Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Byrd, J. A.; Janovicz, M. A.; Thrasher, S. R.
1981-01-01
Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Breisacher, Kevin J.
2000-01-01
Low-emission combustor designs are prone to combustor instabilities. Because active control of these instabilities may allow future combustors to meet both stringent emissions and performance requirements, an experimental combustor rig was developed for investigating methods of actively suppressing combustion instabilities. The experimental rig has features similar to a real engine combustor and exhibits instabilities representative of those in aircraft gas turbine engines. Experimental testing in the spring of 1999 demonstrated that the rig can be tuned to closely represent an instability observed in engine tests. Future plans are to develop and demonstrate combustion instability control using this experimental combustor rig. The NASA Glenn Research Center at Lewis Field is leading the Combustion Instability Control program to investigate methods for actively suppressing combustion instabilities. Under this program, a single-nozzle, liquid-fueled research combustor rig was designed, fabricated, and tested. The rig has many of the complexities of a real engine combustor, including an actual fuel nozzle and swirler, dilution cooling, and an effusion-cooled liner. Prior to designing the experimental rig, a survey of aircraft engine combustion instability experience identified an instability observed in a prototype engine as a suitable candidate for replication. The frequency of the instability was 525 Hz, with an amplitude of approximately 1.5-psi peak-to-peak at a burner pressure of 200 psia. The single-nozzle experimental combustor rig was designed to preserve subcomponent lengths, cross sectional area distribution, flow distribution, pressure-drop distribution, temperature distribution, and other factors previously found to be determinants of burner acoustic frequencies, mode shapes, gain, and damping. Analytical models were used to predict the acoustic resonances of both the engine combustor and proposed experiment. The analysis confirmed that the test rig configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.
Advanced Gas Turbine (AGT) technology report
NASA Technical Reports Server (NTRS)
1985-01-01
Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and producibility experiments at Pontiac comprised AGT 100 activities of this period, January to December 1984. Two experimental engines were available and allowed the evaluation of eight experimental assemblies. Operating time accumulated was 115 hr of burning and 156 hr total. Total cumulative engine operating time is now 225 hr. Build number 11 and 12 of engine S/N 1 totaled 28 burning hours and constituted a single assembly of the engine core--the compressor, both turbines, and the gearbox. Build number 11 of engine S/N 1 included a 1:07 hr continuous test at 100% gasifier speed (86,000 rpm). Build number 8 of engine S/N 2 was the first engine test with a ceramic turbine rotor. A mechanical loss test of an engine assembly revealed the actual losses to be near the original design allowance. Component development activity included rig testing of the compressor, combustor, and regenerator. Compressor testing was initiated on a rig modified to control the transfer of heat between flow path, lubricating oil, and structure. Results show successful thermal decoupling of the rig and lubricating/cooling oil. Rig evaluation of a reduced-friction compressor was initiated. Combustor testing covered qualification of ceramic parts for engine use, mapping of operating range limits, and evaluation of a relocated igniter plug. Several seal refinements were tested on the hot regenerator rig. An alternate regenerator disk, extruded MAS, was examined and found to be currently inadequate for the AGT 100 application. Also, a new technique for measuring leakage was explored on the regenerator rig. Ceramic component activity has focused on the development of state-of-the-art material strength characteristics in full-scale hardware. Injection-molded sintered alpha-SiC rotors were produced at Carborundum in an extensive process and tool optimization study.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Status of the Combined Cycle Engine Rig
NASA Technical Reports Server (NTRS)
Saunders, Dave; Slater, John; Dippold, Vance
2009-01-01
Status for the past year is provided of the turbine-based Combined-Cycle Engine (CCE) Rig for the hypersonic project. As part of the first stage propulsion of a two-stage-to-orbit vehicle concept, this engine rig is designed with a common inlet that supplies flow to a turbine engine and a dual-mode ramjet / scramjet engine in an over/under configuration. At Mach 4 the inlet has variable geometry to switch the airflow from the turbine to the ramjet / scramjet engine. This process is known as inlet mode-transition. In addition to investigating inlet aspects of mode transition, the rig will allow testing of turbine and scramjet systems later in the test series. Fully closing the splitter cowl "cocoons" the turbine engine and increases airflow to the scramjet duct. The CCE Rig will be a testbed to investigate integrated propulsion system and controls technology objectives. Four phases of testing are planned to 1) characterize the dual inlet database, 2) collect inlet dynamics using system identification techniques, 3) implement an inlet control to demonstrate mode-transition scenarios and 4) demonstrate integrated inlet/turbine engine operation through mode-transition. Status of the test planning and preparation activities is summarized with background on the inlet design and small-scale testing, analytical CFD predictions and some details of the large-scale hardware. The final stages of fabrication are underway.
Stratified charge rotary aircraft engine technology enablement program
NASA Technical Reports Server (NTRS)
Badgley, P. R.; Irion, C. E.; Myers, D. M.
1985-01-01
The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.
2015-05-12
The Fuel Burner Rig is a test laboratory at NASA Glenn, which subjects new jet engine materials, treated with protective coatings, to the hostile, high temperature, high velocity environment found inside aircraft turbine engines. These samples face 200-mile per hour flames to simulate the temperatures of aircraft engines in flight. The rig can also simulate aircraft carrier and dusty desert operations where salt and sand can greatly reduce engine life and performance.
Development of a turbojet engine gearbox test rig for prognostics and health management
NASA Astrophysics Data System (ADS)
Rezaei, Aida; Dadouche, Azzedine
2012-11-01
Aircraft engine gearboxes represent one of the many critical systems/elements that require special attention for longer and safer operation. Reactive maintenance strategies are unsuitable as they usually imply higher repair costs when compared to condition based maintenance. This paper discusses the main prognostics and health management (PHM) approaches, describes a newly designed gearbox experimental facility and analyses preliminary data for gear prognosis. The test rig is designed to provide full capabilities of performing controlled experiments suitable for developing a reliable diagnostic and prognostic system. The rig is based on the accessory gearbox of the GE J85 turbojet engine, which has been slightly modified and reconfigured to replicate real operating conditions such as speeds and loads. Defect to failure tests (DTFT) have been run to evaluate the performance of the rig as well as to assess prognostic metrics extracted from sensors installed on the gearbox casing (vibration and acoustic). The paper also details the main components of the rig and describes the various challenges encountered. Successful DTFT results were obtained during an idle engine performance test and prognostic metrics associated with the sensor suite were evaluated and discussed.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Energy efficient engine sector combustor rig test program
NASA Technical Reports Server (NTRS)
Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.
1981-01-01
Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.
Design and Checkout of a High Speed Research Nozzle Evaluation Rig
NASA Technical Reports Server (NTRS)
Castner, Raymond S.; Wolter, John D.
1997-01-01
The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.
2007-01-01
Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Ballistic and Cyclic Rig Testing of Braided Composite Fan Case Structures
NASA Technical Reports Server (NTRS)
Watson, William R.; Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.
2015-01-01
FAA fan blade-out certification testing on turbofan engines occurs very late in an engine's development program and is very costly. It is of utmost importance to approach the FAA Certification engine test with a high degree of confidence that the containment structure will not only contain the high-energy debris, but that it will also withstand the cyclic loads that occur with engine spooldown and continued rotation as the non-running engine maintains a low rotor RPM due to forced airflow as the engine-out aircraft returns to an airport. Accurate rig testing is needed for predicting and understanding material behavior of the fan case structure during all phases of this fan blade-out event.
Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.
2003-01-01
Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.
Energy efficient engine: High pressure turbine uncooled rig technology report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1979-01-01
Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.
NASA Technical Reports Server (NTRS)
Macks, E Fred; Nemeth, Zolton N
1952-01-01
A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made by means of a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and the outer-race bearing operating temperatures are computed for the laboratory test rig and the turbojet engine. A method is given that enables the designer to predict the inner- and outer-race turbine roller-bearing temperatures from single curves, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter, or any combination of these parameters.
NASA Technical Reports Server (NTRS)
Macks, E Fred; Nemeth, Zolton N
1951-01-01
A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.
Energy efficient engine high-pressure turbine component rig performance test report
NASA Technical Reports Server (NTRS)
Leach, K. P.
1983-01-01
A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.
History of Space Shuttle Main Engine Turbopump Bearing Testing at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Gibson, Howard; Thom, Robert; Moore, Chip; Haluck, Dave
2010-01-01
The Space Shuttle is propelled into orbit by two solid rocket motors and three liquid fed main engines. After the solid motors fall away, the shuttle engines continue to run for a total time of 8 minutes. These engines are fed propellants by low and high pressure turbopumps. A critical part of the turbopump is the main shaft that supports the drive turbine and the pump inducer and impeller. Rolling element bearings hold the shaft in place during rotation. If the bearings were to fail, the shaft would move, allowing components to rub in a liquid oxygen or hydrogen environment, which could have catastrophic results. These bearings are required to spin at very high speeds, support radial and axial loads, and have high wear resistance without the benefit of a conventional means of lubrication. The Rocketdyne built Shuttle turbopumps demonstrated their capability to perform during launches; however, the seven hour life requirement was not being met. One of the limiting factors was the bearings. In the late 1970's, an engineering team was formed at the Marshall Space Flight Center (MSFC), to develop a test rig and plan for testing the Shuttle s main engine high pressure oxygen turbopump (HPOTP) bearings. The goals of the program were to better understand the operation of bearings in a cryogenic environment and to further develop and refine existing computer models used to predict the operational limits of these bearings. In 1982, testing began in a rig named the Bearing and Seal Material Tester or BSMT as it was commonly called. The first testing investigated the thermal margin and thermal runaway limits of the HPOTP bearings. The test rig was later used to explore potential bearing improvements in the area of increased race curvatures, new cage materials for better lubrication, new wear resistant rolling element materials, and other ideas to improve wear life. The most notable improvements during this tester s time was the incorporation of silicon nitride balls and bronze filled polytetrafluoroethylene (PTFE) cage inserts into the bearings and the anchoring of the SHABERTH bearing model and SINDA thermal computer model for cryogenic bearing analysis. In the mid 1990's, Pratt and Whitney (P&W) won the contract to deliver new high pressure turbopumps for the Shuttle s engines. P&W used two new bearing materials for the rings, Cronidur 30 and AISI 9310 steel and testing was needed on these new materials. A test rig had been designed and delivered to MSFC for testing hydrostatic bearings but with the need by Pratt to validate their bearings, the rig was reconfigured for testing of two ball bearings or a ball bearing and a roller bearing. The P&W bearings are larger than the Rocketdyne bearings and could not be installed in the BSMT. This new test rig was called the LH2 test rig and began operation in 1995. The LH2 test rig accumulated 75,000 seconds of run time in hydrogen. This test rig was valuable in two areas: validating the use of silicon nitride balls and rollers in Alternate Turbopump Development (ATD) bearings, which Pratt eventually used, and in proving the robustness of the balls and rollers after river marks appeared on the surface of the rolling elements. Individual test reports have been presented at conferences and symposiums throughout the years. This paper is a comprehensive report of all the bearing testing done at Marshall. It represents thousands of hours of dedication and labor in all engineering and technical fields that made this program a success.
Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1978-01-01
A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine.
ISTAR: Project Status and Ground Test Engine Design
NASA Technical Reports Server (NTRS)
Quinn, Jason Eugene
2003-01-01
Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey
2007-01-01
An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.
46 CFR 162.050-19 - Oil content meter and bilge alarm test rig.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Oil content meter and bilge alarm test rig. 162.050-19 Section 162.050-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment...
Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2004-01-01
This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.
A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2007-01-01
A new test rig has been developed for simulating high-speed turbomachinery rotor systems using Oil-Free foil air bearing technology. Foil air bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. The goal of applying this bearing technology to other classes of turbomachinery has prompted the fabrication of this test rig. The facility gives bearing designers the capability to test potential bearing designs with shafts that simulate the rotating components of a target machine without the high cost of building "make-and-break" hardware. The data collected from this rig can be used to make design changes to the shaft and bearings in subsequent design iterations. This paper describes the new test rig and demonstrates its capabilities through the initial run with a simulated shaft system.
NASA Technical Reports Server (NTRS)
Owen, A. Karl; Mattern, Duane L.; Le, Dzu K.
1996-01-01
Steady state and dynamic data were acquired in a T55-L-712 compressor rig. In addition, a T55-L-12 engine was instrumented and similar data were acquired. Rig and engine stall/surge data were analyzed using modal techniques. This paper compares rig and engine preliminary results for the ground idle (approximately 60% of design speed) point. The results of these analyses indicate both rig and engine dynamic event are preceded by indications of traveling wave energy in front of the compressor face. For both rig and engine, the traveling wave energy contains broad band energy with some prominent narrow peaks and, while the events are similar in many ways, some noticeable differences exist between the results of the analyses of rig data and engine data.
Energy Efficient Engine: High-pressure compressor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Howe, David C.; Marchant, R. D.
1988-01-01
The objective of the NASA Energy Efficient Engine program is to identify and verify the technology required to achieve significant reductions in fuel consumption and operating cost for future commercial gas turbine engines. The design and analysis is documented of the high pressure compressor which was tested as part of the Pratt and Whitney effort under the Energy Efficient Engine program. This compressor was designed to produce a 14:1 pressure ratio in ten stages with an adiabatic efficiency of 88.2 percent in the flight propulsion system. The corresponding expected efficiency for the compressor component test rig is 86.5 percent. Other performance goals are a surge margin of 20 percent, a corrected flow rate of 35.2 kg/sec (77.5 lb/sec), and a life of 20,000 missions and 30,000 hours. Low loss, highly loaded airfoils are used to increase efficiency while reducing the parts count. Active clearance control and case trenches in abradable strips over the blade tips are included in the compressor component design to further increase the efficiency potential. The test rig incorporates variable geometry stator vanes in all stages to permit maximum flexibility in developing stage-to-stage matching. This provision precluded active clearance control on the rear case of the test rig. Both the component and rig designs meet or exceed design requirements with the exception of life goals, which will be achievable with planned advances in materials technology.
