Science.gov

Sample records for rifting constructional volcanism

  1. Volcanism at rifts

    SciTech Connect

    White, R.S.; McKenzie, D.P.

    1989-07-01

    The earth's outer shell rifts continuously, stretching and splitting both on the ocean's floor and on continents. Every 30 million years or so the rifting becomes cataclysmic, releasing continent-size floods of magma. This paper explains that the same mechanism is at work in both cases, the difference being in the slightly hotter temperature of the parent mantle for spectacular volcanic outbursts. Two kinds of evidence are described: quantitative descriptions of rock melting and a wide range of observations made on the rifted edges of continents and in the oceans that have opened between them.

  2. Volcanism at Rifts.

    ERIC Educational Resources Information Center

    White, Robert S.; McKenzie, Dan P.

    1989-01-01

    Investigates the nature of catastrophic volcanism and the rifting process. Describes two kinds of evidence: quantitative descriptions of rock melting and a wide range of observations. Discusses examples of continent growth in the North Atlantic, India and the Seychelles islands, and the South Atlantic. (YP)

  3. Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.

    2014-09-01

    There is a great lack of knowledge regarding the evolution of islands inside active oceanic rifts, in particular the meaning of the different evolutionary steps. Therefore, we conducted an investigation in Graciosa Island, which lies at the northwestern end of the Terceira Rift in the Azores Triple Junction, with the objective of constraining the evolution of the island in terms of volcanic growth and mass wasting, in particular the meaning and age of the destruction events. From digital elevation model (DEM) analysis, stratigraphic and tectonic observations, K/Ar dating on key samples, and available bathymetry and gravity data, we propose that Graciosa comprises five main volcanic complexes separated by major unconformities related to large scale mass wasting: (1) The older volcanic edifice (Serra das Fontes Complex) grew until ca. 700 ka, and was affected by a major flank collapse towards the southwest, which removed the whole SW flank, the summit and a part of the NE flank. (2) The Baía do Filipe Complex developed between at least 472 ka and 433 ka in two different ways: in the SW (presently offshore) as a main volcano, and in the NE unconformably over the sub-aerial remnants of the Serra das Fontes Complex, as secondary volcanic edifices. (3) The Baía do Filipe Complex was affected by a major flank collapse towards the SW, again removing most of the edifice. (4) The remnants of the Baía do Filipe Complex were covered in unconformity by the Serra Dormida Complex between ca. 330 and 300 ka, which in turn was unconformably covered by the younger Basaltic Cover Complex between ca. 300 ka and 214 ka. These two units were affected by a third major sector collapse that removed the whole western flank, the summit and part of the eastern flank of the Serra Dormida and Basaltic Cover complexes. (5) Despite the relatively young age of Graciosa, the collapse scars are not well preserved, and not active anymore. (6) A central-type volcano has been growing since at least

  4. Venus - Volcanism and rift formation in Beta Regio

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Harmon, J. K.; Hine, A. A.; Head, J. W.

    1984-01-01

    A new high-resolution radar image of Beta Regio, a Venus highland area, confirms the presence of a major tectonic rift system and associated volcanic activity. The lack of identifiable impact craters, together with the apparent superposition of the Theia Mons volcanic structure on the rift system, suggest that at least some of the volcanic activity occurred in relatively recent geologic time. The presence of topographically similar highland areas elsewhere on Venus (Aphrodite Terra, Dali Chasma, and Diana Chasma) suggests that rifting and volcanism are significant processes on Venus.

  5. Off rift and on rift volcanism along the southern most extremity of the Reykjanes Ridge.

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, Armann; Martinez, Fernando; Hey, Richard

    2014-05-01

    In August-September 2013 R/V Marcus G Langseth conducted a geophysical survey of the southern Reykjanes Ridge and flanks to the Bight transform fault including the first orthogonally spreading segment to the south. The objectives were to better understand how the Reykjanes Ridge replaced the earlier transform fault-dominated structure. The survey acquired full-coverage multibeam bathymetry of some 90,000 km2 and acoustic backscatter imagery and coincident gravity and magnetic profiles. The Rift axis of the RR is defined by a rift valley, striking 36° NE, and deepens from N to S towards the Bight transform fault. Volcanism along the rift axis is characterized by en-echelon volcanic ridges striking 14°NE and rising some 400-1000 m above the valley floor, single circular volcanic sea mounts 400-600 m high, lava flow sheets and craters. Fissures and faults are not very prominent with in the rift valley. However, at both sides bounding the rift valley, fissure, faults and uplifting of the crust is a dominant feature. Surprisingly numerous volcanic edifices are observed on the faulted crust drifting away from the plate boundary. Further these volcanic edifices do not all show any faulting and have cone shape forms, indicating more explosive activity than within the rift. The volcanic edifices range in size from 2-3 km at the base to some hundreds of meters. Backscatter analysis shows that in general the volcanic edifices have higher values than the surrounding basement. These vents are observed as far as 100 km from the rifting center. High backscatter along with little or no faulting indicates that these off rift volcanic vents are younger than the basement they are resting on, thus manifesting that volcanism is not solely confined to the active rift boundary in the area. The segment south of Bight transform fault is highly dotted by these off rift volcanic vents

  6. Off-axis volcanism in the Gregory rift, east Africa: Implications for models of continental rifting

    NASA Astrophysics Data System (ADS)

    Bosworth, William

    1987-05-01

    The largest volcanic centers of the Gregory rift occur in two belts located 100 to 150 km east and west of the axis of the rift valley. These off-axis volcanic belts include the highest peaks on the continent of Africa and are interpreted to lie above the intersection of low-angle detachment systems with the base of a regionally thinned lithosphere. These detachment systems are manifested at the surface as a series of breakaway zones and regional bounding faults that produce subbasins with half-graben form. The asymmetry of subbasins alternates along the rift axis, indicating that the polarity of the underlying active detachment systems also reverses. The detachments are separated laterally by regional oblique-slip accommodation zones typified by wrench-style tectonism. Off-axis from the rift, the detachments are inferred to merge along strike as they cut to the base of the lithosphere. This results in irregular but persistent paired zones of volcanism and lithospheric thinning off-axis from the rift proper. The development of major volcanic cones such as Mount Kilimanjaro may be controlled by the interaction of leaky accommodation zones with the regions of structurally thinned lithosphere. The central Kenya hot spot has produced the anomalous quantities of volcanic material that fills the Gregory rift and probably enhances the off-axis volcanism but does not directly control its location. The model proposed here for tectonic controls of volcanism in the Gregory rift may be applicable to Phanerozoic continental rifts in general.

  7. Off-axis volcanism in the Gregory rift, east Africa: implications for models of continental rifting

    SciTech Connect

    Bosworth, W.

    1987-05-01

    The largest volcanic centers of the Gregory rift occur in two belts located 100 to 150 km east and west of the axis of the rift valley. These off-axis volcanic belts include the highest peaks on the continent of Africa and are interpreted to lie above the intersection of low-angle detachment systems with the base of a regionally thinned lithosphere. These detachment systems are manifested at the surface as a series of breakaway zones and regional bounding faults that produce subbasins with half-graben form. The asymmetry of subbasins alternates along the rift axis, indicating that the polarity of the underlying active detachment systems also reverses. The detachments are separated laterally by regional oblique-slip accommodation zones typified by wrench-style tectonism. Off-axis from the rift, the detachments are inferred to merge along strike as they cut to the base of the lithosphere. This results in irregular but persistent paired zones of volcanism and lithospheric thinning off-axis from the rift proper. The development of major volcanic cones such as Mount Kilimanjaro may be controlled by the interaction of leaky accommodation zones with the regions of structurally thinned lithosphere. The central Kenya hot spot has produced the anomalous quantities of volcanic material that fills the Gregory rift and probably enhances the off-axis volcanism but does not directly control its location. The model proposed here for tectonic controls of volcanism in the Gregory rift may be applicable to Phanerozoic continental rifts in general.

  8. Along-strike supply of volcanic rifted margins: Implications for plume-influenced rifting and sudden along-strike transitions between volcanic and non-volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Phipps Morgan, J.

    2006-12-01

    The existence of sudden along-strike transitions between volcanic and non-volcanic rifted margins is an important constraint for conceptual models of rifting and continental breakup. We think there is a promising indirect approach to infer the maximum width of the region of upwelling that exists beneath a rifted margin during the transition from rifting to seafloor-spreading. We infer this width of ~30km from the minimum length of the ridge-offsets that mark the limits of the `region of influence' of on-ridge plumes on the axial relief, axial morphology, and crustal thickness along the ridge and at the terminations of fossil volcanic rifted margins. We adopt Vogt's [1972] hypothesis for along-ridge asthenospheric flow in a narrow vertical slot beneath the axis of plume-influenced `macro-segments' and volcanic rifted margins. We find that: (1) There is a threshold distance to the lateral offsets that bound plume-influenced macrosegments; all such `barrier offsets' are greater than ~30km, while smaller offsets do not appear to be a barrier to along-axis flow. This pattern is seen in the often abrupt transitions between volcanic and non-volcanic rifted margins; these transitions coincide with >30km ridge offsets that mark the boundary between the smooth seafloor morphology and thick crust of a plume- influenced volcanic margin and a neighboring non-volcanic margin, as recorded in 180Ma rifting of the early N. Atlantic, the 42Ma rifting of the Kerguelen-Broken Ridge, and the 66Ma Seychelles-Indian rifting in the Indian Ocean. (2) A similar pattern is seen in the often abrupt transitions between `normal' and plume-influenced mid- ocean ridge segments, which is discussed in a companion presentation by Phipps Morgan and Ranero (this meeting). (3) The coexistance of adjacent volcanic and non-volcanic rifted margin segments is readily explained in this conceptual framework. If the volcanic margin macrosegment is plume-fed by hot asthenosphere along an axial ridge slot

  9. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Buck, W. Roger

    2017-05-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including most that border the Atlantic Ocean. Whether their formation requires large magnitude (i.e. 10 s of km) of normal fault slip or results from the deflection of the lithosphere by the weight of volcanic flows is controversial. Though there is evidence for faulting associated with some SDRs, this paper considers the range of structures that can be produced by magmatic and volcanic loading alone. To do this an idealized mechanical model for the construction of rift-related volcanic flow structures is developed. Dikes open as plates move away from the center of a model rift and volcanic flows fill the depression produced by the load caused by dike solidification. The thin elastic plate flexure approximation allows a closed form description of the shape of both the contacts between flows and between the flows and underlying dikes. The model depends on two independent parameters: the flexure parameter, α, and the maximum isostatically supported extrusive layer thickness, w0. For reasonable values of these parameters the model reproduces the observed down-dip thickening of flows and the range of reflector dip angles. A numerical scheme using the analytic results allows simulation of the effect of temporal changes in the locus of magmatic spreading as well as changes in the amount of volcanic infill. Either jumps in the location of the center of diking or periods with no volcanism result in separate units or ;packages; of model SDRs, in which the flow-dike contact dips landward, consistent with observations previously attributed only to listric normal fault offset. When jumps in the spreading center are small (i.e. less than α) they result in thicker, narrower volcanic units on one side of a rift compared to those on the other side. This is similar to the asymmetric distributions of volcanic packages seen

  10. Rifting and volcanism: Examples from volcanic rifted and magma-poor margins based on multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Franke, D.

    2012-04-01

    Great efforts in the research of passive rifted margins in the last decades highlighted also that lots of open questions remain. A considerable controversy exists about the role of the mantle during rifting and the subsequent formation of oceanic crust and about the interaction of mantle and surface processes, i.e. the precise nature of volcanism in the rifting process. There are two end-member extremes of passive rifted margins. Volcanic rifted margins evolve by a combination of extension, and extensive extrusive flood volcanism over short time periods during breakup, manifested in reflection seismic data as seaward dipping reflectors. These margins are commonly related to mantle plumes; however, in the past years this has been questioned. Magma-poor rifted margins in contrast show wide extensional features as rotated faults blocks and detachment surfaces near the base of the continental crust, but limited magmatism that in addition seems to be delayed to post-breakup. In this presentation examples from three locations that are less frequently cited in the discussion about (either magma-poor or volcanic) rifted margins will be shown: The Laptev Sea margin in the Arctic Ocean, where the active Arctic mid-oceanic ridge meets continental lithosphere at a high angle, the southernmost South Atlantic with well expressed conjugate volcanic rifted margins in a comparably "simple" configuration, potentially influenced by a mantle plume, the Tristan hot spot, and the South China Sea that may represent an intermediary form of continental extension between the end member extremes. The role of (hot-spot related) volcanism during break-up will be discussed for the three example margins that evolved in the Early Cretaceous, the Paleocene and the Oligocene, respectively.

  11. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  12. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  13. Numerical experiments of volcanic dominated rifts and passive margins

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Teyssier, Christian; Rey, Patrice; Whitney, Donna; Mondy, Luke

    2017-04-01

    Continental rifting is driven by plate tectonic forces (passive rifting), thermal thinning of the lithosphere over a hotspot (active rifting), or a combination of the two. Successful rifts develop into passive margins where pre-drift stretching is accompanied by normal faulting, clastic sedimentation, and various degrees of magmatism. The structure of volcanic passive margins (VPM) differs substantially from margins that are dominated by sedimentation. VPMs are typically narrow, with a lower continental crust that is intruded by magma and can flow as a low-viscosity layer. To investigate the role of the deep crust in the early development of VPMs, we have developed a suite of 2D thermomechanical numerical experiments (Underworld code) in which the density and viscosity of the deep crust and the density of the rift basin fill are systematically varied. Our experiments show that, for a given rifting velocity, the viscosity of the deep crust and the density of the rift basin fill exert primary controls on early VPM development. The viscosity of the deep crust controls the degree to which the shallow crust undergoes localised faulting or distributed thinning. A weak deep crust localises rifting and is efficiently exhumed to the near-surface, whereas a strong deep crust distributes shallow crust extension and remains buried. A high density rift basin fill results in gravitational loading and increased subsidence rate in cases in which the viscosity of the deep crust is sufficiently low to allow that layer to be displaced by the sinking basin fill. At the limit, a low viscosity deep crust overlain by a thick basalt-dominated fill generates a gravitational instability, with a drip of cool basalt that sinks and ponds at the Moho. Experiment results indicate that the deep crust plays a critical role in the dynamic development of volcanic dominated rifts and passive margins. During rifting, the deep continental crust is heated and readily responds to solicitations of the

  14. Growth and persistence of Hawaiian volcanic rift zones

    NASA Astrophysics Data System (ADS)

    Dieterich, James H.

    1988-05-01

    Hawaiian volcanic rift zones are modeled by representing the rifts and adjacent volcano flanks as long ridges with the geometry of flattened triangular prisms. The intrusion of dikes along the axis of a rift requires a mechanism to generate the appropriate dike-trapping stress field within the prism. Possible factors that affect the state of stress in the prism include multiple dike intrusion along the ridge axis, faulting, and gravitational sagging of the topography. In extreme models with very steep slopes and high Poisson's ratio, corresponding to the gelatin models of rift zones by Fiske and Jackson (1972), results of finite element calculations indicate that gravity-induced stresses are sufficient to trap a dike into propagating within the prism and parallel to the rift zone as proposed by Fiske and Jackson. However, the mechanism does not work for gently sloping flanks or a more acceptable Poisson's ratio of about 0.25. Additionally, trapping stresses in the gravity-loading and density stratification models will not persist after a few dike injection episodes. Therefore in mature Hawaiian rift zones with possibly thousands of dikes, additional processes must act to control the stresses that permit continued dike intrusion and rift persistence. It is proposed that accommodation to dike emplacement occurs by slip on deep faults, possibly of the type proposed for the 1975 Kalapana, Hawaii, earthquake. As suggested by others for this earthquake, the faults could coincide with the contact of the volcano with the seafloor within the weak seafloor sediments. Such faulting not only provides a means for the flanks to adjust continuously to intrusions but also generates the stress patterns needed to constrain future dikes to propagate along the rift axis. Other possible faulting mechanisms, such as shallow gravity slides and normal faulting of the flanks, do not appear to favor rift zone persistence. In this model the horizontal stress generated by a standing column of

  15. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related

  16. Forensic investigation of rift-to-drift transitions and volcanic rifted margins birth

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Hertogen, J.

    2008-12-01

    Volcanic rifted margins (VRM) reflect excess magmatism generated during the rift-to-drift transition of a continental rift system evolving into a Mid-Ocean Ridge (MOR). As a result many VRM (e.g. NAIP and CAMP) are recognized as Large Igneous Provinces (LIP). The prominent structural characteristics of VRM are Continental Flood Basalts, High-Velocity Lower Crustal bodies (HVLC) and Seaward Dipping Reflector Sequences (SDRS). However, the causes of these anomalously high eruption rates and magma volumes are presently poorly understood. Controversial issue opinions are based on two competing hypotheses: 1) Mantle plume related mechanisms where the excess magmatism results from elevated mantle temperatures; and 2) Rift induced small scale convection processes causing temperature anomalies and enhancing the mantle rock flux through the melt window. Largely because of difficulties to sample oceanic basement at VRM -due to thick sediment covers- the composition of rift-to-drift transition magmas is generally poorly constrained. We reviewed the geodynamic histories and magma compositions from well known VRM (e.g. NE Australia, E USA, Madagascar) and compared these data with own geochemical data from different NE Atlantic tectono-magmatic VRM zones. These comparisons point to a consistent, general VRM formation model. This model has to explain the primary observation, that geological long periods of extension have been reported -in all investigated VRM areas- prior to the breakup. Extensional far field stress looks to be the main geodynamic cause for continental breakup. Small scale convection during the late phase of a continental rift system is probably the key process generating excess magmatism in LIP related to rift-to-drift transitions.

  17. Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism

    NASA Technical Reports Server (NTRS)

    Senske, D. A.

    2008-01-01

    To understand the spatial and temporal relations between tectonic and volcanic processes on Venus, the Juno Chasma region is mapped. Geologic units are used to establish regional stratigraphic relations and the timing between rifting and volcanism.

  18. The importance of rift history for volcanic margin formation.

    PubMed

    Armitage, John J; Collier, Jenny S; Minshull, Tim A

    2010-06-17

    Rifting and magmatism are fundamental geological processes that shape the surface of our planet. A relationship between the two is widely acknowledged but its precise nature has eluded geoscientists and remained controversial. Largely on the basis of detailed observations from the North Atlantic Ocean, mantle temperature was identified as the primary factor controlling magmatic production, with most authors seeking to explain observed variations in volcanic activity at rifted margins in terms of the mantle temperature at the time of break-up. However, as more detailed observations have been made at other rifted margins worldwide, the validity of this interpretation and the importance of other factors in controlling break-up style have been much debated. One such observation is from the northwest Indian Ocean, where, despite an unequivocal link between an onshore flood basalt province, continental break-up and a hot-spot track leading to an active ocean island volcano, the associated continental margins show little magmatism. Here we reconcile these observations by applying a numerical model that accounts explicitly for the effects of earlier episodes of extension. Our approach allows us to directly compare break-up magmatism generated at different locations and so isolate the key controlling factors. We show that the volume of rift-related magmatism generated, both in the northwest Indian Ocean and at the better-known North Atlantic margins, depends not only on the mantle temperature but, to a similar degree, on the rift history. The inherited extensional history can either suppress or enhance melt generation, which can explain previously enigmatic observations.

  19. Lithology and temperature: How key mantle variables control rift volcanism

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  20. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  1. Rifting, Volcanism, and the Geochemical Character of the Mantle Beneath the West Antarctic Rift System (Invited)

    NASA Astrophysics Data System (ADS)

    Mukasa, S. B.; Aviado, K. B.; Rilling-Hall, S.; Bryce, J. G.; Cabato, J.

    2013-12-01

    The West Antarctic Rift System (WARS) is one of the largest extensional alkali volcanic provinces on Earth, but the mechanisms responsible for generating the massive amounts of its associated magmatism remain controversial. The failure of both passive and active decompression melting models to adequately explain the observed lava volumes has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. 40Ar/39Ar dating and geochemical analyses of the lavas, as well as volatile and trace-element determinations of olivine-hosted melt inclusions shed light on the relationship between rifting and volcanism, and also improve our understanding of the geochemical character of the mantle beneath the WARS. Results show that the magmatism post-dates the main phase of extension along the Terror Rift within the WARS, which supports a decompression-melting model without the benefit of a significant thermal anomaly. However, the observed large magma volumes seem to require a volatile-fluxed mantle, a notion supported by a long history of subduction (>500 Myr) along the paleo-Pacific margin of Gondwana. In fact, the legacy of that subduction may manifest itself in the high H2O concentrations of olivine-hosted melt inclusions (up to 3 wt% in preliminary results from ion probe measurements). The major oxide compositions of lavas in the WARS are best matched to experimental melts of garnet pyroxenite and carbonated peridotite sources. The Pb and Nd isotopic systems are decoupled from each other, suggesting removal of fluid-mobile elements from the mantle source possibly during the long history of subduction along this Gondwana margin. Extremely unradiogenic 187Os/188Os ranging to as low as 0.1081 × 0.0001 hints at the involvement of lithospheric components in generation of magmas in the WARS.

  2. The Role of Magmatic and Volcanic Loads in Generating Seaward Dipping Reflector Structures on Volcanic Rifted Margins

    NASA Astrophysics Data System (ADS)

    Tian, X.; Buck, W. R.

    2016-12-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including a large portion that border the Atlantic Ocean. There is considerable controversy over whether their formation requires large offset (i.e. 10s of km) normal faults or not. Although there is some evidence for faulting in association with SDRs, we here show that a wide range of SDRs structures can be produced solely by volcanic loading. To do this we first derive a simple analytic description of a particular type of volcanic construct. We assume that the increase in density when fluid magma in a dike solidifies provides load at the rift center onto the end of a lithospheric plate. Extrusives are assumed to form flat-topped layers that fill in the flexural depression produced by the load of the solidified dike. The thin-plate flexure approximation is used to calculate the deflections due to the vertical load. This simple model produces structures similar to the observed SDRs. Expressions for the maximum thickness of the volcanic pile and the dip of an individual SDR are derived in terms of the flexure parameter and material densities. Asymmetry of SDR units seen across some conjugate margins can be explained with this model if periodic offsets, or jumps of the center of magmatism are included. In addition, we developed a numerical model of lithospheric extension, magma intrusion and volcanism with a temperature dependent elasto-viscous and brittle-plastic rheology. Results of these 2D cross-sectional models with fixed thermal structure confirm the qualitative predictions of the analytic model without the simplified uniform plate assumption. Preliminary results suggest that the rapid subsidence of SDRs, inferred for some rifted margins, can occur if magma is supplied only to the brittle upper layer and the hot weak lower crust is thinned by stretching. This numerical approach may also allow us to test

  3. 40Ar-39Ar Age Constraints on Volcanism and Tectonism in the Terror Rift of the Ross Sea, Antarctica

    USGS Publications Warehouse

    2007-01-01

    Volcanic sills and dikes inferred from seismic reflection profiles and geophysical studies of the Ross Sea are thought to be related to the rift basins in the region, and their emplacement to be coeval with extension. However, lack of precise geochronology in the Terror Rift of the Ross Sea region has left these inferred relationships poorly constrained and has hindered neotectonic studies, because of the large temporal gaps between seismic reflectors of known ages. New 40Ar/39Ar geochronology presented here for submarine volcanic rocks provides better age constraints for neotectonic interpretations within the Terror Rift. Several samples from seamounts yielded young ages between 156 ± 21 and 122 ± 26 Ka. These ages support interpretations that extension within the Terror Rift was active at least through the Pleistocene. Three evenly spaced samples from the lowermost 100 m of Franklin Island range in age from 3.28 ± 0.04 to 3.73 ± 0.05 Ma. These age determinations demonstrate that construction of a small volcanic edifice such as Franklin Island took at least several hundred thousand years, and therefore that much larger ones in the Erebus Volcanic Province are likely to have taken considerably longer than previously inferred. This warrants caution in applying a limited number of age determinations to define the absolute ages of events in the Ross Sea region

  4. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  5. The Limit of Volcanic Rifting: A Structural Model Across the Volcanic to Non-volcanic Transition off Nova Scotia

    NASA Astrophysics Data System (ADS)

    Dehler, S. A.; Keen, C. E.; Funck, T.; Jackson, H. R.; Louden, K. E.

    2004-05-01

    The rifted continental margin along much of the Atlantic coast of eastern North America is classified as volcanic, with thick sequences of igneous material emplaced at the continent-ocean transition during Late Triassic to Early Jurassic rifting. A strong, linear magnetic anomaly (ECMA) is observed along the margin from the Blake Spur fracture zone to the Scotian margin, coincident with seismic images of seaward dipping reflectors (SDRs). Along the SW Scotian Margin, the anomaly changes character, becoming lower in amplitude, disjointed and weaker as it fades to the east into the regional background level. The loss of magnetic signature and disappearance of SDRs have suggested that most of the Scotian margin is primarily non-volcanic, with the transition starting northeast of the New England seamounts. Three wide-angle seismic reflection / refraction lines were collected in 2001 across the continental margin and deep sedimentary basin offshore Nova Scotia to investigate the transition in rifting style. Line 3 crossed the ECMA at the SW end of the margin, where sediment thickness is less than 10 km. The velocity model shows a 120 km-wide transition zone separating thinned continental crust from oceanic crust. P-wave velocities in the upper and lower layers of the transition zone average 6.2 and 7.2 km/s, consistent with velocities for the transition zone off the US Atlantic margin where the volcanic nature has been well-established. The upper surface of the transitional crust is coincident with SDRs, and magnetic models also support an interpretation of volcanic origin. However, total thickness of the transitional crust is only 10 km, significantly thinner than the interpreted 15 to 20+ km of igneous material interpreted off the US. Oceanic crust adjacent to the transition zone is less than 6 km thick, suggesting a change to conditions that inhibited melting during the early stages of formation of oceanic crust. These observations allude to considerable complexity

  6. Inter-rifting Deformation in an Extensional Rift Segment; the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, R.; Masterlark, T.; Sigmundsson, F.; Arnadottir, T.; Feigl, K. L.

    2006-12-01

    The Northern Volcanic Zone (NVZ) in Iceland is an extensional rift segment, forming a sub-aerial exposure of a part of the Mid-Atlantic ridge. The NVZ is bounded to the south by the Icelandic mantle plume, currently beneath the Vatnajökull ice cap, and to the north by the Tjörnes Fracture zone, a transform zone connecting the offset on- and offshore rift segments of the Mid-Atlantic ridge. Based on geologic and tectonic mapping, the NVZ has been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. The two fissure swarms with known activity in historic time are, based on geodetic and seismic data, interpreted to have associated shallow crustal magma chambers. These central volcanoes are furthermore the only with caldera collapses associated, reflecting on the maturity of the systems. A series of newly formed InSAR images of the NVZ, spanning the interval from 1993-2006, have been formed, revealing a complex interplay of several tectonic and magmatic processes. Deformation from two subsiding shallow sources appear at the sites of the known crustal magma chambers. Furthermore, subsidence is occurring at varying degrees within the associated relatively narrow fissure swarms (15-20 km). However, the horizontal plate spreading signal is not confined to the fissure systems, and appears to be distributed over a much wider zone (about 100 km). This wide zone of horizontal spreading has previously been measured with campaign GPS surveys. A broad area of uplift situated about 18 km to the north of one of the subsidence centres (Krafla) suggests a deep seated pressurization source near the crust mantle boundary. Movements on previously unrecognized faults are apparent in the data, correlating well with the location of earthquake epicentres from minor seismic activity. Finally, utilization of geothermal resources in the Krafla area affects the deformation fields created by magmatic and tectonic processes, further

  7. When Did Midcontinent Rift Volcanism End and Where Was Laurentia at that Time?

    NASA Astrophysics Data System (ADS)

    Fairchild, L. M.; Swanson-Hysell, N.; Ramezani, J.; Sprain, C. J.; Gaastra, K. M.; Bowring, S. A.

    2015-12-01

    Data from the North American Midcontinent Rift provide a robust record of Laurentia's (cratonic North America's) paleogeographic position from ca. 1110 to 1080 Ma. The resulting apparent polar wander path (APWP) reveals rapid motion of the continent towards the equator throughout the rift's lifetime. Constraints on the age of the youngest volcanics within the rift and on the paleolatitude of Laurentia at that time are important for quantifying the rate of this motion and its apparent deceleration in the late stage of rift development. Furthermore, precise calibration of the APWP enhances the robustness of paleogeographic reconstructions. The three rift successions with ca. 1090 to 1085 Ma late stage volcanics are the Lake Shore Traps of Michigan, the Michipicoten Island Formation of Ontario and the Schroeder-Lutsen basalts of Minnesota. In past studies, paleomagnetic data from the Schroeder-Lutsen basalts have been grouped with results from the North Shore Volcanic Group, which it unconformably overlies. In this study, we separate these data and add newly developed results from 40 additional flows. New data from the Michipicoten Island Formation allow for a well constrained pole that now includes data from more than 25 flows. High quality paleomagnetic data are published for the Lake Shore Traps, and we complement these with a newly developed high precision U-Pb zircon date as an update to current constraints. Taken altogether, these data strengthen our understanding of the rift's demise and the rate of Laurentia's motion as rift volcanism gave way to post-rift sedimentation.

  8. Rifting and volcanism: The formation of rift-related unconformities and the timing of volcanism in the Laptev Sea rift, the South China Sea, and the southern South Atlantic based on multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Franke, D.

    2012-12-01

    There are two end-member extremes of passive rifted margins. Volcanic rifted margins evolve by a combination of extension, and extensive extrusive flood volcanism over short time periods during breakup, manifested in reflection seismic data as seaward dipping reflectors. These margins are commonly related to mantle plumes; however, in the past years this has been questioned. Magma-poor rifted margins in contrast show wide extensional features as rotated faults blocks and detachment surfaces near the base of the continental crust, but limited magmatism that in addition seems to be delayed to post-breakup. In this presentation examples from three locations that are less frequently cited in the discussion about (either magma-poor or volcanic) rifted margins will be discussed: The Laptev Sea margin in the Arctic Ocean, where the active Arctic mid-oceanic ridge meets continental lithosphere at a high angle, the southernmost South Atlantic with well expressed conjugate volcanic rifted margins in a comparably "simple" configuration, potentially influenced by a mantle plume, the Tristan hot spot, and the South China Sea that may represent an intermediary form of continental extension between the end member extremes. The idea of a controlling role of (hot-spot related) magmatism during breakup on the rift evolution is questioned for the three margins that evolved in the Early Cretaceous, the Paleocene and the Oligocene, respectively. Instead much more top-down control on the rift evolution and rift-related magmatism than previously thought is suggested.

  9. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-10-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  10. Influence of rifting episodes on seismic and volcanic activity in the southern Red Sea region

    NASA Astrophysics Data System (ADS)

    Viltres, Renier; Ruch, Joël; Doubre, Cécile; Reilinger, Rob; Ogubazghi, Ghebrebrhan; Jónsson, Sigurjón

    2017-04-01

    Rifting episodes cause large changes to the state of stress in the surrounding crust, both instantaneously (elastic stress transfer) and in the years following the episodes (viscoelastic stress transfer), and can significantly influence occurrence of future earthquakes and volcanic eruptions. Here we report on a new project that aims at studying the stress impact of rifting episodes and focuses on the southern Red Sea, Afar and Gulf of Aden region, which has seen a significant increase in rifting activity during the past decade. The Afar rift system experienced a major rifting episode (Dabbahu segment) in 2005-2010 and the southern Red Sea also appears to have had one, indicated by three volcanic eruptions in 2007, 2011-12, and 2013 (the first in the area in over a century), accompanied by several seismic swarms. In addition, Gulf of Aden had an exceptionally strong seismic swarm activity starting in late 2010 that was associated with intrusion of magma in a separate rifting episode. To explore the influence of these recent rifting episodes in the region we will use new geodetic observations, seismicity analysis and modeling. We have analyzed new GPS data collected in Eritrea, in Afar, and in southern Saudi Arabia. Comparisons with older surveys has not only resulted in better GPS velocities for the observed sites, but also revealed changes to velocities at some sites influenced by the rifting activity. We use the results along with seismic data to better constrain the timing, magnitude and duration of the rifting activity in the region. We will then apply elastic and visco-elastic stress transfer modeling to assess the associated stress changes, in particular at locations where volcanic eruptions or intrusions have occurred or where significant seismicity has been detected. The project should provide new information about the impact rifting events and episodes can have on regional volcanic and earthquake activity and how rifting episodes may influence one another.

  11. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    PubMed

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  13. The timing of uplift, volcanism, and rifting peripheral to the Red Sea: a case for passive rifting?

    USGS Publications Warehouse

    Bohannon, R.G.; Naeser, C.W.; Schmidt, D.L.; Zimmermann, R.A.

    1989-01-01

    Prior to the formation of the Red Sea the northeastern Afro/Arabian continent had low relief and was largely below sea level from the Late Cretaceous to the early Oligocene. The events leading to the formation of the Red Sea followed the sequence (1) alkaline volcanism and rifting beginning about 30-32 Ma affecting a narrow linear zone in the continent, (2) rotational block faulting and detachment faulting, well underway by 25 Ma, (3) gabbro and diorite magmatism, andesite to rhyolite volcanism, and fine-grained nonmarine sedimentation in the rift between 20 and 25 Ma, (4) fine-grained marine sedimentation in the rift as the early shelves started to subside in the middle Miocene, and (5) uplift of the adjacent continents (about 3 km) and subsidence of the shelves (about 4 km) between 13.8 and 5 Ma. The youth of the uplift is suggested by 44 fission track dates on apatites from rocks of the Proterozoic Arabian Shield that range in age from 13.8 to 568 Ma. The youngest of these ages, coupled with the present high relief along the Arabian escarpment and published heat flow measurements, indicate that 2.5-4 km uplift has occurred in the last 13.8 m.y. -from Authors

  14. Topographic and volcanic asymmetry around the Red Sea - Constraints on rift models

    NASA Technical Reports Server (NTRS)

    Dixon, Timothy H.; Ivins, Erik R.; Franklin, Brenda J.

    1989-01-01

    This paper describes a model which explains the topographic and volcanic asymmetry around the Red Sea. The model involves asthenospheric upwelling beneath a lithosphere of laterally variable strength in which a weak zone (e.g., a suture or a region with quartz-bearing lower crust) may have controlled the location of rifting. In this model, Tertiary volcanism in Saudi Arabia marks the location of initial upwelling, and uplift is due to crustal thickening associated with magmatic underplating and crustal intrusion. The model predicts that the incipient crustal rift and the locus of mantle upwelling will tend to align as rifting continues and stable seafloor spreading develops, implying relative migration of the lithosphere and asthenosphere.

  15. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    PubMed Central

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-01-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations. PMID:27754479

  16. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans.

    PubMed

    Hutchison, William; Fusillo, Raffaella; Pyle, David M; Mather, Tamsin A; Blundy, Jon D; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E; Brooker, Richard A; Barfod, Dan N; Calvert, Andrew T

    2016-10-18

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km(3)) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  17. Geochronological and geochemical assessment of Cenozoic volcanism from the Terror Rift region of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Rilling, Sarah E.

    The work presented in this dissertation explains results from three different methods to determine the relation between tectonism and rift-related volcanism in the Terror Rift region of the West Antarctic Rift System (WARS). Alkaline lavas from seven submarine features, Beaufort Island and Franklin Islands, and several locations near Mt Melbourne were dated by 40Ar/39Ar geochronology and analyzed for elemental and isotopic chemical signatures. Each chapter addresses a different aspect of the hypothesis that the presence of volatiles, primarily H2O or CO2, in the magma source has led to anomalously high volumes of magmatism after rift-related decompressional melting rather than requiring an active mantle plume source. Chapter 2 provides the temporal framework, illustrating that the sampled features range in age from 6.7 Ma to 89 ka, post-dating the main Miocene age phase of Terror Rift extension. Chapter 3 illustrates the traditional enriched elemental and isotopic chemical signatures to support the overall homogeneity of these lavas and previously analyzed areas of the WARS. This chapter also provides a new model for the generation of the Pb isotopic signatures consistent with a history of metasomatism in the magma source. Chapter 4 provides an entirely new chemical dataset for the WARS. The first platinum group element (PGE) abundances and extremely unradiogenic Os isotopic signatures of Cenozoic lavas from Antarctica provide the strongest evidence of melting contributions from a lithospheric mantle source. The combined results from these three studies consistently support the original hypothesis of this dissertation. New evidence suggests that WARS related lavas are not related to a mantle plume(s) as previously proposed. Instead, they are generated by passive, decompressional melting of a source, likely a combination of the asthenospheric and lithospheric mantle, which has undergone previous melting events and metasomatism.

  18. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  19. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  20. Amagmatic Accretionary Segments, Ultraslow Spreading and Non-Volcanic Rifted Margins (Invited)

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Snow, J. E.

    2009-12-01

    The evolution of non-volcanic rifted margins is key to understanding continental breakup and the early evolution of some of the world’s most productive hydrocarbon basins. However, the early stages of such rifting are constrained by limited observations on ancient heavily sedimented margins such as Newfoundland and Iberia. Ultraslow spreading ridges, however, provide a modern analogue for early continental rifting. Ultraslow spreading ridges (<20 mm/yr) comprise ~30% of the global ridge system (e.g. Gakkel, Southwest Indian, Terceira, and Knipovitch Ridges). They have unique tectonics with widely spaced volcanic segments and amagmatic accretionary ridge segments. The volcanic segments, though far from hot spots, include some of the largest axial volcanoes on the global ridge system, and have, unusual magma chemistry, often showing local isotopic and incompatible element enrichment unrelated to mantle hot spots. The transition from slow to ultraslow tectonics and spreading is not uniquely defined by spreading rate, and may also be moderated by magma supply and mantle temperature. Amagmatic accretionary segments are the 4th class of plate boundary structure, and, we believe, the defining tectonic feature of early continental breakup. They form at effective spreading rates <12 mm/yr, assume any orientation to spreading, and replace transform faults and magmatic segments. At amagmatic segments the earth splits apart with the mantle emplaced directly to the seafloor, and great slabs of peridotite are uplifted to form the rift mountains. A thick conductive lid suppresses mantle melting, and magmatic segments form only at widely spaced intervals, with only scattered volcanics in between. Amagmatic segments link with the magmatic segments forming curvilinear plate boundaries, rather than the step-like morphology found at faster spreading ridges. These are all key features of non-volcanic rifted margins; explaining, for example, the presence of mantle peridotites emplaced

  1. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  2. Volcanic Centers in the East African Rift: Imaging Volcanic Processes with Long-Period Event Identification and Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A. M.; Hardy, S.; Kaip, G.; Velasco, A. A.

    2014-12-01

    Kenya actively seeks to produce geothermal energy, and the country lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes through its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the Geothermal Development Company (GDC) began collaborating to monitor several volcanic centers, which have included passive seismic sensor deployments experiment. A number of seismological techniques will be applied to the data being collected at the four volcanic centers: Menengai, Silali, and Paka, and Korosi. In particular, we will identify long-period signals and tremor local using a time-reversal approach. Low-frequency earthquakes are interpreted as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. The time-reversal locations will help identify the margin of the volcano and caldera, and faults that could form conduits for fluids. We will also perform ambient noise tomography to image the magma chamber and the conduit feeding the volcanoes. The combination of the velocity snapshots of the magma chamber, low-frequency events, and long period events will help us interpret the activity of the calderas and volcanoes. Overall, all these techniques will help us understand magma movement and volcanic processes in the region.

  3. Hot Spot Induced Cenozoic Volcanism in the Upper Rajang Valley, Sarawak - Is Borneo Rifting?

    NASA Astrophysics Data System (ADS)

    Taib, N.

    2010-12-01

    The Upper Rajang Valley covers a large area in the northern interior of the island of Borneo, in the Malaysian state of Sarawak . It is underlain by the Cretaceous to Late Eocene deep to shallow marine sediments of the Rajang Group. Within this area are several Cenozoic volcanic edifices, which to date have been sparsely studied. Two distinct episodes of volcanism are recognized - the first, dated early Eocene, consists of K-rich basalts, and is represented by the Bukit Mersing volcanics, which were erupted conformably onto deep water turbidites of the Rajang Group. The second, far more extensive, is dated Pliocene to Quaternary, and is bimodal, consisting mainly of early dacite and rhyodacite tuffs, with a smaller amount of later basalt, forming several volcanic plateaus and massifs (Hose Mountains, Usun Apau, Linau-Balui, Nieuwenhuis Mountains and others). They lie unconformably over pre-Miocene sediments, the Linau-Balui basalts having been erupted onto Quaternary river terraces. Mantle-normalized REE and incompatible trace element spider plots reveal that the Bukit Mersing basalts have geochemical affinity with Oceanic Island Basalts (OIB) and rift basalts, being enriched in LREEs and Most Incompatible Elements, and no Eu anomaly. Preliminary trace element data for several basalt samples from Usun Apau also show Oceanic Island/Rift affinity. Bimodal volcanism is most often associated with rift environments. Efforts are being made to radiometrically date the volcanics, in part to determine the possibility of future eruptions. The Upper Rajang Valley is remote, covered in tropical rainforest and is very sparsely populated. At this time, there is no information concerning signs of imminent volcanism, such as hot springs and microseismicity.

  4. Volcanic rifts bracketing volcanoes: an analogue answer to an old unsolved problem

    NASA Astrophysics Data System (ADS)

    Mussetti, Giulio; van Wyk de Vries, Benjamin; Corti, Giacomo; Hagos, Miruts

    2015-04-01

    It has been observed in Central America that many volcanoes have volcanic alignments and faults at their east and west feet. A quick look at many rifts indicates that this also occurs elsewhere. While this feature has been noted for at least 30 years, no explanation has ever really been convincingly put forward. During analogue experiments on rifting volcanoes we have mixed the presence of a volcanic edifice with an underlying intrusive complex. The models use a rubber sheet that is extended and provides a broad area of extension (in contrast to many moving plate models that have one localised velocity discontinuity). This well suits the situation in many rifts and diffuse strike-slip zones (i.e. Central America and the East African Rift). We have noted the formation of localised extension bracketing the volcano, the location of which depends on the position of the analogue intrusion. Thus, we think we have found the answer to this long standing puzzle. We propose that diffuse extension of a volcano and intrusive complex generates two zones of faulting at the edge of the intrusion along the axis of greatest extensional strain. These serve to create surface faulting and preferential pathways for dykes. This positioning may also create craters aligned along the axis of extension, which is another notable feature of volcanoes in Central America. Paired volcanoes and volcanic uplifts in the Danakil region of Ethiopia may also be a consequence of such a process and lead us to draw some new preliminary cross sections of the Erta Ale volcanic range.

  5. Neogene-Quaternary Volcanic Alignments in the Transantarctic Mountains and West Antarctic Rift System of Southern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Paulsen, T. S.; Wilson, T. J.

    2004-12-01

    Neogene-Quaternary volcanism in southern Victoria Land, Antarctica, produced the Erebus Volcanic Province, a suite of alkaline volcanic rocks that extend from the Transantarctic Mountains rift-flank uplift to offshore localities within the West Antarctic rift system. We are mapping volcanic vent patterns in the province to detect alignments indicative of stress/strain patterns during rift evolution. In the southern sector of the Erebus Volcanic Province in the Royal Society Range Block of the Transantarctic Mountains, mapping shows that elliptical scoria cones, fissures, dikes, and linear vent arrays define volcanic alignments that have a dominant NNE trend, with subsidiary WNW trends. Age data for the alignments suggest that this pattern persisted from 14.6 to 0.25 Ma. We are currently completing mapping along an east-west transect crossing the rift margin, and results obtained so far within the rift region indicate a similar pattern of alignments. On the northern flank of Mount Morning, a large volcano just to the east of the Royal Society Range, elliptical scoria cones and linear vent arrays define volcanic alignments that have a dominant NE trend, with a subsidiary NNW trend. Available age data suggest that many of these cone alignments may be of Quaternary age. At Brown Peninsula, further east from the rift flank, cone alignments trend NNE and available ages range from 2 to 3 Ma. To the east of Brown Peninsula, cone alignments trend NW at Black Island, but are of uncertain age; age data on Black Island range from 11 to 3.4 Ma. At White Island, the farthest east into the rift, cone alignments trend NNE and available age data suggest volcanism as young as 0.2 Ma. Although some differences in cone alignment trends are apparent between the rift flank and the rift system across our transect, both regions appear to be dominated by NE trending alignments, which implies a WNW to NW minimum horizontal stress (Shmin) direction. This is oblique to the ENE Shmin Cape

  6. Lower crustal bodies in the Møre volcanic rifted margin: Geophysical determination and geological implications

    NASA Astrophysics Data System (ADS)

    Nirrengarten, M.; Gernigon, L.; Manatschal, G.

    2014-12-01

    Understanding nature, structure and age of Lower Crustal Bodies (LCBs) and their relation to the crustal structure of the Møre margin (Mid-Norwegian margin), and in a more general way, of magma-rich rifted margins, is a key issue to decipher the tectono-magmatic processes found in volcanic rifted margins. In light of 2D potential field modelling combined with reflection and refraction seismic data, we reinvestigated the crustal nature of the Møre margin and adjacent Jan Mayen corridor. In the proximal domain, our study shows that the LCBs most likely represent inherited crustal bodies and not necessarily rift-related serpentinised mantle as previously proposed. To fit all geophysical observations, both lower and middle crustal layers need to be preserved over a large part of the Møre Basin. For the distal margin, the interpretation of the LCBs is more difficult. Our preferred interpretation is that they are mainly made of boudins of hyper-extended, pre-rift lower continental crustal rocks more or less intruded by Early Tertiary magmatic material. Our seismic, magnetic and gravity data does not easily support large scale exhumation of serpentinised mantle in the inner and is unlikely in the outer parts of the Møre Basin. The deep structures of the Mid-Norwegian magma rich rifted margin result from the poly-phase stretching and thinning of complex inherited crustal structures, locally intruded by Early Tertiary magmatic material.

  7. Structure and evolution of the volcanic rift zone at Ponta de São Lourenço, eastern Madeira

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Schwarz, Stefanie; van den Bogaard, Paul; Hoernle, Kaj A.; Wohlgemuth-Ueberwasser, Cora C.; Köster, Jana J.

    2009-08-01

    Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east-west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50-60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço.

  8. Major and micro seismo-volcanic crises in the Asal Rift, Djibouti

    NASA Astrophysics Data System (ADS)

    Peltzer, G.; Doubre, C.; Tomic, J.

    2009-05-01

    The Asal-Ghoubbet Rift is located on the eastern branch of the Afar triple junction between the Arabia, Somalia, and Nubia tectonic plates. The last major seismo-volcanic crisis on this segment occurred in November 1978, involving two earthquakes of mb=5+, a basaltic fissure eruption, the development of many open fissures across the rift and up to 80 cm of vertical slip on the bordering faults. Geodetic leveling revealed ~2 m of horizontal opening of the rift accompanied by ~70 cm of subsidence of the inner-floor, consistent with models of the elastic deformation produced by the injection of magma in a system of two dykes. InSAR data acquired at 24-day intervals during the last 12 years by the Canadian Radarsat satellite over the Asal Rift show that the two main faults activated in 1978 continue to slip with periods of steady creep at rates of 0.3-1.3 mm/yr, interrupted by sudden slip events of a few millimeters, in 2000 and 2003. Slip events are coincident with bursts of micro earthquakes distributed around and over the Fieale volcanic center in the eastern part of the Asal Rift. In both cases (the 1978 crisis and micro-slip events), the observed geodetic moment released by fault slip exceeds by a few orders of magnitude the total seismic moment released by earthquakes over the same period. Aseismic fault slip is likely to be the faults response to a changing stress field associated with a volcanic process and not due to dry friction on faults. Sustained injection of magma (1978 crisis) and/or crustal fluids (micro-slip events) in dykes and fissures is a plausible mechanism to control fluid pressure in the basal parts of faults and trigger aseismic slip. In this respect, the micro-events observed by InSAR during a 12-year period of low activity in the rift and the 1978 seismo-volcanic episode are of same nature.

  9. Conjugate volcanic rifted margins, spreading and micro-continent: Lessons from the Norwegian-Greenland Sea

    NASA Astrophysics Data System (ADS)

    Gernigon, L.; Blischke, A.; Nasuti, A.; Sand, M.

    2014-12-01

    We have acquired and processed new aeromagnetic data that covers the entire Norway Basin oceanic spreading system located between the Møre volcanic rifted margin and its (intermediate) conjugate system, the Jan Mayen microcontinent (JMMC). The new compilation allows us to revisit its entire structure and spreading evolution from the Early Eocene breakup to the Late Oligocene abortion of the Aegir Ridge. We here discuss the dynamics of conjugate volcanic (rifted) margin formation and reconstruct the subsequent spreading evolution of the Norway Basin until its abortion. We have estimated a new set of Euler poles of rotation for the Norway Basin derived from more than 88,000 km of new magnetic profiles. The new compilation confirms that a fan-shaped spreading evolution of the Norway Basin was particularly active before the cessation of seafloor spreading and abortion of the Aegir Ridge. The Norway Basin shows a more complex system of micro-plates and asymmetric segments locally affected by episodic ridge jumps. The new observations have implications for the syn- and post-breakup stratigraphic and rifted-margin tectonic development of the JMMC and its conjugate margins. In particular, an important Mid-Eocene geodynamic event at around magnetic chron C21r is recognized in the Norway Basin. This event coincides with the onset of diking and rifting between the proto-JMMC and the East Greenland margin, leading to a second phase of breakup in the Norwegian-Greenland Sea ~26 My later in the Oligocene. Restored in its pre-breakup configuration, the new surveys also allow us to discuss further the tectonic and crustal evolution of the conjugate volcanic rifted margins and associated transform and oblique segments. The applicability of magma-poor concepts, off Norway, for example, remains questionable for us. The significant amount of breakup magmatism, the huge amount of pre-breakup sag sedimentation and the presence of thinned and preserved continental crust without the

  10. Geochemical and 40Ar/39Ar constraints on the evolution of volcanism in the Woodlark Rift, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Catalano, Joseph P.

    The tectonic mechanisms producing Pliocene to active volcanism in eastern Papua New Guinea (PNG) have been debated for decades. In order to assess mechanisms that produce volcanism in the Woodlark Rift, we evaluate the evolution of volcanism in eastern PNG using 40Ar/39Ar thermochronology and whole rock geochemistry. Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington, Mt. Victory and Waiwa), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin, seafloor spreading is active and decompression melting of the upper mantle is producing basaltic magmatism. However, the cause of Pliocene and younger volcanism in the Woodlark Rift is controversial. Two hypotheses for the tectonic setting have been proposed to explain Pliocene and younger volcanism in the Woodlark Rift: (1) southward subduction of Solomon Sea lithosphere beneath eastern PNG at the Trobriand Tough and (2) decompression melting of mantle, previously modified by subduction, as the lithosphere undergoes extension associated with the opening of the Woodlark Basin. A comparison of 40Ar/39Ar ages with high field strength element (HFSE) concentrations in primary magmas indicates that HFSE concentrations correlate with age in the Woodlark rift. These data support the hypothesis that Pliocene to active volcanism in the Woodlark Rise and D'Entrecasteaux Islands results from decompression melting of a relict mantle wedge. The subduction zone geochemical signatures (negative HFSE anomalies) in Woodlark Rift lavas younger than 4 m.y. are a relict from older subduction beneath eastern Papua, likely in the middle Miocene. As the lithosphere is extended ahead of the tip of the westward propagating seafloor spreading center in the Woodlark Basin, the composition of volcanism is inherited from prior arc magmatism (via flux melting) and through time evolves toward magmatism associated with a rifting

  11. Beta Regio, Venus: Evidence for uplift, rifting, and volcanism due to a mantle plume

    NASA Astrophysics Data System (ADS)

    Basilevsky, Alexander T.; Head, James W.

    2007-12-01

    Geophysical data have led to the interpretation that Beta Regio, a 2000×25000 km wide topographic rise with associated rifting and volcanism, formed due to the rise of a hot mantle diapir interpreted to be caused by a mantle plume. We have tested this hypothesis through detailed geologic mapping of the V-17 quadrangle, which includes a significant part of the Beta Regio rise, and reconnaissance mapping of the remaining parts of this region. Our analysis documents signatures of an early stage of uplift in the formation of the Agrona Linea fracture belts before the emplacement of regional plains and their deformation by wrinkle ridging. We see evidence that the Theia rift-associated volcanism occurred during the first part of post-regional-plains time and cannot exclude that it continued into later time. We also see evidence that Devana Chasma rifting was active during the first and the second parts of post-regional-plains time. These data are consistent with uplift, rifting and volcanism associated with a mantle diapir. Geophysical modeling shows that diapiric upwelling may continue at the present time. Together these data suggest that the duration of mantle diapir activity was as long as several hundred million years. The regional plains north of Beta rise and the area east and west of it were little affected by the Beta-forming plume, but the broader area (at least 4000 km across), whose center-northern part includes Beta Regio, could have experienced earlier uplift as morphologically recorded in formation of tessera transitional terrain.

  12. Galapagos rift at 86 /sup 0/W 5. Variations in volcanism, structure, and hydrothermal activity along a 30-kilometer segment of the rift valley

    SciTech Connect

    Ballard, R.D.; van Andel, T.H.; Holcomb, R.T.

    1982-02-10

    A 30-km segment of the Galapagos Rift near 86 /sup 0/W has been mapped in detail using the Angus towed camera system, the submersible Alvin, and multi-narrowbeam sonar data. Recent volcanic activity and active hydrothermal circulation are evident along the entire length of the segment mapped. There are, however, clear along-strike variations in these processes which render previous two-dimensional models obsolete. Although alternate explanations are possible, eruptive sequences appear to begin with the outpouring of surface-fed sheet flows and end with more channelized pillow flows. In the western portion of the rift studied, sheet flows dominate with the entire valley floor covered by recent flows associated with a broad shield volcano. The eastern portion, on the other hand, is narrower; consisting primarily of less voluminous pillow flows of apparently the same youthful age. Three possible models for the volcanic evolution of this rift segment are presented. According to the first model, the extrusive portion of the crust is formed by a distinct volcanic episode, followed by a long period of volcanic quiescence. The volcanic phase begins with voluminous sheet flows emerging from numerous eruptive fissures, which in time evolve into a narrow pillow ridge. Farther along-strike, where the flows are smaller and the extrusive zone narrow, the marginal portions undergo continued fissuring and subsequent uplift to form marginal highs and lows. This deformational activity also affects the extrusive zone once volcanic activity ends, converting the distinctly lobate topography of the active period into highly lineated fault-controlled terrain. According to the second model, extension and volcanism can be viewed as a continuous process without major periods of volcanic quiescence. The initial lava flows of a new eruptive sequence fill low areas, frequently spilling over local sills and flooding much of the rift valley.

  13. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  14. Volcanic activity in the early stage rifting: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift-axis, East Africa)

    NASA Astrophysics Data System (ADS)

    Parat, F.; Baudouin, C.; Tiberi, C.; Gautier, S.; Peyrat, S.

    2016-12-01

    The North Tanzanian rift is the southern part of the east branch of the East African Rift. It represents early stage rifting and is divided into 2 different volcanic and seismic activities: (1) in the north part, the Natron basin with shallow seismicity and intense volcanism (2-0.75 Ma) and (2) in the south part, the Manyara basin with deep crustal earthquakes and sparse volcanism (0.4 and 0.9 Ma). In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the composition of magmas and fluids at depth beneath the south part of the North Tanzanian rift. The Manyara basin has distinct volcanic activities with mafic melilitite (Labait), Mg-nephelinites (Kwaraha) and evolved Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are olivine-rich primary magmas recording high-pressure crystallization environment at 4 GPa and 1 GPa, respectively and anhydrous conditions (0.1 and 0.4 wt% H2O in primary melt). Geochemical modelling suggests that primary magmas result from a low degree of partial melting (≤1%) of a peridotitic source with garnet and phlogopite. At crustal conditions, melilitite and Mg-nephelinite magmas evolved to Mg-poor nephelinite by fractional crystallization. The crystallization of cpx in Mg-poor nephelinite occurred at low pressure (340-640 MPa and 1075°C) from silicate melt with low water content (<0.35 wt% H2O), whereas melt inclusions entrapped in nepheline crystal indicate that interstitial CO2-rich and H2O-poor phonolitic melt with 6 wt% CO2 was present at 700-1000 MPa. At the early stage of rifting, volcanism in Manyara basin erupted CO2-rich and H2O-poor mafic magmas from at least 120 km below the rift escarpment, whereas few magmas evolved during ascent at mantle and crustal conditions. Manyara volcanism has similarities with the North Tanzania rift-axis (including Lengai) with a deep garnet-phlogopite-bearing source, CO2-rich magmas (silicate lavas and

  15. Oligocene basaltic volcanism of the northern Rio Grande Rift: San Luis Hills, Colorado

    USGS Publications Warehouse

    Thompson, R.A.; Johnson, C.M.; Mehnert, H.H.

