimpse of such a formulation was offered in Balsara et al. [16], that paper focused on electrodynamics in plasma. Here, we present a synthesis that integrates the strengths of both FDTD and Godunov-based schemes into a robust single formulation for CED in material media. Three advances make this synthesis possible. First, from the FDTD method, we retain (but somewhat modify) a spatial staggering strategy for the primal variables. This provides a beneficial constraint preservation for the electric displacement and magnetic induction vector fields via reconstruction methods that were initially developed in some of the first author's papers for numerical magnetohydrodynamics (MHD). Second, from the Godunov method, we retain the idea of upwinding, except that this idea, too, has to be significantly modified to use the multi-dimensionally upwinded Riemann solvers developed by the first author. Third, we draw upon recent advances in arbitrary derivatives in space and time (ADER) time-stepping by the first author and his colleagues. We use the ADER predictor step to endow our method with sub-cell resolving capabilities so that the method can be stiffly stable and resolve significant sub-cell variation in the material properties within a zone. Overall, in this paper, we report a new scheme for numerically solving Maxwell's equations in material media, with special attention paid to a second-order-accurate formulation. Several numerical examples are presented to show that the proposed technique works. Because of its sub-cell resolving ability, the new method retains second-order accuracy even when material permeability and permittivity vary by an order-of-magnitude over just one or two zones. Furthermore, because the new method is also unconditionally stable in the presence of stiff source terms (i.e., in problems involving giant conductivity variations), it can handle several orders-of-magnitude variation in material conductivity over just one or two zones without any reduction of the time-step. Consequently, the CFL depends only on the propagation speed of light in the medium being studied.
NASA Technical Reports Server (NTRS)
Coirier, William John
1994-01-01
A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.
A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1994-01-01
The development of shock-capturing finite difference methods for hyperbolic conservation laws has been a rapidly growing area for the last decade. Many of the fundamental concepts, state-of-the-art developments and applications to fluid dynamics problems can only be found in meeting proceedings, scientific journals and internal reports. This paper attempts to give a unified and generalized formulation of a class of high-resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These numerical methods are formulated for the purpose of ease and efficient implementation into a practical computer code. The various constructions of high-resolution shock-capturing methods fall nicely into the present framework and a computer code can be implemented with the various methods as separate modules. Included is a systematic overview of the basic design principle of the various related numerical methods. Special emphasis will be on the construction of the basic nonlinear, spatially second and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows will be discussed. Some perbolic conservation laws to problems containing stiff source terms and terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be extended to nonlinear systems of equations without the use of Riemann solvers or flux-vector splitting approaches and thus provides a large savings for multidimensional, equilibrium real gases and nonequilibrium flow computations.
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
An approximate Riemann solver for thermal and chemical nonequilibrium flows
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1994-01-01
Among the many methods available for the determination of inviscid fluxes across a surface of discontinuity, the flux-difference-splitting technique that employs Roe-averaged variables has been used extensively by the CFD community because of its simplicity and its ability to capture shocks exactly. This method, originally developed for perfect gas flows, has since been extended to equilibrium as well as nonequilibrium flows. Determination of the Roe-averaged variables for the case of a perfect gas flow is a simple task; however, for thermal and chemical nonequilibrium flows, some of the variables are not uniquely defined. Methods available in the literature to determine these variables seem to lack sound bases. The present paper describes a simple, yet accurate, method to determine all the variables for nonequilibrium flows in the Roe-average state. The basis for this method is the requirement that the Roe-averaged variables form a consistent set of thermodynamic variables. The present method satisfies the requirement that the square of the speed of sound be positive.
(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenke, Bjoern; Jeon, Sangyong; Gale, Charles
2010-07-15
We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p{sub T}-spectra and pseudorapidity distributions for Au+Au collisions at sq root(s)=200 GeV and present results for the anisotropic flow coefficients v{sub 2} and v{sub 4} as amore » function of both p{sub T} and pseudorapidity eta. We were able to determine v{sub 4} with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactlymore » preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.« less
Tsunami modelling with adaptively refined finite volume methods
LeVeque, R.J.; George, D.L.; Berger, M.J.
2011-01-01
Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.
IMPLEMENTATION OF SINK PARTICLES IN THE ATHENA CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Hao; Ostriker, Eve C., E-mail: hgong@astro.umd.edu, E-mail: eco@astro.princeton.edu
2013-01-15
We describe the implementation and tests of sink particle algorithms in the Eulerian grid-based code Athena. The introduction of sink particles enables the long-term evolution of systems in which localized collapse occurs, and it is impractical (or unnecessary) to resolve the accretion shocks at the centers of collapsing regions. We discuss the similarities and differences of our methods compared to other implementations of sink particles. Our criteria for sink creation are motivated by the properties of the Larson-Penston collapse solution. We use standard particle-mesh methods to compute particle and gas gravity together. Accretion of mass and momenta onto sinks ismore » computed using fluxes returned by the Riemann solver. A series of tests based on previous analytic and numerical collapse solutions is used to validate our method and implementation. We demonstrate use of our code for applications with a simulation of planar converging supersonic turbulent flow, in which multiple cores form and collapse to create sinks; these sinks continue to interact and accrete from their surroundings over several Myr.« less
Simulating compressible-incompressible two-phase flows
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend
2017-11-01
Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.
Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.
2011-10-01
We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of interpolated quantities in the solution of the Riemann Problem. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications.
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony
2014-02-01
GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.
Newly-Developed 3D GRMHD Code and its Application to Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.
Step-by-step integration for fractional operators
NASA Astrophysics Data System (ADS)
Colinas-Armijo, Natalia; Di Paola, Mario
2018-06-01
In this paper, an approach based on the definition of the Riemann-Liouville fractional operators is proposed in order to provide a different discretisation technique as alternative to the Grünwald-Letnikov operators. The proposed Riemann-Liouville discretisation consists of performing step-by-step integration based upon the discretisation of the function f(t). It has been shown that, as f(t) is discretised as stepwise or piecewise function, the Riemann-Liouville fractional integral and derivative are governing by operators very similar to the Grünwald-Letnikov operators. In order to show the accuracy and capabilities of the proposed Riemann-Liouville discretisation technique and the Grünwald-Letnikov discrete operators, both techniques have been applied to: unit step functions, exponential functions and sample functions of white noise.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1994-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Geng, Xianguo
2017-12-01
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.
Loop Integrands for Scattering Amplitudes from the Riemann Sphere
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr
2015-09-01
The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.
Improved 3-D turbomachinery CFD algorithm
NASA Technical Reports Server (NTRS)
Janus, J. Mark; Whitfield, David L.
1988-01-01
The building blocks of a computer algorithm developed for the time-accurate flow analysis of rotating machines are described. The flow model is a finite volume method utilizing a high resolution approximate Riemann solver for interface flux definitions. This block LU implicit numerical scheme possesses apparent unconditional stability. Multi-block composite gridding is used to orderly partition the field into a specified arrangement. Block interfaces, including dynamic interfaces, are treated such as to mimic interior block communication. Special attention is given to the reduction of in-core memory requirements by placing the burden on secondary storage media. Broad applicability is implied, although the results presented are restricted to that of an even blade count configuration. Several other configurations are presently under investigation, the results of which will appear in subsequent publications.
NASA Technical Reports Server (NTRS)
Kleb, W. L.
1994-01-01
Steady flow over the leading portion of a multicomponent airfoil section is studied using computational fluid dynamics (CFD) employing an unstructured grid. To simplify the problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes equations - leaving the Euler equations. The algorithm is derived using the finite-volume approach, incorporating explicit time-marching of the unsteady Euler equations to a time-asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector splitting. Results are presented which contrast the solutions given by the two flux functions as a function of Mach number and grid resolution. Additional information is presented concerning code verification techniques, flow recirculation regions, convergence histories, and computational resources.
An interactive adaptive remeshing algorithm for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Slack, David C.; Walters, Robert W.; Lohner, R.
1990-01-01
An interactive adaptive remeshing algorithm utilizing a frontal grid generator and a variety of time integration schemes for the two-dimensional Euler equations on unstructured meshes is presented. Several device dependent interactive graphics interfaces have been developed along with a device independent DI-3000 interface which can be employed on any computer that has the supporting software including the Cray-2 supercomputers Voyager and Navier. The time integration methods available include: an explicit four stage Runge-Kutta and a fully implicit LU decomposition. A cell-centered finite volume upwind scheme utilizing Roe's approximate Riemann solver is developed. To obtain higher order accurate results a monotone linear reconstruction procedure proposed by Barth is utilized. Results for flow over a transonic circular arc and flow through a supersonic nozzle are examined.
New higher-order Godunov code for modelling performance of two-stage light gas guns
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.; Miller, R. J.
1995-01-01
A new quasi-one-dimensional Godunov code for modeling two-stage light gas guns is described. The code is third-order accurate in space and second-order accurate in time. A very accurate Riemann solver is used. Friction and heat transfer to the tube wall for gases and dense media are modeled and a simple nonequilibrium turbulence model is used for gas flows. The code also models gunpowder burn in the first-stage breech. Realistic equations of state (EOS) are used for all media. The code was validated against exact solutions of Riemann's shock-tube problem, impact of dense media slabs at velocities up to 20 km/sec, flow through a supersonic convergent-divergent nozzle and burning of gunpowder in a closed bomb. Excellent validation results were obtained. The code was then used to predict the performance of two light gas guns (1.5 in. and 0.28 in.) in service at the Ames Research Center. The code predictions were compared with measured pressure histories in the powder chamber and pump tube and with measured piston and projectile velocities. Very good agreement between computational fluid dynamics (CFD) predictions and measurements was obtained. Actual powder-burn rates in the gun were found to be considerably higher (60-90 percent) than predicted by the manufacturer and the behavior of the piston upon yielding appears to differ greatly from that suggested by low-strain rate tests.
Numerical Hydrodynamics in General Relativity.
Font, José A
2003-01-01
The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them. Supplementary material is available for this article at 10.12942/lrr-2003-4.
Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests
NASA Astrophysics Data System (ADS)
Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.
2000-04-01
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.
An efficient direct solver for rarefied gas flows with arbitrary statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Manuel A., E-mail: f99543083@ntu.edu.tw; Yang, Jaw-Yen, E-mail: yangjy@iam.ntu.edu.tw; Center of Advanced Study in Theoretical Science, National Taiwan University, Taipei 10167, Taiwan
2016-01-15
A new numerical methodology associated with a unified treatment is presented to solve the Boltzmann–BGK equation of gas dynamics for the classical and quantum gases described by the Bose–Einstein and Fermi–Dirac statistics. Utilizing a class of globally-stiffly-accurate implicit–explicit Runge–Kutta scheme for the temporal evolution, associated with the discrete ordinate method for the quadratures in the momentum space and the weighted essentially non-oscillatory method for the spatial discretization, the proposed scheme is asymptotic-preserving and imposes no non-linear solver or requires the knowledge of fugacity and temperature to capture the flow structures in the hydrodynamic (Euler) limit. The proposed treatment overcomes themore » limitations found in the work by Yang and Muljadi (2011) [33] due to the non-linear nature of quantum relations, and can be applied in studying the dynamics of a gas with internal degrees of freedom with correct values of the ratio of specific heat for the flow regimes for all Knudsen numbers and energy wave lengths. The present methodology is numerically validated with the unified treatment by the one-dimensional shock tube problem and the two-dimensional Riemann problems for gases of arbitrary statistics. Descriptions of ideal quantum gases including rotational degrees of freedom have been successfully achieved under the proposed methodology.« less
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1994-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1993-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.
A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
NASA Astrophysics Data System (ADS)
Terrana, S.; Vilotte, J. P.; Guillot, L.
2018-04-01
We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm, when element polynomials of order k are used, and to exhibit the classical spectral convergence of SEM. Additional inexpensive local post-processing in both the elastic and the acoustic case allow to achieve higher convergence orders. The HDG scheme provides a natural framework for coupling classical, continuous Galerkin SEM with HDG-SEM in the same simulation, and it is shown numerically in this paper. As such, the proposed HDG-SEM can combine the efficiency of the continuous SEM with the flexibility of the HDG approaches. Finally, more complex numerical results, inspired from real geophysical applications, are presented to illustrate the capabilities of the method for wave propagation in heterogeneous elastic-acoustic media with complex geometries.
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of the Maxwell equations. All numerical procedures for outer boundary, material interface, zonal interface, and interior SV face are unified with a single characteristic formulation. The load balancing in a massive parallel computing environment is therefore easier to achieve. A parameter is introduced in the Riemann solver to control the strength of the smoothing term. Important aspects of the data structure and its effects to communication and the optimum use of cache memory are discussed. Results will be presented for plane TE and TM waves incident on a perfectly conducting cylinder for up to fifth order of accuracy, and a plane wave incident on a perfectly conducting sphere for up to fourth order of accuracy. Comparisons are made with exact solutions for these cases.
Hypersonic blunt body computations including real gas effects
NASA Technical Reports Server (NTRS)
Montagne, J.-L.; Yee, H. C.; Klopfer, G. H.; Vinokur, M.
1989-01-01
Various second-order explicit and implicit TVD shock-capturing methods, a generalization of Roe's approximate Riemann solver, and a generalized flux-vector splitting scheme are used to study two-dimensional hypersonic real-gas flows. Special attention is given to the identification of some of the elements and parameters which can affect the convergence rate for high Mach numbers or real gases, but have negligible effect for low Mach numbers, for cases involving steady-state inviscid blunt flows. Blunt body calculations at Mach numbers of greater than 15 are performed to treat real-gas effects, and impinging shock results are obtained to test the treatment of slip surfaces and complex structures. Even with the addition of improvements, the convergence rate of algorithms in the hypersonic flow regime is found to be generally slower for a real gas than for a perfect gas.
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
NASA Astrophysics Data System (ADS)
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond and its breaching such as depth, wide, length, volume and breaching shape and daily total rainfall data were used in the models. The simulated flooding in the both models were compared with the real flood extent which gathered from photos taken after the flood event, high satellite images acquired after 20 days from the flood event, and field works. The results show that LISFLOOD-Roe hydraulic model gives more than 80% fit to the extent of real flood event. Also both modelling results show that the embankment breaching of the Ata Pond directly affected the flood magnitude and intensity on the area. This study reveals that modelling of the probable flooding in urban areas is necessary and very important in urban planning. References Gallegos, H. A., Schubert, J. E., and Sanders, B. F.: Two dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills California, Adv. Water Resour., 32, 1323-1335, 2009. Neal, J., Villanueva, I., Wright, N., Willis, T., Fewtrell, T. and Bates, P.: How mush physical complexity is needed to model flood inundation? Hydrological Processes, DOI: 10.1002/hyp.8339. Ozdemir H., Sampson C., De Almeida G., Bates P.D.: Evaluating scale and roughness effects in urban flood modelling using terrestrial LiDAR data, Hydrology and Earth System Sciences, vol.17, pp.4015-4030, 2013. Roe P.: Approximate Riemann solvers, parameter vectors, and difference-schemes. Journal of Computational Physics 43(2): 357-372, 1981. Villanueva I, Wright NG.: Linking Riemann and storage cell models for flood prediction. Proceedings of the Institution of Civil Engineers, Journal of Water Management 159: 27-33, 2006.
NASA Astrophysics Data System (ADS)
Feng, Xueshang; Li, Caixia; Xiang, Changqing; Zhang, Man; Li, HuiChao; Wei, Fengsi
2017-11-01
A second-order path-conservative scheme with a Godunov-type finite-volume method has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in three-dimensional spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependent dissipation matrix. For simplicity, the straight line segment path is used, and the path integral is evaluated in a fully numerical way by a high-order numerical Gauss-Legendre quadrature. Besides its very close similarity to Godunov type, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable, and complete, in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the path-conservative scheme is realized for the generalized Lagrange multiplier and the extended generalized Lagrange multiplier formulation of solar wind MHD systems. This new model that is second order in space and time is written in the FORTRAN language with Message Passing Interface parallelization and validated in modeling the time-dependent large-scale structure of the solar corona, driven continuously by Global Oscillation Network Group data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from 2009 October 9 to 2009 December 29 show its capability of producing a structured solar corona in agreement with solar coronal observations.
Data-Driven Modeling of Solar Corona by a New 3d Path-Conservative Osher-Solomon MHD Odel
NASA Astrophysics Data System (ADS)
Feng, X. S.; Li, C.
2017-12-01
A second-order path-conservative scheme with Godunov-type finite volume method (FVM) has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in 3D spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependentdissipation matrix. For simplicity, the straight line segment path is used and the path-integral is evaluated in a fully numerical way by high-order numerical Gauss-Legendre quadrature. Besides its closest similarity to Godunov, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable and complete in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the pathconservative scheme is realized for the generalized Lagrange multiplier (GLM) and the extended generalized Lagrange multiplier (EGLM) formulation of solar wind MHD systems. This new model of second-order in space and time is written in FORTRAN language with Message Passing Interface (MPI) parallelization, and validated in modeling time-dependent large-scale structure of solar corona, driven continuously by the Global Oscillation Network Group (GONG) data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from October 9th, 2009 to December 29th, 2009 , & Year 2008 to show its capability of producing structured solar wind in agreement with the observations.
Quasi-periodic Solutions of the Kaup-Kupershmidt Hierarchy
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Wu, Lihua; He, Guoliang
2013-08-01
Based on solving the Lenard recursion equations and the zero-curvature equation, we derive the Kaup-Kupershmidt hierarchy associated with a 3×3 matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the Kaup-Kupershmidt hierarchy, we introduce a trigonal curve {K}_{m-1} and present the corresponding Baker-Akhiezer function and meromorphic function on it. The Abel map is introduced to straighten out the Kaup-Kupershmidt flows. With the aid of the properties of the Baker-Akhiezer function and the meromorphic function and their asymptotic expansions, we arrive at their explicit Riemann theta function representations. The Riemann-Jacobi inversion problem is achieved by comparing the asymptotic expansion of the Baker-Akhiezer function and its Riemann theta function representation, from which quasi-periodic solutions of the entire Kaup-Kupershmidt hierarchy are obtained in terms of the Riemann theta functions.
Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.
A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang
2007-10-01
We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.
Domain decomposition methods in aerodynamics
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Saltz, Joel
1990-01-01
Compressible Euler equations are solved for two-dimensional problems by a preconditioned conjugate gradient-like technique. An approximate Riemann solver is used to compute the numerical fluxes to second order accuracy in space. Two ways to achieve parallelism are tested, one which makes use of parallelism inherent in triangular solves and the other which employs domain decomposition techniques. The vectorization/parallelism in triangular solves is realized by the use of a recording technique called wavefront ordering. This process involves the interpretation of the triangular matrix as a directed graph and the analysis of the data dependencies. It is noted that the factorization can also be done in parallel with the wave front ordering. The performances of two ways of partitioning the domain, strips and slabs, are compared. Results on Cray YMP are reported for an inviscid transonic test case. The performances of linear algebra kernels are also reported.
NASA Technical Reports Server (NTRS)
Janus, J. Mark; Whitfield, David L.
1990-01-01
Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.
Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1996-01-01
A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in two dimensions is presented. Grids about geometrically complicated bodies are generated automatically, by the recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal cut cells are created using modified polygon-clipping algorithms. The grid is stored in a binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are shown using the more robust of these gradient reconstruction procedures, where the results computed by the Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
Simulations of a dense plasma focus on a high impedance generator
NASA Astrophysics Data System (ADS)
Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander
2017-10-01
We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.
A Generalized Fluid Formulation for Turbomachinery Computations
NASA Technical Reports Server (NTRS)
Merkle, Charles L.; Sankaran, Venkateswaran; Dorney, Daniel J.; Sondak, Douglas L.
2003-01-01
A generalized formulation of the equations of motion of an arbitrary fluid are developed for the purpose of defining a common iterative algorithm for computational procedures. The method makes use of the equations of motion in conservation form with separate pseudo-time derivatives used for defining the numerical flux for a Riemann solver and the convergence algorithm. The partial differential equations are complemented by an thermodynamic and caloric equations of state of a complexity necessary for describing the fluid. Representative solutions with a new code based on this general equation formulation are provided for three turbomachinery problems. The first uses air as a working fluid while the second uses gaseous oxygen in a regime in which real gas effects are of little importance. These nearly perfect gas computations provide a basis for comparing with existing perfect gas code computations. The third case is for the flow of liquid oxygen through a turbine where real gas effects are significant. Vortex shedding predictions with the LOX formulations reduce the discrepancy between perfect gas computations and experiment by approximately an order of magnitude, thereby verifying the real gas formulation as well as providing an effective case where its capabilities are necessary.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
NASA Astrophysics Data System (ADS)
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-11-01
Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.
NASA Astrophysics Data System (ADS)
Tripathi, B. B.; Espíndola, D.; Pinton, G. F.