Coherent Turbulence Rig in the Engine Research Building
1979-08-21
An engineer examines the Coherent Turbulence Rig in the Engine Research Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Coherent turbulence occurs when waves of uniform size and alignment are present in airflow. Researchers at NASA Lewis were interested in determining the relation between the size of the waves and their heat transfer properties. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities.
A New Design of the Test Rig to Measure the Transmission Error of Automobile Gearbox
NASA Astrophysics Data System (ADS)
Hou, Yixuan; Zhou, Xiaoqin; He, Xiuzhi; Liu, Zufei; Liu, Qiang
2017-12-01
Noise and vibration affect the performance of automobile gearbox. And transmission error has been regarded as an important excitation source in gear system. Most of current research is focused on the measurement and analysis of single gear drive, and few investigations on the transmission error measurement in complete gearbox were conducted. In order to measure transmission error in a complete automobile gearbox, a kind of electrically closed test rig is developed. Based on the principle of modular design, the test rig can be used to test different types of gearbox by adding necessary modules. The test rig for front engine, rear-wheel-drive gearbox is constructed. And static and modal analysis methods are taken to verify the performance of a key component.
Energy Efficient Engine: Combustor component performance program
NASA Technical Reports Server (NTRS)
Dubiel, D. J.
1986-01-01
The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.
Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and "Two Space" Test Rigs
NASA Technical Reports Server (NTRS)
Ebiana, Asuquo B.; Savadekar, Rupesh T.; Patel, Kaushal V.
2006-01-01
The results of the entropy generation and availability energy loss analysis under conditions of oscillating pressure and oscillating helium gas flow in two Massachusetts Institute of Technology (MIT) test rigs piston-cylinder and piston-cylinder-heat exchanger are presented. Two solution domains, the gas spring (single-space) in the piston-cylinder test rig and the gas spring + heat exchanger (two-space) in the piston-cylinder-heat exchanger test rig are of interest. Sage and CFD-ACE+ commercial numerical codes are used to obtain 1-D and 2-D computer models, respectively, of each of the two solution domains and to simulate the oscillating gas flow and heat transfer effects in these domains. Second law analysis is used to characterize the entropy generation and availability energy losses inside the two solution domains. Internal and external entropy generation and availability energy loss results predicted by Sage and CFD-ACE+ are compared. Thermodynamic loss analysis of simple systems such as the MIT test rigs are often useful to understand some important features of complex pattern forming processes in more complex systems like the Stirling engine. This study is aimed at improving numerical codes for the prediction of thermodynamic losses via the development of a loss post-processor. The incorporation of loss post-processors in Stirling engine numerical codes will facilitate Stirling engine performance optimization. Loss analysis using entropy-generation rates due to heat and fluid flow is a relatively new technique for assessing component performance. It offers a deep insight into the flow phenomena, allows a more exact calculation of losses than is possible with traditional means involving the application of loss correlations and provides an effective tool for improving component and overall system performance.
High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie
2007-01-01
In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.
NASA Glenn High Pressure Low NOx Emissions Research
NASA Technical Reports Server (NTRS)
Tacina, Kathleen M.; Wey, Changlie
2008-01-01
In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Holt, James B.; Canabal, Francisco
1999-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
NASA Technical Reports Server (NTRS)
Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.
1986-01-01
Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
NASA Technical Reports Server (NTRS)
Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef
2003-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.
Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec
NASA Technical Reports Server (NTRS)
Owen, A. K.
1994-01-01
Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.
Low Frequency Noise Contamination in Fan Model Testing
NASA Technical Reports Server (NTRS)
Brown, Clifford A.; Schifer, Nicholas A.
2008-01-01
Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.
Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Yu, J.
1999-01-01
Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.
Advanced Gas Turbine (AGT): Power-train system development
NASA Technical Reports Server (NTRS)
Helms, H. E.; Johnson, R. A.; Gibson, R. K.; Smith, L. B.
1983-01-01
Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine is described. The general effort was concentrated on building an engine for test starting in July. The buildup progressed with only routine problems and the engine was delivered to the test stand 9 July. In addition to the engine build effort, work continued in selected component areas. Ceramic turbine parts were built and tested. Burst tests of ceramic rotors show strengths are approaching that achieved in test bars; proof testing is required for acceptable strength ceramic vanes. Over 25 hours was accumulated on the combustor rig in three test modes: pilot nozzle only, start nozzle, and main nozzle operation. Satisfactory ignition was achieved for a wide range of starting speeds and the lean blowout limit was as low as 0.06 kg/b (0.14 lb/hr). Lean blowout was more a function of nozzle atomization than fuel/air ratio. A variety of cycle points were tested. Transition from start nozzle flow to main nozzle flow was done manually without difficulty. Regenerator parts were qualification tested without incident and the parts were assembled on schedule. Rig based performance matched first build requirements. Repeated failures in the harmonic drive gearbox during rig testing resulted in that concept being abandoned for an alternate scheme.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; Holt, James B.; Canabal, Francisco
2001-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
A Study of Ballast Water Treatment Using Engine Waste Heat
NASA Astrophysics Data System (ADS)
Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin
2018-05-01
Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.
Advanced Combustor in the Four Burner Area
1966-03-21
Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.
An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2008-01-01
An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.
High pressure compressor component performance report
NASA Technical Reports Server (NTRS)
Cline, S. J.; Fesler, W.; Liu, H. S.; Lovell, R. C.; Shaffer, S. J.
1983-01-01
A compressor optimization study defined a 10 stage configuration with a 22.6:1 pressure ratio, an adiabatic efficiency goal of 86.1%, and a polytropic efficiency of 90.6%; the corrected airflow is 53.5 kg/s. Subsequent component testing included three full scale tests: a six stage rig test, a 10 stage rig test, and another 10 stage rig test completed in the second quarter of 1982. Information from these tests is used to select the configuration for a core engine test and an integrated core/low spool test. The test results will also provide data base for the flight propulsion system. The results of the test series with both aerodynamic and mechanical performance of each compressor build are presented. The second 10 stage compressor adiabatic efficiency was 0.848 at a cruise operating point versus a test goal of 0.846.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig
2011-01-01
This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.
NASA Technical Reports Server (NTRS)
Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2012-01-01
At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.
Pollution reduction technology program for small jet aircraft engines: Class T1
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Mongia, H. C.
1977-01-01
Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.
Comparative Study of Impedance Eduction Methods. Part 1; DLR Tests and Methodology
NASA Technical Reports Server (NTRS)
Busse-Gerstengarbe, Stefan; Bake, Friedrich; Enghardt, Lars; Jones, Michael G.
2013-01-01
The absorption efficiency of acoustic liners used in aircraft engines is characterized by the acoustic impedance. World wide, many grazing ow test rigs and eduction methods are available that provide values for that impedance. However, a direct comparison and assessment of the data of the di erent rigs and methods is often not possible because test objects and test conditions are quite di erent. Only a few papers provide a direct comparison. Therefore, this paper together with a companion paper, present data measured with a reference test object under similar conditions in the DLR and NASA grazing ow test rigs. Additionally, by applying the in-house methods Liner Impedance Non-Uniform ow Solving algorithm (LINUS, DLR) and Convected Helmhholtz Equation approach (CHE, NASA) on the data sets, similarities and differences due to underlying theory are identi ed and discussed.
Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2004-01-01
A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.
Validation of structural analysis methods using the in-house liner cyclic rigs
NASA Technical Reports Server (NTRS)
Thompson, R. L.
1982-01-01
Test conditions and variables to be considered in each of the test rigs and test configurations, and also used in the validation of the structural predictive theories and tools, include: thermal and mechanical load histories (simulating an engine mission cycle; different boundary conditions; specimens and components of different dimensions and geometries; different materials; various cooling schemes and cooling hole configurations; several advanced burner liner structural design concepts; and the simulation of hot streaks. Based on these test conditions and test variables, the test matrices for each rig and configurations can be established to verify the predictive tools over as wide a range of test conditions as possible using the simplest possible tests. A flow chart for the thermal/structural analysis of a burner liner and how the analysis relates to the tests is shown schematically. The chart shows that several nonlinear constitutive theories are to be evaluated.
Advanced Environmental Barrier Coatings Development for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.
2005-01-01
Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Corman; Krishan Luthra; Jill Jonkowski
2011-01-07
This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less
Low and medium heating value coal gas catalytic combustor characterization
NASA Technical Reports Server (NTRS)
Schwab, J. A.
1982-01-01
Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.
Performance Evaluation of the NASA GTX RBCC Flowpath
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Palac, Donald T.; Trefny, Charles J.; Roche, Joseph M.
2001-01-01
The NASA Glenn Research Center serves as NASAs lead center for aeropropulsion. Several programs are underway to explore revolutionary airbreathing propulsion systems in response to the challenge of reducing the cost of space transportation. Concepts being investigated include rocket-based combined cycle (RBCC), pulse detonation wave, and turbine-based combined cycle (TBCC) engines. The GTX concept is a vertical launched, horizontal landing, single stage to orbit (SSTO) vehicle utilizing RBCC engines. The propulsion pod has a nearly half-axisymmetric flowpath that incorporates a rocket and ram-scramjet. The engine system operates from lift-off up to above Mach 10, at which point the airbreathing engine flowpath is closed off, and the rocket alone powers the vehicle to orbit. The paper presents an overview of the research efforts supporting the development of this RBCC propulsion system. The experimental efforts of this program consist of a series of test rigs. Each rig is focused on development and optimization of the flowpath over a specific operating mode of the engine. These rigs collectively establish propulsion system performance over all modes of operation, therefore, covering the entire speed range. Computational Fluid Mechanics (CFD) analysis is an important element of the GTX propulsion system development and validation. These efforts guide experiments and flowpath design, provide insight into experimental data, and extend results to conditions and scales not achievable in ground test facilities. Some examples of important CFD results are presented.
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Civinskas, Kestutis C.
2004-01-01
NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.
JT90 thermal barrier coated vanes
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.
1982-01-01
The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
NASA Technical Reports Server (NTRS)
Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef
2004-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.
Advanced Gas Turbine (AGT) powertrain system
NASA Technical Reports Server (NTRS)
Helms, H. E.; Kaufeld, J.; Kordes, R.
1981-01-01
A 74.5 kW(100 hp) advanced automotive gas turbine engine is described. A design iteration to improve the weight and production cost associated with the original concept is discussed. Major rig tests included 15 hours of compressor testing to 80% design speed and the results are presented. Approximately 150 hours of cold flow testing showed duct loss to be less than the design goal. Combustor test results are presented for initial checkout tests. Turbine design and rig fabrication is discussed. From a materials study of six methods to fabricate rotors, two have been selected for further effort. A discussion of all six methods is given.
Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts
NASA Technical Reports Server (NTRS)
Lattime, Scott B.; Steinetz, Bruce M.; Robbie, Malcolm G.
2003-01-01
Improved blade tip sealing in the high pressure compressor and high pressure turbine can provide dramatic improvements in specific fuel consumption, time-on-wing, compressor stall margin and engine efficiency as well as increased payload and mission range capabilities of both military and commercial gas turbine engines. The preliminary design of a mechanically actuated active clearance control (ACC) system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated. The ACC system utilizes mechanically actuated seal carrier segments and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. The purpose of this active clearance control system is to improve upon current case cooling methods. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, re-burst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). The active turbine blade tip clearance control system design presented herein will be evaluated to ensure that proper response and positional accuracy is achievable under simulated high-pressure turbine conditions. The test rig will simulate proper seal carrier pressure and temperature loading as well as the magnitudes and rates of blade tip clearance changes of an actual gas turbine engine. The results of these evaluations will be presented in future works.
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1996-01-01
This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.
Numerical Simulation of the RTA Combustion Rig
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph
2005-01-01
The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.
Analysis of noise emitted from diesel engines
NASA Astrophysics Data System (ADS)
Narayan, S.
2015-12-01
In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.
Component qualification and initial build of the AGT 100 advanced automotive gas turbine
NASA Technical Reports Server (NTRS)
Johnson, R. A.
1983-01-01
In advance of initial dynamometer testing of the AGT 100 engine, all prime components and subsystems were bench/rig tested. Included were compressor, combustor, turbines, regenerator, ceramic components, and electronic control system. Results are briefly reviewed. Initial engine buildup was completed and rolled-out for test cell installation in July 1982. Shakedown testing included motoring and sequential firing of the combustor's three fuel nozzles.
High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender
2014-01-01
Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.
Evaluation of candidate stirling engine heater tube alloys at 820 deg and 860 deg C
NASA Technical Reports Server (NTRS)
Misencik, J. A.
1982-01-01
Seven commercial alloys were evaluated in Stirling simulator materials rigs. Five iron base alloys (N-155, A-286, Incoloy 800, 19-9DL, and 316 stainless steel), one nickel base alloy (Inconel 718), and one cobalt base alloy (HS-188) were tested in the form of thin wall tubing in a diesel fuel fired test rig. Tubes filled with hydrogen or helium at gas pressure of 21.6 MPa and temperatures of 820 and 860 C were endurance tested for 1000 and 535 hours, respectively. Results showed that under these conditions hydrogen permeated rapidly through the tube walls, thus requiring refilling during each five hour cycle. Helium was readily contained, exhibiting no measurable loss by permeation. Helium filled tubes tested at 860 C all exhibited creep-rupture failures within the 535 hour endurance test. Subsequent tensile test evaluation after removal from the rig indicated reduced room temperature ductility for some hydrogen-filled tubes compared to helium-filled tubes, suggesting possible hydrogen embrittlement in these alloys.
Investigation of Flow Conditioners for Compact Jet Engine Simulator Rig Noise Reduction
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Haskin, Henry H.
2011-01-01
The design requirements for two new Compact Jet Engine Simulator (CJES) units for upcoming wind tunnel testing lead to the distinct possibility of rig noise contamination. The acoustic and aerodynamic properties of several flow conditioner devices are investigated over a range of operating conditions relevant to the CJES units to mitigate the risk of rig noise. An impinging jet broadband noise source is placed in the upstream plenum of the test facility permitting measurements of not only flow conditioner self-noise, but also noise attenuation characteristics. Several perforated plate and honeycomb samples of high porosity show minimal self-noise but also minimal attenuation capability. Conversely, low porosity perforated plate and sintered wire mesh conditioners exhibit noticeable attenuation but also unacceptable self-noise. One fine wire mesh sample (DP450661) shows minimal selfnoise and reasonable attenuation, particularly when combined in series with a 15.6 percent open area (POA) perforated plate upstream. This configuration is the preferred flow conditioner system for the CJES, providing up to 20 dB of broadband attenuation capability with minimal self-noise.