    1991-01-01

    The inception of the Rio Grande Rift in northern New Mexico and southern Colorado was accompanied by voluminous mafic volcanism preserved in part as erosional remnants on an intrarift horst within the current axial rift graben of the San Luis Valley. Major and trace element constraints support a petrogenetic model of fractionation plus lower crustal assimilation for petrologic suites within the San Luis Hills rocks, although the model cannot relate lavas for the entire series to a common parent. Most mafic lavas of the San Luis Hills were evolved (Mg # <60) and contaminated by LREE-enriched silicic partial melts of granulitic lower crust depleted in Rb, Th, and U. However, relatively noncontaminated lavas can be identified and indicate at least two mantle source regions were involved. -from Authors

  16. Historical volcanism and the state of stress in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Wadge, Geoffrey; Biggs, Juliet; Lloyd, Ryan; Kendall, Michael

    2016-09-01

    Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800) and find that 7 match the (approximate) geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic) variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement), transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief) and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone) and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale), suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days), but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002) due to major along-rift dyking

  17. Volcanic Centers in the East Africa Rift: Volcanic Processes with Seismic Stresses to Identify Potential Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.

    2015-12-01

    The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.

  18. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  19. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    NASA Astrophysics Data System (ADS)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  20. From Rifting of a volcanic province to Oceanic Spreading in the Andaman Sea, South-East Asia.

    NASA Astrophysics Data System (ADS)

    Jourdain, A.; Singh, S. C.; Klinger, Y.

    2015-12-01

    The Andaman Sea is an enigmatic feature in the Indian Ocean region. It contains the volcanic provinces of Alcock and Sewell Rises and an active spreading center. The recent rifting in the Andaman Sea initiated 4.5 Ma ago, rifting the Alcock and Seawell Rises that were formed by extensive volcanism between 23-16 Ma. The spreading started with a full spreading rate of 1.6 cm/yr and increased to 3.8 cm/yr in the last 2.5 Ma. We have access to high-resolution deep seismic reflection data crossing the whole spreading center from the rifted volcanic provinces to the spreading center. The data show the whole oceanic crust up to the Moho. The Andaman Sea is covered with a thick pile of sediments that record the tectonic history of the rift system up to the spreading axis, allowing to decipher the whole process from rifting to spreading for the first time. We see a very rapid phase of transition from the rifting of the rises to the spreading in less than 20 km. Then a succession of at least 7 half-grabens is well recorded by the sediments on both sides of the spreading center. These half grabens are separated by outward tilted low angle detachment faults, which form the base of steeply dipping normal faults due to stretching. These low angle faults seem to connect with axial magma chambers that control evolution of the rift valley. We find that new detachment faults develop every 350,000 years, forming a new rift valley. The images of active normal faults within the central rift valley allow us to quantify the formation of oceanic crust by tectonic versus magmatic processes.

  1. The distribution of volcanism in the Beta-Atla-Themis region of Venus: Its relationship to rifting and implications for global tectonic regimes

    NASA Astrophysics Data System (ADS)

    Airey, M. W.; Mather, T. A.; Pyle, D. M.; Ghail, R. C.

    2017-08-01

    A new analysis of the spatial relationships between volcanic features and rifts on Venus provides new constraints on models of planetary evolution. We developed a new database of volcanic features for the Beta-Atla-Themis (BAT) region and used nearest neighbor measurements to determine relationships between different types of volcanic features and the rifts. Nearest neighbor analysis shows that all the dome-type and corona-type subpopulations tend to cluster. Rift associations were inferred from the deviation of a feature's population distribution (as a function of distance from rift) from that of a random population. Dome-type features in general have no discernible relationship with rifts. Most corona-type features have a strong association with rifts, with intermediate and large volcanoes also tending to occur close to or on rifts. Shield fields, on the other hand, tend to occur away from rifts. Our new evidence supports classifications of rifts on Venus into different types, possibly by age, with a shift from globally dispersed (more uniform) volcanism toward the more rift-focused distribution, which suggests a shift in tectonic regime. Our observations are consistent with recent models proposing the evolution of Venus from a stagnant lid regime to a subcrustal spreading regime. We also present evidence for a failed rift on Venus and note that this process may be analogous, albeit on a larger scale, to a proposed model for the evolution of the East African rift system.

  2. Mean age of rifting and volcanism on Venus deduced from impact crater densities

    NASA Astrophysics Data System (ADS)

    Price, Maribeth; Suppe, John

    1994-12-01

    UNLIKE the extensively cratered highlands of the Moon and Mars, the surface of Venus does not preserve a record of heavy bombard-ment from the early history of the Solar System1-3. Those craters that are found on Venus appear to be statistically indistinguishable from a random spatial population and rarely show modification by folds, faults and lava flows1-3. Although the volcanic and tec-tonic history of Venus is still much debated2-5, there is mounting evidence for near-global resurfacing ˜300-500 Myr ago1,2,6. Moreover, it has recently been noted that the density of impact craters on large volcanic structures is less than the average crater density of the planet, suggestive of significant activity after the resurfacing event7. It is not clear, however, whether these features represent late remnants of the global event or continuing volcanism and tectonism of a still active planet. To address this question, we have used the regional variations in crater density to date volcan-oes, rifts and coronae which, based on stratigraphic evidence, clearly post-date the main resurfacing event8-11. The calculated mean ages of 70-125 Myr exclude the possibility that the majority of these features represent the final stages of the global event.

  3. Polyphase rifting within Rodinia as seen through multiple episodes of mafic volcanism within the Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Cox, G. M.; Halverson, G. P.; Roots, C. F.; MacDonald, F. A.; Plavsa, D.

    2010-12-01

    Neoproterozoic continental flood basalts (CFB) are known from the North American Cordillera and are thought to be associated with the breakup of Rodinia. However, unlike the short eruptive timeframe of Phanerozoic flood basalt provinces, instances of Neoproterozoic CFB within the North American Cordillera are separated by the unusually long time interval of ca 56 My (ca 780 Ma Gunbarrel Event and the ca 717 Ma Franklin Igneous Event), suggestive of poly-phase rifting and a long lived thermal anomaly and/or fertile mantle situated under ancient Laurentia. The Neoproterozoic Tatonduk Inlier, spanning the Alaskan-Yukon border, preserves both mafic volcanics (Pleasant Creek Volcanics) and a large arcuate dyke swarm (Tindir Dyke Swarm). Previous K/Ar dates on the dikes ranging from 532 ± 11 Ma to 644 ± 18 Ma appear to be inconsistent with geological constraints and correlations between the Tatonduk strata and the Neoproterozoic sequence of the well-dated Coal Creek Inlier to the east. We present geochemical data and discuss age and correlative constraints on these mafic rocks and relate these results in terms of the breakup history of Rodinia, timing of mafic magmatism within the possible conjugate margins to Neoproterozoic Laurentia (e.g. Australia and South China) and the role of a mantle plume in the rifting of Rodinia.

  4. Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry

    USGS Publications Warehouse

    Hochstaedter, A.G.; Gill, J.B.; Kusakabe, M.; Newman, S.; Pringle, M.; Taylor, B.; Fryer, P.

    1990-01-01

    A bimodal volcanic suite with KAr ages of 0.05-1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures. Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts, Fe3+ ??Fe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs. H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. High H2O S, high ??D, and low (MORB-like) ??34S ratios are considered primary and distinctive of the back-arc basin setting. ?? 1990.

  5. Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin

    2016-04-01

    I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.

  6. The Temporal and Spatial Association of Faulting and Volcanism in the Cerros del Rio Volcanic Field - Rio Grande Rift, USA

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Hudson, M. R.; Minor, S. A.; McIntosh, W. C.; Miggins, D. P.; Grauch, V.

    2008-12-01

    The Plio-Pleistocene Cerros del Rio volcanic field (CdRVF) in northern New Mexico is one of the largest ( greater than 700 square kilometers) predominantly basaltic and andesitic volcanic centers of the Rio Grande rift; it records the late-stage, volcano-tectonic evolution of the SW part of the Espanola Basin. The CdRVF reflects both regional proclivity toward Pliocene basaltic volcanism following protracted Neogene extensional tectonism and localized eruptive response to migration of basin- bounding faults. Approximately 180 cubic kilometers of flat lying to gently dipping basalt, andesite, and minor dacite lava flows and pyroclastic deposits of the CdRVF were erupted from more than 50 exposed vents between 2.8 Ma and 1.14 Ma. Subsurface interpretations of drill hole data and incised canyon exposures of the Rio Grande show that volcanic deposits are interbedded with Santa Fe Group sediments deposited in actively subsiding sub-basins of the southernmost Espanola Basin. Major basin-bounding faults in this area strike north to northwest, dip basinward, and have mostly dip-slip and subordinate strike-slip displacement. Although major basin-bounding faults were active prior to the onset of volcanism in the CdRVF, protracted extension resulted in a westward migration of graben-bounding faults. Phases of coeval volcanism at 2.8-2.6 Ma, 2.5-2.2 Ma, and 1.5-1.1 Ma, decreased in eruptive volume through time and are delineated on the basis of mapped stratigraphy, argon geochronology, paleomagnetic and aeromagnetic properties, and record a syntectonic westward migration of eruptive centers. The alignment of vent areas with mapped faults strongly suggests deep magmatic sources utilized local structures as conduits (i.e. faults and fractures developed in response to regional stress). However, some near-surface feeder dikes associated with eroded cinder cones record orientations that are not typically correlative with regional fault patterns suggesting near-surface conduits are

  7. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    NASA Astrophysics Data System (ADS)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  8. Geochemistry of Peralkaline Melts at Kone Volcanic Complex, Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Iddon, F. E.; Edmonds, M.; Jackson, C.; Hutchison, W.; Mather, T. A.; Fontijn, K.; Pyle, D. M.

    2016-12-01

    The East Africa rift system (EARS) is the archetypal example of continental rifting, with the Main Ethiopian rift (MER) segment offering a unique opportunity to examine the dynamics of peralkaline magmas; the development of central volcanoes; melt distribution and transport in the crust; the volatile budgets of rift magmas and their implications for the formation of ore deposits. The alkali- and halogen-rich magmas of the MER differ from their calc-alkaline counterparts in other settings due to their lower viscosities and higher volatile contents, which have important implications for magma transport, reservoir dynamics and eruptive hazards. The high halogen contents of the magmas give rise to halogen-rich vapor which has the capacity to transport and concentrate metals and REE. The Kone Volcanic complex is one of the lesser studied Quaternary peralkaline centres, located on the axial portion of the MER. It comprises two superimposed calderas, surrounded by ignimbrite deposits and unwelded felsic pyroclastic material, small basaltic vents and rhyolitic domes. Unusually for the central volcanoes of the MER, the caldera has refilled with basaltic lava, not pyroclastic material. We use whole rock and micro-analysis to characterize a range of Kone tephras, glasses, crystal phases and melt inclusions in terms of major, trace and volatile element abundances, alongside detailed textural analysis using QEMSCAN and SEM. The whole rock geochemistry reflects the clear peralkaline nature of the suite, with a distinct compositional gap between 50 wt% and 65 wt% SiO2, controlled largely by fractional crystallization. Trace element systematics illustrate that trachytes entrain alkali feldspars, with the crystal cargo of the entire suite reflecting the structure of the magma reservoir at depth, with liquid-rich lenses and regions of syenitic mush. Melt inclusion geochemistry allows reconstruction of complex, multiphase differentiation processes and the exsolution of both a vapor

  9. Receiver function imaging of the onset of melting, implications for volcanism beneath the Afar Rift in contrast to hotspot environments

    NASA Astrophysics Data System (ADS)

    Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.

    2012-12-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the

  10. Diffuse CO2 emission from the NE volcanic rift-zone of Tenerife (Canary Islands, Spain): a 15 years geochemical monitoring

    NASA Astrophysics Data System (ADS)

    Padilla, Germán; Alonso, Mar; Shoemaker, Trevor; Loisel, Ariane; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    The North East Rift (NER) volcanic zone of Tenerife Island is one of the three volcanic rift-zones of the island (210 km2). The most recent eruptive activity along the NER volcanic zone took place in the 1704-1705 period with the volcanic eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. The aim of this study was to report the results of a soil CO2 efflux survey undertaken in June 2015, with approximately 580 measuring sites. In-situ measurements of CO2 efflux from the surface environment of NER volcanic zone were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. To quantify the total CO2 emission from NER volcanic zone, soil CO2 efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CO2 emission rate was estimated in 1209 t d-1, with CO2 efflux values ranging from non-detectable (˜0.5 g m-2 d-1) up to 123 g m-2 d-1, with an average value of 5.9 g m-2 d-1. If we compare these results with those obtained in previous surveys developed in a yearly basis, they reveal slightly variations from 2006 to 2015, with to pulses in the CO2 emission observed in 2007 and 2014. The main temporal variation in the total CO2 output does not seem to be masked by external variations. First peak precedes the anomalous seismicity registered in and around Tenerife Island between 2009 and 2011, suggesting stress-strain changes at depth as a possible cause for the observed changes in the total output of diffuse CO2 emission. Second peak could be related with futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.

  11. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    NASA Astrophysics Data System (ADS)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  12. Post-rift volcanic structures of the Pernambuco Plateau, northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Buarque, Bruno V.; Barbosa, José A.; Magalhães, José R. G.; Cruz Oliveira, Jefferson T.; Filho, Osvaldo J. Correia

    2016-10-01

    The Pernambuco marginal basin is located on the eastern continental margin of northeastern Brazil, covers an area of 20,800 km2, and represents one of the most prominent frontiers for deep water oil and gas exploration off the Brazilian coast. The onshore region of this basin was highly affected by extrusive and intrusive magmatism during the Upper Albian, and the relation of that event with the volcanic structures observed in the offshore sector has not been thoroughly characterized to date. This study aims to characterize the major extrusive and intrusive volcanic structures of the offshore portion of this basin, which is dominated by the Pernambuco Plateau, and its stratigraphic relations. A set of 143 2D multichannel seismic sections that cover the Pernambuco Plateau region are used to interpret the major tectono-stratigraphic sequences and describe the distribution of volcanoes, sills, vent complexes and related volcaniclastic sequences. The interpretations are supported by aeromagnetic and gravimetric geophysical surveys. Volcanoes are classified into two groups that differ in terms of their morphology: shield-like structures and cone-shaped volcanic structures. Sill intrusions are mainly identified beneath the volcanic structures and are characterized by high-amplitude reflectors with short extensions and abrupt terminations. Volcaniclastic sequences are found adjacent to the volcanoes and are characterized by high-amplitude, disrupted reflections with local chaotic configurations. Vent complexes are classified on the basis of their morphologies as either eye-shaped or crater-shaped. The volcanic features identified within the available seismic dataset are concentrated in two main areas: in the centre of the plateau and near its northeastern border. These two regions are host basement outer highs and are surrounded by hyper-extended continental crust, which forms the plateau itself. The extrusive and intrusive features described in the offshore region were

  13. Recent to contemporary stress of the West Antarctic Rift from drill core and volcanic alignment studies (Invited)

    NASA Astrophysics Data System (ADS)

    Paulsen, T. S.; Wilson, T. J.; Jarrard, R. D.; Schmitt, D. R.; Pierdominici, S.; Montone, P.; Millan, C.; Läufer, A.; Wonik, T.; Handwerger, D.

    2010-12-01

    Integration of stress data derived from volcanic alignment studies in rift-related volcanic fields and from drilling-induced fractures from ANDRILL and Cape Roberts rift basin sedimentary rock cores is beginning to define a picture of the recent to contemporary stress patterns within the West Antarctic rift system. In the western sector of the rift in the southern Ross Sea, volcanic cone alignments on the Mount Morning shield volcano document a Pleistocene maximum horizontal stress direction of N31E, similar to the alignment of Plio-Pleistocene volcanic seamounts on the seafloor within the Franklin Island volcanic field. A contemporary NNE maximum horizontal stress direction is recorded by drilling-induced fractures within the ANDRILL SMS drill core. A hydrofrac experiment completed in this borehole documents a strike-slip stress regime. Borehole breakouts and drilling-induced fractures in boreholes and cores from the Cape Roberts Project show a counterclockwise rotation to a NNW maximum horizontal stress direction that is parallel to the Transantarctic Mountain Front. Drilling induced fractures within the ANDRILL MIS drill core and borehole located on the south side of Ross Island show a clockwise rotation to an ENE maximum horizontal stress direction. No in situ stress data is available in the central or eastern sectors of the submarine rift, where no drilling of rift successions has been done. In the Marie Byrd Land area of the eastern rift system, however, the orientations and ages of polygenetic volcano chains, elongate volcano edifices, and elongate summit calderas suggest a predominantly EW Plio-Pleistocene maximum horizontal stress direction. An earthquake focal mechanism solution offshore of this margin indicates that the contemporary maximum horizontal stress direction is also aligned EW. In this region the maximum horizontal stress direction is parallel to the structural trace of the rift and the absolute motion of the Antarctic plate. Collectively, the

  14. Paleomagnetism and tectonic interpretations of the Taos Plateau volcanic field, Rio Grande rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to late stage extensional environment of the Rio Grande rift was investigate using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chron. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counter-clockwise rotating Espanola block.

  15. Paleomagnetism and tectonic interpretations of the Taos Plateau volcanic field, Rio Grande rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to late stage extensional environment of the Rio Grande rift was investigate using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chron. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counter-clockwise rotating Espanola block.

  16. Climatic, volcanic and tectonic events recorded in recent sediments of the Rukwa rift, Western Tanzania

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Mees, F.; Williamson, D.; Macheyeki, A. S.

    2009-04-01

    Lake Rukwa is now a shallow lake occupying the floor of the closed Rukwa depression in the western branch of the East African Rift System. Sediment records of the paleo-lake level show that during the Late Pleistocene to Early Holocene, Lake Rukwa reached the level of the overflow sill, 180 m higher than its present level, and was overflowing into Lake Tanganyika. Lacustrine sediments from this period are now exposed on the margin of the depression, and in particular along the Songwe River, where several large sections up to 35 meters high can be studied. Investigation of selected sections reveals a complex evolution in alternating fluvio-deltaic to lacustrine environment, punctuated by episodic inflow of volcanic material from the nearby Rungwe Volcanic Province. Macroscopic description of the sedimentary packages and their geometry, combined with C14 dating, diatom analysis, and optical microscopy allow to propose a preliminary evolution scheme in which climatically induced lake level change, volcanic input and tectonic influence can be reconstructed. In particular, correlations between sections at different altitudes allow to better constrain the lake level fluctuation than previous estimates based on drill core analysis.

  17. Arc-rift transition volcanism in the Volcanic Hills, Jacumba and Coyote Mountains, San Diego and Imperial Counties, california

    NASA Astrophysics Data System (ADS)

    Fisch, Gregory Zane

    Neogene volcanism associated with the subduction of the Farallon-Pacific spreading center and the transition from a subduction zone to a rift zone has been studied extensively in Baja, California, Mexico. One of the main goals of these studies was to find a geochemical correlation with slab windows that may have formed during that complicated transition. While workers have been able to find distinct geochemical signatures in samples from Baja California, none have shown statistically significant correlation with samples from southern California that are thought to be related to the same arc-rift transition events. All of the basaltic samples from this study of southern California rocks have prominent Nb depletions typical of island-arc subduction-related volcanism, in contrast to the chemistry of Baja California volcanics that have trace element patterns typical of synrift related volcanism. The work done by previous investigators has been additionally complicated due to each investigator's choice of important ratios or patterns, which bears little, if any, correlation with work done by others working in the same area. For example, Martin-Barajas et al. (1995) use K/Rb ratios in their study of the Puertocitos Volcanic Province, while Castillo (2008) argues that Sr/Y vs. Y is a better indicator of petrogenetic processes. Little petrologic work has been done on Neogene volcanic rocks in the Imperial Valley and eastern San Diego County region of Southern California. This thesis combines new research with that of previous workers and attempts to establish a better understanding of the processes involved with the transition volcanism. Prior work documents significant differences in the geochemistry between some of these areas, especially those in close proximity to each other (e.g. the Volcanic Hills and Coyote Mountains). These differences were thought to be largely the result different magmatic sources. The potential of finding two differing magma types in close

  18. Reef growth and volcanism on the submarine southwest rift zone of Mauna Loa, Hawaii

    USGS Publications Warehouse

    Moore, J.G.; Normark, W.R.; Szabo, B. J.

    1990-01-01

    A marine sampling program, utilizing the PISCES-5 submersible operated by the Hawaii Undersea Research Laboratory (NOAA), has confirmed the presence of a major submerged coral reef offshore from Ka Lae (South Point), Hawaii. The top of the reef is now 150-160 m below sea level. Radiocarbon and Useries dating indicates that it drowned about 13.9 ka by the combined effects of island subsidence (2.5 mm/year) and the rapid rise of sea level at the end of the last glaciation so that the relative submergence rate of more than 10 mm/year exceeded the upward growth rate of the reef. The submerged reef caps the offshore part of the southwest rift-zone ridge of Mauna Loa, which has apparently undergone little volcanic activity offshore since 170 ka, and possibly since 270 ka. This fact suggests that rift zone activity is becoming increasingly restricted toward the upper part of the volcano, a condition possibly heralding the end of the shield-building stage. ?? 1990 Springer-Verlag.

  19. Rifting, volcanism, and magma genesis at the northern end of the Danakil Depression: The Alid volcanic center of Eritrea (Invited)

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Clynne, M. A.; Duffield, W. A.; Smith, J. G.; Woldegiorgis, L.

    2009-12-01

    The Alid volcanic center, Eritrea, is a structural dome formed by subvolcanic intrusion of pyroxene-bearing rhyolite, subsequently erupted as pumice and lava, during the period 40,000 to 15,000 years ago. The northern Danakil Depression is thought to be the most recently developed part of the Afar, and represents an active continental rift subparallel to the Red Sea spreading center. The location of Alid may be controlled by the intersection of the structural grain of the NE trending Senafe-Alid lineament with the NW trending Danakil Depression. Our work began as a geothermal assessment (Duffield et al., 1997, USGS Open-file 97-291) that found evidence for 300 meters of vertical offset of early Pleistocene basalt flows over the past 1.1 million years. Structural uplift at Alid reveals Proterozoic metamorphic basement rocks overlain by Quaternary marine sediments including siltstone, and sandstones interbedded with pillow lavas and hyaloclastites. These units are overlain by subaerial amphibole-bearing rhyolites (dated at ~200 ka), basalts, and andesites that were deposited on a relatively flat surface and before significant growth of a large volcanic edifice. About 1 km of structural uplift of the marine sediments began 40 ka when pyroxene-bearing rhyolitic magma intruded close to the surface. Uplift was accompanied by contemporaneous eruptions of pumice falls and more common obsidian domes and lava flows over the next 20,000 years. Uplift apparently ceased after eruption of pyroclastic flows and vent-clogging lava about 15 ka. The pumice deposits contain cognate xenoliths of granophyric pyroxene-granite (Lowenstern et al., 1997, J. Petrol. 38:1707). Our geochronology of the uplift is consistent with the idea that growth of the Alid volcanic center played a role in isolating the southern Danakil Depression from the Red Sea, helping to initiate dessication of the rift and producing the young evaporites found today at Baddha and further south at Dallol. U

  20. Andesite petrogenesis in a hybrid arc-rift setting: the Western Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Gómez-Tuena, A.; Vázquez-Duarte, A.; Díaz-Bravo, B.; Mori, L.

    2011-12-01

    The western sector of the Mexican subduction zone is characterized by the steep subduction of one of the youngest slabs on the planet (Rivera plate), and by the existence of a continental rift at ~230 km to the north from the trench (the so-called Tepic-Zacoalco rift, TZR), under which the subducted slab is either extremely deep or even absent (>250 km). The volcanic front is located at ~170 km from the trench and contains abundant potassic-alkaline lamprophyres with strong subduction (Ba/Ta= 1600-6000) and garnet signatures (Gd/Yb= 2-8), that have been recently interpreted as influenced by deep K2O-rich slab melts or supercritical fluids (Gómez-Tuena et al., 2011, GCA). In contrast, the most mafic rocks within the TZR are high-Nb, intraplate-like basalts that appear to derive from low extents of melting of a dryer (Ba/Ta= 800-60) and shallower (Gd/Yb= 2-2.5) mantle source. Even though a simple transition from an arc environment to an extensional tectonic regime is apparent when only the most primitive volcanic rocks are taken into account, the scenario becomes more complicated since at least five stratovolcanoes have been erupting typical arc andesites within the TZR over the last million years (San Juan, Sanganguey, Tepetiltic, Ceboruco and Tequila). Surprisingly, true calc-alkaline basalts that could be parental to andesites have not been found, indicating that andesites may have a direct mantle origin. Indeed, mayor and trace element compositions of volcanic rocks from western Mexico arrange in discrete suites with linear trends that are indicative of mixing, but they form sub-parallel arrays that do not converge to a common primitive basaltic melt, and often follow diverging trends in trace element-ratio plots. Melt-crust interactions likely occurred during magma ascent, since the volcanic rocks frequently include xenoliths and disequilibrium textures, but correlations among isotopic compositions and indexes of fractionation are not clearly observed in the

  1. Monitoring the NW volcanic rift-zone of Tenerife, Canary Islands, Spain: sixteen years of diffuse CO_{2} degassing surveys

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Halliwell, Simon; Butters, Damaris; Padilla, Germán; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria, is the only one that has developed a central volcanic complex characterized by the eruption of differentiated magmas. At present, one of the most active volcanic structures in Tenerife is the North-West Rift-Zone (NWRZ), which has hosted two historical eruptions: Arenas Negras in 1706 and Chinyero in 1909. Since the year 2000, 47 soil CO2 efflux surveys have been undertaken at the NWRZ of Tenerife Island to evaluate the temporal and spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. We report herein the last results of diffuse CO2 efflux survey at the NWRZ carried out in July 2015 to constrain the total CO2 output from the studied area. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. During 2015 survey, soil CO2 efflux values ranged from non-detectable up to 103 g m-2 d-1. The total diffuse CO2 output released to atmosphere was estimated at 403 ± 17 t d-1, values higher than the background CO2 emission estimated on 143 t d-1. For all campaigns, soil CO2 efflux values ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005. Total CO2 output from the studied area ranged between 52 and 867 t d-1. Temporal variations in the total CO2 output showed a temporal correlation with the onsets of seismic activity, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the area during April 22-29, 2004. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values located along a trending WNW-ESE area. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission, as well as for the spatial distribution of soil CO2 efflux

  2. Contrasting magma types and steady-state, volume-predictable, basaltic volcanism along the Great Rift, Idaho.

    USGS Publications Warehouse

    Kuntz, M.A.; Champion, D.E.; Spiker, E. C.; Lefebvre, R.H.

    1986-01-01

    The Great Rift is an 85 km-long, 2-8 km-wide volcanic rift zone in the Snake River Plain, Idaho. Three basaltic lava fields, latest Pleistocene to Holocene, are located along the Great Rift: Craters of the Moon, Kings Bowl and Wapi. Craters of the Moon is the largest, covering 1600 km2 and containing approx 30 km3 of lava flows and pyroclastics. Field, radiocarbon and palaeomagnetic data show that this lava field formed in eight eruptive periods, each lasted several hundred years with a recurrence interval of several hundred to approx 3000 yr. The first eruption began approx 15 000 yr B.P. and the last ended at approx 2100 yr B.P. The other two lava fields formed approx 2250 yr B.P. Three magma types fed flows along the Great Rift. A contaminated and a fractionated type were erupted at the Craters of the Moon lava field. The third, little-fractionated Snake River Plain magma-type was erupted at the other two lava fields. The Craters of the Moon segment of the Great Rift has experienced quasi-steady state, volume-predictable volcanism for the last 15 000 yr. Based on this, about 5-6 km3 of lava will be erupted within the next 1000 yr.-L.C.H.

  3. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism

    NASA Astrophysics Data System (ADS)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.

    2015-12-01

    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  4. Parameters influencing the location and characteristics of volcanic eruptions in a youthful extensional setting: Insights from the Virunga Volcanic Province, in the Western Branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    The East African Rift System (EARS) is often mentioned as the modern archetype for rifting and continental break-up (Calais et al., 2006, GSL Special Publication 259), showing the complex interaction between rift faults, magmatism and pre-existing structures of the basement. Volcanism in the EARS is characterized by very active volcanoes, several of them being among the most active on Earth (Wright et al., 2015, GRL 42). Such intense volcanic activity provides useful information to study the relationship between rifting, magmatism and volcanism. This is the case of the Virunga Volcanic Province (VVP) located in the central part of the Western Branch of the EARS, which hosts two of the most active African volcanoes, namely Nyiragongo and Nyamulagira. Despite the intense eruptive activity in the VVP, the spatial distribution of volcanism and its relationship with the extensional setting remain little known. Here we present a study of the interaction between tectonics, magmatism and volcanism at the scale of the Kivu rift section, where the VVP is located, and at the scale of a volcano, by studying the dense historical eruptive activity of Nyamulagira. Both the complex Precambrian basement and magmatism appear to contribute to the development of the Kivu rift. The presence of transfer zones north and south of the Lake Kivu rift basin favoured the development of volcanic provinces at these locations. Rift faults, including reactivated Precambrian structures influenced the location of volcanism within the volcanic provinces and the rift basin. At a more local scale, the historical eruptive activity of Nyamulagira highlights that, once a composite volcano developed, the gravitational stress field induced by edifice loading becomes the main parameter that influence the location, duration and lava volume of eruptions.

  5. Origin of silicic crust by rifting and bimodal plume volcanism in the Afar Depression

    NASA Astrophysics Data System (ADS)

    Ghatak, A.; Basu, A. R.; Ebinger, C. J.

    2010-12-01

    The youngest mantle plume province worldwide occurs at the seismically and volcanically active East African - Red Sea - Gulf of Aden (Afar) triple junction, where one or more upwellings has impinged the thick cratonic lithosphere since ~45 Ma. A spectacular example of magmatism in the Afar depression is seen in the present to < 2 Ma old bimodal fissural mafic and peralkaline silicic eruptions in the ~60 km-long Dabbahu-Manda Hararo (DMH) Rift. In this study we report major, trace elements, and Nd-Sr-Pb isotopes in recent basaltic and silicic rocks originating from the center of the DMH rift segment, exposed along the rift axis and flanks of this segment. The rare earth element (REE) patterns of the silicic rocks and basalts are different in two significant ways: (1) the silicic rocks show a prominent positive Ce-anomaly that is extremely rare in volcanic rocks; and (2) this positive Ce-anomaly is accompanied by a strong negative Eu-anomaly. These anomalies are absent in the basaltic rocks. The positive Ce-anomaly is probably due to interaction in a magma chamber, similar in composition to the basalts, with deep saline aquifer or brines that typically show positive Ce-anomaly. The REE patterns of the two lava groups are interpreted to be due to fractional crystallization of plagioclase in a magma chamber similar in REE composition as the basalts that erupted in the DMH segments. We interpret the silicic rocks to be residues after ~20% fractional crystallization of plagioclase in the DMH basalts. The Nd-Pb isotopic composition of the basalts and rhyolites of the DMH are similar to the Ethiopian plume as defined by the ~30 Ma old Ethiopian flood basalts. Based on their high 3He/4He ratios (R/RA ~30) and Nd-Sr-Pb isotopic data, the source of the Ethiopian plume is generally believed to be in the lower mantle. Therefore, the similarity of the Nd-Pb and Pb-Pb isotopic variations between the Ethiopian plume and the DMH lavas indicates that these lavas were sourced from

  6. Patterns of Volcanism Associated With Oligocene to Recent Dome Uplift, West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Le Masurier, W. E.

    2005-12-01

    The Marie Byrd Land dome lies on the Pacific coast of the West Antarctic rift system. It is a structural dome defined by elevations of a low-relief erosion surface that is exposed in fault- block nunataks. The dome has roughly 3000 m of structural relief and is about 800 km in diameter.The growth of the dome has been closely associated with two rather unusual patterns of volcanic activity that provide keys to the timing and rate of uplift. (1) The ages of basaltic rocks that rest on the erosion surface become systematically older with increasing elevation of the surface, e.g. 6.27 Ma at 600 m elevation, 27 Ma at 2700 m, etc., suggesting that uplift began around 27 Ma and continued to 6 Ma at roughly 100m/m.y. (2) The oldest of 18 felsic shield volcanoes formed around 19 Ma at the dome crest. The remaining felsic volcanoes become systematically younger toward the distal flanks of the dome, along linear, fault-controlled, N-S and E-W chains. Late Pleistocene (active) volcanoes lie at the north, south, east, and west margins of the dome, suggesting that uplift proceeded systematically from 19 Ma to the present by centrifugal extension of relict fractures during uplift, accompanied by the rise of felsic magmas from crustal reservoirs. Teleseismic studies (Winberry and Anandakrishnan, 2004) show that the crust has been thinned over the dome crest, and that the dome is supported by low density mantle. Tomographic images near the dome (Sieminski, et al., 2003) show a low velocity column extending down to the transition zone. The Antarctic plate has been stationary at least since the Eocene. In the apparent absence of a mechanism driven by plate tectonics, it is reasonable to infer that mantle plume activity has produced these spatial and temporal patterns of volcanism focused around dome uplift, rather than the more familiar linear volcanic chains associated with moving plates.

  7. Origin of felsic volcanism in the Izu arc intra-arc rift

    NASA Astrophysics Data System (ADS)

    Haraguchi, Satoru; Kimura, Jun-Ichi; Senda, Ryoko; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Ishii, Teruaki

    2017-05-01

    An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.

  8. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  9. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems.

    PubMed

    Ivanov, Alexei V; Demonterova, Elena I

    2009-01-01

    As known from inland sedimentary records, boreholes, and geophysical data, the initiation of the Baikal rift basins began as early as the Eocene. Dating of volcanic rocks on the rift shoulders indicates that volcanism started later, in the Early Miocene or probably in the Late Oligocene. Prominent tectonic uplift took place at about 20 Ma, but information (from both sediments and volcanics) on the initial stage of the rifting is scarce and incomplete. A comprehensive record of sedimentation derived from two stacked boreholes drilled at the submerged Akademichesky ridge indicates that the deep freshwater Lake Baikal existed for at least 8.4 Ma, while the exact formation of the lake in its roughly present-day shape and volume is unknown. Four important events of tectonic/environmental changes at about approximately 7, approximately 5, approximately 2.5, and approximately 0.1 Ma are seen in that record. The first event probably corresponds to a stage of rift propagation from the historical center towards the wings of the rift system. Rifting in the Hovsgol area was initiated at about this time. The event of ~5 Ma is a likely candidate for the boundary between slow and fast stages of rifting. It is reflected in a drastic change of sedimentation rate due to isolation of the Akademichesky ridge from the central and northern Lake Baikal basins. The youngest event of 0.1 Ma is reflected by the (87)0Sr/ (86)Sr ratio increase in Lake Baikal waters and probably related to an increasing rate of mountain growth (and hence erosion) resulting from glacial rebounding. The latter is responsible for the reorganization of the outflow pattern with the termination of the paleo-Manzurka outlet and the formation of the Angara outlet. The event of approximately 2.5 Ma is reflected in the decrease of the (87)Sr/(86)Sr and Na/Al ratios in Lake Baikal waters. We suggest that it is associated with a decrease of the dust load due to a reorganization of the atmospheric circulations in Mainland

  10. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  11. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand

    PubMed Central

    Hamling, Ian J.; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-01-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system. PMID:27386580

  12. Volcanic margin formation and Mesozoic rift propagators in the Cuvier Abyssal Plain off Western Australia

    NASA Astrophysics Data System (ADS)

    Mihut, Dona; Müller, R. Dietmar

    1998-11-01

    The western margin of Australia is characterized by synrift and postrift magmatism which is not well understood. A joint interpretation of magnetic anomaly, satellite gravity anomaly and seismic data from the Cuvier Abyssal Plain and margin shows that the breakup between India and Australia started circa 136 Ma (M14) and was followed by two rift propagation events which transferred portions of the Indian Plate to the Australian Plate. Post breakup magmatism continued with the emplacement of the Wallaby and Zenith plateaus (˜17-18 km thick at their centers) along a transform margin. Two narrow magmatic edifices adjacent to the Wallaby Plateau (Sonne and Sonja ridges) represent an extinct ridge and a pseudofault, respectively. They formed by excess volcanism, probably by lateral migration of buoyant melt along upside-down crustal drainage channels from the melt source underneath the Wallaby Plateau. In a mantle plume scenario a small plume (˜400 km diameter) located underneath the rift could have locally uplifted the Bernier Platform and Exmouth Sub-basin in the Early Cretaceous and left a track consistent with the azimuth of the Wallaby and Zenith plateaus. In this case, ridge-plume interaction would have caused two consecutive ridge propagation events towards the plume while the ridge moved away from the hotspot. The abrupt end of the hotspot track west of the Zenith Plateau would be a consequence of the accelerating south-eastward motion of the spreading ridge relative to the mantle after 120 Ma, leaving the mantle plume underneath the Indian Plate. An alternative nonmantle-plume scenario is based on the observation that between breakup and chron M0 (˜120 Ma) the ocean crust in the southern Cuvier Abyssal Plain was formed while the spreading ridge abutted Indian continental crust. Small-scale convection may have been initiated during rifting in the Early Cretaceous and maintained until the Wallaby-Zenith ridge-transform intersection passed by the eastern edge

  13. Paleomagnetism and Tectonic Interpretations of the Taos Plateau Volcanic Field, Rio Grande Rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to the late stage extensional environment of the Rio Grande rift was investigated using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chiron. Alternating field demagnetization, aided by principal component analysis, yields 55 sites with stable directions representing both normal and reversed polarities, and five sites indicating transitional fields. Mean direction of the normal and inverted reversed sites is I=49.3 deg. and D=356.7 deg. (alpha(sub 95)=3.6 deg). Angular dispersion of the virtual geomagnetic poles is 16.3 deg, which is consistent with paleosecular variation model G, fit to data from the past 5 m.y. Comparison with the expected direction indicates no azimuthal rotation of the Taos Plateau volcanic field; inclination flattening for the southern part of the plateau is 8.3 deg +/- 5.3 deg. Previous paleomagnelic data indicate 10 deg- 15 deg counterclockwise rotation of die Espanola block to the south over the past 5 m.y. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern

  14. Paleomagnetism and Tectonic Interpretations of the Taos Plateau Volcanic Field, Rio Grande Rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to the late stage extensional environment of the Rio Grande rift was investigated using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chiron. Alternating field demagnetization, aided by principal component analysis, yields 55 sites with stable directions representing both normal and reversed polarities, and five sites indicating transitional fields. Mean direction of the normal and inverted reversed sites is I=49.3 deg. and D=356.7 deg. (alpha(sub 95)=3.6 deg). Angular dispersion of the virtual geomagnetic poles is 16.3 deg, which is consistent with paleosecular variation model G, fit to data from the past 5 m.y. Comparison with the expected direction indicates no azimuthal rotation of the Taos Plateau volcanic field; inclination flattening for the southern part of the plateau is 8.3 deg +/- 5.3 deg. Previous paleomagnelic data indicate 10 deg- 15 deg counterclockwise rotation of die Espanola block to the south over the past 5 m.y. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern

  15. Geology and the origin of trachytes and pantellerites from the Eburru volcanic field, Kenya Rift

    NASA Astrophysics Data System (ADS)

    Velador, J. M.; Omenda, P. A.; Anthony, E. Y.

    2002-12-01

    The Eburru volcanic field is located in the Kenya Rift, where it is part of the very young axial volcanic activity. The Eburru field belongs to the complex of volcanoes -- Menegai, Eburru, Olkaria, Longonot, and Suswa -- that are centered on the Kenya Dome. All of these volcanoes are prime targets for geothermal energy, with Kenya's one geothermal plant at Olkaria.. Correlation with dated volcanism implies that the activity at Eburru is at most approximately 500,000 years. The surfaces preserved on the youngest flows suggest that they erupted within the last 1,000 years. Mapping indicates that the volcanic field is divided into an older western section, composed of pantellerites (Er1) and overlying, faulted trachytes (Et1), and a younger eastern section. The eastern section has a mapable ring structure, and is composed of trachytes (Et2) and pantellerites (Er2). Some of these flows may be contemporaneous, but the final phase of eruption is exclusively pantellerite. We have chemical data for all units except the older pantellerites. The data indicate that the trachytes and rhyolites are both pantelleritic in terms of their alumina and iron contents. This is in contradistinction to the rhyolites immediately adjacent at Olkaria, which are comenditic. Concentrations for all elements are highly elevated, except for Ba, Sr, K, P, and Ti that show deep negative anomalies. The relationship between the trachytes (Et2) and pantellerites (Er2) is one in which the pantellerites consistently have the highest concentrations in all elements, including those with negative anomalies. Correlation coefficients for pairs such as Zr and Rb support the field evidence for the western Et1 trachytes being a separate magmatic event from the Et2 and Er2 units of the eastern field. Sanidine is the principal phenocrystic phase in these rocks, and thus the elevated Sr and Ba in the pantellerites preclude simple crystal fractionation to derive pantellerite from trachyte. Bailey and Macdonald

  16. Tectonic-Volcanic Interplay in the Dabbahu Segment of the Afar Rift from Cosmogenic 3He Constraints

    NASA Astrophysics Data System (ADS)

    Williams, A.; Pik, R.; Burnard, P.; Lahitte, P.; Yirgu, G.; Adem, M.

    2008-12-01

    The Afar Rift in Ethiopia is one of the only subaerial locations in the world where the transition from continental break-up to oceanic-spreading can be observed. Extension and volcanism in the Afar is concentrated in tectono-magmatic segments (TMS), similar in size and morphology to those that characterise spreading ridges. The Dabbahu TMS is the southernmost of the western Afar and has recently been the site of significant activity. A massive seismic event in late 2005, triggered by the injection of an 8-m wide dyke, heralded the onset of a new rifting period in the Dabbahu TMS. Volcanic activity associated with the periods of magma-driven extension, which have recurred at 4-8 mth intervals, has been both silicic (explosive) and basaltic (fissural). The most recent activity in the Afar thus testifies to the close interplay of tectonics and magmatism in rifting environments. In an effort to decipher the long-term structural and volcanic evolution of Dabbahu TMS we have employed the cosmogenic nuclide dating technique to provide chronological data for the segment. This method has advantages over other geochronological tools in that we can target both volcanic and tectonic surfaces of a few Kyr to several Myr age. Baddi Volcano, located off-axis on the western margin of the TMS, is a bimodal central stratovolcano typical of the Afar TMS. Late-stage basaltic lava flows cap an acidic base, which has been dated at 290 ± 4 ka using the K-Ar technique (Lahitte et al., 2003). Following preliminary sampling in 2007, we have determined a cosmogenic 3He age of 53.4 ± 3.7 ka from multiple samples from one of the basaltic flows on the NW flank of Baddi. These data show a significant time gap (240 Kyr) between the final phase of acidic volcanism and the onset of basaltic activity at the central volcanoes, presumably related to the rate of magma chamber replenishment. To test whether the spectacular shift to basaltic activity at 53 ka represents replenishment of the entire sub-rift

  17. Geophysical Survey of the 1978 Seismo-volcanic Crisis in the Asal-Ghoubbet Rift (Afar Depression, Djibouti) and the Post-rifting Deformations

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Ruegg, J.; de Chabalier, J.; Vigny, C.; Jacques, E.

    2006-12-01

    In November 1978, a seismo-volcanic crisis occurred in the Asal-Ghoubbet Rift, which is located at the western termination of the oceanic Aden Ridge propagating inland into the Afar Depression and accommodates a large part of the divergent motion of the Arabia and Somalia plates. This episode offered the opportunity to study the rifting process controlling the evolution of a sub-aerial opening segment at the transition from continental break-up to oceanic spreading. This major crustal spreading episode started with two major earthquakes in the subaerial part of the rift (mb=5.3 and 5.0) and was followed by the week-long, basaltic fissure eruption of the Ardukoba at the western tip of the central volcanic chain. The geophysical survey carried out for the crisis was possible by means of the Arta Observatory in Djibouti within the framework of field surveys financed by the French agency CNRS-INSU. This allowed the measurements of the surface breaks (dry open fissures up to 100 m, normal fault throws up to 80 cm), the crustal deformation by geodetic networks and leveling (up to 2m of horizontal widening, 70 cm of inner-floor subsidence), and the evolution of the seismic activity (eastward migration along the Aden Ridge) associated with this rifting event. Elastic modeling shows that both the deformation pattern and the seismic activity can be explained by the aseismic intrusion of two dykes below the rift inner-floor. Subsequently, a continuous geodetic and seismic monitoring has been maintained and shows that the post-dyke injection evolution of the rift is dominated by two distinct periods. During the six first years (1979-1986), high rates of horizontal opening and slip of creeping normal faults accommodate the subsidence of the inner-floor surrimposed to the development of a 25 km-wide uplift. Since 1986-87, the strain rates have decreased and currently reach values consistent with long-term velocities deduced from morpho-tectonic studies. The evolution of the

  18. Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Blischke, Anett; Nasuti, Aziz; Sand, Morten

    2015-05-01

    We have acquired and processed new aeromagnetic data that cover the entire oceanic Norway Basin located between the Møre volcanic rifted margin and the Jan Mayen microcontinent (JMMC). The new compilation allows us to revisit the structure of the conjugate volcanic (rifted) margins and the spreading evolution of the Norway Basin from the Early Eocene breakup time to the Late Oligocene when the Aegir Ridge became extinct. The volcanic margins (in a strict sense) that formed before the opening of the Norway Basin have been disconnected with the previous Jurassic-Mid-Cretaceous episode of crustal thinning. We also show evidence of relationships between the margin architecture, the breakup magmatism distribution along the continent-oceanic transition, and the subsequent oceanic segmentation. The Norway Basin shows a complex system of asymmetric oceanic segments locally affected by episodic ridge jumps. The new aeromagnetic compilation also confirms that a fan-shaped spreading evolution of the Norway Basin was clearly active before the cessation of seafloor spreading and extinction of the Aegir Ridge. An important Mid-Eocene kinematic event at around magnetic chron C21r can be recognized in the Norway Basin. This event coincides with the onset of diking and increasing rifting activity (and possible oceanic accretion?) between the proto-JMMC and the East Greenland margin. It led to a second phase of breakup and microcontinent formation in the Norwegian-Greenland Sea ~26 Myrs later in the Oligocene.

  19. Volcanic history of the Colorado River extensional corridor: Active or passive rifting

    SciTech Connect

    Howard, K.A. )

    1993-04-01

    Magmatism and extension began nearly simultaneously in the Colorado River extensional corridor (CREC) between 34 and 35[degree] N. Initial eruptions of basanite at 23--19.5 Ma were low-volume but spanned a region now twice as wide as the 100-km-wide corridor. Extensional tilting of this age was local. A large flux of calc-alkaline basalt, andesite, dacite, and rhyolite was erupted at 22--18.5 Ma. They accumulated to average thicknesses of [approximately]1 km in the early CREC basin, and were accompanied by extensional tilting. Dike swarms, necks, and plutons represent intrusive equivalents. Plutons concentrate in the central belt of metamorphic core complexes, the most highly extended areas. Massive eruption at 18.5 Ma of the rhyolitic Peach Springs Tuff marked an ensuing lowered rate of volcanic output, a change to bimodal volcanism, much tilting and extension, and deposition of thick (to [approximately]2 km) synextensional clastic sediments 18--14 Ms. By 14--12 Ma, extensional tilting had largely ceased, and eruptions were sparse and basaltic only, as they have been since. Basalt compositions reveal changing patterns of trace-element composition that bear on sources. The early basanites have OIB-like compositions on spidergram plots, suggesting origin from the asthenosphere as would be expected from initiation of rifting driven by hot mantle upwelling. Basalts 20--12 Ma show low concentrations of Nb and Ta as in subduction-related arc magmas. Post-extensional basalts erupted 15--10 Ma exhibit a transition back toward primitive compositions seen in Quaternary alkalic basalts.

  20. Submarine explosive volcanism in the southeastern Terceira Rift/São Miguel region (Azores)

    NASA Astrophysics Data System (ADS)

    Weiß, B. J.; Hübscher, C.; Wolf, D.; Lüdmann, T.

    2015-09-01

    Morphologic studies with sonar data and in situ observations of modern eruptions have revealed some information suggesting how submarine volcanic cones develop, but the information only addresses the modern surfaces of these features. Here, we describe a study combining morphological data with high-resolution seismic reflection data collected over cones within the southeastern Terceira Rift - a succession of deep basins, volcanic bathymetric highs and islands (e.g. São Miguel) representing the westernmost part of the Eurasian-Nubian plate boundary. The cones (252) are distributed in depths down to 3200 m and exhibit an average diameter of 743 m, an average slope of 20° and heights mainly between 50 and 200 m. The cones are here classified into three different categories by physiographic or tectonic setting (we find no particular morphometric differences in cone shapes between these areas). First, numerous cones located at the submarine flanks of São Miguel's Sete Cidades and Fogo Volcano are considered to be parasitic structures. Second, in the southeast of the island, they form a superstructure possibly reflecting an early submarine stadium of a posterior subaerial stratovolcano. Third, some cones are controlled by faults, mostly in a graben system southwest of the island. High-resolution multichannel seismic data indicates that the graben cones evolved synchronously with the graben formation. Bottom currents then probably removed the surficial fine grain-size fraction, leaving rough surface textures of the cones, which backscatter sonar signals strongly in the data recorded here. However, a young cone investigated in detail is characterized by a smooth surface, a marked increase of internal stratification with increasing distance from the summit and upwards concave flanks. Others exhibit central craters, suggesting an explosive than an effusive evolution of these structures. The morphological characteristics of these submarine cones show that they have similar

  1. Pliocene volcanism of the Taos Plateau, Rio Grande Rift-New constraints on eruptive cycles, compositional trends and links to rift tectonism

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Cosca, M. A.; Turner, K. J.; Condit, C. B.; Lee, J.; Budahn, J. R.; Drenth, B.

    2011-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Basin of northern New Mexico and southern Colorado is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Coincident with extensional tectonism, volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and reflect the time-integrated magmatic response to basin- and sub basin-scale structural accommodation of regional extension. New data constraining the eruptive history of mafic to intermediate composition Pliocene volcanic rocks of the Taos Plateau volcanic field are presented based on integrated geologic mapping (1:24,000 to 1:50,000 scale), 40Ar/39Ar geochronology, geochemistry and aeromagnetic data. Mapped stratigraphy and faulting is linked to new gravity model interpretations to establish the location of deeper basin and sub basin geometry relative to mapped eruptive centers. Three representative clusters of eruptive centers in the San Luis Basin (San Antonio Mtn., Ute Mtn., and Guadalupe Mtn./Red River areas) range in composition from basaltic andesite to dacite but are volumetrically dominated by high-silica andesite to dacite. Eruptive cycles for each cluster are: San Antonio Mtn. (andesite - 4.17 Ma, high silica andesite to dacite - 3.08 Ma); Ute Mtn. (andesite - 3.95 Ma, high silica andesite - 3.90 Ma); Guadalupe Mtn./Red River (Guadalupe Mtn. dacite - 5.04 Ma, Hatchery volcano basaltic andesite to andesite - 4.90 Ma) and Red River high silica andesite - 4.64 Ma). Deposits of each cluster are stratigraphically intercalated with Servilleta Basalt (5.26-3.36 Ma) but not temporally associated with these distally derived lavas. Each mapped cluster is spatially associated with mapped or inferred basin- or sub basin- bounding structures largely derived from new gravity models and interpretation of aeromagnetic data. However, few temporal constraints on pre- as well as post-eruption displacement on rift faults

  2. Petrogenesis of a basalt-comendite-pantellerite rock suite: the Boseti Volcanic Complex (Main Ethiopian Rift)

    NASA Astrophysics Data System (ADS)

    Ronga, Fiorenzo; Lustrino, Michele; Marzoli, Andrea; Melluso, Leone

    2010-03-01

    Petrological and geochemical data for basic (alkali basalts and hawaiites) and silicic peralkaline rocks, plus rare intermediate products (mugearites and benmoreites) from the Pleistocene Boseti volcanic complex (Main Ethiopian Rift, East Africa) are reported in this work. The basalts are slightly alkaline or transitional, have peaks at Ba and Nb in the mantle-normalized diagrams and relatively low 87Sr/86Sr (0.7039-0.7044). The silicic rocks (pantellerites and comendites) are rich in sanidine and anorthoclase, with mafic phases being represented by fayalite-rich olivine, opaque oxides, aenigmatite and slightly Na-rich ferroaugite (ferrohedenbergite). These rocks were generated after prolonged fractional crystallization process (up to 90-95 %) starting from basaltic parent magmas at shallow depths and fO2 conditions near the QFM buffer. The apparent Daly Gap between mafic and evolved Boseti rocks is explained with a model involving the silicic products filling upper crustal magma chambers and erupted preferentially with respect to basic and intermediate products. Evolved liquids could have been the only magmas which filled the uppermost magma reservoirs in the crust, thus giving time to evolve towards Rb-, Zr- and Nb-rich peralkaline rhyolites in broadly closed systems.

  3. REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley

    USGS Publications Warehouse

    Macdonald, R.; Baginski, B.; Belkin, H.E.; Dzierzanowski, P.; Jezak, L.

    2009-01-01

    Electron microprobe analyses are presented for fluorapatite phenocrysts from a benmoreite-peralkaline rhyolite volcanic suite from the Kenya Rift Valley. The rocks have previously been well characterized petrographically and their crystallization conditions are reasonably well known. The REE contents in the M site increase towards the rhyolites, with a maximum britholite component of ~35 mol.%. Chondrite-normalized REE patterns are rather flat between La and Sm and then decrease towards Yb. Sodium and Fe occupy up to 1% and 4%, respectively, of the M site. The major coupled substitution is REE3+ + Si4+ ??? Ca2+ + P5+. The substitution REE3+ + Na+ ??? 2Ca2+ has been of minor importance. The relatively large Fe contents were perhaps facilitated by the low fo2 conditions of crystallization. Zoning is ubiquitous and resulted from both fractional crystallization and magma mixing. Apatites in some rhyolites are relatively Y-depleted, perhaps reflecting crystallization from melts which had precipitated zircon. Mineral/glass (melt) ratios for two rhyolites are unusually high, with maxima at Sm (762, 1123). ?? 2008 The Mineralogical Society.

  4. Tectonic, volcanic and human activity ground deformation signals detected by multitemporal InSAR techniques in the Colima Volcanic Complex (Mexico) rift

    NASA Astrophysics Data System (ADS)

    Brunori, C.; Norini, G.; Bignami, C.; Groppelli, G.; Zucca, F.; Stramondo, S.; Capra, L.; Cabral-Cano, E.

    2010-12-01

    The evolution of volcanoes is strictly related with their substratum and the regional tectonics. The link among morphology, geology and structure of volcanic edifices and the geological-structural characteristics of the basement is important to understand hazardous phenomena as flank eruptions and lateral collapses of volcanoes. The Colima Rift is an active regional structure, N-S oriented and more than 100 km long and 10 wide. This rift is filled by a ~1 km-thick sequence of quaternary lacustrine sediments, alluvium, and colluvium, mostly underling the about 3000 m thick volcanic pile of the Colima Volcanic Complex (CVC). In addition to the regional structures curved faults, roughly E-W oriented, are observed on the CVC edifice due to the spreading of the volcano moving southward on the weak basement. So in the CVC edifice and surrounding area we can observe the interaction of regional structures and volcanic ones due to the gravitational loading of the volcanic edifice on the weak substratum of the graben. To measure displacements due to magma movement at depth and interaction of regional structures and volcanic ones, SAR interferometry has proven to be a reliable method; however, andesitic stratovolcanoes like the CVC indeed,remain difficult to survey using this technique. The main causes are their specific geometry (steep topography), which induces strong tropospheric artefacts, environmental conditions (e.g., mainly vegetation, ash and/or snow cover), leading to a loss of coherency. In this work we try to detect deformations phenomena for the wide CVC using a robust multitemporal InSAR approach Differential Synthetic Aperture Radar Interferometry (DInSAR). We apply the Hooper (2008) DInSAR algorithm (StamPS/MTI) both to ENVISAT ASARr images acquired from 1993 to 2007 and to ALOS PALSAR (datasets from 2006 to 2010) in order to determine the deformation patterns in the CVC.

  5. Venus: Geology of Beta Regio rift system

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.

    1992-01-01

    Beta Regio is characterized by the existence of rift structures. We compiled new geologic maps of Beta Regio according to Magellan data. There are many large uplifted tesserae on beta upland. These tesserae are partly buried by younger volcanic cover. We can conclude, using these observations, that Beta upland formed mainly due to lithospheric tectonic uplifting and was only partly constructed by volcanism. Theia Mons is the center of the Beta rift system. Many rift belts are distributed radially to Theia Mons. Typical widths of rifts are 40-160 km. Rift valleys are structurally represented by crustal grabens or half-grabens. There are symmetrical and asymmetrical rifts. Many rifts have shoulder uplifts up to 0.5-1 km high and 40-60 km wide. Preliminary analysis for rift valley structural cross sections lead to the conclusion that rifts originated due to 5-10 percent crustal extension. Many rifts traverse Beta upland and spread to the surrounding lowlands. We can assume because of these data that Beta rift system has an active-passive origin. It formed due to regional tectonic lithospheric extension. Rifting was accelerated by upper-mantle hot spot origination under the center of passive extension (under the Beta Regio).