2017-11-01
The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.
Some issues in the simulation of two-phase flows: The relative velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräbel, J.; Hensel, S.; Ueberholz, P.
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less
Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
NASA Astrophysics Data System (ADS)
Chiodaroli, Elisabetta; Kreml, Ondřej
2018-04-01
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation
NASA Technical Reports Server (NTRS)
Driscoll, Tobin A.; Vavasis, Stephen A.
1996-01-01
We propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT, is based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. We believe that CRDT can never fail to converge to the correct Riemann mapping, but the correctness and convergence proof depend on conjectures that we have so far not been able to prove. We demonstrate convergence with computational experiments. The Riemann mapping has applications to problems in two-dimensional potential theory and to finite-difference mesh generation. We use CRDT to produce a mapping and solve a boundary value problem on long, thin regions for which no other algorithm can solve these problems.
One-dimensional high-order compact method for solving Euler's equations
NASA Astrophysics Data System (ADS)
Mohamad, M. A. H.; Basri, S.; Basuno, B.
2012-06-01
In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.
NASA Astrophysics Data System (ADS)
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
NASA Astrophysics Data System (ADS)
Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.
2018-02-01
The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.
NASA Astrophysics Data System (ADS)
Kifonidis, K.; Müller, E.
2012-08-01
Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a Courant number of nine thousand, even complete multigrid breakdown is observed. Local Fourier analysis indicates that the degradation of the convergence rate is associated with the coarse-grid correction algorithm. An implicit scheme for the Euler equations that makes use of the present method was, nevertheless, able to outperform a standard explicit scheme on a time-dependent problem with a Courant number of order 1000. Conclusions: For steady-state problems, the described approach enables the construction of parallelizable, efficient, and robust implicit hydrodynamics solvers. The applicability of the method to time-dependent problems is presently restricted to cases with moderately high Courant numbers. This is due to an insufficient coarse-grid correction of the employed multigrid algorithm for large time steps. Further research will be required to help us to understand and overcome the observed multigrid convergence difficulties for time-dependent problems.
The Riemann-Lanczos equations in general relativity and their integrability
NASA Astrophysics Data System (ADS)
Dolan, P.; Gerber, A.
2008-06-01
The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
A Schrödinger equation for solving the Bender-Brody-Müller conjecture
NASA Astrophysics Data System (ADS)
Moxley, Frederick Ira
2017-11-01
The Hamiltonian of a quantum mechanical system has an affiliated spectrum. If this spectrum is the sequence of prime numbers, a connection between quantum mechanics and the nontrivial zeros of the Riemann zeta function can be made. In this case, the Riemann zeta function is analogous to chaotic quantum systems, as the harmonic oscillator is for integrable quantum systems. Such quantum Riemann zeta function analogies have led to the Bender-Brody-Müller (BBM) conjecture, which involves a non-Hermitian Hamiltonian that maps to the zeros of the Riemann zeta function. If the BBM Hamiltonian can be shown to be Hermitian, then the Riemann Hypothesis follows. As such, herein we perform a symmetrization procedure of the BBM Hamiltonian to obtain a unique Hermitian Hamiltonian that maps to the zeros of the analytic continuation of the Riemann zeta function, and discuss the eigenvalues of the results. Moreover, a second quantization of the resulting Schrödinger equation is performed, and a convergent solution for the nontrivial zeros of the analytic continuation of the Riemann zeta function is obtained. Finally, the Hilbert-Pólya conjecture is discussed, and it is heuristically shown that the real part of every nontrivial zero of the Riemann zeta function converges at σ = 1/2.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
The Athena Astrophysical MHD Code in Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Skinner, M. A.; Ostriker, E. C.
2011-10-01
We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.
DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C., E-mail: duffell@berkeley.edu
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide varietymore » of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.« less
Compressible, multiphase semi-implicit method with moment of fluid interface representation
Jemison, Matthew; Sussman, Mark; Arienti, Marco
2014-09-16
A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less
Spectral Element Method for the Simulation of Unsteady Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
A class of high resolution explicit and implicit shock-capturing methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1989-01-01
An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.
Central Upwind Scheme for a Compressible Two-Phase Flow Model
Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
NASA Astrophysics Data System (ADS)
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid
NASA Astrophysics Data System (ADS)
Hu, Wei; Tian, Qiang; Hu, HaiYan
2018-04-01
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
NASA Astrophysics Data System (ADS)
Heuzé, Thomas
2017-10-01
We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr
2013-02-15
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less
NASA Astrophysics Data System (ADS)
Hejranfar, Kazem; Parseh, Kaveh
2017-09-01
The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
NASA Astrophysics Data System (ADS)
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
Deformations of super Riemann surfaces
NASA Astrophysics Data System (ADS)
Ninnemann, Holger
1992-11-01
Two different approaches to (Kostant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincaré upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function.
General purpose nonlinear system solver based on Newton-Krylov method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-12-01
KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].
The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry
2015-01-01
We present an inverse scattering transform (IST) approach for the (differentiated) Ostrovsky-Vakhnenko equation This equation can also be viewed as the short wave model for the Degasperis-Procesi (sDP) equation. Our IST approach is based on an associated Riemann-Hilbert problem, which allows us to give a representation for the classical (smooth) solution, to get the principal term of its long time asymptotics, and also to describe loop soliton solutions. Dedicated to Johannes Sjöstrand with gratitude and admiration.
On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
NASA Astrophysics Data System (ADS)
Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich
2018-01-01
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.
Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system
NASA Astrophysics Data System (ADS)
Acharya, Ragini
Numerical Simulation of interior ballistic processes in gun and mortar systems is a very difficult and interesting problem. The mathematical model for the physical processes in the mortar systems consists of a system of non-linear coupled partial differential equations, which also contain non-homogeneity in form of the source terms. This work includes the development of a three-dimensional mortar interior ballistic (3D-MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of experimental data. The 120mm mortar system consists of a flash tube contained within an ignition cartridge, tail-boom, fin region, charge increments containing granular propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase products and unburned granular propellants into the mortar tube through vent-holes on its surface. In view of the complexity of interior ballistic processes in the mortar propulsion system, the overall problem was solved in a modular fashion, i.e., simulating each physical component of the mortar propulsion system separately. These modules were coupled together with appropriate initial and boundary conditions. The ignition cartridge and mortar tube contain nitrocellulose-based ball propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-phase, which were simulated by considering both phases as an interpenetrating continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition cartridge were determined from a semi-empirical technique. For the tail-boom section, a transient one-dimensional two-phase compressible flow solver based on method of characteristics was developed. The mathematical model for the interior ballistic processes in the mortar tube posed an initial value problem with discontinuous initial conditions with the characteristics of the Riemann problem due to the discontinuity of the initial conditions. Therefore, the mortar tube model was solved by using a high-resolution Godunov-type shock-capturing approach was used where the discretization is done directly on the integral formulation of the conservation laws. A linearized approximate Riemann Solver was modified in this work for the two-phase flows to compute fully non-linear wave interactions and to directly provide upwinding properties in the scheme. An entropy fix based on Harten-Heyman method was used with van Leer flux limiter for total variation diminishing. The three dimensional effects were simulated by incorporating an unsplit multi-dimensional wave propagation method, which accounted for discontinuities traveling in both normal and oblique coordinate directions. For each component, the predicted pressure-time traces showed significant pressure wave phenomena, which closely simulated the measured pressure-time traces obtained at PSU. The pressure-time traces at the breech-end of the mortar tube were obtained at Aberdeen Test Center with 0, 2, and 4 charge increments. The 3D-MIB code was also used to simulate the effect of flash tube vent-hole pattern on the pressure-wave phenomenon in the ignition cartridge. A comparison of the pressure difference between primer-end and projectile-end locations of the original and modified ignition cartridges with each other showed that the early-phase pressure-wave phenomenon can be significantly reduced with the modified pattern. The flow property distributions predicted by the 3D-MIB for 0, 2, and 4 charge increment cases as well the projectile dynamics predictions provided adequate validation of theory by experiments.
Riemann's and Helmholtz-Lie's problems of space from Weyl's relativistic perspective
NASA Astrophysics Data System (ADS)
Bernard, Julien
2018-02-01
I reconstruct Riemann's and Helmholtz-Lie's problems of space, from some perspectives that allow for a fruitful comparison with Weyl. In Part II. of his inaugural lecture, Riemann justifies that the infinitesimal metric is the square root of a quadratic form. Thanks to Finsler geometry, I clarify both the implicit and explicit hypotheses used for this justification. I explain that Riemann-Finsler's kind of method is also appropriate to deal with indefinite metrics. Nevertheless, Weyl shares with Helmholtz a strong commitment to the idea that the notion of group should be at the center of the foundations of geometry. Riemann missed this point, and that is why, according to Weyl, he dealt with the problem of space in a "too formal" way. As a consequence, to solve the problem of space, Weyl abandoned Riemann-Finsler's methods for group-theoretical ones. However, from a philosophical point of view, I show that Weyl and Helmholtz are in strong opposition. The meditation on Riemann's inaugural lecture, and its clear methodological separation between the infinitesimal and the finite parts of the problem of space, must have been crucial for Weyl, while searching for strong epistemological foundations for the group-theoretical methods, avoiding Helmholtz's unjustified transition from the finite to the infinitesimal.
The Riemann problem for longitudinal motion in an elastic-plastic bar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trangenstein, J.A.; Pember, R.B.
In this paper the analytical solution to the Riemann problem for the Antman-Szymczak model of longitudinal motion in an elastic-plastic bar is constructed. The model involves two surfaces corresponding to plastic yield in tension and compression, and exhibits the appropriate limiting behavior for total compressions. The solution of the Riemann problem involves discontinuous changes in characteristic speeds due to transitions from elastic to plastic response. Illustrations are presented, in both state-space and self-similar coordinates, of the variety of possible solutions to the Riemann problem for possible use with numerical algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertola, Marco, E-mail: Marco.Bertola@concordia.ca; Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec H3C 3J7; SISSA/ISAS, via Bonomea 265, Trieste
2015-06-15
Two-phase solutions of focusing NLS equation are classically constructed out of an appropriate Riemann surface of genus two and expressed in terms of the corresponding theta-function. We show here that in a certain limiting regime, such solutions reduce to some elementary ones called “Solitons on unstable condensate.” This degeneration turns out to be conveniently studied by means of basic tools from the theory of Riemann-Hilbert problems. In particular, no acquaintance with Riemann surfaces and theta-function is required for such analysis.
Modeling the 1958 Lituya Bay mega-tsunami with a PVM-IFCP GPU-based model
NASA Astrophysics Data System (ADS)
González-Vida, José M.; Arcas, Diego; de la Asunción, Marc; Castro, Manuel J.; Macías, Jorge; Ortega, Sergio; Sánchez-Linares, Carlos; Titov, Vasily
2013-04-01
In this work we present a numerical study, performed in collaboration with the NOAA Center for Tsunami Research (USA), that uses a GPU version of the PVM-IFCP landslide model for the simulation of the 1958 landslide generated tsunami of Lituya Bay. In this model, a layer composed of fluidized granular material is assumed to flow within an upper layer of an inviscid fluid (e. g. water). The model is discretized using a two dimensional PVM-IFCP [Fernández - Castro - Parés. On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System, J. Sci. Comput., 48 (2011):117-140] finite volume scheme implemented on GPU cards for increasing the speed-up. This model has been previously validated by using the two-dimensional physical laboratory experiments data from H. Fritz [Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary. Pure Appl. Geophys., 166 (2009) pp. 153-175]. In the present work, the first step was to reconstruct the topobathymetry of the Lituya Bay before this event ocurred, this is based on USGS geological surveys data. Then, a sensitivity analysis of some model parameters has been performed in order to determine the parameters that better fit to reality, when model results are compared against available event data, as run-up areas. In this presentation, the reconstruction of the pre-tsunami scenario will be shown, a detailed simulation of the tsunami presented and several comparisons with real data (runup, wave height, etc.) shown.
NASA Astrophysics Data System (ADS)
Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan
2016-12-01
For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function provides a dynamic process of evolution from the kinetic scale particle free transport to the hydrodynamic scale wave propagation, which provides the physics for the non-equilibrium numerical shock structure construction to the near equilibrium NS solution. As a result, with the implementation of the fifth-order WENO initial reconstruction, in the smooth region the current two-stage GKS provides an accuracy of O ((Δx) 5 ,(Δt) 4) for the Euler equations, and O ((Δx) 5 ,τ2 Δt) for the NS equations, where τ is the time between particle collisions. Many numerical tests, including difficult ones for the Navier-Stokes solvers, have been used to validate the current method. Perfect numerical solutions can be obtained from the high Reynolds number boundary layer to the hypersonic viscous heat conducting flow. Following the two-stage time-stepping framework, the third-order GKS flux function can be used as well to construct a fifth-order method with the usage of both first-order and second-order time derivatives of the flux function. The use of time-accurate flux function may have great advantages on the development of higher-order CFD methods.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei
2013-08-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.
Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei
2013-01-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200
A randomized trial of Rapid Rhino Riemann and Telfa nasal packs following endoscopic sinus surgery.
Cruise, A S; Amonoo-Kuofi, K; Srouji, I; Kanagalingam, J; Georgalas, C; Patel, N N; Badia, L; Lund, V J
2006-02-01
To compare Telfa with the Rapid Rhino Riemann nasal pack for use following endoscopic sinus surgery. Prospective, randomized, double-blind, paired trial. Tertiary otolaryngology hospital. Forty-five adult patients undergoing bilateral endoscopic sinus surgery for either chronic rhinosinusitis or nasal polyps. A visual analogue scale was used to assess discomfort caused by the presence of the packs in the nose and by their removal. The amount of bleeding was noted with the packs in place and following their removal. Crusting and adhesions were assessed 2 and 6 weeks following surgery. Both packs performed well giving good haemostasis and causing little bleeding on removal. Both packs caused only mild discomfort while in the nose. On the visual analogue scale of 0-10 cm the mean visual analogue score for Rapid Rhino Riemann pack was 1.7 and for Telfa 2.0 (P = 0.371). The Rapid Rhino Riemann pack caused significantly less pain on removal compared with the Telfa pack with a mean visual analogue score of 2.0 in comparison with 3.7 for Telfa (P = 0.001). There were less adhesions with the Rapid Rhino Riemann than Telfa pack but this was not statistically significant (P = 0.102). Both Telfa and Rapid Rhino Riemann packs can be recommended as packs that control postoperative haemorrhage, do not cause bleeding on removal and cause little discomfort while in the nose. The Rapid Rhino Riemann pack has the advantage of causing significantly less pain on removal.
Multidisciplinary design optimization for sonic boom mitigation
NASA Astrophysics Data System (ADS)
Ozcer, Isik A.
Automated, parallelized, time-efficient surface definition and grid generation and flow simulation methods are developed for sharp and accurate sonic boom signal computation in three dimensions in the near and mid-field of an aircraft using Euler/Full-Potential unstructured/structured computational fluid dynamics. The full-potential mid-field sonic boom prediction code is an accurate and efficient solver featuring automated grid generation, grid adaptation and shock fitting, and parallel processing. This program quickly marches the solution using a single nonlinear equation for large distances that cannot be covered with Euler solvers due to large memory and long computational time requirements. The solver takes into account variations in temperature and pressure with altitude. The far-field signal prediction is handled using the classical linear Thomas Waveform Parameter Method where the switching altitude from the nonlinear to linear prediction is determined by convergence of the ground signal pressure impulse value. This altitude is determined as r/L ≈ 10 from the source for a simple lifting wing, and r/L ≈ 40 for a real complex aircraft. Unstructured grid adaptation and shock fitting methodology developed for the near-field analysis employs an Hessian based anisotropic grid adaptation based on error equidistribution. A special field scalar is formulated to be used in the computation of the Hessian based error metric which enhances significantly the adaptation scheme for shocks. The entire cross-flow of a complex aircraft is resolved with high fidelity using only 500,000 grid nodes after only about 10 solution/adaptation cycles. Shock fitting is accomplished using Roe's Flux-Difference Splitting scheme which is an approximate Riemann type solver and by proper alignment of the cell faces with respect to shock surfaces. Simple to complex real aircraft geometries are handled with no user-interference required making the simulation methods suitable tools for product design. The simulation tools are used to optimize three geometries for sonic boom mitigation. The first is a simple axisymmetric shape to be used as a generic nose component, the second is a delta wing with lift, and the third is a real aircraft with nose and wing optimization. The objectives are to minimize the pressure impulse or the peak pressure in the sonic boom signal, while keeping the drag penalty under feasible limits. The design parameters for the meridian profile of the nose shape are the lengths and the half-cone angles of the linear segments that make up the profile. The design parameters for the lifting wing are the dihedral angle, angle of attack, non-linear span-wise twist and camber distribution. The test-bed aircraft is the modified F-5E aircraft built by Northrop Grumman, designated the Shaped Sonic Boom Demonstrator. This aircraft is fitted with an optimized axisymmetric nose, and the wings are optimized to demonstrate optimization for sonic boom mitigation for a real aircraft. The final results predict 42% reduction in bow shock strength, 17% reduction in peak Deltap, 22% reduction in pressure impulse, 10% reduction in foot print size, 24% reduction in inviscid drag, and no loss in lift for the optimized aircraft. Optimization is carried out using response surface methodology, and the design matrices are determined using standard DoE techniques for quadratic response modeling.
A 3D finite element ALE method using an approximate Riemann solution
Chiravalle, V. P.; Morgan, N. R.
2016-08-09
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
A 3D finite element ALE method using an approximate Riemann solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiravalle, V. P.; Morgan, N. R.
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
NASA Astrophysics Data System (ADS)
Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.
2013-09-01
A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.
On the implicit density based OpenFOAM solver for turbulent compressible flows
NASA Astrophysics Data System (ADS)
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
NASA Astrophysics Data System (ADS)
Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig
2011-03-01
Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!
Richard, Joshua; Galloway, Jack; Fensin, Michael; ...
2015-04-04
A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing
NASA Technical Reports Server (NTRS)
Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo
2009-01-01
The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.
Riemann-Hilbert technique scattering analysis of metamaterial-based asymmetric 2D open resonators
NASA Astrophysics Data System (ADS)
Kamiński, Piotr M.; Ziolkowski, Richard W.; Arslanagić, Samel
2017-12-01
The scattering properties of metamaterial-based asymmetric two-dimensional open resonators excited by an electric line source are investigated analytically. The resonators are, in general, composed of two infinite and concentric cylindrical layers covered with an infinitely thin, perfect conducting shell that has an infinite axial aperture. The line source is oriented parallel to the cylinder axis. An exact analytical solution of this problem is derived. It is based on the dual-series approach and its transformation to the equivalent Riemann-Hilbert problem. Asymmetric metamaterial-based configurations are found to lead simultaneously to large enhancements of the radiated power and to highly steerable Huygens-like directivity patterns; properties not attainable with the corresponding structurally symmetric resonators. The presented open resonator designs are thus interesting candidates for many scientific and engineering applications where enhanced directional near- and far-field responses, tailored with beam shaping and steering capabilities, are highly desired.
Some applications of the multi-dimensional fractional order for the Riemann-Liouville derivative
NASA Astrophysics Data System (ADS)
Ahmood, Wasan Ajeel; Kiliçman, Adem
2017-01-01
In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
NASA Astrophysics Data System (ADS)
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
Bernhard Riemann, a(rche)typical mathematical-physicist?
NASA Astrophysics Data System (ADS)
Elizalde, Emilio
2013-09-01
The work of Bernhard Riemann is discussed under the perspective of present day mathematics and physics, and with a prospective view towards the future, too. Against the (unfortunately rather widespread) trend---which predominantly dominated national scientific societies in Europe during the last Century---of strictly classifying the work of scientists with the aim to constrain them to separated domains of knowledge, without any possible interaction among those and often even fighting against each other (and which, no doubt, was in part responsible for the decline of European in favor of American science), it will be here argued, using Riemann as a model, archetypical example, that good research transcends any classification. Its uses and applications arguably permeate all domains, subjects and disciplines one can possibly define, to the point that it can be considered to be universally useful. After providing a very concise review of the main publications of Bernhard Riemann on physical problems, some connections between Riemann's papers and contemporary physics will be considered: (i) the uses of Riemann's work on the zeta function for devising applications to the regularization of quantum field theories in curved space-time, in particular, of quantum vacuum fluctuations; (ii) the uses of the Riemann tensor in general relativity and in recent generalizations of this theory, which aim at understanding the presently observed acceleration of the universe expansion (the dark energy issue). Finally, it will be argued that mathematical physics, which was yet not long ago a model paradigm for interdisciplinary activity---and had a very important pioneering role in this sense---is now quickly being surpassed by the extraordinarily fruitful interconnections which seem to pop up from nothing every day and simultaneously involve several disciplines, in the classical sense, including genetics, combinatorics, nanoelectronics, biochemistry, medicine, and even ps
NASA Astrophysics Data System (ADS)
Wheeler, James T.