A review of Curtiss-Wright rotary engine developments with respect to general aviation potential
NASA Technical Reports Server (NTRS)
Jones, C.
1979-01-01
Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.
Development of Experimental and Computational Aeroacoustic Tools for Advanced Liner Evaluation
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Nark, Douglas N.; Parrott, Tony L.; Gerhold, Carl H.; Brown, Martha C.
2006-01-01
Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of user-selected modes. The Grazing Flow Impedance Tube is a 51- mm by 63-mm duct currently being fabricated to operate at Mach numbers up to 0.6 with source SPLs up to at least 140 dB, and will replace the existing 51-mm by 51-mm duct. Together, these test rigs allow evaluation of advanced acoustic liners over a range of conditions representative of those observed in aircraft engine nacelles. Data acquired with these test ducts are processed using three aeroacoustic propagation codes. Two are based on finite element solutions to convected Helmholtz and linearized Euler equations. The third is based on a parabolic approximation to the convected Helmholtz equation. The current status of these computational tools and their associated usage with the Langley test rigs is provided.
2015-01-27
The Plasma Spray-Physical Vapor Deposition (PS-PVD) Rig at NASA Glenn Research Center. The rig helps develop coatings for next-generation aircraft turbine components and create more efficient engines.
Low-cost single-crystal turbine blades, volume 2
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Dennis, R. E.; Heath, B. R.
1984-01-01
The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.
Glenn Extreme Environment Rig (GEER)
2017-01-17
NASA Glenn research engineers prepare our extreme environments chamber (GEER) for a test. GEER, which simulates the extreme conditions found in space, tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800˚F.
Single shaft automotive gas turbine engine characterization test
NASA Technical Reports Server (NTRS)
Johnson, R. A.
1979-01-01
An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.
Non-Synchronous Vibration of Turbomachinery Airfoils
2006-03-01
study and prevention of non-synchronous vibrations. Non-synchronous vibrations in turbine engine blades are the result of the interaction of an...was a modern fan vane blade known as the H2 case. This blade encountered NSV in experimental rig testing. An analysis was performed with TURBO ...design stage for flow over turbine engine blades . REFERENCES Anagnostopoulos, P., ed. Flow-Induced Vibrations in Engineering
Rotary Engine Friction Test Rig Development Report
2011-12-01
fundamental research is needed to understand the friction characteristics of the rotary engine that lead to accelerated wear and tear on the seals...that includes a turbocharger . Once the original GT-Suite model is validated, the turbocharger model will be more accurate. This validation will...prepare for turbocharger and fuel-injector testing, which will lead to further development and calibration of the model. Further details are beyond the
JT9D ceramic outer air seal system refinement program
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1982-01-01
The abradability and durability characteristics of the plasma sprayed system were improved by refinement and optimization of the plasma spray process and the metal substrate design. The acceptability of the final seal system for engine testing was demonstrated by an extensive rig test program which included thermal shock tolerance, thermal gradient, thermal cycle, erosion, and abradability tests. An interim seal system design was also subjected to 2500 endurance test cycles in a JT9D-7 engine.
Analysis of uncertainties in turbine metal temperature predictions
NASA Technical Reports Server (NTRS)
Stepka, F. S.
1980-01-01
An analysis was conducted to examine the extent to which various factors influence the accuracy of analytically predicting turbine blade metal temperatures and to determine the uncertainties in these predictions for several accuracies of the influence factors. The advanced turbofan engine gas conditions of 1700 K and 40 atmospheres were considered along with those of a highly instrumented high temperature turbine test rig and a low temperature turbine rig that simulated the engine conditions. The analysis showed that the uncertainty in analytically predicting local blade temperature was as much as 98 K, or 7.6 percent of the metal absolute temperature, with current knowledge of the influence factors. The expected reductions in uncertainties in the influence factors with additional knowledge and tests should reduce the uncertainty in predicting blade metal temperature to 28 K, or 2.1 percent of the metal absolute temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NEIL K. MCDOUGALD
Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this projectmore » was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.« less
UHB Engine Fan Broadband Noise Reduction Study
NASA Technical Reports Server (NTRS)
Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani
1995-01-01
A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.
UHB engine fan broadband noise reduction study
NASA Astrophysics Data System (ADS)
Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani
1995-06-01
A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.
NASA Technical Reports Server (NTRS)
Morey, W. W.
1984-01-01
This report covers the development and testing of a prototype combustor viewing system. The system allows one to see and record images from the inside of an operating gas turbine combustor. The program proceeded through planned phases of conceptual design, preliminary testing to resolve problem areas, prototype design and fabrication, and rig testing. Successful tests were completed with the viewing system in the laboratory, in a high pressure combustor rig, and on a Pratt and Whitney PW20307 jet engine. Both film and video recordings were made during the tests. Digital image analysis techniques were used to enhance images and bring out special effects. The use of pulsed laser illumination was also demonstrated as a means for observing liner surfaces in the presence of luminous flame.
NASA Astrophysics Data System (ADS)
1992-06-01
A development history is presented for NASA's 1983-1991 Rotary Engine Enablement Program, emphasizing the CFD approaches to various problems that were instituted from 1987 to the end of the program. In phase I, a test rig was built to intensively clarify and characterize the stratified-charge rotary engine concept. In phase II, a high pressure, electronically controlled fuel injection system was tested. In phase III, the testing of improved fuel injectors led to the achievement of the stipulated 5 hp/cu inch specific power goal. CFD-aided design of advanced rotor-pocket shapes led to additional performance improvements.
A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery
NASA Astrophysics Data System (ADS)
Leithead, Sean Gregory
A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine
Tests of NASA ceramic thermal barrier coating for gas-turbine engines
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1979-01-01
A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.
Fuel saver based on electromagnetic induction for automotive engine
NASA Astrophysics Data System (ADS)
Siregar, Houtman P.; Sibarani, Maradu
2007-12-01
In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.
Small Laminated Axial Turbine Design and Test Program.
1980-12-01
ILLUSTRATIONS Figure No. Title Page 1 Typical Test Results from TFE731 -3 Hot-Rig Testing. 5 2 Laminated Blade Chordwise Flow Patterns 8 3 Laminated Blade Cooling...Flow Parameter Versus Pressure Ratio 36 24 Blade Flow Distribution 37 25 TFE731 Turbofan Engine 38 26 Laminated Turbine Wheel 40 27 Selected Blade...facility, which was specifically developed to permit evaluation of cooled compo- nents for gas turbine engines. Four TFE731 -3 Laminated Turbine Wheels
Leakage and Power Loss Test Results for Competing Turbine Engine Seals
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Delgado, Irebert R.
2004-01-01
Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).
Computational Modeling Develops Ultra-Hard Steel
NASA Technical Reports Server (NTRS)
2007-01-01
Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.
Experimental clean combustor program, alternate fuels addendum, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1976-01-01
The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.
Demonstration of Active Combustion Control
NASA Technical Reports Server (NTRS)
Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.
2008-01-01
The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the safety requirements for diesel... are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the diesel engine in the event of a runaway. (a) For a diesel...
Test Rig for Active Turbine Blade Tip Clearance Control Concepts: An Update
NASA Technical Reports Server (NTRS)
Taylor, Shawn; Steinetz, Bruce; Oswald, Jay; DeCastro, Jonathan; Melcher, Kevin
2006-01-01
The objective is to develop and demonstrate a fast-acting active clearance control system to improve turbine engine performance, reduce emissions, and increase service life. System studies have shown the benefits of reducing blade tip clearances in modern turbine engines. Minimizing blade tip clearances throughout the engine will contribute materially to meeting NASA's Ultra-Efficient Engine Technology (UEET) turbine engine project goals. NASA GRC is examining two candidate approaches including rub-avoidance and regeneration which are explained in subsequent slides.
NASA Technical Reports Server (NTRS)
Darden, J. M.; Earhart, E. M.
2011-01-01
The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.
Test Results from a High Power Linear Alternator Test Rig
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.
2010-01-01
Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.
Test Results From a High Power Linear Alternator Test Rig
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.
2010-01-01
Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.
Experimental impact testing and analysis of composite fan cases
NASA Astrophysics Data System (ADS)
Vander Klok, Andrew Joe
For aircraft engine certification, one of the requirements is to demonstrate the ability of the engine to withstand a fan blade-out (FBO) event. A FBO event may be caused by fatigue failure of the fan blade itself or by impact damage of foreign objects such as bird strike. An un-contained blade can damage flight critical engine components or even the fuselage. The design of a containment structure is related to numerous parameters such as the blade tip speed; blade material, size and shape; hub/tip diameter; fan case material, configuration, rigidity, etc. To investigate all parameters by spin experiments with a full size rotor assembly can be prohibitively expensive. Gas gun experiments can generate useful data for the design of engine containment cases at much lower costs. To replicate the damage modes similar to that on a fan case in FBO testing, the gas gun experiment has to be carefully designed. To investigate the experimental procedure and data acquisition techniques for FBO test, a low cost, small spin rig was first constructed. FBO tests were carried out with the small rig. The observed blade-to-fan case interactions were similar to those reported using larger spin rigs. The small rig has the potential in a variety of applications from investigating FBO events, verifying concept designs of rotors, to developing spin testing techniques. This rig was used in the developments of the notched blade releasing mechanism, a wire trigger method for synchronized data acquisition, high speed video imaging and etc. A relationship between the notch depth and the release speed was developed and verified. Next, an original custom designed spin testing facility was constructed. Driven by a 40HP, 40,000rpm air turbine, the spin rig is housed in a vacuum chamber of phi72inx40in (1829mmx1016mm). The heavily armored chamber is furnished with 9 viewports. This facility enables unprecedented investigations of FBO events. In parallel, a 15.4ft (4.7m) long phi4.1inch (105mm) diameter single stage gas gun was developed. A thermodynamic based relationship between the required gas pressure and targeted velocity was proposed. The predicted velocity was within +/-7%. Quantitative measurements of force and displacement were attempted. The transmitted impact force was measured with load cells. The out-of-plane deformation was measured with a projection grating profilometry method. The composite panels and fan cases used in this work were made of S2-glass plain weave fabrics with API SC-15 toughened epoxy resin using the vacuum assisted resin transfer molding (VARTM) method. Using the gas gun, the impact behavior of the composite was investigated at velocities ranging from 984ft/s to 1502ft/s (300m/s to 458m/s) following a draft ASTM testing standard. To compare the ballistic protection capability of different materials, a new parameter EBL, the projectile kinetic energy at the target ballistic limit normalized by the contact area of the projectile, was proposed. S2-glass/epoxy composite is ranked very high in EBL per areal weight. Finally, a testing method for replicating spin pit testing with a gas gun test was developed. Major differences between the two tests are the initial conditions of the blade upon contact with the target. In spin testing, the released blade has two velocity components, rotational and translational whereas in gas gun testing, the projectile has only the translational velocity. To account for the influence of the rotational velocity, three projectile designs were experimentally investigated. The results show that to generate similar damage modes in gas gun testing, it is critical to ensure the deformation of the projectile before testing is similar to that of a released blade. With the pre-bent blade, the gas gun experiment was able to replicate the damage modes of the fan case in FBO test on flat composite panels.
NASA Technical Reports Server (NTRS)
Sucec, J.
1977-01-01
The method of differential similarity is applied to the partial differential equations and boundary conditions which govern the temperature, velocity, and pressure fields in the flowing gases and the solid stationary components in air-cooled engines. This procedure yields the nondimensional groups which must have the same value in both the test rig and the engine to produce similarity between the test results and the engine performance. These results guide the experimentalist in the design and selection of test equipment that properly scales quantities to actual engine conditions. They also provide a firm fundamental foundation for substantiation of previous similarity analyses which employed heuristic, physical reasoning arguments to arrive at the nondimensional groups.
Black, J D; Long, C A
1992-07-20
In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig.
Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design
NASA Technical Reports Server (NTRS)
El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom
2010-01-01
High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness
Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations
NASA Technical Reports Server (NTRS)
Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.
2005-01-01
The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the safety requirements for diesel... Gas Drilling Operations General Requirements § 250.405 What are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the...
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Ho, Y. H.; Prezekwas, A. J.
2005-01-01
Higher power, high efficiency gas turbine engines require optimization of the seals and secondary flow systems as well as their impact on the powerstream. This work focuses on two aspects: 1. To apply the present day CFD tools (SCISEAL) to different real-life secondary flow applications from different original equipment manufacturers (OEM s) to provide feedback data and 2. Develop a computational methodology for coupled time-accurate simulation of the powerstream and secondary flow with emphasis on the interaction between the disk-cavity and rim seals flows with the powerstream (SCISEAL-MS-TURBO). One OEM simulation was of the Allison Engine Company T-56 turbine drum cavities including conjugate heat transfer with good agreement with data and provided design feedback information. Another was the GE aspirating seal where the 3-D CFD simulations played a major role in analysis and modification of that seal configuration. The second major objective, development of a coupled flow simulation capability was achieved by using two codes MS-TURBO for the powerstream and SCISEAL for the secondary flows with an interface coupling algorithm. The coupled code was tested against data from three differed configurations: 1. bladeless-rotor-stator-cavity turbine test rig, 2. UTRC high pressure turbine test rig, and, 3. the NASA Low-Speed-Air Compressor rig (LSAC) with results and limitations discussed herein.
Containment of composite fan blades
NASA Technical Reports Server (NTRS)
Stotler, C. L.; Coppa, A. P.
1979-01-01
A lightweight containment was developed for turbofan engine fan blades. Subscale ballistic-type tests were first run on a number of concepts. The most promising configuration was selected and further evaluated by larger scale tests in a rotating test rig. Weight savings made possible by the use of this new containment system were determined and extrapolated to a CF6-size engine. An analytical technique was also developed to predict the released blades motion when involved in the blade/casing interaction process. Initial checkout of this procedure was accomplished using several of the tests run during the program.