  6. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys

    USGS Publications Warehouse

    Behrendt, John C.; Saltus, R.; Damaske, D.; McCafferty, A.; Finn, C.A.; Blankenship, D.; Bell, R.E.

    1996-01-01

    Aeromagnetic surveys, spaced ???5 km, over widely separated areas of the largely ice- and sea-covered West Antarctic rift system, reveal similar patterns of 100- to 1700-nT, shallow-source magnetic anomalies interpreted as evidence of extensive late Cenozoic volcanism. We use the aeromagnetic data to extend the volcanic rift interpretation over West Antarctica starting with anomalies over (1) exposures of highly magnetic, late Cenozoic volcanic rocks several kilometers thick in the McMurdo-Ross Island area and elsewhere; continuing through (2) volcanoes and subvolcanic intrusions directly beneath the Ross Sea continental shelf defined by marine magnetic and seismic reflection data and aeromagnetic data and (3) volcanic structures interpreted beneath the Ross Ice Shelf partly controlled by seismic reflection determinations of seafloor depth to (4) an area of similar magnetic pattern over the West Antarctic Ice Sheet (400 km from the nearest exposed volcanic rock), where interpretations of late Cenozoic volcanic rocks at the base of the ice are controlled in part by radar ice sounding. North trending magnetic rift fabric in the Ross Sea-Ross Ice Shelf and Corridor Aerogeophysics of the Southeast Ross Transect Zone (CASERTZ) areas, revealed by the aeromagnetic surveys, is probably a reactivation of older rift trends (late Mesozoic?) and is superimposed on still older crosscutting structural trends revealed by magnetic terrace maps calculated from horizontal gradient of pseudogravity. Longwavelength (???100-km wide) magnetic terraces from sources within the subvolcanic basement cross the detailed survey areas. One of these extends across the Ross Sea survey from the front of the Transantarctic Mountains with an east-southeast trend crossing the north trending rift fabric. The Ross Sea-Ross Ice Shelf survey area is characterized by highly magnetic northern and southern zones which are separated by magnetically defined faults from a more moderately magnetic central zone

  7. Constructing event trees for volcanic crises

    USGS Publications Warehouse

    Newhall, C.; Hoblitt, R.

    2002-01-01

    Event trees are useful frameworks for discussing probabilities of possible outcomes of volcanic unrest. Each branch of the tree leads from a necessary prior event to a more specific outcome, e.g., from an eruption to a pyroclastic flow. Where volcanic processes are poorly understood, probability estimates might be purely empirical - utilizing observations of past and current activity and an assumption that the future will mimic the past or follow a present trend. If processes are better understood, probabilities might be estimated from a theoritical model, either subjectively or by numerical simulations. Use of Bayes' theorem aids in the estimation of how fresh unrest raises (or lowers) the probabilities of eruptions. Use of event trees during volcanic crises can help volcanologists to critically review their analysis of hazard, and help officials and individuals to compare volcanic risks with more familiar risks. Trees also emphasize the inherently probabilistic nature of volcano forecasts, with multiple possible outcomes.

  8. Sr isotope geochemistry of megacrysts from continental rift and converging plate margin alkaline volcanism in South Italy

    NASA Astrophysics Data System (ADS)

    Vollmer, R.; Johnston, Kate; Ghiara, M. R.; Lirer, L.; Munno, Rosalba

    1981-12-01

    Mineral phases of two-clinopyroxene alkaline lavas from continental rift and plate margin volcanism in South Italy have been analyzed for their Sr isotopic composition and concentration. Sr isotope disequilibria are observed between megacrysts and groundmass in all seven analysed Campanian potassic lavas, but not in a lava from Stromboli, a volcano in the Eolian arc. Variations in 87Sr/ 86Sr ratios for different phases in the lavas are likely to reflect primary Sr isotope variations in the primitive lavas (rather than crustal contamination effects). It is suggested that the observed mineral disequilibria point to the intimate association of a range of primary magmas and small-scale source heterogeneities for the Campanian volcanism. The lack of mineral disequilibria for Stromboli suggests that here source heterogeneities are absent or else exist on a very much larger scale. It is therefore unlikely that there is any genetic connection between these two types of alkaline volcanism in South Italy.

  9. Evolution of bimodal volcanism in Gona, Ethiopia: geochemical associations and geodynamic implications for the East African Rift System

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Basu, A. R.; Gregory, R. T.; Richards, I.; Quade, J.; Ebinger, C. J.

    2013-12-01

    The East African rift system in Ethiopia formed in the Earth's youngest flood basalt province, and provides a natural laboratory to study the geochemistry of bimodal volcanism and its implications for plume-derived magmatism, mantle-lithosphere interactions and evolution of continental rifts from plate extension to rupture. Our geochemical studies of the ~6 Ma to recent eruptive products from Gona within the Afar Rift Zone are understood in context of crustal and upper mantle seismic imaging studies that provide constraints on spatial variations. Geochemical (major element, trace element and isotope) analyses of basalts and rhyolitic tuff from Gona indicate a common magma source for these bimodal volcanics. Light rare earth elements (LREEs) are enriched with a strong negative Eu anomaly and a positive Ce anomaly in some of the silicic volcanic rocks. We observe strong depletions in Sr and higher concentrations of Zr, Hf, Th, Nb and Ta. We hypothesize that the silicic rocks may be residues from a plume-derived enriched magma source, following partial melting with fractional crystallization of plagioclase at shallow magma chambers. The absence of Nb-Ta anomaly shows no crustal assimilation by magmas. Sr isotopes, in conjunction with Nd and Pb isotopes and a strong Ce anomaly could reflect interaction of the parent magma with a deep saline aquifer or brine. Nd isotopic ratios (ɛNd = 1.9 to 4.6) show similarity of the silicic tuffs and basalts in their isotopic compositions except for some ~6 Ma lavas showing MORB-like values (ɛNd = 5 to 8.7) that suggest involvement of the asthenosphere with the plume source. Except for one basaltic tuff, the whole rock oxygen isotopic ratios of the Gona basalts range from +5.8‰ to +7.9‰, higher than the δ values for typical MORB, +5.7. The oxygen isotopes in whole rocks from the rhyolite tuffs vary from 14.6‰ to 20.9‰ while their Sr isotope ratios <0.706, indicative of post-depositional low T alteration of these silicic

  10. The Hydrocarbon Potential of the Deep Offshore Along the Argentine Volcanic Rifted Margin - A Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Schümann, T. K.; Hinz, K.; Ellouz, N.; Littke, R.

    2004-05-01

    In the Late Jurassic / Early Cretaceous, continental break-up of Gondwana led to the opening and northward propagating of the South Atlantic. Since 135 Ma, the Paraná / Etendeka continental flood basalts were emplaced, associated with seaward dipping reflector sequences (SDRS), possibly caused by the Tristan da Cunha hot spot. After break-up, thermal subsidence affected predominantly the development of the rifted volcanic continental margin, especially the elongated zone of the SDRS and a thick sedimentary column was deposited onto this transition zone between the continental and the oceanic crust where locally up to 5.400 m of sediments were accumulated. With the thermal calibration to available maturation data from multiple wells drilled in the nearby Colorado Basin integrated 1-D and 2-D basin modeling was applied to evaluate the thermal history of the sedimentary column. In combination with the interpretation of more than 20.000 km of MSC reflection / refraction seismic data and the mapping of the sedimentary units this led to a maturity model for deposits of marine black shales, potential source rocks in the deep domain of the South Atlantic region, correlated to Cretaceous anoxic events. With the results of the 2-D basin modeling a zone favorable for the generation of hydrocarbons from proposed Aptian source rocks was defined based on the deposition and the thickness of the overburden rocks and the timing of the generation and the migration of the generated hydrocarbons was estimated. Migration pathways were modeled and possible stratigraphic oil plays were localized in onlap structures below the Danian Pedro Luro Formation along the lower continental rise in 1.500 to 2.000 m water depth approximately 3.000 m below the sea bottom.

  11. Late Miocene calc-alkalic volcanism in northwestern Mexico: an expression of rift or subduction-related magmatism?

    NASA Astrophysics Data System (ADS)

    Mora-Klepeis, Gabriela; McDowell, Fred W.

    2004-12-01

    Magmatism in NW Mexico records a Late Miocene transformation from convergence to extension in the Gulf of California rift system. Miocene calc-alkalic rocks in the Baja California peninsula are related to the final subduction of the Farallon plate system, but the heterogeneous nature of volcanism younger than 12.5 Ma has led to conflicting tectonic interpretations. Neogene volcanic rocks in the Sierra Santa Ursula, Sonora, were emplaced in three magma pulses, according to mapping, K-Ar geochronology, and geochemistry. From 23.5 to 15 and 14 to 11.4 Ma, calc-alkalic rocks show an arc-like signature. The 12-11 Ma calc-alkalic dacites, however, are characterized by higher K, Rb, 87Sr/ 86Sr, and light REE abundances than are the older rocks. The timing, petrography, and geochemistry of the 12-11 Ma rocks are interpreted to reflect postsubduction magmatism. A change in magma chemistry from predominantly calc-alkalic to tholeiitic rocks at 10.3 Ma corresponds to orthogonal extension during early Gulf of California evolution. Sr, Nd, and Pb radiogenic isotope signatures show minor changes over time. The volcanic record for 20-12.5 Ma at Sierra Santa Ursula and adjacent areas is consistent with the reconstructed history of the Guadalupe microplate. The interval of magmatism produced from 12 to 11 Ma appears to reflect changes in plate geometry during the transition from subduction to rifting.

  12. The eruptive history and magmatic evolution of Aluto volcano: new insights into silicic peralkaline volcanism in the Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Pyle, David M.; Mather, Tamsin A.; Yirgu, Gezahegn; Biggs, Juliet; Cohen, Benjamin E.; Barfod, Dan N.; Lewi, Elias

    2016-12-01

    The silicic peralkaline volcanoes of the East African Rift are some of the least studied volcanoes on Earth. Here we bring together new constraints from fieldwork, remote sensing, geochronology and geochemistry to present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in a densely populated section of the Main Ethiopian Rift. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at 316 ± 19 ka and 306 ± 12 ka developing a 42 km2 collapse structure. After a hiatus of 250 ka, a phase of post-caldera volcanism initiated at 55 ± 19 ka and the most recent eruption of Aluto has a radiocarbon age of 0.40 ± 0.05 cal. ka BP. During this post-caldera phase highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (> 80%) of basalt that is compositionally similar to rift-related basalts found east of the complex. Based on the style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes in the range 1-100 × 106 m3.

  13. Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina

    NASA Astrophysics Data System (ADS)

    Benedini, Leonardo; Gregori, Daniel; Strazzere, Leonardo; Falco, Juan I.; Dristas, Jorge A.

    2014-12-01

    In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage. The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE-SSW direction (˜N10°). The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188-178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.

  14. Geomorphometric reconstruction of post-eruptive surfaces of the Virunga Volcanic Province (East African Rift), constraint of erosion ratio and relative chronology

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu

    2016-04-01

    Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes

  15. Evaluation of the ongoing rifting and subduction processes in the geochemistry of magmas from the western part of the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Pandarinath, Kailasa; Rivera-Gómez, M. Abdelaly

    2016-03-01

    A compilation of new and published geochemical data for 1512 samples of volcanic rocks from the western part of the Mexican Volcanic Belt was first subdivided according to the age group (136 samples of Miocene and 1376 samples of Pliocene-Holocene). Rocks of the younger group were then subdivided as Rift (1014 samples from the triple-rift system) and No Rift (362 samples outside of the triple-rift system) or Near Trench (937 samples) and Far Trench (439 samples) magmas. These subdivisions were considered separately as basic, intermediate, and acid magmatic rocks. The application of the conventional and multidimensional techniques confirmed the great tectonic and geochemical complexity of this region. The presence of oceanic-type basalts suggested to result from a mantle plume was not confirmed from the tectonomagmatic multidimensional diagrams. The Miocene rocks, which are present at the surface far from the Middle-America Trench, showed a likely continental rift setting in most diagrams for basic rocks and a continental arc setting for intermediate rocks. These differences can be explained in terms of the petrogenetic origin of the magmas. Unlike the current thinking, the triple-rift system seems to have influenced the chemistry of Pliocene-Holocene basic rocks, which indicated a continental rift setting. The Pliocene-Holocene intermediate and acid rocks, however, did not show such an influence. The Pliocene-Holocene basic rocks indicated a continental rift setting, irrespective of the Near Trench and Far Trench subdivision because numerous Near Trench rocks also lie in the triple-rift and graben systems. However, the intermediate rocks having a crustal component in their genesis indicated a continental arc (Near Trench) or a transitional arc to within-plate setting (Far Trench). The acid rocks having a crustal component also suggested a continental arc (Near Trench) or a transitional setting (Far Trench). The application of the tectonomagmatic multidimensional

  16. The structure of the cross-cutting volcanic chain of Northern Tanzania and its relation to the East African rift system

    NASA Astrophysics Data System (ADS)

    Fairhead, J. D.

    1980-06-01

    The WSW—ENE chain of Cenozoic volcanoes in northern Tanzania lies tangental to and on the southeastern flank of the Kenya dome and represents a major cross-cutting feature of the Eastern Rift System dividing areas of the rift that are tectonically distinctly different. These tectonic differences are reflected in the nature of the rift's faulting, volcanism, seismicity and geothermal activity. To investigate the crustal structure associated with the volcanic chain a gravity survey was made of northern Tanzania. The results of this investigation indicate that after the removal of the negative Bouguer anomaly associated with the Kenya dome, the large negative anomalies associated with the volcanic chain can be almost entirely accounted for by low density (2.1 g cm -3) surface volcanics overlying Precambrian basement (density 2.67 g cm -3). Gravitational effects of deeper crustal structures (if present) underlying the volcanic chain are thus effectively masked. Despite this, the spatial disposition and character of the faulting, seismicity and geothermal activity together with the estimates of crustal extension to the north and south of the volcanic chain provide evidence that the volcanic chain may represent the early stages of a transform fault, which in this case prevents crustal extension associated with the Kenya rift from being wholly transmitted to the block fault structures of Tanzania. The difference between the crustal extension to the north and south of the volcanic chain is considered to be taken up along the 200 km length of the volcanic chain by en echelon faulting and fissuring, the latter providing routes for magma to reach the surface.

  17. Volcanic or Fluvial Channels on Ascraeus Mons: Focus on the Source Area of Sinuous Channels on the Southeast Rift Apron

    NASA Technical Reports Server (NTRS)

    Signorella, Julia D.; deWet, A.; Bleacher, J. E.; Collins, A.; Schierl, Z. P.; Schwans, B.

    2012-01-01

    Deciphering the Mars water history is important to understanding the planet's geological evolution and whether it could have sustained life. Channel features on Mars, such as the features documented in Kasei Valles, are generally accepted as evidence for water flowing over the Mars surface in the past [1]. However, not all channels are the product of fluvial processes and many can be interpreted as having a volcanic origin [2]. This research involves studying channel features on the flanks of the Ascraeus Mons volcano, which is a part of the Tharsis province. Numerous sinuous channels exist on the rift apron of Ascraeus Mons and they have been interpreted as either fluvial [3] or volcanic [4,5]. The channels originate from pits and linear depressions and extend for many 100 s of km downslope. Mapping the proximal to distal morphology of the complete channel and determining its relationship with other features on the apron provides evidence for the processes of formation and their relative temporal relationships. This study focused on sinuous channels located on the south-east part of the Ascraeus rift apron (Fig. 1). Observations of possible analogous features on Hawaii are used to provide insights into the processes of formation of the Mars features.

  18. Convective thinning of the lithosphere: A mechanism for rifting and mid-plate volcanism on Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Spohn, T.; Schubert, G.

    1982-01-01

    Thinning of the Earth's lithosphere by heat advected to its base is a possible mechanism for continental rifting and continental and oceanic mid-plate volcanism. It might also account for continental rifting-like processes and volcanism on Venus and Mars. Earth's continental lithosphere can be thinned to the crust in a few tens of million years by heat advected at a rate of 5 to 10 times the normal basal heat flux. This much heat is easily carried to the lithosphere by mantle plumes. The continent is not required to rest over the mantle hot spot but may move at tens of millimeters per year. Because of the constant level of crustal radioactive heat production, the ratio of the final to the initial surface heat flow increases much less than the ratio of the final to initial basal heat flow. For large increases in asthenospheric heat flow, the lithosphere is almost thinned to the crust before any significant change in surface heat flow occurs. Uplift due to thermal expansion upon thinning is a few kilometers. The oceanic lithosphere can be thinned to the crust in less than 10 million years if the heat advection is at a rate around 5 or more times the basal heat flow into 100 Ma old lithosphere. Uplift upon thinning can compensate the subsidence of spreading and cooling lithosphere.

  19. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  20. Middle Miocene rifting and volcanic history of the Berufjordor- Breiddalur region, eastern Iceland revealed by 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Gans, P. B.; Askew, R. A.; Thordarson, T.

    2015-12-01

    Eighteen new 40Ar/39r incremental heating analyses of groundmass concentrates from fresh holocrystalline interiors of basalt lavas and dikes collected in an E-W, 35-km-long transect across the Berufjordor- Breiddalur region, eastern Iceland shed important new light on the Miocene spreading history and age of the Breiddalur central volcano. Despite fine-grain sizes and low K contents, most samples yield high quality ages (either simple plateaus or spectra indicative of modest recoil ± low T argon loss) with estimated uncertainties of ±0.1 to 0.2 Ma. Ages decrease monotonically westward in the eastern half of transect from 12.1 to 10.0 Ma over an 18 km distance, in excellent agreement with the estimated half spreading rate of 0.9 cm/yr. In contrast, the western 15 km of the transect (and ~ 1 km of "apparent" vertical succession), including lavas below, above and within the Breiddalur volcano shows no systematic westward younging - all lavas in this region range from 9.1 to 9.8 Ma. Ages from diabase dikes similarly range from 9.1 to 9.8 Ma, except one distinctly younger at 7.8 Ma. The simplest interpretation of the new age determinations is that up until ~9 Ma, a ≥15 km-wide rift zone/plate boundary was situated in the eastern half of the transect. The entire rift zone (including Breiddalur volcano) was then accreted to the Eurasian plate during a westward rift jump of ≥ 15 km. These types of minor jumps in the plate boundary and accretion of entire rift zones to one plate or the other may help explain the "excess width" of Iceland. Also, the data raise questions about the strict applicability of the Palmeson (1973) model, as in this case, a paleo rift zone is not reflected by a dip reversal, and "proximal" or within rift volcanic and plutonic rocks are well exposed at the present surface and are not buried by younger flows as the spreading center moves away.

  1. The Afar-Red Sea-Gulf of Aden volcanic margins system : early syn-rift segmentation and tectono-magmatic evolution

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled

    2017-04-01

    The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.

  2. Oceanic rift propagation - a cause of crustal underplating and seamount volcanism

    SciTech Connect

    Calvert, A.J.; Hasselgren, E.A.; Clowes, R.M. )

    1990-09-01

    We present the first seismic reflection data across a pseudofault zone, the trace of a propagating rift away from a spreading axis. Strong reflections from the crust-mantle transition are discontinuous across the pseudofault. Deeper reflections, which originate near the base of the crust formed at the propagator tip, dip beneath the older oceanic crust and become subhorizontal. They are interpreted to represent the lower limit of an underplated subcrustal plutonic complex. An anomalously smooth basement surface indicative of massive lava flows and a 1200-m-high seamount are above the underplated zone. The sill complex extends tens of kilometres ahead of, and off-axis from, the former location of the propagating rift, indicating that the magmatic supply to the propagator tip was unusually vigorous. Other seamounts in the northeast Pacific lie close to pseudofaults and may have formed as a result of rift propagation.

  3. New determinations of 40Ar/39Ar isotopic ages and flow volumes for Cenozoic volcanism in the Terror Rift, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Rilling, S.; Mukasa, S.; Wilson, T.; Lawver, L.; Hall, C.

    2009-12-01

    This study provides new determinations of 40Ar/39Ar isotopic ages and flow volumes for submarine and subaerial Neogene volcanism developed within the Terror Rift, Ross Sea, Antarctica, the youngest segment of the West Antarctic Rift System. The study is based on the first dredged samples from seven seamounts north of Ross Island, as well as new data from Franklin and Beaufort Islands. The sampled foidite and basanitic lavas range in age from Quaternary (90 ± 66 ka) on a small seamount ˜10 km north of Franklin Island to 6.80 ± 0.05 Ma on Beaufort Island. These ages are consistent with ages of volcanism in both the Melbourne and Erebus Volcanic Provinces and significantly expand the documented area of Neogene magmatism in Victoria Land. There is no geographic progression of volcanism through time, but volcanism was voluminous in the Pliocene and particularly widespread during the Pleistocene. Two of the dredges sampled edifices comprised of less than 0.2 km3 of volcanic materials. The largest seamount in the study area has 58.8 km3 of volcanic material and represents growth over a period of several thousand years. Estimated minimum eruption rates range from 2 × 10-4 km3 y-1 to 2 × 10-3 km3 y-1, consistent with rates proposed for other rift systems and nearby Mt. Erebus. Recent estimates of extension magnitude for the Terror Rift correspond to minimal decompression of only 0.10 to 0.22 GPa and therefore limited melt output of a typical peridotite source.

  4. Inferno Chasm Rift Zone, Idaho: A Terrestrial Analog for Plains-style Volcanism in Southeastern Mare Serenitatis on the Moon

    NASA Astrophysics Data System (ADS)

    Garry, W. B.; Hughes, S. S.; Kobs-Nawotniak, S. E.

    2015-12-01

    Volcanic features aligned along a linear graben in southeastern Mare Serenitatis (19°N, 27.5°E) on the Moon resemble a series of effusive basaltic landforms erupted along the Inferno Chasm rift zone within Craters of the Moon National Monument and Preserve (COTM), Idaho (42°58'00"N, 113°11'25"W). This region in Idaho is the type-locale for terrestrial plains-style volcanism. Examples of lunar plains-style volcanism have previously been described within Orientale Basin at Lacus Veris and Lacus Autumni, but this eruption style has not been used to describe the site in Mare Serenitatis. The SSERVI FINESSE team (Field Investigations to Enable Solar System Science and Exploration) has documented the features along Inferno Chasm rift using a LiDAR, Differential Global Positioning Systems, and Unmanned Aerial Vehicles (UAV) to compare with Lunar Reconnaissance Orbiter Narrow-Angle Camera images and digital terrain models. The region in southeastern Mare Serenitatis provides one of the best concentrations of features representative of lunar plains-style volcanism. On the Moon, these features include a cone (Osiris), a flat-topped dome, a rille-like channel (Isis), a vent, and a possible perched lava pond. In Idaho, the analog features include a dome (Grand View Crater), a rille-like channel (Inferno Chasm), vents (Cottrells Blowout, Horse Butte), and a perched lava pond (Papadakis). Both the scale and morphology of the features on the Moon are similar to the features in Idaho. For example, the channel in Isis is ~3 km long, 283 m-wide, and 25 m deep compared to Inferno Chasm which is ~1.7 km long, 100 m wide, and 20 m deep. The slope of the channel in Isis is -1.2°, while the channel in Inferno Chasm has a slope of -0.33°. The alignment of landforms on the Moon and Idaho are both consistent with dike emplacement. Observations of the flow stratigraphy for features in Idaho will inform the potential eruption conditions of the individual features on the Moon.

  5. Recent Rift Volcanism in the Northern Gulf of California and the Salton Through: Why a Preponderance of Evolved Magmas?

    NASA Astrophysics Data System (ADS)

    Martín, A.; Weber, B.; Schmitt, A. K.; Lonsdale, P.

    2008-12-01

    Quaternary volcanoes and shallow intrusions throughout the northern Gulf Extensional Province provide a unique opportunity to characterize active crustal accretion associated with extreme continental rifting. In the Lower Delfin basin and Isla San Luis volcanic rocks have compositional continuity from basaltic andesite (>54 % SiO2) to sub-alkaline rhyolite, whereas Roca Consag in the Wagner basin, and Cerro Prieto are homogeneous, low-K, lithoidal, microlithic dacites. Salton Buttes surface lavas and a seamount in the Upper Delfin basin are dominantly rhyolitic. Basaltic xenoliths, intrusive basaltic sills and altered subsurface rhyolites are known from the Salton Trough and Cerro Prieto. All Quaternary volcanic rocks in the region have depleted (relative to CHUR) Nd isotopic compositions with ɛNd of +8.5 and +6.3 in the Salton Buttes and marginally lower values (+6.5 to +4.1) for Roca Consag, Lower Delfin basin and Isla San Luis. Rhyolite from the Upper Delfin basin yielded ɛNd of +2.2. These values are consistent with overall depleted 87Sr/86/Sr ratios (0.70353-0.70382). Only rhyolites from Lower and Upper Delfin basin have higher 87Sr/86Sr (0.70492 -0.70661) compared to coexisting andesites, which implies hydrothermal alteration and/or minor contamination by continental crust and/or sediments. Volcanic rocks within individual basins thus represent variably differentiated and, to a smaller degree, contaminated, co- genetic suites, as indicated by negative Eu anomalies that reflect plagioclase fractionation in rhyolites. Ion microprobe ages of zircons from Roca Consag are heterogeneous. The youngest ages are ~120 ka and several pre-Quaternary xenocrysts were observed, but the data define a dominant peak at ~1 Ma. The isotope data suggest recent differentiation of dominantly mantle-derived young crust. The preponderance of intermediate to felsic volcanism in the northern Gulf of California suggests that only low- density magmas can reach shallow levels where they

  6. Late Silurian-Early Devonian transpressional rift origin of the Quebec Reentrant, northern Appalachians: Constraints from geochemistry of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Keppie, J. Duncan; Dostal, J.

    1994-10-01

    Silurian-Devonian rocks in the northwestern mainland Appalachians form part of an overstep sequence deposited across the vestiges of Iapetus after the collision of Laurentia and Gondwana. They occur in three synclinoria (Gaspé-Connecticut Valley, Merrimack-Aroostook, and Fredericton synclinoria), separated by two anticlinoria (Munsungun-Pennington-Boundary Mountain-Bronson Hill and Miramichi). Silurian rocks in Gaspé-Connecticut Valley and Merrimack-Aroostook synclinoria consist of shelf and trough sediments derived mainly from Laurentia to the northwest, with some local contributions from an ephemeral landmass (Appalachia) and from the Miramichi Highlands, hi contrast, Early Devonian rocks in all three synclinoria are mainly flysch derived from the southeast in Avalonia. Interbedded volcanic rocks are predominantly Late Silurian-Early Devonian in age. They are generally bimodal with the mafic rocks exhibiting a change from transitional alkalic-tholeiitic to tholeiitic around the Siluro-Devonian boundary, broadly coincident with the Salinic disturbance in the Gaspe Peninsula. The geochemical characteristics of the basalts indicate that they were erupted in a continental intraplate environment with melting migrating upward through time across the garnet to spinel phase boundary as stretching increased. Thermal uplift during rifting is inferred to have led to erosion associated with the Salinic disturbance. The start of the volcanism appears to coincide with a switch from sinistral to dextral transpression along the orogen that may be related to the change from clockwise to anticlockwise rotation of Laurentia relative to Gondwana. The effects of dextral transpression vary with the trend of the orogen; intense deformation and metamorphism occurred in the Central Mobile belt opposite the New York and St. Lawrence promontories, whereas rifting developed in the Quebec Reentrant, leading to thinning of the crust, up-welling of the asthenosphere, melting, and magmatism.

  7. Evolution of the Latir volcanic field, Northern New Mexico, and its relation to the Rio Grande Rift, as indicated by potassium-argon and fission track dating

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.; Mehnert, Harald H.; Naeser, Charles W.

    1986-05-01

    Remnants of the Latir volcanic field and cogenetic plutonic rocks are exceptionally exposed along the east margin of the present-day Rio Grande rift by topographic and structural relief in the Sangre de Cristo Mountains of northern New Mexico. Evolution of the magmatic system associated with the Latir field, which culminated in eruption of a regional ash flow sheet (the Amalia Tuff) and collapse of the Questa caldera 26 m.y. ago, has been documented by 74 new potassium-argon (K-Ar) and fission track (F-T) ages. The bulk of the precaldera volcanism, ash flow eruptions and caldera formation, and initial crystallization of the associated shallow granitic batholith took place between 28 and 25 Ma; economically important molybdenum mineralization is related to smaller granitic intrusions along the south margin of the Questa caldera at about 23 Ma. Interpretation of the radiogenic ages within this relatively restricted time span is complicated by widespread thermal resetting of earlier parts of the igneous sequence by later intrusions. Many samples yielded discordant ages for different mineral phases. Thermal blocking temperatures decrease in the order: K-Ar sanidine > K-Ar biotite > F-T zircon ≫ F-T apatite. The F-T results are especially useful indicators of cooling and uplift rates. Upper portions of the subvolcanic batholith, that underlay the Questa caldera, cooled to about 100°C within about a million years of emplacement; uplift of the batholith increases to the south along this segment of the Sangre de Cristo Mountains. Activity in the Latir volcanic field was concurrent with southwest directed extension along the early Rio Grande rift zone in northern New Mexico and southern Colorado. The geometry of this early rifting is compatible with interpretation as back arc extension related to a subduction system dipping gently beneath the cordilleran region of the American plate. The Latir field lies at the southern end of a southward migrating Tertiary magmatic

  8. Comparative anatomy of volcanic rifted margins in the South Atlantic, with emphasis on the high-velocity lower crust

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Franke, D.; Jokat, W.; Maystrenko, Y.; Scheck-Wenderoth, M.; Schnabel, M.; Schreckenberger, B.

    2012-04-01

    The onshore components of Volcanic Rifted Margins (VRM) in the South Atlantic region are flood basalts and felsic lavas with a wide range of intrusive rocks. The hidden components are offshore (seaward-dipping reflector sequences) and in the deep crust (high-velocity lower crustal bodies). This study focuses on the latter. The nature of high-velocity bodies at volcanic rifted margins, and their extent in time and space are very important for geodynamic studies. Not only do they count heavily in the total volume of magmatism produced in a VRM, but the size and spatial distribution of these bodies along the proto-rift can influence the location and style of breakup. After breakup, the high-velocity lower crust may affect the uplift and subsidence history the newly-formed continental margins, which is of relevance to basin modelling. The high-velocity bodies are clearly an important part of the VRM story, yet their true nature is unknown, and magmatic intrusions related to breakup is not the only explanation. The best way to demonstrate a magmatic origin related to breakup is to test for variations in the size and physical properties of the bodies along a VRM where independent evidence indicates a major gradient in magmatic intensity. The South Atlantic is well suited for this kind of study. The northern segment hosts the Walvis Ridge-Rio Grande Rise hotspot track and the Paraná-Etendeka Large Igneous Province, whereas in the south, magmatic volumes are very small and petrologic data from exposed rocks indicate a southward decrease in the temperature of melting as well. This contribution combines the data from 6 wide-angle onshore-offshore seismic profiles (2 from South America, 4 from Africa) with lithospheric-scale gravity models of the conjugate margins south of the Walvis Ridge. The gravity models provide the tool for interpolation between the wide-angle profiles. The goal is to define the size and bulk properties of the high-velocity crustal bodies and their

  9. The age of parana flood volcanism, rifting of gondwanaland, and the jurassic-cretaceous boundary.

    PubMed

    Renne, P R; Ernesto, M; Pacca, I G; Coe, R S; Glen, J M; Prévot, M; Perrin, M

    1992-11-06

    The Paraná-Etendeka flood volcanic event produced approximately 1.5 x 10(6) cubic kilometers of volcanic rocks, ranging from basalts to rhyolites, before the separation of South America and Africa during the Cretaceous period. New (40)Ar/(39)Ar data combined with earlier paleomagnetic results indicate that Paraná flood volcanism in southern Brazil began at 133 +/- 1 million years ago and lasted less than 1 million years. The implied mean eruption rate on the order of 1.5 cubic kilometers per year is consistent with a mantle plume origin for the event and is comparable to eruption rates determined for other well-documented continental flood volcanic events. Paraná flood volcanism occurred before the initiation of sea floor spreading in the South Atlantic and was probably precipitated by uplift and weakening of the lithosphere by the Tristan da Cunha plume. The Parana event postdates most current estimates for the age of the faunal mass extinction associated with the Jurassic-Cretaceous boundary.

  10. The Age of Parana Flood Volcanism, Rifting of Gondwanaland, and the Jurassic-Cretaceous Boundary

    NASA Astrophysics Data System (ADS)

    Renne, Paul R.; Ernesto, Marcia; Pacca, Igor G.; Coe, Robert S.; Glen, Jonathon M.; Prevot, Michel; Perrin, Mireille

    1992-11-01

    The Parana-Etendeka flood volcanic event produced ~1.5 x 10^6 cubic kilometers of volcanic rocks, ranging from basalts to rhyolites, before the separation of South America and Africa during the Cretaceous period. New 40Ar/39Ar data combined with earlier paleomagnetic results indicate that Parana flood volcanism in southern Brazil began at 133 ± 1 million years ago and lasted less than 1 million years. The implied mean eruption rate on the order of 1.5 cubic kilometers per year is consistent with a mantle plume origin for the event and is comparable to eruption rates determined for other well-documented continental flood volcanic events. Parana flood volcanism occurred before the initiation of sea floor spreading in the South Atlantic and was probably precipitated by uplift and weakening of the lithosphere by the Tristan da Cunha plume. The Parana event postdates most current estimates for the age of the faunal mass extinction associated with the Jurassic-Cretaceous boundary.

  11. From conjugate volcanic rifted margins to micro-continent formation: Double breakup development of the Norwegian-Greenland Sea

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Blischke, Anett; Nasuti, Aziz; Olesen, Odleiv; Sand, Morten; Sveinn Arnarson, Thorarinn

    2014-05-01

    We re-evaluate the structure and spreading evolution of the Norwegian-Greenland Sea and surrounding volcanic (rifted) margins based on new high-resolution aeromagnetic surveys. The new dataset combined with long-offset seismic and gravity data allow us to have a better understanding of the structure and evolution of the conjugate margin systems in the Norwegian-Greenland Sea from the rifting to the drifting stage. We particularly focus on the new JAS-12 aeromagnetic survey acquired between the Aegir Ridge and the Jan Mayen micro-continent, which was initially part of the Møre-Vøring-Greenland rift system. Combined with the previous NB-07 and JAS-05 surveys, our final compilation fully covers the continent-ocean transition and the whole oceanic spreading system from the Møre margin to the conjugate Jan Mayen micro-continent with high quality, high-resolution and reliable magnetic data. The new dataset allowed a new, consistent and precise interpretation of the magnetic polarity chrons and oceanic fractures, providing the basis for more accurate rotation poles estimation, and better basin and crustal reconstructions between Norway, Greenland and the Jan Mayen micro-continent. This dataset allowed us to clarify the pre- and post-breakup configurations of the rift system and discuss the mechanisms involved during the onset of the two phases of breakup leading to the micro-continent formation. Our observations and models suggest that the pre-breakup rift system evolved through a significant Late Jurassic-Cretaceous thinning phase. This episode led to a significant thinning of the continental crust and an exhumation of pre-existing lower crust. However, we have not been able to identify and/or validate any clear domains of exhumed and denudated serpentinised mantle. The first Eocene breakup is mostly characterised by severe magmatism (sill, SDRS). Lithospheric/asthenospheric processes leading to rift localisation do not necessarily represent a continuum of

  12. A volcanic province near the western termination of the Charlie-Gibbs Fracture Zone at the rifted margin, offshore northeast Newfoundland

    NASA Astrophysics Data System (ADS)

    Keen, C. E.; Dafoe, L. T.; Dickie, K.

    2014-06-01

    A mid-Cretaceous to Late Cretaceous volcanic province, named here the Charlie-Gibbs Volcanic Province, is described near the western termination of the Charlie-Gibbs Fracture Zone, against the rifted continental margin northeast of Newfoundland. We used seismic data to map 14 volcanic seamounts, now buried below younger sediments. They rise 0.7 to 2 s two-way time (twt) above the surrounding basement level and are about 8-30 km wide. Some are conical while others are more flat-topped. Underlying igneous units resembling flows and sills are also observed. Based on magnetic modeling of the large positive magnetic anomalies associated with the seamounts, the total thickness of igneous rocks can locally reach about 8 km. This magmatism occurred in the vicinity of the Charlie-Gibbs Fracture Zone and extends about 150 km to the north along the rifted continental margin. The volcanic province also forms the northern boundary of the Jurassic-Early Cretaceous Orphan Basin, along a major transform margin there. Truncation of rift-related structures which extend to deep crustal levels is observed at the transform, along trends similar to those of prerift Appalachian terrane boundaries on the adjacent shelf. This suggests the existence of a preexisting weak zone in the continental lithosphere within which a complex strike-slip fault system developed and may have controlled the location of final continental breakup between the Rockall and North American plates in the Late Cretaceous.

  13. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Moore, R.B.

    1992-01-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200-400 years old: 50%, 15, 14.3: (III) 400-750 years old: 20%, 54, 6.6; (IV) 750-1500 years old: 5%, 37, 20.8; (V) 1500-3000 years old: <1%, 1, unknown. At least 4.5-6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ. ?? 1992 Springer-Verlag.

  14. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    NASA Astrophysics Data System (ADS)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline

  15. Distribution of fault activity in the early stages of continental breakup: an analysis of faults and volcanic products of the Natron Basin, East African Rift, Tanzania

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2012-12-01

    Recent magmatic-tectonic crises in Ethiopia (e.g. 2005 Dabbahu rifting episode, Afar) have informed our understanding of the spatial and temporal distribution of strain in magmatic rifts transitioning to sea-floor spreading. However, the evolving contributions of magmatic and tectonic processes during the initial stages of rifting, is a subject of ongoing debate. The <5 Ma northern Tanzania and southern Kenya sectors of the East Africa Rift provide ideal locations to address this problem. We present preliminary findings from an investigation of fault structures utilizing aerial photography and satellite imagery of the ~35 km wide Natron rift-basin in northern Tanzania. Broad-scale structural mapping will be supplemented by field observations and 40Ar-39Ar dating of lava flows cut by faults to address three major aspects of magma-assisted rifting: (1) the relative timing of activity between the border fault and smaller faults distributed across the width of the rift; (2) time-averaged slip rates along rift-zone faults; and (3) the spatial distribution of faults and volcanic products, and their relative contributions to strain accommodation. Preliminary field observations suggest that the ~500 m high border fault system along the western edge of the Natron basin is either inactive or has experienced a reduced slip rate and higher recurrence interval between surface-breaking events, as evidence by a lack of recent surface-rupture along the main fault escarpments. An exception is an isolated, ~2 km-long segment of the Natron border fault, which is located in close proximity (< 5km) to the active Oldoinyo Lengai volcano. Here, ~10 m of seemingly recent throw is observed in volcaniclastic deposits. The proximity of the fault segment to Oldoinyo Lengai volcano and the localized distribution of fault-slip are consistent with magma-assisted faulting. Faults observed within the Natron basin and on the flanks of Gelai volcano, located on the eastern side of the rift, have

  16. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.

    1988-01-01

    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes

  17. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  18. Similar dyke thickness variation across three volcanic rifts in the North Atlantic region: Implications for intrusion mechanisms

    NASA Astrophysics Data System (ADS)

    Klausen, M. B.

    2006-11-01

    The thicknesses of 1935 mafic dykes have been recorded through meticulous mapping across (1) the East Greenland coastal dyke swarm, (2) an extinct rift zone in SE Iceland and (3) an obducted dyke swarm segment within the Swedish Caledonides. In all three cases, the thickness of almost every dyke along well-exposed and coherent profile segments could be measured and analyzed. Statistics show that dyke thickness distributions more often are negative exponential (i.e., random) than log-normal within any given segment, with a regression's inverse exponential coefficient representing a more sophisticated average thickness. For all three dyke profiles, there is a similar decrease in average thickness from thicker dykes along the margin of the swarm to narrower dykes along its axis. Cross cutting relationships within two profiles, furthermore, suggest that the average dyke thickness decreased with time. The random thickness distribution of dykes is most likely governed by dyke initiations, releasing differential stresses at random time intervals during constant rates of plate separation. It is argued that the thickness of a dyke does not change significantly within the depth ranges that these dyke swarms are exposed, allowing systematic spatial and temporal changes in average dyke thicknesses to be related to other factors. Results are primarily related to the depth of an underlying sub-crustal magma reservoir, which progressively rose to shallower elevations beneath an active volcanic rift. As an alternative, or in conjunction with this model, stress concentrations towards the rising crest of a sub-crustal magma reservoir might increase the average frequency of randomly released differential stresses, leading to move rapid injections of thinner dyke toward swarm centres and with time. Correlating average dyke thicknesses to crustal depths, I end up with an empirical dyke thickness/height ratio of ˜ 2 × 10 - 4, yet variable thickness/length ratio in order to accommodate

  19. Geophysical evidence of Cretaceous volcanics in Logone Birni Basin (Northern Cameroon), Central Africa, and consequences for the West and Central African Rift System

    NASA Astrophysics Data System (ADS)

    Loule, Jean-Pierre; Pospisil, Lubomil

    2013-01-01

    Detailed analyses and interpretation realized by combining existing 2D reflection seismic and Gravity/Magnetic data of the Logone Birni Basin (LBB) in the West and Central African Rift System (WCAS) have revealed the distribution of the main buried volcanic bodies as well as their relationships with the structural and tectonic evolution of this basin. The volcanic activity in the LBB is restricted to the Cretaceous period. Three main volcanic episodes are identified and are associated to the Neocomian, Late Albian and Cenomanian-Turonian rifting phases respectively. The volcanic bodies within the Lower Cretaceous are either lying directly on basement or are mainly interbedded with the contemporaneous sediments whereas the Upper Cretaceous bodies are morphologically expressed in the forms of dykes and sills. The volcanic activity was more intense in the western region of the central LBB (Zina sub-basin) along the Cameroon-Nigeria border whereas it was scanty and scattered in the other parts of the basin. The main volcanic dykes are found on the flanks of the major faults bounding basement horsts or in crestal positions in association with syndepositional faults. Although WCAS is associated with large amount of crustal extension and minor volcanism, the intense volcanic activity observed in LBB during the Cretaceous suggests that the intrusive zone during this period was confined to the basement beneath the study area flanked respectively to the north, south and southwest by the Lake Chad, Poli and Chum triple junctions. Tensional stresses generated by this localized domal uplift accounts for most of the observed tectonic structures where major faults transected the entire lithosphere, thus providing conduits for magma migration.

  20. Rift-related volcanism and karst geohydrology of the southern Ozark Dome

    USGS Publications Warehouse

    Harrison, Richard W.; Weary, David J.; Orndorff, Randall C.; Repetski, John E.; Pierce, Herbert A.; Lowell, Gary R.; Evans, Kevin R.; Aber, James S.

    2010-01-01

    This field trip examines the geology and geohydrology of a dissected part of the Salem Plateau in the Ozark Plateaus province of south-central Missouri. Rocks exposed in this area include karstified, flat-lying, lower Paleozoic carbonate platform rocks deposited on Mesoproterozoic basement. The latter is exposed as an uplift located about 40 mi southwest of the St. Francois Mountains and form the core of the Ozark dome. On day 1, participants will examine and explore major karst features developed in Paleozoic carbonate strata on the Current River; this will include Devil's Well and Round Spring Cavern as well as Montauk, Round, Alley, and Big Springs. The average discharge of the latter is 276 × 106 gpd and is rated in the top 20 springs in the world. Another, Alley Spring, is equally spectacular with an average discharge of 81 × 106 gpd. Both are major contributors to the Current and Eleven Point River drainage system which includes about 50 Mesoproterozoic volcanic knobs and two granite outcrops. These knobs are mainly caldera-erupted ignimbrites with a total thickness of 7–8 km. They are overlain by post-collapse lavas and intruded by domes dated at 1470 Ma. Volcaniclastic sediment and air-fall lapilli tuff are widely distributed along this synvolcanic unconformity. On day 2, the group will examine the most important volcanic features and the southernmost granite exposure in Missouri. The trip concludes with a discussion of the Missouri Gravity Low, the Eminence caldera, and the volcanic history of southern Missouri as well as a discussion of geologic controls on regional groundwater flow through this part of the Ozark aquifer.

  1. Stable isotope analyses of the peralkaline volcanics Gregory Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Fallick, A. E.; Kelly, M.

    1993-01-01

    Delta O-18 analyses of the Naivasha rhyolites, basalts, Menengai trachytes and the Yatta phonolite are presented together with D/H analyses of the Naivasha rhyolites. Delta O-18 results vary from 5.7 to 8.9 per mill which is within the reported range of delta O-18 analyses for continental volcanics. Closure temperatures calulated from the basalts and rhyolites show equilibration to be at magmatic temperatures. D/H values range from -40 to -148 per mill indicating that the rhyolites have undergone large scale degasssing.

  2. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  3. Petrology of combeite- and götzenite-bearing nephelinite at Nyiragongo, Virunga Volcanic Province in the East African Rift

    NASA Astrophysics Data System (ADS)

    Andersen, Tom; Elburg, Marlina; Erambert, Muriel

    2012-11-01

    The lavas and pyroclastic rocks of Nyiragongo volcano (East African Rift) range in composition from olivine melilitite to nephelinite and minor alkali olivine basalt, and include rare examples of strongly peralkaline combeite nephelinite. In peralkaline nephelinites at Nyiragongo, titanium is hosted in mineral assemblages with Ti-bearing magnetite ± perovskite ± Ti-rich clinopyroxene ± götzenite. Combeite and götzenite occur as groundmass minerals in holocrystalline melilite nephelinite, which also carries kirschsteinite (replacing melilite phenocrysts), recrystallized nepheline + kalsilite phenocryst aggregates and a range of late accessory minerals including delhayelite. The compositions of coexisting nepheline and kalsilite in phenocryst aggregates and groundmass suggest a crystallization temperature of ca. 600 °C for the götzenite- and combeite bearing mineral assemblages. The textural features of the rock agree with an origin of holocrystalline nephelinite (with or without götzenite and combeite) by recrystallization of glass-bearing, nepheline-kalsilite and melilite porphyritic peralkaline nephelinite due to thermal metamorphism and metasomatism within the volcanic edifice. A chemographic analysis of the Ti-bearing mineral assemblages of götzenite-bearing and götzenite-free peralkaline nephelinite suggests that götzenite is stabilized by elevated fluorine activity combined with moderately high (for nephelinite) silica activity. At increasing peralkalinity, götzenite is likely to break down to perovskite-bearing mineral assemblages coexisting with combeite.

  4. Using high-precision 40Ar/39Ar geochronology to understand volcanic hazards within the Rio Grande rift and along the Jemez lineament, New Mexico

    NASA Astrophysics Data System (ADS)

    Zimmerer, M. J.; McIntosh, W. C.; Heizler, M. T.; Lafferty, J.

    2014-12-01

    High-precision Ar/Ar ages were generated for late Quaternary volcanic fields in the Rio Grande rift and along the Jemez Lineament, New Mexico, to assess the time-space patterns of volcanism and begin quantifying volcanic hazards for the region. The published chronology of most late Quaternary volcanic centers in the region is not sufficiently precise, accurate, or complete for a comprehensive volcanic hazard assessment. Ar/Ar ages generated as part of this study were determined using the high-sensitivity, multi-collector ARGUS VI mass spectrometer, which provides about an order of magnitude more precise isotopic measurements compared to older generation, single-detector mass spectrometers. Ar/Ar ages suggest an apparent increase in eruption frequency during the late Quaternary within the Raton-Clayton volcanic field, northeastern NM. Only four volcanoes erupted between 426±8 and 97±3 ka. Contrastingly, four volcanoes erupted between 55±2 and 32±5 ka. This last eruptive phase displays a west to east migration of volcanism, has repose periods of 0 to 17 ka, and an average recurrence rate of 1 eruption per 5750 ka. The Zuni-Bandera volcanic field, west-central NM, is composed of the ~100 late Quaternary basaltic vents. Preliminary results suggest that most of the Chain of Craters, the largest and oldest part of the Zuni-Bandera field, erupted between ~100 and 250 ka. Volcanism then migrated to the east, where published ages indicate at least seven eruptions between 50 and 3 ka. Both volcanic fields display a west to east migration of volcanism during the last ~500 ka, although the pattern is more pronounced in the Zuni-Bandera field. A reassessment of low-precision published ages for other late Quaternary volcanic fields in region indicates that most fields display a similar west to east migration of volcanism during the last ~500 ka. One possible mechanism to explain the observed patterns of volcanism is the westward migration of the North American plate relative

  5. Evidence for extreme fractionation of peralkaline silicic magmas, the Boseti volcanic complex, Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    MacDonald, Ray; Bagiński, Bogusław; Ronga, Fiorenzo; Dzierżanowski, Piotr; Lustrino, Michele; Marzoli, Andrea; Melluso, Leone

    2012-03-01

    Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3 wt.%, FeO* contents up to 17 wt.% and SiO2 contents ~65 wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5 wt.% Al2O3, 13 wt.% FeO* and 66 ± 2 wt.% SiO2. The dominant fractionating assemblage is alkali feldspar + fayalite + hedenbergite + oxides ± quartz. Feldspar - melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.

  6. Extensional Volcanism of the Taos Plateau Volcanic Field, Northern Rio Grande Rift, USA: New Insights from Geologic Mapping, 40Ar/39Ar Geochronology, Geochemistry and Geophysical Modeling

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Grauch, V. J. S.

    2016-12-01

    The Pliocene Taos Plateau Volcanic Field (TPVF) is the largest volcanic field of the Rio Grande rift. Deposits of the TPVF are distributed across 4500 km2 in the southern part of the 11,500 km2 San Luis Valley in southern Colorado and northern New Mexico constituting a major component of the structural San Luis Basin (SLB) fill. Exposed deposit thicknesses range from a few meters near the distal termini of basaltic lava flows to 240 m in the Rio Grande gorge near Taos, NM. New geologic mapping and 100 high-resolution 40Ar/39Ar age determinations help identify a complex distribution of >50 exposed eruptive centers ranging in composition from basalt to rhyolite. Total eruptive volume, estimated from geologic map relations, geophysical modeling of basin geometry and subsurface distribution of basaltic deposits, are approximately 300 km3; comprising 66% Servilleta Basalt (tholeiite), 3% mildly alkaline trachybasalt & trachyandesite, 12% olivine andesite, 17% dacite, and <1% rhyolite. Servilleta Basalt is preserved throughout the TPVF, ranging in age from 5.3 Ma to 2.95 Ma; maximum thickness is exposed in the Rio Grande gorge in association with the largest Pliocene sub-basin in the valley, the Taos graben. Smaller volume basalt centers as young as 2.9 Ma are spatially associated with monogenetic trachybasalt and trachyandesite centers ( 4.3 Ma to 2.8 Ma) along the uplifted footwall of a western fault-bounded sub-basin, the Las Mesitas graben. The plateau surface underlain primarily by Servilleta Basalt is punctuated by large ( 15 km3 erupted volume typical) monogenetic andesitic shield volcanoes ( 5-4.4 Ma); north-south aligned and distributed along the central axis of the SLB, parallel to major intrabasin faults. Large (up to 21 km3 erupted volume) zoned dacitic lava dome complexes ( 5 Ma Guadalupe Mountain/Cerro Negro, 3.9 Ma Ute Mountain, and 3 Ma San Antonio Mountain) reach elevations of 3300 m, 770 m above the valley floor each spatially and temporally associated

  7. Marine seismic refraction data indicate Mesozoic syn-rift volcanism and seafloor-spreading in the northwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Eddy, Drew; van Avendonk, Harm; Christeson, Gail; Norton, Ian; Karner, Garry; Johnson, Chris; Kneller, Erik; Snedden, John

    2013-04-01

    The Gulf of Mexico is a small ocean basin that formed by continental rifting and seafloor-spreading between North America and the Yucatan Block during the Jurassic to early Cretaceous. The lack of good, deeply-penetrating geophysical data in the Gulf of Mexico has precluded prior reconstructions of the timing and location of the transition from rifting to seafloor-spreading, as well as the degree to which magmatism influenced these geological processes. To illuminate the deep structure of this enigmatic region, we acquired four marine seismic refraction profiles in the northern Gulf of Mexico from the shelf to deep water as part of the Fall 2010 Gulf of Mexico Basin Opening (GUMBO) project. Here, we present the data and resulting seismic velocity structures of two GUMBO profiles in the northwestern Gulf of Mexico. GUMBO Line 1 extends ~330 km offshore south Texas from Matagorda Island across Alaminos Canyon to the central Gulf. GUMBO Line 2 extends ~400 km from the shelf offshore western Louisiana across the Sigsbee Escarpment. On both lines, ocean-bottom seismometers at 10-km spacing recorded 150m-spaced airgun shots over offsets up to 80 km. We use travel times from these long-offset reflections and refractions to image seismic velocities in the sediments, crystalline crust, and upper mantle using a tomographic inversion. On average, seismic velocities increase with depth from 2 km/s near the seafloor to 5 km/s near the interpreted base of salt. On both profiles we observe a large amount of lateral heterogeneity in the sediments due to salt tectonics. The deeper seismic velocity structure along GUMBO Line 1 also exhibits substantial lateral heterogeneity (4.5 km/s to 7 km/s) that may be consistent with crystallization of thin, ultraslow-spreading oceanic crust alternating with emplacement of exhumed mantle lithosphere. If the basement here is indeed oceanic, the prominent magnetic anomaly along the Texas coastline may represent the expression of synrift volcanism

  8. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence

    2013-06-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  9. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismeal; Basuyau, Clemence

    2013-04-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure, and bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ~35 km; (2) this thins to ~22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high velocity lower crust (HVLC) is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ~1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ~130 km wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which at the surface we observe the presence of seaward dipping reflectors (SDRs)_and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower-crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point toward a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  10. Constraints from sill intrusions and their deeper source magma chambers (seismic high velocity bodies) on the origins of volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Rohrman, M.

    2015-12-01

    Volcanic rifted margins are characterized by massive igneous activity originating from the rift margin, characterized by seaward dipping reflectors. These consist of basalt flows and associated magmatic products, from deep magma chambers imaged on seismic data as High Velocity Bodies (HVB) with seismic velocities between 7 and 7.5 km/s. The relationship between rifting and decompression melting have been well quantified, using the HVB's as constraints on magmatic production to match extension models. Crucial in this approach are the relationship between extension and mantle plumes, with HVB's generated by mantle plumes often indicative of velocities between 7.5 - 7.8 km/s. Here I address information that can be obtained from sill complexes in sedimentary basins associated with rifting, representing the earliest phase of magmatism. I use a simple crustal scale hydrostatic model for dikes while incorporating the presence of sills by calculating magmatic overpressures from differences in pressure gradients. It transpires that the presence of sills as observed on seismic reflection and outcrop data, can be predicted. Modelling further suggests that the source of these sill complexes are large magma chambers at or near the Moho, and equate to HVB's observed on seismic data. Utilizing simple mass balance calculations, the ratio of cumulate thickness (from HVB thickness) and expelled melt (from accumulated sill thicknesses) can be related to MgO content in expelled liquids, primary magma and cumulates. Higher MgO content translates in higher seismic velocities. Thus, HVB velocity can subsequently be used to discriminate between mantle plume, or shallow rift related melting. The theory is applied to various basins bordering the northern North Atlantic (Vøring Basin, Jameson Land Basin and Rockall Basin) and South Atlantic rifts (Namibia), associated with the Paleocene/Eocene Iceland mantle plume and the Early Cretaceous Tristan da Cunha mantle plume magmatism respectively.

  11. Rifting and volcanism on the ocean floor from high resolution bathymetry and sonar backscatter data

    SciTech Connect

    Arvidson, R.E.; Edwards, M.; Batiza, R.

    1985-01-01

    The authors have recently compiled a global shaded relief map that has roughly 10 x 10 km spatial resolution, using 4 separate digital data sets. This global data set delineates many longer wavelength features such as trenches, ridges, and topographic swells related to hot spots. The map also provides a regional bathymetric context for interpreting, for example, the new multichannel SEABEAM bathymetric data, which have lateral resolutions of several hundred meters and a vertical resolution measured in meters. They have processed a number of SEABEAM data sets acquired for seamounts, overlapping spreading centers, and propagating fractures. Contour maps cannot readily display all the bathymetric detail in these data. Thus, the 16 channel data were converted to shaded-relief images and color composites to preserve and meaningfully display the bathymetric details. SEAMARC sonar backscatter images, where available, were geometrically registered to the SEABWAM data for direct comparison of sonar reflectivity and roughness with depth and slope. The processed data are now being analyzed as part of tectonic and volcanic studies at a half dozen institutions. The project clearly demonstrates the synergistic effects to be gained by crossing disciplines when similar approaches can be used to advantage.