2018-07-01
We develop the properties of Weyl geometry, beginning with a review of the conformal properties of Riemannian spacetimes. Decomposition of the Riemann curvature into trace and traceless parts allows an easy proof that the Weyl curvature tensor is the conformally invariant part of the Riemann curvature, and shows the explicit change in the Ricci and Schouten tensors required to insure conformal invariance. We include a proof of the well-known condition for the existence of a conformal transformation to a Ricci-flat spacetime. We generalize this to a derivation of the condition for the existence of a conformal transformation to a spacetime satisfying the Einstein equation with matter sources. Then, enlarging the symmetry from Poincaré to Weyl, we develop the Cartan structure equations of Weyl geometry, the form of the curvature tensor and its relationship to the Riemann curvature of the corresponding Riemannian geometry. We present a simple theory of Weyl-covariant gravity based on a curvature-linear action, and show that it is conformally equivalent to general relativity. This theory is invariant under local dilatations, but not the full conformal group.
Parallel Solver for H(div) Problems Using Hybridization and AMG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chak S.; Vassilevski, Panayot S.
2016-01-15
In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examinedmore » through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.« less
Examples of Linking Codes Within GeoFramework
NASA Astrophysics Data System (ADS)
Tan, E.; Choi, E.; Thoutireddy, P.; Aivazis, M.; Lavier, L.; Quenette, S.; Gurnis, M.
2003-12-01
Geological processes usually encompass a broad spectrum of length and time scales. Traditionally, a modeling code (solver) is written to solve a problem with specific length and time scales in mind. The utility of the solver beyond the designated purpose is usually limited. Furthermore, two distinct solvers, even if each can solve complementary parts of a new problem, are difficult to link together to solve the problem as a whole. For example, Lagrangian deformation model with visco-elastoplastic crust is used to study deformation near plate boundary. Ideally, the driving force of the deformation should be derived from underlying mantle convection, and it requires linking the Lagrangian deformation model with a Eulerian mantle convection model. As our understanding of geological processes evolves, the need of integrated modeling codes, which should reuse existing codes as much as possible, begins to surface. GeoFramework project addresses this need by developing a suite of reusable and re-combinable tools for the Earth science community. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. Under the framework, a solver is aware of the existence of other solvers and can interact with each other via exchanging information across adjacent boundary. A solver needs to conform a standard interface and provide its own implementation for exchanging boundary information. The framework also provides facilities to control the coordination between interacting solvers. We will show an example of linking two solvers within GeoFramework. CitcomS is a finite element code which solves for thermal convection within a 3D spherical shell. CitcomS can solve for problems either within a full spherical (global) domain or a restricted (regional) domain of a full sphere by using different meshers. We can embed a regional CitcomS solver within a global CitcomS solver. We not that linking instances of the same solver is conceptually equivalent to linking to different solvers. The global solver has a coarser grid and a longer stable time step than the regional solver. Therefore, a global-solver time step consists of several regional-solver time steps. The time-marching scheme is described below. First, the global solver is advanced one global-solver time step. Then, the regional solver is advanced for several regional-solver time steps until it catches up global solver. Within each regional-solver time step, the velocity field of the global solver is interpolated in time and then is imposed to the regional solver as boundary conditions. Finally, the temperature field of the regional solver is extrapolated in space and is fed back to the global. These two solvers are linked and synchronized by the time-marching scheme. An effort to embed a visco-elastoplastic representation of the crust within viscous mantle flow is underway.
Local turbulence simulations for the multiphase ISM
NASA Astrophysics Data System (ADS)
Kissmann, R.; Kleimann, J.; Fichtner, H.; Grauer, R.
2008-12-01
In this paper, we show results of numerical simulations for the turbulence in the interstellar medium (ISM). These results were obtained using a Riemann solver-free numerical scheme for high-Mach number hyperbolic equations. Here, we especially concentrate on the physical properties of the ISM. That is, we do not present turbulence simulations trimmed to be applicable to the ISM. The simulations are rather based on physical estimates for the relevant parameters of the interstellar gas. Applying our code to simulate the turbulent plasma motion within a typical interstellar molecular cloud, we investigate the influence of different equations of state (isothermal and adiabatic) on the statistical properties of the resulting turbulent structures. We find slightly different density power spectra and dispersion maps, while both cases yield qualitatively similar dissipative structures, and exhibit a departure from the classical Kolmogorov case towards a scaling described by the She-Leveque model. Solving the full energy equation with realistic heating/cooling terms appropriate for the diffuse interstellar gas (DIG), we are able to reproduce a realistic two-phase distribution of cold and warm plasma. When extracting maps of polarized intensity from our simulation data, we find encouraging similarity to actual observations. Finally, we compare the actual magnetic field strength of our simulations to its value inferred from the rotation measure. We find these to be systematically different by a factor of about 1.15, thus highlighting the often-underestimated influence of varying line-of-sight particle densities on the magnetic field strength derived from observed rotation measures.
Magnus: A New Resistive MHD Code with Heat Flow Terms
NASA Astrophysics Data System (ADS)
Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.
2017-07-01
We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.
Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission
NASA Astrophysics Data System (ADS)
Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.
2018-01-01
Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.
Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui
2018-06-01
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Shao, Zhiqiang
2018-04-01
The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.
Helmholtz, Riemann, and the Sirens: Sound, Color, and the "Problem of Space"
NASA Astrophysics Data System (ADS)
Pesic, Peter
2013-09-01
Emerging from music and the visual arts, questions about hearing and seeing deeply affected Hermann Helmholtz's and Bernhard Riemann's contributions to what became called the "problem of space [ Raumproblem]," which in turn influenced Albert Einstein's approach to general relativity. Helmholtz's physiological investigations measured the time dependence of nerve conduction and mapped the three-dimensional manifold of color sensation. His concurrent studies on hearing illuminated musical evidence through experiments with mechanical sirens that connect audible with visible phenomena, especially how the concept of frequency unifies motion, velocity, and pitch. Riemann's critique of Helmholtz's work on hearing led Helmholtz to respond and study Riemann's then-unpublished lecture on the foundations of geometry. During 1862-1870, Helmholtz applied his findings on the manifolds of hearing and seeing to the Raumproblem by supporting the quadratic distance relation Riemann had assumed as his fundamental hypothesis about geometrical space. Helmholtz also drew a "close analogy … in all essential relations between the musical scale and space." These intersecting studies of hearing and seeing thus led to reconsideration and generalization of the very concept of "space," which Einstein shaped into the general manifold of relativistic space-time.
A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU
NASA Astrophysics Data System (ADS)
Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha
2018-03-01
Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.
Computing nonhydrostatic shallow-water flow over steep terrain
Denlinger, R.P.; O'Connell, D. R. H.
2008-01-01
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.
NASA Astrophysics Data System (ADS)
Venkatachari, Balaji Shankar; Chang, Chau-Lyan
2016-11-01
The focus of this study is scale-resolving simulations of the canonical normal shock- isotropic turbulence interaction using unstructured tetrahedral meshes and the space-time conservation element solution element (CESE) method. Despite decades of development in unstructured mesh methods and its potential benefits of ease of mesh generation around complex geometries and mesh adaptation, direct numerical or large-eddy simulations of turbulent flows are predominantly carried out using structured hexahedral meshes. This is due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for unstructured meshes that can resolve multiple physical scales and flow discontinuities simultaneously. The CESE method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to accurately simulate turbulent flows using tetrahedral meshes. As part of the study, various regimes of the shock-turbulence interaction (wrinkled and broken shock regimes) will be investigated along with a study on how adaptive refinement of tetrahedral meshes benefits this problem. The research funding for this paper has been provided by Revolutionary Computational Aerosciences (RCA) subproject under the NASA Transformative Aeronautics Concepts Program (TACP).
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
Simulation of Reacting Flow with a Discontinuous Spectral Element Method
NASA Astrophysics Data System (ADS)
Ghiasi, Zia; Mashayek, Farzad; Komperda, Jonathan
2013-11-01
While using high order methods is desirable in order to accurately capture the small scale mixing effects in reacting flows, the challenge is to develop and implement such methods for complex geometries. In this work, a high-order Discontinuous Spectral Element Method (DSEM) code, which solves for the Navier-Stokes equations, has been modified by adding the appropriate components to solve for scalar transport equations in order to simulate the chemical reaction. Dealing with discontinuous solution at element interfaces is a challenge that is met by patching the fluxes at mortars thus making them continuous on interfaces. The patching is performed using the Lax-Fredrichs numerical flux for scalars, whereas a generalized Riemann solver is used for the Navier-Stokes equations. Direct numerical simulation is conducted in a temporally developing mixing layer to validate the method for a single step reaction (F + rO --> [ 1 + r ] P). Next, the method is implemented to simulate a subsonic reacting flow in a slanted cavity combustor with gaseous fuel injectors to demonstrate the capability of the method to handle complex geometries. The results will be used for physical understanding of mixing and reaction in this type of combustors.
Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state
NASA Astrophysics Data System (ADS)
Lee, Bok Jik; Toro, Eleuterio F.; Castro, Cristóbal E.; Nikiforakis, Nikolaos
2013-08-01
For the numerical simulation of detonation of condensed phase explosives, a complex equation of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Cochran-Chan (C-C) EOS, are widely used. However, when a conservative scheme is used for solving the Euler equations with such equations of state, a spurious solution across the contact discontinuity, a well known phenomenon in multi-fluid systems, arises even for single materials. In this work, we develop a generalised Osher-type scheme in an adaptive primitive-conservative framework to overcome the aforementioned difficulties. Resulting numerical solutions are compared with the exact solutions and with the numerical solutions from the Godunov method in conjunction with the exact Riemann solver for the Euler equations with Mie-Grüneisen form of equations of state, such as the JWL and the C-C equations of state. The adaptive scheme is extended to second order and its empirical convergence rates are presented, verifying second order accuracy for smooth solutions. Through a suite of several tests problems in one and two space dimensions we illustrate the failure of conservative schemes and the capability of the methods of this paper to overcome the difficulties.
An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium
NASA Technical Reports Server (NTRS)
Eppard, W. M.; Grossman, B.
1993-01-01
We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
An interface capturing scheme for modeling atomization in compressible flows
NASA Astrophysics Data System (ADS)
Garrick, Daniel P.; Hagen, Wyatt A.; Regele, Jonathan D.
2017-09-01
The study of atomization in supersonic flow is critical to ensuring reliable ignition of scramjet combustors under startup conditions. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in compressible flow requires robust numerical methods that can handle discontinuities caused by both shocks and material interfaces with high density ratios. In this work, a shock and interface capturing scheme is developed that uses the Harten-Lax-van Leer-Contact (HLLC) Riemann solver while a Tangent of Hyperbola for INterface Capturing (THINC) interface reconstruction scheme retains the fluid immiscibility condition in the volume fraction and phasic densities in the context of the five equation model. The approach includes the effects of compressibility, surface tension, and molecular viscosity. One and two-dimensional benchmark problems demonstrate the desirable interface sharpening and conservation properties of the approach. Simulations of secondary atomization of a cylindrical water column after its interaction with a shockwave show good qualitative agreement with experimentally observed behavior. Three-dimensional examples of primary atomization of a liquid jet in a Mach 2 crossflow demonstrate the robustness of the method.
Universal moduli spaces of Riemann surfaces
NASA Astrophysics Data System (ADS)
Ji, Lizhen; Jost, Jürgen
2017-04-01
We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is a connected complex subspace of an infinite dimensional complex space, and is stratified according to genus such that each stratum has a compact closure, and it carries a metric and a measure that induce a Riemannian metric and a finite volume measure on each stratum. Applications to the Plateau-Douglas problem for minimal surfaces of varying genus and to the partition function of Bosonic string theory are outlined. The construction starts with a universal moduli space of Abelian varieties. This space carries a structure of an infinite dimensional locally symmetric space which is of interest in its own right. The key to our construction of the universal moduli space then is the Torelli map that assigns to every Riemann surface its Jacobian and its extension to the Satake-Baily-Borel compactifications.
The Riemann-Hilbert problem for nonsymmetric systems
NASA Astrophysics Data System (ADS)
Greenberg, W.; Zweifel, P. F.; Paveri-Fontana, S.
1991-12-01
A comparison of the Riemann-Hilbert problem and the Wiener-Hopf factorization problem arising in the solution of half-space singular integral equations is presented. Emphasis is on the factorization of functions lacking the reflection symmetry usual in transport theory.
A Newton-Krylov solver for fast spin-up of online ocean tracers
NASA Astrophysics Data System (ADS)
Lindsay, Keith
2017-01-01
We present a Newton-Krylov based solver to efficiently spin up tracers in an online ocean model. We demonstrate that the solver converges, that tracer simulations initialized with the solution from the solver have small drift, and that the solver takes orders of magnitude less computational time than the brute force spin-up approach. To demonstrate the application of the solver, we use it to efficiently spin up the tracer ideal age with respect to the circulation from different time intervals in a long physics run. We then evaluate how the spun-up ideal age tracer depends on the duration of the physics run, i.e., on how equilibrated the circulation is.
Wilson, John D.; Naff, Richard L.
2004-01-01
A geometric multigrid solver (GMG), based in the preconditioned conjugate gradient algorithm, has been developed for solving systems of equations resulting from applying the cell-centered finite difference algorithm to flow in porous media. This solver has been adapted to the U.S. Geological Survey ground-water flow model MODFLOW-2000. The documentation herein is a description of the solver and the adaptation to MODFLOW-2000.
Preconditioned conjugate-gradient methods for low-speed flow calculations
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Preconditioned Conjugate Gradient methods for low speed flow calculations
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
NASA Astrophysics Data System (ADS)
Teng, Y. C.; Kelly, D.; Li, Y.; Zhang, K.
2016-02-01
A new state-of-the-art model (the Fully Adaptive Storm Tide model, FAST) for the prediction of storm surges over complex landscapes is presented. The FAST model is based on the conservation form of the full non-linear depth-averaged long wave equations. The equations are solved via an explicit finite volume scheme with interfacial fluxes being computed via Osher's approximate Riemann solver. Geometric source terms are treated in a high order manner that is well-balanced. The numerical solution technique has been chosen to enable the accurate simulation of wetting and drying over complex topography. Another important feature of the FAST model is the use of a simple underlying Cartesian mesh with tree-based static and dynamic adaptive mesh refinement (AMR). This permits the simulation of unsteady flows over varying landscapes (including localized features such as canals) by locally increasing (or relaxing) grid resolution in a dynamic fashion. The use of (dynamic) AMR lowers the computational cost of the storm surge model whilst retaining high resolution (and thus accuracy) where and when it is required. In additional, the FAST model has been designed to execute in a parallel computational environment with localized time-stepping. The FAST model has already been carefully verified against a series of benchmark type problems (Kelly et al. 2015). Here we present two simulations of the storm tide due to Hurricane Ike(2008) and Hurricane Sandy (2012). The model incorporates high resolution LIDAR data for the major portion of the New York City. Results compare favorably with water elevations measured by NOAA tidal gauges, by mobile sensors deployed and high water marks collected by the USGS.
A new class of accurate, mesh-free hydrodynamic simulation methods
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2015-06-01
We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
A geometric construction of the Riemann scalar curvature in Regge calculus
NASA Astrophysics Data System (ADS)
McDonald, Jonathan R.; Miller, Warner A.
2008-10-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
Implementation of density-based solver for all speeds in the framework of OpenFOAM
NASA Astrophysics Data System (ADS)
Shen, Chun; Sun, Fengxian; Xia, Xinlin
2014-10-01
In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.
Riemann correlator in de Sitter including loop corrections from conformal fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröb, Markus B.; Verdaguer, Enric; Roura, Albert, E-mail: mfroeb@ffn.ub.edu, E-mail: albert.roura@uni-ulm.de, E-mail: enric.verdaguer@ub.edu
2014-07-01
The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicitmore » result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.« less
Colliding holes in Riemann surfaces and quantum cluster algebras
NASA Astrophysics Data System (ADS)
Chekhov, Leonid; Mazzocco, Marta
2018-01-01
In this paper, we describe a new type of surgery for non-compact Riemann surfaces that naturally appears when colliding two holes or two sides of the same hole in an orientable Riemann surface with boundary (and possibly orbifold points). As a result of this surgery, bordered cusps appear on the boundary components of the Riemann surface. In Poincaré uniformization, these bordered cusps correspond to ideal triangles in the fundamental domain. We introduce the notion of bordered cusped Teichmüller space and endow it with a Poisson structure, quantization of which is achieved with a canonical quantum ordering. We give a complete combinatorial description of the bordered cusped Teichmüller space by introducing the notion of maximal cusped lamination, a lamination consisting of geodesic arcs between bordered cusps and closed geodesics homotopic to the boundaries such that it triangulates the Riemann surface. We show that each bordered cusp carries a natural decoration, i.e. a choice of a horocycle, so that the lengths of the arcs in the maximal cusped lamination are defined as λ-lengths in Thurston-Penner terminology. We compute the Goldman bracket explicitly in terms of these λ-lengths and show that the groupoid of flip morphisms acts as a generalized cluster algebra mutation. From the physical point of view, our construction provides an explicit coordinatization of moduli spaces of open/closed string worldsheets and their quantization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petra, C.; Gavrea, B.; Anitescu, M.
2009-01-01
The present work aims at comparing the performance of several quadratic programming (QP) solvers for simulating large-scale frictional rigid-body systems. Traditional time-stepping schemes for simulation of multibody systems are formulated as linear complementarity problems (LCPs) with copositive matrices. Such LCPs are generally solved by means of Lemke-type algorithms and solvers such as the PATH solver proved to be robust. However, for large systems, the PATH solver or any other pivotal algorithm becomes unpractical from a computational point of view. The convex relaxation proposed by one of the authors allows the formulation of the integration step as a QPD, for whichmore » a wide variety of state-of-the-art solvers are available. In what follows we report the results obtained solving that subproblem when using the QP solvers MOSEK, OOQP, TRON, and BLMVM. OOQP is presented with both the symmetric indefinite solver MA27 and our Cholesky reformulation using the CHOLMOD package. We investigate computational performance and address the correctness of the results from a modeling point of view. We conclude that the OOQP solver, particularly with the CHOLMOD linear algebra solver, has predictable performance and memory use patterns and is far more competitive for these problems than are the other solvers.« less
Unfolding the Second Riemann sheet with Pade Approximants: hunting resonance poles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masjuan, Pere; Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada
2011-05-23
Based on Pade Theory, a new procedure for extracting the pole mass and width of resonances is proposed. The method is systematic and provides a model-independent treatment for the prediction and the errors of the approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.
2015-02-01
Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.
A Mean-Based Approach for Teaching the Concept of Integration
ERIC Educational Resources Information Center
Zazkis, Dov; Rasmussen, Chris; Shen, Samuel P.
2014-01-01
The Riemann sum definition of integration is ubiquitous in college calculus courses. This, however, is not the only possible way to define an integral. Here, we present an alternative mean-based definition of integration. We conjecture that this definition is more accessible to students. In support of this proposition we first present a…
The Invar tensor package: Differential invariants of Riemann
NASA Astrophysics Data System (ADS)
Martín-García, J. M.; Yllanes, D.; Portugal, R.
2008-10-01
The long standing problem of the relations among the scalar invariants of the Riemann tensor is computationally solved for all 6ṡ10 objects with up to 12 derivatives of the metric. This covers cases ranging from products of up to 6 undifferentiated Riemann tensors to cases with up to 10 covariant derivatives of a single Riemann. We extend our computer algebra system Invar to produce within seconds a canonical form for any of those objects in terms of a basis. The process is as follows: (1) an invariant is converted in real time into a canonical form with respect to the permutation symmetries of the Riemann tensor; (2) Invar reads a database of more than 6ṡ10 relations and applies those coming from the cyclic symmetry of the Riemann tensor; (3) then applies the relations coming from the Bianchi identity, (4) the relations coming from commutations of covariant derivatives, (5) the dimensionally-dependent identities for dimension 4, and finally (6) simplifies invariants that can be expressed as product of dual invariants. Invar runs on top of the tensor computer algebra systems xTensor (for Mathematica) and Canon (for Maple). Program summaryProgram title:Invar Tensor Package v2.0 Catalogue identifier:ADZK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZK_v2_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3 243 249 No. of bytes in distributed program, including test data, etc.:939 Distribution format:tar.gz Programming language:Mathematica and Maple Computer:Any computer running Mathematica versions 5.0 to 6.0 or Maple versions 9 and 11 Operating system:Linux, Unix, Windows XP, MacOS RAM:100 Mb Word size:64 or 32 bits Supplementary material:The new database of relations is much larger than that for the previous version and therefore has not been included in the distribution. To obtain the Mathematica and Maple database files click on this link. Classification:1.5, 5 Does the new version supersede the previous version?:Yes. The previous version (1.0) only handled algebraic invariants. The current version (2.0) has been extended to cover differential invariants as well. Nature of problem:Manipulation and simplification of scalar polynomial expressions formed from the Riemann tensor and its covariant derivatives. Solution method:Algorithms of computational group theory to simplify expressions with tensors that obey permutation symmetries. Tables of syzygies of the scalar invariants of the Riemann tensor. Reasons for new version:With this new version, the user can manipulate differential invariants of the Riemann tensor. Differential invariants are required in many physical problems in classical and quantum gravity. Summary of revisions:The database of syzygies has been expanded by a factor of 30. New commands were added in order to deal with the enlarged database and to manipulate the covariant derivative. Restrictions:The present version only handles scalars, and not expressions with free indices. Additional comments:The distribution file for this program is over 53 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time:One second to fully reduce any monomial of the Riemann tensor up to degree 7 or order 10 in terms of independent invariants. The Mathematica notebook included in the distribution takes approximately 5 minutes to run.
Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry
NASA Astrophysics Data System (ADS)
Song, Peng; Zhou, Xianli; Song, Fei; Zhao, Taifei; Li, Yunhong
2017-12-01
The non-line-of-sight ultraviolet (UV) communication relies on the scattering common volume, however, it is difficult to carry out the triple integral operation of the scattering common volume. Based on UV single-scattering propagation theory and the spherical coordinate, we propose to use the Riemann sum method (RSM) to analyze the link path loss (PL) of UV communication system in noncoplanar geometries, and carried out related simulations. In addition, an outdoor testbed using UV light-emitting diode was set up to provide support for the validity of the RSM. When the elevation angles of the transmitter or the receiver are small, using RSM, the channel PL and temporal response of UV communication systems can be effectively and efficiently calculated. It is useful in UV embedded system design.
Kopyt, Paweł; Celuch, Małgorzata
2007-01-01
A practical implementation of a hybrid simulation system capable of modeling coupled electromagnetic-thermodynamic problems typical in microwave heating is described. The paper presents two approaches to modeling such problems. Both are based on an FDTD-based commercial electromagnetic solver coupled to an external thermodynamic analysis tool required for calculations of heat diffusion. The first approach utilizes a simple FDTD-based thermal solver while in the second it is replaced by a universal commercial CFD solver. The accuracy of the two modeling systems is verified against the original experimental data as well as the measurement results available in literature.
EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual
NASA Technical Reports Server (NTRS)
Raju, M. S.
1998-01-01
EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.
A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Zhuang, Yu
1997-01-01
In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.
On Lovelock analogs of the Riemann tensor
NASA Astrophysics Data System (ADS)
Camanho, Xián O.; Dadhich, Naresh
2016-03-01
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.
NASA Astrophysics Data System (ADS)
Its, Alexander; Its, Elizabeth
2018-04-01
We revisit the Helmholtz equation in a quarter-plane in the framework of the Riemann-Hilbert approach to linear boundary value problems suggested in late 1990s by A. Fokas. We show the role of the Sommerfeld radiation condition in Fokas' scheme.
Numerical Integration with GeoGebra in High School
ERIC Educational Resources Information Center
Herceg, Dorde; Herceg, Dragoslav
2010-01-01
The concept of definite integral is almost always introduced as the Riemann integral, which is defined in terms of the Riemann sum, and its geometric interpretation. This definition is hard to understand for high school students. With the aid of mathematical software for visualisation and computation of approximate integrals, the notion of…
Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group
NASA Astrophysics Data System (ADS)
Matone, Marco; Pasti, Paolo
2015-06-01
The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl2(ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite. Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.
Colloquium: Physics of the Riemann hypothesis
NASA Astrophysics Data System (ADS)
Schumayer, Dániel; Hutchinson, David A. W.
2011-04-01
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here a particular number-theoretical function is chosen, the Riemann zeta function, and its influence on the realm of physics is examined and also how physics may be suggestive for the resolution of one of mathematics’ most famous unconfirmed conjectures, the Riemann hypothesis. Does physics hold an essential key to the solution for this more than 100-year-old problem? In this work numerous models from different branches of physics are examined, from classical mechanics to statistical physics, where this function plays an integral role. This function is also shown to be related to quantum chaos and how its pole structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations light is shed on how the Riemann hypothesis can highlight physics. Naturally, the aim is not to be comprehensive, but rather focusing on the major models and aim to give an informed starting point for the interested reader.
An Implicit Solver on A Parallel Block-Structured Adaptive Mesh Grid for FLASH
NASA Astrophysics Data System (ADS)
Lee, D.; Gopal, S.; Mohapatra, P.
2012-07-01
We introduce a fully implicit solver for FLASH based on a Jacobian-Free Newton-Krylov (JFNK) approach with an appropriate preconditioner. The main goal of developing this JFNK-type implicit solver is to provide efficient high-order numerical algorithms and methodology for simulating stiff systems of differential equations on large-scale parallel computer architectures. A large number of natural problems in nonlinear physics involve a wide range of spatial and time scales of interest. A system that encompasses such a wide magnitude of scales is described as "stiff." A stiff system can arise in many different fields of physics, including fluid dynamics/aerodynamics, laboratory/space plasma physics, low Mach number flows, reactive flows, radiation hydrodynamics, and geophysical flows. One of the big challenges in solving such a stiff system using current-day computational resources lies in resolving time and length scales varying by several orders of magnitude. We introduce FLASH's preliminary implementation of a time-accurate JFNK-based implicit solver in the framework of FLASH's unsplit hydro solver.
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...
2014-10-28
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less
Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.
Nowakowski, A F; Ballil, A; Nicolleau, F C G A
2015-08-01
The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.
NASA Astrophysics Data System (ADS)
Zhao, Jiaquan; Li, Renfu; Wu, Haiyan
2018-02-01
In order to characterize the flow structure and the effect of acoustic waves caused by the shock-vortex interaction on the performance of the shock focusing, the incident plane shock wave with a single disturbance vortex focusing in a parabolic cavity is simulated systematically through solving the two-dimensional, unsteady Saint-Venant equations with the two order HLL scheme of Riemann solvers. The simulations show that the dilatation effect to be dominant in the net vorticity generation, while the baroclinic effect is dominate in the absence of initial vortex disturbance. Moreover, the simulations show that the time evolution of maximum focusing pressure with initial vortex is more complicate than that without initial vortex, which has a lot of relevance with the presence of quadrupolar acoustic wave structure induced by shock-vortex interaction and its propagation in the cavity. Among shock and other disturbance parameters, the shock Mach number, vortex Mach number and the shape of parabolic reflector proved to play a critical role in the focusing of shock waves and the strength of viscous dissipation, which in turn govern the evolution of maximum focusing pressure due to the gas dynamic focus, the change in dissipation rate and the coincidence of motion disturbance vortex with aerodynamic focus point.
Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units
NASA Astrophysics Data System (ADS)
Corral, Roque; Gisbert, Fernando; Pueblas, Jesus
2017-02-01
The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.
Placati, Silvio; Guermandi, Marco; Samore, Andrea; Scarselli, Eleonora Franchi; Guerrieri, Roberto
2016-09-01
Diffuse optical tomography is an imaging technique, based on evaluation of how light propagates within the human head to obtain the functional information about the brain. Precision in reconstructing such an optical properties map is highly affected by the accuracy of the light propagation model implemented, which needs to take into account the presence of clear and scattering tissues. We present a numerical solver based on the radiosity-diffusion model, integrating the anatomical information provided by a structural MRI. The solver is designed to run on parallel heterogeneous platforms based on multiple GPUs and CPUs. We demonstrate how the solver provides a 7 times speed-up over an isotropic-scattered parallel Monte Carlo engine based on a radiative transport equation for a domain composed of 2 million voxels, along with a significant improvement in accuracy. The speed-up greatly increases for larger domains, allowing us to compute the light distribution of a full human head ( ≈ 3 million voxels) in 116 s for the platform used.
AdS5 solutions from M5-branes on Riemann surface and D6-branes sources
Bah, Ibrahima
2015-09-24
Here, we describe the gravity duals of four-dimensional N = 1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators (J +, J –), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N = 1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We usemore » this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural (p, q) label associated to the circle dual to the killing vector pJ + + qJ – which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N = 2 supersymmetry. When p = –q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Sang, L.; Moriarty, P. J.
This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.
Hou, Jie; Dong, Jianji; Zhang, Xinliang
2017-06-15
Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.
Global magnetosphere simulations using constrained-transport Hall-MHD with CWENO reconstruction
NASA Astrophysics Data System (ADS)
Lin, L.; Germaschewski, K.; Maynard, K. M.; Abbott, S.; Bhattacharjee, A.; Raeder, J.
2013-12-01
We present a new CWENO (Centrally-Weighted Essentially Non-Oscillatory) reconstruction based MHD solver for the OpenGGCM global magnetosphere code. The solver was built using libMRC, a library for creating efficient parallel PDE solvers on structured grids. The use of libMRC gives us access to its core functionality of providing an automated code generation framework which takes a user provided PDE right hand side in symbolic form to generate an efficient, computer architecture specific, parallel code. libMRC also supports block-structured adaptive mesh refinement and implicit-time stepping through integration with the PETSc library. We validate the new CWENO Hall-MHD solver against existing solvers both in standard test problems as well as in global magnetosphere simulations.
Acceleration of FDTD mode solver by high-performance computing techniques.
Han, Lin; Xi, Yanping; Huang, Wei-Ping
2010-06-21
A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.
NASA Astrophysics Data System (ADS)
Khayyer, Abbas; Gotoh, Hitoshi; Falahaty, Hosein; Shimizu, Yuma
2018-02-01
Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model (moving particle semi-implicit (MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model (MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model (Enhanced MPS), thus, the developed coupled solvers for fluid structure interaction (FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics (SPH)-based FSI solvers, being developed by the authors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH (ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate, high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing
ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
Computational strategies for the Riemann zeta function
NASA Astrophysics Data System (ADS)
Borwein, Jonathan M.; Bradley, David M.; Crandall, Richard E.
2000-09-01
We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on practical computational issues, such issues depending on the domain of the argument, the desired speed of computation, and the incidence of what we call "value recycling".
The Riemann Zeta Zeros from an Asymptotic Perspective
ERIC Educational Resources Information Center
Grant, Ken
2015-01-01
In 1859, on the occasion of being elected as a corresponding member of the Berlin Academy, Bernard Riemann (1826-66), a student of Carl Friedrich Gauss (1777-1855), presenteda lecture in which he presented a mathematics formula, derived from complex integration, which gave a precise count of the primes on the understanding that one of the terms in…
On small values of the Riemann zeta-function at Gram points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, M A
In this paper, we prove the existence of a large set of Gram points t{sub n} such that the values ζ(0.5+it{sub n}) are 'anomalously' close to zero. A lower bound for the negative 'discrete' moment of the Riemann zeta-function on the critical line is also given. Bibliography: 13 titles.
Study Paths, Riemann Surfaces, and Strebel Differentials
ERIC Educational Resources Information Center
Buser, Peter; Semmler, Klaus-Dieter
2017-01-01
These pages aim to explain and interpret why the late Mika Seppälä, a conformal geometer, proposed to model student study behaviour using concepts from conformal geometry, such as Riemann surfaces and Strebel differentials. Over many years Mika Seppälä taught online calculus courses to students at Florida State University in the United States, as…
Optical Random Riemann Waves in Integrable Turbulence
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Gustave, François; Suret, Pierre; El, Gennady
2017-06-01
We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schrödinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonlinearity strongly dominates linear dispersive effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be divided into two distinct stages, the initial, prebreaking stage being described by a system of interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent the observable quantities that provide new insight into statistical features of the initial stage of the IT development by exhibiting stationary probability density functions.
Averages of ratios of the Riemann zeta-function and correlations of divisor sums
NASA Astrophysics Data System (ADS)
Conrey, Brian; Keating, Jonathan P.
2017-10-01
Nonlinearity has published articles containing a significant number-theoretic component since the journal was first established. We examine one thread, concerning the statistics of the zeros of the Riemann zeta function. We extend this by establishing a connection between the ratios conjecture for the Riemann zeta-function and a conjecture concerning correlations of convolutions of Möbius and divisor functions. Specifically, we prove that the ratios conjecture and an arithmetic correlations conjecture imply the same result. This provides new support for the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe. Our main theorem generalises a recent calculation pertaining to the special case of two-over-two ratios.
A Riemann-Hilbert formulation for the finite temperature Hubbard model
NASA Astrophysics Data System (ADS)
Cavaglià, Andrea; Cornagliotto, Martina; Mattelliano, Massimo; Tateo, Roberto
2015-06-01
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.
Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique
NASA Astrophysics Data System (ADS)
Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi
2013-09-01
According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.
An iterative solver for the 3D Helmholtz equation
NASA Astrophysics Data System (ADS)
Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir
2017-09-01
We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.
Tezaur, I. K.; Perego, M.; Salinger, A. G.; ...
2015-04-27
This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Garain, Sudip; Taflove, Allen; Montecinos, Gino
2018-02-01
The Finite Difference Time Domain (FDTD) scheme has served the computational electrodynamics community very well and part of its success stems from its ability to satisfy the constraints in Maxwell's equations. Even so, in the previous paper of this series we were able to present a second order accurate Godunov scheme for computational electrodynamics (CED) which satisfied all the same constraints and simultaneously retained all the traditional advantages of Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for CED in material media to better than second order of accuracy. From the FDTD method, we retain a somewhat modified staggering strategy of primal variables which enables a very beneficial constraint-preservation for the electric displacement and magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-dimensional upwinding from Godunov schemes has to be significantly modified to use the multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we show how they can be used within the context of a higher order scheme for CED. We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes can be adapted to CED even in the presence of stiff source terms brought on by large conductivities as well as strong spatial variations in permittivity and permeability. We also formulate very efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the material properties within a zone. Moreover, we present ADER schemes that are applicable to all hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation offers a treatment of stiff source terms that is much more efficient than previous ADER schemes. The computer algebra system scripts for generating ADER time update schemes for any general PDE with stiff source terms are also given in the electronic supplements to this paper. Second, third and fourth order accurate schemes for numerically solving Maxwell's equations in material media are presented in this paper. Several stringent tests are also presented to show that the method works and meets its design goals even when material permittivity and permeability vary by an order of magnitude over just a few zones. Furthermore, since the method is unconditionally stable and sub-cell-resolving in the presence of stiff source terms (i.e. for problems involving giant variations in conductivity over just a few zones), it can accurately handle such problems without any reduction in timestep. We also show that increasing the order of accuracy offers distinct advantages for resolving sub-cell variations in material properties. Most importantly, we show that when the accuracy requirements are stringent the higher order schemes offer the shortest time to solution. This makes a compelling case for the use of higher order, sub-cell resolving schemes in CED.
PBEQ-Solver for online visualization of electrostatic potential of biomolecules.
Jo, Sunhwan; Vargyas, Miklos; Vasko-Szedlar, Judit; Roux, Benoît; Im, Wonpil
2008-07-01
PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calculations can be performed in both aqueous solvent and membrane environments (with a cylindrical pore in the case of membrane). PBEQ-Solver uses the PBEQ module in the biomolecular simulation program CHARMM to solve the finite-difference PB equation of molecules specified by users. Users can interactively inspect the calculated electrostatic potential on the solvent-accessible surface as well as iso-electrostatic potential contours using a novel online visualization tool based on MarvinSpace molecular visualization software, a Java applet integrated within CHARMM-GUI (http://www.charmm-gui.org). To reduce the computational time on the server, and to increase the efficiency in visualization, all the PB calculations are performed with coarse grid spacing (1.5 A before and 1 A after focusing). PBEQ-Solver suggests various physical parameters for PB calculations and users can modify them if necessary. PBEQ-Solver is available at http://www.charmm-gui.org/input/pbeqsolver.
Application of PDSLin to the magnetic reconnection problem
NASA Astrophysics Data System (ADS)
Yuan, Xuefei; Li, Xiaoye S.; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Drake, J. F.; Swisdak, M.
2017-12-01
How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.
On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow
NASA Astrophysics Data System (ADS)
Jenssen, Helge Kristian
2017-12-01
Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ )=a^2ρ ^γ with γ >1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t( r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x( r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ >3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/ t.
Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Brody, Dorje C.
2018-04-01
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
The Great Gorilla Jump: An Introduction to Riemann Sums and Definite Integrals
ERIC Educational Resources Information Center
Sealey, Vicki; Engelke, Nicole
2012-01-01
The great gorilla jump is an activity designed to allow calculus students to construct an understanding of the structure of the Riemann sum and definite integral. The activity uses the ideas of position, velocity, and time to allow students to explore familiar ideas in a new way. Our research has shown that introducing the definite integral as…
A preconditioned formulation of the Cauchy-Riemann equations
NASA Technical Reports Server (NTRS)
Phillips, T. N.
1983-01-01
A preconditioning of the Cauchy-Riemann equations which results in a second-order system is described. This system is shown to have a unique solution if the boundary conditions are chosen carefully. This choice of boundary condition enables the solution of the first-order system to be retrieved. A numerical solution of the preconditioned equations is obtained by the multigrid method.
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
Rational Solutions of the Painlevé-II Equation Revisited
NASA Astrophysics Data System (ADS)
Miller, Peter D.; Sheng, Yue
2017-08-01
The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method.
Baker-Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials
NASA Astrophysics Data System (ADS)
Kalla, C.; Korotkin, D.
2014-11-01
In this paper we study the Baker-Akhiezer spinor kernel on moduli spaces of meromorphic differentials on Riemann surfaces. We introduce the Baker-Akhiezer tau-function which is related to both the Bergman tau-function (which was studied before in the context of Hurwitz spaces and spaces of holomorphic Abelian and quadratic differentials) and the KP tau-function on such spaces. In particular, we derive variational formulas of Rauch-Ahlfors type on moduli spaces of meromorphic differentials with prescribed singularities: we use the system of homological coordinates, consisting of absolute and relative periods of the meromorphic differential, and show how to vary the fundamental objects associated to a Riemann surface (the matrix of b-periods, normalized Abelian differentials, the Bergman bidifferential, the Szegö kernel and the Baker-Akhiezer spinor kernel) with respect to these coordinates. The variational formulas encode dependence both on the moduli of the Riemann surface and on the choice of meromorphic differential (variation of the meromorphic differential while keeping the Riemann surface fixed corresponds to flows of KP type). Analyzing the global properties of the Bergman and Baker-Akhiezer tau-functions, we establish relationships between various divisor classes on the moduli spaces.
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2016-01-01
In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented. PMID:27087702
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2015-08-15
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.
Performance Models for the Spike Banded Linear System Solver
Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; ...
2011-01-01
With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multiclusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International Symposium on Parallel and Distributed Computing.« less
NASA Astrophysics Data System (ADS)
Frickenhaus, Stephan; Hiller, Wolfgang; Best, Meike
The portable software FoSSI is introduced that—in combination with additional free solver software packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems arising in finite element model codes. FoSSI is intended to support rapid model code development, completely hiding the complexity of the underlying solver packages. In particular, the model developer need not be an expert in parallelization and is yet free to switch between different solver packages by simple modifications of the interface call. FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence, FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar features for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both formulated in finite elements. The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the code for domain-local operations of factorization, preconditioning and matrix-vector product can be readily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code development in this direction is in an advanced state under the name ScOPES: the Scalable Open Parallel sparse linear Equations Solver.
LEOPARD: A grid-based dispersion relation solver for arbitrary gyrotropic distributions
NASA Astrophysics Data System (ADS)
Astfalk, Patrick; Jenko, Frank
2017-01-01
Particle velocity distributions measured in collisionless space plasmas often show strong deviations from idealized model distributions. Despite this observational evidence, linear wave analysis in space plasma environments such as the solar wind or Earth's magnetosphere is still mainly carried out using dispersion relation solvers based on Maxwellians or other parametric models. To enable a more realistic analysis, we present the new grid-based kinetic dispersion relation solver LEOPARD (Linear Electromagnetic Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) which no longer requires prescribed model distributions but allows for arbitrary gyrotropic distribution functions. In this work, we discuss the underlying numerical scheme of the code and we show a few exemplary benchmarks. Furthermore, we demonstrate a first application of LEOPARD to ion distribution data obtained from hybrid simulations. In particular, we show that in the saturation stage of the parallel fire hose instability, the deformation of the initial bi-Maxwellian distribution invalidates the use of standard dispersion relation solvers. A linear solver based on bi-Maxwellians predicts further growth even after saturation, while LEOPARD correctly indicates vanishing growth rates. We also discuss how this complies with former studies on the validity of quasilinear theory for the resonant fire hose. In the end, we briefly comment on the role of LEOPARD in directly analyzing spacecraft data, and we refer to an upcoming paper which demonstrates a first application of that kind.