NASA Technical Reports Server (NTRS)
Darlow, M. S.; Smalley, A. J.
1977-01-01
A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.
MTR CAISSONS WERE DRILLED INTO BEDROCK. IN CENTER OF VIEW, ...
MTR CAISSONS WERE DRILLED INTO BEDROCK. IN CENTER OF VIEW, CONCRETE FLOWS FROM TRUCK INTO DRUM, WHICH IS LOWERED INTO CAISSON AND RELEASED AT BOTTOM OF HOLE. BEYOND, TRUCK-MOUNTED DRILLING RIG DRILLS HOLE FOR ANOTHER CAISSON NEAR EDGE OF EXCAVATION. MATERIAL REMOVED FROM HOLE IS CARRIED BY CONVEYOR TO WAITING TRUCK. INL NEGATIVE NO. 307. Unknown Photographer, 6/1950. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Combustor and Vane Features and Components Tested in a Gas Turbine Environment
NASA Technical Reports Server (NTRS)
Roinson, R. Craig; Verrilli, Michael J.
2003-01-01
The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.
1981-01-01
Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.
Oscillating-flow loss test results in rectangular heat exchanger passages
NASA Technical Reports Server (NTRS)
Wood, J. Gary
1991-01-01
Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.
Pollution reduction technology program small jet aircraft engines, phase 3
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1981-01-01
A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.
John Glenn Prepares for a Test in the Multi-Axis Space Test Inertia Facility
1960-02-21
Mercury astronaut John Glenn prepares for a test in the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The MASTIF was a three-axis test rig with a pilot’s chair mounted in the center. The device was designed to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig was then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control. In February and March 1960, the seven Project Mercury astronauts traveled to Cleveland to train on the MASTIF. Warren North and a team of air force physicians were on hand to monitor their health. After being briefed by Lewis pilot Joe Algranti and researcher James Useller, the rider would climb into the rig and be secured in the chair, as seen in this photograph. A Lewis engineer would then slowly set the MASTIF in motion. It was the astronaut’s job to bring it under control. Each individual was required to accumulate 4.5 to 5 hours of MASTIF time. Glenn became the first American to orbit the earth on February 20, 1962 in the Friendship 7 Mercury capsule. In March 1999, the Lewis Research Center was renamed the John H. Glenn Research Center at Lewis Field.
Design and Analysis of Tooth Impact Test Rig for Spur Gear
NASA Astrophysics Data System (ADS)
Ghazali, Wafiuddin Bin Md; Aziz, Ismail Ali Bin Abdul; Daing Idris, Daing Mohamad Nafiz Bin; Ismail, Nurazima Binti; Sofian, Azizul Helmi Bin
2016-02-01
This paper is about the design and analysis of a prototype of tooth impact test rig for spur gear. The test rig was fabricated and analysis was conducted to study its’ limitation and capabilities. The design of the rig is analysed to ensure that there will be no problem occurring during the test and reliable data can be obtained. From the result of the analysis, the maximum amount of load that can be applied, the factor of safety of the machine, the stresses on the test rig parts were determined. This is important in the design consideration of the test rig. The materials used for the fabrication of the test rig were also discussed and analysed. MSC Nastran Patran software was used to analyse the model, which was designed by using SolidWorks 2014 software. Based from the results, there were limitations found from the initial design and the test rig design needs to be improved in order for the test rig to operate properly.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb
2014-01-01
SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.
Mbanaso, F U; Coupe, S J; Charlesworth, S M; Nnadi, E O
2013-01-01
An experimental investigation was carried out to determine the effect of glyphosate-containing herbicides (GCHs) on the hydrocarbon retention and biodegradation processes known to occur in pervious pavement systems (PPSs). The PPS test rigs were based on the four-layered design detailed in CIRIA C582. This enabled the pollutant retention capacity of the PPS and biodegradation of retained pollutants by microorganisms to be investigated. The use of test rigs also enabled the impact of GCH on PPS eukaryotic organisms to be studied, by the monitoring of protist bioindicators. Results showed that GCH disrupted hydrocarbon retention by the geotextiles relative to rigs with mineral oil only added, as 9.3% and 24.5% of added hydrocarbon were found in herbicide only rigs and herbicide plus oil rigs respectively. In previous studies, PPS contaminated by mineral oil had been shown to retain 98.7% of added oils and over several weeks, biodegrade this oil in situ. Where GCH was added to experimental models, much higher concentrations of heavy metals, including Pb, Cu, and Zn, were released from the PPS in effluent, particularly where GCH and mineral oil were added together. The source of the majority of the metal contamination was thought to be the used engine oil. The herbicide generally increased the total activity of microbial communities in rig systems and had a stimulating effect on bacterial and fungal population numbers. Although the protists, which are part of the microbial community directly or indirectly responsible for biodegradation, were initially strongly affected by the herbicide, they showed resilience by quickly recovering and increasing their population compared with rigs without added herbicide, including the rigs with mineral oil added to them. However, the presence of herbicide was associated with a decrease in the species richness of recorded protist taxa and a predominance of robust, cosmopolitan or ubiquitous protist genera. Copyright © 2012 Elsevier Ltd. All rights reserved.
Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna
2016-01-01
This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.
Experimental Study of under-platform Damper Kinematics in Presence of Blade Dynamics
NASA Astrophysics Data System (ADS)
Botto, D.; Gastaldi, C.; Gola, M. M.; Umer, M.
2018-01-01
Among the different devices used in the aerospace industries under-platform dampers are widely used in turbo engines to mitigate the blade vibration. Nevertheless, the damper behaviour is not easy to simulate and engineers have been working in order to improve the accuracy with which theoretical contact models predict the damper behaviour. Majority of the experimental setups collect experimental data in terms of blade amplitude reduction which do not increase the knowledge about the damper dynamics and therefore the uncertainty on the damper behaviour remains a big issue. In this paper, a novel test rig has been purposely designed to accommodate a single blade and two under-platform dampers to deeply investigate the damper-blade interactions. In this test bench, a contact force measuring system was designed to extensively measure the damper contact forces. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of new test rig and discusses experimental results by comparing with previously measured results on an old experimental setup.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines used on a drilling rig? 250.405 Section 250.405 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.405 What are the safety...
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engines used on a drilling rig? 250.405 Section 250.405 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.405 What are the safety...
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines used on a drilling rig? 250.405 Section 250.405 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.405 What are the safety...
Static Thrust and Power Characteristics of Six Full-Scale Propellers
NASA Technical Reports Server (NTRS)
Hartman, Erwin P; Biermann, David
1940-01-01
Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.
Cryogenic gear technology for an orbital transfer vehicle engine and tester design
NASA Technical Reports Server (NTRS)
Calandra, M.; Duncan, G.
1986-01-01
Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.
Development of an Experimental Rig for Investigation of Higher Order Modes in Ducts
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Cabell, Randolph H.; Brown, Martha C.
2006-01-01
Continued progress to reduce fan noise emission from high bypass ratio engine ducts in aircraft increasingly relies on accurate description of the sound propagation in the duct. A project has been undertaken at NASA Langley Research Center to investigate the propagation of higher order modes in ducts with flow. This is a two-pronged approach, including development of analytic models (the subject of a separate paper) and installation of a laboratory-quality test rig. The purposes of the rig are to validate the analytical models and to evaluate novel duct acoustic liner concepts, both passive and active. The dimensions of the experimental rig test section scale to between 25% and 50% of the aft bypass ducts of most modern engines. The duct is of rectangular cross section so as to provide flexibility to design and fabricate test duct liner samples. The test section can accommodate flow paths that are straight through or offset from inlet to discharge, the latter design allowing investigation of the effect of curvature on sound propagation and duct liner performance. The maximum air flow rate through the duct is Mach 0.3. Sound in the duct is generated by an array of 16 high-intensity acoustic drivers. The signals to the loudspeaker array are generated by a multi-input/multi-output feedforward control system that has been developed for this project. The sound is sampled by arrays of flush-mounted microphones and a modal decomposition is performed at the frequency of sound generation. The data acquisition system consists of two arrays of flush-mounted microphones, one upstream of the test section and one downstream. The data are used to determine parameters such as the overall insertion loss of the test section treatment as well as the effect of the treatment on a modal basis such as mode scattering. The methodology used for modal decomposition is described, as is a description of the mode generation control system. Data are presented which demonstrate the performance of the controller to generate the desired mode while suppressing all other cut on modes in the duct.
Development of the Larzac Engine Rig for Compressor Stall Testing
2011-12-01
due to high vibration levels. Most pressure and all temperature sensors were of conventional type, providing analogue output signals, but of...Must have enough thermal stability to withstand the flow temperature at the particular location. 4. Must be stable in relation to engine vibration ...Instabilities in an Aeroengine ”, ICIASF ’97 Record, IEEE Publications 1997. 7. Hoess, B., Leinhos, D., Fottner, L., 2000, “Stall Inception in the
Energy Efficient Engine acoustic supporting technology report
NASA Technical Reports Server (NTRS)
Lavin, S. P.; Ho, P. Y.
1985-01-01
The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.
One-Dimensional Spontaneous Raman Measurements of Temperature Made in a Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Locke, Randy J.; DeGroot, Wilhelmus A.; Anderson, Robert C.
2002-01-01
The NASA Glenn Research Center is working with the aeronautics industry to develop highly fuel-efficient and environmentally friendly gas turbine combustor technology. This effort includes testing new hardware designs at conditions that simulate the high-temperature, high-pressure environment expected in the next-generation of high-performance engines. Glenn has the only facilities in which such tests can be performed. One aspect of these tests is the use of nonintrusive optical and laser diagnostics to measure combustion species concentration, fuel/air ratio, fuel drop size, and velocity, and to visualize the fuel injector spray pattern and some combustion species distributions. These data not only help designers to determine the efficacy of specific designs, but provide a database for computer modelers and enhance our understanding of the many processes that take place within a combustor. Until recently, we lacked one critical capability, the ability to measure temperature. This article summarizes our latest developments in that area. Recently, we demonstrated the first-ever use of spontaneous Raman scattering to measure combustion temperatures within the Advanced Subsonics Combustion Rig (ASCR) sector rig. We also established the highest rig pressure ever achieved for a continuous-flow combustor facility, 54.4 bar. The ASCR facility can provide operating pressures from 1 to 60 bar (60 atm). This photograph shows the Raman system setup next to the ASCR rig. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of air inlet temperatures, pressures, and fuel/air ratios.
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1979-01-01
The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.
Pollution technology program, can-annular combustor engines
NASA Technical Reports Server (NTRS)
Roberts, R.; Fiorentino, A. J.; Greene, W.
1976-01-01
A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.
Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Lezberg, E. A.
1976-01-01
Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.
Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing
NASA Technical Reports Server (NTRS)
Stephens, David, B.
2013-01-01
Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.
Progress of Stirling cycle analysis and loss mechanism characterization
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1986-01-01
An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Naples, Andrew
2017-01-01
An analysis is presented of an experimental rig comprising a rotating detonation engine (RDE) with bypass ejector flow coupled to a downstream turbine. The analysis used a validated computational fluid dynamics RDE simulation combined with straightforward algebraic mixing equations for the bypass flow. The objectives of the analysis were to supplement and interpret the necessarily sparse measurements from the rig, and to assess the performance of the RDE itself, which was not instrumented in this installation. The analysis is seen to agree reasonably well with available data. It shows that the RDE is operating in an unusual fashion, with subsonic flow throughout the exhaust plane. The detonation event itself is producing a total pressure rise relative to the pre-detonative pressure; however, the length of the device and the substantial flow restriction at the inlet yield an overall pressure loss. This is not surprising since the objective of the rig test was primarily aimed at investigating RDE turbine interactions, and not on performance optimization. Furthermore, the RDE was designed for fundamental detonation studies and not performance. Nevertheless, the analysis indicates that with some small alterations to the design, an RDE with an overall pressure rise is possible.
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Naples, Andrew
2017-01-01
An analysis is presented of an experimental rig comprising a rotating detonation engine (RDE) with bypass flow coupled to a downstream turbine. The analysis used a validated computational fluid dynamics RDE simulation combined with straightforward algebraic mixing equations for the bypass flow. The objectives of the analysis were to supplement and interpret the necessarily sparse measurements from the rig, and to assess the performance of the RDE itself (which was not instrumented in this installation). The analysis is seen to agree reasonably well with available data. It shows that the RDE is operating in an unusual fashion, with subsonic flow throughout the exhaust plane. The detonation event itself is producing a total pressure rise relative to the pre-detonative pressure; however, the length of the device and the substantial flow restriction at the inlet yield an overall pressure loss. This is not surprising since the objective of the rig test was primarily aimed at investigating RDEturbine interactions, and not on performance optimization. Furthermore, the RDE was designed for fundamental detonation studies and not performance. Nevertheless, the analysis indicates that with some small alterations to the design, an RDE with an overall pressure rise is possible.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.
2016-01-01
While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Naples, Andrew
2017-01-01
An analysis is presented of an experimental rig comprising a rotating detonation engine (RDE) with bypass ejector flow coupled to a downstream turbine. The analysis used a validated computational fluid dynamics RDE simulation combined with straightforward algebraic mixing equations for the bypass flow. The objectives of the analysis were to supplement and interpret the necessarily sparse measurements from the rig, and to assess the performance of the RDE itself, which was not instrumented in this installation. The analysis is seen to agree reasonably well with available data. It shows that the RDE is operating in an unusual fashion, with subsonic flow throughout the exhaust plane. The detonation event itself is producing a total pressure rise relative to the pre-detonative pressure; however, the length of the device and the substantial flow restriction at the inlet yield an overall pressure loss. This is not surprising since the objective of the rig test was primarily aimed at investigating RDE/turbine interactions, and not on performance optimization. Furthermore, the RDE was designed for fundamental detonation studies and not performance. Nevertheless, the analysis indicates that with some small alterations to the design, an RDE with an overall pressure rise is possible.
NASA Technical Reports Server (NTRS)
1976-01-01
A variable pitch fan actuation system, which incorporates a remote nacelle mounted blade angle regulator, was tested. The regulator drives a rotating fan mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Testing of the actuator on a whirl rig, is reported. Results of tests conducted to verify that the unit satisfied the design requirements and was structurally adequate for use in an engine test are presented.