  12. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    SciTech Connect

    Nicholson, S.W. Univ. of Minnesota, MN ); Shirey, S.B. )

    1990-07-10

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North American. The Portage Lake Volcanics in Michigan, which are the youngest MRS flood basalts, fall into distinctly high- and low-TiO{sub 2} types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle (La/Yb = 4.3-5.3; Th/Ta = 2.12-2.16; Zr/Y = 4.3-4.4), and both basalt types are isotopically indistinguishable. Sr, Nd, and Pb isotopic compositions of the Portage Lake tholeiites have {sup 87}Sr/{sup 86}Sr{sub i} {approx}0.7038, {epsilon}{sub Nd(1095 Ma)} {approx}0 {plus minus} 2, and {mu}{sub 1} {approx}8.2. Model ages with respect to a depleted mantle source (T{sub DM}) average about 1950-2100 Ma. Portage Lake rhyolits fall into two groups. Type I rhyolites have Nd and Pb isotopic characteristics ({epsilon}{sub Nd(1095 Ma)} {approx}0 to {minus}4.7; {mu}{sub 1} {approx}8.2-7.8) consistent with contamination of tholeiitic rocks by 5-10% Archean crust. The one type II rhyolite analyzed has Nd and Pb isotopic compositions ({epsilon}{sub Nd(1095 Ma)} {approx}{minus}13 to {minus}16; {mu}{sub 1} {approx}7.6-7.7) which are consistent with partial melting of Archean crust. Early Proterozoic crust was not a major contaminant of MRS rocks in the Lake Superior region. Most reported Nd and Pb isotopic compositions of MRS tholeiites from the main stage of volcanism in the Lake Superior region and of the Duluth Complex are comparable to the Nd and Pb isotopic data for Portage lake tholeiites. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma.

  13. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt G.; Heimisson, Elías Rafn; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Gudmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Högnadóttir, Thórdís; Fridriksdóttir, Hildur María; Hensch, Martin; Einarsson, Páll; Magnússon, Eyjólfur; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Greenfield, Tim; Green, Robert G.; Hjartardóttir, Ásta Rut; Pedersen, Rikke; Bennett, Richard A.; Geirsson, Halldór; La Femina, Peter C.; Björnsson, Helgi; Pálsson, Finnur; Sturkell, Erik; Bean, Christopher J.; Möllhoff, Martin; Braiden, Aoife K.; Eibl, Eva P. S.

    2015-01-01

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

  14. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of km long. Previous models of rifting events indicate either a lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. We show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with a magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of M>5 earthquakes. The dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

  15. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland.

    PubMed

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S; Ófeigsson, Benedikt G; Heimisson, Elías Rafn; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Gudmundsson, Gunnar B; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T; Högnadóttir, Thórdís; Fridriksdóttir, Hildur María; Hensch, Martin; Einarsson, Páll; Magnússon, Eyjólfur; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S; Ágústsdóttir, Thorbjörg; Greenfield, Tim; Green, Robert G; Hjartardóttir, Ásta Rut; Pedersen, Rikke; Bennett, Richard A; Geirsson, Halldór; La Femina, Peter C; Björnsson, Helgi; Pálsson, Finnur; Sturkell, Erik; Bean, Christopher J; Möllhoff, Martin; Braiden, Aoife K; Eibl, Eva P S

    2015-01-08

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

  16. Galapagos rift at 86 /sup 0/W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the rift valley

    SciTech Connect

    Crane, K.; Ballard, R.D.

    1980-03-10

    The Angus camera system is used to investigate the detailed structure and morphology of the active hydrothermal vent fields of the Galapagos Rift. Precision navigational data are combined with microtopographic information and detailed geological and biological observations obtained from an analysis of the color bottom pictures to create a series of three-dimensional models for each vent field.

  17. Localization and Evolution of a Rift-Scale Segmented Normal Fault in a Volcanic Environment: The Hat Creek Fault, Northern California

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Walker, E. L.; Krantz, R. W.; Blakeslee, M. W.; Muirhead, J. D.

    2016-12-01

    Segmented normal faults in volcanic rocks preserve details of fault geometry and kinematics and provide useful analogs for rift-margin faults and their associated sedimentary basins, such as those identified in petroleum reservoirs. The 50-km-long Hat Creek fault, near Lassen Peak volcano in northern California, is a NNW-trending, west-dipping, active normal fault along the western margin of the pervasively extended Modoc Plateau. The fault is well preserved in Late Pleistocene lavas with a range of ages and can be viewed in the field from multiple perspectives that maximize 4D cognition. The oldest faulted lavas ( 925 ka with a maximum throw of 570 m) indicate that the Hat Creek fault developed in <1 Myr. A multi-stage growth history was unraveled through analysis of three systems of segmented scarps with different ages, throws, and orientations, and by considering their relative timing, control on localization by structural inheritance, and relation to regional tectonics. Kinematic indicators along the oldest segments suggest an initial NE-SW extension, with fault development above a sinistral-oblique reactivated deeper structure. A later, intermediate growth stage under E-W extension is consistent with the documented stress state of the Cascades backarc. Magma-induced stress heterogeneity in the local volcanic environment resulted in variable fault segment orientations during this second growth phase. An even younger set of scarps with dextral-oblique kinematics in 24 ka lavas imply most recent WNW-ESE extension, possibly from transfer of dextral shear from the Walker Lane Belt in western Nevada. We infer a gradual 45o clockwise rotation of the horizontal principal stresses in the Hat Creek fault region that resulted in a complex fault geometry and kinematic history over a relatively short time frame ( 1 Myr). We have documented similar stress rotations in an early-stage continental rift zone (East African Rift), occurring over similar time scales in response to

  18. Timing of volcanism and initiation of rifting in Omo-Turkana Depression, Southwestern Ethiopia: Evidence from Paleomagnetism

    NASA Astrophysics Data System (ADS)

    Erbello, A.; Kidane, T.; Brown, F.

    2013-12-01

    Abstract This Paleomagnetic study was carried out on thin widely spread lava flows of Gombe Group basalts from the lower Omo Valley in southwestern Ethiopia. The objective of the study is to integrate paleomagnetic results with previous geochronological data to know timing of volcanism and to infer the time for which the present architecture of the basin was attained. 80 oriented core samples were taken from nine sites in two field trips. Rock magnetic, petrology and paleomagnetic studies were done in the laboratory of Earth Sciences at Addis Ababa University. Pilot specimens were subjected to alternating field (AF) and thermal (TH) demagnetization and acquisition experiments. The Natural Remanent Magnetization (NRM) direction comprises two vector components in most samples. The first component of magnetization was easily erased at 5 to 25mT AF demagnetization and 120°C to 250°C TH demagnetization. A step wise increasing application of magnetic field to selected specimens revealed a saturation magnetization at about 300°C. The magnetization curve results from the acquisition experiment together with TH demagnetization of the same specimens and AF demagnetization results indicates that titanomagnetite is the dominant magnetic carrier. About 50% of magnetization is removed between Temperature ranges of 2500C and 4300C suggesting pseudo single domains as a primary carrier of magnetic remanence. From a total of nine sites, six sites show reversed polarity and two sites show normal polarity. One site has been removed because of samples from that site may have been affected by lightning. The normal and reversed polarities are 1800 apart thus they are antipodal to one another. The overall mean direction for 6 sites of reversed polarity is (DS=186.1, IS=-1.9,KS=38.8, α95=10.9) where as the two sites with normal polarity yield (DS=348.4, IS=4.6, K=378.9, α95=12.9).By using the available upper age control of Moiti tuff (3.98Ma) and Naibar tuff (4.02 Ma) which have never

  19. Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, G.; Murphy, J. B.; Fernández-Suárez, J.; Hamilton, M. A.

    2008-12-01

    Exposures of volcanic rocks (El Castillo) in the Central Iberian Zone near Salamanca, Spain, are representative of Paleozoic volcanic activity along the northern Gondwanan passive margin. Alkaline basalts and mafic volcaniclastic rocks of this sequence are structurally preserved in the core of the Variscan-Tamames Syncline. On the basis of the occurrence of graptolite fossils in immediately underlying strata, the El Castillo volcanics traditionally have been regarded as Lower Silurian in age. In contrast, most Paleozoic volcanic units in western Iberia are rift-related mafic to felsic rocks emplaced during the Late Cambrian-Early Ordovician, and are attributed to the opening of the Rheic Ocean. We present new zircon U-Pb TIMS data from a mafic volcaniclastic rock within the El Castillo unit. These data yield a near-concordant, upper intercept age of 394.7 ± 1.4 Ma that is interpreted to reflect a Middle Devonian (Emsian-Eifelian) age for the magmatism, demonstrating that the El Castillo volcanic rocks are separated from underlying lower Silurian strata by an unconformity. The U-Pb age is coeval with a widespread extensional event in Iberia preserved in the form of a generalized paraconformity surface described in most of the Iberian Variscan realm. However, in the inner part of the Gondwanan platform, the Cantabrian Zone underwent a major, coeval increase in subsidence and the generation of sedimentary troughs. From this perspective, the eruption age reported here probably represents a discrete phase of incipient rifting along the southern flank of the Rheic Ocean. Paleogeographic reconstructions indicate that this rifting event was coeval with widespread orogeny and ridge subduction along the conjugate northern flank of the Rheic Ocean, the so called Acadian "orogeny". We speculate that ridge subduction resulted in geodynamic coupling of the northern and southern flanks of the Rheic Ocean, and that the extension along the southern flank of the Rheic Ocean is a

  20. Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic field, Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Duncker, K. E.; Wolff, J. A.; Harmon, R. S.; Leat, P. T.; Dickin, A. P.; Thompson, R. N.

    1991-09-01

    Products of Pliocene (2 4 Ma) mafic to intermediate volcanism in the northwestern Cerros del Rio, a dominantly mafic volcanic field in the Española Basin of the Rio Grande Rift (RGR), range from 49% to 63% SiO2 and exhibit diversity in silica saturation, trace-element patterns, and isotopic compositions. Tholeiites, which are largely confined to west of the Rio Grande, have trace-element abundances that resemble those of oceanic basalts, but with mild depletions in Nb and Ta, and high 87Sr/86Sr, low 143Nd/144Nd, and high δ18O compared to typical OIB. They are regarded as asthenospherically-derived magmas contaminated with continental crust. Alkali basalts and hawaiites erupted from vents east of the Rio Grande are geochemically distinct, having generally higher overall incompatible-element abundances, but with pronounced depletions in K, Rb, Nb and Ta with respect to Th and LREE. Spatially-associated benmoreites, mugearites and latites (collectively termed “evolved” lavas) have similar trace-element characteristics to the mafic mildly-alkaline compositions, but are typically not as depleted in K. Hawaiites and evolved lavas exhibit a good negative correlation of 143Nd/144Nd with SiO2, due to interaction with lower continental crust. The most silicic “evolved” lavas carry the highest proportions of crustal material, and consequently have higher K/Th than the related hawaiites. Several (mostly mafic) lavas contain abundant crustally-derived resorbed quartz xenocrysts in O-isotope disequilibrium with the host magma. The δ18O values of xenocrystic quartz range over 4‰, indicating a variety of quartz-bearing crustal contaminants beneath the Española Basin. The hawaiites, with their unusual combination of trace-element enrichments and depletions, cannot be generated by any process of fractionation or crustal contamination superposed on a common mantle source type (oceanic or arc-source). It is a regional mantle source type, inasmuch as it was also present

  1. Geochemical and Nd isotopic study of Palaeozoic bimodal volcanics in Hainan Island, South China—Implications for rifting tectonics and mantle reservoirs

    NASA Astrophysics Data System (ADS)

    Fang, Zhong; Zhao, Jian-Xin; McCulloch, Malcolm T.

    1992-12-01

    Geochemical and SmNd isotopic results are presented for Carboniferous bimodal metavolcanics from the central part of the Hainan Island, south China. The volcanics are composed of both tholeiites and quartz rhyolites, which are interbedded with clastic metasediments. This volcanic sequence hosts the Shilu FeCoCu Deposit, the richest iron deposit in China. Study of the volcanics is thus important for understanding of both the geochemistry of the subcontinental mantle and the genesis of the Shilu Deposit. Tholeiite samples display large geochemical variations but remarkably uniform Nd isotopic signatures. Overall, at comparable MgO level, tholeiites from the western portion of the volcanic belt have lower TiO 2 and P 2O 5, and higher {Al2O 3}/{TiO2} and {CaO}/{TiO 2} ratios than those from the eastern portion. A tholeiite sample taken from the Junying area, western portion of the volcanic belt has characteristics of N-type mid-ocean ridge basalts (MORB) in having a LREE-depleted pattern, positive ɛNd( T) value (+6.8), as well as relatively high {Zr}/{Nb} (25), {Y}/{Nb} (10) and low {Zr}/{Y} (2.4), {La}/{Nb} (0.81) ratios. On the other hand, tholeiites occurring in the eastern portion of the volcanic belt are relatively enriched in LIL, HFS and LRE elements. Geochemical features, such as positive Nb anomalies on spiderdiagram and generally high {Zr}/{Y} ratios, indicate that these rocks are analogous to oceanic island tholeiites (OIT) or initial rifting tholeiites (IRT). However, least contaminated tholeiites in the eastern portion have limited ranges of relatively low {La}/{Nb} ratios (0.82-1.03) and high ɛNd( T) values (+4.2˜+7.6), which are similar to the MORB-type tholeiites in the western portion. The above geochemical features can be best explained in terms of different degrees of partial melting of an isotopically similar depleted source(s). The OIT-like tholeiites from the eastern portion were derived by lower degree partial melting, whilst the N

  2. The occurrence of a complete continental rift type of volcanic rocks suite along the Yerer-Tullu Wellel Volcano Tectonic Lineament, Central Ethiopia

    NASA Astrophysics Data System (ADS)

    Abebe Adhana, Tsegaye

    2014-11-01

    The Yerer-Tullu Wellel Volcano-tectonic Lineament (YTVL) is an E-W trending fault system or aborted rift that intercepts the Main Ethiopian Rift (MER) at Debre Zeyt (Bishoftu)/Yerer, in the eastern periphery of Addis Ababa. The structure is in correspondence with the westward extension of the southern margin of the Gulf of Aden rift. The YTVL extends for more than 500 km with a very clear northern fault margin, between Addis Ababa and Ambo known as the “Ambo Fault”. The southern margin is indicated by an E-W trending segmented lineaments at the latitude of about N 8°30‧, the Bedele-Metu being the most clear segment. In between these limits there are several evolved central volcanoes and cinder cones. The central volcanoes range in age from 12 to 7 Ma in the western most (Tullu Wellel) and gradually the upper limit get younger towards East to less than 1 Ma in the Wenchi and Debre Zeyt (Bishoftu) areas. These volcanic products cover the whole spectrum of a continental rift volcanic rocks suite: (1) in the eastern zone (Yerer-Bishoftu) the suite is silica over-saturated, ranging in composition from transitional basalt to peralkaline rhyolite, (2) moving westwards, between Wechacha and Wenchi, the rocks suite is silica saturated ranging in composition from alkali basalt to trachyte, (3) further West between Ijaji-Konchi and Nekemt the rocks suite is silica under-saturated ranging in composition from basanite to phonolite. Crossing the Dedessa lineament, the Tullu Wellel rocks appear to be silica saturated. Within a single suite fractional crystallization is the predominant evolutional process even in the silica over-saturated suite. The westwards progressive silica under-saturation and increase in alkalinity (except for the Tullu Wellel volcanic centers) is interpreted by the gradual deepening of an anomalous mantle where partial fusion took place. Therefore, as distance increases from the MER junction to the West, the amount of melt on the upper mantle was

  3. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    USGS Publications Warehouse

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  4. Subglacial volcanic activity above a lateral dyke path during the 2014-2015 Bárdarbunga-Holuhraun rifting episode, Iceland

    NASA Astrophysics Data System (ADS)

    Reynolds, Hannah I.; Gudmundsson, Magnús T.; Högnadóttir, Thórdís; Magnússon, Eyjólfur; Pálsson, Finnur

    2017-06-01

    The rifting episode associated with the Bárdarbunga-Holuhraun eruption in 2014-2015 included the first observations of major dyke propagation under ice. Three shallow ice depressions (ice cauldrons) with volumes ranging from 1 to 18 million m3 formed in Dyngjujökull glacier above the 48-km-long lateral path of the magma, at 4, 7 and 12 km from the northern glacier edge. Aircraft-based radar altimetry profiling was used to map the evolution of the cauldrons and construct a time series of the heat transfer rates. Out of the three scenarios explored: (1) onset or increase of hydrothermal activity, (2) convection within vertical fissures filled with water overlying intruded magma and (3) subglacial eruptions, the last option emerges as the only plausible mechanism to explain the rapid heat transfer observed in a location far from known geothermal areas. The thermal signals at two of the cauldrons are consistent with effusive subglacial eruptions. The formation of the northernmost cauldron was more rapid, indicating faster heat transfer rates. Radio-echo sounding data indicate that in contrast to the other two cauldrons, an intrusion of eruptive products occurred into the glacier, reaching 50-60 m above bedrock with the increased magma-ice contact explaining the more rapid heat transfer. We propose that the 2-m widening associated with graben formation increased the groundwater storage capacity of the bedrock, creating space for the meltwater to be stored, explaining the absence of meltwater pulses draining from Dyngjujökull.

  5. Syn-rift volcanism and seafloor-spreading in the northern Gulf of Mexico: results from the GUMBO marine seismic refraction project

    NASA Astrophysics Data System (ADS)

    Eddy, D. R.; Van Avendonk, H. J.; Christeson, G. L.; Norton, I. O.; Karner, G. D.; Kneller, E. A.; Johnson, C. A.; Snedden, J.

    2013-12-01

    Continental rifting and seafloor-spreading between North America and the Yucatán Block during the Jurassic to early Cretaceous formed the small ocean basin known today as the Gulf of Mexico. The lack of deeply-penetrating geophysical data in the Gulf of Mexico limited early reconstructions of the timing and location of the rift-to-drift transition, particularly with respect to the influence of magmatism on the breakup of continental crust and the onset of seafloor-spreading. To better understand the deep structure of this economically important basin, we acquired four marine seismic refraction profiles in the northern Gulf of Mexico from the shelf to deep water as part of the 2010 Gulf of Mexico Basin Opening project (GUMBO). We use travel times from long-offset reflections and refractions to image compressional seismic velocities in the sediments, crystalline crust, and upper mantle using an iterative tomographic inversion. GUMBO Line 3 extends from offshore Alabama through the De Soto Canyon towards the central Gulf of Mexico. We interpret velocities >5.0 km/s in the sediment layer landward of the Florida Escarpment as a Lower Cretaceous carbonate platform. Crystalline crust with velocities between 5.5-7.5 km/s thins significantly from 23 km to 7 km across a narrow necking zone. A deep, localized region of anomalously high seismic velocities (>7.5 km/s) at the base of crystalline crust exceeds those of continental lower crust in the eastern US. We interpret this section of GUMBO 3 to represent mafic under-plating and/or infiltration of asthenospheric melts, common at volcanic rifted margins. The seaward end of GUMBO 3 has seismic velocities consistent with mafic ocean crust produced by normal seafloor-spreading (6.0-7.5 km/s); this observation is supported by a consistent crustal thickness of ~7 km and minimal lateral heterogeneities in velocity structure. GUMBO Line 2 extends from offshore Louisiana southward across the Sigsbee Escarpment. We find a massive

  6. Volcanic rocks and processes of the Mid-Atlantic Ridge rift valley near 36 ° 49′ N

    USGS Publications Warehouse

    Hekinian, R.; Moore, J.G.; Bryan, W.B.

    1976-01-01

    The above relations indicate that the diverse lava types were erupted from a shallow, zoned magma chamber from fissures distributed over the width of the inner rift valley and elongate parallel to it. Differentiation was accomplished by cooling and crystallization of plagioclase, olivine, and clinopyroxene toward the margins of the chamber. The centrally located hills were built by the piling up of frequent eruption of mainly primitive lavas which also are the youngest flows. In contrast smaller and less frequent eruptions of more differentiated lavas were exposed on both sides of the rift valley axis.

  7. Miocene rifting in the Los Angeles basin: Evidence from the Puente Hills half-graben, volcanic rocks, and P-wave tomography

    NASA Astrophysics Data System (ADS)

    Bjorklund, Tom; Burke, Kevin; Zhou, Hua-Wei; Yeats, Robert S.

    2002-05-01

    Formation of the Puente Hills half-graben in the northeastern Los Angeles basin and eruption of the Glendora and El Modeno Volcanics (16 14 Ma) help to define the timing of extension in the basin. Normal faulting on the proto-Whittier fault ca. 14 Ma established the Puente Hills half-graben, in which sedimentary strata accumulated between ca. 14 and 10 Ma and into which diabase sills intruded. North-South contraction began to invert the Puente Hills half-graben ca. 7 Ma, leading to formation of the Puente Hills anticline and the Whittier fault. Our high-resolution three-dimensional P-wave velocity model shows two anomalous higher velocity (6.63 km/s) bodies at depths between 9 and 18 km, which we attribute to dioritic plutons named here for Whittier Narrows and El Modeno. The stocklike Whittier Narrows pluton could have been a source for the Glendora Volcanics and the diabase sills in the Puente Hills half-graben. The sill-shaped El Modeno pluton was a likely source for the El Modeno Volcanics. The northwesterly alignment of the plutons may mark the location of the northeastern Los Angeles basin rift boundary, which is associated with the clockwise rotation of the western Transverse Ranges. Three active faults, the Elysian Park blind thrust, the Puente Hills blind thrust, and the Whittier fault, converge on the Whittier Narrows pluton, which may have played a role in their location and segmentation.

  8. Mastritherium (Artiodactyla, Anthracotheriidae) from Wadi Sabya, southwestern Saudi Arabia; an earliest Miocene age for continental rift-valley volcanic deposits of the Red Sea margin

    USGS Publications Warehouse

    Madden, Gary T.; Schmidt, Dwight Lyman; Whitmore, Frank C.

    1983-01-01

    A lower jaw fragment with its last molar (M/3) from the Baid formation in Wadi Sabya, southwestern Saudi Arabia, represents the first recorded occurrence in the Arabian Peninsula of an anthracotheriid artiodactyl (hippo-like, even-toed ungulate). This fossil is identified as a primitive species of Masritherium, a North and East African genus restricted, previously to the later early Miocene. This identification indicates that the age of the Baid formation, long problematical, is early Miocene and, moreover, shows that the age of the fossil site is earliest Miocene (from 25 to 21Ma). The Wadi Sabya anthracothere is the first species of fossil mammal recorded from western Saudi Arabia, and more important, it indicates an early Miocene age for the volcanic deposits of a continental rift-valley that preceded the initial sea-floor spreading of the Red Sea.

  9. Volcanic Constructs on Ganymede and Enceladus: Topographic Evidence from Stereo Images and Photoclinometry

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Moore, Jeffrey M.

    1995-01-01

    The morphology of volcanic features on Ganymede differs significantly from that on the terrestrial planets. Few if any major volcanic landforms, such as thick flows or shield volcanoes, have been identified to date. Using new stereo Voyager images, we have searched Ganymede for relief-generating volcanic constructs. We observed seven major types of volcanic structures, including several not previously recognized. The oldest are broad flat-topped domes partially filling many older craters in dark terrain. Similar domes occur on Enceladus. Together with smooth dark deposits, these domes indicate that the volcanic history of the dark terrain is complex. Bright terrain covers vast areas, although the style of emplacement remains unclear. Smooth bright materials embay and flood older terrains, and may have been emplaced as low- viscosity fluids. Associated with smooth bright material are a number of scalloped-shaped, semi- enclosed scarps that cut into preexisting terrain. In planform these structures resemble terrestrial calderas. The youngest volcanic materials identified are a series of small flows that may have flooded the floor of the multiring impact structure Gilgamesh, forming a broad dome, The identification of volcanic constructs up to I km thick is the first evidence for extrusion of moderate-to-high viscosity material on Ganymede. Viscosity and yield strength estimates for these materials span several orders of magnitude, indicating that volcanic materials on Ganymede have a range of compositions and/or were extruded under a wide range of conditions and/or eruptive styles.

  10. Volcanic constructs on Ganymede and Enceladus: Topographic evidence from stereo images and photoclinometry

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.; Moore, Jeffrey M.

    1995-09-01

    The morphology of volcanic features on Ganymede differs significantly from that on the terrestrial planets. Few if any major volcanic landforms, such as thick flows or shield volcanoes, have been identified to date. Using new stereo Voyager images, we have searched Ganymede for relief-generating volcanic constructs. We observed seven major types of volcanic structures, including several not previously recognized. The oldest are broad flat-topped domes partially filling many older craters in dark terrain. Similar domes occur on Enceladus. Together with smooth dark deposits, these domes indicate that the volcanic history of the dark terrain is complex. Bright terrain covers vast areas, although the style of emplacement remains unclear. Smooth bright materials embay and flood older terrains, and may have been emplaced as low-viscosity fluids. Associated with smooth bright material are a number of scalloped-shaped, semi-enclosed scarps that cut into preexisting terrain. In planform these structures resemble terrestrial calderas. The youngest volcanic materials identified are a series of small flows that may have flooded the floor of the multiring impact structure Gilgamesh, forming a broad dome. The identification of volcanic constructs up to 1 km thick is the first evidence for extrusion of moderate-to-high viscosity material on Ganymede. Viscosity and yield strength estimates for these materials span several orders of magnitude, indicating that volcanic materials on Ganymede have a range of compositions and/or were extruded under a wide range of conditions and/or eruptive styles.

  11. Spatial and Temporal Evolution of Eruptive Activity in a Youthful Extensional Setting: the Case of the Nyamulagira Volcanic Field, Western Branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Smets, B.; Kervyn, M.; d'Oreye, N.; Kervyn, F.

    2014-12-01

    Nyamulagira is the westernmost volcano of the Virunga volcanic province, in the western branch of the East African Rift. This shield volcano is one of the most active African volcanoes with one eruption every 1-4 year(s). Nyamulagira's eruptions usually occur along the flanks of the main edifice and in the lava plain, producing pyroclastic cone(s) and 10-20 km-long lava flows. Between 1913 and 1938, the activity was however restricted to the summit caldera, where lava fountains progressively gave birth to a lava lake, which disappeared in 1938 during the partial collapse of the summit caldera and the onset of a 2.5 years-long flank eruption. The location of flank eruptions and the orientation of the eruptive fissures are strongly influenced by the edifice loading, and by the NNW-SSE fracture network that crosses the main edifice and link it to the neighboring Nyiragongo volcano. But rift fault can also influence fissure orientations and cone alignments, especially for distal events. The flank eruptions typically have similar characteristics, lasting few days to few weeks, with an average of 20-30 days. Less frequently, flank eruptions can be larger and more complex, lasting several months and/or emitting much larger volumes of lava. By combining historical and recent observations, we suggest that magma overpressure at shallow depth is the main cause of flank events. Major eruptions seem to be related to a deeper source able to trigger large magma injections through deep structures, such as rift faults. Since April 2012, the activity of Nyamulagira is restricted to the summit caldera, with continuous and intense gas emissions and, since mid-2014, by lava fountains. This change in eruptive behavior, if it persists, may leads to the emergence of a new lava lake and may significantly decreases the frequency of flank events

  12. Geology of the Uranius Group Volcanic Constructs: Uranius Patera, Ceraunius Tholus, and Uranius Tholus

    USGS Publications Warehouse

    Plescia, J.B.

    2000-01-01

    Uranius Patera, Ceraunius Tholus, and Uranius Tholus (three small constructs in the northeast Tharsis region) date to the Late Hesperian Epoch and define the earliest phases of constructional volcanism in the Tharsis province. All three volcanoes are interpreted as shields, built by effusive eruptions of low-viscosity lavas, presumably basalt. Ceraunius Tholus and Uranius Tholus also record pyroclastic volcanism in the form of mantling deposits on their flanks; Uranius Patera either did not experience pyroclastic volcanism or the deposits were subsequently buried by later effusive eruptions. Troughs observed on the flanks of Ceraunius Tholus and Uranius Tholus are interpreted to have been formed by fluvial surface runoff. These constructs are coeval with other small edifices in western Tharsis province and are coeval with plains volcanism in the southern Tharsis, Syria, and Sinai regions. ?? 2000 Academic Press.

  13. Stratified tephra records from lake sediment archives: Holocene eruptions of the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Scholz, Christopher; Poppe, Sam; Schmid, Martin; Ross, Kelly Ann

    2016-04-01

    Lake sediments preserve rare stratified records of explosive volcanism, often with accompanying chronological controls or climatostratigraphic detail. In proximal areas where outcrop stratigraphies are complex, exposures isolated and sediments frequently eroded, the lacustrine archive provides a means to check the order of events and identify additional eruptions not preserved on land. The visible volcanic ash (tephra) record within lake sediments may be limited by eruption volume, distance from source and high sedimentation rates. A more complete eruption history can be detected through the study of non-visible tephra layers. Such "cryptotephra" records may be revealed through non-destructive core-scanning methods, such as XRF-scanning or magnetic susceptibility measurements, or by more thorough laboratory processes and microscopic analysis. Compositional analysis of tephra glass shards using WDS-EPMA and LA-ICP-MS provide a means to provenance eruptions, to cross-correlate between multiple sediment cores, and to establish connections between the lacustrine record and proximal outcrops. Here we present the results of such a "tephrostratigraphic" approach applied to the Holocene volcanic record of the Virunga Volcanic Province (VVP). More than 10 explosive volcanic eruptions, attributed to multiple volcanic centres, are evidenced over the last 12,000 years. This unique insight into the frequency of explosive eruptions from the VVP, demonstrates the potential of visible and cryptotephra investigations in lacustrine sediment archives as a means of studying past, present and future volcanic hazards.

  14. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    NASA Astrophysics Data System (ADS)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  15. The Chaîne des Puys and Limagne Fault World Heritage project: a global partnership for raising the profile of monogenetic volcanism and rifting

    NASA Astrophysics Data System (ADS)

    Olive-Garcia, C.

    2013-12-01

    The present Chaîne des Puys and Limagne Fault World Heritage project represents a global partnership for raising the profile of monogenetic volcanism and rifting. From the 19th Century the Chaîne des Puys and Limagne Fault have been at the centre of discussion about the nature of volcanoes, and the origin of rifts. Part of this interest was due to the action of landowners and government agents such as Montlosier and Desmarest (who first realised that the chain were volcanoes), and national leaders such as Napoleon I, who was instrumental in the visit of Humphrey Davey and Michael Farady in 1805. The chain features largely in Scrope's 'Considerations on v olcanoes' 1825, and of Bonney's 'Volcanoes their structure and significance' of 1899. The fault escarpment is discussed at length by Lyell in Principles of Geology (1830), although they did not recognise it yet as a rift. The area has seen the development of a modern scientific-government-private partnership in geoscience research and education that has developed in parallel with the growth of a earth science centre of excellence, now the Laboratoire Magmas et Volcans. In addition, local owners and users have taken an important part in the development of this partnership to help create a sustainable management of the area. Partnerships have been developed with other sites around the world to share best practice, especially in managing inhabited natural sites. For over 30 years the area has been part of the evolving Auvergne Region Natural Volcano Park, for five years the central Puy de Dôme is a 'Grande site de France', equivalent to a national monument. Educational attractions grew up first as private - scientific partnerships (e.g. Lemptégy, Volvic, Maison de la Pierre) and then with greater public input like Vulcania and the Puy de Dome. The channelling of visitors has been accomplished by improved access by bus, and a new cog-railway up the Puy de Dôme. I present an overview of the UNESCO project, and show

  16. Record of epicontinental platform evolution and volcanic activity during a major rifting phase: The Late Triassic Zamoranos Formation (Betic Cordillera, S Spain)

    NASA Astrophysics Data System (ADS)

    Pérez-López, Alberto; Pérez-Valera, Fernando; Götz, Annette E.

    2012-03-01

    The study of the Late Triassic Zamoranos Formation and the comparison to coeval carbonate units provides new insights into the evolution and palaeogeography of carbonate platforms during major rifting phases in the Earth's history. The platform carbonates of the Zamoranos Formation record the last major transgression during the Triassic, and document the initial phase of the CAMP volcanism in the external Zone of the Betic Cordillera. New palynological data from the lower part of the Zamoranos Formation indicate a Middle Norian age. The entire succession is built up by limestones, dolomites, and ferruginous red detrital deposits with volcaniclastic breccias. The carbonates are interpreted as tidal and shallow marine sediments, deposited under arid conditions. The red detrital deposits appear in coastal environments in relation to a volcanic event, which triggered hydrothermal processes in these deposits and started the massive magmatic event associated with the Central Atlantic Magmatic Province (CAMP). The Zamoranos Formation was also recognized in the SW part of the Valencia Triassic and is correlated to the Imón Formation (Iberian Ranges), to the Isábena Formation (Pyrenees) and to other carbonate units of the W Tethys realm (Aquitaine, Tunisian Atlas, West Carpathians). These units indicate that an extensive epicontinental platform developed during the Late Triassic.

  17. Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia — Evidence of advanced rifting in the Tethyan domain

    NASA Astrophysics Data System (ADS)

    Palinkaš, Ladislav A.; Bermanec, Vladimir; Borojević Šoštarić, Sibila; Kolar-Jurkovšek, Tea; Palinkaš, Sabina Strmić; Molnar, Ferenc; Kniewald, Goran

    2008-12-01

    limestone, with registration of conodonts (index microfossils), links their origin to magmatism during advanced rifting in a progressively subsiding basin during the Triassic. It precludes an affiliation of the subaqueous basaltic lava flow with the dismembered ophiolite formation, a product of oceanization created in Jurassic-Cretaceous times, which is a commonly stated alternative explanation. The basaltic rocks and their sedimentary hosts may be correlated with advanced Triassic rifting, and related volcanic-sedimentary successions in the Dinarides, Albanides, Helenides and further along the Tethyan orogenic belt.

  18. North America's Midcontinent Rift: when Rift MET Lip

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  19. Temporal Geochemical Variations in Glass and Minerals from Early Oligocene to Miocene Volcanic Sediments, DSDP Site 296, Kyushu Palau Ridge: Is There a Geochemical Signal for Arc Rifting?

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Samajpati, E.

    2015-12-01

    Volcaniclastic sediments and sedimentary rocks from DSDP Site 296, located within a basin at the crest of the northern Kyushu Palau ridge (KPR), record the latter part of the first stage of Izu Bonin Mariana (IBM) arc evolution, up to the cessation of volcanism caused by arc rifting and opening of the Shikoku basin. The lower section consists of early to late Oligocene coarse volcaniclastic sedimentary rocks, and is overlain by late Oligocene to Pleistocene nannofossil chalks and oozes with volcanic sand and ash-rich layers. We have studied the chemical composition of pyroxene, feldspar and glass grains separated from the coarse volcaniclastic rocks at depths from 435 to 1082 meters below sea floor, and of glass shards in layers in the overlying sediments of late Oligocene to early Miocene age. Overall, pyroxene and feldspar compositions show little systematic variation with depth in the core, although for pyroxene, highest En and highest Al2O3 contents are found in the interval from 600-900 meters bsf. An contents in feldspars show a bimodal distribution throughout the core, with most values > 90 or in the range 60-70, with more abundant intermediate compositions in the 600-900 meter interval. Compositions of glass shards vary widely, from basalt to rhyolite, and from low K, light rare earth (LREE)-depleted to high K, strongly LREE-enriched character, without systematic variation with depth in the core. However, all cores sampled from early Oligocene to early Miocene contain relatively low K basalt and basaltic andesite glass. Like the pyroxenes, a wider range of compositions is found in glass from the 600 to 900 mbsf interval. The Site 296 sequence overlaps in age with the uppermost sedimentary section of recently drilled IODP Site 1438, located 230 km to the southwest in the Amami Sankaku basin, thus the two sites may contain volcanic debris shed from contemporaneous sections of the KPR.

  20. Crustal structure beneath two seismic broadband stations revealed from teleseismic P-wave receiver function analysis in the Virunga volcanic area, Western Rift Valley of Africa

    NASA Astrophysics Data System (ADS)

    Tuluka, Georges Mavonga

    2010-12-01

    The shear velocity structure beneath the Virunga volcanic area was estimated by using an average solution in the time domain inversion of stacked teleseismic receiver functions provided by two seismic broadband stations KUNENE (KNN) and KIBUMBA (KBB). These two stations are 29 km apart and located at the eastern and western escarpment of the Western Rift Valley of Africa in the Virunga area, respectively. The velocity model was presented as P-wave velocity models. From these models, the crust mantle transition zone beneath the area sampled by KNN and KBB in the Virunga area was determined at depth from about 36 to 39 km and 30 to 41 km, respectively. A low velocity zone was observed below stations KNN and KBB at depths between 20-30 km and 18-28 km, respectively, and with average velocity 5.9 km/s and 6.0 km/s. This low velocity zone may probably related to a magma chamber or a melt-rich sill. The models show also high velocity material (6.8-7.4 km/s) lying beneath stations KNN and KBB at depths 3-20 km and 3-10 km, respectively, which is indicative of magma cumulates within the volcanic edifice. The result obtained in this study was applied to the determination of epicentres during the period prior to the 27 November 2006 Nyamuragira eruption. This eruption was preceded by a swarm of hybrid volcanic earthquakes with clear P-waves onset. Using the receiver function model was found to improve the location of events. The located events correlate well with the location of the eruptive site and data provided by the INSAR observations of surface deformation associated with eruption.

  1. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    USGS Publications Warehouse

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  2. Evidence From Adakitic Rocks For Lithosphere Recycling At The U.S. East Coast Volcanic Rifted Margin

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Van Wijk, J. W.

    2014-12-01

    Magmatism at magmatic rifted margins is dominated by asthenospheric melts generated during decompression melting from the upwelling asthenosphere. However reported magma compositions are diverse, giving clues about additional processes during rifting and continental rupture. We report here on adakites from the U.S. East Coast that are related to breakup of the North Atlantic. The sampled adakites are bi-modal, and show a clear high-Si and low-Si major and trace element chemistry. During the closure of the proto-Atlantic and its related back-arc basins, the Appalachian lithosphere sampled an ophiolitic mélange within major sutures. Subsequent metamorphic events in the Blue Ridge province of the U.S. East Coast increased the rock density of the ophiolites (eclogite) and partly hydrated these mafic to ultramafic rocks. Such a preconditioned lithosphere will likely develop gravitational instabilities at the asthenosphere-lithosphere boundary during rifting. We use geodynamic models to show when gravitational instabilities form below the East Coast margin, and how they eventually delaminate mantle lithosphere and lower crust material. After foundering, the delaminated lithosphere undergoes metamorphism, heats up, and interacts with fluids and melts in the surrounding convecting mantle. Partial melting of this metamorphic lithology produces high-Si adakitic melts. These melts percolated upwards through the mantle and were partially injected into the Valley and Ridge province. Where melt-to-peridotite (asthenosphere) ratios were small, the melts and fluids leaving the sinking lithospheric block became fixed within the peridotites. Geochemical modeling suggests, that 5 to 10% melting degrees of such a metasomatically overprinted and fertile asthenosphere produced the low-Si adakitic rocks of the Virginia adakites.

  3. Mylitta Fluctus, Venus - Rift-related, centralized volcanism and the emplacement of large-volume flow units

    NASA Technical Reports Server (NTRS)

    Roberts, Kari M.; Guest, John E.; Head, James W.; Lancaster, Michael G.

    1992-01-01

    The flow morphology, stratigraphy, and evoluton of Mylitta Fluctus, a massive lava flow field on Venus, is characterized, and the link between its origin and the local tectonics is examined. The regional setting of the flow field is reviewed. A model for the stratigraphy and emplacement history of Mylitta is developed, flow morphology is discussed, and some preliminary estimates of effusion rates and eruption durations that may have characterized its emplacement are presented. The origin of Mylitta is discussed in relation to local rifting and possible hotspot activity, and the emplacement of Mylitta is compared to the origin of terrestrial flood basalts.

  4. European Cenozoic rift system

    NASA Astrophysics Data System (ADS)

    Ziegler, Peter A.

    1992-07-01

    The European Cenozoic rift system extends from the coast of the North Sea to the Mediterranean over a distance of some 1100 km; it finds its southern prolongation in the Valencia Trough and a Plio-Pleistocene volcanic chain crossing the Atlas ranges. Development of this mega-rift was paralleled by orogenic activity in the Alps and Pyrenees. Major rift domes, accompanied by subsidence reversal of their axial grabens, developed 20-40 Ma after beginning of rifting. Uplift of the Rhenish Shield is related to progressive thermal lithospheric thinning; the Vosges-Black Forest and the Massif Central domes are probably underlain by asthenoliths emplaced at the crust/mantle boundary. Evolution of this rift system, is thought to be governed by the interaction of the Eurasian and African plates and by early phases of a plate-boundary reorganization that may lead to the break-up of the present continent assembly.

  5. InSAR and GPS measurements along the Kivu segment of the East African Rift System during the 2011-2012 Nyamulagira volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Nobile, Adriano; Geirsson, Halldor; Smets, Benoît; d'Oreye, Nicolas; Kervyn, François

    2016-04-01

    Along the East African Rift System (EARS), magma intrusions represent a major component in continental rifting. When these intrusions reach the surface, they cause volcanic eruptions. This is the case of the last flank eruption of Nyamulagira, which occurred from November 6 2011 to April 2012. Nyamulagira is an active shield volcano with a central caldera, located in the eastern part of the Democratic Republic of Congo, along the Kivu segment of the East African Rift System. From 1948 to 2012, Nyamulagira mostly showed a particular eruptive cycle with 1) classical short-lived (i.e., 20-30 days) flank eruptions, sometimes accompanied with intracrateral activity, which occurred every 1-4 years on average, and 2) less frequent long-lived (i.e., several months) eruptions usually emitting larger volumes of lava that take place at larger distance (>8 km) from the central caldera. The 2011-2012 Nyamulagira eruption is of that second type. Here we used InSAR data from different satellite (Envisat, Cosmo SkyMed, TerraSAR-X and RADARSAT) to measure pre-, co and post-eruptive ground displacement associated with the Nyamulagira 2011-2012 eruption. Results suggest that a magma intrusion preceded by two days the eruption. This intrusion corresponded to the migration of magma from a shallow reservoir (~3km) below the caldera to the two eruptive fissures located ~11 km ENE of the central edifice. Available seismic data are in agreement with InSAR results showing increased seismic activity since November 4 2011, with long- and short-period earthquakes swarms. Using analytical models we invert the measured ground displacements during the first co-eruptive month to evaluate the deformation source parameters and the mechanism of magma emplacement for this eruption. GPS data from permanent stations in the KivuGNet network are used to constrain the temporal evolution of the eruption and evaluate far-field deformation, while the InSAR data is more sensitive to the near-field deformation

  6. Classification of the rift zones of venus: Rift valleys and graben belts

    NASA Astrophysics Data System (ADS)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  7. From IGY to IPY: Volcanism Associated With the West Antarctic Rift System Interpreted From Geophysical Observations, and Possible Effects on the Stability of the West Antarctic Ice Sheet (WAIS).

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2008-12-01

    Observations from a few oversnow and airborne magnetic profiles acquired over the West Antarctic Ice Sheet (WAIS) during the International Geophysical Year (1957-58) indicated numerous high amplitude, shallow source, magnetic anomalies over a very extensive area of the presently known West Antarctic rift system. Aeromagnetic surveys over the WAIS in the early 1960s and later combined with radar ice sounding in 1978- 79 defined an area >500,000 km2; these anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick moving ice. Behrendt et al, (1962, 1964, 1994, and 2005) and Jankowski et al. (1983) interpreted these anomalies as indicating "volcanic centers." Detailed aeromagnetic and radar ice sounding surveys since 1993 have shown that >80% of these anomaly sources have been modified by the moving ice into which they were injected requiring a younger age than the WAIS (~25 Ma). Behrendt et al., (1994; 2007) conservatively estimated >1 x 106 km3 volume of volcanic sources to account for the area of the "volcanic center" anomalies and suggested the presence of a large igneous province (LIP) if this volume was intruded within a time interval of 1-10 Ma. Active volcanism at a few widely spaced exposures of alkaline volcanic rocks associated with the West Antarctic rift, which extend in age to ~34 Ma in the WAIS area, and interpreted active subglacial volcanism revealed by aerogeophysical data (Blankenship et al., 1993; and Corr and Vaughan, 2008) have raised the question of possible volcanic effects on the regime of the WAIS. Vogel and Tulaczyk (2006) argued that subglacial volcanism may play a "crucial roll" in WAIS stability, but LeMasurier (2008) has discounted this as unlikely. In my presentation I will review the geophysical evidence acquired from the IGY to the IPY, and conclude that whether unlikely or not, future effects on the stability of the WAIS should not be ignored.

  8. A kinematic model for the Plio-Quaternary evolution of the Tyrrhenian Apenninic system: implications for rifting processes and volcanism

    NASA Astrophysics Data System (ADS)

    Turco, E.; Zuppetta, A.

    1998-06-01

    During the frontal accretion due to the Late Miocene-Quaternary thrusting, the interior of the Apenninic chain underwent large-scale extension which produced the opening of the Tyrrhenian Oceanic Basin, a back-arc basin in respect to the late Cenozoic Apenninic chain, and the onset of the Quaternary volcanic activity in the Campanian Plain and more generally in the Tyrrhenian area. To outline the space/time distribution and the geotectonic setting of the Tyrrhenian volcanics we approached the problem from a kinematic point of view. A synthesis of the available geological and geophysical data leads us to suggest that the progressive migration of the Apenninic Arcs is responsible for the extension phenomena which took place during the last 5 Ma. At first, the extension resulted from the kinematic interaction between the Northern Apenninic Arc and the Southern Apenninic Arc during the Late Pliocene. Then, from the Early Pleistocene the extension was controlled by the SE migration of the Southern arc only, and therefore it can be regarded as part of the general Southern Tyrrhenian extension phenomenon. Due to the intense thinning, the isotherms migrated upward very rapidly within the Toscana, Latium and Campania lithosphere where the melting point was reached, giving rise to the onset of volcanic activity at the end of the Early Pleistocene.

  9. Exploiting the outcome of FUTUREVOLC: The 2014-2015 rifting event, effusive eruption and gradual caldera collapse at Bardarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Vogfjord, Kristin S.; Gudmundson, Magnus T.; Ofeigsson, Benedikt G.; Dumont, Stéphanie; Parks, Michelle; Jonsdottir, Kristin; Hooper, Andrew; Hreinsdottir, Sigrun; Rafn Heimisson, Elias; White, Robert; Agustsdottir, Thorbjorg; Bean, Chris; Loughlin, Susan C.; Petur Heidarsson, Einar; Barsotti, Sara; Roberts, Matthew; Ripepe, Maurizio; Ilyinskaya, Evgenia; Consortium, Futurevolc

    2016-04-01

    Activity in the Bardarbunga volcanic system in Iceland 2014-2015 included major lava eruption (~1.5 km3) and gradual caldera collapse (~66 m), connected by a 50-km-long laterally injected dyke that formed mostly over 2-4 weeks after onset of activity on 16 August 2014. This rifting event is the main magmatic activity studied by the FUTUREVOLC project, a 3.5 year, 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept. The project end is 31 March 2016 and it had aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. A review will be presented on how FUTUREVOLC has contributed to the response and study of the Bardarbunga activity and other events in Iceland during the project period.

  10. Volcanic rocks and subglacial volcanism beneath the West Antarctic Ice Sheet in the West Antarctic Rift System, (WAIS) from aeromagnetic and radar ice sounding - Thiel Subglacial Volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2012-12-01

    Radar ice sounding and aeromagnetic surveys reported over the West Antarctic Ice Sheet (WAIS) have been interpreted as evidence of subglacial volcanic eruptions over a very extensive area (>500,000 km2 ) of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS reported from radar and aeromagnetic data. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km-width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice have been interpreted as evidence of subglacial eruptions. Comparison of a carefully selected subset of ~400 of the >1000 high-amplitude anomalies in the CWA survey having topographic expression at the glacier bed, showed >80% had less than 200-m relief. About 18 high-amplitude subglacial magnetic sources also have high topography and bed relief (>600 m) interpreted as subaerially erupted volcanic peaks when the WAIS was absent, whose competent lava flows protected their edifices from erosion. All of these would have high elevation above sea-level, were the ice removed and glacial rebound to have occurred. Nine of these subaerially erupted volcanoes are concentrated in the WAIS divide area. Behrendt et al., 1998 interpreted a circular ring of positive magnetic anomalies overlying the WAIS divide as caused by a volcanic caldera. The area is characterized by high elevation bed topography. The negative regional magnetic anomaly surrounding the caldera anomalies was interpreted as the result of a shallow Curie isotherm. High heat flow inferred from temperature logging in the WAISCORE (G. Clow 2012, personal communication; Conway, 2011) and a prominent volcanic ash layer in the

  11. Continental rifting and the origin of Beta Regio, Venus

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Steenstrup, S. J.; Barton, C.; Ford, P. G.

    1981-01-01

    Topographic maps based on Pioneer Venus altimetry suggest that Beta Regio, an elevated feature centered at 27 deg N, 282 deg E, is analogous to domes associated with continental rift systems on earth. This interpretation is consistent with the commonly quoted analogy between the East African rift system and the topography of the region from Beta Regio southward to Phoebe Regio. If Beta Regio is a dome, major structural uplift of the crust of Venus is implied, suggesting a more dynamic upper mantle than would be the case if Beta Regio were simply a large volcanic construct.

  12. Contribution of the FUTUREVOLC project to the study of segmented lateral dyke growth in the 2014 rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    The FUTUREVOLC project (a 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept) set aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. The project duration is 1 October 2012 - 31 March 2016. Unrest and volcanic activity since August 2014 at one of the focus areas of the project in Iceland, at the Bárðarbunga volcanic system, near the middle of the project duration, has offered unique opportunities for this project. On 16 August 2014 an intense seismic swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming over 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull. A large basaltic, effusive fissure eruption began in Holuhraun on 31 August which had by January formed a lava field with a volume in excess of one cubic kilometre. We document how the FUTUREVOLC project has contributed to the study and response to the subsurface dyke formation, through increased seismic and geodetic coverage and joint interpreation of the data. The dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground

  13. Volcanism and sedimentation along the western margin of the Rio Grande rift between caldera-forming eruptions of the Jemez Mountains volcanic field, north-central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Jacobs, Elaine P.; WoldeGabriel, Giday; Kelley, Shari A.; Broxton, David; Ridley, John

    2016-11-01

    The Cerro Toledo Formation (CTF), a series of intracaldera rhyolitic dome complexes and their associated extracaldera tephras and epiclastic sedimentary deposits, records the dynamic interplay between volcanic, tectonic, and geomorphic processes that were occurring along the western margin of the Rio Grande rift between major caldera-forming eruptions of the Bandelier Tuff 1.65-1.26 Ma. The Alamo Canyon and Pueblo Canyon Members differ significantly despite deposition within a few kilometers of each other on the Pajarito Plateau. These differences highlight spatial distinctions in vent sources, eruptive styles, and depositional environments along the eastern side of the Jemez Mountains volcanic field during this ca. 400,000 year interval. Intercalated pyroclastic fall deposits and sandstones of the Pueblo Canyon Member reflect deposition with a basin. Thick Alamo Canyon Member deposits of block-and-ash-flow tuff and pyroclastic fall deposits fill a paleovalley carved into coarse grained sedimentary units reflecting deposition along the mountain front. Chemistry and ages of glass from fall deposits together with clast lithologies of sedimentary units, allow correlation of outcrops, subsurface units, and sources. Dates on pyroclastic fall deposits from Alamo Canyon record deep incision into the underlying Otowi Member in the southern part of the Pajarito Plateau within 100 k.y. of the Toledo caldera-forming eruption. Reconstruction of the CTF surface shows that this period of rapid incision was followed by aggradation where sediments largely filled pre-existing paleocanyons. Complex sequences within the upper portion of the Otowi Member in outcrop and in the subsurface record changes in the style of eruptive activity during the waning stages of the Toledo caldera-forming eruption.

  14. Mafic dike swarms in the South Shetland Islands volcanic arc: Unravelling multiepisodic magmatism related to subduction and continental rifting

    NASA Astrophysics Data System (ADS)

    Willan, Robert C. R.; Kelley, Simon P.

    1999-10-01

    Eight groups of mafic dikes and related high-level stocks cut Triassic accretionary complex and Mesozoic magmatic arc formations on Livingston Island. Some are affected by silicic/sericitic alteration, related to Cretaceous hydrothermal activity, and propylitic/epidosite alteration, analogous to that in ocean floor sheeted dikes. Alteration was accompanied by major and trace element metasomatism. Ar-Ar analysis of the freshest rocks indicates five intrusive events, some of which are unexpectedly young. Groups 1-3 were intruded in the mid to late Cretaceous (˜108-74 Ma) and were coeval with the calc-alkaline arc. Between 70 and 50 Ma, relatively rapid and oblique plate convergence led to strike-slip tectonism and a pause in magmatism. At ˜52 Ma, orthogonal, slow convergence resulted in extensional faulting and emplacement of calc-alkaline (group 2) and primitive tholeiitic dikes (groups 4-6) between 51 and 45 Ma. Extension of Antarctic Peninsula-southern South American crust culminated in emplacement of mafic to intermediate, medium-grained plutons and group C porphyries between 44 and 36 Ma. Localized hydrothermal flow along fault zones resulted in partial to complete argon loss from nearby Cretaceous lavas and Ar-Ar reset ages of ˜40 Ma in mid-Cretaceous hydrothermal K-feldspar. Primitive olivine basalts (group D) and epithermal carbonate veins (31-29 Ma) were emplaced during along-arc extension accompanying the opening of Drake Passage and Powell Basin. Excess argon occurs in two forms: strongly held in melt? inclusions in the primitive tholeiites and weakly held in some secondary alteration. There is no radiometric evidence, in the area studied, for magmatism related to late Cenozoic subduction, nor to the Pleistocene-Recent opening of the back arc Bransfield rift.

  15. Beta Regio rift system on Venus: Geologic interpretation of Magellan images

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Bobina, N. N.; Borozdin, V. K.; Burba, G. A.

    1993-01-01

    Magellan SAR images and altimetric data were used to produce a new geologic map of the Northern part of Beta Regio within the frames of C1-30N279 mapsheet. It was part of our contributions into C1-formate geologic mapping efforts. The original map is at 1:8,000,000 scale. The rift structures are typical for Beta Regio on Venus. There are many large uplifted tessera areas on Beta upland. They occupy areas of higher topography. These tessera are partly burried by younger volcanic cover of plain material. These observations show that Beta upland was formed mainly due to lithospheric tectonical uplifting, and only partly was constructed by volcanic activity. A number of rift valleis traverse Beta upland and spread to the surrounding lowlands. The largest rift crosses Beta N to S. Typical width of rifts is 40 to 160 km. Rift valleis in this region are structurally represented by crustal grabens and half-grabens. There are symmetrical and asymmetrical rifts. A lot of them have shoulder uplifts with the relative high up to 0.5-1 km and width 40 to 60 km. Preliminary analysis of the largest rift valley structural cross-sections leads to the conclusion that it originated due to a 5-10 percent crustal extension. The prominent shield volcano - Theia Mons - is located at the center of Beta rift system. It could be considered as the surface manifestation of the upper mantle hot spot. Most of the rift belts are located radially to Theia Mons. The set of these data leads to conclusion that Beta rift system has an 'active-passive' origin. It was formed due to the regional tectonic lithospheric extension. Rifting was accelerated by the upper mantle hot spot located under the center of passive extension (under Beta Regio).

  16. Continental rifts and mineral resources

    SciTech Connect

    Burke, K. . Geosciences Dept.)

    1992-01-01

    Continental rifts are widespread and range in age from the present to 3 b.y. Individual rifts may form parts of complex systems as in E. Africa and the Basin and Range. Rifts have originated in diverse environments such as arc-crests, sites of continental collision, collapsing mountain belts and on continents at rest over the mantle circulation pattern. Continental rift resources can be classified by depth of origin: For example, in the Great Dike, Norilsk and Mwadui magma from the mantle is the host. At shallower depths continental crust partly melted above mafic magma hosts ore (Climax, Henderson). Rift volcanics are linked to local hydrothermal systems and to extensive zeolite deposits (Basin and Range, East Africa). Copper (Zambia, Belt), zinc (Red Dog) and lead ores (Benue) are related to hydrothermal systems which involve hot rock and water flow through both pre-rift basement and sedimentary and volcanic rift fill. Economically significant sediments in rifts include coals (the Gondwana of Inida), marine evaporites (Lou Ann of the Gulf of Mexico) and non-marine evaporites (East Africa). Oil and gas in rifts relate to a variety of source, reservoir and trap relations (North Sea, Libya), but rift-lake sediment sources are important (Sung Liao, Bo Hai, Mina, Cabinda). Some ancient iron ores (Hammersley) may have formed in rift lakes but Algoman ores and greenstone belt mineral deposits in general are linked to oceanic and island arc environments. To the extent that continental environments are represented in such areas as the Archean of the Superior and Slave they are Andean Arc environments which today have locally rifted crests (Ecuador, N. Peru). The Pongola, on Kaapvaal craton may, on the other hand represent the world's oldest preserved, little deformed, continental rift.