Polymeric quantum mechanics and the zeros of the Riemann zeta function
NASA Astrophysics Data System (ADS)
Berra-Montiel, Jasel; Molgado, Alberto
We analyze the Berry-Keating model and the Sierra and Rodríguez-Laguna Hamiltonian within the polymeric quantization formalism. By using the polymer representation, we obtain for both models, the associated polymeric quantum Hamiltonians and the corresponding stationary wave functions. The self-adjointness condition provides a proper domain for the Hamiltonian operator and the energy spectrum, which turned out to be dependent on an introduced scale parameter. By performing a counting of semiclassical states, we prove that the polymer representation reproduces the smooth part of the Riemann-von Mangoldt formula, and also introduces a correction depending on the energy and the scale parameter. This may shed some light on the understanding of the fluctuation behavior of the zeros of the Riemann function from a purely quantum point of view.
Parallel performance investigations of an unstructured mesh Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
2000-01-01
A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.
A high performance linear equation solver on the VPP500 parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi
1994-12-31
This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.
A solution algorithm for fluid–particle flows across all flow regimes
Kong, Bo; Fox, Rodney O.
2017-05-12
Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less
A solution algorithm for fluid-particle flows across all flow regimes
NASA Astrophysics Data System (ADS)
Kong, Bo; Fox, Rodney O.
2017-09-01
Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.
A solution algorithm for fluid–particle flows across all flow regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo; Fox, Rodney O.
Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less
Multigrid accelerated simulations for Twisted Mass fermions
NASA Astrophysics Data System (ADS)
Bacchio, Simone; Alexandrou, Constantia; Finkerath, Jacob
2018-03-01
Simulations at physical quark masses are affected by the critical slowing down of the solvers. Multigrid preconditioning has proved to deal effectively with this problem. Multigrid accelerated simulations at the physical value of the pion mass are being performed to generate Nf = 2 and Nf = 2 + 1 + 1 gauge ensembles using twisted mass fermions. The adaptive aggregation-based domain decomposition multigrid solver, referred to as DD-αAMG method, is employed for these simulations. Our simulation strategy consists of an hybrid approach of different solvers, involving the Conjugate Gradient (CG), multi-mass-shift CG and DD-αAMG solvers. We present an analysis of the multigrid performance during the simulations discussing the stability of the method. This significant speeds up the Hybrid Monte Carlo simulation by more than a factor 4 at physical pion mass compared to the usage of the CG solver.
Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S
2010-11-01
A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.
Generalization of Einstein's gravitational field equations
NASA Astrophysics Data System (ADS)
Moulin, Frédéric
2017-12-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.
The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes
NASA Astrophysics Data System (ADS)
Barnes, A. P.; Lefloch, P. G.; Schmidt, B. G.; Stewart, J. M.
2004-11-01
We propose a new, augmented formulation of the coupled Euler Einstein equations for perfect fluids on plane-symmetric Gowdy spacetimes. The unknowns of the augmented system are the density and velocity of the fluid and the first- and second-order spacetime derivatives of the metric. We solve the Riemann problem for the augmented system, allowing propagating discontinuities in both the fluid variables and the first- and second-order derivatives of the geometry coefficients. Our main result, based on Glimm's random choice scheme, is the existence of solutions with bounded total variation of the Euler Einstein equations, up to the first time where a blow-up singularity (unbounded first-order derivatives of the geometry coefficients) occurs. We demonstrate the relevance of the augmented system for numerical relativity. We also consider general vacuum spacetimes and solve a Riemann problem, by relying on a theorem by Rendall on the characteristic value problem for the Einstein equations.
NASA Astrophysics Data System (ADS)
Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan
2017-12-01
Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.
Linearizable quantum supersymmetric σ models
NASA Astrophysics Data System (ADS)
Haba, Z.
1988-07-01
Euclidean quantization of superfields with values in a Hermitian manifold and defined on a super-Riemann surface is discussed. It is shown that stochastic differential equations relating an interacting σ superfield to the free one become linear if the field takes values in a generalized Poincaré upper half-plane. A renormalized perturbative solution is obtained. Fields with values in a Riemann surface are discussed in brief.
ERIC Educational Resources Information Center
Caglayan, Gunhan
2016-01-01
The purpose of this article is to offer teaching ideas in the treatment of the definite integral concept and the Riemann sums in a technology-supported environment. Specifically, the article offers teaching ideas and activities for classroom for the numerical methods of approximating a definite integral via left- and right-hand Riemann sums, along…
NASA Astrophysics Data System (ADS)
Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue
2018-01-01
An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.
Model Checking with Multi-Threaded IC3 Portfolios
2015-01-15
different runs varies randomly depending on the thread interleaving. The use of a portfolio of solvers to maximize the likelihood of a quick solution is...empirically show (cf. Sec. 5.2) that the predictions based on this formula have high accuracy. Note that each solver in the portfolio potentially searches...speedup of over 300. We also show that widening the proof search of ic3 by randomizing its SAT solver is not as effective as paral- lelization
AQUASOL: An efficient solver for the dipolar Poisson–Boltzmann–Langevin equation
Koehl, Patrice; Delarue, Marc
2010-01-01
The Poisson–Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson–Boltzmann–Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available. PMID:20151727
AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.
Koehl, Patrice; Delarue, Marc
2010-02-14
The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE solver. While both methods are not guaranteed to converge, numerical evidences suggest that they do and that their convergence is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian, with a much smaller memory footprint. All three methods have been implemented in a new code named AQUASOL, which is freely available.
Monotonic Derivative Correction for Calculation of Supersonic Flows
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
Aim of the study: This study examines numerical methods for solving the problems in gas dynamics, which are based on an exact or approximate solution to the problem of breakdown of an arbitrary discontinuity (the Riemann problem). Results: Comparative analysis of finite difference schemes for the Euler equations integration is conducted on the…
A new shock-capturing numerical scheme for ideal hydrodynamics
NASA Astrophysics Data System (ADS)
Fecková, Z.; Tomášik, B.
2015-05-01
We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, T.; Bartsch, M.; Becker, U.
1997-02-01
MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D--3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures. {copyright} {ital 1997 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, T.; Bartsch, M.; Becker, U.
1997-02-01
MAFIA Version 4.0 is an almost completely new version of the general purpose electromagnetic simulator known since 13 years. The major improvements concern the new graphical user interface based on state of the art technology as well as a series of new solvers for new physics problems. MAFIA now covers heat distribution, electro-quasistatics, S-parameters in frequency domain, particle beam tracking in linear accelerators, acoustics and even elastodynamics. The solvers that were available in earlier versions have also been improved and/or extended, as for example the complex eigenmode solver, the 2D-3D coupled PIC solvers. Time domain solvers have new waveguide boundarymore » conditions with an extremely low reflection even near cutoff frequency, concentrated elements are available as well as a variety of signal processing options. Probably the most valuable addition are recursive sub-grid capabilities that enable modeling of very small details in large structures.« less
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...
2017-09-21
Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, Ajit; Khalil, Mohammad; Pettit, Chris
Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less
Saka, Takashi
2016-05-01
The dynamical theory for perfect crystals in the Laue case was reformulated using the Riemann surface, as used in complex analysis. In the two-beam approximation, each branch of the dispersion surface is specified by one sheet of the Riemann surface. The characteristic features of the dispersion surface are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg condition and the reflection strength. By representing these parameters on complex planes, these characteristics can be graphically depicted on the Riemann surface. In the conventional case, the absorption is small and the real part of the reflection strength is large, so the formulation is the same as the traditional analysis. However, when the real part of the reflection strength is small or zero, the two branches of the dispersion surface cross, and the dispersion relationship becomes similar to that of the Bragg case. This is because the geometrical relationships among the parameters are similar in both cases. The present analytical method is generally applicable, irrespective of the magnitudes of the parameters. Furthermore, the present method analytically revealed many characteristic features of the dispersion surface and will be quite instructive for further numerical calculations of rocking curves.
An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations
NASA Technical Reports Server (NTRS)
Singh, Jatinder; Taylor, Stephen
1997-01-01
This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.
Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carleton, James Brian; Parks, Michael L.
Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less
Convergence Acceleration of a Navier-Stokes Solver for Efficient Static Aeroelastic Computations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru; Guruswamy, Guru P.
1995-01-01
New capabilities have been developed for a Navier-Stokes solver to perform steady-state simulations more efficiently. The flow solver for solving the Navier-Stokes equations is based on a combination of the lower-upper factored symmetric Gauss-Seidel implicit method and the modified Harten-Lax-van Leer-Einfeldt upwind scheme. A numerically stable and efficient pseudo-time-marching method is also developed for computing steady flows over flexible wings. Results are demonstrated for transonic flows over rigid and flexible wings.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Jorgenson, Philip C. E.
2007-01-01
A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.
1999-01-01
In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.
NASA Astrophysics Data System (ADS)
Londrillo, P.; del Zanna, L.
2004-03-01
We present a general framework to design Godunov-type schemes for multidimensional ideal magnetohydrodynamic (MHD) systems, having the divergence-free relation and the related properties of the magnetic field B as built-in conditions. Our approach mostly relies on the constrained transport (CT) discretization technique for the magnetic field components, originally developed for the linear induction equation, which assures [∇.B]num=0 and its preservation in time to within machine accuracy in a finite-volume setting. We show that the CT formalism, when fully exploited, can be used as a general guideline to design the reconstruction procedures of the B vector field, to adapt standard upwind procedures for the momentum and energy equations, avoiding the onset of numerical monopoles of O(1) size, and to formulate approximate Riemann solvers for the induction equation. This general framework will be named here upwind constrained transport (UCT). To demonstrate the versatility of our method, we apply it to a variety of schemes, which are finally validated numerically and compared: a novel implementation for the MHD case of the second-order Roe-type positive scheme by Liu and Lax [J. Comput. Fluid Dyn. 5 (1996) 133], and both the second- and third-order versions of a central-type MHD scheme presented by Londrillo and Del Zanna [Astrophys. J. 530 (2000) 508], where the basic UCT strategies have been first outlined.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy
NASA Astrophysics Data System (ADS)
Coralic, Vedran; Colonius, Tim
2014-11-01
In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.
On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo
2017-06-01
We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, ofmore » the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.« less
NASA Technical Reports Server (NTRS)
Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)
2001-01-01
In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.
Finite-volume WENO scheme for viscous compressible multicomponent flows
Coralic, Vedran; Colonius, Tim
2014-01-01
We develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navier-Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, i.e. it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten-Lax-van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes. A third-order total variation diminishing (TVD) Runge-Kutta (RK) algorithm is employed to march the solution in time. The derivation is generalized to three dimensions and nonuniform Cartesian grids. A two-point, fourth-order, Gaussian quadrature rule is utilized to build the spatial averages of the reconstructed variables inside the cells, as well as at cell boundaries. The algorithm is therefore fourth-order accurate in space and third-order accurate in time in smooth regions of the flow. We corroborate the properties of our numerical method by considering several challenging one-, two- and three-dimensional test cases, the most complex of which is the asymmetric collapse of an air bubble submerged in a cylindrical water cavity that is embedded in 10% gelatin. PMID:25110358
Finite-volume WENO scheme for viscous compressible multicomponent flows.
Coralic, Vedran; Colonius, Tim
2014-10-01
We develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navier-Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, i.e. it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten-Lax-van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes. A third-order total variation diminishing (TVD) Runge-Kutta (RK) algorithm is employed to march the solution in time. The derivation is generalized to three dimensions and nonuniform Cartesian grids. A two-point, fourth-order, Gaussian quadrature rule is utilized to build the spatial averages of the reconstructed variables inside the cells, as well as at cell boundaries. The algorithm is therefore fourth-order accurate in space and third-order accurate in time in smooth regions of the flow. We corroborate the properties of our numerical method by considering several challenging one-, two- and three-dimensional test cases, the most complex of which is the asymmetric collapse of an air bubble submerged in a cylindrical water cavity that is embedded in 10% gelatin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Bernhard; Janka, Hans-Thomas; Dimmelmeier, Harald, E-mail: bjmuellr@mpa-garching.mpg.d, E-mail: thj@mpa-garching.mpg.d, E-mail: harrydee@mpa-garching.mpg.d
We present a new general relativistic code for hydrodynamical supernova simulations with neutrino transport in spherical and azimuthal symmetry (one dimension and two dimensions, respectively). The code is a combination of the COCONUT hydro module, which is a Riemann-solver-based, high-resolution shock-capturing method, and the three-flavor, fully energy-dependent VERTEX scheme for the transport of massless neutrinos. VERTEX integrates the coupled neutrino energy and momentum equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the 'ray-by-ray plus' approximation in two dimensions, assuming the neutrino distribution to be axially symmetric around the radial direction at every pointmore » in space, and thus the neutrino flux to be radial. Our spacetime treatment employs the Arnowitt-Deser-Misner 3+1 formalism with the conformal flatness condition for the spatial three metric. This approach is exact for the one-dimensional case and has previously been shown to yield very accurate results for spherical and rotational stellar core collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with grid-based Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number in the neutrino transport with better accuracy and higher numerical stability in the high-energy tail of the spectrum. To verify our code, we conduct a series of tests in spherical symmetry, including a detailed comparison with published results of the collapse, shock formation, shock breakout, and accretion phases. Long-time simulations of proto-neutron star cooling until several seconds after core bounce both demonstrate the robustness of the new COCONUT-VERTEX code and show the approximate treatment of relativistic effects by means of an effective relativistic gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in spherical symmetry.« less
NASA Astrophysics Data System (ADS)
Miao, Sha; Hendrickson, Kelli; Liu, Yuming
2017-12-01
This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.
NASA Astrophysics Data System (ADS)
Sun, Rui; Xiao, Heng
2016-04-01
With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.
GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows
NASA Technical Reports Server (NTRS)
2003-01-01
With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.
Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases
NASA Astrophysics Data System (ADS)
Zengler, Christoph; Küchlin, Wolfgang
We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.
Exploration and extension of an improved Riemann track fitting algorithm
NASA Astrophysics Data System (ADS)
Strandlie, A.; Frühwirth, R.
2017-09-01
Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.
A distinguishing gravitational property for gravitational equation in higher dimensions
NASA Astrophysics Data System (ADS)
Dadhich, Naresh
2016-03-01
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d=2N+1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less
A mixed fluid-kinetic solver for the Vlasov-Poisson equations
NASA Astrophysics Data System (ADS)
Cheng, Yongtao
Plasmas are ionized gases that appear in a wide range of applications including astrophysics and space physics, as well as in laboratory settings such as in magnetically confined fusion. There are two prevailing types of modeling strategies to describe a plasma system: kinetic models and fluid models. Kinetic models evolve particle probability density distributions (PDFs) in phase space, which are accurate but computationally expensive. Fluid models evolve a small number of moments of the distribution function and reduce the dimension of the solution. However, some approximation is necessary to close the system, and finding an accurate moment closure that correctly captures the dynamics away from thermodynamic equilibrium is a difficult and still open problem. The main contributions of the present work can be divided into two main parts: (1) a new class of moment closures, based on a modification of existing quadrature-based moment-closure methods, is developed using bi-B-spline and bi-bubble representations; and (2) a novel mixed solver that combines a fluid and a kinetic solver is proposed, which uses the new class of moment-closure methods described in the first part. For the newly developed quadrature-based moment-closure based on bi-B-spline and bi-bubble representation, the explicit form of flux terms and the moment-realizability conditions are given. It is shown that while the bi-delta system is weakly hyperbolic, the newly proposed fluid models are strongly hyperbolic. Using a high-order Runge-Kutta discontinuous Galerkin method together with Strang operator splitting, the resulting models are applied to the Vlasov-Poisson-Fokker-Planck system in the high field limit. In the second part of this work, results from kinetic solver are used to provide a corrected closure to the fluid model. This correction keeps the fluid model hyperbolic and gives fluid results that match the moments as computed from the kinetic solution. Furthermore, a prolongation operation based on the bi-bubble moment-closure is used to make the first few moments of the kinetic and fluid solvers match. This results in a kinetic solver that exactly conserves mass and total energy. This mixed fluid-kinetic solver is applied to standard test problems for the Vlasov-Poisson system, including two-stream-instability problem and Landau damping.
A multigrid solver for the semiconductor equations
NASA Technical Reports Server (NTRS)
Bachmann, Bernhard
1993-01-01
We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.
LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators
NASA Astrophysics Data System (ADS)
Gonzalez, Juan; Núñez, Rafael C.
2009-07-01
We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.
Novel Scalable 3-D MT Inverse Solver
NASA Astrophysics Data System (ADS)
Kuvshinov, A. V.; Kruglyakov, M.; Geraskin, A.
2016-12-01
We present a new, robust and fast, three-dimensional (3-D) magnetotelluric (MT) inverse solver. As a forward modelling engine a highly-scalable solver extrEMe [1] is used. The (regularized) inversion is based on an iterative gradient-type optimization (quasi-Newton method) and exploits adjoint sources approach for fast calculation of the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT (single-site and/or inter-site) responses, and supports massive parallelization. Different parallelization strategies implemented in the code allow for optimal usage of available computational resources for a given problem set up. To parameterize an inverse domain a mask approach is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to high-performance clusters demonstrate practically linear scalability of the code up to thousands of nodes. 1. Kruglyakov, M., A. Geraskin, A. Kuvshinov, 2016. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method, Computers and Geosciences, in press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinger, Andy; Evans, Katherine J; Lemieux, Jean-Francois
2011-01-01
We have implemented the Jacobian-free Newton-Krylov (JFNK) method for solving the rst-order ice sheet momentum equation in order to improve the numerical performance of the Community Ice Sheet Model (CISM), the land ice component of the Community Earth System Model (CESM). Our JFNK implementation is based on signicant re-use of existing code. For example, our physics-based preconditioner uses the original Picard linear solver in CISM. For several test cases spanning a range of geometries and boundary conditions, our JFNK implementation is 1.84-3.62 times more efficient than the standard Picard solver in CISM. Importantly, this computational gain of JFNK over themore » Picard solver increases when rening the grid. Global convergence of the JFNK solver has been signicantly improved by rescaling the equation for the basal boundary condition and through the use of an inexact Newton method. While a diverse set of test cases show that our JFNK implementation is usually robust, for some problems it may fail to converge with increasing resolution (as does the Picard solver). Globalization through parameter continuation did not remedy this problem and future work to improve robustness will explore a combination of Picard and JFNK and the use of homotopy methods.« less
Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials
NASA Astrophysics Data System (ADS)
Malik, Pradeep; Swaminathan, A.
2010-11-01
In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.
Aspects of general higher-order gravities
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Min, Vincent S.; Visser, Manus R.
2017-02-01
We study several aspects of higher-order gravities constructed from general contractions of the Riemann tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in [P. Bueno and P. A. Cano, arXiv:1607.06463] to obtain the equations satisfied by the metric perturbation modes on a maximally symmetric background in the presence of matter and to classify L (Riemann ) theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use this result to construct quartic versions of Einsteinian cubic gravity. In addition, we show that the most general cubic gravity constructed in a dimension-independent way and which does not propagate the ghostlike spin-2 mode (but can propagate the scalar) is a linear combination of f (Lovelock ) invariants, plus the Einsteinian cubic gravity term, plus a new ghost-free gravity term. Next, we construct the generalized Newton potential and the post-Newtonian parameter γ for general L (Riemann ) gravities in arbitrary dimensions, unveiling some interesting differences with respect to the four-dimensional case. We also study the emission and propagation of gravitational radiation from sources for these theories in four dimensions, providing a generalized formula for the power emitted. Finally, we review Wald's formalism for general L (Riemann ) theories and construct new explicit expressions for the relevant quantities involved. Many examples illustrate our calculations.
Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions.
Wijesinghe, Parami; Liyanagedera, Chamika; Roy, Kaushik
2018-05-02
Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that constitute one of the hardest classes of constraint satisfaction problems. In this work, we provide a proof of concept hardware based analog k-SAT solver, that is built using Magnetic Tunnel Junctions (MTJs). The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog satisfiability (SAT) solver. In the presence of thermal noise, the MTJ based system can successfully solve Boolean satisfiability problems. Most importantly, our results exhibit that, the proposed MTJ based hardware SAT solver is capable of finding a solution to a significant fraction (at least 85%) of hard 3-SAT problems, within a time that has a polynomial relationship with the number of variables(<50).
NASA Astrophysics Data System (ADS)
Wang, XiaoLiang; Li, JiaChun
2017-12-01
A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.