NASA Technical Reports Server (NTRS)
Bauman, Steven W.
1990-01-01
The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.
Stator Blade with Thermal Barrier Testing on Hot Gas Rig
1975-04-21
A 1-foot long stator blade with a thermal coating subjected to intense heat in order to test its strength at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers sought to determine optimal types of ceramic coatings to increase the durability of metals. The research was primarily intended to support the design of stator blades for high-performance axial-flow compressor and turbofan engines. The coatings reduced the temperature of the metal and the amount of required cooling. As engines became more and more sophisticated, compressor blades were required to withstand higher and higher temperatures. Lewis researchers developed a dual-layer thermal-barrier coating that could be applied to turbine vanes and blades and combustion liners. This new sprayable thermal-barrier coating was evaluated for its durability, strength, fatigue, and aerodynamic penalties. This hot-gas rig fired the scorching gas at the leading edge of a test blade. The blade was cooled by an internal air flow. The blades were heated at two different velocities during the program. When using Mach 0.3 gases the entire heating and cooling cycle only lasted 30 seconds. The cycle lasted 60 minutes during tests at Mach 1.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.
Further Characterization of an Active Clearance Control Concept
NASA Technical Reports Server (NTRS)
Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.
2007-01-01
A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.
Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.
1983-01-01
The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.
NASA Technical Reports Server (NTRS)
Suder, Jennifer L.
2004-01-01
Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most efficient configuration to incorporate into the specific compact jet he1 reformer test rig. Additional information is included in the original extended abstract.
1976-06-01
rotating stall control system which was tested both on a low speed rig and a J-85-S engine. The second objective was to perform fundamental studies of the...Stator Stage 89 6 Annular Cascade Configuration Used for Rotating Stall Studies on Rotoi-Stator Stage ..... .............. ... 90 7 Static Pressure Rise...ground tests on a J-8S-S turbojet engine. The work i3 reported in three separate volumes. Volume I entitled, "Basic Studies of Rotating Stall", covers
Brush seals for turbine engine fuel conservation
NASA Astrophysics Data System (ADS)
Sousa, Mike
1994-07-01
The program objective is to demonstrate brush seals for replacing labyrinth seals in turboprop engines. The approach taken was to design and procure brush seals with assistance from Sealol, modify and instrument an existing T407 low pressure turbine test rig, replace inner balance piston and outer balance piston labyrinth seals with brush seals, conduct cyclic tests to evaluate seal leakage at operating pressures and temperatures, and evaluate effect of seal pack width and rotor eccentricity. Results are presented in viewgraph format and show that brush seals offer performance advantages over labyrinth seals.
Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig
NASA Technical Reports Server (NTRS)
Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.
1985-01-01
With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.
Research Data Acquired in World-Class, 60-atm Subsonic Combustion Rig
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Wey, Changlie
1999-01-01
NASA Lewis Research Center's new, world-class, 60-atmosphere (atm) combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. Specifically, data were acquired at high pressures and temperatures representative of future subsonic engines from a fundamental flametube configuration with an advanced fuel injector. The data acquired include exhaust emissions as well as pressure and temperature distributions. Results to date represent an improved understanding of nitrous oxide (NOx) formation at high pressures and temperatures and include an NOx emissions reduction greater than 70 percent with an advanced fuel injector at operating pressures to 800 pounds per square inch absolute (psia). ASCR research is an integral part of the Advanced Subsonic Technology (AST) Propulsion Program. This program is developing critical low-emission combustion technology that will result in the next generation of gas turbine engines producing 50 to 70 percent less NOx emissions in comparison to 1996 International Civil Aviation Organization (ICAO) limits. The results to date indicate that the AST low-emission combustor goals of reducing NOx emissions by 50 to 70 percent are feasible. U.S. gas turbine manufacturers have started testing the low-emissions combustors at the ASCR. This collaborative testing will enable the industry to develop low-emission combustors at the high pressure and temperature conditions of future subsonic engines. The first stage of the flametube testing has been implemented. Four GE Aircraft Engines low-emissions fuel injector concepts, three Pratt & Whitney concepts, and two Allison concepts have been tested at Lewis ASCR facility. Subsequently, the flametube was removed from the test stand, and the sector combustor was installed. The testing of low emissions sector has begun. Low-emission combustors developed as a result of ASCR research will enable U.S. engine manufacturers to compete on a worldwide basis by producing environmentally acceptable commercial engines.
Turbine gas temperature measurement and control system
NASA Technical Reports Server (NTRS)
Webb, W. L.
1973-01-01
A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh
2004-01-01
The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.
NASA Technical Reports Server (NTRS)
Doyle, V. L.
1978-01-01
The acoustic characteristics of the double annular combustor in a CF6-50 high bypass turbofan engine were investigated. Internal fluctuating pressure measurements were made in the combustor region and in the core exhaust. The transmission loss across the turbine and nozzle was determined from the measurements and compared to previous component results and present theory. The primary noise source location in the combustor was investigated. Spectral comparisons of test rig results were made with the engine results. The measured overall power level was compared with component and engine correlating parameters.
A Microfabricated Involute-Foil Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang
2007-01-01
A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators.
A Microfabricated Involute-Foil Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terry; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Wood, Gary;
2007-01-01
A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators.
High-Flow Jet Exit Rig Designed and Fabricated
NASA Technical Reports Server (NTRS)
Buehrle, Robert J.; Trimarchi, Paul A.
2003-01-01
The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Mador, R. J.
1979-01-01
An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.
Wide range operation of advanced low NOx aircraft gas turbine combustors
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.; Butze, H. F.
1978-01-01
The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.
Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles
NASA Astrophysics Data System (ADS)
Maqsood, Omar Shahzada
Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.
Ceramic Matrix Composite Vane Subelement Burst Testing
NASA Technical Reports Server (NTRS)
Brewer, David N.; Verrilli, Michael; Calomino, Anthony
2006-01-01
Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.
Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector
NASA Astrophysics Data System (ADS)
Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.
2016-04-01
A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.
Development and application of the double V type flame stabilizer
NASA Astrophysics Data System (ADS)
Zhang, Hongbin; Wang, Jigen
1994-06-01
The double V type flame stabilizer is an advanced stabilizer of low drag constructed with a big V type stabilizer overlapping to a small V type one. It has the advantages of good ignition performance, low drag loss, improved afterburning efficiency, low skin temperature, and leaner blowout boundary, hence the overall performance of turbojet engine will be improved and the flight reliability increased. More than 40 tests on stand rig, 10 tests in aircraft and 8 tests in flight were carried out for its birth, and thereafter, it started to be in service for the turbojet engine on a small batch scale in 1986-1987.
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2014 CFR
2014-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2011 CFR
2011-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2010 CFR
2010-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2013 CFR
2013-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2012 CFR
2012-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
Assessment of Soft Vane and Metal Foam Engine Noise Reduction Concepts
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Parrott, Tony L.; Sutliff, Daniel L.; Hughes, Chris
2009-01-01
Two innovative fan-noise reduction concepts developed by NASA are presented - soft vanes and over-the-rotor metal foam liners. Design methodologies are described for each concept. Soft vanes are outlet guide vanes with internal, resonant chambers that communicate with the exterior aeroacoustic environment via a porous surface. They provide acoustic absorption via viscous losses generated by interaction of unsteady flows with the internal solid structure. Over-the-rotor metal foam liners installed at or near the fan rotor axial plane provide rotor noise absorption. Both concepts also provide pressure-release surfaces that potentially inhibit noise generation. Several configurations for both concepts are evaluated with a normal incidence tube, and the results are used to guide designs for implementation in two NASA fan rigs. For soft vanes, approximately 1 to 2 dB of broadband inlet and aft-radiated fan noise reduction is achieved. For over-the-rotor metal foam liners, up to 3 dB of fan noise reduction is measured in the low-speed fan rig, but minimal reduction is measured in the high-speed fan rig. These metal foam liner results are compared with a static engine test, in which inlet sound power level reductions up to 5 dB were measured. Brief plans for further development are also provided.
Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels
NASA Technical Reports Server (NTRS)
Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.
1981-01-01
An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.
Hot dynamic test rig for measuring hypersonic engine seal flow and durability
NASA Technical Reports Server (NTRS)
Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.
1994-01-01
A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was developed. The test fixture was developed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C and air pressure differentials of to 0.7 MPa. Performance of the seals can be measured while sealing against flat or engine-simulated distorted walls. In the fixture, two seals are preloaded against the sides of a 0.3 m long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this text fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are covered.
1977-09-01
Material Comparison ....... .. 359 D-16 Comparison Chart - Rotor Brake Designs, Boeing Vertol, HLH ........... 360 D-17 Conventional Steel Disk Dynamic ...engines off. 0 In the event of a rotor brake caliper or disc failure, the system shall preclude damage to critical dynamic components. * The rotor brake... Dynamic System Test Rig (DSTR) shown in Figure. .8 provided a means for integrating and testing the aft and conbiner trans- missions, the aft rotor , thr’ee
Improved Main Shaft Seal Life in Gas Turbines Using Laser Surface Texturing
NASA Astrophysics Data System (ADS)
McNickle, Alan D.; Etsion, Izhak
2002-10-01
This paper presents a general overview of the improved main shaft seal life in gas turbines using laser surface texturing (LST). The contents include: 1) Laser Surface Texturing System; 2) Seal Schematic with LST applied; 3) Dynamic Rig Tests; 4) Surface Finish Definitions; 5) Wear Test Rig; 6) Dynamic Test Rig; 7) Seal Cross Section-Rig Test; and 8) Typical Test Results. This paper is in viewgraph form.
Advances in measuring techniques for turbine cooling test rigs
NASA Technical Reports Server (NTRS)
Pollack, F. G.
1972-01-01
Surface temperature distribution measurements for turbine vanes and blades were obtained by measuring the infrared energy emitted by the airfoil. The IR distribution can be related to temperature distribution by suitable calibration methods and the data presented in the form of isotherm maps. Both IR photographic and real time electro-optical methods are being investigated. The methods can be adapted to rotating as well as stationary targets, and both methods can utilize computer processing. Pressure measurements on rotating components are made with a rotating system incorporating 10 miniature transducers. A mercury wetted slip ring assembly was used to supply excitation power and as a signal transfer device. The system was successfully tested up to speeds of 9000 rpm and is now being adapted to measure rotating blade airflow quantities in a spin rig and a research engine.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Storace, A. S.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described.
Oscillating flow loss test results in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.
1990-01-01
The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.
Failure analysis of a Stirling engine heat pipe
NASA Technical Reports Server (NTRS)
Moore, Thomas J.; Cairelli, James E.; Khalili, Kaveh
1989-01-01
Failure analysis was conducted on a heat pipe from a Stirling Engine test rig which was designed to operate at 1073 K. Premature failure had occurred due to localized overheating at the leading edge of the evaporator fin. It was found that a crack had allowed air to enter the fin and react with the sodium coolant. The origin of the crack was found to be located at the inner surface of the Inconel 600 fin where severe intergranular corrosion had taken place.
2011-03-01
input spindle from the engine to over tighten and apply an even greater amount of resistance to the engine shaft . Not only was this dangerous to...Mengistu, Todd Rotramel, and Matt Rippl, all of whom worked together with me to design and build the test rig for our dynamometer setup. Countless...hours were spent together planning and executing the design and building the stand itself. The AFIT machine shop crew and ENY lab techs also
Results of the pollution reduction technology program for turboprop engines
NASA Technical Reports Server (NTRS)
Mularz, E. J.
1976-01-01
A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 50-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1984-01-01
Rotor dynamic instability investigations were conducted. Forward ball bearing hydraulic mount configurations were tested with little effect. Trial assembly of S/N 002 ceramic engine was initiated. Impeller design activities were completed on the straight line element (SLE) blade definition to address near-net-shape powder metal die forging. Performance characteristics of the Baseline Test 2A impeller were closely preserved. The modified blading design has been released for tooling procurement. Developmental testing of the diffusion flame combustor (DFC) for initial use in the S/N 002 2100 F ceramic structures engine was completed. A natural gas slave preheater was designed and fabricated. Preliminary regenerator static seal rig testing showed a significant reduction in leakage and sensitivity to stack height. Ceramic screening tests were completed and two complete sets of ceramic static structures were qualified for engine testing. Efforts on rotor dynamics development to resolve subsynchronous motion were continued.
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
NASA Technical Reports Server (NTRS)
Sumner, I. E.; Ruckle, D. L.
1980-01-01
As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.
Ranking protective coatings: Laboratory vs. field experience
NASA Astrophysics Data System (ADS)
Conner, Jeffrey A.; Connor, William B.
1994-12-01
Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.
Blackley, David J.; Retzer, Kyla D.; Hubler, Warren G.; Hill, Ryan D.; Laney, A. Scott
2015-01-01
Background Occupational fatality rates among oil and gas extraction industry and specifically among drilling contractor workers are high compared to the U.S. all-industry average. There is scant literature focused on non-fatal injuries among drilling contractors, some of which have introduced engineering controls to improve rig efficiency and reduce injury risk. Methods We compared injury rates on new and old technology rigs operated by the largest U.S. drilling contractor during 2003–2012, stratifying by job type and grouping outcomes by injury severity and body part affected. Results Six hundred seventy-one injuries were recorded over 77.4 million person-hours. The rate on new rigs was 66% of that on old rigs. Roughnecks had lower injury rates on new rigs, largely through reduced limb injury rates. New rigs had lower rates in each non-fatal injury severity category. Conclusions For this company, new technology rigs appear to provide a safer environment for roughnecks. Future studies could include data from additional companies. PMID:25164118
Blackley, David J; Retzer, Kyla D; Hubler, Warren G; Hill, Ryan D; Laney, A Scott
2014-10-01
Occupational fatality rates among oil and gas extraction industry and specifically among drilling contractor workers are high compared to the U.S. all-industry average. There is scant literature focused on non-fatal injuries among drilling contractors, some of which have introduced engineering controls to improve rig efficiency and reduce injury risk. We compared injury rates on new and old technology rigs operated by the largest U.S. drilling contractor during 2003-2012, stratifying by job type and grouping outcomes by injury severity and body part affected. Six hundred seventy-one injuries were recorded over 77.4 million person-hours. The rate on new rigs was 66% of that on old rigs. Roughnecks had lower injury rates on new rigs, largely through reduced limb injury rates. New rigs had lower rates in each non-fatal injury severity category. For this company, new technology rigs appear to provide a safer environment for roughnecks. Future studies could include data from additional companies. © 2014 Wiley Periodicals, Inc.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1977-01-01
The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.