  17. Softening of sub-continental lithosphere prior rifting: Evidence from clinopyroxene chemistry in peridotite xenoliths from Natash volcanic province, SE Egypt

    NASA Astrophysics Data System (ADS)

    Abu El-Rus, M. A.; Chazot, G.; Vannucci, R.; Gahlan, H. A.; Boghdady, G. Y.; Paquette, J.-L.

    2016-11-01

    Major and trace element compositions were determined for well-preserved diopside relics in highly altered mantle xenoliths from Natash volcanic province, south Eastern Desert of Egypt, to unravel the major magmatic processes that occurred within the lithospheric mantle long time before the Red Sea rift. The diopside shows a limited compositional range as for mg# (0.89-0.92), Al2O3 (3.52-5.60 wt%), andTiO2 (0.15-0.35 wt%), whereas it is characterised by a larger variability as for Na2O (0.23-1.83 wt%) and, in particular the trace elements. The latter identify two main diopside types: 1) CPX-I has low abundances of incompatible elements, spoon-like REE patterns, small negative anomalies in Ti and Zr and a positive anomaly in Sr; and 2) CPX-II has high abundances in incompatible elements, REE patterns with steady enrichment from HREE to LREE patterns and marked negative anomalies in Ti and Zr. The range of REE patterns in the mantle section can be explained by 7-22% batch melting of the primitive mantle followed by varying degrees of trace element chromatographic exchange. CPX-I underwent only small-scale reactive porous flow metasomatism at the percolation front, whereas CPX-II resulted from large-scale rock-melt interaction close to the melt source. Trace element abundances of CPX-II suggest equilibration with carbonatite-like melts that bear close similarities with the carbonatites that enriched the lithosphere in the southern part of the Arabian plate. The similarity of the P-T gradients recorded by the Natash and southern part of Arabian lithospheres, as well as their re-fertilisation by similar, carbonatite-like agents, is consistent with the presence of a mantle plume at the base of the lithosphere after accretion of the Arabian-Nubian Shield in Late Precambrian. The plume material was fossilized due to secular cooling and became part of the lithospheric mantle before the eruption of the Natash volcanic in Late Cretaceous.

  18. Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics

    NASA Astrophysics Data System (ADS)

    Lloyd, F. E.; Arima, M.; Edgar, A. D.

    1985-12-01

    Melting experiments on a mantle-derived nodule assemblage consisting of clinopyroxene, phlogopite and minor titanomagnetite, sphene and apatite have been done at 20 and 30 kbar between 1,175 and 1,300° C. The nodule composition was selected on the basis of modal and chemical analyses of 84 mantle derived nodules with metasomatic textures from the Katwe-Kikorongo and Bunyaruguru volcanic fields of south-west Uganda. At 30 kbar, 1,225 and 1,250° C, representing 20 30% partial melting, the compositions of glasses compare favourably to those of the average composition of 26 high potassic mafic lavas from the same region. Glasses produced by sufficiently low degrees of partial melting at 20 kbar could not be analysed. Glass compositions obtained for 20 30% melting at 30 kbar have high K2O (3.07 5.05 wt.%), low SiO2 (35.0 39.2 wt.%), high K/K + Na (0.54 0.71), K + Na/Al (0.99 1.08) and Mg/ Mg + FeT of 0.59 0.62. These results support the suggestion of Lloyd and Bailey (1975) that the nodules represent the source material for the high K-rich lavas of south-west Uganda. If this conclusion is correct it implies that anomalous mantle source of phlogopite clinopyroxenite composition could produced the Ugandan lavas by relatively higher degrees of partial melting than that normally considered for highly alkaline mafic magmas derived from a pyrolitic mantle source. Higher degrees of melting are considered likely from such a different source region, rich in alkalis, water and radioactive elements. Steeper geotherms and increased fluxing of sub-rift mantle by degassing would also produce higher degrees of partial melting.

  19. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding—new evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    NASA Astrophysics Data System (ADS)

    Behrendt, John C.; Blankenship, Donald D.; Morse, David L.; Bell, Robin E.

    2004-07-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%<200 m). We interpret this relief as an indication of residual topography after glacial removal of volcanic edifices comprising hyaloclastite, pillow breccia and other volcanic debris erupted into the moving ice during volcanism since the initiation of the WAIS >10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography

  20. Question of Ages of Cenozoic Volcanic Centers Inferred Beneath the West Antarctic Ice Sheet (WAIS) in the West Antarctic Rift System (WR) from Coincident Aeromagnetic and Radar Ice Sounding Surveys

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Finn, C. A.; Blankenship, D. D.

    2007-12-01

    The recently acquired radar ice sounding surveys (Holt, et al., 2006) extending the 1990s Central West Antarctica (CWA) aerogeophysical survey to the Amundsen and Bellingshausen sea coasts allows us to revise a thought experiment reported by Behrendt et al., 1991 from very limited bed elevation data. Were the ice of the WAIS flowing through the WR to be compressed to the density of crustal rock, almost all of the area beneath the WAIS would be at or above sea level, much >1 km elevation. There are only about 10-20% of the very deep areas (such as the Bentley subglacial trench and the Byrd Subglacial Basin) filled with 3-4-km thick ice that would be well below sea level. The age of the 5-7-km high rift shoulder bounding the asymmetric WR from northern Victoria Land through the Horlick Mountains (where it diverges from the Transantarctic Mountains) to the Ellsworth Mountains has been reported as old as Cretaceous. Volcanic exposures associated with the West Antarctic rift system in the present WAIS area extend at least to 34 Ma and the West Antarctic ice sheet has flowed through the rift possibly as far back in time as 25 Ma. Active volcanism has been reported for the WR at only a few widely scattered locations, so speculations about present volcanic activity beneath the WAIS are quite uncertain, and it is probably quite rare. The Central West Antarctic aeromagnetic and radar ice sounding survey carried out in the 1990s revealed about 1000 "volcanic centers" characterized by 100-1000 nT shallow source magnetic anomalies, at least 400 of which have associated bed topography. About 80% of these show relief <200 m and have been interpreted as smoothed off as they were erupted (injected) into the moving WAIS. Several kilometer-thick highly magnetic sources are required to fit these anomalies requiring high remanent magnetizations in the present field direction. We interpreted these sources as subvolcanic intrusions which must be younger than about 100 Ma because the

  1. An integrated geophysical study of the northern Kenya rift

    NASA Astrophysics Data System (ADS)

    Mariita, Nicolas O.; Keller, G. Randy

    2007-06-01

    The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the contact between the Archean Tanzania craton and the Proterozoic Mozambique orogenic belt. Recent geophysical investigations focused on the tectonic evolution of the East African rift and on exploration for geothermal energy in the southern portion of the Kenyan rift provide considerable information and insight on the structure and evolution of the lithosphere. In the north, a variety of other data exist. However, the lack of an integrated regional analysis of these data was the motivation for this study. Our study began with the collection and compilation of gravity data, and then we used the seismic refraction results from the Kenya Rift International Seismic Project (KRISP), published seismic reflection data, aeromagnetic data, and geologic and drilling data as constraints in the construction of integrated gravity models. These models and gravity anomaly maps provide insight on spatial variations in crustal thickness and upper mantle structure. In addition, they show the distribution of basins and help characterize the distribution of magmatism along the axis of the northern sector of the rift. Our main observations are the following: (1) the region of thinning and anomalous mantle widens northward in agreement with previous studies showing that the crust thins from about 35 km in the south to 20 km in the north; (2) as observed in the south, gravity highs observed along the axis are due to mafic

  2. Tectonic controls on rift basin morphology: Evolution of the northern Malawi (Nyasa) rift

    NASA Technical Reports Server (NTRS)

    Ebinger, C. J.; Deino, A. L.; Tesha, A. L.; Becker, T.; Ring, U.

    1993-01-01

    Radiometric (K-Ar and Ar-40/Ar-39) age determinations of volcanic and volcaniclastic rocks, combined with structural, gravity, and seismic reflection data, are used to constrain the age of sedimentary strata contained within the seismically and volcanically active northern Malawi (Nyasa) rift and to characterize changes in basin and flank morphologies with time. Faulting and volcanism within the Tukuyu-Karonga basin began at approximately 8.6 Ma, when sediments were deposited in abroad, initially asymmetric lake basin bounded on its northeastern side by a border fault system with minor topographic relief. Extensions, primarily by a slip along the border fault, and subsequent regional isostatic compensation led to the development of a 5-km-deep basin bounded by broad uplifted flanks. Along the low-relief basin margin opposite border fault, younger stratigraphic sequences commonly onlap older wedge-shaped sequences, although their internal geometry is often progradational. Intrabasinal faulting, flankuplift, and basaltic and felsic volcanism from centers at the northern end of the basin became more important at about 2.5 Ma when cross-rift transfer faults developed to link the Tukuyu-Karonga basin to the Rukwa basin. Local uplift and volcanic construction at the northern end of the basin led to a southeastward shift in the basin's depocenter. Sequence boundaries are commonly erosional along this low-relief (hanging wall) margin and conformable in the deep lake basin. The geometry of stratigraphic sequences and the distribution of the erosion indicate that horizontal and vertical crustal movements both across and along the length of the rift basin led to changes in levels of the lake, irrespective of paleoclimatic fluctuations.

  3. Sulfide and silicate melt inclusions in the D. João de Castro Volcanic Seamount, a hydrothermally active area on the Terceira Rift, Azores

    NASA Astrophysics Data System (ADS)

    Marques, A. F. A.; Scott, S. D.; Madureira, P.; Rosa, C. J. P.; Lourenço, N.; Conceição, P.; TerRiftic Team

    2012-04-01

    The Azores plateau is a bathymetric high located in the North Atlantic encompassing a triple junction where the American, Eurasia and African plates meet. The Terceira Rift (TR), within the plateau, defines the Eurasia/African plate boundary and corresponds to a 550 Km long, ESE trending line of volcanic islands and seamounts (e.g. D. João de Castro - DJC) alternating with deep basins (e.g. Hirondelle - HIR) [1, 2]. Fresh basalts from the TR, in particular the DJC and HIR areas, were sampled from 2007 to 2009 [EMEPC 2007/2008/2009 cruises]. The team is now studying their melt inclusions [MI] in order to understand processes of magma evolution and mixing as well as the behavior of trace metals and volatiles in the pre-erupted magmas. Petrographic observations indicate that in DJC and HIR, basalts are porphyritic, vesicular, with a microcrystalline groundmass composed mostly of plagioclase laths ± olivine ± clinopyroxene ± skeletal Fe-Ti oxides ± glass. Phenocrysts are subhedral to euhedral with corroded rims. Clinopyroxene (aluminian diopside) is the main phenocryst phase, followed by olivine (Fo83 - DJC; Fo80 - HIR) and minor plagioclase (often as microphenocrysts). Incompatible trace elements in groundmass, glass, and exposed MI in clinopyroxene depict enriched patterns above the OIB field. REE patterns are similar in the groundmass and glass from DJC and HIR. Exposed MI from HIR depicts less enriched REE patterns than the groundmass, whilst DJC MI show similar REE patterns to the groundmass. MI were found in most mineral phases studied. They are distributed randomly (azonal) and appear glassy, partially devitrified or completely opaque with one or more vapor bubbles. Glassy to devitrified MI may show interpenetrating arrays of mineral phases, skeletal Fe-Ti oxides, and included euhedral Cr-spinel. Sulfide globules are common in clinopyroxene-hosted MI and are dispersed within the groundmass. Globules are small, less than 10 μm, and contain distinct mineral

  4. U-Pb dating of zircon in subsurface, hydrothermally altered pyroclastic deposits and implications for subsidence in a magmatically active rift: Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Wilson, C. J. N.; Charlier, B. L. A.; Rowland, J. V.; Browne, P. R. L.

    2010-03-01

    Recognising and correlating hydrothermally altered rock units within buried volcanic sequences in the Taupo Volcanic Zone (TVZ) in New Zealand is difficult. This is because of broad similarities in the lithologies of many major ignimbrite units, and the destruction by hydrothermal alteration of distinctive chemical and mineralogical characteristics. However, magmatic zircons are commonly present, are highly resistant to hydrothermal alteration and yield crystallisation ages in intensely altered rocks. Crystallisation-age spectra have been obtained by SIMS techniques (SHRIMP-RG) on zircons extracted from cores from altered ignimbrites penetrated by drillholes at the Waiotapu, Te Kopia and Orakei Korako geothermal fields in the central TVZ. At Waiotapu, the thick (up to 350 m) densely welded Waiotapu Ignimbrite returned a zircon age spectrum with a probability density function (pdf) peak of 0.79 Ma, consistent with an eruption age (from 40Ar/ 39Ar techniques) of 0.71 ± 0.06 (1 s.d.) Ma. Three older ignimbrite sheets yielded age spectra that were consistent stratigraphically. The shallowest of the three yielded sparse zircons that gave a pdf peak of 1.24 Ma and it may correlate with the 1.18 ± 0.02 Ma Ahuroa ignimbrite. The middle sheet, although 220 m thick, yielded an age spectrum identical to that obtained from pumice in the widespread 1.21 ± 0.04 Ma Ongatiti ignimbrite, extending earlier estimates of the likely volume of this large deposit. The deepest sheet has a spectrum consistent with an eruption age of 1.45 ± 0.05 Ma; it has no surficial correlative, but its likely coeruptive ash forms part of a concentrated group of primary or secondary tephra in sediments on the ocean floor east of New Zealand and in sedimentary basins across the North Island. These three ignimbrites were previously correlated with either major ignimbrites exposed on the Paeroa Fault scarp, 10 km to the west, or the Akatarewa Ignimbrite that occurs in drillholes at Te Kopia and Orakei

  5. Initiation and termination of late Tertiary extension in the lithosphere at the margin of the Baikal Rift Zone, Southern Siberia: Change of sources for volcanism in the Vitim Plateau

    NASA Astrophysics Data System (ADS)

    Chuvashova, Irina; Rasskazov, Sergei; Yasnygina, Tatyana

    2014-05-01

    A comparative analysis of major oxides, trace elements and Nd, Sr isotopes in representative sequences of volcanic and subvolcanic rocks from the western and eastern parts of the Vitim Plateau revealed petrogenetic groups with varying proportions of components from the lithospheric and sublithospheric sources. It is inferred that the initial episode of eruptions of picritic basalts and Mg-basanites in the eastern part of the plateau at 16-14 Ma was due to high-temperature melting slightly isotopically depleted peridotite material, which adiabatically ascended from the deep mantle, and strongly isotopically depleted Mg-pyroxenitic material of the lower lithosphere. A wide range of lava compositions in the time interval of 14-9 Ma was provided by processes of "passive" and "active" rifting in the western and eastern parts of the plateau, respectively. A structural reorganization that took place in the Baikal rift system in the past 9 Ma has led to the cessation of rifting in the Vitim Plateau. As a result of the relaxation and smoothing of the thinned lithosphere beneath the eastern part of the area, moderately isotopically-depleted liquids from the asthenosphere, slightly contaminated by deeper isotopically-depleted mantle material, erupted in the time interval of 1,1-0,6 Ma. The study is supported by the Russian Foundation for Basic Research (Grant 14-05-31328).

  6. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding - New evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Bell, R.E.

    2004-01-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other extreme

  7. The Timing of Early Magmatism and Extension in the Southern East African Rift: Tracking Geochemical Source Variability with 40Ar/39Ar Geochronology at the Rungwe Volcanic Province, SW Tanzania

    NASA Astrophysics Data System (ADS)

    Mesko, G. T.; Class, C.; Maqway, M. D.; Boniface, N.; Manya, S.; Hemming, S. R.

    2014-12-01

    The Rungwe Volcanic Province is the southernmost expression of volcanism in the East African Rift System. Rungwe magmatism is focused in a transfer zone between two weakly extended rift segments, unlike more developed rifts where magmatism occurs along segment axes (e.g. mid-ocean ridges). Rungwe was selected as the site of the multinational SEGMeNT project, an integrated geophysical, geochronological and geochemical study to determine the role of magmatism during early stage continental rifting. Argon geochronology is underway for an extensive collection of Rungwe volcanic rocks to date the eruptive sequence with emphasis on the oldest events. The age and location of the earliest events remains contested, but is critical to evaluating the relationship between magmatism and extension. Dated samples are further analyzed to model the geochemistry and isotopic signature of each melt's source and define it as lithospheric, asthenospheric, or plume. Given the goals, the geochronology focuses on mafic lavas most likely to preserve the geochemical signature of the mantle source. Groundmass was prepared and analyzed at the LDEO AGES lab. Twelve preliminary dates yield ages from 8.5 to 5.7Ma, consistent with prior results, supporting an eruptive episode concurrent with tectonic activity on the Malawi and Rukwa border faults (Ebinger et al., JGR 1989; 1993). Three additional samples yield ages from 18.51 to 17.6 Ma, consistent with the 18.6 ±1.0 Ma age obtained by Rasskazov et al. (Russ. Geology & Geophys. 2003). This eruptive episode is spatially limited to phonolite domes in the Usangu Basin and a mafic lava flow on the uplifted Mbeya Block. These eruptions predate the current tectonic extensional structure, suggesting magmatism predates extension, or that the two are not highly interdependent. No Rungwe samples dated yet can be the source of the of 26Ma carbonatitic tuffs in the nearby Songwe River Basin sequence (Roberts et al., Nature Geoscience 2012). Isochron ages

  8. The origin of along-rift variations in faulting and magmatism in the Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Keir, Derek; Bastow, Ian D.; Corti, Giacomo; Mazzarini, Francesco; Rooney, Tyrone O.

    2015-03-01

    The geological record at rifts and margins worldwide often reveals considerable along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Main Ethiopian Rift (MER) in East Africa provides an excellent opportunity to address this dichotomy: it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of volcanic cone density and rift obliquity along strike in the MER. By synthesizing these new data in light of existing geophysical, geochemical, and petrological constraints on magma generation and emplacement, we are able to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rifted margin. The timing of rift sector development, the three-dimensional focusing of melt, and the ponding of plume material where the rift dramatically narrows each influence igneous intrusion and volcanism along the MER. However, rifting obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  9. Lucky Strike seamount: Implications for the emplacement and rifting of segment-centered volcanoes at slow spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Escartín, J.; Soule, S. A.; Cannat, M.; Fornari, D. J.; Düşünür, D.; Garcia, R.

    2014-11-01

    history of emplacement, tectonic evolution, and dismemberment of a central volcano within the rift valley of the slow spreading Mid-Atlantic Ridge at the Lucky Strike Segment is deduced using near-bottom sidescan sonar imagery and visual observations. Volcano emplacement is rapid (<1 Myr), associated with focused eruptions, and with effusion rates feeding lava flows that bury tectonic features developed prior to and during volcano construction. This volcanic phase likely requires efficient melt pooling and a long-lived crustal magma chamber as a melt source. A reduction in melt supply triggers formation of an axial graben rifting the central volcano, and the onset of seafloor spreading may eventually split it. At Lucky Strike, this results in two modes of crustal construction. Eruptions and tectonic activity focus at a narrow graben that bisects the central volcano and contains the youngest lava flows, accumulating a thick layer of extrusives. Away from the volcano summit, deformation and volcanic emplacement is distributed throughout the rift valley floor, lacking a clear locus of accretion and deformation. Volcanic emplacement on the rift floor is characterized by axial volcanic ridges fed by dikes that propagate from the central axial magma chamber. The mode of rapid volcano construction and subsequent rifting observed at the Lucky Strike seamount is common at other central volcanoes along the global mid-ocean ridge system.

  10. Rio Grande Rift: History of Tectonic Opening and Magmatism

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.; Koning, D.

    2016-12-01

    We describe the mid-Miocene to present opening history of the Rio Grande rift from tectonic subsidence patterns, published Quaternary fault activity, and spatial, temporal and geochemical distributions of volcanism. Rift opening was quite fast until 8 Ma, with tectonic subsidence rates comparable to those of the pre-rupture phase of rifted continent margins, but post-8 Ma rates are slower in all studied localities. Integration of age control reveals that a rift-margin unconformity formed between 8.5 and 3.5 Ma, its exact duration varying depending on location. This partly coincides with uplift of the Ogallala formation in the western Great Plains. The widespread extent of the unconformity suggest that the unconformity records a region-wide dynamic uplift event, possibly resulting from mantle upwelling below the region. This is supported by geoid analyses. The unconformity postdates a change in relative plate motion between the North American and Pacific plates, which may account for the post-8 Ma decrease in subsidence rates. Distribution of Quaternary fault activity is concentrated on the border faults in the northern basins where the rift is in a juvenile stage, but distributed on intra-basin faults further south in the rift where the crust is thinned more. Our analyses show that volcanism in the Rio Grande rift has been of mainly basaltic composition since the Miocene; volcanism during early rifting ranged from basalt to rhyolite. Volcanism has not been evenly distributed in the rift, but concentrated in three large volcanic fields that were located outside of the main rift prior to rift opening, and along the Jemez Lineament which crosses the Rio Grande rift, with sporadic volcanic activity elsewhere. The southern portion of the rift has experienced less volcanic activity than the northern rift, perhaps because it is underlain by fast seismic wave velocity upper mantle that may be linked to colder or compositionally different (Farallon plate subduction related

  11. Paleomagnetic and 40Ar/39Ar Geochronology of Tertiary Intrusive and Volcanic Rocks in the Espanola Basin, New Mexico: Further Evidence for Counterclockwise Vertical-Axis Block Rotations in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Harlan, S. S.; Weese, A.; Geissman, J. W.; Snee, L. W.; Sauer, R.

    2005-12-01

    Published paleomagnetic data from the northern Rio Grande rift provide evidence for the presence of counterclockwise vertical axis block rotations, perhaps associated with left-slip on faults during rift extension. Despite the apparent consistency of results, the significance of some of these results is difficult to evaluate because of problems associated with small sample size, potential failure to average secular variation, etc. In order to better document and understand the extent, significance and origin of such rotations, we have obtained new paleomagnetic data from intrusive and volcanic rocks in the Cerrillos Hills and surrounding areas in the Espanola basin, south of Santa Fe, New Mexico. These rocks include both alkaline and calc-alkaline rock suites that are associated with magmatism in the Ortiz Porphyry Belt. New 40Ar/39Ar and published K-Ar dates indicate that most of these igneous rocks were emplaced between about 36 and 28 Ma. Preliminary paleomagnetic results from 40 sites from in situ intrusive and associated tilt-corrected volcaniclastic rocks of the Oligocene Espinaso Formation yield well-defined site-mean directions, with a group-mean direction of Dec.=343.6°, Inc.=57.4° (k=35, α95=4.0°; 26 sites of normal polarity and 14 of reverse polarity). Given the distribution of site-mean directions, the time-span of activity indicated by the isotopic dates in this area, the diversity of rock types sampled, and the presence of both normal and reverse polarity site-mean directions, we interpret our data to have adequately averaged secular variation; thus, we consider the results to represent an accurate recording of the Oligocene geomagnetic field. Comparison of our group-mean direction with the expected direction for this area (e.g., Dec.=355.3°, Inc.=53.9°, Irving and Irving, 1979) indicates that it is discordant ( R=-11.7°±7.4°) and that the result is significant at the 95% confidence level. Thus, our data confirm the results of earlier studies

  12. Along-rift Variations in Deformation and Magmatism in the Ethiopian and Afar Rift Systems

    NASA Astrophysics Data System (ADS)

    Keir, D.; Bastow, I. D.; Corti, G.; Mazzarini, F.; Rooney, T. O.

    2015-12-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Ethiopian and Afar Rift systems provide an excellent opportunity to address this since it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of distribution and style of volcanism and faulting along strike in the MER and Afar. We also incorporate synthesis of geophysical, geochemical, and petrological constraints on magma generation and emplacement in order to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rift. Along-rift changes in extension by magma intrusion and plate stretching, and the three-dimensional focusing of melt where the rift dramatically narrows each influence igneous intrusion, volcanism and subsidence history. In addition, rift obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  13. The geothermal fields of the Kenya rift

    NASA Astrophysics Data System (ADS)

    Riaroh, Don; Okoth, William

    1994-09-01

    From the standpoint of geothermal energy, Kenya's resources are due to the presence of the Kenya rift which is part of the East African rift system. Geological, geophysical and geothermal studies indicate that Neogene volcanic activity has led to the presence of near surface heat generating sources. Geothermal fields of the Kenya rift occur in two types of environments. The main geothermal fields are associated with Quaternary volcanoes. The second type is associated with fissures that are related to active fault zones. In either case, these fields are dissected by numerous rift faults that give rise to a number of geothermal springs and fumaroles.

  14. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  15. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    USGS Publications Warehouse

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

  16. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    NASA Astrophysics Data System (ADS)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-11-01

    assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

  17. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  18. Hawaii Rifts

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.

  19. Structure of the central Terror Rift, western Ross Sea, Antarctica

    USGS Publications Warehouse

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  20. Cenozoic rift tectonics of the Japan Sea

    SciTech Connect

    Kimura, K.

    1988-08-01

    The Japan Sea is one of the back-arc basins in trench-arc systems bordering the western Pacific. Recent paleomagnetic works suggest the Japan Sea opened during early to middle Miocene. Radiometric and microfossil ages of the Cenozoic onland sequences in the Japanese Islands elucidate the rift tectonics of the Japan Sea. The rifting history is summarized as follows: nonmarine volcanic formations of prerift stage before 50 Ma, rift-onset unconformity at 40 Ma, nonmarine volcanic formations of synrift stage 20-33 Ma, breakup unconformity 19 Ma showing the opening of the Japan Sea, marine volcanic and sedimentary formations of synrift stage 14.5-18 Ma, beginning of regional subsidence 14.5 Ma corresponding to the end of the Japan Sea opening, marine sedimentary formations of postdrift stage after 14.5 Ma. Rifting is not limited to the synrift stage but is continued to the syndrift stage. Rifting led to a horst-and-graben structure. Thus, the Cenozoic onland sequences in the Japanese Islands are suited for a study of rift tectonics because the sequences were subaerially exposed by the late Miocene-Holocene island-arc tectonics. Rift tectonics cannot be studied as easily in most Atlantic-type passive margins.

  1. Heterogeneous nature of the pre-subduction mantle wedge and their transformation to pyroxene-rich lithologies by slab-derived chemical agents: Tepic-Zacoalco rift, western Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Díaz Bravo, B. A.; Gomez-Tuena, A.; Ortega-Obregón, C.; Perez-Arvizu, O.

    2013-12-01

    Alkaline basalts with geochemical features similar to those of intraplate Ocean Islands have been emplaced along the main trace of the Tepic-Zacoalco rift (TZR) in western Mexico. Comprehensive geochemical and petrologic data on volcanic rocks along the rift indicates that the pre-subduction background mantle wedge in western Mexico is as heterogeneous as that below the Pacific basin, and includes a recycled, high-μ component (HIMU; μ =238U/204Pb) in their mantle source. Olivines contained within these samples have NiO and CaO contents similar to olivines from MORB, suggesting that the source of enrichment must be entirely hosted in peridotite. More evolved rocks within the TZR have a stronger subduction signatures and water contents, and display a distinctive Pb isotopic array that suggest slab additions. Olivine phenocrysts from these rocks have lower Fo but extend higher NiO and lower CaO contents than those from more mafic magmas, suggesting derivation from a secondary pyroxenite source. It thus appears that the heterogeneous nature of the pristine pre-subduction mantle wedge in western Mexico can only be sampled when extension-driven mantle upwelling induces low extents of melting of a dry peridotitic mantle that preferentially sample its most enriched and easily fusible components. Yet even a small amount of slab-derived silica promotes a secondary petrologic transformation to pyroxene-rich lithologies that upon remelting create magmas with compositions that are similar to arc volcanoes. Metasomatic silica addition is ultimately related to the convergent margin, but deep subduction of Rivera plate below the TZR preclude a direct derivation from the slab surface. The participation of hybrid subduction mélanges that detach from the downgoing slab and melt in the hot core of the mantle wedge can provide a viable alternative explanation.

  2. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    USGS Publications Warehouse

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  3. The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA

    NASA Astrophysics Data System (ADS)

    Ojakangas, R. W.; Morey, G. B.; Green, J. C.

    2001-06-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ∽1109-1087 Ma, the age span of most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance.

  4. Peripheral Faulting of Eden Patera: Potential Evidence in Support of a New Volcanic Construct on Mars

    NASA Astrophysics Data System (ADS)

    Harlow, J.

    2016-12-01

    Arabia Terra's (AT) pock-marked topography in the expansive upland region of Mars Northern Hemisphere has been assumed to be the result of impact crater bombardment. However, examination of several craters by researchers revealed morphologies inconsistent with neighboring craters of similar size and age. These 'craters' share features with terrestrial super-eruption calderas, and are considered a new volcanic construct on Mars called `plains-style' caldera complexes. Eden Patera (EP), located on the northern boundary of AT is a reference type for these calderas. EP lacks well-preserved impact crater morphologies, including a decreasing depth to diameter ratio. Conversely, Eden shares geomorphological attributes with terrestrial caldera complexes such as Valles Caldera (New Mexico): arcuate caldera walls, concentric fracturing/faulting, flat-topped benches, irregular geometric circumferences, etc. This study focuses on peripheral fractures surrounding EP to provide further evidence of calderas within the AT region. Scaled balloon experiments mimicking terrestrial caldera analogs have showcased fracturing/faulting patterns and relationships of caldera systems. These experiments show: 1) radial fracturing (perpendicular to caldera rim) upon inflation, 2) concentric faulting (parallel to sub-parallel to caldera rim) during evacuation, and 3) intersecting radial and concentric peripheral faulting from resurgence. Utilizing Mars Reconnaissance Orbiter Context Camera (CTX) imagery, peripheral fracturing is analyzed using GIS to study variations in peripheral fracture geometries relative to the caldera rim. Visually, concentric fractures dominate within 20 km, radial fractures prevail between 20 and 50 km, followed by gradation into randomly oriented and highly angular intersections in the fretted terrain region. Rose diagrams of orientation relative to north expose uniformly oriented mean regional stresses, but do not illuminate localized caldera stresses. Further

  5. Variation in styles of rifting in the Gulf of California.

    PubMed

    Lizarralde, Daniel; Axen, Gary J; Brown, Hillary E; Fletcher, John M; González-Fernández, Antonio; Harding, Alistair J; Holbrook, W Steven; Kent, Graham M; Paramo, Pedro; Sutherland, Fiona; Umhoefer, Paul J

    2007-07-26

    Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism.

  6. An integrated geophysical analysis of the upper crust of the southern Kenya rift

    NASA Astrophysics Data System (ADS)

    Simiyu, Silas M.; Keller, G. Randy

    2001-12-01

    Previous interpretations of seismic data collected by the Kenya Rift International Seismic Project (KRISP) experiments indicate the presence of crustal thickening within the rift valley area beneath the Kenya dome, an uplift centred on the southern part of the Kenya rift. North of the dome, these interpretations show thinning of the crust and an increase in crustal extension. To the south near the Kenya/Tanzania border, crustal thinning associated with the rift is modest. Our study was aimed at further investigating crustal structure from this dome southwards via a detailed analysis focused on upper crustal structure. We used results from surface geological mapping, drill hole data from water wells and geothermal exploration wells, KRISP 85 seismic data for a profile across the rift, KRISP 85 and 90 seismic data for a profile along the rift axis and KRISP 94 seismic data for a profile crossing southernmost Kenya to constrain gravity modelling and construction of integrated models of crustal structure. Our integrated analysis produced the following results concerning the structure and evolution of the southern Kenya rift: (1) the graben master faults are consistently located along the western margin of the rift valley, and there is no evidence for half-graben polarity reversals for a distance of about 300km (2) there is no axial (north-south) crustal symmetry with respect to the apex of the Kenya dome, and the crustal thickness may be as much related to pre-rift crustal type and thickness as it is to crustal thickening and modification by magmatic processes; (3) the pre-existing lithospheric contrast between the Archaean and Proterozoic basement terranes played a significant role in the location and structural geometry of the rift; (4) south of latitude 1°S, low velocities and densities observed under the western flank of the rift probably represent reworked Archaean Tanzanian craton; (5) magmatic modification of the upper crust is modest except near the major

  7. Evolutionary model of the oblique rift basins- Central African Rifts

    NASA Astrophysics Data System (ADS)

    Yang, Kenn-Ming; Cheng, I.-Wen; Wu, Jong-Chang

    2016-04-01

    The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during basin evolution of Central African Rifts (CAS). In this study, we simulated the formation of oblique-rifting basin with Particle Flow Code 3-Dimensions-(PFC 3D) and compared the simulation results with the tectonic settings of a series of basin in CAS. CAS started to develop in Early Cretaceous (130Ma) and lasted until the Late Cretaceous (85Ma-80Ma). The following collision between the African and Eurasian plates imposed compressional stress on CAS and folded the strata in the rift basins. Although the characteristics of rift basin formation remain controversial, palinspastic sections constructed in this study show that, in the Early Cretaceous, the rift basins are mainly characterized by normal faults and half-grabens. In the Late Cretaceous, the morphology of the rift basins was altered by large-scaled tectonic compression with the active Borogop Fault of regional scale. Also, en echelon trend of normal faults in the basins were measured and the angles between the trend with that of the rift axes of each basin were demonstrated, indicating that the development of CAS was affected by the regional extensional stress with a dextral component during the rifting process and, therefore, the rift basins were formed by oblique-rifting. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, which α are 45°, 60°, 75° and 90° respectively, to simulate basin formation under oblique-rifting process. The study results of simulation

  8. InSAR and GPS ground deformation measurements along the Kivu segment of the East African Rift System during the 2011-2012 Nyamulagira volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Nobile, A.; Geirsson, H.; d'Oreye, N.; Smets, B.; Mashagiro, N.; Kervyn, F.

    2016-12-01

    Along the East African Rift System (EARS) lie several active volcanoes characterized by different eruptive styles and magma plumbing systems. Furthermore, along the EARS, magma intrusions represent a major component in continental rifting. In this unique tectonic environment it is very important to study the magma emplacement mechanisms. One of the most active volcanoes along the western branch of the EARS is the Nyamulagira (Democratic Republic of Congo), a basaltic shield volcano with a central caldera and an intermittent lava lake. From 1948 to 2012, Nyamulagira mostly showed a particular eruptive cycle with 1) classical short-lived (i.e. 20-30 days) flank eruptions, sometimes accompanied with intracrateral activity, which occurred every 1-4 years on average, and 2) less frequent long-lived (i.e. several months) distal (>8 km from the central caldera) eruptions usually emitting larger volumes of lava. Here we used InSAR data from different satellite (Envisat, Cosmo SkyMed, TerraSAR-X and RADARSAT) and GPS data from permanent stations in the KivuGNet network to measure ground displacement associated with 2011-2012 Nyamulagira distal eruption. Furthermore, using analytical models we invert the InSAR measured ground displacements to evaluate the deformation source parameters and the mechanism of magma emplacement. GPS data are used to validate the modeled displacements. Both InSAR and GPS observations show that strong ground deformation start two days before the eruption. Furthermore, seismic activity increased since November 4 2011, with long- and short-period earthquakes swarms. These are the evidences that the eruption was preceded by a magma intrusion that correspond to the migration of magma from a shallow reservoir ( 3km) below the caldera to the two eruptive fissures located 11 km ENE of the central edifice. Moreover, GPS, InSAR and seismic data suggest the presence of a deep magmatic source that possibly fed the shallower magmatic system. This mechanism

  9. Heat flow in the Kenya rift zone

    NASA Astrophysics Data System (ADS)

    Wheildon, J.; Morgan, Paul; Williamson, K. H.; Evans, T. R.; Swanberg, C. A.

    1994-09-01

    An understanding of the processes of continental rifting is fundamental to understanding the evolution of the continents. Considerable evidence exists to suggest that continental rift zones are associated with high heat flow and elevated lithospheric geotherms, but direct heat-flow measurements from young rifts do not clearly define surface heat-flow anomalies associated with deep-seated thermal processes in these rifts. The first detailed compilation of heat-flow data from the Neogene Kenya rift is presented here. Heat-flow data are presented from traditional heat-flow determinations in water drill-holes, from bottom-hole-temperature measurements in oil wells, and from heat-flow estimates from groundwater silica data. These data define generally low heat flow on the flanks of the Kenya rift, with high, but variable heat flow on the rift floor. There is a spatial association among high heat-flow values, Quaternary volcanism and faulting, and hydrothermal manifestations on the rift floor. We interpret these results to suggest that any deep-seated thermal anomaly associated with the Kenya rift has not yet been conducted to the surface. The high heat-flow values are interpreted to result from heat advected into the axial rift zone with local redistribution of this heat by hydrothermal convection. Normal to moderately high heat flow was measured in eastern Kenya between the rift zone and the coast. The regional heat flow in eastern Kenya is interpreted to be normal, with local shallow modification by groundwater flow eastward from the Kenya dome. These interpretations support a model of relatively young evolution of the asthenospheric anomaly beneath the Kenya rift zone, with the age of heating of the mantle at the Mono no older than about 10 Ma.

  10. Role of mass wasting processes in the modification of oceanic rift valley morphology

    SciTech Connect

    Keith, D.J.; Fox, P.J.; Karson, J. A.

    1985-01-01

    During the last eight years field investigations using the high resolution capabilities of submersibles and deep-towed cameras have been conducted along the rift valley of the Mid-Cayman Rise, the western and eastern intersections of the Kane Transform Fault and the Mid-Atlantic Ridge and the eastern intersection of the Oceanographer Transform Fault. These 3 sites are representative of the range of tectonic environments which are characteristic of slowly accreting plate boundaries. Photographic and observational data collected from within these natural laboratories reveal important geomorphic information concerning the temporal and spatial evolution of volcanic constructional and fault-bounded terrain in response to mass wasting processes. The results of this investigation indicate that sedimentary processes significantly influence the development of oceanic lithosphere soon after its creation and continues to do so with increasing geologic age out to approximately 2 m.y. The data indicate that the rift valley floor distal from transform faults is dominated by a hummocky, volcanic morphology that is rapidly degraded by hyaloclastic mass wasting activity. With the evolution of the rift walls into the rift mountains, photographic data indicates that the processes associated with dislodgement and gravitational transport do not cease to operate but work much more infrequently relative to the tectonically active lower slopes.

  11. 3.30 Ga high-silica intraplate volcanic-plutonic system of the Gavião Block, São Francisco Craton, Brazil: Evidence of an intracontinental rift following the creation of insulating continental crust

    NASA Astrophysics Data System (ADS)

    Zincone, Stefano A.; Oliveira, Elson P.; Laurent, Oscar; Zhang, Hong; Zhai, Mingguo

    2016-12-01

    High-silica rhyolites having U-Pb zircon ages of 3303 ± 11 Ma occur along the eastern border of the Gavião Block (Brazil) associated with the Contendas-Mirante and Mundo Novo supracrustal belts. Unlike many Archean greenstone sequences, they are not interlayered with mafic to intermediate units. Instead, they belong to an inter-related plutonic-volcanic system, together with granitic massifs having similar zircon crystallization ages of ca. 3293 ± 3 Ma and 3328 ± 3 Ma and plotting along the same geochemical trends as the rhyolites. The rhyolites show well-preserved primary volcanic features such as magma flow textures and euhedral phenocrysts. High emplacement temperatures are indicated by petrographic evidence (β-quartz phenocrysts), zircon saturation temperatures (915-820 °C) and geochemical data, especially high SiO2 (74-79 wt.%) together with elevated Fe2O3(T) ( 3 wt.%), MgO (0.5-1.5 wt.%) and low Al2O3 (< 11 wt.%). The rhyolites show homogeneous trace element ratios (La/YbN 4.8 ± 1.8; EuN/Eu* 0.55; Sr/Y 0.7) and negative ԐHf(3.3 Ga) from 0 to - 7, indicating derivation from a single crustal source for both occurrences. Specifically, the rhyolites would have derived from extraction and eruption of highly silicic residual liquid formed by crystallization of granitic magma in a relatively shallow (< 10 km) reservoir, now represented by the granite massifs. The granite magma was formed by melting or differentiation of material similar to the diorite gneiss that occurs regionally. The 3.30 Ga volcanic-plutonic systems formed after a period of crustal growth and stabilization of a thick continental lithosphere, represented by massive 3.40-3.33 Ga TTG and medium to high-K calk-alkaline magmatism in the Gavião Block. The 3.30 Ga-old rhyolites and granites would therefore have formed in an intracontinental tectonic setting after the formation and stabilization of new continental crust, and accordingly would represent the first stages of rifting and continental

  12. Ambient noise tomography reveals upper crustal structure of Icelandic rifts

    NASA Astrophysics Data System (ADS)

    Green, Robert G.; Priestley, Keith F.; White, Robert S.

    2017-05-01

    The structure of oceanic spreading centres and subsurface melt distribution within newly formed crust is largely understood from marine seismic experiments. In Iceland, however, sub-aerial rift elevation allows both accurate surface mapping and the installation of large broadband seismic arrays. We present a study using ambient noise Rayleigh wave tomography to image the volcanic spreading centres across Iceland. Our high resolution model images a continuous band of low seismic velocities, parallelling all three segments of the branched rift in Iceland. The upper 10 km contains strong velocity variations, with shear wave velocities 0.5 km s-1 faster in the older non-volcanically active regions compared to the active rifts. Slow velocities correlate very closely with geological surface mapping, with contours of the anomalies parallelling the edges of the neo-volcanic zones. The low-velocity band extends to the full 50 km width of the neo-volcanic zones, demonstrating a significant contrast with the narrow (8 km wide) magmatic zone seen at fast spreading ridges, where the rate of melt supply is similarly high. Within the seismically slow rift band, the lowest velocity cores of the anomalies occur above the centre of the mantle plume under the Vatnajökull icecap, and in the Eastern Volcanic Zone under the central volcano Katla. This suggests localisation of melt accumulation at these specific volcanic centres, demonstrating variability in melt supply into the shallow crust along the rift axis. Shear velocity inversions with depth show that the strongest velocity contrasts are found in the upper 8 km, and show a slight depression in the shear velocity through the mid crust (10-20 km) in the rifts. Our model also shows less intensity to the slow rift anomaly in the Western Volcanic Zone, supporting the notion that rift activity here is decreasing as the ridge jumps to the Eastern Volcanic Zone.

  13. Continental Rifts and Resources

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.

    2017-04-01

    Nearly all resource-forming systems involve upward mobility of fluids and melts. In fact, one of the most effective means of chemically transforming the earth's crust can be readily observed in the rift environment. Imposition of rifting is based on deeper stresses that play out in the crust. At its most fundamental level, rifting transfers heat and fluids to the crust. Heat delivered by fluids aids both in transport of metal and maturation of hydrocarbons. The oxidizing capacity of fluids on their arrival in the deep crust, whether derived from old slabs, depleted upper mantle and/or deeper, more primitive mantle, is a fundamental part of the resource-forming equation. Oxidizing fluids transport some metals and breakdown kerogen, the precursor for oil. Reducing fluids transport a different array of metals. The tendency is to study the resource, not the precursor or the non-economic footprint. In doing so, we lose the opportunity to discover the involvement and significance of initiating processes; for example, externally derived fluids may produce widespread alteration in host rocks, a process that commonly precedes resource deposition. It is these processes that are ultimately the transferable knowledge for successful mineral and hydrocarbon exploration. Further limiting our understanding of process is the tendency to study large, highly complex, and economically successful ore-forming or petroleum systems. In order to understand their construction, however, it is necessary to put equal time toward understanding non-economic systems. It is the non-economic systems that often clearly preserve key processes. The large resource-forming systems are almost always characterized by multiple episodes of hydrothermal overprints, making it difficult if not impossible to clearly discern individual events. Understanding what geologic and geochemical features blocked or arrested the pathway to economic success or, even worse, caused loss of a resource, are critical to

  14. The Lithosphere of The East African Rift System: Insights From Three-Dimensional Density Modelling

    NASA Astrophysics Data System (ADS)

    Woldetinsae, G.; Götze, H. J.

    2004-12-01

    We use the gravity data that cover the large part of the Afro-Arabian rift system, the eastern branch (Ethiopia-Afar and northern Kenya), in order to produce a regional density model. In an earlier work the new and old gravity data were compiled, evaluated and homogenised using a consistent data reduction procedures. Three basic constraints widely spaced over a 1500 km rift length have been generated between 1969 and 2003 by an international consortium with information from isostatic models, global tomography, geological, geochemical evidences, and petrological and experimental results. These are integrated and applied to the model to constrain upper and lower crustal structures underneath the Rift and Plateau areas. New crustal thickness estimations (Dugda et al., 2004 in press) and inferences from recent velocity models along the axis of the Main Ethiopian Rift (Keller et al., 2004) are added to the density model. Thirty parallel planes cutting across the entire plateau region and Rift system (Afar-Ethiopia-Kenya) are interactively modelled using a starting geometry that invoke asthenospheric upwelling. Densities for the upper crust are calculated using Nafe Drake method, averaged from earlier interpretation and measured ones from the Geological Survey of Ethiopia database (e.g. Geothermal project, GSE petrophysical laboratory, pers. communication). Densities for lower crust are estimated using the approach by Sobolov and Babyko (1994). We used also lower crustal densities calculated by (Simyu and Keller, 1997) for the northern part of Kenya rift. The preliminary model offers a possibility to quantify depth, thickness and volumes of different geological interfaces and bodies. As for example, the estimation of the volume of volcanic constructs on the western plateau of Ethiopia is relatively larger than the eastern plateau. The load map derived from the model indicated maximum crustal loads at the crust/mantle interface (ca. 40km) on the eastern and western flanks

  15. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  16. Extreme U-Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation, intrusion and crystallization at Alid volcanic center, Eritrea

    USGS Publications Warehouse

    Lowenstern, J. B.; Charlier, B.L.A.; Clynne, M.A.; Wooden, J.L.

    2006-01-01

    Rhyolite pumices and co-erupted granophyric (granite) xenoliths yield evidence for rapid magma generation and crystallization prior to their eruption at 15·2 ± 2·9 ka at the Alid volcanic center in the Danikil Depression, Eritrea. Whole-rock U and Th isotopic analyses show 230Th excesses up to 50% in basalts <10 000 years old from the surrounding Oss lava fields. The 15 ka rhyolites also have 30–40% 230Th excesses. Similarity in U–Th disequilibrium, and in Sr, Nd, and Pb isotopic values, implies that the rhyolites are mostly differentiated from the local basaltic magma. Given the (230Th/232Th) ratio of the young basalts, and presumably the underlying mantle, the (230Th/232Th) ratio of the rhyolites upon eruption could be generated by in situ decay in about 50 000 years. Limited (∼5%) assimilation of old crust would hasten the lowering of (230Th/232Th) and allow the process to take place in as little as 30 000 years. Final crystallization of the Alid granophyre occurred rapidly and at shallow depths at ∼20–25 ka, as confirmed by analyses of mineral separates and ion microprobe data on individual zircons. Evidently, 30 000–50 000 years were required for extraction of basalt from its mantle source region, subsequent crystallization and melt extraction to form silicic magmas, and final crystallization of the shallow intrusion. The granophyre was then ejected during eruption of the comagmatic rhyolites.

  17. Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Ackerman, Lukáš; Ulrych, Jaromír; Řanda, Zdeněk; Erban, Vojtěch; Hegner, Ernst; Magna, Tomáš; Balogh, Kadosa; Frána, Jaroslav; Lang, Miloš; Novák, Jiří K.

    2015-05-01

    Trachyandesites, trachytes and phonolites represent the most evolved rock types within the České Středohoří Volcanic Complex (CSVC) in the Ohře/Eger Rift. The K-Ar ages of the suite range from ~ 33.8 to ~ 25.8 Ma. Major and trace element variation in the basanite - trachybasalt - trachyandesite series can be explained by several stages of modification of parental magmas by assimilation-fractional crystallization (AFC) involving fractionation of olivine, clinopyroxene, apatite, amphibole and Ti-oxide and bulk continental crust (BCC) as an assimilate. Relative to plausible basanitic starting compositions, the trachytes are moderately depleted in Sr, exhibit more pronounced depletions in P and Ti and some of them also show mild MREE depletion. Such composition requires variable amphibole, clinopyroxene, plagioclase ± apatite, titanite and/or Ti-magnetite fractionation and BCC assimilation. Two types of phonolites (type A and B phonolite) can be distinguished on the basis of overall REE patterns, Gd/Gd* ratios and Ba and Sr contents. Type B phonolites are depleted in Ba, Sr and MREE as a result of extensive alkali feldspar, plagioclase and amphibole fractionation. Modelling of trace element distributions implies basanitic magmas as the most likely parental composition of the basanite - trachybasalt - trachyandesite - trachyte - phonolite suite formed through magmatic differentiation. The Sr-Nd isotopic compositions in the samples can be explained with the assimilation of continental crust by such parental magmas. The highly radiogenic 87Sr/86Sr found in some phonolites are contrasted by uniform Nd isotopic signature; this feature may be explained by contamination and/or overprint of source magmas by Na-Rb-rich material with radiogenic Sr signature formed due to high-Rb (> 200 ppm) character of these melts/fluids. The nature of such contaminant is further evidenced by elevated Li (and Cs in some cases) abundances in type B phonolites although at least two

  18. Variable styles of rifting expressed in crustal structure across three rift segments of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Lizarralde, D. D.; Axen, G. J.; Brown, H. E.; Fletcher, J. M.; Fernandez, A. G.; Harding, A. J.; Holbrook, W. S.; Kent, G. M.; Paramo, P.; Sutherland, F. H.; Umhoefer, P. J.

    2007-05-01

    We present a summary of results from a crustal-scale seismic experiment conducted in the southern Gulf of California. This experiment, the PESCADOR experiment, imaged crustal structure across three rift segments, the Alarcon, Guaymas, and San José del Cabo to Puerto Vallarta (Cabo-PV) segments, using seismic refraction/wide-angle reflection data acquired with airgun sources and recorded by closely spaced (10-15 km) ocean-bottom seismometers (OBSs). The imaged crustal structure reveals a surprisingly large variation in rifting style and magmatism between these segments: the Alarcon segment is a wide rift with apparently little syn-rift magmatism; the Guaymas segment is a narrow, magmatically robust rift; and the Cabo-PV segment is a narrow, magmatically "normal" rift. Our explanation for the observed variability is non-traditional in that we do not invoke mantle temperature, the factor commonly invoked to explain end-member volcanic and non-volcanic rifted margins, as the source of the considerable, though non-end-member variability we observe. Instead, we invoke mantle depletion related to pre-rift arc volcanism to account for observed wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism. These factors may commonly vary over small lateral spatial scales in regions that have transitioned from convergent to extensional tectonics, as is the case for the Gulf of California and many other rifts. Our hypothesis suggests that substantial lateral variability may exist within the uppermost mantle beneath the Gulf of California today, and it is hoped that ongoing efforts to image upper mantle structure here will provide tests for this hypothesis.

  19. Helium isotope ratios in Ethiopian Rift basalts

    NASA Astrophysics Data System (ADS)

    Scarsi, P.; Craig, H.

    1996-11-01

    Helium isotope ratios were measured in olivine and pyroxene phenocrysts from basalts of the Ethiopian Rift Valley and Afar Depression between 6° and 15°N and 37° and 43°E. 3He/4He ratios range from 6 to 17 times the atmospheric value (RA = 1.4 × 10-6), that is, from ratios less than typical MORB (depleted mantle) helium (R/RA= 8 ± 1) to ratios similar to high-3He hotspots and to the Yellowstone hotspot (R/RA= 16.5). The high 3He/4He ratios occur all along the Ethiopian Rift and well up into the Afar Depression, with a maximum value of 17.0 RA at 8°N in the Rift Axis and a high value of 14.2 RA in the central Tat'Ali sector of the Afar Depression. The ratios decrease to MORB-like values near the edge of the Red Sea, and to sub-MORB ratios (5-6 RA) at the northern end of the Rift (Zula Peninsula) and at the southern end, at lakes Abaya and Chamo. The Ethiopian Rift provides the only continental hotspot terrain in which helium isotope ratios can be compared in detail between volcanic lavas and associated geothermal and volcanic gases, a primary motivation for this work. Comparison with our previously measured ratios in fluids and gases (range 2-15 RA) shows excellent agreement in the areas sampled for both lavas and fluids, and indicates that high-temperature volcanic fluids can be used for establishing helium isotope signatures in such terrains. The high-3He values in both fluids and basalts show that a Primitive Mantle (PM) component is required and that a Lower Mantle High-3He plume is strongly involved as a driving force in the rifting process of the East African Rift System.

  20. The evolution of water and solute fluxes and pathways in post-constructional volcanic landscapes of the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Derry, L. A.; Schopka, H. H.

    2011-12-01

    Post-eruptive volcanic landscapes evolve rapidly in response to erosion, re-vegetation, and pedogenesis. The Hawaiian islands offer a time series to study the evolution of surface processes on a uniform lithology and under spatially varying but well-characterized climates. Young surfaces retain constructional topography largely controlled by the most recent lava flows and/or ash deposits. Young surfaces such as found on Mauna Loa (O 102 - 103 yrs) are highly permeable and surface runoff is rare or absent, even under conditions of high rainfall. We hypothesize that the development of soil is a key factor in reducing vertical infiltration rates and promoting lateral flow of water. Stream channelization begins with control by constructional topography and in some cases major faults or fracture zone. In areas with positive water balance stream erosion leads to rapid channel formation. On the windward side of Mauna Kea (O 104 - 105 yrs) stream incision into the shield topography is much more pronounced than on adjacent Mauna Loa surfaces. Flank collapse (e.g. windward Kohala, ≥ 105 yrs) leaves hanging valleys and drives deep canyon formation. On all of the Hawaiian islands direct submarine groundwater discharge (SGD) to the oceans is important. The ratio of water transported to the oceans as stream discharge (Q) vs SGD increases with surface age and incision, from near zero on Mauna Loa to > 1 on Kohala. Island wide, SGD ≈ 3.5 - 4x Q. The evolution of water pathways influences weathering fluxes to the oceans. Ground water from Hawaii has significantly larger concentrations of weathering-derived solutes than does stream water. This should result from longer path length and contact time, which increase interaction with reactive mineral surfaces, but the detailed controls on solute chemistry remain uncertain. Island-wide, the flux ratio of weathering solutes in SGD vs Q is near 15. SGDA is the dominant pathway for the delivery of silicate mineral weathering products to

  1. Dynamic magmatic processes at a continental rift caldera, observed using satellite geodesy

    NASA Astrophysics Data System (ADS)

    Lloyd, Ryan; Biggs, Juliet; Birhanu, Yelebe; Wilks, Matt; Gottsmann, Jo; Kendall, Mike; Lewi, Elias

    2016-04-01

    Large silicic calderas are a key feature of developing continental rifts, such as the Main Ethiopian Rift (MER), and are often observed to be deforming. Corbetti is one such example of a Holocene caldera in the MER that is undergoing deformation. However, the cause of the unrest, and the relationship to rift processes such as magma storage, transport and extension remain poorly understood. To investigate, we use InSAR (ascending and descending Cosmo-SkyMed data) and continuous GPS to observe the temporal and spatial evolution of sustained uplift at the Corbetti Caldera. Within the caldera, which was thought to have formed ~200 ka, there is evidence for numerous periods of resurgent volcanism in the form of plinian eruptions as well as effusive obsidian flows. How the sources of these varying styles of volcanism are reconciled at depth and in time is currently poorly constrained. Previous research has shown that pre-rift structures have a significant influence on the strain field, and hence on the magmatic and hydrothermal processes which drive it. The Cosmo-SkyMed data used in this study was specifically chosen such that each ascending image has a corresponding descending image acquired as contemporaneously as possible. This is necessary, given the rate of uplift, so as to reduce the number of assumptions when constructing time-series from multiple look directions, and when incorporating GPS data. We decompose the ascending and descending line-of-site deformation signals into vertical and east-west components and use finite source modeling to constrain the depth and geometry of the source of deformation. These results are then compared to available seismic, dynamic microgravity and magnetotelluric data to better understand this system, and how it is related to the volcanic hazard and local geothermal resources.

  2. Geochemical evidence for pre- and syn-rifting lithospheric foundering in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.; Elkins-Tanton, L. T.

    2015-12-01

    The East African Rift System (EARS) is the archetypal active continental rift. The rift branches cut through the elevated Ethiopian and Kenyan domes and are accompanied by a >40 Myr volcanic record. This record is often used to understand changing mantle dynamics, but this approach is complicated by the diversity of spatio-temporally constrained, geochemically unique volcanic provinces. Various sources have been invoked to explain the geochemical variability across the EARS (e.g. mantle plume(s), both enriched and depleted mantle, metasomatized or pyroxenitic lithosphere, continental crust). Mantle contributions are often assessed assuming adiabatic melting of mostly peridotitic material due to extension or an upwelling thermal plume. However, metasomatized lithospheric mantle does not behave like fertile or depleted peridotite mantle, so this model must be modified. Metasomatic lithologies (e.g. pyroxenite) are unstable compared to neighboring peridotite and can founder into the underlying asthenosphere via ductile dripping. As such a drip descends, the easily fusible metasomatized lithospheric mantle heats conductively and melts at increasing T and P; the subsequent volcanic products in turn record this drip magmatism. We re-evaluated existing data of major mafic volcanic episodes throughout the EARS to investigate potential evidence for lithospheric drip foundering that may be an essential part of the rifting process. The data demonstrate clearly that lithospheric drip melting played an important role in pre-flood basalt volcanism in Turkana (>35 Ma), high-Ti "mantle plume-derived" flood basalts and picrites (HT2) from NW Ethiopia (~30 Ma), Miocene shield volcanism on the E Ethiopian Plateau and in Turkana (22-26 Ma), and Quaternary volcanism in Virunga (Western Rift) and Chyulu Hills (Eastern Rift). In contrast, there is no evidence for drip melting in "lithosphere-derived" flood basalts (LT) from NW Ethiopia, Miocene volcanism in S Ethiopia, or Quaternary

  3. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  4. Flexural modeling of the midcontinent rift

    NASA Astrophysics Data System (ADS)

    Nyquist, Jonathan E.; Wang, Herbert F.