NASA Technical Reports Server (NTRS)
Voigt, Kerstin
1992-01-01
We present MENDER, a knowledge based system that implements software design techniques that are specialized to automatically compile generate-and-patch problem solvers that satisfy global resource assignments problems. We provide empirical evidence of the superior performance of generate-and-patch over generate-and-test: even with constrained generation, for a global constraint in the domain of '2D-floorplanning'. For a second constraint in '2D-floorplanning' we show that even when it is possible to incorporate the constraint into a constrained generator, a generate-and-patch problem solver may satisfy the constraint more rapidly. We also briefly summarize how an extended version of our system applies to a constraint in the domain of 'multiprocessor scheduling'.
Hendrickx, M E; Hinojosa-Corona, A; Ayón-Parente, M
2016-10-20
Specimens of a deep-sea anemone were observed in photographs and video footage taken with the Remotely Operated Vehicle JASON (WHOI Deep Submergence Laboratory) in the Gulf of California, Mexico, in May 2008. Comparison of our material with photographs and description of this species available in literature indicate that the sea anemones filmed during the JASON survey are most likely to represent Phelliactis callicyclus Riemann-Zurneck, 1973. This species has previously been reported from a locality in the Gulf of California near the present record. During the JASON survey, 28 specimens of P. callicyclus were spotted in 27 locations during six dives. The specimens occurred on angular rock outcrops along the escarpments of the transform faults of the Gulf of California, between depths of 993-2543 m and at temperatures ranging from 2.3 to 4.5°C. Based on these new records, Phelliactis callicyclus appears to be widely spread in the Gulf of California.
MIBPB: a software package for electrostatic analysis.
Chen, Duan; Chen, Zhan; Chen, Changjun; Geng, Weihua; Wei, Guo-Wei
2011-03-01
The Poisson-Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This article presents a matched interface and boundary (MIB)-based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique-based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces, which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second-order convergence, that is, the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann mapping technique that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1 Å--whereas it usually takes other traditional PB solvers 0.25 Å to reach similar level of reliability. This work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by using the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate KS solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein-solvent solvation energy calculations and analysis of salt effects on protein-protein binding energies, respectively. Copyright © 2010 Wiley Periodicals, Inc.
MIBPB: A software package for electrostatic analysis
Chen, Duan; Chen, Zhan; Chen, Changjun; Geng, Weihua; Wei, Guo-Wei
2010-01-01
The Poisson-Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This paper presents a matched interface and boundary (MIB) based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second order convergence, i.e., the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann mapping (DNM) technique, that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1Å — while it usually takes other traditional PB solvers 0.25Å to reach similar level of reliability. The present work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by utilizing the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate Krylov subspace solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein-solvent solvation energy calculations and analysis of salt effects on protein-protein binding energies, respectively. PMID:20845420
NASA Astrophysics Data System (ADS)
Sanan, Patrick; May, Dave A.; Schenk, Olaf; Bollhöffer, Matthias
2017-04-01
Geodynamics simulations typically involve the repeated solution of saddle-point systems arising from the Stokes equations. These computations often dominate the time to solution. Direct solvers are known for their robustness and ``black box'' properties, yet exhibit superlinear memory requirements and time to solution. More complex multilevel-preconditioned iterative solvers have been very successful for large problems, yet their use can require more effort from the practitioner in terms of setting up a solver and choosing its parameters. We champion an intermediate approach, based on leveraging the power of modern incomplete factorization techniques for indefinite symmetric matrices. These provide an interesting alternative in situations in between the regimes where direct solvers are an obvious choice and those where complex, scalable, iterative solvers are an obvious choice. That is, much like their relatives for definite systems, ILU/ICC-preconditioned Krylov methods and ILU/ICC-smoothed multigrid methods, the approaches demonstrated here provide a useful addition to the solver toolkit. We present results with a simple, PETSc-based, open-source Q2-Q1 (Taylor-Hood) finite element discretization, in 2 and 3 dimensions, with the Stokes and Lamé (linear elasticity) saddle point systems. Attention is paid to cases in which full-operator incomplete factorization gives an improvement in time to solution over direct solution methods (which may not even be feasible due to memory limitations), without the complication of more complex (or at least, less-automatic) preconditioners or smoothers. As an important factor in the relevance of these tools is their availability in portable software, we also describe open-source PETSc interfaces to the factorization routines.
On metrics and super-Riemann surfaces
NASA Astrophysics Data System (ADS)
Hodgkin, Luke
1987-08-01
It is shown that any super-Riemann surface M admits a large space of metrics (in a rather basic sense); while if M is of compact genus g type, g>1, M admits a unique metric whose lift to the universal cover is superconformally equivalent to the standard (Baranov-Shvarts) metric on the super-half plane. This explains the relation between the different methods of calculation of the upper Teichmüller space by the author (using arbitrary superconformal transformations) and Crane and Rabin (using only isometries).
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
NASA Technical Reports Server (NTRS)
Osher, Stanley
1989-01-01
Simple inequalities for the Riemann problem for a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave) are presented. The initial data is globally continuous, affine in each orthant, with a possible jump in normal derivative across each coordinate plane, x sub i = 0. The inequalities become equalities wherever a maxmin equals a minmax and thus an exact closed form solution to this problem is then obtained.
New gravitational solutions via a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Cardoso, G. L.; Serra, J. C.
2018-03-01
We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.
Elementary wave interactions in blood flow through artery
NASA Astrophysics Data System (ADS)
Raja Sekhar, T.; Minhajul
2017-10-01
In this paper, we consider the Riemann problem and interaction of elementary waves for the quasilinear hyperbolic system of conservation laws that arises in blood flow through arteries. We study the properties of solution involving shocks and rarefaction waves and establish the existence and uniqueness conditions. We show that the Riemann problem is solvable for arbitrary initial data under certain condition and construct the condition for no-feasible solution. Finally, we present numerical examples with different initial data and discuss all possible interactions of elementary waves.
A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method
2013-06-01
Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method David L. Bilyeu ∗1,2...Similarly, the fluxes, f x,y,z i , and their derivatives inside a SE are also discretized by the Taylor series expansion: ∂ Cfx ,y,zi ∂xI∂yJ∂zK∂tL = A
Modelling atmospheric flows with adaptive moving meshes
NASA Astrophysics Data System (ADS)
Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas
2012-04-01
An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) - employed in the integration of the underlying anelastic PDEs - that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.
A Survey of Solver-Related Geometry and Meshing Issues
NASA Technical Reports Server (NTRS)
Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris
2016-01-01
There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.
A 2-D/1-D transverse leakage approximation based on azimuthal, Fourier moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimpson, Shane G.; Collins, Benjamin S.; Downar, Thomas
Here, the MPACT code being developed collaboratively by Oak Ridge National Laboratory and the University of Michigan is the primary deterministic neutron transport solver within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). In MPACT, the two-dimensional (2-D)/one-dimensional (1-D) scheme is the most commonly used method for solving neutron transport-based three-dimensional nuclear reactor core physics problems. Several axial solvers in this scheme assume isotropic transverse leakages, but work with the axial S N solver has extended these leakages to include both polar and azimuthal dependence. However, explicit angular representation can be burdensome for run-time and memory requirements. The workmore » here alleviates this burden by assuming that the azimuthal dependence of the angular flux and transverse leakages are represented by a Fourier series expansion. At the heart of this is a new axial SN solver that takes in a Fourier expanded radial transverse leakage and generates the angular fluxes used to construct the axial transverse leakages used in the 2-D-Method of Characteristics calculations.« less
A 2-D/1-D transverse leakage approximation based on azimuthal, Fourier moments
Stimpson, Shane G.; Collins, Benjamin S.; Downar, Thomas
2017-01-12
Here, the MPACT code being developed collaboratively by Oak Ridge National Laboratory and the University of Michigan is the primary deterministic neutron transport solver within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). In MPACT, the two-dimensional (2-D)/one-dimensional (1-D) scheme is the most commonly used method for solving neutron transport-based three-dimensional nuclear reactor core physics problems. Several axial solvers in this scheme assume isotropic transverse leakages, but work with the axial S N solver has extended these leakages to include both polar and azimuthal dependence. However, explicit angular representation can be burdensome for run-time and memory requirements. The workmore » here alleviates this burden by assuming that the azimuthal dependence of the angular flux and transverse leakages are represented by a Fourier series expansion. At the heart of this is a new axial SN solver that takes in a Fourier expanded radial transverse leakage and generates the angular fluxes used to construct the axial transverse leakages used in the 2-D-Method of Characteristics calculations.« less
LDRD final report on massively-parallel linear programming : the parPCx system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar
2005-02-01
This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runsmore » on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.« less
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Almgren, A.; Bell, J.
We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less
A Flexible CUDA LU-based Solver for Small, Batched Linear Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Gawande, Nitin A.; Villa, Oreste
This chapter presents the implementation of a batched CUDA solver based on LU factorization for small linear systems. This solver may be used in applications such as reactive flow transport models, which apply the Newton-Raphson technique to linearize and iteratively solve the sets of non linear equations that represent the reactions for ten of thousands to millions of physical locations. The implementation exploits somewhat counterintuitive GPGPU programming techniques: it assigns the solution of a matrix (representing a system) to a single CUDA thread, does not exploit shared memory and employs dynamic memory allocation on the GPUs. These techniques enable ourmore » implementation to simultaneously solve sets of systems with over 100 equations and to employ LU decomposition with complete pivoting, providing the higher numerical accuracy required by certain applications. Other currently available solutions for batched linear solvers are limited by size and only support partial pivoting, although they may result faster in certain conditions. We discuss the code of our implementation and present a comparison with the other implementations, discussing the various tradeoffs in terms of performance and flexibility. This work will enable developers that need batched linear solvers to choose whichever implementation is more appropriate to the features and the requirements of their applications, and even to implement dynamic switching approaches that can choose the best implementation depending on the input data.« less
Treatment of geometric singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Yu, Sining; Geng, Weihua; Wei, G. W.
2007-06-01
Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Advanced Signal Processing for Integrated LES-RANS Simulations: Anti-aliasing Filters
NASA Technical Reports Server (NTRS)
Schlueter, J. U.
2003-01-01
Currently, a wide variety of flow phenomena are addressed with numerical simulations. Many flow solvers are optimized to simulate a limited spectrum of flow effects effectively, such as single parts of a flow system, but are either inadequate or too expensive to be applied to a very complex problem. As an example, the flow through a gas turbine can be considered. In the compressor and the turbine section, the flow solver has to be able to handle the moving blades, model the wall turbulence, and predict the pressure and density distribution properly. This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) approach. On the other hand, the flow in the combustion chamber is governed by large scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows that these phenomena require an unsteady approach. Hence, for the combustor, the use of a Large Eddy Simulation (LES) flow solver is desirable. While many design problems of a single flow passage can be addressed by separate computations, only the simultaneous computation of all parts can guarantee the proper prediction of multi-component phenomena, such as compressor/combustor instability and combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the compressor sections, an LES flow solver for the combustor, and again a RANS flow solver for the turbine section.
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
2004-01-01
A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of accuracy increases, the partitioning for 3D requires the introduction of a large number of parameters, whose optimization to achieve convergence becomes increasingly more difficult. Also, the number of interior facets required to subdivide non-planar faces, and the additional increase in the number of quadrature points for each facet, increases the computational cost greatly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-04-29
We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less
A new fast direct solver for the boundary element method
NASA Astrophysics Data System (ADS)
Huang, S.; Liu, Y. J.
2017-09-01
A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.
Determining the Optimal Values of Exponential Smoothing Constants--Does Solver Really Work?
ERIC Educational Resources Information Center
Ravinder, Handanhal V.
2013-01-01
A key issue in exponential smoothing is the choice of the values of the smoothing constants used. One approach that is becoming increasingly popular in introductory management science and operations management textbooks is the use of Solver, an Excel-based non-linear optimizer, to identify values of the smoothing constants that minimize a measure…
Exp-function method for solving fractional partial differential equations.
Zheng, Bin
2013-01-01
We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.
Causality and a -theorem constraints on Ricci polynomial and Riemann cubic gravities
NASA Astrophysics Data System (ADS)
Li, Yue-Zhou; Lü, H.; Wu, Jun-Bao
2018-01-01
In this paper, we study Einstein gravity extended with Ricci polynomials and derive the constraints on the coupling constants from the considerations of being ghost-free, exhibiting an a -theorem and maintaining causality. The salient feature is that Einstein metrics with appropriate effective cosmological constants continue to be solutions with the inclusion of such Ricci polynomials and the causality constraint is automatically satisfied. The ghost-free and a -theorem conditions can only be both met starting at the quartic order. We also study these constraints on general Riemann cubic gravities.
Isomonodromy for the Degenerate Fifth Painlevé Equation
NASA Astrophysics Data System (ADS)
Acosta-Humánez, Primitivo B.; van der Put, Marius; Top, Jaap
2017-05-01
This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
NASA Technical Reports Server (NTRS)
Bardi, Martino; Osher, Stanley
1991-01-01
Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimensions when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a 'maxmin' equals a 'minmax', and thus a representation formula for this problem is obtained, generalizing the classical Hopi formulas.
NASA Astrophysics Data System (ADS)
Xu, Li; Weng, Peifen
2014-02-01
An improved fifth-order weighted essentially non-oscillatory (WENO-Z) scheme combined with the moving overset grid technique has been developed to compute unsteady compressible viscous flows on the helicopter rotor in forward flight. In order to enforce periodic rotation and pitching of the rotor and relative motion between rotor blades, the moving overset grid technique is extended, where a special judgement standard is presented near the odd surface of the blade grid during search donor cells by using the Inverse Map method. The WENO-Z scheme is adopted for reconstructing left and right state values with the Roe Riemann solver updating the inviscid fluxes and compared with the monotone upwind scheme for scalar conservation laws (MUSCL) and the classical WENO scheme. Since the WENO schemes require a six point stencil to build the fifth-order flux, the method of three layers of fringes for hole boundaries and artificial external boundaries is proposed to carry out flow information exchange between chimera grids. The time advance on the unsteady solution is performed by the full implicit dual time stepping method with Newton type LU-SGS subiteration, where the solutions of pseudo steady computation are as the initial fields of the unsteady flow computation. Numerical results on non-variable pitch rotor and periodic variable pitch rotor in forward flight reveal that the approach can effectively capture vortex wake with low dissipation and reach periodic solutions very soon.
Revisiting low-fidelity two-fluid models for gas-solids transport
NASA Astrophysics Data System (ADS)
Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus
2016-08-01
Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
The Repeated Replacement Method: A Pure Lagrangian Meshfree Method for Computational Fluid Dynamics
Walker, Wade A.
2012-01-01
In this paper we describe the repeated replacement method (RRM), a new meshfree method for computational fluid dynamics (CFD). RRM simulates fluid flow by modeling compressible fluids’ tendency to evolve towards a state of constant density, velocity, and pressure. To evolve a fluid flow simulation forward in time, RRM repeatedly “chops out” fluid from active areas and replaces it with new “flattened” fluid cells with the same mass, momentum, and energy. We call the new cells “flattened” because we give them constant density, velocity, and pressure, even though the chopped-out fluid may have had gradients in these primitive variables. RRM adaptively chooses the sizes and locations of the areas it chops out and replaces. It creates more and smaller new cells in areas of high gradient, and fewer and larger new cells in areas of lower gradient. This naturally leads to an adaptive level of accuracy, where more computational effort is spent on active areas of the fluid, and less effort is spent on inactive areas. We show that for common test problems, RRM produces results similar to other high-resolution CFD methods, while using a very different mathematical framework. RRM does not use Riemann solvers, flux or slope limiters, a mesh, or a stencil, and it operates in a purely Lagrangian mode. RRM also does not evaluate numerical derivatives, does not integrate equations of motion, and does not solve systems of equations. PMID:22866175
Accurate modelling of unsteady flows in collapsible tubes.
Marchandise, Emilie; Flaud, Patrice
2010-01-01
The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.
SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X; Gao, H; Paganetti, H
2015-06-15
Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pairmore » production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Gpu Implementation of a Viscous Flow Solver on Unstructured Grids
NASA Astrophysics Data System (ADS)
Xu, Tianhao; Chen, Long
2016-06-01
Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.
NASA Astrophysics Data System (ADS)
Bernede, Adrien; Poëtte, Gaël
2018-02-01
In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.
Vareková, R Svobodová; Koca, J
2006-02-01
The most common way to calculate charge distribution in a molecule is ab initio quantum mechanics (QM). Some faster alternatives to QM have also been developed, the so-called "equalization methods" EEM and ABEEM, which are based on DFT. We have implemented and optimized the EEM and ABEEM methods and created the EEM SOLVER and ABEEM SOLVER programs. It has been found that the most time-consuming part of equalization methods is the reduction of the matrix belonging to the equation system generated by the method. Therefore, for both methods this part was replaced by the parallel algorithm WIRS and implemented within the PVM environment. The parallelized versions of the programs EEM SOLVER and ABEEM SOLVER showed promising results, especially on a single computer with several processors (compact PVM). The implemented programs are available through the Web page http://ncbr.chemi.muni.cz/~n19n/eem_abeem.
A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids
NASA Technical Reports Server (NTRS)
Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.
NASA Astrophysics Data System (ADS)
Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.
2007-07-01
A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.
NASA Astrophysics Data System (ADS)
Limbach, P.; Müller, T.; Skoda, R.
2015-12-01
Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.
On the use of reverse Brownian motion to accelerate hybrid simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu
Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less
A New Approximate Chimera Donor Cell Search Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Nixon, David (Technical Monitor)
1998-01-01
The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.
The novel high-performance 3-D MT inverse solver
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey
2016-04-01
We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.
Meng, Xiangyin; Li, Yan
2015-01-01
Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto; ...
2017-09-15
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Max La Cour; Villa, Umberto E.; Engsig-Karup, Allan P.
The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, ourmore » FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.« less
ELSI: A unified software interface for Kohn-Sham electronic structure solvers
NASA Astrophysics Data System (ADS)
Yu, Victor Wen-zhe; Corsetti, Fabiano; García, Alberto; Huhn, William P.; Jacquelin, Mathias; Jia, Weile; Lange, Björn; Lin, Lin; Lu, Jianfeng; Mi, Wenhui; Seifitokaldani, Ali; Vázquez-Mayagoitia, Álvaro; Yang, Chao; Yang, Haizhao; Blum, Volker
2018-01-01
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
Efficient three-dimensional Poisson solvers in open rectangular conducting pipe
NASA Astrophysics Data System (ADS)
Qiang, Ji
2016-06-01
Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.
NASA Astrophysics Data System (ADS)
Guinot, Vincent
2017-11-01
The validity of flux and source term formulae used in shallow water models with porosity for urban flood simulations is assessed by solving the two-dimensional shallow water equations over computational domains representing periodic building layouts. The models under assessment are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP) models. 9 different geometries are considered. 18 two-dimensional initial value problems and 6 two-dimensional boundary value problems are defined. This results in a set of 96 fine grid simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP flux and source term models outperform those of the SP and IP models when the Riemann problem is aligned with the main street directions, (ii) all models give erroneous flux closures when is the Riemann problem is not aligned with one of the main street directions or when the main street directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time when the street directions are orthogonal and the Riemann problem is aligned with one of them, (iv) a momentum balance confirms the existence of the transient momentum dissipation model presented in the DIP model, (v) none of the source term models presented so far in the literature allows all flow configurations to be accounted for(vi) future laboratory experiments aiming at the validation of flux and source term closures should focus on the high-resolution, two-dimensional monitoring of both water depth and flow velocity fields.
A shock-capturing SPH scheme based on adaptive kernel estimation
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; López, Hender; Donoso, Arnaldo; Sira, Eloy; Klapp, Jaime
2006-02-01
Here we report a method that converts standard smoothed particle hydrodynamics (SPH) into a working shock-capturing scheme without relying on solutions to the Riemann problem. Unlike existing adaptive SPH simulations, the present scheme is based on an adaptive kernel estimation of the density, which combines intrinsic features of both the kernel and nearest neighbor approaches in a way that the amount of smoothing required in low-density regions is effectively controlled. Symmetrized SPH representations of the gas dynamic equations along with the usual kernel summation for the density are used to guarantee variational consistency. Implementation of the adaptive kernel estimation involves a very simple procedure and allows for a unique scheme that handles strong shocks and rarefactions the same way. Since it represents a general improvement of the integral interpolation on scattered data, it is also applicable to other fluid-dynamic models. When the method is applied to supersonic compressible flows with sharp discontinuities, as in the classical one-dimensional shock-tube problem and its variants, the accuracy of the results is comparable, and in most cases superior, to that obtained from high quality Godunov-type methods and SPH formulations based on Riemann solutions. The extension of the method to two- and three-space dimensions is straightforward. In particular, for the two-dimensional cylindrical Noh's shock implosion and Sedov point explosion problems the present scheme produces much better results than those obtained with conventional SPH codes.