Advanced Gas Turbine (AGT) Technology Project
NASA Technical Reports Server (NTRS)
1986-01-01
Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.
An investigation of noise produced by unsteady gas flow through silencer elements
NASA Astrophysics Data System (ADS)
Mawhinney, Graeme Hugh
This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.
Hot corrosion of ceramic engine materials
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Jacobson, Nathan S.; Smialek, James L.
1988-01-01
A number of commercially available SiC and Si3N4 materials were exposed to 1000 C in a high velocity, pressurized burner rig as a simulation of a turbine engine environment. Sodium impurities added to the burner flame resulted in molten Na2SO4 deposition, attack of the SiC and Si4N4 and formation of substantial Na2O-x(SiO2) corrosion product. Room temperature strength of the materials decreased. This was a result of the formation of corrosion pits in SiC, and grain boundary dissolution and pitting in Si3N4. Corrosion regimes for such Si-based ceramics have been predicted using thermodynamics and verified in rig tests of SiO2 coupons. Protective mullite coatings are being investigated as a solution to the corrosion problem for SiC and Si3N4. Limited corrosion occurred to cordierite (Mg2Al4Si5O18) but some cracking of the substrate occurred.
Acoustic Characterization of Compact Jet Engine Simulator Units
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Haskin, Henry H.
2013-01-01
Two dual-stream, heated jet, Compact Jet Engine Simulator (CJES) units are designed for wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. The newly fabricated CJES units are characterized with a series of acoustic and flowfield investigations to ensure successful operation with minimal rig noise. To limit simulator size, consistent with a 5.8% HWB model, the CJES units adapt Ultra Compact Combustor (UCC) technology developed at the Air Force Research Laboratory. Stable and controllable operation of the combustor is demonstrated using passive swirl air injection and backpressuring of the combustion chamber. Combustion instability tones are eliminated using nonuniform flow conditioners in conjunction with upstream screens. Through proper flow conditioning, rig noise is reduced by more than 20 dB over a broad spectral range, but it is not completely eliminated at high frequencies. The low-noise chevron nozzle concept designed for the HWB test shows expected acoustic benefits when installed on the CJES unit, and consistency between CJES units is shown to be within 0.5 dB OASPL.
Enabling Technologies for Ceramic Hot Section Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkat Vedula; Tania Bhatia
Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navymore » applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.« less
VIPR III VADR SPIDER Structural Design and Analysis
NASA Technical Reports Server (NTRS)
Li, Wesley; Chen, Tony
2016-01-01
In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.
Oxidizer heat exchanger component testing
NASA Technical Reports Server (NTRS)
Kmiec, T.; Kanic, P.
1986-01-01
As part of the RL10 Rocket Engine Product Improvement Program, Oxidizer Heat Exchanger (OHE) stages 1, 2, and 3 were designed and fabricated during late 1983 and early 1984. The purpose of the OHE is to provide gaseous oxygen to the propellant injector for stable engine operation at tank head idle and pumped idle operating modes. This report summarizes the OHE stages 1 and 3 rig testing, and includes the separation of the stage 1-and-2 assembly and the remanifolding of stage 1. The OHE performance analysis and analytical model modifications for both stages are also presented. The flow tests were accomplished during the time period from 9 October 1984 to 12 November 1984.
NASA Astrophysics Data System (ADS)
Chivers, J. W. H.
Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.
A Hot Dynamic Seal Rig for Measuring Hypersonic Engine Seal Durability and Flow Performance
NASA Technical Reports Server (NTRS)
Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.
1993-01-01
A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was installed at NASA Lewis Research Center. The test fixture was designed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C (1550 F) and air pressure differentials up to 690 kPa (100 psi). Performance of the seals can be measured while sealing against flat or distorted walls. In the fixture two seals are preloaded against the sides of a 30 cm (1 ft) long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this test fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are addressed.
A hot dynamic seal rig for measuring hypersonic engine seal durability and flow performance
NASA Technical Reports Server (NTRS)
Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.
1993-01-01
A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts has been installed at NASA Lewis Research Center. The test fixture has been designed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C (1550 F) and air pressure differentials up to 690 kPa (100 psi). Performance of the seals can be measured while sealing against flat or distorted walls. In the fixture two seals are preloaded against the sides of a 30 cm (1 ft) long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. This report covers the capabilities of this test fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling.
Thermal barrier coating life prediction model development, phase 2
NASA Technical Reports Server (NTRS)
Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.
1991-01-01
The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.
Seal Technology Development for Advanced Component for Airbreathing Engines
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
2008-01-01
Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.
NASA Astrophysics Data System (ADS)
Crump, D. A.; Dulieu-Barton, J. M.; Savage, J.
2010-01-01
This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model.
1959-11-01
Multi-Axis Test Facility, Space Progress Report, November 1, 1959: The Multi Axis Space Test Inertia Facility [MASTIF], informally referred to as the Gimbal Rig, was installed inside the Altitude Wind Tunnel. The rig, which spun on three axis simultaneously, was used to train the Mercury astronauts on how to bring a spinning spacecraft under control and to determine the effects of rapid spinning on the astronaut's eyesight and psyche. Small gaseous nitrogen jets were operated by the pilot to gain control of the rig after it had been set in motion. Part 1 shows pilot Joe Algranti in the rig as it rotates over one, two, and three axis. It also has overall views of the test set-up with researchers and technicians on the test platform. Part 2 shows Algranti being secured in the rig prior to the test. The rig is set in motion and the pilot slowly brings it under control. The Mercury astronauts trained on the MASTIF in early spring of 1960.
Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2003-01-01
NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1994-01-01
A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.
The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
1994-01-01
The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.
Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-04-28
The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.
Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.
1999-01-01
Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.
A Resonant Synchronous Vibration Based Approach for Rotor Imbalance Detection
NASA Technical Reports Server (NTRS)
Luo, Huangeng; Rodriquez, Hector; Hallman, Darren; Lewicki, David G.
2006-01-01
This paper presents a methodology of detecting rotor imbalances, such as mass imbalance and crack-induced imbalance, using shaft synchronous vibrations. An iterative scheme is developed to identify parameters from measured synchronous vibration data. A detection system is integrated by using state-of-the-art commercial analysis equipment. A laboratory rotor test rig is used to verify the system integration and algorithm validation. A real engine test has been carried out and the results are reported.
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)
2001-01-01
The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing and parametrics were performed at NASA / Glenn Research Center (GRC) and NASA / Langley Research Center (LaRC) for both the Aerojet and Rocketdyne concepts. LaRC conducted an Air-Breathing Launch Vehicle (ABLV) study for several vehicle concepts with RBCC propulsion systems. LaRC is also performing a CFD analysis of the ramjet mode for both flowpaths based on GASL test conditions. A study was performed in 1999 to investigate the feasibility of performing an RBCC flight test on the NASA / Dryden Flight Research Center (DFRC) SR-71 aircraft. Academia involvement in the ART project includes parametric RBCC flowpath testing by Pennsylvania State University (PSU). In addition to thrust and wall static pressure measurements, PSU is also using laser diagnostics to analyze the flowfield in the test rig. MSFC is performing CFD analysis of the PSU rig at select test conditions for model baseline and validation. Also, Georgia Institute of Technology (GT) conducted a vision vehicle study using the Aerojet RBCC concept. Overall, the ART project has been very successful in advancing RBCC technology. Along the way, several major milestones were achieved and "firsts" accomplished. For example, under the ART project, the first dynamic trajectory simulation testing was performed and the Rocketdyne engine A5 logged over one hour of accumulated test time. The next logical step is to develop and demonstrate a flight-weight RBCC engine system.
16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...
16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...
Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey
2010-01-01
An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.
Progress on Variable Cycle Engines
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.
1979-01-01
Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.
Energy efficient engine: Flight propulsion system, preliminary analysis and design update
NASA Technical Reports Server (NTRS)
Stearns, E. M.
1982-01-01
The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.
Life prediction of turbine components: On-going studies at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Spera, D. A.; Grisaffe, S. J.
1973-01-01
An overview is presented of the many studies at NASA-Lewis that form the turbine component life prediction program. This program has three phases: (1) development of life prediction methods for major failure modes through materials studies, (2) evaluation and improvement of these methods through a variety of burner rig studies on simulated components in research engines and advanced rigs. These three phases form a cooperative, interdisciplinary program. A bibliography of Lewis publications on fatigue, oxidation and coatings, and turbine engine alloys is included.
Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.
Thermal barrier coatings for aircraft engines: History and directions
NASA Technical Reports Server (NTRS)
Miller, R. A.
1995-01-01
Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to their use for component life extension and more recently as an integral part of airfoil design. It is noted that development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlY TBC's is emphasized in addition to observations fundamentally related to their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA is also noted.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Effect of soot on oil properties and wear of engine components
NASA Astrophysics Data System (ADS)
Green, D. A.; Lewis, R.
2007-09-01
The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present.
NASA Astrophysics Data System (ADS)
Cecrle, Eric Daniel
This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the desirable properties of hydrogen, it acts partially like a diluent in order to prevent pre-ignition from occurring. The result of this mixture addition allows the engine to maintain power while reducing biodiesel fuel consumption with a minimal NOx emissions increase.
NASA Technical Reports Server (NTRS)
Miladinovich, Daniel S.; Zhu, Dongming
2011-01-01
Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.
The experimental clean combustor program: Description and status to November 1975
NASA Technical Reports Server (NTRS)
Niedzwiecki, R. W.
1975-01-01
The generation of technology was studied for the development of advanced commercial CTOL aircraft engines with lower exhaust emissions than current aircraft. The program is in three phases. Phase 1, already completed, consisted of screening tests of low pollution combustor concepts. Phase 2, currently in progress, consists of test rig refinement of the most promising combustor concepts. Phase 2 test results are reported. Phase 3, also currently in progress, consists of incorporating and evaluating the best combustors as part of a complete engine. Engine test plans and pollution sampling techniques are described in this report. Program pollution goals, specified at engine idle and take-off conditions, are idle emission index value of 20 and 4 for carbon monoxide (CO) and total unburned hydrocarbons (THC), respectively, and at take-off are an oxides of nitrogen (NOx) emission index level of 10 and a smoke number of 15. Pollution data were obtained at all engine operating conditions. Results are presented in terms of emission index and also in terms of the Environmental Protection Agency's 1979 Standards Parameter.
A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983
NASA Technical Reports Server (NTRS)
Moffat, R. J.; Kays, W. M.
1984-01-01
For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.
High-temperature test facility at the NASA Lewis engine components research laboratory
NASA Technical Reports Server (NTRS)
Colantonio, Renato O.
1990-01-01
The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.
NASA Technical Reports Server (NTRS)
Rogo, Casimir; Roelke, Richard J.
1987-01-01
The uncooled, 2.27 kg/sec mass flow radial turbine designed to operate at 1477 K in the gas generator of an advanced, variable-capacity 683 kW turboshaft engine was configured with a cooled, movable sidewall nozzle capable of changing the stage flow capacity from 50 to 100 percent of maximum. Overall performance test data were obtained in a turbine test rig that duplicated engine Reynolds numbers; attention is given to the changing of flow capacity by moving the hub or shroud sidewall, vane sidewall leakage, vaneless space sidewall geometry, and nozzle-cooling injection. Data are presented in the form of turbine flow, efficiency, work parameter, and performance mappings.
Composite Matrix Regenerator for Stirling Engines
NASA Technical Reports Server (NTRS)
Knowles, Timothy R.
1997-01-01
This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.
Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)
NASA Technical Reports Server (NTRS)
Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas
2016-01-01
NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.
An Overview of Recent Phased Array Measurements at NASA Glenn
NASA Technical Reports Server (NTRS)
Podboy, Gary G.
2008-01-01
A review of measurements made at the NASA Glenn Research Center using an OptiNAV Array 48 phased array system is provided. Data were acquired on a series of round convergent and convergent-divergent nozzles using the Small Hot Jet Acoustic Rig. Tests were conducted over a range of jet operating conditions, including subsonic and supersonic and cold and hot jets. Phased array measurements were also acquired on a Williams International FJ44 engine. These measurements show how the noise generated by the engine is split between the inlet-radiated and exhaust-radiated components. The data also show inlet noise being reflected off of the inflow control device used during the test.
NASA Technical Reports Server (NTRS)
Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris;
2017-01-01
Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
Development of a low cost test rig for standalone WECS subject to electrical faults.
Himani; Dahiya, Ratna
2016-11-01
In this paper, a contribution to the development of low-cost wind turbine (WT) test rig for stator fault diagnosis of wind turbine generator is proposed. The test rig is developed using a 2.5kW, 1750 RPM DC motor coupled to a 1.5kW, 1500 RPM self-excited induction generator interfaced with a WT mathematical model in LabVIEW. The performance of the test rig is benchmarked with already proven wind turbine test rigs. In order to detect the stator faults using non-stationary signals in self-excited induction generator, an online fault diagnostic technique of DWT-based multi-resolution analysis is proposed. It has been experimentally proven that for varying wind conditions wavelet decomposition allows good differentiation between faulty and healthy conditions leading to an effective diagnostic procedure for wind turbine condition monitoring. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Regenerative Fuel Cell Test Rig at Glenn Research Center
NASA Technical Reports Server (NTRS)
Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.
2003-01-01
The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.
Turbine adapted maps for turbocharger engine matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tancrez, M.; Galindo, J.; Guardiola, C.