    1988-08-01

    A basement profile obtained from seismic reflection data has been used to constrain a two-dimensional flexural model of basin formation for the Midcontinent Rift at a latitude of 45° 25'N. Model parameters included the thickness of the elastic plate, the basin width, and the maximum basin thickness. Modeling suggests that flexure produced a deep narrow basin along the rift axis and that the crust was thinned at the time of basin formation to an elastic thickness of 9.6 km for a plate ruptured by rifting, or 5.7 km for an unbroken plate, with corresponding maximum basin thicknesses of 14 km and 16 km respectively. The plate thickness depends most strongly on the basin width and is well constrained by the seismic data, although erosion may have narrowed the basin. The maximum basin thickness is poorly constrained because of the lack of seismic data for depths greater than about 10 km and because the strata at the center of the rift have been disturbed by a postrift compressional event which produced the St. Croix horst. Despite uncertainty about the basin thickness, the load required to flex the crust to produce the Midcontinent Rift basin is too large to be attributed to the weight of the central flood basalts unless the basin subsided into a fluid less dense than the solidified basalts. On the basis of seismic refraction data and by analogy with other rifts, we hypothesize that a magmatic "rift pillow" intruded in the lower crust. The basaltic pillow subsequently solidified to produce a large, high-velocity region in the lower crust, centered under the rift axis, as determined from deep seismic refraction. This crystallization and cooling may be responsible for the "sag" phase of rift evolution, as evidenced by laterally widespread occurrence of post volcanic sediments.

  5. A decade of volcanic construction and destruction at the summit of NW Rota-1 seamount: 2004-2014

    NASA Astrophysics Data System (ADS)

    Schnur, Susan R.; Chadwick, William W.; Embley, Robert W.; Ferrini, Vicki L.; de Ronde, Cornel E. J.; Cashman, Katharine V.; Deardorff, Nicholas D.; Merle, Susan G.; Dziak, Robert P.; Haxel, Joe H.; Matsumoto, Haru

    2017-03-01

    Arc volcanoes are important to our understanding of submarine volcanism because at some sites frequent eruptions cause them to grow and collapse on human timescales. This makes it possible to document volcanic processes. Active submarine eruptions have been observed at the summit of NW Rota-1 in the Mariana Arc. We use remotely operated vehicle videography and repeat high-resolution bathymetric surveys to construct geologic maps of the summit of NW Rota-1 in 2009 and 2010 and relate them to the geologic evolution of the summit area over a 10 year period (2004-2014). We find that 2009 and 2010 were characterized by different eruptive styles, which affected the type and distribution of eruptive deposits at the summit. Year 2009 was characterized by ultraslow extrusion and autobrecciation of lava at a single eruptive vent, producing a large cone of blocky lava debris. In 2010, higher-energy explosive eruptions occurred at multiple closely spaced vents, producing a thin blanket of pebble-sized tephra overlying lava flow outcrops. A landslide that occurred between 2009 and 2010 had a major effect on lithofacies distribution by removing the debris cone and other unconsolidated deposits, revealing steep massive flow cliffs. This relatively rapid alternation between construction and destruction forms one end of a seamount growth and mass wasting spectrum. Intraplate seamounts, which tend to grow larger than arc volcanoes, experience collapse events that are orders of magnitude larger and much less frequent than those occurring at subduction zone settings. Our results highlight the interrelated cyclicity of eruptive activity and mass wasting at submarine arc volcanoes.

  6. SPREE: Field Experiment to Study Deep Structure of the Mid-continent Rift

    NASA Astrophysics Data System (ADS)

    van der Lee, S.; Spree Team

    2011-12-01

    By about 1 Ga North America's midcontinent region completed a formation process broadly similar to the current American west, with convergence along the Grenville Orogeny and extension along the contemporaneous Mid-continent Rift (MR). Now buried under platform sediments, more than a half million cubic km of dense igneous rock was deposited in the MR. These rocks generate a 60+ mgal Bouguer gravity anomaly and a correlated magnetic anomaly, which cuts curiously through major geologic units such as the Superior and Yavapai Provinces. Normal faulting accompanied the volcanic activity, but both appear confined to the immediate vicinity of the rift rather than having formed an ocean between Minnesota and Wisconsin. Although the MR is the strongest surface geophysical anomaly in the midcontinent, no evidence has yet been found for current geologic activity or correlated anomalies in the mantle lithosphere. The installation this year of the first swath of Earthscope-USArray stations east of the Mississippi River allows us to shed light on this enigmatic anomaly. Specifically, our seismic field experiment SPREE (Superior Province Rifting Earthscope Experiment) aims to uncover important details such as the depth and lateral extent of crust and mantle structures related to rifting, rift cessation/inversion, or post-rift stabilization. SPREE is a collaboration between Northwestern U., Washington U., and the U.of Minnesota in the US and the U. of Manitoba and the U. of Quebec in Montreal in Canada. Eighty-three Flexible-Array (FA) seismic stations were installed between April and June this year on and near the MR. SPREE recorded the M2.5 western Minnesota earthquake (April 29) as well as the M7.2 Fox Islands earthquake (June 24). We aim to use the recorded earthquakes and ground motion noise to detect microseismicity as well as to construct a multi-scale, three-dimensional image of the seismic velocity and discontinuity structure of the study region's lithosphere and

  7. Comparative riftology: insights from crustal structure into the evolution of continental rifts and passive continental margins

    NASA Astrophysics Data System (ADS)

    Kley, Jonas; Stein, Carol; Stein, Seth; Keller, Randy; Wysession, Michael; Frederiksen, Andrew

    2017-04-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these different evolutionary paths. Of particular interest is how volcanic passive margins evolve. These features are characterized by sequences of volcanic rocks yielding magnetic anomalies landward of and sometimes larger than the oldest spreading anomalies. Seaward-dipping reflectors (SDR) occur in stretched continental crust landward of the oldest oceanic crust and are underplated by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), formed by 1.1 Ga rifting of Amazonia from Laurentia, that failed once seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick highly magnetized volcanic section during rifting. Surface exposures and seismic-reflection data in and near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a strong magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins can naturally occur. Hence the MCR shows that many features form prior to breakup. Because the MCR was massively inverted by regional compression long after it failed and was uplifted, its structure is better known than failed rifts that incurred lesser degrees of inversion. It provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, in contrast to failed and inverted rifts without

  8. Discrete Element Modeling of Volcanic Pyroclasts: Cone Construction and Impact Sags

    NASA Astrophysics Data System (ADS)

    Courtland, L. M.; Thornton, A.; Connor, C.; Bokhove, I. O.

    2012-12-01

    Particles ejected in Strombolian-type eruptions typically follow ballistic trajectories through the atmosphere before coming to rest at the Earth's surface. In the near field, these particles pile on top of one another, ultimately resulting in the creation of a volcanic edifice. Farther afield, particles that are able to clear the edifice often create measurable impact craters upon landing. Mercury-DPM, a discrete element model, is used to investigate each of these scenarios numerically. Once particle parameters (e.g. size, density), exit conditions (e.g. ejection angle, ejection speed), external body forces (e.g. gravity, air drag), and particle-particle interactions are defined, Mercury computes the translational and rotational evolution of particles by solving Newton's second law. Mercury-DPM includes many pre-defined paticle-particle interaction laws for granular materials like tephra, including elastic, plastic, viscous, and frictional. Once the forces are defined, the code is able to capture all stages of the eruption from initial ballistic flights to secondary avalanching of the deposited material. The code is here utilized to examine the conditions which promote granular avalanches of varying size and to calculate the geometry of these flows. Avalanche thicknesses are compared to thicknesses derived from ground penetrating radar imaging of Cerro Negro volcano, Nicaragua. Away from the edifice, Mercury-DPM is used to calculate the expected geometry of impact craters for various eruption conditions. The feasibility of utilizing these results in the field to determine the initial conditions of particle ejection is explored.

  9. On a volcanic construct and a lunar pyroclastic deposit (LPD) in northern Mare Vaporum

    NASA Astrophysics Data System (ADS)

    Lena, Raffaello; Fitzgerald, Barry

    2014-03-01

    In this study we examine a lunar pyroclastic deposit (LPD) identified using LROC WAC images, Selene-1 (Kaguya) and Clementine multispectral data, the Chandryann-1's Moon Mineralogy Mapper (M3), and the LROC WAC-based GLD100 DTM. Selene-1 (Kaguya) and Clementine albedo imagery indicates the presence of pyroclastic deposits located some 40 km to the west-southwest of the crater Yangel in Mare Vaporum, and to the southeast of Sinus Fidei (16.42°N and 3.26°E), and associated with a dome like structure. This dome, which we term Yangel 1 (Ya1), lies immediately to the south of a mare flooded crater which is approximately 7.5 km in diameter, and is partially buried along its southern rim by the domes northern flank. With a diameter of 5.2 km, and a height of 620 m, the dome Ya1 exhibits evidence of pyroclastic volcanic deposits, both on its surface and peripherally. The current study discusses the dome Ya1, the associated deposits and possible relationship between them.

  10. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob

    2015-04-01

    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and

  11. Soil CO2 efflux measurement network by means of closed static chambers to monitor volcanic activity at Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Amonte, Cecilia; García-Merino, Marta; Asensio-Ramos, María; Melián, Gladys; García-Hernández, Rubén; Pérez, Aaron; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Tenerife (2304 km2) is the largest of the Canary Islands and has developed a central volcanic complex (Cañadas edifice), that started to grow about 3.5 My ago. Coeval with the construction of the Cañadas edifice, shield basaltic volcanism continued until the present along three rift zones oriented NW-SE, NE-SW and NS (hereinafter referred as NW, NE and NS respectively). Main volcanic historical activity has occurred along de NW and NE rift-zones, although summit cone of Teide volcano, in central volcanic complex, is the only area of the island where surface geothermal manifestations are visible. Uprising of deep-seated gases occurs along the aforementioned volcanic structures causing diffuse emissions at the surface environment of the rift-zones. In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs. Diffuse degassing studies are even more important volcanic surveillance tool at those volcanic areas where visible manifestations of volcanic gases are absent. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. One of the most popular methods used to determine CO2 fluxes in soil sciences is based on the absorption of CO2 through an alkaline medium, in its solid or liquid form, followed by gravimetric, conductivity, or titration analyses. In the summer of 2016, a network of 31 closed static chambers was installed, covering the three main structural zones of Tenerife (NE, NW and NS) as well as Cañadas Caldera with volcanic surveillance porpoises. 50 cc of 0.1N KOH solution is placed inside the chamber to absorb the CO2 released from the soil. The solution is replaced weekly and the trapped CO2 is then analyzed at the laboratory by titration. The are expressed as weekly integrated CO2 efflux values. The CO2 efflux values ranged from 3.2 to 12.9 gṡm-2

  12. Sources of Rifting in the East African Rift System from Rayleigh Wave Tomography

    NASA Astrophysics Data System (ADS)

    Miller, J. C.; Adams, A. N.

    2016-12-01

    The East African Rift System (EARS) is a system of continental rift segments that stretches along the eastern portion of the African continent, from the Afar Triple Junction in Ethiopia southward, where it eventually terminates in Mozambique. The EARS is unique in that it displays variation in rifting style along the rift, particularly within the central EARS. For example, the Eastern Rift Branch is likely undergoing magma-assisted rifting with widespread volcanic activity, while the Western Rift Branch appears to be magma-poor, with higher rates of seismicity and much less volcanic activity. The velocity structure of the upper mantle beneath the EARS is investigated using the Automatic Generalized Seismological Data Function (AGSDF) method (Jin & Gaherty, 2015). This method cross-correlates filtered and windowed waveforms from proximal stations to measure phase delay times for teleseismic Rayleigh and Love waves. Data from all available seismic networks in the central EARS are combined to include as many events, and to cover as many terrains, as possible. These data will be inverted with the AGSDF method for preliminary Rayleigh wave phase velocity models to explore the causes of rifting beneath the EARS. The ability of this method to examine both Rayleigh waves, which provide a better measurement of SV velocity, and Love waves, which provide a better SH velocity measurement, makes it a unique and flexible tool. Future studies will combine these Rayleigh wave phase velocity models with Love wave phase velocity models that will be developed using this same method in order to study radial anisotropy beneath the EARS.

  13. Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340

    NASA Astrophysics Data System (ADS)

    Le Friant, A.; Ishizuka, O.; Boudon, G.; Palmer, M. R.; Talling, P. J.; Villemant, B.; Adachi, T.; Aljahdali, M.; Breitkreuz, C.; Brunet, M.; Caron, B.; Coussens, M.; Deplus, C.; Endo, D.; Feuillet, N.; Fraas, A. J.; Fujinawa, A.; Hart, M. B.; Hatfield, R. G.; Hornbach, M.; Jutzeler, M.; Kataoka, K. S.; Komorowski, J.-C.; Lebas, E.; Lafuerza, S.; Maeno, F.; Manga, M.; Martínez-Colón, M.; McCanta, M.; Morgan, S.; Saito, T.; Slagle, A.; Sparks, S.; Stinton, A.; Stroncik, N.; Subramanyam, K. S. V.; Tamura, Y.; Trofimovs, J.; Voight, B.; Wall-Palmer, D.; Wang, F.; Watt, S. F. L.

    2015-02-01

    IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation

  14. The Thaumasia "rift", Mars - is it a rift?

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Kronberg, P.

    2003-04-01

    calculated by other authors from scarp widths and shadows. While the structural geometry of the TR is more similar to classical rifts than that of Valles Marineris, there are better Martian analogues to terrestrial continental rifts, e.g., Tempe Fossae. Essential characteristics of continental rifts are: Regional domal uplift, crustal break-up, formation of through-going rift valleys, and rift-related volcanism. The structure and morpho-tectonics of the TR and the lack of extension-volcanism do not meet these criteria of terrestrial continental rifts. So far, the geodynamic processes that led to the formation of the TR are unclear (crustal break-down due to Thaumasia uplift? magma deficit near Syria Planum? a long-lived and late center of magmatectonic activity?).

  15. Morphotectonics of the Tunka rift and its bordering mountains in the Baikal rift system, Russia

    NASA Astrophysics Data System (ADS)

    Shchetnikov, Alexander

    2016-11-01

    The Tunka section of the Baikal rift system presents a uniform alternation of the following neostructural forms: tilted horsts and asymmetrical block uplifts on the northern flank; the central system of the rift valleys; and the arched uplift of the southern flank. This is a standard set of morphostructural elements for the Baikal rift system. The main morphological feature of the Tunka rift is the strong inclination of its floor, ranging from 900 m to 200 km in general elevation above Lake Baikal. Such traits of recent geodynamics as volcanism, thermal activity, and seismicity are also different from other parts of the rift zone. All of these features of the Tunka rift are related to the deep structure of the rift zone. The peculiarities of the neotectonic structure of the Tunka rift, which are clearly expressed morphologically as is typical of the Baikal rift system, as well as its unique features are in accordance with deep geodynamic processes of the region. On the other hand, the development of the rift basin structures of the southwestern area near Baikal is complicated by inversion deformations. Local uplifts followed by deformations of the basin sedimentary cover and inverted morphostructures expressed in relief are fixed against the background of the general subsidence of blocks of the pre-Cenozoic basement grabens. The Tunka rift has repeatedly experienced inversion deformations throughout its history. The last wave of such deformations involved the southwestern region near Baikal in the second half of the late Pleistocene. During the Quaternary, the positive component prevailed in the whole range of vertical movements of the inter-rift and interbasin blocks; since the late Neogene, these structures have experienced a slow but steady uplift, accompanied by their extension at the expense of the bordering basins. The remote influence of the India-Asia collision on the formation of the southwestern section of the Baikal rift system is very significant and

  16. The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: tectonically anomalous forearc volcanism in an urban setting

    USGS Publications Warehouse

    Evarts, Russell C.; Conrey, Richard M.; Fleck, Robert J.; Hagstrum, Jonathan T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These volcanoes constitute the Boring Volcanic Field, which is centered in the Neogene Portland Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many monogenetic volcanic fields, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic field have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag-netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr. The youngest centers, 50–130 ka, are found in the northern part of the field. Boring centers are generally monogenetic and mafic but a few larger edifices, ranging from basalt to low-SiO2 andesite, were also constructed. Low-K to high-K calc-alkaline compositions similar to those of the nearby volcanic arc dominate the field, but many centers erupted magmas that exhibit little influence of fluids derived from the subducting slab. The timing and compositional characteristics of Boring volcanism suggest a genetic relationship with late Neogene intra-arc rifting.

  17. Design and construction of a testbed for the application of real volcanic ash from the Eyjafjallajökull and Grimsvötn eruptions to microgas turbines

    NASA Astrophysics Data System (ADS)

    Weber, Konradin; Fischer, Christian; Lange, Martin; Schulz, Uwe; Naraparaju, Ravisankar; Kramer, Dietmar

    2017-04-01

    It is well known that volcanic ash clouds emitted from erupting volcanoes pose a considerable threat to the aviation. The volcanic ash particles can damage the turbine blades and their thermal barrier coatings as well as the bearings of the turbine. For a detailed investigation of this damaging effect a testbed was designed and constructed, which allowed to study the damaging effects of real volcanic ash to an especially for these investigations modified microgas turbine. The use of this microgas turbine had the advantage that it delivers near reality conditions, using kerosene and operating at similar temperatures as big turbines, but at a very cost effective level. The testbed consisted out of a disperser for the real volcanic ash and all the equipment needed to control the micro gas turbine. Moreover, in front and behind the microgas turbine the concentration and the distribution of the volcanic ash were measured online by optical particle counters (OPCs). The particle concentration and size distribution of the volcanic ash particles in the intake in front of the microgas turbine was measured by an optical particle counter (OPC) combined with an isokinetic intake. Behind the microgas turbine in the exhaust gas additionally to the measurement with a second OPC ash particles were caught with an impactor, in order to enable the later analysis with an electron microscope concerning the morphology to verify possible melting processes of the ash particles. This testbed is of high importance as it allows detailed investigations of the impact of volcanic ash to jet turbines and appropriate countermeasures.

  18. Hybrid origin of Rio Grande rift hawaiites

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Heikoop, C. E.; Ellisor, R.

    2000-03-01

    Weakly alkaline lavas erupted in the Pliocene Cerros del Rio and El Alto volcanic fields in the Española basin of the Rio Grande rift have the unusual trace element signature of approximately chondritic K/Nb combined with high La/Nb and Th/Nb. These lavas have previously been interpreted as the products of modified arc-source like mantle, ultimately related to subduction of the Farallon plate beneath North America during the early Cenozoic. We show that the chemical signature can be produced by contamination of strongly silica undersaturated K-depleted magmas by continental crust, and that there is no need to invoke a subduction component in Rio Grande rift magma genesis. The same signature appears among voluminous Miocene lavas of the Jemez Mountains volcanic field. Hence, while nephelinite and basanite magmas resembling oceanic island basalts have been recognized as trace components in Rio Grande rift magmatism, our results may require a drastic upward revision of their volumetric significance in the northern rift through late Miocene-Pliocene time.

  19. Geothermal aspects of development of asthenospheric upwellings beneath continental rift zones

    NASA Astrophysics Data System (ADS)

    Zorin, Yu. A.; Lepina, S. V.

    1985-07-01

    Geophysical data indicate that beneath Late Cenozoic continental rift zones there are asthenospheric upwellings with their upper surfaces reaching the Moho at depths of 30-40 km. Under neighboring stable regions the asthenospheric surface is situated at a depth over 100 km. Evidently, rifting was causally related with the development of such upwellings. The authors performed numerical two-dimensional modellings of the formation process of the asthenospheric upwelling, assuming progressive partial melting of lithosphere. It turned out that correlation of the time period required with the time of development of Late Cenozoic rift zones (15-40 m.y.) requires the heat flow into the base of the lithosphere to be very high (200-300 mW m -2). Such values of heat flow would cause an intensive melting of the lower crust, and the composition of volcanics shows that this does not take place during the late stages of evolution of rift zones. Most probably, the asthenospheric material mechanically replaces lithosphere along weak zones: blocks are detached from the lithosphere and sink into the asthenosphere. Plastic flow in the solid part of the mantle is of secondary importance. We simulated this replacement through an upward movement of the 1200°C isotherm (temperature of mantle solidus). Deformations of the mantle and crust were neglected. Above this isotherm the temperature field in the lithosphere was computed by means of a numerical solution of the equation of energy conservation. Two-dimensional models have been constructed for rift zones of the Baikal, the Rio-Grande and the Basin and Range Province. Regional values of heat flow of these regions were successfully correlated with geophysical data on Curie depths and on the structure of the upper mantle, assuming that the asthenosphere reached the Moho some million years ago and the crust is still being heated on a regional scale. These estimates of time are in good agreement with the beginning of the stage of most rapid

  20. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  1. At the tip of a propagating rift - The offshore East African Rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2016-04-01

    Numerous studies have addressed various aspects of the East African Rift system (EARS) but surprisingly few the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of sub-recent extensional deformation. The seismic reflection data reveals that recent normal faulting often utilizes preexisting, deeply buried half-graben structures which likely are related to the formation of the Somali Basin. The ~30 km wide and ~150 km long symmetric graben is in a stage where the linkage of scattered normal faults already did happen, resulting in increased displacement and accommodation of most of the extension across the basin. However, deep earthquakes below the rift indicate a strong and still preserved lithospheric mantle. Extension is becoming diffuse where an onshore suture, subdividing the northern from the southern metamorphic basement onshore Mozambique, is closest to the offshore rift. It appears likely that this suture is the origin for the variation in rifting style, indicating that mantle fabric resulting from a Cambrian collision has been preserved as mechanical anisotropy of the lithospheric mantle. Further south the rift focuses in an about 30 km wide half-graben. An important finding is that the entire offshore branch of the EARS lacks significant volcanism. Along the offshore EARS there are only negligible indications for recent volcanism in the reflection seismic data such as sills and dikes. Apparently the "Comoros mantle plume" (French and Romanowicz, 2015) has a very minor influence on the progressive extensional deformation along the northern Mozambique continental margin, leading eventually to breakup sometimes in the future. Combining structural with earthquake data reveals that the magma

  2. Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya

    SciTech Connect

    Tatsumi, Yoshiyuki Kyoto Univ. ); Kimura, Nobukazu ); Itaya, Tetsumaru ); Koyaguchi, Takehiro ); Suwa, Kanenori )

    1991-06-01

    K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

  3. Case for Upper Miocene continental break-up in western Afar, southern Red Sea rift

    NASA Astrophysics Data System (ADS)

    Wolfenden, E.; Ebinger, C.; Yirgu, G.; Kelley, S.; Deino, A.; Renne, P.

    2003-04-01

    We describe the distribution, nature and timing of extension in the youthful Western Afar in order to infer mechanisms for continental break-up. New and existing remote sensing, fieldwork and structural analyses calibrated by geochronology were integrated to define rift stages and the distribution and nature of volcanic units and structures that accommodate extension. Oligo-Miocene continental rift basins of the Southern Red Sea rift, Ethiopia are typical steep-sided continental rift graben, but contain almost exclusively volcanic fill. Rift segmentation was defined by border faults that were the locus of strain, but strain migrated to magmatic centres within the basins in the Upper Miocene. Widespread basaltic volcanism in the Upper Miocene led to extension, burial, riftward rotation and seismic reactivation of Oligo-Miocene rift basins. These basalts were sourced from linear magmatic segments that are independent of the older border fault segmentation. Cycles of subsidence and volcanism gave the basalt successions a concave-down profile similar to seaward-dipping reflectors (SDRs) on buried volcanic margins. Mid-Miocene propagation of the Main Ethiopian rift (MER) arm into the Afar Depression led to overprinting of the early Red Sea rift structures. We suggest that the locus of strain in western Afar jumped from Upper Miocene Southern Red Sea magmatic segments to Plio-Quaternary MER magmatic segments. The distribution of strain across the western Afar margin, and age of SDR-like basalts and the intersecting Southern Red Sea and Main Ethiopian rifts suggests that the Southern Red Sea magmatic segments were abandoned in the Upper Miocene leaving SDRs stranded above Oligo-Miocene rift basins, possibly due to the northward propagation of the seismically and volcanically active MER.

  4. How many rifts are there in West Africa?

    NASA Astrophysics Data System (ADS)

    Freeth, S. J.

    1984-02-01

    The West African Rift System has, for the last ten years, been thought to consist of five interconnected rifts extending from the Gulf of Guinea deep into the heart of Africa. Careful re-examination of the geophysical evidence makes it quite clear that there are only three interconnected rifts in West Africa; the Lower Benue Rift which extends to the northeast from the Gulf of Guinea to a triple junction near Chum, and the Gongola and Yola Rifts which extend to the north and east, respectively, from the Chum triple junction. These three rifts opened during the earlier part of the Mesozoic and were subsequently filled with Cretaceous sediments. The evidence for two further rifts, the Ati Rift and the Fort Archambault Rift which were thought to extend to the northeast and southeast, respectively, from a triple junction at the eastern end of the Yola Rift, does not stand up to re-examination. The "Ati Rift" was thought to follow a major linear positive gravity anomaly which had been mapped beneath the Quaternary sediments of the Chad Basin. The main gravity anomaly is separated from the Yola Rift by over 300 km and is probably due to a linear body of basic volcanic or volcano-clastic rocks associated with a suture of Pan-African age. Within the gap, between the main anomaly and the Yola Rift, there are three localised positive anomalies which relate to a gabbro of Precambrian age, a band of dense meta-sediments within the Basement Complex and an acid igneous complex of Palaeogene age. The anomaly as a whole is therefore a sequence of unrelated anomalies, none of which are due to features of Mesozoic age. The "Fort Archambault Rift" was thought to follow a major linear negative gravity anomaly which has been mapped beneath the Quaternary sediments of the Chad Basin. To a large extent the negative anomaly overlies the fosse de Baké-Birao (Baké-Birao Basin) which is itself part of a far larger structure that extends, parallel to the southern margin of the West African

  5. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts (?) in the West Antarctic rift system

    USGS Publications Warehouse

    Behrendt, John C.

    1994-01-01

    The late Cenozoic volcanic and tectonic activity of the enigmatic West Antarctic rift system, the least understood of the great active continental rifts, has been suggested to be plume driven. In 1991-1992, as part of the CASERTZ (Corridor Aerogeophysics of the Southeast Ross Transect Zone) program, an ~25 000 km aeromagnetic survey over the ice-covered Byrd subglacial basin shows magnetic "texture' critical to interpretations of the underlying extended volcanic terrane. The aeromagnetic data reveal numerous semicircular anomalies ~100-1100 nT in amplitude, interpreted as having volcanic sources at the base of the ice sheet; they are concentrated along north-trending magnetic lineations interpreted as rift fabric. The CASERTZ aeromagnetic results, combined with >100 000 km of widely spaced aeromagnetic profiles, indicate at least 106 km3 of probable late Cenozoic volcanic rock (flood basalt?) in the West Antarctic rift beneath the ice sheet and Ross Ice Shelf. -from Authors

  6. Shaded Relief with Height as Color, Virunga and Nyiragongo Volcanoes and the East African Rift Valley

    NASA Image and Video Library

    2002-07-11

    Volcanic, tectonic, erosional and sedimentary landforms are all evident in this comparison of two elevation models of a region along the East African Rift at Lake Kivu. The area shown covers parts of Congo, Rwanda and Uganda.

  7. A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks

    USGS Publications Warehouse

    Burton, William C.; Southworth, Scott

    2010-01-01

    Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.

  8. Rift jump process in Northern Iceland since 10 Ma from 40Ar/ 39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Garcia, Sebastian; Arnaud, Nicolas O.; Angelier, Jacques; Bergerat, Françoise; Homberg, Catherine

    2003-09-01

    Due to the westward American-Eurasian plate boundary migration, the rift zone location in Northern Iceland imposed by the stable Icelandic hotspot has jumped eastward. The present-day North Volcanic Zone of Iceland is thus shifted about 100 km to the east with respect to the Kolbeinsey Ridge. A Miocene paleo-rift location was proposed along the Húnaflói-Skagi axis. Unconformities inside the lava pile on both sides of the present-day rift as a result of the new rift formation have been used to date the rift jump, but timing is still controversial. Whether extinction of the paleo-rift was synchronous with initiation of the new rift or the two rifts were active during some time period is unknown. Using the 40Ar/ 39Ar radiochronology method, 37 dykes were dated along a 350 km profile parallel to the divergent plate motion direction (i.e., ESE-WNW) crossing the present rift, the unconformities, and the inferred paleo-rift. Our results reveal that the paleo-rift axis was not located along the Húnaflói-Skagi axis, but 60 km to the east. This previously unknown paleo-rift is named the Skagafjördur paleo-rift. It remained active until approximately 3 Ma. The activity of the present North Volcanic Zone started about 8-8.5 Ma, intruding 9-9.5 Myr rocks located at least 10 km east of the Skagafjördur paleo-rift axis. Consequently, the two rifts were simultaneously active for 5-5.5 Myr. During this time period, their accretion rates were nearly equal but with asymmetrical opening, the largest rates occurring on external flanks. These results are coherent in the Icelandic context and permit a first reconstruction of the evolution of Northern Iceland since 10 Ma.

  9. Trace element characteristics of lithospheric and asthenospheric mantle in the Rio Grande rift region

    SciTech Connect

    Perry, F.V.

    1994-06-01

    Trace element analyses of 10 mafic volcanic rocks from the Colorado Plateau transition zone, Colorado Plateau, Rio Grande rift, and Great Plains were obtained to characterize the trace element characteristics of asthenospheric and lithospheric mantle beneath these regions. Characterization of these mantle reservoirs using the trace element contents of basalts allows one to track the response of the lithosphere to continental rifting and extension.

  10. Tag team tectonics: mantle upwelling and lithospheric heterogeneity ally to rift continents (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.

    2013-12-01

    The configuration of continents we know today is the result of several billion years of active Wilson Cycle tectonics. The rifting of continents and subsequent development of ocean basins is an integral part of long-term planetary-scale recycling processes. The products of this process can be seen globally, and the East African Rift System (EARS) provides a unique view of extensional processes that actively divide a continent. Taken together with the adjoining Red Sea and Gulf of Aden, the EARS has experienced over 40 Ma of volcanism and ~30 Ma of extension. While early (pre-rift) volcanism in the region is attributed to mantle plume activity, much of the subsequent volcanism occurs synchronously with continental rifting. Numerous studies indicate that extension and magmatism are correlated: extension leads to decompression melting while magmatism accommodates further extension (e.g. Stein et al., 1997; Buck 2004; Corti 2012). Evaluation of the entire EARS reveals significant geochemical patterns - both spatial and temporal - in the volcanic products. Compositional variations are tied directly to the melt source(s), which changes over time. These variations can be characterized broadly by region: the Ethiopian plateau and Turkana Depression, the Kenya Rift, and the Western Rift. In the Ethiopian plateau, early flood basalt volcanism is dominated by mantle plume contributions with variable input from lherzolitic mantle lithosphere. Subsequent alkaline shield volcanism flanking the juvenile Main Ethiopian Rift records the same plume component as well as contributions from a hydrous peridotitic lithosphere. The hydrous lithosphere does not contribute indefinitely. Instead, young (< 2 Ma) volcanism taps a combination of the mantle plume and anhydrous depleted lithospheric mantle. In contrast, volcanism in the Kenya Rift and the Western Rift are derived dominantly from metasomatized lithospheric mantle rather than mantle plume material. These rifts lie in the mobile

  11. Cretaceous rift related magmatism in central-western South America

    NASA Astrophysics Data System (ADS)

    Viramonte, J. G.; Kay, S. M.; Becchio, R.; Escayola, M.; Novitski, I.

    1999-03-01

    The Cretaceous-Paleocene Andean basin system of central-western South America, comprises northwestern Argentina and southwestern Bolivia. It is situated between 62°-68°W and 18°-27°S, but extends westward to northern Chile and northward to Bolivia and Peru. These basins have been interpreted as an aborted foreland rift. In a general sense, it may be possible to relate this rift to the opening of the South Atlantic Ocean, however it was directly associated, in a backarc position, with the subduction of the Nazca Plate below the South American Plate. Three main magmatic episodes were recognized: the pre-rift stage (130-120 Ma) which is characterized by an early phase of anorogenic plutonism, with subalkaline and alkaline granitic intrusives; the syn-rift volcanic episode which started with a mainly alkaline volcanic activity (110-100) in which alkaline rocks prevail; a second more voluminous volcanic episode (80-75 Ma) which is characterized by an alkaline suite represented by basanites and tephriphonolites; and the last volcanic episode (65-60 Ma) which consists of lamproitic sills and basic K rich lava flows. Petrography, chemistry and chronology of the Cretaceous plutonic bodies indicate anorogenic pre-rift related A-type granite complexes closely related to the further evolution of the Cretaceous rift basin. The petrology and geochemistry of the Cretaceous volcanic rocks show strong alkaline affinities and suggest a similar rift-related origin. The geochemical and isotopic characteristics of the alkaline basalts suggest that they originated through low degrees of partial melting of a depleted mantle subcontinental lithosphere which was previously enriched by processes such as the introduction of veins rich in amphibole, high Ti phlogopite, and apatite. Cretaceous plutonic and volcanic rocks from central-southwestern South America are related to an intracontinental rift environment and although their ages are correlative with those of the Paraná volcanic

  12. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya

    SciTech Connect

    Winn, R.D. Jr.; Steinmetz, J.C. ); Kerekgyarto, W.L. )

    1993-11-01

    Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

  13. Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Peltzer, Gilles

    2007-01-01

    The deformation in the Asal Rift (Djibouti) is characterized by magmatic inflation, diking, distributed extension, fissure opening, and normal faulting. An 8 yr time line of surface displacement maps covering the rift, constructed using radar interferometry data acquired by the Canadian satellite Radarsat between 1997 and 2005, reveals the aseismic behavior of faults and its relation with bursts of microseismicity. The observed ground movements show the asymmetric subsidence of the inner floor of the rift with respect to the bordering shoulders accommodated by slip on three of the main active faults. Fault slip occurs both as steady creep and during sudden slip events accompanied by an increase in the seismicity rate around the slipping fault and the Fieale volcanic center. Slip distribution along fault strike shows triangular sections, a pattern not explained by simple elastic dislocation theory. These observations suggest that the Asal Rift faults are in a critical failure state and respond instantly to small pressure changes in fluid-filled fractures connected to the faults, reducing the effective normal stress on their locked section at depth.

  14. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    NASA Astrophysics Data System (ADS)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be

  15. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are

  16. Development of volcanic passive margins: Three-dimensional laboratory models

    NASA Astrophysics Data System (ADS)

    Callot, Jean-Paul; Geoffroy, Laurent; Brun, Jean-Pierre

    2002-12-01

    Continental breakup above an anomalously hot mantle may lead to the development of volcanic margins. Volcanic margins are characterized by (1) thick seaward dipping lava flow sequences, (2) central intrusive complexes associated with dyke swarms parallel to the coast, and (3) high seismic velocity bodies in the lower crust attributable to magma underplating. A conceptual model for volcanic margins development has recently been proposed based on onshore studies of the Greenland margins and the British Tertiary Igneous Province. It is proposed that the long-lived central intrusions are genetically linked to underlying persistent zones of mantle fusion. These localized melting domains (or soft spots), equivalent to small mantle diapirs, may locally soften the extending continental lithosphere. The low-viscosity diapirs would (1) localize tectonic strain and (2) feed the volcanic margin with magma. Thus such soft spots can control the along-strike magmatic and tectonic segmentation of volcanic margins. Recent geophysical investigations appear to show that the along-strike structure of volcanic passive margins is compatible with such a segmentation process. Here we present a set of scaled experiments designed to study how such localized rheological heterogeneities in the sub-Moho mantle may have a mechanical effect on continental breakup. Four-layer models were constructed using sand and silicone putties to represent the brittle and ductile layers of both crust and mantle. The soft spots are simulated by low-viscosity silicone putty emplaced within the brittle material. At the scale of the entire breakup zone, the soft spots display an oceanic-type strength profile defining low-strength zones where continental breakup is initiated. The rift orientation and segmentation are strongly controlled by the distribution of the low-viscosity heterogeneities, rather than by the direction of regional extension. The experiments are compared with the geometry and segmentation of the

  17. Modeled Aeromagnetic Anomalies, Controlled By Radar Ice Sounding, As Evidence for Subglacial Volcanic Activity in the West Antarctic Rift System (WR) Beneath the Area of the Divide of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2014-12-01

    The Thwaites and Pine Island ice shelves, buttressing the WAIS, have passed the turning point as they are eaten away by warmer ocean waters (Joghin et al., 2014; Rignot et al., 2014). There is an increasing evidence (aeromagnetic, radar ice-sounding, high heat flow, subglacial volcanic seismicity, and several exposed and subglacial active volcanoes), for volcanic activity in the WR beneath the WAIS, which flows through it. The 5-km, orthogonally line spaced, central West Antarctica (CWA) aerogeophysical survey defined >400 high amplitude volcanic magnetic anomalies correlated with glacial bed topography. Modeled anomalies defined magnetic properties; interpreted volcanic edifices were mostly removed by the moving ice into which they were erupted. Very high apparent susceptibility contrasts (.001->.3 SI) are typical of measured properties from volcanic exposures in the WAIS area. About 90% of the magnetic sources have normal magnetization in the present field direction. Two explanations as to why the anomalies are not approximately 50% negative: (1) Volcanic activity resulting in these anomalies occurred in a predominantly normal field (unlikely). (2) Sources are a combination of induced and remanent magnetization resulting in anomalies of low amplitude (induced cancels remanent) and are not recognized because they are <100 nT (most probable). About 18 high relief, (~600-2000 m) "volcanic centers" beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent; nine of these are in the general area beneath the divide of the WAIS. A 70-km wide, ring of interpreted subglacial volcanic rocks may define a volcanic caldera underlying thedivide (Behrendt et al., 1998). A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78o30'S, 111oW) ~ 100 km north of the WAISCORE, could be the source an ash layer observed in the core. Models by Tulaczyk and Hossainzadeh (2011) indicate >4mm/yr basal melting beneath the WAIS, supportive of high heat flow

  18. Planetary volcanism

    SciTech Connect

    Cattermole, P.

    1989-01-01

    This book presents studies of the volcanic features of individual planets. Bring together the most recently acquired data on selected regions of individual planets and discusses in detail the volcanic processes at work. Begins with a discussion of theoretical considerations and a survey of volcanism on earth. Continues with a comparative approach to planetary volcanism, looking at the volcanic features of different planets. Draws conclusions about planetary development based on the characteristic volcanic features of the different planets.

  19. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  20. Geoscience Methods Lead to Paleo-anthropological Discoveries in Afar Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Renne, Paul R.; Hart, William K.; Ambrose, Stanley; Asfaw, Berhane; White, Tim D.

    2004-07-01

    With few exceptions, most of the hominid evolutionary record in Africa is closely associated with the East African Rift System. The exceptions are the South African and Chadian hominids collected from the southern and west-central parts of the continent, respectively. The Middle Awash region stands alone as the most prolific paleoanthropological area ever discovered (Figure 1). Its paleontological record has yielded over 13,000 vertebrate fossils, including several hominid taxa, ranging in age from 5.8 Ma to the present. The uniqueness of the Middle Awash hominid sites lies in their occurrence within long, > 6 Ma volcanic and sedimentary stratigraphic records. The Middle Awash region has yielded the longest hominid record yet available. The region is characterized by distinct geologic features related to a volcanic and tectonic transition zone between the continental Main Ethiopian and the proto-oceanic Afar Rifts. The rift floor is wider-200 km-than other parts of the East African Rift (Figure 1). Moreover, its Quaternary axial rift zone is wide and asymetrically located close to the western margin. The fossil assemblages and the lithostratigraphic records suggest that volcanic and tectonic activities within the broad rift floor and the adjacent rift margins were intense and episodic during the late Neogene rift evolution.

  1. The origin and geologic evolution of the East Continent Rift Basin

    SciTech Connect

    Drahovzal, J.A. . Kentucky Geological Survey)

    1992-01-01

    The East Continent Rift Basin (ECRB) is a newly recognized, dominantly sedimentary-volcanic Proterozoic rift basin that apparently represents the southern extension of the Keweenawan Midcontinent Rift. The ECRB extends from central Michigan at least as far south as south-central Kentucky. The inferred age of the rift fill is approximately 1,000 Ma. Evidence supporting a rift origin for the ECRB includes: interbedding of continental flood basalts and felsic volcanics with siliciclastics; sedimentary fill consisting of distal, arid-climate alluvial fan sediments that lack metamorphic lithologies; close proximity and similar lithologic succession to the Keweenawan rift-fill rocks of the Michigan Basin; and inferred marginal block faulting of Granite-Rhyolite Province rocks near the western edge of the ECRB. ECRB evolution is interpreted as follows: (1) formation of Granite-Rhyolite Province rocks (1,500--1,340 Ma); (2) Keweenawan crustal extension and rifting with development of central mafic complexes, emplacement of volcanic rocks, and deposition of siliciclastic fill from eroded marginal Granite-Rhyolite Province tilted fault blocks (ca 1,000 Ma); (3) overthrusting of the Grenville allochthon and associated foreland thrusting and folding of the rift sequence rocks together with deposition of foreland basin sediments (975---890 Ma); (4) Late Proterozoic erosional removal of the foreland basin sediments and interpreted wrench faulting along the Grenville Front (post-975 to pre-570 Ma); and (5) tectonic inversion, with the ECRB area remaining relatively high during major cambrian subsidence in central Kentucky (590--510 Ma).

  2. The position of continental flood basalts in rift zones and its bearing on models of rifting

    NASA Astrophysics Data System (ADS)

    Kazmin, V. G.

    1991-12-01

    Two models of rifting—"pure shear" and "simple shear"—are at present being widely discussed. In this paper attention is drawn to the fact that continental flood basalts (CFB), associated with rifts, usually display a strong asymmetry relative to the rift axis. The Karroo, the Parana, and the Deccan basalts, as well as the Ethiopian flood basalts and the basalts of the Arabian Shield are concentrated mainly on one side of the respective rifts. Structural data indicate that the eruptions occurred on the "upper plates", if the low-angle, simple-shear model of Wernicke (1985) is accepted. It is suggested that the asymmetry of eruptions is caused by the asymmetric position of the asthenopheic rise predicted by this model. The low-angle detachment may serve as a conduit for magmatic fluid. This fits well with data on the existence of large magmatic reservoirs of CFB at subcrustal or crustal levels and explains why eruptions are concentrated in the rift and on one of its shoulders, while being restricted on the other. This asymmetry of volcanism supports models of continental rifting associated with low-angle simple-shear detachment.

  3. How Mountains Become Rifts

    NASA Astrophysics Data System (ADS)

    Buiter, S. J.; Tetreault, J. L.

    2015-12-01

    Rifting often initiates on former continental collision zones. For example, the present-day passive margins of the Atlantic and Indian Oceans formed after continental break-up occurred on relatively young and very old sutures, such as Morocco-Nova Scotia and East Antarctica-Australia, respectively. Rifts may localize on former collision zones for several reasons: orogens are thermally weak because of the increase in heat producing elements in their thicker crustal root, the inherited thrust faults form large-scale heterogeneities, and in the case of young sutures, extensional collapse of the orogen may help initiate rifting. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture using numerical experiments. We first explicitly prescribe collisional structures in the initial setup, such as increased crustal thickness and inherited thrust faults. Varying the prescribed structures results in different rift to break-up durations and margin widths. Our second series of experiments creates a collision zone through subduction and closure of an ocean. We confirm that post-collisional collapse is not a sufficient trigger for continental rifting and that a change in regional plate motions is required. When extension occurs, the weak former subduction interface and the elevated temperatures in the crustal nappe stack work in tandem as the main deformation localizers for continental rifting. Our experiments show that different approaches of initiating a continental rift result in different dynamics of the crust and mantle, thereby impacting rift geometry, rift to break-up duration, and exhumation of subduction-related sediments and oceanic crust.

  4. Composition of the crust beneath the Kenya rift

    USGS Publications Warehouse

    Mooney, W.D.; Christensen, N.I.

    1994-01-01

    We infer the composition of the crust beneath and on the flanks of the Kenya rift based on a comparison of the KRISP-90 crustal velocity structure with laboratory measurements of compressional-wave velocities of rock samples from Kenya. The rock samples studied, which are representative of the major lithologies exposed in Kenya, include volcanic tuffs and flows (primarily basalts and phonolites), and felsic to intermediate composition gneisses. This comparison indicates that the upper crust (5-12 km depth) consists primarily of quartzo-feldspathic gneisses and schists similar to rocks exposed on the flanks of the rift, whereas the middle crust (12-22 km depth) consists of more mafic, hornblende-rich metamorphic rocks, probably intruded by mafic rocks beneath the rift axis. The lower crust on the flanks of the rift may consist of mafic granulite facies rocks. Along the rift axis, the lower crust varies in thickness from 9 km in the southern rift to only 2-3 km in the north, and has a seismic velocity substantially higher than the samples investigated in this study. The lower crust of the rift probably consists of a crust/mantle mix of high-grade metamorphic rocks, mafic intrusives, and an igneous mafic residuum accreted to the base of the crust during differentiation of a melt derived from the upper mantle. ?? 1994.

  5. A preliminary description of the Gan-Hang failed rift, southeastern china

    NASA Astrophysics Data System (ADS)

    Goodell, P. C.; Gilder, S.; Fang, X.

    1991-10-01

    The Gan-Hang failed rift, as defined by present-day topography, extends at least 450 km in length and 50 km in width. It is a northeast-southwest trending series of features spanning from Hangzhou Bay in Zhejiang province into Jiangxi province through Fuzhou City. Southwest of Fuzhou, the rift splits into two portions: one continuing along the southwestern trend, and the other diverging westward. The total extent of the rift cannot be defined at this time. The rift is superimposed upon a major suture zone of Caledonian or early Mesozoic age. The suture represents the fusing of the South China (Huanan) and Yangtze cratons. Perhaps in Late Triassic, but for sure by Late-Middle Jurassic time, the rifting was initiated and followed this older suture, in part. This time corresponds roughly to the middle stage of the Yanshanian orogeny and to the subduction of the postulated Pacific- Kula ridge southeast of the continental margin. The total thickness of the sediments and volcanics filling the rift valley reaches more than 10,000 m. Peak intensity of extension was between Late-Middle Jurassic and Middle to Late Cretaceous. Sedimentation within the rift was not continuous and is marked with periodic unconformities. Sediments within the rift include red beds, sandstones, siltstones, mudstones, conglomerates, breccias, tuffs, and ignimbrites. Vertebrate fossils and dinosaur eggs are also found. Contemporaneous volcanics within and flanking the rift include basalts, rhyolites, granites, gabbros, dacites, and andesites. Silicic volcanics are mostly attributed to caldera systems. Early basalts are tholeiitic and later change to alkaline-olivine basalt. Bimodal volcanism is recognized. Peak intensity of volcanism ranges between 135 and 75 Ma. In Early Cenozoic time, the area was a topographic low. Paleocene- Eocene sediments and evaporites are the last rocks to be deposited in the rift. Today the rift is delineated by major, high-angle faults (the Pingxiang-Guangfeng deep fault

  6. The development of the Midcontinent Rift in the context of rapid paleogeographic change

    NASA Astrophysics Data System (ADS)

    Swanson-Hysell, N.; Vaughn, A. A.; Mustain, M. R.; Feinberg, J. M.

    2012-12-01

    Despite being active for >20 million years and resulting in the thinning of pre-rift crust by a factor of 3 or more, the 1.1 Ga Midcontinent Rift failed to dismember the Laurentian craton. This failure resulted in the preservation of a thick record of rift-related volcanic and sedimentary rocks that give geoscientists a powerful window into the development of this ancient rift. Most models for the development of the Midcontinent Rift attribute its origin to the upwelling and decompression melting of a mantle plume. On the basis of the great volume of generated magma and interpretation of geochemical data, it is argued that the early stage plateau flood basalts of the rift (~1110-1105 Ma) and the main stage volcanics that erupted into the central basin (~1100-1095 Ma) were both dominated by plume-sourced melts. However, this model needs to be reconciled with paleomagnetic data from rift volcanics that reveal a significant decrease in inclination between the early and main stage volcanics. New data we have developed from 90+ flows of the early stage Osler Volcanic Group bolster evidence from the succession at Mamainse Point that this change in inclination is the result of fast equatorward plate motion during the early stage and into the main stage of rift volcanism. Even with >20° of latitudinal motion from the time of initial volcanism to eruption of the thick main stage volcanics, magmatism was largely confined to the same geographic region in a relatively narrow central basin. If a long-lived plume was in a fixed position relative to Earth's spin axis, the large relative motion of Laurentia would make it unable to continue to be a source of melt to the rift. Two possible explanations to reconcile a plume-contribution in the main stage with this latitudinal change are: (1) That the active contribution from an underlying plume was limited to the early stage of volcanism, but substantial volume of material accreted to the lithosphere that was subsequently sampled

  7. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes.

    PubMed

    Passarelli, L; Rivalta, E; Shuler, A

    2014-01-28

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process.

  8. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    PubMed Central

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  9. The rifting of continents

    NASA Astrophysics Data System (ADS)

    Bonatti, Enrico

    1987-03-01

    Continental rifts are shown to be produced by the upwelling of hot mantle material which thins, weakens, and cracks the lithosphere. The Island of Zabargad in the Red Sea is composed of rocks made of upper mantle and lower crustal materials. Zabargad grabbos crystallized at least 30 km below the crust and contain garnet, which only crystallizes under high pressure. Similar rock in crust off the east coast of North America and in the Atlantic rift reveals the underplating of continental crust by basaltic magma, which eventually reaches the surface through faults. Magnetic data are described which show that breakthrough points are spaced at regular intervals. The spacing is closer in continental rifts (50 km) than in oceanic rifts (150 km). A thermal anomaly model is proposed wherein magmatic plumes separate from the denser mantle, a periodic process over distance, and move upward through the crust. Mineralogical evidence supporting the model are discussed.

  10. Speculations on the origin of the North American Midcontinent rift

    USGS Publications Warehouse

    Cannon, W.F.; Hinze, W. J.

    1992-01-01

    The Midcontinent rift is an example of lithospheric extension and flood basalt volcanism induced when a new mantle plume arrived near the base of the lithosphere. Very large volumes of basaltic magma were generated and partly erupted before substantial lithospheric extension began. Volcanism continued, along with extension and deep rift subsidence, for the ensuing 15 m.y. Much of the basaltic magma, including some of the earliest flows, was formed by partial melting of isotopically primitive asthenosphere contained in the plume head. The intense but relatively short duration of rifting and magmatism is a result of the dissipation of thermal and mechanical energy in the plume head. As the plume head spread beneath the lithosphere, it stretched the overlying lithosphere radially away from the Lake Superior region, the triple junction of the rift system, and partially melted to form the great volume of basalt and related intrusive rocks of the region. The plume arrived beneath a continent that was under compression as a result of the ongoing Grenville orogeny that affected a large region east of the rift. That compression prevented full continental separation and eventually returned the region to compressional tectonics as the energy of the plume head waned. ?? 1992.

  11. Structural Evolution of the Incipient Okavango Rift Zone, NW Botswana

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Kinabo, B. D.; Modisi, M. P.; Hogan, J. P.; Wheaton, D. D.

    2005-05-01

    Studies of the East African Rift System (EARS) and other continental rifts have significantly improved our understanding of rifting processes; however, we particularly lack studies of the embryonic stages of rift creation. The Okavango Rift Zone (ORZ), NW Botswana is one of few places worldwide where one can study the early stages of continental extension prior to the accumulation of significant amounts of sediments, volcanism, and multiphase deformation that obscure the investigation of these early time processes in more evolved continental rift zones. In this study, gravity and aeromagnetic data have been used to examine the initiation and development of the nascent ORZ. The Okavango basin in NW Botswana is located at the southern tip of the southwestern branch of the EARS. The rift is hosted within the Proterozoic fold and thrust belt of the Ghanzi-Chobe formation. Our objectives include (1) assessing the role of pre-existing structures on the development of rift faults and basin architecture, (2) Examining fault linkage patterns and boarder fault development, and (3) determining the shallow subsurface basin geometry. Aeromagnetic data from the ORZ suggest two main structural trends: 1) northeast-southwest (030- 070o) and 2) northwest - southeast (290 - 320o). The 030- 070o structures occur within the rift zone and throughout the surrounding basement. They form the main bounding fault system of this incipient rift. The NE - SW orientations of rift faults mirror the fold axes and foliation of the basement rocks, suggesting that the basement fabric played an important role in localizing the development of faults within the stress regime present during the initiation of this rift. Additionally, the greatest throw (~400- ~700 m) occurs along the Kunyere (NW dipping) and Tsau faults (SE dipping), defining a full graben as observed on gravity models. This differs from the half-graben model typical of most continental rift zones. Thus, it appears the basin geometry was

  12. The rift to drift evolution of the South China Sea

    NASA Astrophysics Data System (ADS)

    Ranero, Cesar R.; Cameselle, Alejandra; Franke, Dieter; Barckhausen, Udo

    2016-04-01

    Re-processing with modern algorithms of multichannel seismic reflection records from the South China Sea provide novel images on the crustal structure of the continental margin and its boundary zone with the oceanic crust (COB). The selected re-processed seismic lines strike perpendicular to the margins' trend and cross the entire basin, providing complementary images of conjugated rift segments of the NW, SW, and E sub-basins. Re-processed sections image the post-rift and syn-rift sediment, and fault-bounded basement blocks, often also intra-crustal fault reflections that together provide detailed information of the tectonic structural style during rifting. Further, the largest imaging improvement has been obtained in the delineation of -very often- clear fairly continuous reflections from the crust-mantle boundary across the continental margin into the oceanic crust. The images show how crustal thickness and structure change in parallel to changes in the tectonic style of the deformation during the evolution of the rift. The interpreted COB occurs in regions where the tectonic style displays the most noticeable changes from segments where extension is dominated by normal faulting to segments where faulting is comparatively minor and the crust shows fairly gentle lateral thickness variations; these latter segments are interpreted as oceanic crust. The identification of the continental and oceanic tectonic domains permits to study the along-strike evolution in rifting processes and rift segmentation. Also, the comparison of the tectonic structure of the conjugated flanks of the continental rift across the ocean basins is used to understand the last stages of rifting and the relative importance of tectonic extension and magmatism in final break up and spreading initiation. Although there is ample evidence of important volcanism in the images, with some spectacular large conical volcanoes formed over continental crust and numerous sill-like reflections in the

  13. ALVIN-SeaBeam studies of the Sumisu Rift, Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Taylor, B.; Brown, G.; Fryer, P.; Gill, J. B.; Hochstaedter, A. G.; Hotta, H.; Langmuir, C. H.; Leinen, M.; Nishimura, A.; Urabe, T.