On the formation of Friedlander waves in a compressed-gas-driven shock tube
Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.
2016-01-01
Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888
Gauged supergravities from M-theory reductions
NASA Astrophysics Data System (ADS)
Katmadas, Stefanos; Tomasiello, Alessandro
2018-04-01
In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.
Use of Genetic Algorithms to solve Inverse Problems in Relativistic Hydrodynamics
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; González, J. A.
2018-04-01
We present the use of Genetic Algorithms (GAs) as a strategy to solve inverse problems associated with models of relativistic hydrodynamics. The signal we consider to emulate an observation is the density of a relativistic gas, measured at a point where a shock is traveling. This shock is generated numerically out of a Riemann problem with mildly relativistic conditions. The inverse problem we propose is the prediction of the initial conditions of density, velocity and pressure of the Riemann problem that gave origin to that signal. For this we use the density, velocity and pressure of the gas at both sides of the discontinuity, as the six genes of an organism, initially with random values within a tolerance. We then prepare an initial population of N of these organisms and evolve them using methods based on GAs. In the end, the organism with the best fitness of each generation is compared to the signal and the process ends when the set of initial conditions of the organisms of a later generation fit the Signal within a tolerance.
NASA Astrophysics Data System (ADS)
Baez, J.; Lapidaryus, M.; Siegel, Edward Carl-Ludwig
2011-03-01
Riemann-hypothesis physics-proof combines: Siegel-Antonoff-Smith[AMS Joint Mtg.(2002)-Abs.973-03-126] digits on-average statistics HIll[Am. J. Math 123, 3, 887(1996)] logarithm-function's (1,0)-fixed-point base=units=scale-invariance proven Newcomb[Am. J. Math. 4, 39(1881)]-Weyl[Goett. Nachr.(1914); Math. Ann. 7, 313(1916)]-Benford[Proc. Am. Phil. Soc. 78, 4, 51(1938)]-law [Kac, Math. of Stat.-Reasoning(1955); Raimi, Sci. Am. 221, 109(1969)] algebraic-inversion to ONLY Bose-Einstein quantum-statistics(BEQS) with digit d = 0 gapFUL Bose-Einstein Condensation(BEC) insight that digits are quanta are bosons were always digits, via Siegel-Baez category-semantics tabular list-format matrix truth-table analytics in Plato-Aristotle classic "square-of-opposition" : FUZZYICS=CATEGORYICS/Category-Semantics, with Goodkind Bose-Einstein condensation(BEC) ABOVE ground-state with/and Rayleigh(cut-limit of "short-cut method";1870)-Polya(1922)-"Anderson"(1958) localization [Doyle and Snell, Random-Walks and Electrical-Networks, MAA(1981)-p.99-100!!!].
A Riemann-Hilbert Approach for the Novikov Equation
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2016-09-01
We develop the inverse scattering transform method for the Novikov equation u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx} considered on the line xin(-∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3× 3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
Comparing direct and iterative equation solvers in a large structural analysis software system
NASA Technical Reports Server (NTRS)
Poole, E. L.
1991-01-01
Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.
The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix
NASA Astrophysics Data System (ADS)
Antipov, Yuri A.
2014-10-01
A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.
Thermodynamic limit of random partitions and dispersionless Toda hierarchy
NASA Astrophysics Data System (ADS)
Takasaki, Kanehisa; Nakatsu, Toshio
2012-01-01
We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.
Coupled Eulerian-Lagrangian transport of large debris by tsunamis
NASA Astrophysics Data System (ADS)
Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos
2016-04-01
Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the conservativeness of the model. This way, in highly resolved meshes and high quantities of debris, the model approaches full conservativeness only if the two-way coupling feature is present, an effect that is attenuated in coarse meshes or with small debris quantities. Aknownledgements: This work was partially funded by FEDER, program COMPETE, and by national funds through the Portuguese Foundation for Science and Technology (FCT) with project RECI/ECM-HID/0371/2012. References: Baptista M.A. & Miranda, J.M. (2009) Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci., 9, 25-42. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2013) A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds, Nat. Hazards Earth Syst. Sci., 13, 2533-2542. Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C. & Ferreira, R. M. L. (2015) Mathematical modelling of tsunami impacts on critical infrastructures: exposure and severity associated with debris transport at Sines port. EGU General Assembly 2015, Vienna, Austria. Ferreira, R. M. L.; Franca, M. J.; Leal, J. G. & Cardoso, A. H. (2009) Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics, Can. J. Civil. Eng., 36, 1604-1621. LeVeque, R. J., George, D. L., & Berger, M. J. (2011) Tsunami modelling with adaptively refined finite volume methods, Acta Numerica, pp. 211-289.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Sudip K; Perumalla, Kalyan S; Hirshman, Steven Paul
2013-01-01
Simulations that require solutions of block tridiagonal systems of equations rely on fast parallel solvers for runtime efficiency. Leading parallel solvers that are highly effective for general systems of equations, dense or sparse, are limited in scalability when applied to block tridiagonal systems. This paper presents scalability results as well as detailed analyses of two parallel solvers that exploit the special structure of block tridiagonal matrices to deliver superior performance, often by orders of magnitude. A rigorous analysis of their relative parallel runtimes is shown to reveal the existence of a critical block size that separates the parameter space spannedmore » by the number of block rows, the block size and the processor count, into distinct regions that favor one or the other of the two solvers. Dependence of this critical block size on the above parameters as well as on machine-specific constants is established. These formal insights are supported by empirical results on up to 2,048 cores of a Cray XT4 system. To the best of our knowledge, this is the highest reported scalability for parallel block tridiagonal solvers to date.« less
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.
On some Aitken-like acceleration of the Schwarz method
NASA Astrophysics Data System (ADS)
Garbey, M.; Tromeur-Dervout, D.
2002-12-01
In this paper we present a family of domain decomposition based on Aitken-like acceleration of the Schwarz method seen as an iterative procedure with a linear rate of convergence. We first present the so-called Aitken-Schwarz procedure for linear differential operators. The solver can be a direct solver when applied to the Helmholtz problem with five-point finite difference scheme on regular grids. We then introduce the Steffensen-Schwarz variant which is an iterative domain decomposition solver that can be applied to linear and nonlinear problems. We show that these solvers have reasonable numerical efficiency compared to classical fast solvers for the Poisson problem or multigrids for more general linear and nonlinear elliptic problems. However, the salient feature of our method is that our algorithm has high tolerance to slow network in the context of distributed parallel computing and is attractive, generally speaking, to use with computer architecture for which performance is limited by the memory bandwidth rather than the flop performance of the CPU. This is nowadays the case for most parallel. computer using the RISC processor architecture. We will illustrate this highly desirable property of our algorithm with large-scale computing experiments.
Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.
Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger
2016-11-01
In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.
Divergence-Free SPH for Incompressible and Viscous Fluids.
Bender, Jan; Koschier, Dan
2017-03-01
In this paper we present a novel Smoothed Particle Hydrodynamics (SPH) method for the efficient and stable simulation of incompressible fluids. The most efficient SPH-based approaches enforce incompressibility either on position or velocity level. However, the continuity equation for incompressible flow demands to maintain a constant density and a divergence-free velocity field. We propose a combination of two novel implicit pressure solvers enforcing both a low volume compression as well as a divergence-free velocity field. While a compression-free fluid is essential for realistic physical behavior, a divergence-free velocity field drastically reduces the number of required solver iterations and increases the stability of the simulation significantly. Thanks to the improved stability, our method can handle larger time steps than previous approaches. This results in a substantial performance gain since the computationally expensive neighborhood search has to be performed less frequently. Moreover, we introduce a third optional implicit solver to simulate highly viscous fluids which seamlessly integrates into our solver framework. Our implicit viscosity solver produces realistic results while introducing almost no numerical damping. We demonstrate the efficiency, robustness and scalability of our method in a variety of complex simulations including scenarios with millions of turbulent particles or highly viscous materials.
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2013-01-01
Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
NASA Astrophysics Data System (ADS)
Zhou, Xin
1990-03-01
For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.
ERIC Educational Resources Information Center
Jones, Steven R.
2015-01-01
This study aims to broadly examine how commonly various conceptualizations of the definite integral are drawn on by students as they attempt to explain the meaning of integral expressions. Previous studies have shown that certain conceptualizations, such as the area under a curve or the values of an anti-derivative, may be less productive in…
NASA Technical Reports Server (NTRS)
Haimes, Robert; Follen, Gregory J.
1998-01-01
CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.
Design of a Variational Multiscale Method for Turbulent Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
A spectral-element framework is presented for the simulation of subsonic compressible high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the computational schemes to enable unsteady simulations with a large number of spatial and temporal degrees of freedom. A collocation scheme is combined with optimized computational kernels to provide a residual evaluation with computational cost independent of order of accuracy up to 16th order. The optimized residual routines are used to develop a low-memory implicit scheme based on a matrix-free Newton-Krylov method. A preconditioner based on the finite-difference diagonalized ADI scheme is developed which maintains the low memory of the matrix-free implicit solver, while providing improved convergence properties. Emphasis on low memory usage throughout the solver development is leveraged to implement a coupled space-time DG solver which may offer further efficiency gains through adaptivity in both space and time.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Myers, R. A.; Topp, D. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.
Parallel satellite orbital situational problems solver for space missions design and control
NASA Astrophysics Data System (ADS)
Atanassov, Atanas Marinov
2016-11-01
Solving different scientific problems for space applications demands implementation of observations, measurements or realization of active experiments during time intervals in which specific geometric and physical conditions are fulfilled. The solving of situational problems for determination of these time intervals when the satellite instruments work optimally is a very important part of all activities on every stage of preparation and realization of space missions. The elaboration of universal, flexible and robust approach for situation analysis, which is easily portable toward new satellite missions, is significant for reduction of missions' preparation times and costs. Every situation problem could be based on one or more situation conditions. Simultaneously solving different kinds of situation problems based on different number and types of situational conditions, each one of them satisfied on different segments of satellite orbit requires irregular calculations. Three formal approaches are presented. First one is related to situation problems description that allows achieving flexibility in situation problem assembling and presentation in computer memory. The second formal approach is connected with developing of situation problem solver organized as processor that executes specific code for every particular situational condition. The third formal approach is related to solver parallelization utilizing threads and dynamic scheduling based on "pool of threads" abstraction and ensures a good load balance. The developed situation problems solver is intended for incorporation in the frames of multi-physics multi-satellite space mission's design and simulation tools.
Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries
NASA Astrophysics Data System (ADS)
Gillis, T.; Winckelmans, G.; Chatelain, P.
2018-02-01
We present a fast and efficient Fourier-based solver for the Poisson problem around an arbitrary geometry in an unbounded 3D domain. This solver merges two rewarding approaches, the lattice Green's function method and the immersed interface method, using the Sherman-Morrison-Woodbury decomposition formula. The method is intended to be second order up to the boundary. This is verified on two potential flow benchmarks. We also further analyse the iterative process and the convergence behavior of the proposed algorithm. The method is applicable to a wide range of problems involving a Poisson equation around inner bodies, which goes well beyond the present validation on potential flows.
NASA Astrophysics Data System (ADS)
Regnier, D.; Verrière, M.; Dubray, N.; Schunck, N.
2016-03-01
We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.
Fast Laplace solver approach to pore-scale permeability
NASA Astrophysics Data System (ADS)
Arns, C. H.; Adler, P. M.
2018-02-01
We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.
Multitasking domain decomposition fast Poisson solvers on the Cray Y-MP
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Fatoohi, Rod A.
1990-01-01
The results of multitasking implementation of a domain decomposition fast Poisson solver on eight processors of the Cray Y-MP are presented. The object of this research is to study the performance of domain decomposition methods on a Cray supercomputer and to analyze the performance of different multitasking techniques using highly parallel algorithms. Two implementations of multitasking are considered: macrotasking (parallelism at the subroutine level) and microtasking (parallelism at the do-loop level). A conventional FFT-based fast Poisson solver is also multitasked. The results of different implementations are compared and analyzed. A speedup of over 7.4 on the Cray Y-MP running in a dedicated environment is achieved for all cases.
Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach
NASA Astrophysics Data System (ADS)
Tovbis, Alexander; El, Gennady A.
2016-10-01
The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated N-phase nonlinear wave solutions to the focusing nonlinear Schrödinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular solutions of the fNLS in the semiclassical (small dispersion) limit that develop slowly modulated N-phase nonlinear wave in the process of evolution. Both approaches have their own merits and limitations. Understanding of the interrelations between them could prove beneficial for a broad range of problems involving the semiclassical fNLS.
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2010-08-01
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio η/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.
NASA Astrophysics Data System (ADS)
Nutku, Y.
1985-06-01
We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.
The Hurwitz Enumeration Problem of Branched Covers and Hodge Integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yun S.
We use algebraic methods to compute the simple Hurwitz numbers for arbitrary source and target Riemann surfaces. For an elliptic curve target, we reproduce the results previously obtained by string theorists. Motivated by the Gromov-Witten potentials, we find a general generating function for the simple Hurwitz numbers in terms of the representation theory of the symmetric group S{sub n}. We also find a generating function for Hodge integrals on the moduli space {bar M}{sub g,2} of Riemann surfaces with two marked points, similar to that found by Faber and Pandharipande for the case of one marked point.
NASA Astrophysics Data System (ADS)
Hervik, S.; Málek, T.; Pravda, V.; Pravdová, A.
2015-12-01
We study type II universal metrics of the Lorentzian signature. These metrics simultaneously solve vacuum field equations of all theories of gravitation with the Lagrangian being a polynomial curvature invariant constructed from the metric, the Riemann tensor and its covariant derivatives of an arbitrary order. We provide examples of type II universal metrics for all composite number dimensions. On the other hand, we have no examples for prime number dimensions and we prove the non-existence of type II universal spacetimes in five dimensions. We also present type II vacuum solutions of selected classes of gravitational theories, such as Lovelock, quadratic and L({{Riemann}}) gravities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouras, I.; El, A.; Fochler, O.
2010-08-15
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.
Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations
NASA Astrophysics Data System (ADS)
Schneider, Evan Elizabeth
This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps that are unlikely to escape the galaxy.
A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry
NASA Astrophysics Data System (ADS)
Jaouen, Stéphane
2007-07-01
In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimensional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80-105], a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math. 89 (2001) 99-134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327-372] is also described. It leads to many advantages. First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equations, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward. The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that - due to its simplicity and its low computational cost - the Linear Perturbations Code (LPC) is a powerful tool to understand and predict the development of hydrodynamic instabilities in the linear regime.
NASA Astrophysics Data System (ADS)
Vaidya, B.; Mignone, A.; Bodo, G.; Massaglia, S.
2015-08-01
Context. An equation of state (EoS) is a relation between thermodynamic state variables and it is essential for closing the set of equations describing a fluid system. Although an ideal EoS with a constant adiabatic index Γ is the preferred choice owing to its simplistic implementation, many astrophysical fluid simulations may benefit from a more sophisticated treatment that can account for diverse chemical processes. Aims: In the present work we first review the basic thermodynamic principles of a gas mixture in terms of its thermal and caloric EoS by including effects like ionization, dissociation, and temperature dependent degrees of freedom such as molecular vibrations and rotations. The formulation is revisited in the context of plasmas that are either in equilibrium conditions (local thermodynamic- or collisional excitation-equilibria) or described by non-equilibrium chemistry coupled to optically thin radiative cooling. We then present a numerical implementation of thermally ideal gases obeying a more general caloric EoS with non-constant adiabatic index in Godunov-type numerical schemes. Methods: We discuss the necessary modifications to the Riemann solver and to the conversion between total energy and pressure (or vice versa) routinely invoked in Godunov-type schemes. We then present two different approaches for computing the EoS. The first employs root-finder methods and it is best suited for EoS in analytical form. The second is based on lookup tables and interpolation and results in a more computationally efficient approach, although care must be taken to ensure thermodynamic consistency. Results: A number of selected benchmarks demonstrate that the employment of a non-ideal EoS can lead to important differences in the solution when the temperature range is 500-104 K where dissociation and ionization occur. The implementation of selected EoS introduces additional computational costs although the employment of lookup table methods (when possible) can significantly reduce the overhead by a factor of ~ 3-4.
Development of a 3-D upwind PNS code for chemically reacting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Tannehill, J. C.; Wadawadigi, G.
1992-01-01
Two new parabolized Navier-Stokes (PNS) codes were developed to compute the three-dimensional, viscous, chemically reacting flow of air around hypersonic vehicles such as the National Aero-Space Plane (NASP). The first code (TONIC) solves the gas dynamic and species conservation equations in a fully coupled manner using an implicit, approximately-factored, central-difference algorithm. This code was upgraded to include shock fitting and the capability of computing the flow around complex body shapes. The revised TONIC code was validated by computing the chemically-reacting (M(sub infinity) = 25.3) flow around a 10 deg half-angle cone at various angles of attack and the Ames All-Body model at 0 deg angle of attack. The results of these calculations were in good agreement with the results from the UPS code. One of the major drawbacks of the TONIC code is that the central-differencing of fluxes across interior flowfield discontinuities tends to introduce errors into the solution in the form of local flow property oscillations. The second code (UPS), originally developed for a perfect gas, has been extended to permit either perfect gas, equilibrium air, or nonequilibrium air computations. The code solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that was modified to account for real gas effects. The dissipation term associated with this algorithm is sufficiently adaptive to flow conditions that, even when attempting to capture very strong shock waves, no additional smoothing is required. For nonequilibrium calculations, the code solves the fluid dynamic and species continuity equations in a loosely-coupled manner. This code was used to calculate the hypersonic, laminar flow of chemically reacting air over cones at various angles of attack. In addition, the flow around the McDonnel Douglas generic option blended-wing-body was computed and comparisons were made between the perfect gas, equilibrium air, and the nonequilibrium air results.
Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2014-08-01
This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.
Font, José A
2008-01-01
This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has been made to focus on multidimensional studies, directing the interested reader to earlier versions of the review for discussions on one-dimensional works. Supplementary material is available for this article at 10.12942/lrr-2008-7.
NASA Technical Reports Server (NTRS)
Groth, Clinton P. T.; Roe, Philip L.
1998-01-01
Six months of funding was received for the proposed three year research program (funding for the period from March 1, 1997 to August 31, 1997). Although the official starting date for the project was March 1, 1997, no funding for the project was received until July 1997. In the funded research period, considerable progress was made on Phase I of the proposed research program. The initial research efforts concentrated on applying the 10-, 20-, and 35-moment Gaussian-based closures to a series of standard two-dimensional non-reacting single species test flow problems, such as the flat plate, couette, channel, and rearward facing step flows, and to some other two-dimensional flows having geometries similar to those encountered in chemical-vapor deposition (CVD) reactors. Eigensystem analyses for these systems for the case of two spatial dimensions was carried out and efficient formulations of approximate Riemann solvers have been formulated using these eigenstructures. Formulations to include rotational non-equilibrium effects into the moment closure models for the treatment of polyatomic gases were explored, as the original formulations of the closure models were developed strictly for gases composed of monatomic molecules. The development of a software library and computer code for solving relaxing hyperbolic systems in two spatial dimensions of the type arising from the closure models was also initiated. The software makes use of high-resolution upwind finite-volumes schemes, multi-stage point implicit time stepping, and automatic adaptive mesh refinement (AMR) to solve the governing conservation equations for the moment closures. The initial phase of the code development was completed and a numerical investigation of the solutions of the 10-moment closure model for the simple two-dimensional test cases mentioned above was initiated. Predictions of the 10-moment model were compared to available theoretical solutions and the results of direct-simulation Monte Carlo (DSMC) calculations. The first results of this study were presented at a meeting last year.
Evolution of wave and tide over vegetation region in nearshore waters
NASA Astrophysics Data System (ADS)
Zhang, Mingliang; Zhang, Hongxing; Zhao, Kaibin; Tang, Jun; Qin, Huifa
2017-08-01
Coastal wetlands are an important ecosystem in nearshore regions, where complex flow characteristics occur because of the interactions among tides, waves, and plants, especially in the discontinuous flow of the intertidal zone. In order to simulate the wave and wave-induced current in coastal waters, in this study, an explicit depth-averaged hydrodynamic (HD) model has been dynamically coupled with a wave spectral model (CMS-Wave) by sharing the tide and wave data. The hydrodynamic model is based on the finite volume method; the intercell flux is computed using the Harten-Lax-van Leer (HLL) approximate Riemann solver for computing the dry-to-wet interface; the drag force of vegetation is modeled as the sink terms in the momentum equations. An empirical wave energy dissipation term with plant effect has been derived from the wave action balance equation to account for the resistance induced by aquatic vegetation in the CMS-Wave model. The results of the coupling model have been verified using the measured data for the case with wave-tide-vegetation interactions. The results show that the wave height decreases significantly along the wave propagation direction in the presence of vegetation. In the rip channel system, the oblique waves drive a meandering longshore current; it moves from left to right past the cusps with oscillations. In the vegetated region, the wave height is greatly attenuated due to the presence of vegetation, and the radiation stresses are noticeably changed as compared to the region without vegetation. Further, vegetation can affect the spatial distribution of mean velocity in a rip channel system. In the co-exiting environment of tides, waves, and vegetation, the locations of wave breaking and wave-induced radiation stress also vary with the water level of flooding or ebb tide in wetland water, which can also affect the development and evolution of wave-induced current.