2011-01-15
This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation.more » After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)« less
Experimental clean combustor program: Diesel no. 2 fuel addendum, phase 3
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1979-01-01
A CF6-50 engine equipped with an advanced, low emission, double annular combustor was operated 4.8 hours with No. 2 diesel fuel. Fourteen steady-state operating conditions ranging from idle to full power were investigated. Engine/combustor performance and exhaust emissions were obtained and compared to JF-5 fueled test results. With one exception, fuel effects were very small and in agreement with previously obtained combustor test rig results. At high power operating condition, the two fuels produced virtually the same peak metal temperatures and exhaust emission levels. At low power operating conditions, where only the pilot stage was fueled, smoke levels tended to be significantly higher with No. 2 diesel fuel. Additional development of this combustor concept is needed in the areas of exit temperature distribution, engine fuel control, and exhaust emission levels before it can be considered for production engine use.
Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria
2008-01-01
The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.
Optical Instrumentation for Temperature and Velocity Measurements in Rig Turbines
NASA Technical Reports Server (NTRS)
Ceyhan, I.; dHoop, E. M.; Guenette, G. R.; Epstein, A. H.; Bryanston-Cross, P. J.
1998-01-01
Non-intrusive optical measurement techniques have been examined in the context of developing robust instruments which can routinely yield data of engineering utility in high speed turbomachinery test rigs. The engineering requirements of such a measurement are presented. Of particular interest were approaches that provide both velocity and state-variable information in order to be able to completely characterize transonic flowfields. Consideration of all of the requirements lead to the selection of particle image velocimetry (PIV) for the approach to velocity measurement while laser induced fluorescence of oxygen (O2 LIF) appeared to offer the most promise for gas temperature measurement. A PIV system was developed and demonstrated on a transonic turbine stage in the MIT blowdown turbine facility. A comprehensive data set has been taken at one flow condition. Extensive calibration established the absolute accuracy of the velocity measurements to be 3-5 %. The O2 LIF proved less successful. Although accurate for low speed flows, vibrational freezing of O2 prevented useful measurements in the transonic, 300-600 K operating range of interest here.
FOD impact testing of composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
FOD impact testing of composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
Impact testing on composite fan blades
NASA Technical Reports Server (NTRS)
Johns, R. H.
1974-01-01
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.
Development Status of Reusable Rocket Engine
NASA Astrophysics Data System (ADS)
Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi
A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.
NASA Astrophysics Data System (ADS)
Hamilton, J. A.; Rand, D. A. J.
1983-03-01
A test rig has been designed and constructed to examine the performance of batteries under laboratory conditions that simulate the power characteristics of electric vehicles. Each station in the rig subjects a battery to continuous charge/discharge cycles, with an equalising charge every eighth cycle. The battery discharge follows the current-verse-time profile of a given vehicle operating under a driving schedule normal to road service. The test rig allows both smooth- and pulsed-current discharge to be investigated. Data collection is accomplished either with multi-pen recorders or with a computer-based information logger.
Transient dynamics of a flexible rotor with squeeze film dampers
NASA Technical Reports Server (NTRS)
Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.
1978-01-01
A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.
The Aging of Engines: An Operator’s Perspective
2000-10-01
internal HCF failures of blades . Erosion of compressor gas path 2-3 components can be minimized through the use of inlet aluminide intermetallic...fatigue problems in the dovetails durability in accelerated burner rig tests [2,35]. areas of titanium alloy fan and compressor blades . Shot peening in...Criticality Analysis replacement of durability-critical components, such as FOD Foreign object damage blades and vanes. The need to balance risk and escalating
NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities
NASA Technical Reports Server (NTRS)
Robinson, R. Craig
1999-01-01
The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.
NASA Technical Reports Server (NTRS)
Goldberg, Louis F.
1990-01-01
Investigations of one- and two-dimensional (1- or 2-D) simulations of Stirling machines centered around experimental data generated by the U. of Minnesota Mechanical Engineering Test Rig (METR) are covered. This rig was used to investigate oscillating flows about a zero mean with emphasis on laminar/turbulent flow transitions in tubes. The Space Power Demonstrator Engine (SPDE) and in particular, its heater, were the subjects of the simulations. The heater was treated as a 1- or 2-D entity in an otherwise 1-D system. The 2-D flow effects impacted the transient flow predictions in the heater itself but did not have a major impact on overall system performance. Information propagation effects may be a significant issue in the simulation (if not the performance) of high-frequency, high-pressure Stirling machines. This was investigated further by comparing a simulation against an experimentally validated analytic solution for the fluid dynamics of a transmission line. The applicability of the pressure-linking algorithm for compressible flows may be limited by characteristic number (defined as flow path information traverses per cycle); this warrants further study. Lastly the METR was simulated in 1- and 2-D. A two-parameter k-w foldback function turbulence model was developed and tested against a limited set of METR experimental data.
Effect of Adding a Regenerator to Kornhauser's MIT "Two-Space" (Gas-Spring+Heat Exchanger) Test Rig
NASA Technical Reports Server (NTRS)
Ebiana, Asuquo B.; Gidugu, Praveen
2008-01-01
This study employed entropy-based second law post-processing analysis to characterize the various thermodynamic losses inside a 3-space solution domain (gas spring+heat exchanger+regenerator) operating under conditions of oscillating pressure and oscillating flow. The 3- space solution domain is adapted from the 2-space solution domain (gas spring+heat exchanger) in Kornhauser's MIT test rig by modifying the heat exchanger space to include a porous regenerator system. A thermal nonequilibrium model which assumes that the regenerator porous matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle is employed. An important and primary objective of this study is the development and application of a thermodynamic loss post-processor to characterize the major thermodynamic losses inside the 3-space model. It is anticipated that the experience gained from thermodynamic loss analysis of the simple 3-space model can be extrapolated to more complex systems like the Stirling engine. It is hoped that successful development of loss post-processors will facilitate the improvement of the optimization capability of Stirling engine analysis codes through better understanding of the heat transfer and power losses. It is also anticipated that the incorporation of a successful thermal nonequilibrium model of the regenerator in Stirling engine CFD analysis codes, will improve our ability to accurately model Stirling regenerators relative to current multidimensional thermal-equilibrium porous media models.
NASA Technical Reports Server (NTRS)
Sanders, W. A.; Johnston, J. R.
1978-01-01
One SiC material and three Si3N4 materials including hot-pressed Si3N4 as a baseline were exposed in a Mach-1-gas-velocity burner rig simulating a turbine engine environment. Criteria for the materials selection were: potential for gas-turbine usage, near-net-shape fabricability and commercial/domestic availability. Cyclic exposures of test vanes up to 250 cycles (50 hr at temperature) were at leading-edge temperatures to 1370 C. Materials and batches were compared as to weight change, surface change, fluorescent penetrant inspection, and thermal fatigue behavior. Hot-pressed Si3N4 survived the test to 1370 C with slight weight losses. Two types of reaction-sintered Si3N4 displayed high weight gains and considerable weight-change variability, with one material exhibiting superior thermal fatigue behavior. A siliconized SiC showed slight weight gains, but considerable batch variability in thermal fatigue.
Effects of surface chemistry on hot corrosion life
NASA Technical Reports Server (NTRS)
Fryxell, R. E.; Leese, G. E.
1985-01-01
This program has its primary objective: the development of hot corrosion life prediction methodology based on a combination of laboratory test data and evaluation of field service turbine components which show evidence of hot corrosion. The laboratory program comprises burner rig testing by TRW. A summary of results is given for two series of burner rig tests. The life prediction methodology parameters to be appraised in a final campaign of burner rig tests are outlined.
6. Remains Beneath Collapsed Engine House Roof, Showing Foundation Timbers ...
6. Remains Beneath Collapsed Engine House Roof, Showing Foundation Timbers and Automobile Engine Connected to Pulley Wheel, Looking Southwest - David Renfrew Oil Rig, East side of Connoquenessing Creek, 0.4 mile North of confluence with Thorn Creek, Renfrew, Butler County, PA
Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)
NASA Technical Reports Server (NTRS)
Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.
2016-01-01
NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.
NASA Technical Reports Server (NTRS)
Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas
2017-01-01
This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.
NASA Technical Reports Server (NTRS)
Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas
2016-01-01
This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.
NASA Technical Reports Server (NTRS)
Myers, William; Winter, Steve
2006-01-01
The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.
SSME HPFTP/AT Turbine Blade Platform Featherseal Damper Design
NASA Technical Reports Server (NTRS)
Montgomery, S. K.
1999-01-01
During the Space Shuttle Main Engines (SSM) HPFtP/AT development program, engine hot fire testing resulted in turbine blade fatigue cracks. The cracks were noted after only a few tests and a several hundred seconds versus the design goal of 60 tests and >30,000 seconds. Subsequent investigation attributed the distress to excessive steady and dynamic loads. To address these excessive turbine blade loads, Pratt & Whitney Liquid Space Propulsion engineers designed and developed retrofitable turbine blade to blade platform featherseal dampers. Since incorporation of these dampers, along with other turbine blade system improvements, there has been no observed SSME HPFTP/AT turbine blade fatigue cracking. The high time HPFTP/AT blade now has accumulated 32 starts and 19,200 seconds hot fire test time. Figure #1 illustrates the HPFTP/AT turbine blade platform featherseal dampers. The approached selected was to improve the turbine blade structural capability while simultaneously reducing loads. To achieve this goal, the featherseal dampers were designed to seal the blade to blade platform gap and damp the dynamic motions. Sealing improves the steady stress margins by increasing turbine efficiency and improving turbine blade attachment thermal conditioning. Load reduction was achieved through damping. Thin Haynes 188 sheet metal was selected based on its material properties (hydrogen resistance, elongation, tensile strengths, etc.). The 36,000 rpm wheel speed of the rotor result in a normal load of 120#/blade. The featherseals then act as micro-slip dampers during actual SSME operation. After initial design and analysis (prior to full engine testing), the featherseal dampers were tested in P&W's spin rig facility in West Palm Beach, Florida. Both dynamic strain gages and turbine blade tip displacement measurements were utilized to quantify the featherseal damper effectiveness. Full speed (36,000 rpm), room temperature rig testing verified the elimination of fundamental mode (i.e, modes 1 & 2) resonant response. The reduction in turbine blade dynamic response is shown for a typical turbine blade. This paper discusses the design and verification of these dampers. The numerous benefits associated with this design concept warrants consideration in existing and future turbomachinery applications.
System reliability of randomly vibrating structures: Computational modeling and laboratory testing
NASA Astrophysics Data System (ADS)
Sundar, V. S.; Ammanagi, S.; Manohar, C. S.
2015-09-01
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.
High Misalignment Carbon Seals for the Fan Drive Gear System Technologies
NASA Technical Reports Server (NTRS)
Shaughnessy, Dennis; Dobek, Lou
2006-01-01
Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.
Influence of different heating types on the pumping performance of a bubble pump
NASA Astrophysics Data System (ADS)
Bierling, Bernd; Schmid, Fabian; Spindler, Klaus
2017-11-01
This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.
NASA Technical Reports Server (NTRS)
Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.
2016-01-01
The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.
Emergency and microfog lubrication and cooling of bearings for Army helicopters
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once-through oil-mist (microfog) and coolant air system. A system was designed, manufactured, coupled with an existing rig and evaluation tests were performed using 46 mm bore split-inner angular-contact ball bearings under 1779N (400 lb.) thrust load. An emergency lubrication aspirator system was also manufactured and tested under lost lubricant conditions. The testing demonstrated the feasibility of using a mist oil and cooling air system to lubricate and cool a high speed helicopter engine mainshaft bearing. The testing also demonstrated the feasibility of using an emergency aspirator lubrication system as a viable survivability concept for helicopter mainshaft engine bearing for periods as long as 30 minutes.
Extraterrestrial surface propulsion systems
NASA Astrophysics Data System (ADS)
Ash, Robert L.; Blackstock, Dexter L.; Barnhouse, K.; Charalambous, Z.; Coats, J.; Danagan, J.; Davis, T.; Dickens, J.; Harris, P.; Horner, G.
Lunar traction systems, Mars oxygen production, and Mars methane engine operation were the three topics studied during 1992. An elastic loop track system for lunar construction operations was redesigned and is being tested. A great deal of work on simulating the lunar environment to facilitate traction testing has been reported. Operation of an oxygen processor under vacuum conditions has been the focus of another design team. They have redesigned the processor facility. This included improved seals and heat shields. Assuming methane and oxygen can be produced from surface resources on Mars, a third design team has addressed the problem of using Mars atmospheric carbon dioxide to control combustion temperatures in an internal combustion engine. That team has identified appropriate tests and instrumentation. They have reported on the test rig that they designed and the computer-based system for acquiring data.
Extraterrestrial surface propulsion systems
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Blackstock, Dexter L.; Barnhouse, K.; Charalambous, Z.; Coats, J.; Danagan, J.; Davis, T.; Dickens, J.; Harris, P.; Horner, G.
1992-01-01
Lunar traction systems, Mars oxygen production, and Mars methane engine operation were the three topics studied during 1992. An elastic loop track system for lunar construction operations was redesigned and is being tested. A great deal of work on simulating the lunar environment to facilitate traction testing has been reported. Operation of an oxygen processor under vacuum conditions has been the focus of another design team. They have redesigned the processor facility. This included improved seals and heat shields. Assuming methane and oxygen can be produced from surface resources on Mars, a third design team has addressed the problem of using Mars atmospheric carbon dioxide to control combustion temperatures in an internal combustion engine. That team has identified appropriate tests and instrumentation. They have reported on the test rig that they designed and the computer-based system for acquiring data.
A method for testing railway wheel sets on a full-scale roller rig
NASA Astrophysics Data System (ADS)
Liu, Binbin; Bruni, Stefano
2015-09-01
Full-scale roller rigs for tests on a single axle enable the investigation of several dynamics and durability problems related with the design and operation of the railway rolling stock. In order to exploit the best potential of this test equipment, appropriate test procedures need to be defined, particularly in terms of actuators' references, to make sure that meaningful wheel -rail contact conditions can be reproduced. The aim of this paper is to propose a new methodology to define the forces to be generated by the actuators in the rig in order to best reproduce the behaviour of a wheel set and especially the wheel -rail contact forces in a running condition of interest as obtained either from multi-body system (MBS) simulation or from on-track measurements. The method is supported by the use of a mathematical model of the roller rig and uses an iterative correction scheme, comparing the time histories of the contact force components from the roller rig test as predicted by the mathematical model to a set of target contact force time histories. Two methods are introduced, the first one considering a standard arrangement of the roller rig, the second one assuming that a differential gear is introduced in the rig, allowing different rolling speeds of the two rollers. Results are presented showing that the deviation of the roller rig test results from the considered targets can be kept within low tolerances (1% approximately) as far as the vertical and lateral contact forces on both wheels are concerned. For the longitudinal forces, larger deviations are obtained except in the case where a differential gear is introduced.