    1990-10-01

    Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50-700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven ALVIN heat flow measurements at 30°48.5'N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine

  14. Volcanism in Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Eichelberger, L. G.

    2008-12-01

    The diverse and robust volcanism of Kamchatka challenges our understanding of subduction zone volcanism on both local volcanic and regional tectonic scales (e.g., AGU Geophysics Monograph 172). One might expect the two North Pacific peninsula/ island arc pairs, Kamchatka Peninsula/ Kuriles and Alaska Peninsula/ Aleutians, to be twins, but there are some important differences as well as similarities. In both cases, the continental margin largely controls the position of the volcanic front on the peninsulas and the associated island arcs are pinned to the peninsula tips. The unusually acute Aleutian-Kamchatka subduction cusp may have formed by jamming and outboard (southeastward) jumping of Bering subduction at about 50 Ma to form the Aleutians, with capture of the Bering microplate by the North American plate. Perhaps the acuteness was augmented by convergence of the Emperor Seamount Chain with the junction. Another outboard (eastward) jump may explain the two lines of volcanoes in Kamchatka, which are partially separated by the rift-like Central Kamchatka Depression. This is thought to have occurred at 7 - 10 Ma when 3 seamounts were accreted as capes to the eastern edge of Kamchatka. But other workers, pointing to east-west chemical trends and persistence of volcanism in the inboard Sredinny Range, prefer to postulate two depths of volatile release from the same intact slab. On the Alaska Peninsula, Quaternary volcanic deposits are discontinuous and even famous Mount Katmai is a volumetric dwarf. The opposite is the case in Kamchatka, where pre-volcanic basement under the young eastern volcanic front is sparsely exposed and Holocene stratovolcanoes rise as high as 4,835 m. Calderas are so numerous they sometimes overlap. Some exhibit repeated andesitic stratovolcano - silicic caldera cycles over remarkably short time frames. Remoteness, international politics, and challenging weather have conspired to make Kamchatka's volcanoes less appreciated by non

  15. Tectonic Evolution of the Terceira Rift (Azores)

    NASA Astrophysics Data System (ADS)

    Stratmann, Sjard; Huebscher, Christian; Terrinha, Pedro; Ornelas Marques, Fernando; Weiß, Benedik

    2017-04-01

    The Azores Plateau is located in the Central Atlantic at the Eurasian, Nubian and North-American plates (RRT) Azores Triple Junction. The Terceira Rift (TR) connects the Mid-Atlantic Ridge with the Gloria Fault, hence establishing a transtensional-transform present day plate boundary between the Eurasian and the Nubian plates. Three volcanic islands arose along the TR, Graciosa, Terceira and Sao Miguel. In the geological past, the plate boundary in the Azores area between the Eurasian and Nubian plates was located further south at the East Azores Fracture Zone. The timing of the plate boundary jump, which marks the onset of rifting along the TR, is heavily disputed. Published ages vary from 36 to 1 Ma. Based on bathymetric data and high-resolution marine 2D multi-channel seismic data acquired during M113 cruise of R/V Meteor in 2014/2015 we discuss the structural evolution of the TR and address the question whether the divergence between both plates is entirely accommodated by the TR. The central TR between São Miguel and Terceira, also known as Hirondelle Basin, is up to 70 km wide. Rifting created two asymmetric graben sections separated by a rift parallel horst. The north-eastern and south-western graben sections are ca. 4 km and 3 km deep, respectively, and the corresponding graben floors are tilted towards the central horst. Volcanic cones emerged on the central horst and rift shoulders. Bright spots in the basin fill deposits indicate fluid flow out of the volcanic basement. The seafloor is displaced by faults which suggest recent fault displacement. In the Eastern Graciosa Basin between Terceira and Graciosa Islands the rift narrows to ca. 40 km and shallows to ca. 3200 m water depth. The central horst is no longer detectable. Instead, a buried normal fault and a small escarpment are observed. Shallow faults and block rotation are less pronounced compared to the basins to the south-east and north-west. The Western Graciosa Basin is about 30 km wide and ca

  16. The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)

    NASA Astrophysics Data System (ADS)

    Weiß, B. J.; Hübscher, C.; Lüdmann, T.

    2015-07-01

    The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.

  17. Rifting, landsliding and magmatic variability in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Troll, V. R.; Guillou, H.; Badiola, E. R.; Pérez-Torrado, F. J.; Wiesmaier, S.; Delcamp, A.; Gonzalez, A. R.

    2009-04-01

    Rifts, probably the most influential structures in the geology of the Canary Islands, may also be responsible for the development of central felsic volcanoes, which are consistently nested in the collapse basins of the massive lateral collapses found in the Canaries. Three main types of post-collapse volcanism have been observed, particularly in the western Canaries: 1. Collapses followed by relatively scant, non-differentiated volcanism inside the collapse depression (El Golfo, El Hierro; La Orotava and Güímar, Tenerife), 2. those with important, although short-lasting (tens of thousands of years), post-collapse activity including felsic (phonolitic, trachytic) central volcanism (Bejenado, La Palma; Vallehermoso, La Gomera), and 3. those with very important, long-lasting (>100 kyr) post-collapse activity, evolving from primitive to felsic magmatism, eventually resulting in very high stratovolcanoes (Teide, Tenerife). Three consecutive sector collapses (Micheque, Güímar and La Orotava) mass-wasted the flanks of in the NE rift of Tenerife after intense and concentrated eruptive activity, particularly from about 1.10 Ma to 0.96 Ma, with periods of growth up to 15-25 m/kyr. Volcanic activity completely filled the Micheque collapse, evolving from basaltic to differentiated trachytic eruptions. Conversely, nested volcanism was less abundant in the Güímar and La Orotava collapses. This requires two fundamentally different scenarios which may be a function of active versus passive flank collapse trigger mechanisms: 1. The collapse occurs as a result of one of these short but intense intrusive-eruptive periods and probably triggered by concurring extensional stresses at the rifts (rift push), or 2. the giant landslide is derived only from gravitational instability. In the first scenario, the collapse of the flank of the rift may disrupt an established fissural feeding system that rapidly fills the collapse basin. Due to its disruption and the progressive new

  18. The East African rift system in the light of KRISP 90

    USGS Publications Warehouse

    Keller, Gordon R.; Prodehl, C.; Mechie, J.; Fuchs, K.; Khan, M.A.; Maguire, Peter K.H.; Mooney, W.D.; Achauer, U.; Davis, P.M.; Meyer, R.P.; Braile, L.W.; Nyambok, I.O.; Thompson, G.A.

    1994-01-01

    On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of 100-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. Major scientific goals of this phase of KRISP were to reveal the detailed crustal and upper mantle structure under the Kenya rift, to study the relationship between mantle updoming and the development of sedimentary basins and other shallow structures within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system and within a global perspective and to elucidate fundamental questions such as the mode and mechanism of continental rifting. The KRISP results clearly demonstrate that the Kenya rift is associated with sharply defined lithospheric thinning and very low upper mantle velocities down to depths of over 150 km. In the south-central portion of the rift, the lithospheric mantle has been thinned much more than the crust. To the north, high-velocity layers detected in the upper mantle appear to require the presence of anistropy in the form of the alignment of olivine crystals. Major axial variations in structure were also discovered, which correlate very well with variations in the amount of extension, the physiographic width of the rift valley, the regional topography and the regional gravity anomalies. Similar relationships are particularly well documented in the Rio Grande rift. To the extent that truly comparable data sets are available, the Kenya rift shares many features with other rift zones. For example, crustal structure under the Kenya, Rio Grande and Baikal rifts and the Rhine Graben is generally symmetrically centered on the rift valleys. However, the Kenya rift is distinctive, but not unique, in terms of

  19. Anatomy of a river drainage reversal in the Neogene Kivu Nile Rift

    NASA Astrophysics Data System (ADS)

    Holzförster, F.; Schmidt, U.

    2007-07-01

    The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu-Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300-350 ka to complete this major event for the sediment supply system of the Kivu-Nile Rift segment.

  20. Volcanism & Tectonism

    NASA Image and Video Library

    2011-07-19

    Just as on Earth, volcanism and tectonism are found together on Mars. In this image from NASA 2001 Mars Odyssey spacecraft the ridges and fractures of Claritas Fossae are affecting or perhaps hosting the volcanic flows of Solis Planum.

  1. Structure of the southern Rio Grande rift from gravity interpretation

    NASA Technical Reports Server (NTRS)

    Daggett, P. H.; Keller, G. R.; Wen, C.-L.; Morgan, P.

    1986-01-01

    Regional Bouguer gravity anomalies in southern New Mexico have been analyzed by two-dimensional wave number filtering and poly-nomial trend surface analysis of the observed gravity field. A prominent, regional oval-shaped positive gravity anomaly was found to be associated with the southern Rio Grande rift. Computer modeling of three regional gravity profiles suggests that this anomaly is due to crustal thinning beneath the southern Rio Grande rift. These models indicate a 25 to 26-km minimum crustal thickness within the rift and suggest that the rift is underlain by a broad zone of anomalously low-density upper mantle. The southern terminus of the anomalous zone is approximately 50 km southwest of El Paso, Texas. A thinning of the rifted crust of 2-3 km relative to the adjacent Basin and Range province indicates an extension of about 9 percent during the formation of the modern southern Rio Grande rift. This extension estimate is consistent with estimates from other data sources. The crustal thinning and anomalous mantle is thought to result from magmatic activity related to surface volcanism and high heat flow in this area.

  2. Metallogeny of the midcontinent rift system of North America

    USGS Publications Warehouse

    Nicholson, S.W.; Cannon, W.F.; Schulz, K.J.

    1992-01-01

    The 1.1 Ga Midcontinent rift system of North America is one of the world's major continental rifts and hosts a variety of mineral deposits. The rocks and mineral deposits of this 2000 km long rift are exposed only in the Lake Superior region. In the Lake Superior region, the rift cuts across Precambrian basement terranes ranging in age from ??? 1850 Ma to more than 3500 Ma. Where exposed, the rift consists of widespread tholeiitic basalt flows with local interlayered rhyolite and clastic sedimentary rocks. Beneath the center of Lake Superior the volcanic and sedimentary rocks are more than 30 km deep as shown by recent seismic reflection profiles. This region hosts two major classes of mineral deposits, magmatic and hydrothermal. All important mineral production in this region has come from hydrothermal deposits. Rift-related hydrothermal deposits include four main types: (1) native copper deposits in basalts and interflow sediments; (2) sediment-hosted copper sulfide and native copper; (3) copper sulfide veins and lodes hosted by rift-related volcanic and sedimentary rocks; and (4) polymetallic (five-element) veins in the surrounding Archean country rocks. The scarcity of sulfur within the rift rocks resulted in the formation of very large deposits of native metals. Where hydrothermal sulfides occur (i.e., shale-hosted copper sulfides), the source of sulfur was local sedimentary rocks. Magmatic deposits have locally supported exploration and minor production, but most are subeconomic presently. These deposits occur in intrusions exposed near the margins of the rift and include CuNiPGE and TiFe (V) in the Duluth Complex, U-REE-Nb in small carbonatites, and breccia pipes resulting from local hydrothermal activity around small felsic intrusions. Mineralization associated with some magmatic bodies resulted from the concentration of incompatible elements during fractional crystallization. Most of the sulfide deposits in intrusions, however, contain sulfur derived from

  3. Correlation of Triassic advanced rifting-related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid-rock interaction, and geochemical characteristics

    NASA Astrophysics Data System (ADS)

    Kiss, Gabriella; Molnár, Ferenc; Palinkaš, Ladislav A.; Kovács, Sándor; Horvatović, Hazim

    2012-09-01

    Comparative volcanological, mineralogical, petrological, and geochemical studies of blocks of Triassic submarine basalt occurrences hosted by the Jurassic mélange have been carried out. The studied localities are located in displaced parts of the Dinarides in NE-Hungary (Darnó Unit), in the Dinarides (Kalnik Mts., Croatia and Vareš-Smreka, Bosnia and Herzegovina), and in the Hellenides (Stragopetra, Greece). The common characteristic of the studied occurrences is the well observable result of the lava-water-saturated sediment mingling, i.e., the presence of the so-called carbonate peperitic facies. Mixing of the basaltic lava with pelagic lime mud (representing the unconsolidated stage of the red, micritic limestone), as well as fluid inclusion and chlorite thermometry data support that the carbonate peperite was formed above CCD and at the Bosnian locality, a shallower water, about 1.4 km depth is proven. The igneous rocks show mainly within-plate basalt geochemical characteristics; MORB signatures are not common. Low temperature (<200°C) hydrothermal alteration is characteristic to the pillow basalt blocks with peperitic facies. The similarities in the volcanological, geochemical, and textural characteristics observed at the different localities support a strong genetic connection among them. The results of this study suggest to the advanced rifting stage origin of the Triassic basaltic suits and their distinction from the true oceanic basalt pillow units of the Dinarides can be based on the occurrences of the peperite facies.

  4. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay

    2015-04-01

    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  5. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  6. Intracontinental Rifts As Glorious Failures

    NASA Astrophysics Data System (ADS)

    Burke, K.

    2012-12-01

    Rifts: "Elongate depressions overlying places where the lithosphere has ruptured in extension" develop in many environments because rocks are weak in extension (Sengor 2nd edn. Springer Encycl. Solid Earth Geophys.). I focus on intra-continental rifts in which the Wilson Cycle failed to develop but in which that failure has led to glory because rocks and structures in those rifts throw exceptional light on how Earth's complex continental evolution can operate: The best studied record of human evolution is in the East African Rift; The Ventersdorp rifts (2.7 Ga) have yielded superb crustal-scale rift seismic reflection records; "Upside-down drainage" (Sleep 1997) has guided supra-plume-head partial melt into older continental rifts leading Deccan basalt of ~66Ma to erupt into a Late Paleozoic (~ 300Ma) rift and the CAMP basalts of ~201 Ma into Ladinian, ~230 Ma, rifts. Nepheline syenites and carbonatites, which are abundant in rifts that overlie sutures in the underlying mantle lithosphere, form by decompression melting of deformed nepheline syenites and carbonatites ornamenting those sutures (Burke et al.2003). Folding, faulting and igneous episodes involving decompression melting in old rifts can relate to collision at a remote plate margin (Guiraud and Bosworth 1997, Dewey and Burke 1974) or to passage of the rift over a plume generation zone (PGZ Burke et al.2008) on the Core Mantle Boundary (e.g.Lake Ellen MI kimberlites at ~206 Ma).

  7. Numerical modelling of quaternary deformation and post-rifting displacement in the Asal-Ghoubbet rift (Djibouti, Africa) [rapid communication

    NASA Astrophysics Data System (ADS)

    Cattin, Rodolphe; Doubre, Cécile; de Chabalier, Jean-Bernard; King, Geoffrey; Vigny, Christophe; Avouac, Jean-Philippe; Ruegg, Jean-Claude

    2005-11-01

    Over the last three decades a host of information on rifting process relating to the geological and thermal structure, long-time scale deformation (Quaternary and Holocene) and rifting cycle displacement across the Asal-Ghoubbet rift has been made available. These data are interpreted with a two-dimensional thermo-mechanical model that incorporates rheological layering of the lithosphere, dyke inflation and faulting. Active fault locations and geometry are mainly controlled by both thermal structure and magma intrusion into the crust. The distributed slip throughout the inner rift is related to the closeness of magma chamber, leading to additional stress into the upper thinned crust. Assuming a constant Arabia-Somalia motion of 11 mm/year, the variation of subsidence rate between the last 100 and 9 ka is associated with a decrease of the average injection rate from 10 to 5 mm/year. These values, about equal to the regional opening rate, suggest that both volcanism and tectonic play an equivalent role in the rifting process. Our modelled sequence of events gives one possible explanation for both vertical and horizontal displacements observed since the 1978 seismovolcanic crisis. Although part of the post-rifting deformation could be due to viscous relaxation, the high opening rate in the first years after the event and the abrupt velocity change in 1984-1986 argue for a large dyke inflation of 12 cm/year ending in 1985. The asymmetric and constant pattern of the GPS velocity since 1991 suggests that present post-rifting deformation is mainly controlled by fault creep and regional stretching. This study demonstrates the internal consistency of the data set, highlights the role of magmatism in the mechanics of crustal stretching and reveals a complex post-rifting process including magma injection, fault creep and regional stretching.

  8. Rift Valley fever vaccines

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2009-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both humans and ruminants is the best approach to control Rift Valley fever. This article summarizes the development of inactivated RVFV vaccine, live attenuated vaccine, and other new generation vaccines. PMID:19837291

  9. Crustal Structure at a Young Continental Rift: A Receiver Function Study from Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Hodgson, I. D. S.; Illsley-Kemp, F.; Gallacher, R. J.; Keir, D.; Ebinger, C. J.; Drooff, C.; Khalfan, M.

    2015-12-01

    Lake Tanganyika, in western Tanzania, spans a large section of the Western rift yet there are very few constraints on bulk crustal and upper mantle structure. The Western rift system has no surface expression of magmatism, which is in stark contrast to the Eastern branch. This observation is difficult to reconcile with the approximately coeval initiation of rifting of the two branches. The variation in the nature of rifting provides a perfect setting to test current hypotheses for the initiation of continental breakup and early-stage development of continental rifts. The deployment of a seismic network of 13 broadband instruments on the south eastern shore of Lake Tanganyika, for 16 months, between 2014 and 2015 provides a unique opportunity to investigate extensional processes in thick continental lithosphere. We present here results from a P to S receiver function study that provides information on bulk crustal Vp/Vs ratio along the rift; a property that is sensitive to the presence of magmatic intrusions in the lower crust. Additionally this method allows us to map variations in crustal thickness both parallel and perpendicular to the rift axis. These results thus provide unprecedented insight into the large-scale mechanics of early-stage continental rifting along the non-volcanic Western rift.

  10. Magmatic history of Red Sea rifting: perspective from the central Saudi Arabian coastal plain.

    USGS Publications Warehouse

    Pallister, J.S.

    1987-01-01

    An early stage of magmatism related to Red Sea rifting is recorded by a Tertiary dyke complex and comagmatic volcanic rocks exposed on the central Saudi Arabian coastal plain. Field relations and new K/Ar dates indicate episodic magmatism from approx 30 m.y. to the present day and rift-related magmatism as early as 50 m.y. Localized volcanism and sheeted dyke injection ceased at approx 20 m.y. and were replaced by the intrusion of thick gabbro dykes, marking the onset of sea-floor spreading in the central Red Sea. Differences in the depths and dynamics of mantle-melt extraction and transport may account for the transition from mixed alkaline-subalkaline bimodal magmatism of the pre-20 m.y. rift basin to exclusively subalkaline (tholeiitic) magmatism of the Red Sea spreading axis and the alkali basalt volcanism inland.-L.C.H.

  11. The Midcontinent rift in the Lake Superior region with emphasis on its geodynamic evolution

    USGS Publications Warehouse

    Cannon, W.F.

    1992-01-01

    The Midcontinent rift is a Middle Proterozoic continental rift which records about 15 m.y. of extension, subsidence, and voluminous volcanism in the period 1109-1094 Ma in the central part of North America. During that time the crust was nearly totally separated and as much as 25 km of subaerial basalts accumulated in a deep central depression. Following extension and volcanism, a longer period of subsidence resulted in development of a post-rift sedimentary basin in which as much a 8 km of fluvial and lacustrine clastic rocks were deposited. Partial inversion of the central depression occurred about 30-50 m.y. after extension to produce the current configuration of a central horst, composed mostly of thick volcanic accumulations, between shallower flanking basins. ?? 1992.

  12. Atla Regio, Venus: Geology and origin of a major equatorial volcanic rise

    NASA Technical Reports Server (NTRS)

    Senske, D. A.; Head, James W., III

    1992-01-01

    Regional volcanic rises form a major part of the highlands in the equatorial region of Venus. These broad domical uplands, 1000 to 3000 km across, contain centers of volcanism forming large edifices and are associated with extension and rifting. Two classes of rises are observed: (1) those that are dominated by tectonism, acting as major centers for converging rifts such as Beta Regio and Alta Regio, and are termed tectonic junctions; and (2) those forming uplands characterized primarily by large-scale volcanism forming edifices. Western Eistla Regio and Bell Regio, where zones of extension and rifting are less developed. Within this second class of features the edifices are typically found at the end of a single rift, or are associated with a linear belt of deformation. We examine the geologic characteristics of the tectonic junction at Alta Regio, concentrating on documenting the styles of volcanism and assessing mechanisms for the formation of regional topography.

  13. The Midcontinent rift system in Kansas

    SciTech Connect

    Berendsen, P. . Kansas Geological Survey)

    1993-03-01

    A sequence of rift-related mafic volcanic rocks, volcanoclastic-, and clastic sedimentary rocks are recognized in cuttings and cores from about seventy wells in Kansas. The age (1,097.5 Ma) for gabbro in the Poersch [number sign]1 well in northern Kansas, as well as the general petrographic characteristics of the sedimentary rocks throughout the area favors a correlation with established Keweenawan stratigraphy in the Lake Superior region. Rift-related northeast-trending faults and older northwest-trending faults divide the area up into a number of orthogonal fault blocks or basins. Depending upon the tectonic history of the individual basin all or part of the Keweenawan section may be preserved. It is believed that large amounts of Keweenawan clastic sedimentary rock were eroded from the nemaha uplift east of the central graben of the rift and transported in an easterly direction. Prior to deposition of Paleozoic rocks the area was peneplaned. Correlation of various stratigraphic units over any distance is complicated by tectonic activity occurring at several times during the Precambrian and Paleozoic. Stratabound or stratiform deposits can occur both in the Precambrian as well as the overlying Paleozoic rocks. The possibility of massive sulfides to occur in the mafic intrusive rocks must not be excluded. In the core from the Poersch [number sign]1 well sulfides are recognized in gabbroic sills or dikes. Dark, fissile shale, similar to the Nonesuch Shale in the [number sign]1--4 Finn well averages 0.75% organic carbon. Thermal maturation within the rift probably ranges from within the oil window to over maturity.

  14. 3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift basin

    NASA Astrophysics Data System (ADS)

    Jegen, Marion; Avdeeva, Anna; Berndt, Christian; Franz, Gesa; Heincke, Björn; Hölz, Sebastian; Neska, Anne; Marti, Anna; Planert, Lars; Chen, J.; Kopp, Heidrun; Baba, Kiyoshi; Ritter, Oliver; Weckmann, Ute; Meqbel, Naser; Behrmann, Jan

    2016-06-01

    The Namibian continental margin marks the starting point of the Tristan da Cunha hotspot trail, the Walvis Ridge. This section of the volcanic southwestern African margin is therefore ideal to study the interaction of hotspot volcanism and rifting, which occurred in the late Jurassic/early Cretaceous. Offshore magnetotelluric data image electromagnetically the landfall of Walvis Ridge. Two large-scale high resistivity anomalies in the 3-D resistivity model indicate old magmatic intrusions related to hot-spot volcanism and rifting. The large-scale resistivity anomalies correlate with seismically identified lower crustal high velocity anomalies attributed to magmatic underplating along 2-D offshore seismic profiles. One of the high resistivity anomalies (above 500 Ωm) has three arms of approximately 100 km width and 300 km to 400 km length at 120° angles in the lower crust. One of the arms stretches underneath Walvis Ridge. The shape is suggestive of crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting. A second, smaller anomaly of 50 km width underneath the continent ocean boundary may be attributed to magma ascent during rifting. We attribute a low resistivity anomaly east of the continent ocean boundary and south of Walvis Ridge to the presence of a rift basin that formed prior to the rifting.

  15. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery of the African rift system has already proved of great value in structural geological studies. One of the interesting megastructures expressed on the imagery occurs some 40 km east of the eastern margin of the main Ethiopian rift, in Arussi province, and extending between latitude 71/2 and 81/4 deg N. The Badda-Encuolo ridge proves to have been a line of major Tertiary volcanism and probably supplied the thick Trap Series flood basalt sequence exposed farther east in the canyons of the Webi Shebeli drainage system. The ridge itself was built up by the waning activity of the Sagatu line of volcanism. Serendipitious has been the discovery on Mt. Badda of several deeply glaciated valleys, many of which show clearly on the ERTS-1 imagery. It seems that Mt. Badda was one of the most important glacial centers in eastern Africa during the Pleistocene. Three major late-Tertiary trachytic centers lie between the Badda-Encuolo ridge and the rift valley. The relationships of these three volcanoes to each other and to the rift faulting is revealed for the first time by the ERTS-1 imagery, as is the form of the cladera of Baltata and the crater of Chilalo.

  16. Seismicity of the Earth 1900-2013 East African Rift

    USGS Publications Warehouse

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    Rifting in East Africa is not all coeval; volcanism and faulting have been an ongoing phenomenon on the continent since the Eocene (~45 Ma). The rifting began in northern East Africa, and led to the separation of the Nubia (Africa) and Arabia plates in the Red Sea and Gulf of Aden, and in the Lake Turkana area at the Kenya-Ethiopia border. A Paleogene mantle superplume beneath East Africa caused extension within the Nubia plate, as well as a first order topographic high known as the African superswell which now includes most of the eastern and southern sectors of the Nubia plate. Widespread volcanism erupted onto much of the rising plateau in Ethiopia during the Eocene-Oligocene (45–29 Ma), with chains of volcanoes forming along the rift separating Africa and Arabia. Since the initiation of rifting in northeastern Africa, the system has propagated over 3,000 km to the south and southwest, and it experiences seismicity as a direct result of the extension and active magmatism.

  17. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii.

    PubMed

    Amelung, Falk; Yun, Sang-Ho; Walter, Thomas R; Segall, Paul; Kim, Sang-Wan

    2007-05-18

    Mauna Loa volcano, Hawaii, deforms by a combination of shallow dike intrusions in the rift zones and earthquakes along the base of the volcano, but it is not known how the spreading is accommodated in the lower part of the volcanic edifice. We present evidence from interferometric synthetic aperture radar data for secular inflation of a dike-like magma body at intermediate depth in the southwest rift zone during 2002 to 2005. Magma accumulation occurred in a section of the rift zone that was unclamped by previous dikes and earthquakes, suggesting that stress transfer plays an important role in controlling subsurface magma accumulation.

  18. Larsen C Rift Growth

    Atmospheric Science Data Center

    2017-04-17

    ... to 110 miles (175 km) long, making it inevitable that an iceberg larger than Rhode Island will soon calve from the ice shelf. Larsen C ... December and April, the rift widened, pushing the future iceberg away from the shelf at its southern end. These data were acquired ...

  19. Rift Valley Fever Review

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. A Phlebovirus in the family Bunyaviridae causes the disease that is transmitted by mosquitoes. Epidemics occur during years of unusually heavy rainfall that assessment models are being develo...

  20. Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling

    NASA Astrophysics Data System (ADS)

    Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.

    2017-08-01

    Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.

  1. Continental rifting - Progress and outlook

    NASA Technical Reports Server (NTRS)

    Baker, B. H.; Morgan, P.

    1981-01-01

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  2. Continental rifting - Progress and outlook

    SciTech Connect

    Baker, B.H.; Morgan, P.

    1981-07-21

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  3. The Meliata and Piemont-Ligurian rifted margins: stratigraphic record and tectonic evolution of polyphase rift systems

    NASA Astrophysics Data System (ADS)

    Decarlis, Alessandro; Manatschal, Gianreto; Masini, Emmanuel

    2013-04-01

    The Late Permian to Late Jurassic paleogeographic evolution of the Alpine domain was strongly controlled by the formation of polyphase rift systems. If these rift systems are the result of a single, long lasting rifting event or if they are generated by two distinct rift pulses, is still a matter of debate. Recent studies seem to agree on the second hypothesis, supporting two distinct rift events: one Early-Middle Triassic (Meliata s.l.) and one Early to Middle Jurassic (Piemont-Liguria s.l.). Nevertheless major incertitudes arise on the interpretations of the evolution of the former rifting, which lead to multiple or single, continuous oceanic branches. This uncertainity is mainly due to the successive orogenic overprint related to the formation of the Alpine belt and of the Western Mediterranean domain. The aim of this work is to explore how rifting events are recorded by the stratigraphic and structural evolution using both the vast existing literature and own observations. Selected areas belonging to different paleogeographic domains in the Alpine realm (Southalpine, Brianconnais s.l. and Austroalpine) will be studied in order to define relevant time-marker levels to map and correlate the temporal and spatial evolution of rift events. With this "basinal" approach we point to major tectonic events, filtering smaller-scale tectonics and minor environmental controlling factors on sedimentation. Our final goal is to identify "fingerprints" for major rifting events that may reveal the location and timing of hyper-extended domains. The evaporitic successions, the development of thick carbonate platforms, their demise or drowning, the iron-manganese hardgrounds sedimentation that could represent a response of hydrothermal circulation associated with hyper-extension, may correspond to correlable and mappable residues of large-scale, hyper-extended rift events. This data, together with subsidence analysis, basement and volcanics data provide a major, well constrained

  4. Concentration of strain in a marginal rift zone of the Japan backarc during post-rift compression

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ishiyama, T.; Kato, N.; Abe, S.; Shiraishi, K.; Inaba, M.; Kurashimo, E.; Iwasaki, T.; Van Horne, A.; No, T.; Sato, T.; Kodaira, S.; Matsubara, M.; Takeda, T.; Abe, S.; Kodaira, C.

    2015-12-01

    Late Cenozoic deformation zones in Japan may be divided into two types: (1) arc-arc collision zones like those of Izu and the Hokkaido axial zone, and (2) reactivated back-arc marginal rift (BMR) systems. A BMR develops during a secondary rifting event that follows the opening of a back-arc basin. It forms close to the volcanic front and distant from the spreading center of the basin. In Japan, a BMR system developed along the Sea of Japan coast following the opening of the Japan Sea. The BMR appears to be the weakest, most deformable part of the arc back-arc system. When active rifting in the marginal basins ended, thermal subsidence, and then mechanical subsidence related to the onset of a compressional stress regime, allowed deposition of up to 5 km of post-rift, deep-marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, in thin-skin style deformation. Shortening reached a maximum in the BMR system compared to other parts of the back-arc, suggesting that it is the weakest part of the entire system. We examined the structure of the BMR system using active source seismic investigation and earthquake tomography. The velocity structure beneath the marginal rift basin shows higher P-wave velocity in the upper mantle/lower crust which suggests significant mafic intrusion and thinning of the upper continental crust. The syn-rift mafic intrusive forms a convex shape, and the boundary between the pre-rift crust and the mafic intrusive dips outward. In the post-rift compressional stress regime, the boundary of the mafic body reactivated as a reverse fault, forming a large-scale wedge thrust and causing further subsidence of the rift basin. The driver of the intense shortening event along the Sea of Japan coast in SW Japan was the arrival of a buoyant young (15 Ma) Shikoku basin at the Nankai Trough. Subduction stalled and the backarc was compressed. As the buoyant basin cooled, subduction resumed, and the rate of

  5. Volcanic rocks

    USGS Publications Warehouse

    1986-01-01

    Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. Often the remnants of an eruption are as revealing as the eruption itself, for they tell us many things about the eruption. Included here are examples of several volcanic products and other magmatic features, with descriptions of how they were formed and what they tell us about volcanism.

  6. Volcanic winters

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Self, Stephen; Stothers, Richard B.

    1988-01-01

    The impact of volcanic eruptions on weather and climate is considered. The data from nineteenth-century eruptions is examined, showing the importance of sulfur volatiles for climate change. Information obtained from ice cores is discussed, and the contrasts between the eruptions of Mt. St. Helens and El Chichon are pointed out. The atmospheric effects of the greatest historic eruptions are recalled. The potential for the occurrence of 'volcanic winters' and the possible role of volcanism in mass extinctions are considered.

  7. Recent seismic activity of the Kivu Province, Western Rift Valley of Africa

    NASA Astrophysics Data System (ADS)

    Zana, N.; Kamba, M.; Katsongo, S.; Janssen, Th.

    1989-11-01

    The Kivu Province is located at the junction between the well-defined Ruzizi Valley to the south and the Lake Amin Trough to the north. In this zone, the Rift Valley is characterized by the highest uplift and by complex dislocations of the crust, accompanied by the most intensive volcanism of the East African Rift System. In this paper, we show the recent state of the seismic activity of this zone in connection with the seismic activity generated by the volcanoes Nyiragongo and Nyamuragira. The pattern of cumulative energy release by these volcanoes shows a steplike increase that is believed to be a precursor of volcanic eruptions.

  8. Magmatism During Rifting Controls the Polarity of Tilted Blocks

    NASA Astrophysics Data System (ADS)

    Chauvet, F.; Bourgeois, O.; Dauteuil, O.

    2009-12-01

    Magma-poor rifts, such as non-volcanic passive continental margins (e.g. Galicia) and slow-spreading oceanic ridges (e.g. Mid-Atlantic Ridge), are composed of faulted crustal blocks that dip generally away from the rift axis. By contrast, magma-rich rifts, such as volcanic passive margins (e.g. Norway, Namibia and the obducted paleo-volcanic margin of Oman) and hotspot-influenced slow-spreading oceanic ridges (e.g. Iceland), are composed of faulted crustal blocks that dip generally towards the rift axis. At volcanic passive margins, these tilted blocks are overlain by syn-tectonic volcano-sedimentary sequences that appear on seismic profiles as packages of seaward-dipping reflectors (SDRs). They are associated with swarms of magmatic dikes and sills. On the basis of a detailed structural study of Iceland (Bourgeois et al. 2005, Geodinamica Acta 18:59-80), we demonstrate that, in magma-rich rifts, lithospheric stretching is accomodated in a long-term deformation strip, n x 100 km wide, by the development of successive roll-over structures controlled by growth-faults and underlain by shallow magma chambers. As a given roll-over structure progressively develops and tilts in response to lithospheric stretching, it is continuously covered by lavas erupted from the associated magma chamber and reaching the surface through dike swarms dominantly located along the growth fault. After a lifetime of a few My, this roll-over structure dies at the expense of the activation of a new, laterally offset, one. Correspondingly, such roll-over structures form successively at different places within a diffuse plate boundary n x 100 km wide. After several roll-over structures have developed and died, the overall structure of the long-term deformation strip is composed of faulted crustal blocks that generally dip towards the rift axis and that are covered by volcano-sedimentary sequences. Physical laboratory experiments conducted with analogue materials demonstrate that this peculiar

  9. The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the greater Olkaria volcanic complex, Kenya Rift valley

    USGS Publications Warehouse

    Macdonald, R.; Belkin, H.E.; Fitton, J.G.; Rogers, N.W.; Nejbert, K.; Tindle, A.G.; Marshall, A.S.

    2008-01-01

    The Greater Olkaria Volcanic Complex is a young (???20 ka) multi-centred lava and dome field dominated by the eruption of peralkaline rhyolites. Basaltic and trachytic magmas have been erupted peripherally to the complex and also form, with mugearites and benmoreites, an extensive suite of magmatic inclusions in the rhyolites. The eruptive rocks commonly represent mixed magmas and the magmatic inclusions are themselves two-, three- or four-component mixes. All rock types may carry xenocrysts of alkali feldspar, and less commonly plagioclase, derived from magma mixing and by remobilization of crystal mushes and/or plutonic rocks. Xenoliths in the range gabbro-syenite are common in the lavas and magmatic inclusions, the more salic varieties sometimes containing silicic glass representing partial melts and ranging in composition from anorthite ?? corundum- to acmite-normative. The peralkaline varieties are broadly similar, in major element terms, to the eruptive peralkaline rhyolites. The basalt-trachyte suite formed by a combination of fractional crystallization, magma mixing and resorption of earlier-formed crystals. Matrix glass in metaluminous trachytes has a peralkaline rhyolitic composition, indicating that the eruptive rhyolites may have formed by fractional crystallization of trachyte. Anomalous trace element enrichments (e.g. ??? 2000 ppm Y in a benmoreite) and negative Ce anomalies may have resulted from various Na- and K-enriched fluids evolving from melts of intermediate composition and either being lost from the system or enriched in other parts of the reservoirs. A small group of nepheline-normative, usually peralkaline, magmatic inclusions was formed by fluid transfer between peralkaline rhyolitic and benmoreitic magmas. The plumbing system of the complex consists of several independent reservoirs and conduits, repeatedly recharged by batches of mafic magma, with ubiquitous magma mixing. ?? The Author 2008. Published by Oxford University Press. All

  10. Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations: a review

    USGS Publications Warehouse

    Behrendt, John C.

    1999-01-01

    The active West Antarctic Rift System, which extends from the continental shelf of the Ross Sea, beneath the Ross Ice Shelf and the West Antarctic Ice Sheet, is comparable in size to the Basin and Range in North America, or the East African rift systems. Geophysical surveys (primarily marine seismic and aeromagnetic combined with radar ice sounding) have extended the information provided by sparse geologic exposures and a few drill holes over the ice and sea covered area. Rift basins developed in the early Cretaceous accompanied by the major extension of the region. Tectonic activity has continued episodically in the Cenozoic to the present, including major uplift of the Transantarctic Mountains. The West Antarctic ice sheet, and the late Cenozoic volcanic activity in the West Antarctic Rift System, through which it flows, have been coeval since at least Miocene time. The rift is characterized by sparse exposures of late Cenozoic alkaline volcanic rocks extending from northern Victoria Land throughout Marie Byrd Land. The aeromagnetic interpretations indicate the presence of > 5 x 105 km2 (> 106 km3) of probable late Cenozoic volcanic rocks (and associated subvolcanic intrusions) in the West Antarctic rift. This great volume with such limited exposures is explained by glacial removal of the associated late Cenozoic volcanic edifices (probably hyaloclastite debris) concomitantly with their subglacial eruption. Large offset seismic investigations in the Ross Sea and on the Ross Ice Shelf indicate a ~ 17-24-km-thick, extended continental crust. Gravity data suggest that this extended crust of similar thickness probably underlies the Ross Ice Shelf and Byrd Subglacial Basin. Various authors have estimated maximum late Cretaceous-present crustal extension in the West Antarctic rift area from 255-350 km based on balancing crustal thickness. Plate reconstruction allowed < 50 km of Tertiary extension. However, paleomagnetic measurements suggested about 1000 km of post

  11. Seismological Constraints on the Magmato-tectonic Behavior of the Asal-Ghoubbet Rift (Afar Depression, Republic of Djibouti) Since the Last 1978-Rifting Episode

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Manighetti, I.; Bertil, D.; Dorbath, C.; Dorbath, L.; Jacques, E.

    2004-12-01

    The Asal-Ghoubbet rift was the locus of a seismic and volcanic crisis in 1978 followed by 8 years of rapid opening (60 mm/yr) before returning to its long-term opening rate of 16 mm/yr. We analyze the space-time evolution of the seismicity that occurred in the rift between 1979 and 2001. The data recorded by the Djibouti Observatory provide only hypocentral locations before 1995 and P and S-wave arrival times since 1996. Additional data acquired during a five months experiment in 2000-2001 allowed us to determine a 3D-velocity model of the rift, used to precisely relocate post 1996 events. The 2545 small-magnitude earthquakes (Md ≤ 3.2) recorded in the rift since the 1978 crisis provide a negligible contribution to the total extension across the rift, which occurs essentially aseismically. The temporal evolution of the seismicity reveals two distinct phases consistent with those observed in the geodetic data. The post-crisis period (1979-1986) is characterized by large-magnitude earthquakes exclusively located below the northern rift shoulder. These events are associated with the contraction of the side of the rift resulting from the fast opening of the central dyke system. The subsequent period (1987-2001) corresponding to normal opening rate across the rift is characterized by a micro-seismicity essentially located below the major rift caldera (Fieale). Most recorded events during this period concentrate within the rift inner floor at the top of an aseismic, low velocity zone located below the Fiale caldera, which we interpret as hot material above the magma chamber. Outside from post-crisis periods, the seismicity tends to cluster in time in response to stress changes in the brittle layer induced by episodic magmatic movements.

  12. Volcanic hazards on the Island of Hawaii

    USGS Publications Warehouse

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  13. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the

  14. [Rift valley fever].

    PubMed

    Markin, V A; Pantiukhov, V B; Markov, V I; Bondarev, V P

    2012-01-01

    In the last quarter of century virus of Rift valley fever (RVF) sharply extended its distribution by moving from Africa to Asia and evolving from low- to high pathogenic for humans causing severe hemorrhagic disease, practically equaling in this respect with some members ofa group of extremely dangerous pathogens. Morbidity and epidemics of RVF are analyzed. Evolution of epidemic development of the infection is examined. Necessity of development of means and methods for diagnostics, prophylaxis and therapy of RVF is underlined.

  15. Evolution of the central Rio Grande rift, New Mexico: New potassium-argon ages

    NASA Astrophysics Data System (ADS)

    Baldridge, W. S.; Damon, P. E.; Shafiqullah, M.; Bridwell, R. J.

    1980-12-01

    New K sbnd Ar age determinations on mid-Oligocene to Pleistocene volcanic and shallow intrusive rocks from the central Rio Grande rift permit a more detailed understanding of the tectonic and magmatic history of the rift. Initial extension in the region of the central rift may have begun prior to 27 m.y. ago. By 25 m.y. ago broad basins existed and were filling with volcaniclastic sediments derived mainly from volcanic centers in the San Juan and Questa areas. Continued tectonic activity narrowed these basins by 21-19 m.y. ago, indicated in the Santa Fe area by tilting and faulting that immediately postdate 20-m.y.-old latite. Uplift of the Sangre de Cristo, Sandia, and Nacimiento Mountains shed clastic debris of the Santa Fe Group into these basins. Early rift magmatism is characterized by an overlap of mid-Tertiary intermediate intrusive and extrusive activity, extending to 20 m.y. ago, with mafic and ultramafic volcanism, ranging from 25 to 19 m.y. Both volcanism and tectonic activity were minimal during the middle Miocene. About 13 m.y. ago renewed volcanic activity began. Tectonism commenced in the late Miocene, resulting in the present, narrow grabens. The term "Rio Grande rift" should be restricted to these grabens formed during post-mid-Miocene deformation. Widespread eruption of tholeiitic and alkali olivine basalts occurred 3-2 m.y. ago. The Rio Grande drainage system was integrated 4.5-3 m.y. ago, leading to the present erosional regime. These intervals of deformation and magmatism correspond generally with a similar sequence of events in the Basin and Range province south of the Colorado Plateau. This similarity indicates that the Rio Grande rift is not a unique structure in the southwestern U.S., and must be related to the larger context of the entire Basin and Range province.

  16. Analogies Between the East African Rift Around the Tanzania Craton and the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Montesi, L. G.

    2013-12-01

    Continental rifts and oceanic spreading centers both accommodate plate divergence but their morphologies are often quite different. Yet, ultraslow spreading centers, especially the Southwest Indian ridge at the 9 to 16°E area (SWIR), present good analogies for the East African Rift (EAR), including localized volcanism, avolcanic segments, and a continuous but not straight rift axis. The archetypal oceanic spreading center features transform offsets. Volcanism is continuous along the ridge axis and is most vigorous at the center of spreading segments. By contrast, continental rifts do not feature transform offsets. The orientation of the rift can change along strike. Several rift segments are purely tectonic, with relatively isolated volcanic centers. The EAR around the Tanzania Craton clearly shows this kind of morphology. Ultraslow spreading centers share many of these features. The SWIR, in particular, displays dramatic changes in orientation, with volcanism localized at the junction between segments of different obliquity. Melt production and transport are controlled by the effective spreading rate, a combination of plate divergence velocity and rift obliquity. Ultraslow spreading center all have an effective spreading rate less than 13 mm/yr. At that speed the thickness of the thermal boundary layer is similar to the depth from which magma can be effectively extracted, opening the possibility for long-distance transport of magma along axis without extraction. Volcanic centers correspond to the location where the magma transport system first encounters a tectonically damaged zone that enables extraction to the surface. The effective velocity of the EAR in the Kenya dome is less than 4mm/yr firmly on par with ultraslow ridges. In fact, to generate magma by mantle upwelling at such a slow opening rate requires a higher mantle temperature or fertility than in the oceanic domain. Both opening rate and effective velocity increase northward along the Eastern branch

  17. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  18. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  19. Recent geodynamics and evolution of the Moma rift, Northeast Asia.

    NASA Astrophysics Data System (ADS)

    Imaev, V. S.; Imaeva, L. P.; Kozmin, B. M.; Fujita, K. S.; Mackey, K. G.

    2009-04-01

    springs with temperatures up to +20°C are found within the Moma and Selnnyakh basins proper.The crustal inhomogeneity is also reflected in the upper mantle as indicated by a 40° rotation of the Rayleigh wave polarization angle from teleseisms recorded at Tiksi that cross the Moma rift system as opposed to those that do not. Cenozoic volcanism, chemically similar to basalts and rhyolites from rift zones elsewhere is found in the Moma rift proper. Balagan-Tas is a basaltic cinder cone which has been dated at 286,000 years based on Ar-Ar dating, while Uraga-Khaya is an undated, presumed Quaternary, rhyolitic dome. All these factors indicate that the Moma rift system originated as a continental rift, probably as an extension of the Arctic (Gakkel) Mid-Ocean Ridge. At the present, however, compressional conditions prevail within the Moma rift zone. Seismicity is generally absent from the rift basins proper or their margins; most seismicity is concentrated to the southwest of the Moma rift basins along major strike-slip fault systems. Focal mechanisms of the largest earthquakes in the Chersky Range also all show transpression. Field mapping indicates that the majority of the faults mapped in the field are strike-slip, thrust and reverse faults (86%) with only a small number of normal faults (14%) and that the Cenozoic deposits within the Moma rift are intensely folded. Re-leveling surveys conducted along the Indigirka River, which cuts across the Moma rift system, reveal a moderate rate of presnt-day vertical uplift (up to +4 mm/yr). Thus, the Moma rift system is no longer acting as a rift, but is undergoing transpression. This conclusion is also supported by recent plate motion calculations based on GPS and VLBI data, as well as slip-vectors of earthquakes, which indicates that the Euler pole between North America and Eurasia is located around 68-70°N, near the coast of the Laptev Sea. This places the Moma rift system in a zone of convergence between North America and

  20. Volcanic mesocyclones.

    PubMed

    Chakraborty, Pinaki; Gioia, Gustavo; Kieffer, Susan W

    2009-03-26

    A strong volcanic plume consists of a vertical column of hot gases and dust topped with a horizontal 'umbrella'. The column rises, buoyed by entrained and heated ambient air, reaches the neutral-buoyancy level, then spreads radially to form the umbrella. In classical models of strong volcanic plumes, the plume is assumed to remain always axisymmetric and non-rotating. Here we show that the updraught of the rising column induces a hydrodynamic effect not addressed to date-a 'volcanic mesocyclone'. This volcanic mesocyclone sets the entire plume rotating about its axis, as confirmed by an unprecedented analysis of satellite images from the 1991 eruption of Mount Pinatubo. Destabilized by the rotation, the umbrella loses axial symmetry and becomes lobate in plan view, in accord with satellite records of recent eruptions on Mounts Pinatubo, Manam, Reventador, Okmok, Chaiten and Ruang. The volcanic mesocyclone spawns waterspouts or dust devils, as seen in numerous eruptions, and groups the electric charges about the plume to form the 'lightning sheath' that was so prominent in the recent eruption of Mount Chaiten. The concept of a volcanic mesocyclone provides a unified explanation for a disparate set of poorly understood phenomena in strong volcanic plumes.

  1. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2015-12-01

    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  2. Crustal structure beneath the Kenya Rift from axial profile data

    USGS Publications Warehouse

    Mechie, J.; Keller, Gordon R.; Prodehl, C.; Gaciri, S.; Braile, L.W.; Mooney, W.D.; Gajewski, D.; Sandmeier, K.-J.

    1994-01-01

    Modelling of the KRISP 90 axial line data shows that major crustal thinning occurs along the axis of the Kenya Rift from Moho depths of 35 km in the south beneath the Kenya Dome in the vicinity of Lake Naivasha to 20 km in the north beneath Lake Turkana. Low Pn velocities of 7.5-7.7 km/s are found beneath the whole of the axial line. The results indicate that crustal extension increases to the north and that the low Pn velocities are probably caused by magma (partial melt) rising from below and being trapped in the uppermost kilometres of the mantle. Along the axial line, the rift infill consisting of volcanics and a minor amount of sediments varies in thickness from zero where Precambrian crystalline basement highs occur to 5-6 km beneath the lakes Turkana and Naivasha. Analysis of the Pg phase shows that the upper crystalline crust has velocities of 6.1-6.3 km/s. Bearing in mind the Cainozoic volcanism associated with the rift, these velocities most probably represent Precambrian basement intruded by small amounts of igneous material. The boundary between the upper and lower crusts occurs at about 10 km depth beneath the northern part of the rift and 15 km depth beneath the southern part of the rift. The upper part of the lower crust has velocities of 6.4-6.5 km/s. The basal crustal layer which varies in thickness from a maximum of 2 km in the north to around 9 km in the south has a velocity of about 6.8 km/s. ?? 1994.

  3. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  4. Contour mapping of relic structures in the Precambrian basement of the Reelfoot rift, North American midcontinent

    USGS Publications Warehouse

    Dart, R.L.; Swolfs, H.S.

    1998-01-01

    A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.

  5. Axial, Brownbear and Cobb Seamounts: Examples of Growth and Demise of the Submarine Volcanic Edifice through Time.

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Merle, S. G.

    2014-12-01

    Axial, Brownbear and Cobb Seamounts, located along and to the west of the Juan de Fuca Ridge (JdFR), are the most recent volcanic expressions of the Cobb Hotspot. Cobb Seamount is the oldest (3.3 Ma) and furthest from the hotspot source. Cobb exhibits a circular volcanic edifice that rises from ~2800 m at its base to within 34 m of the sea surface. Multibeam bathymetry of Cobb indicates there are wave-cut terraces at the summit, as well as landslide scars along the flanks of the volcano. Brownbear Seamount (0.5-1.5 Ma) has an elongated (N-S) shape, which indicates an interaction of the hotspot plume with the extensional-stress field of the JdF spreading center. Brownbear also has two (~4 km wide) summit calderas which likely formed due to collapse once plate motion moved the seamount west of the magma source. Axial Seamount, in contrast, is the volcanic edifice directly above hotspot plume and is therefore in a constructional phase. Axial also straddles the ridge and because of this exhibits an elongate structure with well defined rift zones forming its northern and southern flanks. Axial also has a single large summit caldera (~8 km wide) which has been the location of two eruptions in 1998 and 2011 which produced extensive lava flows within the caldera and down the south rift zone. We will present multibeam bathymetry of these three volcanoes, and include the results of previous surveys and observations, to infer the evolution of the volcanic construction and destruction processes through time along this seamount chain.

  6. Volcanic Complexity

    NASA Image and Video Library

    2014-03-07

    This image from NASA 2001 Mars Odyssey spacecraft shows a small region between Olympus Mons and Sulci Gordii. There are lava flows, tectonic depressions and channels visible in the image. All the features are related to the volcanism.

  7. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.

    2005-12-01

    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  8. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  9. Io volcanism

    SciTech Connect

    Carr, M.H.

    1985-01-01

    Io is the most volcanically active body in the Solar System. The Voyage spacecraft observed nine active eruption plumes in 1979, and detected numerous thermal anomalies. Loki the most active volcanic region has been emitting 1.5 x 10/sup 13/ W over the last few years. Many of the volcanic features have been interpreted as the result of sulfur volcanism because 1) the spectral reflectance of the surface resembles sulfur, 2) SO/sub 2/ has been positively identified, 3) the satellite leaves a trail of sulfur atoms in its wake; and 4) many of the hot spots have surfaces temperatures less than 400/sup 0/K, compatible with low-temperature melts. The evidence for sulfur has led to suggestions of sulfur lava flows hundreds of kilometers long, and sulfur lava lakes as large as Lake Erie. The observations are, however, equally compatible with basaltic volcanism. Modeling of the cooling of basaltic lava flows indicates that regions of basaltic volcanism on Io should have temperatures similar to those detected by the Voyager spacecraft. High eruption rates are required. High rates of fumarolic activity accompanying the eruptions and expulsion of volatiles by the plumes give the surface its sulfur-like spectral reflectance.

  10. Geomorphic evolution of the Piton des Neiges volcano (Réunion Island, Indian Ocean): Competition between volcanic construction and erosion since 1.4 Ma

    NASA Astrophysics Data System (ADS)

    Salvany, Tiffany; Lahitte, Pierre; Nativel, Pierre; Gillot, Pierre-Yves

    2012-01-01

    Réunion Island (Indian Ocean) is a volcanic complex whose eruptive history was dominated by the activity of two main edifices: Piton des Neiges (PN) and Piton de la Fournaise (PF) volcanoes. The tropical climate induces erosion processes that permanently compete with volcanic constructional processes. Exposed to the trade winds and associated heavy rainfalls, the northeastern part of the island exhibits the most complex morphological evolution. Geomorphological analysis, performed on a 50 m DEM and associated to new K-Ar ages has clarified the overall history of PN volcano. Each massif is assigned to one of the main building stages of the edifice. In addition, the arrangement of these different massifs reveals that the eruptive phases have led to successive relief inversions and successive excavations of large central depressions in the proximal area. As a result, the younger massifs are always located in more proximal parts of the volcano, the youngest being close to the edifice center. In distal areas, early lava flows were channeled into valleys incised along the massif boundaries, leading to a more complex geochronological organization. Quantitative study of the dissection of PN volcano allows us to propose a minimum eroded volume of 101 ± 44 and 105 ± 41 km 3 for the Mafate and Cilaos "Cirques" (depressions), respectively, during the last 180 kyr and a minimum average long-term erosion rate of 1.2 ± 0.4 km 3/ka. This leads us to estimate the removed volume during the whole history of PN volcano (> 1000 km 3) as equivalent to the volume of the deposits identified on the submarine flanks of Piton des Neiges volcano. Therefore, as regressive erosion appears to be the prevailing geomorphic process during the whole PN history, it questions the presence of major flank collapses younger than 1.4 Ma on this volcano. Erosion processes have largely been neglected in recent models, but our study emphasizes them as a key component of landscape development and a major

  11. Magnetotelluric pilot study in the Rio Grande Rift, southwest USA

    NASA Astrophysics Data System (ADS)

    Feucht, D. W.; Bedrosian, P. A.; Sheehan, A. F.

    2012-12-01

    A magnetotelluric (MT) pilot study consisting of approximately 25 stations distributed in and around the Rio Grande Rift of the southwest United States was carried out in the summer of 2012. Both broadband (100 Hz to 1000 s) and long-period (up to 10 000 s) MT data were collected across two profiles that run perpendicular to the rift axis near Denver, Colorado and Taos, New Mexico, respectively. Time-domain EM data was also collected at each site to account for galvanic distortion in the near-surface. The tectonic forces and rheologic properties behind the initiation and propagation of the rift are poorly understood. Surface mapping of volcanism, normal faulting and sedimentary basins reveals a narrow band of crustal deformation confined to a region in close proximity to the rift axis while geophysical results suggest that deformation is distributed across a much broader and deeper region of the lithosphere. In particular, seismic tomography shows low seismic wave speeds into the lower crust and upper mantle. The magnetotelluric technique is a well-proven passive electromagnetic method that allows for the detection of apparent resistivity at a wide range of depth scales. Complimenting the seismic results with MT data will provide important new information on the geologic and geophysical properties that control the rifting process in this low-strain rate environment. Properties to which the MT method is particular sensitive include temperature, fluid content, and mineral alteration. Preliminary results from this most recent survey are encouraging, showing good data quality up to 10 000 s. In an important precursor to full 2D modeling, the magnetotelluric phase tensor has been used to assess the dimensionality of the electrical resistivity structure at depth. This pilot study provides proof of concept for a much larger magnetotelluric experiment planned to take place in the Rio Grande Rift in 2013.

  12. Flexural analysis of uplifted rift flanks on Venus

    NASA Technical Reports Server (NTRS)

    Evans, Susan A.; Simons, Mark; Solomon, Sean C.

    1992-01-01

    Knowledge of the thermal structure of a planet is vital to a thorough understanding of its general scheme of tectonics. Since no direct measurements of heat flow or thermal gradient are available for Venus, most estimates have been derived from theoretical considerations or by analog with the Earth. The flexural response of the lithosphere to applied loads is sensitive to regional thermal structure. Under the assumption that the yield strength as a function of depth can be specified, the temperature gradient can be inferred from the effective elastic plate thickness. Previous estimates of the effective elastic plate thickness of Venus range from 11-18 km for the foredeep north of Uorsar Rupes to 30-60 km for the annular troughs around several coronae. Thermal gradients inferred for these regions are 14-23 K km(exp -1) and 4-9 K km(exp -1) respectively. In this study, we apply the same techniques to investigate the uplifted flanks of an extensional rift. Hypotheses for the origin of uplifted rift flanks on Earth include lateral transport of heat from the center of the rift, vertical transport of heat by small-scale convection, differential thinning of the lithosphere, dynamical uplift, and isostatic response to mechanical uploading of the lithosphere. The 1st hypothesis is considered the dominant contributor to terrestrial rift flanks lacking evidence for volcanic activity, particularly for rift structures that are no longer active. In this study, we model the uplifted flanks of a venusian rift as the flexural response to a vertical end load.

  13. Influence of successive phases of volcanic construction and erosion on Mayotte Island's hydrogeological functioning as determined from a helicopter-borne resistivity survey correlated with borehole geological and permeability data

    NASA Astrophysics Data System (ADS)

    Vittecoq, B.; Deparis, J.; Violette, S.; Jaouën, T.; Lacquement, F.

    2014-02-01

    The purpose of this study is to show how a multidisciplinary approach that combines geophysics, geology and hydrogeology has made it possible to: (a) significantly improve our understanding of the hydrogeological regime of the volcanic island of Mayotte, and (b) provide a new set of geophysical measurement calibration data. In 2010 a helicopter-borne geophysical survey (SkyTEM) was flown over the entire island (374 km2) with a measurement density hitherto unheard of in a volcanic environment. In addition, a database was compiled containing the geological logs of 55 boreholes. 52 of these boreholes have hydrogeological information like aquifer position and piezometric level. 21 of the boreholes have transmissivity values. Correlations were made between the inverted resistivities as obtained from the helicopter-borne TDEM profiles and the nature, age and hydrodynamic properties of the formations as obtained from the borehole data. Five hydrogeological units were mapped. These are characterized by an alternation between phases of dominant volcanic construction, with the emplacement of basaltic lavas, phonolite massifs and pyroclastic deposits, and phases of dominant erosion with the deposition of volcaniclastic material (colluvium, breccias, basaltic lavas and phonolite blocks and all materials resulting from slope slides) along the slopes and in the topographic depressions. It has also been possible to assign resistivity and permeability ranges to four of these units. Ranges that are also dependent on the age of the deposits: the younger the formation is, the greater its resistivity and the higher its permeability. The hydrogeological regime is marked by the phases of volcanic construction and erosion that succeeded one another during the geological history of Mayotte over the last 10 Ma. A conceptual model adapted to the specific geological context of this island, and differing from the Canarian and Hawaiian models, is also put forward. This model is marked by the

  14. Geomorphology of the central Red Sea Rift: Determining spreading processes

    NASA Astrophysics Data System (ADS)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Ligi, Marco; Kwasnitschka, Tom; Feldens, Peter; Bantan, Rashad A.; Basaham, Ali S.