The vertical structure of the boundary layer around compact objects
NASA Astrophysics Data System (ADS)
Hertfelder, Marius; Kley, Wilhelm
2017-09-01
Context. Mass transfer due to Roche lobe overflow leads to the formation of an accretion disk around a weakly magnetized white dwarf (WD) in cataclysmic variables. At the inner edge of the disk, the gas comes upon the surface of the WD and has to get rid of its excess kinetic energy in order to settle down on the more slowly rotating outer stellar layers. This region is known as the boundary layer (BL). Aims: In this work we investigate the vertical structure of the BL, which is still poorly understood. We shall provide details of the basic structure of the two-dimensional (2D) BL and how it depends on parameters such as stellar mass and rotation rate, as well as the mass-accretion rate. We further investigate the destination of the disk material and compare our results with previous one-dimensional (1D) simulations. Methods: We solve the 2D equations of radiation hydrodynamics in a spherical (r-ϑ) geometry using a parallel grid-based code that employs a Riemann solver. The radiation energy is considered in the two-temperature approach with a radiative flux given by the flux-limited diffusion approximation. Results: The BL around a non-rotating WD is characterized by a steep drop in angular velocity over a width of only 1% of the stellar radius, a heavy depletion of mass, and a high temperature ( 500 000 K) as a consequence of the strong shear. Variations in Ω∗,M∗, and Ṁ influence the extent of the changes of the variables in the BL but not the general structure. Depending on Ω∗, the disk material travels up to the poles or is halted at a certain latitude. The extent of mixing with the stellar material also depends on Ω∗. We find that the 1D approximation matches the 2D data well, apart from an underestimated temperature.
TOUGH3: A new efficient version of the TOUGH suite of multiphase flow and transport simulators
NASA Astrophysics Data System (ADS)
Jung, Yoojin; Pau, George Shu Heng; Finsterle, Stefan; Pollyea, Ryan M.
2017-11-01
The TOUGH suite of nonisothermal multiphase flow and transport simulators has been updated by various developers over many years to address a vast range of challenging subsurface problems. The increasing complexity of the simulated processes as well as the growing size of model domains that need to be handled call for an improvement in the simulator's computational robustness and efficiency. Moreover, modifications have been frequently introduced independently, resulting in multiple versions of TOUGH that (1) led to inconsistencies in feature implementation and usage, (2) made code maintenance and development inefficient, and (3) caused confusion to users and developers. TOUGH3-a new base version of TOUGH-addresses these issues. It consolidates both the serial (TOUGH2 V2.1) and parallel (TOUGH2-MP V2.0) implementations, enabling simulations to be performed on desktop computers and supercomputers using a single code. New PETSc parallel linear solvers are added to the existing serial solvers of TOUGH2 and the Aztec solver used in TOUGH2-MP. The PETSc solvers generally perform better than the Aztec solvers in parallel and the internal TOUGH3 linear solver in serial. TOUGH3 also incorporates many new features, addresses bugs, and improves the flexibility of data handling. Due to the improved capabilities and usability, TOUGH3 is more robust and efficient for solving tough and computationally demanding problems in diverse scientific and practical applications related to subsurface flow modeling.
Solving a discrete model of the lac operon using Z3
NASA Astrophysics Data System (ADS)
Gutierrez, Natalia A.
2014-05-01
A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.
PUFoam : A novel open-source CFD solver for the simulation of polyurethane foams
NASA Astrophysics Data System (ADS)
Karimi, M.; Droghetti, H.; Marchisio, D. L.
2017-08-01
In this work a transient three-dimensional mathematical model is formulated and validated for the simulation of polyurethane (PU) foams. The model is based on computational fluid dynamics (CFD) and is coupled with a population balance equation (PBE) to describe the evolution of the gas bubbles/cells within the PU foam. The front face of the expanding foam is monitored on the basis of the volume-of-fluid (VOF) method using a compressible solver available in OpenFOAM version 3.0.1. The solver is additionally supplemented to include the PBE, solved with the quadrature method of moments (QMOM), the polymerization kinetics, an adequate rheological model and a simple model for the foam thermal conductivity. The new solver is labelled as PUFoam and is, for the first time in this work, validated for 12 different mixing-cup experiments. Comparison of the time evolution of the predicted and experimentally measured density and temperature of the PU foam shows the potentials and limitations of the approach.
Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Philip, Bobby; Chacón, Luis; Pernice, Michael
2008-10-01
An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.
Matlab Geochemistry: An open source geochemistry solver based on MRST
NASA Astrophysics Data System (ADS)
McNeece, C. J.; Raynaud, X.; Nilsen, H.; Hesse, M. A.
2017-12-01
The study of geological systems often requires the solution of complex geochemical relations. To address this need we present an open source geochemical solver based on the Matlab Reservoir Simulation Toolbox (MRST) developed by SINTEF. The implementation supports non-isothermal multicomponent aqueous complexation, surface complexation, ion exchange, and dissolution/precipitation reactions. The suite of tools available in MRST allows for rapid model development, in particular the incorporation of geochemical calculations into transport simulations of multiple phases, complex domain geometry and geomechanics. Different numerical schemes and additional physics can be easily incorporated into the existing tools through the object-oriented framework employed by MRST. The solver leverages the automatic differentiation tools available in MRST to solve arbitrarily complex geochemical systems with any choice of species or element concentration as input. Four mathematical approaches enable the solver to be quite robust: 1) the choice of chemical elements as the basis components makes all entries in the composition matrix positive thus preserving convexity, 2) a log variable transformation is used which transfers the nonlinearity to the convex composition matrix, 3) a priori bounds on variables are calculated from the structure of the problem, constraining Netwon's path and 4) an initial guess is calculated implicitly by sequentially adding model complexity. As a benchmark we compare the model to experimental and semi-analytic solutions of the coupled salinity-acidity transport system. Together with the reservoir simulation capabilities of MRST the solver offers a promising tool for geochemical simulations in reservoir domains for applications in a diversity of fields from enhanced oil recovery to radionuclide storage.
NASA Astrophysics Data System (ADS)
La Rocca, Michele; Adduce, Claudia; Sciortino, Giampiero; Pinzon, Allen Bateman
2008-10-01
The dynamics of a three-dimensional gravity current is investigated by both laboratory experiments and numerical simulations. The experiments take place in a rectangular tank, which is divided into two square reservoirs with a wall containing a sliding gate of width b. The two reservoirs are filled to the same height H, one with salt water and the other with fresh water. The gravity current starts its evolution as soon as the sliding gate is manually opened. Experiments are conducted with either smooth or rough surface on the bottom of the tank. The bottom roughness is created by gluing sediment material of different diameters to the surface. Five diameter values for the surface roughness and two salinity conditions for the fluid are investigated. The mathematical model is based on shallow-water theory together with the single-layer approximation, so that the model is strictly hyperbolic and can be put into conservative form. Consequently, a finite-volume-based numerical algorithm can be applied. The Godunov formulation is used together with Roe's approximate Riemann solver. Comparisons between the numerical and experimental results show satisfactory agreement. The behavior of the gravity current is quite unusual and cannot be interpreted using the usual model framework adopted for two-dimensional and axisymmetric gravity currents. Two main phases are apparent in the gravity current evolution; during the first phase the front velocity increases, and during the second phase the front velocity decreases and the dimensionless results, relative to the different densities, collapse onto the same curve. A systematic discrepancy is seen between the numerical and experimental results, mainly during the first phase of the gravity current evolution. This discrepancy is attributed to the limits of the mathematical formulation, in particular, the neglect of entrainment in the mathematical model. An interesting result arises from the influence of the bottom surface roughness; it both reduces the front velocity during the second phase of motion and attenuates the differences between the experimental and numerical front velocities during the first phase of motion.
A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials
NASA Astrophysics Data System (ADS)
Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X.
2001-08-01
A few years ago the authors introduced a new approach to study asymptotic questions for orthogonal polynomials. In this paper we give an overview of our method and review the results which have been obtained in Deift et al. (Internat. Math. Res. Notices (1997) 759, Comm. Pure Appl. Math. 52 (1999) 1491, 1335), Deift (Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, Vol. 3, New York University, 1999), Kriecherbauer and McLaughlin (Internat. Math. Res. Notices (1999) 299) and Baik et al. (J. Amer. Math. Soc. 12 (1999) 1119). We mainly consider orthogonal polynomials with respect to weights on the real line which are either (1) Freud-type weights d[alpha](x)=e-Q(x) dx (Q polynomial or Q(x)=x[beta], [beta]>0), or (2) varying weights d[alpha]n(x)=e-nV(x) dx (V analytic, limx-->[infinity] V(x)/logx=[infinity]). We obtain Plancherel-Rotach-type asymptotics in the entire complex plane as well as asymptotic formulae with error estimates for the leading coefficients, for the recurrence coefficients, and for the zeros of the orthogonal polynomials. Our proof starts from an observation of Fokas et al. (Comm. Math. Phys. 142 (1991) 313) that the orthogonal polynomials can be determined as solutions of certain matrix valued Riemann-Hilbert problems. We analyze the Riemann-Hilbert problems by a steepest descent type method introduced by Deift and Zhou (Ann. Math. 137 (1993) 295) and further developed in Deift and Zhou (Comm. Pure Appl. Math. 48 (1995) 277) and Deift et al. (Proc. Nat. Acad. Sci. USA 95 (1998) 450). A crucial step in our analysis is the use of the well-known equilibrium measure which describes the asymptotic distribution of the zeros of the orthogonal polynomials.
Recent Advances in Agglomerated Multigrid
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.
2013-01-01
We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.
Existence of a coupled system of fractional differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Rabha W.; Siri, Zailan
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
NASA Astrophysics Data System (ADS)
Saberi, Elaheh; Reza Hejazi, S.
2018-02-01
In the present paper, Lie point symmetries of the time-fractional generalized Hirota-Satsuma coupled KdV (HS-cKdV) system based on the Riemann-Liouville derivative are obtained. Using the derived Lie point symmetries, we obtain similarity reductions and conservation laws of the considered system. Finally, some analytic solutions are furnished by means of the invariant subspace method in the Caputo sense.
NASA Astrophysics Data System (ADS)
Dong, Huan He; Guo, Bao Yong; Yin, Bao Shu
2016-06-01
In the paper, based on the modified Riemann-Liouville fractional derivative and Tu scheme, the fractional super NLS-MKdV hierarchy is derived, especially the self-consistent sources term is considered. Meanwhile, the generalized fractional supertrace identity is proposed, which is a beneficial supplement to the existing literature on integrable system. As an application, the super Hamiltonian structure of fractional super NLS-MKdV hierarchy is obtained.
Computational aeroelasticity using a pressure-based solver
NASA Astrophysics Data System (ADS)
Kamakoti, Ramji
A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.
Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T
2010-09-01
To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray
2017-07-11
Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.
Regnier, D.; Verriere, M.; Dubray, N.; ...
2015-11-30
In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle amore » realistic calculation of fission dynamics.« less
Numerical study of MHD supersonic flow control
NASA Astrophysics Data System (ADS)
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
Parameter Optimization for Turbulent Reacting Flows Using Adjoints
NASA Astrophysics Data System (ADS)
Lapointe, Caelan; Hamlington, Peter E.
2017-11-01
The formulation of a new adjoint solver for topology optimization of turbulent reacting flows is presented. This solver provides novel configurations (e.g., geometries and operating conditions) based on desired system outcomes (i.e., objective functions) for complex reacting flow problems of practical interest. For many such problems, it would be desirable to know optimal values of design parameters (e.g., physical dimensions, fuel-oxidizer ratios, and inflow-outflow conditions) prior to real-world manufacture and testing, which can be expensive, time-consuming, and dangerous. However, computational optimization of these problems is made difficult by the complexity of most reacting flows, necessitating the use of gradient-based optimization techniques in order to explore a wide design space at manageable computational cost. The adjoint method is an attractive way to obtain the required gradients, because the cost of the method is determined by the dimension of the objective function rather than the size of the design space. Here, the formulation of a novel solver is outlined that enables gradient-based parameter optimization of turbulent reacting flows using the discrete adjoint method. Initial results and an outlook for future research directions are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurrus, Elizabeth; Engel, Dave; Star, Keith
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suitemore » of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.« less
Improvements to the APBS biomolecular solvation software suite.
Jurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E; Brookes, David H; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W; Dolinsky, Todd; Konecny, Robert; Koes, David R; Nielsen, Jens Erik; Head-Gordon, Teresa; Geng, Weihua; Krasny, Robert; Wei, Guo-Wei; Holst, Michael J; McCammon, J Andrew; Baker, Nathan A
2018-01-01
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK a values, and an improved web-based visualization tool for viewing electrostatics. © 2017 The Protein Society.
LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.
2004-01-01
This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.
An oscillation-free flow solver based on flux reconstruction
NASA Astrophysics Data System (ADS)
Aguerre, Horacio J.; Pairetti, Cesar I.; Venier, Cesar M.; Márquez Damián, Santiago; Nigro, Norberto M.
2018-07-01
In this paper, a segregated algorithm is proposed to suppress high-frequency oscillations in the velocity field for incompressible flows. In this context, a new velocity formula based on a reconstruction of face fluxes is defined eliminating high-frequency errors. In analogy to the Rhie-Chow interpolation, this approach is equivalent to including a flux-based pressure gradient with a velocity diffusion in the momentum equation. In order to guarantee second-order accuracy of the numerical solver, a set of conditions are defined for the reconstruction operator. To arrive at the final formulation, an outlook over the state of the art regarding velocity reconstruction procedures is presented comparing them through an error analysis. A new operator is then obtained by means of a flux difference minimization satisfying the required spatial accuracy. The accuracy of the new algorithm is analyzed by performing mesh convergence studies for unsteady Navier-Stokes problems with analytical solutions. The stabilization properties of the solver are then tested in a problem where spurious numerical oscillations arise for the velocity field. The results show a remarkable performance of the proposed technique eliminating high-frequency errors without losing accuracy.
The short pulse equation by a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2017-07-01
We develop a Riemann-Hilbert approach to the inverse scattering transform method for the short pulse (SP) equation u_{xt}=u+{1/6}(u^3)_{xx} with zero boundary conditions (as |x|→ ∞). This approach is directly applied to a Lax pair for the SP equation. It allows us to give a parametric representation of the solution to the Cauchy problem. This representation is then used for studying the longtime behavior of the solution as well as for retrieving the soliton solutions. Finally, the analysis of the longtime behavior allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.
NASA Astrophysics Data System (ADS)
Harada, Hiromitsu; Mouchet, Amaury; Shudo, Akira
2017-10-01
The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.
NASA Astrophysics Data System (ADS)
Bilal, Adel; Gervais, Jean-Loup
A class of punctured constant curvature Riemann surfaces, with boundary conditions similar to those of the Poincaré half plane, is constructed. It is shown to describe the scattering of particle-like objects in two Euclidian dimensions. The associated time delays and classical phase shifts are introduced and connected to the behaviour of the surfaces at their punctures. For each such surface, we conjecture that the time delays are partial derivatives of the phase shift. This type of relationship, already known to be correct in other scattering problems, leads to a general integrability condition concerning the behaviour of the metric in the neighbourhood of the punctures. The time delays are explicitly computed for three punctures, and the conjecture is verified. The result, reexpressed as a product of Riemann zeta-functions, exhibits an intringuing number-theoretic structure: a p-adic product formula holds and one of Ramanujan's identities applies. An ansatz is given for the corresponding exact quantum S-matrix. It is such that the integrability condition is replaced by a finite difference relation only involving the exact spectrum already derived, in the associated Liouville field theory, by Gervais and Neveu.
A novel medical image data-based multi-physics simulation platform for computational life sciences.
Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels
2013-04-06
Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.
Hybrid MPI+OpenMP Programming of an Overset CFD Solver and Performance Investigations
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Jin, Haoqiang H.; Biegel, Bryan (Technical Monitor)
2002-01-01
This report describes a two level parallelization of a Computational Fluid Dynamic (CFD) solver with multi-zone overset structured grids. The approach is based on a hybrid MPI+OpenMP programming model suitable for shared memory and clusters of shared memory machines. The performance investigations of the hybrid application on an SGI Origin2000 (O2K) machine is reported using medium and large scale test problems.
Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George Em
2015-09-01
Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM).
Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu; Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp; Bian, Xin, E-mail: xin_bian@brown.edu
2015-09-15
Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create anmore » easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)« less
NASA Astrophysics Data System (ADS)
Lee, Jun; Lee, Jungwoo; Yun, Sang-Leen; Oh, Hye-Cheol
2017-08-01
The purpose of this study was to develop a two-dimensional shallow water flow model using the finite volume method on a combined unstructured triangular and quadrilateral grid system to simulate coastal, estuarine and river flows. The intercell numerical fluxes were calculated using the classical Osher-Solomon's approximate Riemann solver for the governing conservation laws to be able to handle wetting and drying processes and to capture a tidal bore like phenomenon. The developed model was validated with several benchmark test problems including the two-dimensional dam-break problem. The model results were well agreed with results of other models and experimental results in literature. The unstructured triangular and quadrilateral combined grid system was successfully implemented in the model, thus the developed model would be more flexible when applying in an estuarine system, which includes narrow channels. Then, the model was tested in Mobile Bay, Alabama, USA. The developed model reproduced water surface elevation well as having overall Predictive Skill of 0.98. We found that the primary inlet, Main Pass, only covered 35% of the fresh water exchange while it covered 89% of the total water exchange between the ocean and Mobile Bay. There were also discharge phase difference between MP and the secondary inlet, Pass aux Herons, and this phase difference in flows would act as a critical role in substances' exchange between the eastern Mississippi Sound and the northern Gulf of Mexico through Main Pass and Pass aux Herons in Mobile Bay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flock, M.; Dzyurkevich, N.; Klahr, H.
2011-07-10
We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and amore » magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.« less
NASA Astrophysics Data System (ADS)
Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.
2018-02-01
We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with M< 8 M⊙ become white dwarfs and cool to the point where the electrons are degenerate and the ions are strongly coupled, a realm now available to study with MESA due to improved treatments of element diffusion, latent heat release, and blending of equations of state. Studies of the final fates of massive stars are extended in MESA by our addition of an approximate Riemann solver that captures shocks and conserves energy to high accuracy during dynamic epochs. We also introduce a 1D capability for modeling the effects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools - MESA-Web, MESA-Docker, pyMESA, and mesastar.org - to enhance MESA's education and research impact.
A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows
NASA Astrophysics Data System (ADS)
Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin
2017-11-01
A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.
Revisiting low-fidelity two-fluid models for gas–solids transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus
Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The modelmore » equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.« less
Application of a Scalable, Parallel, Unstructured-Grid-Based Navier-Stokes Solver
NASA Technical Reports Server (NTRS)
Parikh, Paresh
2001-01-01
A parallel version of an unstructured-grid based Navier-Stokes solver, USM3Dns, previously developed for efficient operation on a variety of parallel computers, has been enhanced to incorporate upgrades made to the serial version. The resultant parallel code has been extensively tested on a variety of problems of aerospace interest and on two sets of parallel computers to understand and document its characteristics. An innovative grid renumbering construct and use of non-blocking communication are shown to produce superlinear computing performance. Preliminary results from parallelization of a recently introduced "porous surface" boundary condition are also presented.
NASA Astrophysics Data System (ADS)
Gong, Weiwei; Zhou, Xu
2017-06-01
In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.
NASA Technical Reports Server (NTRS)
Korkan, Kenneth D.; Eagleson, Lisa A.; Griffiths, Robert C.
1991-01-01
Current research in the area of advanced propeller configurations for performance and acoustics are briefly reviewed. Particular attention is given to the techniques of Lock and Theodorsen modified for use in the design of counterrotating propeller configurations; a numerical method known as SSTAGE, which is a Euler solver for the unducted fan concept; the NASPROP-E numerical analysis also based on a Euler solver and used to study the near acoustic fields for the SR series propfan configurations; and a counterrotating propeller test rig designed to obtain an experimental performance/acoustic data base for various propeller configurations.
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.; ...
2017-01-26
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less