    2016-12-01

    Continental rifting and ocean basin formation is occurring today in the Red Sea, providing a possible modern analogue for the creation of mid-ocean ridges. Yet many of the seafloor features observed along the axis of the Red Sea appear anomalous compared to ancient and modern examples of mid-ocean ridges in other parts of the world, making it unclear, until recently, whether the Red Sea is truly analogous. Recent work suggests that the main morphological differences between the Red Sea Rift (RSR) and other mid-ocean ridges are due to the presence and movement of giant, submarine salt flows, which blanket large portions of the rift valley and thereby the oceanic crust. Using ship-based, high-resolution multibeam bathymetry of the central RSR between 16.5°N and 23°N we focus here on the RSR volcanic terrains not covered by salt and sediments and compare their morphologies to those observed along slow and ultra-slow spreading ridges elsewhere. Regional variations in style and intensity of volcanism can be related to variations in volcanic activity and mantle heat flow. The Red Sea oceanic seafloor shows typical features of mature (ultra)slow-spreading mid-ocean ridges, such as 2nd order discontinuities (overlapping spreading centres) and magma focussing in the segment centres (forming spreading-perpendicular volcanic ridges of thick oceanic crust). The occurrence of melt-salt interaction at locations where salt glaciers blanket the neovolcanic zone, and the absence of large detachment faults are unique features of the central RSR. These features can be related to the young character of the Red Sea and may be applicable to all young oceanic rifts, associated with plumes and/or evaporites. Thus, the RSR falls in line with (ultra)slow-spreading mid-ocean ridges globally, which makes the Red Sea a unique but highly important type example for initiation of slow rifting and seafloor spreading and one of the most interesting targets for future ocean research.

  15. The magmatic budget of Atlantic type rifted margins: is it related to inheritance?

    NASA Astrophysics Data System (ADS)

    Manatschal, Gianreto; Tugend, Julia; Picazo, Suzanne; Müntener, Othmar

    2016-04-01

    In the past, Atlantic type rifted margins were either classified as volcanic or non-volcanic. An increasing number of high quality reflection and refraction seismic surveys and drill hole data show a divergent style of margin architecture and an evolution in which the quantity and distribution of syn-rift magmatism is variable, independently of the amount of extension. Overgeneralized classifications and models assuming simple relations between magmatic and extensional systems are thus inappropriate to describe the formation of rifted margins. More recent studies show that the magmatic evolution of rifted margins is complex and cannot be characterized based on the volume of observed magma alone. On the one hand, so-called "non-volcanic" margins are not necessarily amagmatic, as shown by the results of ODP drilling along the Iberia-Newfoundland rifted margins. On the other hand, magma-rich margins, such as the Norwegian, NW Australian or the Namibia rifted margins show evidence for hyper-extension prior to breakup. These observations suggest that the magmatic budget does not only depend on extension rates but also on the composition and temperature of the decompressing mantle. Moreover, the fact that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far inheritance may control the magmatic budget during rifting. In our presentation we will review results from the South and North Atlantic and the Alpine Tethys domain and will discuss the structural and magmatic evolution of so-called magma-rich and magma-poor rifted margins. In particular, we will try to define when, where and how much magma forms during rifting and lithospheric breakup. The key questions that we aim to address

  16. Breaking the paradigm at magma-poor and magma-rich rifted margins

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Gillard, Morgane; Nirrengarten, Michael; Epin, Marie-Eva; Sauter, Daniel; Autin, Julia; Harkin, Caroline; Kusznir, Nick

    2017-04-01

    Rifted margins used to be classified into volcanic or non-volcanic passive margins. Because magmatism is evidenced even in so-called 'non-volcanic' settings, this terminology was later adjusted to magma-poor and magma-rich rifted margins. This classification represents a simplification into end-member magmatic types depending on the magmatic budget related to rifting and/or breakup processes. New observations derived from higher quality geophysical data sets and drill-hole data revealed the great diversity of rifted margin architecture and highly variable distribution of rift-related and/or breakup related magmatism. Recent studies suggest that rifted margins have a more complex tectono-magmatic evolution than previously assumed and cannot be characterized based on the observed volume of magma alone. In this study, we present seismic observations from 2D high resolution long-offset deep reflection seismic profiles across the East-Indian and South-Atlantic rifted margins. We aim to compare structural similarities between rifted margins with different magmatic budgets. We apply a systematic seismic interpretation approach to describe and characterize the first-order architecture and magmatic budget of our case examples. The identification of magmatic additions based on seismic observations only is indeed not unequivocal, in spite of the high-resolution dataset. Interpretations are related to large uncertainties in particular at ocean-continent transitions (i.e. outer highs) where most of the magmatism seems to be located. For each line, we present three different interpretations based on offshore and/or onshore field analogues. These interpretations illustrate scenarios for the nature of the outer highs that we believe are geologically meaningful and reasonable, and imply different magmatic budgets at breakup. Based on these interpretations we discuss different mechanisms for lithospheric breakup involving either a gradual or more instantaneous process independently

  17. A continental rift model for the La Grande greenstone belt

    NASA Technical Reports Server (NTRS)

    Skulski, T.; Hynes, A.; Liu, M.; Francis, D.; Rivard, B.; Stamatelopoulou-Seymour, K.

    1986-01-01

    Stratigraphic relationships and the geochemistry of volcanic rocks contrain the nature and timing of the tectonic and magmatic processes in the pre-deformational history of the La Grande greenstone belt in the Superior Province of north-central Quebec. The lowermost supracrustals in this belt are obscured by syntectonic granitoid intrusives. The supracrustal succession in the western part of the belt consists of a lower sequence of immature clastic sediments and mafic volcanoclastics, overlain by pillowed and massive basalts. Further east, along tectonic strike, a lower sequence of mafic volcanoclastics and immature clastic sediments is overlain by a thick sequence of pillowed and massive basalts, and resedimented coarse clastic sediments and banded iron formation. These are overlain by assive basaltic andesites, andesites and intermediate volcanoclastics intercalated with immature clastic sediments. In contrast, in the eastern part of the belt lenses of felsic volcanics and volcanoclastics occur at the base of the succession and pillowed and massive basalts are overlain by komatiites at the top. The La Grande greenstone belt can be explained as the product of continental rifting. The restricted occurence of komatiites, and eastwardly directed paleocurrents in clastic sediments in the central part of the belt are consistent with rifting commencing in the east and propagating westward with time. The increase in depth of emplacement and deposition with time of the lower three units in the central part of the belt reflects deposition in a subsiding basin. These supracrustal rocks are believed to represent the initial rift succession.

  18. Age of the Jacobsville Sandstone and Implications for the Evolution of the Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Kley, J.; Stein, S. A.; Craddock, J. P.; Malone, D. H.

    2015-12-01

    Although the Midcontinent Rift (MCR) had been thought to have formed by isolated midplate volcanism and failed due to Grenville compression, a more plausible scenario is that it formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The MCR thus has the geometry of a rift but a LIP's magma volume. A crucial constraint on the evolution of the MCR comes from the roughly flat-lying Jacobsville sandstone, Bayfield group, and other equivalent sediments (JBE) that overlie the dipping volcanics and sediments deposited in the MCR basin. The MCR's "failure" - the ending of volcanism and extension and thus its failure to develop into a new ocean basin - has been attributed to compression during the Grenville orogeny, the series of collisions that assembled Amazonia and other continents into the supercontinent of Rodinia from ~1.3 Ga - ~0.95 Ga. The JBE's age is poorly constrained, with proposed ages ranging from ~1100 - ~542 Ma. Many analyses assume that the JBE are either post-rift sediments deposited in the thermal subsidence stage or syntectonic strata associated with the inversion of the rift. In this view, deformation of the JBE by reverse faults including the Keweenaw and Douglas faults occurred at ~1.060 Ga, reflecting Grenville compression ending the MCR's evolution. However, paleomagnetic, structural, compositional, and detrital zircon data suggest that these units are much younger than previously thought, so much of the deformation thought to have occurred at ~1.06 Ga is likely much younger. Recent new zircon data for the Jacobsville collected in summer 2015 should help resolve this question.

  19. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  20. Massive and prolonged deep carbon emissions associated with continental rifting

    NASA Astrophysics Data System (ADS)

    Lee, Hyunwoo; Muirhead, James D.; Fischer, Tobias P.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys

    2016-02-01

    Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4 Mt yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30 km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system of 53-97 Mt yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.

  1. Innovative tephra studies in the East African Rift System

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  2. Listric growth faults in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Jones, W. B.

    Many of the major faults in the Kenya Rift Valley are curved in section, were active over considerable periods and form sets which are related in space and time. They can, therefore, be regarded as systems of listric growth faults. The Elgeyo Fault marks the western limit of rift structures at this latitude and displaces the basement surface by up to about 6 km. The Kamasia Hills are a block rotated above this fault plane. Movement on the Elgeyo Fault has been grossly continuous since at least 16 Ma ago but deposition of volcanics and sediments has generally kept pace with the growth of the escarpment. The Kaparaina Arch is a rollover anticline on the downthrown side of the Saimo Fault on the eastern side of the Kamasia Hills. On the eastern side of the rift, the block between the Bogoria and Wasages-Marmanet Faults has shown continued rotation since about 15 Ma. The Pleistocene lavas on the rift floor here show rollover into the Bogoria Fault and have formed a facing near the top of the escarpment. Area balancing calculations suggest depths to décollement of 25 km for the Elgeyo Fault, 6 km for the Saimo Fault and 12 km for the Bogoria Fault. The most direct evidence for the listric nature of the faults is provided by microearthquakes near Lake Manyara which appear to lie on fault planes connected to surface escarpments.

  3. Volcanic-plutonic parity and the differentiation of the continental crust.

    PubMed

    Keller, C Brenhin; Schoene, Blair; Barboni, Melanie; Samperton, Kyle M; Husson, Jon M

    2015-07-16

    The continental crust is central to the biological and geological history of Earth. However, crustal heterogeneity has prevented a thorough geochemical comparison of its primary igneous building blocks-volcanic and plutonic rocks-and the processes by which they differentiate to felsic compositions. Our analysis of a comprehensive global data set of volcanic and plutonic whole-rock geochemistry shows that differentiation trends from primitive basaltic to felsic compositions for volcanic versus plutonic samples are generally indistinguishable in subduction-zone settings, but are divergent in continental rifts. Offsets in major- and trace-element differentiation patterns in rift settings suggest higher water content in plutonic magmas and reduced eruptibility of hydrous silicate magmas relative to dry rift volcanics. In both tectonic settings, our results indicate that fractional crystallization, rather than crustal melting, is predominantly responsible for the production of intermediate and felsic magmas, emphasizing the role of mafic cumulates as a residue of crustal differentiation.

  4. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study.

    PubMed

    Olaka, Lydia A; Wilke, Franziska D H; Olago, Daniel O; Odada, Eric O; Mulch, Andreas; Musolff, Andreas

    2016-03-01

    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02-75 mg/L. 73% exceed the health limit (1.5mg/L) in both dry and wet seasons. F(-) concentrations in rivers are lower (0.2-9.2mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27-75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ(18)O) and hydrogen (δD) isotopic values range from -6.2 to +5.8‰ and -31.3 to +33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750-6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (<1000 ppm). Thus, geochemical F(-) enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management in Naivasha as well as similar

  5. Seismotectonics of Reelfoot rift basement structures

    SciTech Connect

    Dart, R.L.; Swolfs, H.S. )

    1993-03-01

    Contour maps of the Precambrian basement surface show major northwest-trending structural features within the boundaries of the northeast-oriented Reelfoot rift. These northwest-trending features, southeast of New Madrid, Missouri, consist of a trough flanked on the northeast by a 2-km-high ridge. These features correlate with similar features on an updated depth-to-magnetic basement map. The boundary between the trough and the ridge slopes gently to the southwest. The upward projection of this boundary into the overlying Paleozoic strata may be expressed on a structure-contour map of the Cambrian rocks. The vertical relief of this boundary on the younger datum is inferred to be about 1 km. This Precambrian trough-ridge structure may correlate with a southwest dipping, west-northwest-striking normal fault inferred by Schwalb (1982) to offset rocks of the Cambrian-Ordovician Knox Megagroup that subcrop at the Paleozoic surface. Schwalb (1982) inferred 1.22 km of vertical relief on this fault near the bootheel of Missouri. The nature and significance of this tectonic-structural boundary is unclear, but at the top of the Precambrian basement rocks, it coincides with the southwestern terminus of the New Madrid seismic zone (NMSZ) near the end of the Blytheville arch in northeastern Arkansas. Since the mid-1970's, when instrumental recording began, some of the earthquakes in the NMSZ having the largest magnitudes occurred in this area. The authors working hypothesis is that this trough-ridge structural boundary may concentrate stress and/or may be a barrier that defines the southwestern limit of the seismically active axial fault zone in the rift. Future study will concentrate on improving the understanding of the influence of rift-bounding faults on the lateral extent of this structure, as well as constructing a tectonic stress model of seismically active rift faults and this trough-ridge structure.

  6. The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands

    NASA Astrophysics Data System (ADS)

    Ayenew, Tenalem

    2008-05-01

    Occurrence of fluoride (F) in groundwater has drawn worldwide attention, since it has considerable impact on human health. In Ethiopia high concentrations of F in groundwaters used for community water supply have resulted in extensive dental and skeletal fluorosis. As a part of a broader study, the distribution of F in groundwater has been investigated, and compared with bedrock geology and pertinent hydrochemical variables. The result indicates extreme spatial variations. High F concentration is often associated with active and sub-active regional thermal fields and acidic volcanics within high temperature rift floor. Variations in F can also be related to changes in calcium concentration resulting from dissolution of calcium minerals and mixing with waters of different chemical composition originated from variable hydrogeological environment across the rift valley. The concentration of F dramatically declines from the rift towards the highlands with the exception of scattered points associated with thermal springs confined in local volcanic centers. There are also interactions of F-rich alkaline lakes and the surrounding groundwater. Meteoric waters recharging volcanic aquifers become enriched with respect to F along the groundwater flow path from highland recharge areas to rift discharge areas. Locally wells drilled along large rift faults acting as conduits of fresh highland waters show relatively lower F. These areas are likely to be possible sources of better quality waters within the rift. The result of this study has important implications on site selection for water well drilling.

  7. San Andres Rift, Nicaraguan Shelf: A 346-Km-Long, North-South Rift Zone Actively Extending the Interior of the "Stable" Caribbean Plate

    NASA Astrophysics Data System (ADS)

    Carvajal, L. C.; Mann, P.

    2015-12-01

    The San Andres rift (SAR) is an active, 015°-trending, bathymetric and structural rift basin that extends for 346 km across the Nicaraguan platform and varies in bathymetric width from 11-27 km and in water depth from 1,250 to 2,500 m. We used four 2D regional seismic lines tied to two offshore, industry wells located west of the SAR on the Nicaraguan platform to map normal faults, transfer faults, and possibly volcanic features with the rift. The Colombian islands of San Andres (26 km2) and Providencia (17 km2) are footwall uplifts along west-dipping, normal fault bounding the eastern margin of the rift. Mapping indicates the pre-rift section is Late Cretaceous to Oligocene in age and that the onset of rifting began in the early to middle Miocene as shown by wedging of the Miocene and younger sedimentary fill controlled by north-south-striking normal faults. Structural restorations at two locations across the rift shows that the basin opened mainly by dip-slip fault motions producing a total, east-west extension of 18 km in the north and 15 km in the south. Structural restoration shows the rift formed on a 37-km-wide, elongate basement high - possibly of late Cretaceous, volcanic origin and related to the Caribbean large igneous province. Previous workers have noted that the SAR is associated with province of Pliocene to Quaternary seamounts and volcanoes which range from non-alkaline to mildly alkaline, including volcanic rocks on Providencia described as andesites and rhyolites. The SAR forms one of the few recognizable belts of recorded seismicity within the Caribbean plate. The origin of the SAR is related to Miocene and younger left-lateral displacement along the Pedro Banks fault to the north and the southwestern Hess fault to the south. We propose that the amount of left-lateral displacement that created the rift is equivalent to the amount of extension that formed it: 18-20 km.

  8. The Ratio Between Magma Supply and Lithospheric Stretching Rates Controls the Architecture of Continental and Oceanic Rifts

    NASA Astrophysics Data System (ADS)

    Bourgeois, O.; Dauteuil, O.

    2010-12-01

    Magma-poor rifts (e.g. Rhine Graben, North Sea), non-volcanic passive continental margins (e.g. Galicia) and slow-spreading oceanic ridges (e.g. Mid-Atlantic Ridge), are composed of faulted crustal blocks that dip generally away from the rift axis. By contrast, magma-rich rifts (e.g. Afars), volcanic passive margins (e.g. Norway, Greenland, Namibia) and hotspot-influenced slow-spreading oceanic ridges (e.g. Iceland), are composed of faulted crustal blocks that dip generally towards the rift axis. On the basis of a detailed structural study of Iceland (Bourgeois et al. 2005, Geodinamica Acta 18:59-80), we demonstrate that, in magma-rich rifts, lithospheric stretching is accomodated in a long-term deformation strip, n x 100 km wide, by the development of successive roll-over structures controlled by growth-faults and underlain by shallow magma chambers. As a given roll-over structure progressively develops and tilts in response to lithospheric stretching, it is continuously covered by lavas erupted from the associated magma chamber and reaching the surface through dike swarms dominantly located along the growth fault. After a lifetime of a few My, this roll-over structure dies at the expense of the activation of a new, laterally offset, one. Correspondingly, such roll-over structures form successively at different places within a diffuse plate boundary n x 100 km wide. After several roll-over structures have developed and died, the overall structure of the long-term deformation strip is composed of faulted crustal blocks that generally dip towards the rift axis. This architecture differs from that of magma-poor rifts, where lithospheric strectching is accomodated in a fixed and narrow (n x 10 km) strip, by the developpement of outward-tilted blocks. Physical laboratory experiments conducted with analogue materials demonstrate that this difference in rift architectures is controlled by the ratio between the rate of lithospheric stretching and the rate of magma supply

  9. Spatial variation of primordial 3-He in crustal fluids along the East-African Rift system (the Ethiopian and the Kenya Rift section)

    NASA Technical Reports Server (NTRS)

    Griesshaber, E.; Weise, S.; Darling, G.

    1994-01-01

    (3)He/(4)He compositions are presented for groundwater samples from the Ethiopian segment of the East-Afrikan Rift and from its northern extension, the adjacent Afar region (Djibuti). Helium isotope data are compared to those obtained previously from the Gregory Rift, south of Ethiopia. The distribution pattern of mantle-derived volatiles along the entire East-African-Rift (-from south Kenya to Djibuti-) is discussed and their sources are identified. Helium isotope ratios (R) for samples from the Ethiopian part of the Rift range from 6.3 to 16.0 times the atmospheric ratio (Ra=1.4 x 10(exp -6) and thus show together with a MOR component a considerable hotspot helium component. These mantle helium concentrations are comparable to those observed in groundwaters and volcanic rocks from the Afar plume region in Djibuti. Here R/Ra values range from 9 to 13 times the atmospheric composition, with mantle-derived helium concentrations being higher than at spreading ocean ridges. R/Ra values from Ethiopia and Djibuti are entirely different from those observed in groundwaters at the southerly extending Gregory Rift in Kenya, where R/Ra values scatter between 0.5 and 6. At the northernmost part of the Gregory Rift, close to Ethiopia mantle helium contents are slightly higher, with R/Ra-values varying between 6.5 and 8.0.

  10. Propagating rifts on midocean ridges

    NASA Astrophysics Data System (ADS)

    Hey, Richard; Duennebier, Frederick K.; Morgan, W. Jason

    1980-07-01

    Spreading center jumps identified west of the Galapagos Islands near 95°W occur in a pattern consistent with the propagating rift hypothesis. A new rift is gradually breaking through the Cocos plate. Each successive jump is slightly longer than the preceding jump. The new spreading center grows at a new azimuth toward the west as the old one dies. The jumps are a manifestation of rift propagation. We extend the analysis of propagating rifts to the case of continuous propagation and predict patterns of magnetic anomalies and bathymetry consistent with the observed patterns. In particular, we correctly predict the trends of fossil spreading centers and V patterns of magnetic anomaly offsets required by the propagating rift hypothesis. Similar V patterns have been observed on many other spreading centers and have been interpreted in various ways. The propagating rift hypothesis appears to offer a simple explanation, consistent with rigid plate tectonics, for each of these patterns. This hypothesis may also have important implications for continental rifting.

  11. Keweenaw hot spot: Geophysical evidence for a 1. 1 Ga mantle plume beneath the Midcontinent Rift System

    SciTech Connect

    Hutchinson, D.R. ); White, R.S. ); Cannon, W.F.; Schulz, K.J. )

    1990-07-10

    The Proterozoic Midcontinent Rift System of North America is remarkably similar to Phanerozoic rifted continental margins and flood basalt provinces. Like the younger analogues, the volcanism within this older rift can be explained by decompression melting and rapid extrusion of igneous material during lithospheric extension above a broad, asthenospheric, thermal anomaly which the authors call the Keweenaw hot spot. Great Lakes International Multidisciplinary Program on Crustal evolution seismic reflection profiles constrain end-member models of melt thickness and stretching factors, which yield an inferred mantle potential temperature of 1,500-1,570C during rifting. Combined gravity modeling and subsidence calculations are consistent with stretching factors that reached 3 or 4 before rifting ceased, and much of the lower crust beneath the rift consists of relatively high density intruded or underplated synrift igneous material. The isotopic signature of Keweenawan volcanic rocks, presented in a companion paper by Nicholson and Shirey (this issue), is consistent with the model of passive rifting above an asthenospheric mantle plume.

  12. Initiation and development of the Kivu rift segment in Central Africa by reactivating un-favorably oriented structural weaknesses

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Smets, Benoît

    2015-04-01

    The Kivu rift region forms the central segment of the western branch of the East African rift system, between the northern termination of the Tanganyika rift and the southern extension of the Edward-George rift. Its structure and geological evolution has been revised in the light of a compilation of existing data on earthquake epicenters, focal depth, focal mechanisms, thermal springs and neotectonic faults. It has long been shown that the link between the Kivu rift basin and the Northern termination of the Tanganyika rift basin forms an accommodation zone in which the Rusizi tectonic depression occupies a central place (Ebinger, 1989). In addition, our compilation suggests that the NNE-trending Kivu rift basin and the N-S northern half of the Tanganyika rift basin initiated as separated, partly overlapping and differently oriented basins. The orientation and development of the Kivu rift basin was controlled by an inferred Mid-Proterozoic crustal shear zone and a Pan-African reverse fault front. It was not optimally oriented with the general (first-order) stress field characterized by roughly E-W extension. In a later stage, the more optimally N-S oriented North Tanganyika basin progressed towards the North and connected to Kivu rift in its middle in a region now occupied by the town of Bukavu. This accommodation zone is marked by Quaternary volcanism, warm thermal springs, frequent and relatively shallow seismicity. The southwestern part of the Kivu rift became progressively abandoned but it is still seismically active and hosts a number of warm thermal springs. This particular architecture influences the present-day stress field. This work is a contribution to the Belgian GeoRisCA project. Ebinger, C.J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics, 8, 117-133

  13. Closer look at lunar volcanism

    SciTech Connect

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry.

  14. Exposed guyot from the afar rift, ethiopia.

    PubMed

    Bonatti, E; Tazieff, H

    1970-05-29

    A series of originally submarine volcanoes has been found in the Afar Depression. Some of the volcanic structures are morphologically similar to oceanic guyots. One of them consists of strata of finely fragmented and pulverized basaltic glass. The fragmentation of the lava is probably the result of stream explosions taking place during the submarine eruption. The flat top of this guyot is considered to be a constructional feature; by analogy, it is suggested that not all oceanic guyots are necessarily the result of wave truncation of former volcanic islands.

  15. Rift Valley fever.

    PubMed

    Paweska, J T

    2015-08-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease affecting domestic and wild ruminants, camels and humans. The causative agent of RVF, the RVF virus (RVFV), has the capacity to cause large and severe outbreaks in animal and human populations and to cross significant natural geographic barriers. Rift Valley fever is usually inapparent in non-pregnant adult animals, but pregnant animals and newborns can be severely affected; outbreaks are characterised by a sudden onset of abortions and high neonatal mortality. The majority of human infections are subclinical or associated with moderate to severe, non-fatal, febrile illness, but some patients may develop a haemorrhagic syndrome and/or ocular and neurological lesions. In both animals and humans, the primary site of RVFV replication and tissue pathology is the liver. Outbreaks of RVF are associated with persistent high rainfalls leading to massive flooding and the emergence of large numbers of competent mosquito vectors that transmit the virus to a wide range of susceptible vertebrate species. Outbreaks of RVF have devastating economic effects on countries for which animal trade constitutes the main source of national revenue. The propensity of the virus to spread into new territories and re-emerge in traditionally endemic regions, where it causes large outbreaks in human and animal populations, presents a formidable challenge for public and veterinary health authorities. The presence of competent mosquito vectors in RVF-free countries, the wide range of mammals susceptible to the virus, altering land use, the global changes in climate, and increased animal trade and travel are some of the factors which might contribute to international spread of RVF.

  16. InSAR captures rifting and volcanism in East Africa

    USGS Publications Warehouse

    Poland, Michael P.

    2006-01-01

    In the past decade, synthetic aperture radar interferometric (InSAR) has enjoyed increasing use as a tool for detecting and characterizing surface deformation associated with volcanoes, earthquakes, glaciers, and other geological processes. Though InSAR can only image deformation that occurs along the radar line-of-sight and is subject to atmospheric, orbital, and other errors that can be difficult to quantify, the method has the advantage of high spatial resolution (especially in arid, unvegetated environments) without requiring equipment on the ground. As a result, InSAR is extremely useful for mapping deformation in poorly accessible or unmonitored parts of the world.

  17. The lifecycle of caldera-forming volcanoes in the Main Ethiopian Rift: insights from Aluto volcano

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Hutchison, W.; Yirgu, G.; Biggs, J.; Cohen, B. E.; Barfod, D. N.; Lewi, E.; Pyle, D. M.

    2015-12-01

    The silicic peralkaline volcanoes of the East African Rift are some of the least studied and yet potentially most dangerous volcanoes in the world. We present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in the Main Ethiopian Rift, using new constraints from fieldwork, remote sensing, 40Ar/39Ar geochronology and geochemistry. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at ca. 300 ka developing a ~42 km2 collapse structure. After a hiatus of ~250 kyr, a phase of post-caldera volcanism began. Since ca. 60 ka, highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. The age of the youngest volcanism is not well known. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (>80 %) of typical 'rift basalt'. Based on the field stratigraphy and the number, style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes between 1-100 × 106 m3. Comparisons with other caldera volcanoes in this section of the rift suggest that there may be parallels between Aluto's behaviour and that of other volcanic centres, both in terms of the volcanic 'lifecycle', and broad timings of caldera collapse events.

  18. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Torres Acosta, Verónica; Bande, Alejandro; Sobel, Edward R.; Parra, Mauricio; Schildgen, Taylor F.; Stuart, Finlay; Strecker, Manfred R.

    2015-12-01

    The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes and evaluating the resource potential of their basin fills. Our apatite fission track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions. Results of thermal modeling support a three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was characterized by rapid cooling of the rift shoulders and may be coeval with faulting and sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana depression and areas to the east in northern Kenya. In the second phase, very slow cooling or slight reheating occurred between ~45 and 15 Ma as a result of either stable surface conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, which followed widespread flood-phonolite emplacement and has shaped the present-day landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and erosion. When compared with thermochronologic and geologic data from other sectors of the East African Rift System, extension appears to be diachronous, spatially disparate, and partly overlapping, likely driven by interactions between mantle-driven processes and crustal heterogeneities, rather than the previously suggested north-south migrating influence of a mantle plume.

  19. Monogenetic volcanism in the Cordillera Central of Colombia: unknown volcanic fields associated with the northernmost Andes' volcanic chain related subduction

    NASA Astrophysics Data System (ADS)

    Murcia, Hugo; Borrero, Carlos; Németh, Károly

    2017-04-01

    Monogenetic volcanic fields are commonly related to rifts and/or intraplate tectonic settings. However, although less common, they appear also associated with subduction zones, including both front and back-arc volcanoes. To nourish this uncommon tectonic location, it is shown here that monogenetic volcanic fields, in addition to polygenetic volcanoes, also appear at the northernmost part of the Andes Northern Volcanic Zone (NVZ) (2° S to 4°30´N). These fields are associated with the main axe of the Quaternary active volcanic structures; they are linked to the polygenetic Cerro Bravo - Cerro Machín Volcanic Chain ( 80 km long; CBCMVC) in Colombia, the chain that hosts the iconic Nevado del Ruiz volcano. To the present, three monogenetic volcanic fields, with a typical calc-alkaline signature, have been identified in both sides of this chain: 1) Villamaría - Termales Monogenetic Volcanic Field (VTMVF) located to the northwestern part (>5 km) of the CBCMVC. This field is made up of at least 14 volcanoes aligned with the Villamaría - Termales fault zone. The volcanism has been mainly effusive, represented by lava domes and some lava flows. The volcanoes are andesitic to dacitic in composition. It is inferred that the magmatic source is a magma chamber close to Nevado del Ruiz volcano. Based on stratigraphic relationships, it is assumed that the last eruption occurred <38 ka. 2) Samaná Monogenetic Volcanic Field (SMVF) located 50 km north of Romeral volcano, the northernmost active volcano from the CBCMVC. This field comprises at least three volcanoes: A maar-diatreme volcano ( 20 ka years old) and two undefined structures. The volcanic products exhibit andesitic and riolitic composition. It is inferred that this field results of the same magmatism of the CBCMVC. 3. Pijaos Monogenetic Volcanic Field (PMVF) located 25 km south of Cerro Machín volcano, the southernmost active volcano of the CBCMVC. This field comprises at least four volcanoes formed by effusive

  20. Seismic volcanostratigraphy of the western Indian rifted margin: The pre-Deccan igneous province

    NASA Astrophysics Data System (ADS)

    CalvèS, GéRôMe; Schwab, Anne M.; Huuse, Mads; Clift, Peter D.; Gaina, Carmen; Jolley, David; Tabrez, Ali R.; Inam, Asif

    2011-01-01

    The Indian Plate has been the focus of intensive research concerning the flood basalts of the Deccan Traps. Here we document a volcanostratigraphic analysis of the offshore segment of the western Indian volcanic large igneous province, between the shoreline and the first magnetic anomaly (An 28 ˜63 Ma). We have mapped the different crustal domains of the NW Indian Ocean from stretched continental crust through to oceanic crust, using seismic reflection and potential field data. Two volcanic structures, the Somnath Ridge and the Saurashtra High, are identified, extending ˜305 km NE-SW in length and 155 km NW-SE in width. These show the internal structures of buried shield volcanoes and hyaloclastic mounds, surrounded by mass-wasting deposits and volcanic sediments. The structures observed resemble seismic images from the North Atlantic and northwest Australia, as well as volcanic geometries described for Réunion and Hawaii. The geometry and internal seismic facies within the volcanic basement suggest a tholeiitic composition and subaerial to shallow marine emplacement. At the scale of the western Indian Plate, the emplacement of this volcanic platform is constrained by structural lineations associated with rifting. By reviewing the volcanism in the Indian Ocean and plate reconstruction of the area, the timing of the volcanism can be associated with eruption of a pre-Deccan continental flood basalt (˜75-65.5 Ma). The volcanic platform in this study represents an addition of 19-26.5% to the known volume of the West Indian Volcanic Province.

  1. Modelling Sea Floor Spreading Initiation and Depth Dependent Stretching at Rifted Continental Margins

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Tymms, V.

    2003-12-01

    Depth dependent stretching, in which upper crustal extension is much less than that of the lower crust and lithospheric mantle, has been observed at both non-volcanic and volcanic margins and is not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. The timing of depth dependent stretching on the Norwegian margin suggests that depth dependent stretching of continental rifted margin lithosphere occurs during early sea-floor spreading rather than during pre-breakup rifting. These observations suggest that the main thinning of rifted margin lithosphere occurs during early sea-floor spreading rather than during pre-breakup rifting. Single-phase fluid-flow models have been applied successfully to sea-floor spreading at ocean ridges. A single-phase fluid-flow model of sea-floor spreading initiation has been developed to determine rifted continental margin lithosphere thinning and thermal evolution resulting from early sea-floor spreading. The ocean-ridge initiation model uses an isoviscous corner-flow stream-function solution (Batchelor 1967) to predict the divergent lithospheric and asthenospheric fluid-flow field associated with early sea-floor spreading. The thinning of the rifted continental lithosphere is calculated by material advection in the newly initiated ocean ridge fluid-flow field. The model may also include the effects of pre-breakup pure-shear stretching of continental lithosphere. Rifted margin lithosphere thinning and thermal evolution is dependent on ocean-ridge spreading rate (Vx), the mantle upwelling velocity beneath the ridge axis (Vz), and the pre-breakup lithosphere beta stretching factor. The developed model predicts the thinning of the upper crust, lower crust and lithospheric mantle of the continental margin, and the history of rifted margin

  2. The development of extension and magmatism in the Red Sea rift of Afar

    NASA Astrophysics Data System (ADS)

    Keir, Derek; Bastow, Ian D.; Pagli, Carolina; Chambers, Emma L.

    2013-11-01

    Despite the importance of continental breakup in plate tectonics, precisely how extensional processes such as brittle faulting, ductile plate stretching, and magma intrusion evolve in space and time during the development of new ocean basins remains poorly understood. The rifting of Arabia from Africa in the Afar depression is an ideal natural laboratory to address this problem since the region exposes subaerially the tectonically active transition from continental rifting to incipient seafloor spreading. We review recent constraints on along-axis variations in rift morphology, crustal and mantle structure, the distribution and style of ongoing faulting, subsurface magmatism and surface volcanism in the Red Sea rift of Afar to understand processes ultimately responsible for the formation of magmatic rifted continental margins. Our synthesis shows that there is a fundamental change in rift morphology from central Afar northward into the Danakil depression, spatially coincident with marked thinning of the crust, an increase in the volume of young basalt flows, and subsidence of the land towards and below sea-level. The variations can be attributed to a northward increase in proportion of extension by ductile plate stretching at the expense of magma intrusion. This is likely in response to a longer history of localised heating and weakening in a narrower rift. Thus, although magma intrusion accommodates strain for a protracted period during rift development, the final stages of breakup are dominated by a phase of plate stretching with a shift from intrusive to extrusive magmatism. This late-stage pulse of decompression melting due to plate thinning may be responsible for the formation of seaward dipping reflector sequences of basalts and sediments, which are ubiquitous at magmatic rifted margins worldwide.

  3. Crustal and sub-continental lithospheric mantle decoupling beneath the Malawi Rift

    NASA Astrophysics Data System (ADS)

    Njinju, Emmanuel Atem

    We analyzed satellite gravity and aeromagnetic data using the two-dimensional (2D) power-density spectrum technique to investigate the lithospheric and thermal structure beneath the magma-starved Malawi Rift, which forms the southern extension of the Western Branch of the East African Rift System. We observed: (1) lack of consistent pattern of crustal thinning and elevated heat flow along the surface expression of the rift. Beneath the Rungwe Volcanic Province (RVP) in the north, the crustal thickness ranges between 40 and 45 km and varies between 35 and 40 km along the entire length of the rift. (2) shallow lithosphere-asthenosphere boundary (LAB) elevated to ˜64 km beneath the entire length of the rift and deeper than 100 km beneath the surrounding Precambrian terranes reaching in places ˜124 km. (3) localized zones of high heat flow (70-75 mWm-2) beneath the RVP, and the central and southern parts of the rift. The central and southern thermal anomalies are due to the presence of uranium deposits in the Karoo sedimentary rocks. We interpret the crustal thickness heterogeneity to have been inherited from pre-existing lithospheric stretching, while strain during the extension of the Malawi Rift is preferentially localized in the sub-continental lithospheric mantle (SCLM). Our interpretation is supported by 2D forward modeling of the gravity data showing uniform stretching of the SCLM by a factor of 1.5 to 1.8 beneath the entire length of the rift. Our results indicate decoupling of the crust from the SCLM during the early stages of the development of the Malawi Rift.

  4. Chow Bahir rift: A “failed” rift in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    W-Gabriel, Giday; Aronson, James L.

    1987-05-01

    The Chow Bahir rift system is a major graben in a 300-km-broad rift zone recognized in southern Ethiopia between the Kenyan and Ethiopian domes where the East African rift is not well defined. An extinct (failed) rift discovered along the Omo Canyon to the north and on strike with the Chow Bahir rift ceased activity about 4 m.y. ago. Chow Bahir is in a younger stage of abandonment as the main Ethiopian rift propagates south into this region.

  5. Generation of Continental Rifts, Basins and Swells by Lithosphere Instabilities

    NASA Astrophysics Data System (ADS)

    Milelli, L.; Fourel, L.; Jaupart, C. P.

    2012-12-01

    Domal uplifts, volcanism, basin formation and rifting have often struck the same continent in different areas at the same time. Their characteristics and orientations are difficult to reconcile with mantle convection or tectonic forces and suggest a driving mechanism that is intrinsic to the continent. The rifts seem to develop preferentially at high angles to the edge of the continent whereas swells and basins seem confined to the interior. Another intriguing geometrical feature is that the rifts often branch out in complicated patterns at their landward end. In Western Africa, for example, magmatic activity currently occurs in a number of uplifted areas including the peculiar Cameroon Volcanic Line that stretches away from the continental margin over about 1000 km. Magmatic and volcanic activity has been sustained along this line for 70 My with no age progression. The mantle upwelling that feeds the volcanoes is not affected by absolute plate motions and hence is attached to the continent. The Cameroon Volcanic Line extends to the Biu swell to the North and the Jos plateau to the West defining a striking Y-shaped pattern. This structure segues into several volcanic domes including the Air, the Hoggar, the Darfur, the Tibesti and the Haruj domes towards the Mediterranean coast. Another example is provided by North America, where the late Proterozoic-early Ordovician saw the formation of four major basins, the Michigan, Illinois, Williston and Hudson Bay, as well as of major rifts in southern Oklahoma and the Mississipi Valley within a short time interval. At the same time, a series of uplifts developed, such as the Ozark and Nashville domes. Motivated by these observations, we have sought an explanation in the continental lithosphere itself. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant

  6. Kinematics of the asal rift (djibouti) determined from the deformation of fieale volcano.

    PubMed

    De Chabalier, J B; Avouac, J P

    1994-09-16

    Because of its subaerial exposure the Asal rift segment provides an exceptional opportunity to quantify the deformation field of an active rift and assess the contribution of tectonics and volcanism to rifting processes. The present topography of the Asal rift results from the tectonic dismemberment during the last 100,000 years of a large central volcanic edifice that formed astride the rift zone 300,000 to 100,000 years ago. Three-dimensional deformation of this volcano has been quantified from the combined analysis of the topography and geology. The analysis indicates that spreading at 17 to 29 millimeters per year in a N40 degrees +/- 5 degrees E direction accounts for most of the separation between Arabia and Somalia. The small topographic subsidence relative to extension suggests that tectonic thinning of the crust has been balanced by injection and underplating of magmatic material of near crustal density. The methodology developed in this study could also be applied to quantify deformation in relatively inaccessible areas where the main available information is topography or bathymetry.

  7. Origin of intraplate volcanism in northeast China from Love wave constraints

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Gao, Yuan; Li, Aibing; Li, Lun; Shi, Yutao; Zhang, Yi

    2016-11-01

    The tectonic source for widespread volcanism in northeast China has not been completely understood. We develop a 3-D SH velocity model in NE China that provides new constraints to the origin of the volcanism. The 3-D model is constructed from fundamental mode Love waves at the periods of 20-125 s recorded at 269 broadband seismic stations. The Changbai Mountain is characterized by a significant low velocity in the lower crust and uppermost mantle, which probably results from mantle upwelling due to the subduction of the Pacific plate. A fast and thin mantle lid of 75 km is present beneath the Songliao Basin, indicating lithosphere extension from back-arc rifting. The slow velocity in the middle and fast velocities in the south and north at 75-115 km depths in the Songliao Basin suggest complex mantle flow with upwelling and downwelling. Unlike the other volcanic fields (Changbaishan volcano, Jingpohu volcano, and Abaga volcano), the Halaha volcano has high velocity in the lower crust and upper mantle, implying a limited melt supply from mantle source recently. The subduction-induced upwelling leads to complicated small-scale mantle convection, which is responsible for the intraplate magmatism in northeast China.

  8. Failure was not an option- the Mid-Continent Rift system succeeded

    NASA Astrophysics Data System (ADS)

    Merino, M.; Stein, C. A.; Stein, S. A.; Keller, G. R.; Flesch, L. M.; Jurdy, D. M.

    2013-12-01

    The 1.1 Ga Mid-Continent Rift (MCR) in North America is often viewed as a failed rift formed by isolated midplate volcanism and extension within the ~1.3-~0.98 Ga Grenville orogeny. An alternative view is suggested by analogy with younger and morphologically similar rift systems, whose plate tectonic settings are more easily understood because their surroundings - including seafloor with magnetic anomalies - have not been deformed or destroyed by subsequent collisions and rifting events. In this view, the MCR was part of a larger plate boundary rifting event that resulted in a successful episode of seafloor spreading. This view is motivated by various pieces of evidence. The MCR rifting looks much like rigid plate block motion, such as associated with the West Central African Rift systems formed during the Mesozoic breakup of Africa and South America and the ongoing rifting in the East African Rift region with seafloor spreading in the Gulf of Aden and the Red Sea. This view explains the affinities of the Grenville-age rocks in the central and southern Appalachians to Amazonia rather than Canadian Grenville-age Appalachian rocks. The MCR extends farther to the south than traditionally assumed along the East Continental Gravity High (a buried feature from Ohio to Alabama). This failed portion of the rift system connected to the rift successfully separating Laurentia and Amazonia. The seafloor spreading separating Amazonia from Laurentia may explain the former's relative motion toward Greenland and Baltica. This model is consistent with some of the ~1.1 Ga geological events in Amazonia. A change in the apparent polar wander path for Laurentia during the period of volcanism of the MCR could be attributed to this plate reconfiguration. The extensional phase on the MCR may have ended because motion was taken up by seafloor spreading between Laurentia and Amazonia rather ending due to another continental collision. Later reverse faulting on the MCR normal faults due to

  9. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    This study is based on a coupled basin infilling study and a landforms analysis of the Lake Albert Rift located at the northern part of the western branch of the East African Rift. The basin infilling study is based on both subsurface data and outcrops analysis. The objective was to (1) obtain an age model based on onshore mammals biozones, (2) to reconstruct the 3D architecture of the rift using sequence stratigraphy correlations and seismic data interpretation, (3) to characterize the deformation and its changes through times and (4) to quantify the accommodation for several time intervals. The infilling essentially consists of isopach fault-bounded units composed of lacustrine deposits wherein were characterized two major unconformities dated at 6.2 Ma (Uppermost Miocene) and 2.7 Ma (Pliocene-Pleistocene boundary), coeval with major subsidence and climatic changes. The landforms analysis is based on the characterization and relative dating (geometrical relationships with volcanism) of Ugandan landforms which consist of stepped planation surfaces (etchplains and peplians) and incised valleys. We here proposed a seven-steps reconstruction of the deformation-erosion-sedimentation relationships of the Lake Albert Basin and its catchments: - 55-45 Ma: formation of laterites corresponding to the African Surface during the very humid period of the Lower-Middle Eocene; - 45-22: stripping of the African Surface in response of the beginning of the East-African Dome uplift and formation of a pediplain which associated base level is the Atlantic Ocean; - 17-2.5 Ma: Initiation of the Lake Albert Basin around 17 Ma and creation of local base levels (Lake Albert, Edward and George) on which three pediplains tend to adapt; - 18 - 16 Ma to 6.2 Ma: "Flexural" stage (subsidence rate: 150-200 m/Ma; sedimentation rate 1.3 km3/Ma between 17 and 12 Ma and 0.6 km3/Ma from 12 to 6 Ma) - depocenters location (southern part of Lake Albert Basin) poorly controlled by fault; - 6.2 Ma to 2

  10. Images of Kilauea East Rift Zone eruption, 1983-1993

    USGS Publications Warehouse

    Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.

    1995-01-01

    This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.

  11. Post-rift magmatic evolution of the eastern North American "passive-aggressive" margin

    NASA Astrophysics Data System (ADS)

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizimis, Michael; McAleer, Ryan; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ˜152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a "passive-aggressive" margin that records multiple magmatic events long after rifting ended.

  12. Diffuse degassing at Longonot volcano, Kenya: Implications for CO2 flux in continental rifts

    NASA Astrophysics Data System (ADS)

    Robertson, Elspeth; Biggs, Juliet; Edmonds, Marie; Clor, Laura; Fischer, Tobias P.; Vye-Brown, Charlotte; Kianji, Gladys; Koros, Wesley; Kandie, Risper

    2016-11-01

    Magma movement, fault structures and hydrothermal systems influence volatile emissions at rift volcanoes. Longonot is a Quaternary caldera volcano located in the southern Kenyan Rift, where regional extension controls recent shallow magma ascent. Here we report the results of a soil carbon dioxide (CO2) survey in the vicinity of Longonot volcano, as well as fumarolic gas compositions and carbon isotope data. The total non-biogenic CO2 degassing is estimated at < 300 kg d- 1, and is largely controlled by crater faults and fractures close to the summit. Thus, recent volcanic structures, rather than regional tectonics, control fluid pathways and degassing. Fumarolic gases are characterised by a narrow range in carbon isotope ratios (δ13C), from - 4.7‰ to - 6.4‰ (vs. PDB) suggesting a magmatic origin with minor contributions from biogenic CO2. Comparison with other degassing measurements in the East African Rift shows that records of historical eruptions or unrest do not correspond directly to the magnitude of CO2 flux from volcanic centres, which may instead reflect the current size and characteristics of the subsurface magma reservoir. Interestingly, the integrated CO2 flux from faulted rift basins is reported to be an order of magnitude higher than that from any of the volcanic centres for which CO2 surveys have so far been reported.

  13. Seismic hazard of the Kivu rift (western branch, East African Rift system): new neotectonic map and seismotectonic zonation model

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi Mwene Ntabwoba, Stanislas; Fiama Bondo, Silvanos; Kervyn, François; Havenith, Hans-Balder

    2017-04-01

    setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone. Those are to be considered as preliminary values, as there are a number of important uncertainties such as the heterogeneity and relatively short duration of the instrumental seismic catalogue used (60 years), the absence of locally derived attenuation laws and thus the choice of the attenuation laws used, and the seismic zonation scheme. Delvaux, D. et al., 2016. Journal of African Earth Sciences, doi: 10.1016/j.jafrearsci.2016.10.004.

  14. Tectonic evolution and volcanism of Okinawa Trough

    SciTech Connect

    Sibuet, J.C.; Letouzey, J.; Marsset, B.; Davagnier, M.; Foucher, J.P.; Bougault, H.; Dosso, L.; Maury, R.; Joron, J.L.

    1986-07-01

    The Okinawa Trough is a back-arc basin formed by extension of the east China continental lithosphere behind the Ryukyu Trench system. The age of marine deposits drilled in the northern Okinawa Trough indicates a Miocene age for the splitting of the volcanic arc and the first tensional movements. The POP 1 cruise of the R/V Jean-Charcot (September-October 1984) provided new evidence concerning the two main periods of extension as recognized by Kimura (Marine and Petroleum Geology, 1985). Tilted fault blocks in the northern Okinawa Trough trend north 40/sup 0/-60/sup 0/ and belong to the early Pleistocene phase (2-0.5 Ma). The present-day phase is characterized over the entire basin by normal faults oriented 80/sup 0/N in the north and 90/sup 0/N in the south. In the southern Okinawa Trough, most of the deformation occurs along linear, subparallel, en echelon depressions intruded by volcanic ridges associated with positive magnetic anomalies. The system of volcanic ridges ends northeast of Okinawa Island in a series of parallel volcanic ridges named the VAMP (Volcanic arc-rift migration processes) area, which merges into an active volcanic chain extending north to Japan. Chemical analyses of the vesicular basalts dredged on the back-arc basin display flat to enriched rare-earth patterns. The niobium-tantalum negative anomalies reflect a subduction signature. A good positive correlation between strontium isotopic compositions and concentrations suggests a contamination effect.

  15. Rift basins - Origin, history, and distribution

    NASA Technical Reports Server (NTRS)

    Burke, K. C.

    1985-01-01

    Rifts are elongate depressions overlying places where the lithosphere has ruptured in extension. Where filled with sediment they may contain exploitable quantities of oil and gas. Because rits form in a variety of tectonic settings, it is helpful to define the particular tectonic environment in which a specific rift or set of rifts has developed. A useful approach has been to relate that environment to the Wilson Cycle of the opening and the closing of oceans. This appreciation of tectonic setting can help in better understanding of the depositional, structural and thermal history of individual rift systems. The global distribution of rifts can also be related to tectonic environment. For example, rifts associated with continental rupture at a temporary still-stand of a continent over the mantle convective system (rifts like those active in East Africa today) can be distinguished from those associated with continental collision (rifts like the Cenozoic rifts of China).

  16. Rift basins - Origin, history, and distribution

    NASA Technical Reports Server (NTRS)

    Burke, K. C.

    1985-01-01

    Rifts are elongate depressions overlying places where the lithosphere has ruptured in extension. Where filled with sediment they may contain exploitable quantities of oil and gas. Because rits form in a variety of tectonic settings, it is helpful to define the particular tectonic environment in which a specific rift or set of rifts has developed. A useful approach has been to relate that environment to the Wilson Cycle of the opening and the closing of oceans. This appreciation of tectonic setting can help in better understanding of the depositional, structural and thermal history of individual rift systems. The global distribution of rifts can also be related to tectonic environment. For example, rifts associated with continental rupture at a temporary still-stand of a continent over the mantle convective system (rifts like those active in East Africa today) can be distinguished from those associated with continental collision (rifts like the Cenozoic rifts of China).

  17. Architecture of the intracontinental Jaibaras Rift, Brazil, based on geophysical data

    NASA Astrophysics Data System (ADS)

    Pedrosa, Nilo C.; Vidotti, Roberta M.; Fuck, Reinhardt A.; Castelo Branco, R. M. G.; Almeida, Afonso R. de; Silva, Nilton C. Vieira; Braga, Luiz R. C.

    2017-03-01

    Qualitative and quantitative integration and interpretation of magnetic, gravity and magnetotelluric data help to determine the internal architecture of the Jaibaras rift, and allow assessing the evolution of the Jaibaras Rift within the Precambrian crystalline basement of Borborema Province, NE Brazil. This was achieved by 2D joint modeling of magnetic and gravity data in five sections across the main axis of the Jaibaras Rift. Surface data, rock density measurements, depth constraints from 2D Euler deconvolution and geophysical information from previous work in the area were integrated to constrain the modeling. The magnetic and gravity profiles of the Jaibaras Rift indicate estimated source bodies at depths up to 2.5 km, showing complex configuration for the structural framework, with a set of asymmetric grabens and horsts. The 2D magnetotelluric inversion shows that the Jaibaras Rift is marked by low resistivity values, and maximum thickness of the sedimentary package up to approximately 3 km. Shallow dipping conductive material may represent either a suture zone between the Ceará Central and Médio Coreaú domains or a set of fractures due to horizontal σ1 stress in the Ceará Central Domain. The Jaibaras Rift displays a very complex internal structure, with discontinuous sequences of grabens and horsts, and a significant volume of surface and subsurface volcanic rocks. The sedimentary packages with volcanic rift sequences have variable thicknesses, from 1 to 3 km. These rock units are controlled by normal faults that developed from older discontinuities, such as the Transbrasiliano lineament.

  18. Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Doglioni, Carlo

    2014-09-01

    We present the kinematics of the Ethiopian Rift, in the northern part of East African Rift System, derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis and geological profiles. In the central Ethiopian Rift, the GPS velocity field shows a systematic magnitude increase in ENE direction, and the incremental extensional strain axes recorded by earthquake focal mechanisms and fault slip inversion show ≈ N100°E orientation. This deviation between direction of GPS velocity vectors and orientation of incremental extensional strain is developed due to left lateral transtensional deformation along the NE-SW trending segment of the rift. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, plus the distribution of the volcanic centers, and the asymmetry of the rift itself. We analyzed the kinematics of the Ethiopian Rift also relative to the mantle comparing the results in the deep and shallow hotspot reference frames. While the oblique orientation of the rift was controlled by the pre-existing lithospheric fabric, the two reference frames predict different kinematics of Africa and Somalia plates along the rift itself, both in magnitude and direction, and with respect to the mantle. However, the observed kinematics and tectonics along the rift are more consistent with a faster WSW-ward motion of Africa than Somalia observed in the shallow hotspot framework. The faster WSW motion of Africa with respect to Somalia plate is inferred to be due to the lower viscosity in the top asthenosphere (LVZ-low-velocity zone) beneath Africa. These findings have significant implication for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics of the Ethiopian Rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  19. Red-Sea rift magmatism near Al Lith, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Pallister, J.S.

    1986-01-01

    A model of poly-baric mantle-melt derivation, producing several alkalinesubalkaline cycles, best explains magmatism in the Red Sea region. Differences in the depths and dynamics of mantle-melt extraction and transport brought about through changes in crust and mantle structure as the rift and paar developed may account for the transition from mixed alkaline-subalkaline bimodal magmatism of the pre-20 Ma rift basin to exclusively subalkaline (tholeiitic) magmatism at the Red Sea spreading axis and to predominantly alkali basalt volcanism within the Arabian Shield.

  20. Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system)

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi, Mwene Ntabwoba Stanislas; Bondo, Silvanos Fiama; Kervyn, François; Havenith, Hans-Balder

    2017-10-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focusing on the Kivu and northern Tanganyika rift region in Central Africa, a new probabilistic seismic hazard assessment has been performed for the Kivu rift segment in the central part of the western branch of the East African rift system. As the geological and tectonic setting of this region is incompletely known, especially the part lying in the Democratic Republic of the Congo, we compiled homogeneous cross-border tectonic and neotectonic maps. The seismic risk assessment is based on a new earthquake catalogue based on the ISC reviewed earthquake catalogue and supplemented by other local catalogues and new macroseismic epicenter data spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. The final catalogue used for the seismic hazard assessment spans 60 years, from 1955 to 2015, with 359 events and a magnitude of completeness of 4.4. The seismotectonic zonation into 7 seismic source areas was done on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined by the least square linear fit and the maximum likelihood method. Seismic hazard maps have been computed using existing attenuation laws with the Crisis 2012 software. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates. They also vary laterally in function of the tectonic setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone.

  1. Seismic structure of the uppermost mantle beneath the Kenya rift

    USGS Publications Warehouse

    Keller, Gordon R.; Mechie, J.; Braile, L.W.; Mooney, W.D.; Prodehl, C.

    1994-01-01

    A major goal of the Kenya Rift International Seismic Project (KRISP) 1990 experiment was the determination of deep lithospheric structure. In the refraction/wide-angle reflection part of the KRISP effort, the experiment was designed to obtain arrivals to distances in excess of 400 km. Phases from interfaces within the mantle were recorded from many shotpoints, and by design, the best data were obtained along the axial profile. Reflected arrivals from two thin (< 10 km), high-velocity layers were observed along this profile and a refracted arrival was observed from the upper high-velocity layer. These mantle phases were observed on record sections from four axial profile shotpoints so overlapping and reversed coverage was obtained. Both high-velocity layers are deepest beneath Lake Turkana and become more shallow southward as the apex of the Kenya dome is approached. The first layer has a velocity of 8.05-8.15 km/s, is at a depth of about 45 km beneath Lake Turkana, and is observed at depths of about 40 km to the south before it disappears near the base of the crust. The deeper layer has velocities ranging from 7.7 to 7.8 km/s in the south to about 8.3 km/s in the north, has a similar dip as the upper one, and is found at depths of 60-65 km. Mantle arrivals outside the rift valley appear to correlate with this layer. The large amounts of extrusive volcanics associated with the rift suggest compositional anomalies as an explanation for the observed velocity structure. However, the effects of the large heat anomaly associated with the rift indicate that composition alone cannot explain the high-velocity layers observed. These layers require some anisotropy probably due to the preferred orientation of olivine crystals. The seismic model is consistent with hot mantle material rising beneath the Kenya dome in the southern Kenya rift and north-dipping shearing along the rift axis near the base of the lithosphere beneath the northern Kenya rift. This implies lithosphere

  2. Volcanic Seismology