Energy Efficient Engine: Flight propulsion system final design and analysis
NASA Technical Reports Server (NTRS)
Davis, Donald Y.; Stearns, E. Marshall
1985-01-01
The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.
Diaphragm Stirling engine heat-actuated heat pump development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.A.; Swenson, P.
1981-01-01
The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less
NASA Technical Reports Server (NTRS)
Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.
2010-01-01
A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.
The Multi-Axis Space Test Inertia Facility in the Altitude Wind Tunnel
1959-12-21
National Aeronautics and Space Administration (NASA) pilot Joe Algranti tests the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel while researcher Robert Miller looks on. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control. The device was originally designed in early 1959 without the chair and controllers. It was used by Lewis researchers to determine if the Lewis-designed autopilot system could rectify the capsule’s attitude following separation. If the control system failed to work properly, the heatshield would be out of place and the spacecraft would burn up during reentry. The system was flight tested during the September 1959 launch of the Lewis-assembled Big Joe capsule. The MASTIF was adapted in late 1959 for the astronaut training. NASA engineers added a pilot’s chair, a hand controller, and an instrument display to the MASTIF in order familiarize the astronauts with the sensations of an out-of-control spacecraft. NASA Lewis researcher James Useller and Algranti perfected and calibrated the MASTIF in the fall of 1959. In February and March 1960, the seven Project Mercury astronauts traveled to Cleveland to train on the MASTIF.
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, Thomas M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.
Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program
NASA Technical Reports Server (NTRS)
Misel, O. W.
1977-01-01
Sets of under the wing (UTW) engine reduction gears and sets of over the wing (OTW) engine reduction gears were fabricated for rig testing and subsequent installation in engines. The UTW engine reduction gears which have a ratio of 2.465:1 and a design rating of 9712 kW at 3157 rpm fan speed were operated at up to 105% speed at 60% torque and 100% speed at 125% torque. The OTW engine reduction gears which have a ratio of 2.062:1 and a design rating of 12,615 kW at 3861 rpm fan speed were operated at up to 95% speed at 50% torque and 80% speed at 109% torque. Satisfactory operation was demonstrated at powers up to 12,172 kW, mechanical efficiency up to 99.1% UTW, and a maximum gear pitch line velocity of 112 m/s (22,300 fpm) with a corresponding star gear spherical roller bearing DN of 850,00 OTW. Oil and star gear bearing temperatures, oil churning, heat rejection, and vibratory characteristics were acceptable for engine installation.
RQL Sector Rig Testing of SiC/SiC Combustor Liners
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Martin, Lisa C.; Brewer, David N.
2002-01-01
Combustor liners, manufactured from silicon carbide fiber-reinforced silicon carbide (SiC/SiC) were tested for 260 hr using a simulated gas turbine engine cycle. This report documents the results of the last 56 hr of testing. Damage occurred in one of the six different components that make up the combustor liner set, the rich zone liner. Cracks in the rich zone liner initiated at the leading edge due to stresses resulting from the component attachment configuration. Thin film thermocouples and fiber optic pyrometers were used to measure the rich zone liner's temperature and these results are reported.
Design and verification of a turbofan swirl augmentor
NASA Technical Reports Server (NTRS)
Egan, W. J., Jr.; Shadowen, J. H.
1978-01-01
The paper discusses the details of the design and verification testing of a full-scale turbofan 'swirl' augmentor at sea level and altitude. No flameholders are required in the swirl augmentor since the radial motion of the hot pilot gases and subsequent combustion products provides a continuous ignition front across the stream. Results of rig testing of this full-scale swirl augmentor on an F100 engine, which are very encouraging, and future development plans are presented. The results validate the application of the centrifugal-force swirling flow concept to a turbofan augmentor.
The J-2X Fuel Turbopump - Design, Development, and Test
NASA Technical Reports Server (NTRS)
Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.
2011-01-01
Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.
Reduction of aircraft gas turbine engine pollutant emissions
NASA Technical Reports Server (NTRS)
Diehl, L. A.
1978-01-01
To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.
High Speed Operation and Testing of a Fault Tolerant Magnetic Bearing
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Clark, Daniel
2004-01-01
Research activities undertaken to upgrade the fault-tolerant facility, continue testing high-speed fault-tolerant operation, and assist in the commission of the high temperature (1000 degrees F) thrust magnetic bearing as described. The fault-tolerant magnetic bearing test facility was upgraded to operate to 40,000 RPM. The necessary upgrades included new state-of-the art position sensors with high frequency modulation and new power edge filtering of amplifier outputs. A comparison study of the new sensors and the previous system was done as well as a noise assessment of the sensor-to-controller signals. Also a comparison study of power edge filtering for amplifier-to-actuator signals was done; this information is valuable for all position sensing and motor actuation applications. After these facility upgrades were completed, the rig is believed to have capabilities for 40,000 RPM operation, though this has yet to be demonstrated. Other upgrades included verification and upgrading of safety shielding, and upgrading control algorithms. The rig will now also be used to demonstrate motoring capabilities and control algorithms are in the process of being created. Recently an extreme temperature thrust magnetic bearing was designed from the ground up. The thrust bearing was designed to fit within the existing high temperature facility. The retrofit began near the end of the summer, 04, and continues currently. Contract staff authored a NASA-TM entitled "An Overview of Magnetic Bearing Technology for Gas Turbine Engines", containing a compilation of bearing data as it pertains to operation in the regime of the gas turbine engine and a presentation of how magnetic bearings can become a viable candidate for use in future engine technology.
Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report
NASA Technical Reports Server (NTRS)
Duderstadt, E. C.; Agarwal, P.
1983-01-01
This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.
Oxidation of a Silica-Containing Material in a Mach 0.3 Burner Rig
NASA Technical Reports Server (NTRS)
Nguyen, QuynhGiao N.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
A primarily silica-containing material with traces of organic compounds, as well as aluminum and calcium additions, was exposed to a Mach 0.3 burner rig at atmospheric pressure using jet fuel. The sample was exposed for 5 continuous hours at 1370 C. Post exposure x-ray diffraction analyses indicate formation of cristobalite, quartz, NiO and Spinel (Al(Ni)CR2O4). The rig hardware is composed of a nickel-based superalloy with traces of Fe. These elements are indicated in the energy dispersive spectroscopy (EDS) results. This material was studied as a candidate for high temperature applications under an engine technology program.
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2007-01-01
Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
Labyrinth seal testing for lift fan engines
NASA Technical Reports Server (NTRS)
Dobek, L. J.
1973-01-01
An abradable buffered labyrinth seal for the control of turbine gas path leakage in a tip-turbine driven lift fan was designed, tested, and analyzed. The seal configuration was not designed to operate in any specific location but was sized to be evaluated in an existing test rig. The final sealing diameter selected was 28 inches. Results of testing indicate that the flow equations predicted seal air flows consistent with measured values. Excellent sealing characteristics of the abradable coating on the stator land were demonstrated when a substantial seal penetration of .030 inch into the land surface was encountered without appreciable wear on the labyrinth knife edges.
1969-01-21
The Fan Noise Test Facility built at the Lewis Research Center to obtain far-field noise data for the National Aeronautics and Space Administration (NASA) and General Electric Quiet Engine Program. The engine incorporated existing noise reduction methods into an engine of similar power to those that propelled the Boeing 707 or McDonnell-Douglas DC-8 airliner. The new the low-bypass ratio turbofan engines of the 1960s were inherently quieter than their turbojet counterparts, researchers had a better grasp of the noise generation problem, and new acoustic technologies had emerged. Lewis contracted General Electric in 1969 to build and aerodynamically test three experimental engines with 72-inch diameter fans. The engines were then brought to Lewis and tested with an acoustically treated nacelle. This Fan Noise Test Facility was built off of the 10- by 10-Foot Supersonic Wind Tunnel’s Main Compressor and Drive Building. Lewis researchers were able to isolate the fan’s noise during these initial tests by removing the core of the engine. The Lewis test rig drove engines to takeoff tip speeds of 1160 feet per second. The facility was later used to test a series of full-scale model fans and fan noise suppressors to be used with the quiet engine. NASA researchers predicted low-speed single-stage fans without inlet guide vanes and with large spacing between rotors and stators would be quieter. General Electric modified a TF39 turbofan engine by removing the the outer protion of the fan and spacing the blade rows of the inner portion. The tests revealed that the untreated version of the engine generated less noise than was anticipated, and the acoustically treated nacelle substantially reduced engine noise.
Summary of NASA research on thermal-barrier coatings
NASA Technical Reports Server (NTRS)
Stepka, F. S.; Liebert, C. H.; Stecura, S.
1977-01-01
A durable, two-layer, plasma-sprayed coating consisting of a ceramic layer over a metallic layer was developed that has the potential of insulating hot engine parts and thereby reducing metal temperatures and coolant flow requirements and/or permitting use of less costly and complex cooling configurations and materials. The investigations evaluated the reflective and insulative capability, microstructure, and durability of several coating materials on flat metal specimens, a combustor liner, and turbine vanes and blades. In addition, the effect on the aerodynamic performance of a coated turbine vane was measured. The tests were conducted in furnaces, cascades, hot-gas rigs, an engine combustor, and a research turbojet engine. Summaries of current research related to the coating and potential applications for the coating are included.
Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph
2005-01-01
The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.
Aircraft gas turbine low-power emissions reduction technology program
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Gleason, C. C.; Bahr, D. W.
1978-01-01
Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.
V/STOL model fan stage rig design report
NASA Technical Reports Server (NTRS)
Cheatham, J. G.; Creason, T. L.
1983-01-01
A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.
Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.
2001-01-01
Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2012-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability
A New Foil Air Bearing Test Rig for Use to 700 C and 70,000 rpm
NASA Technical Reports Server (NTRS)
DellaCorte, Chris
1997-01-01
A new test rig has been developed for evaluating foil air bearings at high temperatures and speeds. These bearings are self acting hydrodynamic air bearings which have been successfully applied to a variety of turbomachinery operating up to 650 C. This unique test rig is capable of measuring bearing torque during start-up, shut-down and high speed operation. Load capacity and general performance characteristics, such as durability, can be measured at temperatures to 700 C and speeds to 70,000 rpm. This paper describes the new test rig and demonstrates its capabilities through the preliminary characterization of several bearings. The bearing performance data from this facility can be used to develop advanced turbomachinery incorporating high temperature oil-free air bearing technology.
NASA Astrophysics Data System (ADS)
Katragkou, E.; Wilhelm, S.; Arnold, F.; Wilson, C.
2004-01-01
Gaseous S(VI) (SO3 + H2SO4) has been measured by chemical ionization mass spectrometry (CIMS) in the simulated internal flow of an aircraft gas turbine in a test rig at ground level during the PartEmis 2002 campaign. Building on S(VI) and calculated total sulfur ST the abundance ratio ɛ = S(VI)/ST was determined. The measurements to be reported here were made at two sampling points, for two engine test conditions representative of old and modern aircraft cruise and for a fuel sulfur content FSC = 1270 ppm. For both cruise conditions the measured ɛ increased with increasing exhaust age from the high pressure to the low pressure stage. For each pressure stage ɛ was higher in the modern cruise condition. The maximum ɛ (2.3 +/- 1.2%) was obtained for modern cruise and the low pressure stage. Our present data suggest that modern engines have a somewhat higher conversion efficiencies than old engines.
High-Speed, High-Temperature Finger Seal Test Evaluated
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.
2003-01-01
A finger seal, designed and fabricated by Honeywell Engines, Systems and Services, was tested at the NASA Glenn Research Center at surface speeds up to 1200 ft/s, air temperatures up to 1200 F, and pressures across the seal of 75 psid. These are the first test results obtained with NASA s new High-Temperature, High-Speed Turbine Seal Test Rig (see the photograph). The finger seal is an innovative design recently patented by AlliedSignal Engines, which has demonstrated considerably lower leakage than commonly used labyrinth seals and is considerably cheaper than brush seals. The cost to produce finger seals is estimated to be about half of the cost to produce brush seals. Replacing labyrinth seals with fingers seals at locations that have high-pressure drops in gas turbine engines, typically main engine and thrust seals, can reduce air leakage at each location by 50 percent or more. This directly results in a 0.7- to 1.4-percent reduction in specific fuel consumption and a 0.35- to 0.7-percent reduction in direct operating costs . Because the finger seal is a contacting seal, this testing was conducted to address concerns about its heat generation and life capability at the higher speeds and temperatures required for advanced engines. The test results showed that the seal leakage and wear performance are acceptable for advanced engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, B.L.P.
1992-06-01
The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less
Erosion Resistant Coatings for Polymer Matrix Composites in Propulsion Applications
NASA Technical Reports Server (NTRS)
Sutter, James K.; Naik, Subhash K.; Horan, Richard; Miyoshi, Kazuhisa; Bowman, Cheryl; Ma, Kong; Leissler, George; Sinatra, Raymond; Cupp, Randall
2003-01-01
Polymer Matrix Composites (PMCs) offer lightweight and frequently low cost alternatives to other materials in many applications. High temperature PMCs are currently used in limited propulsion applications replacing metals. Yet in most cases, PMC propulsion applications are not in the direct engine flow path since particulate erosion degrades PMC component performance and therefore restricts their use in gas turbine engines. This paper compares two erosion resistant coatings (SANRES and SANPRES) on PMCs that are useful for both low and high temperature propulsion applications. Collaborating over a multi-year period, researchers at NASA Glenn Research Center, Allison Advanced Developed Company, and Rolls-Royce Corporation have optimized these coatings in terms of adhesion, surface roughness, and erosion resistance. Results are described for vigorous hot gas/particulate erosion rig and engine testing of uncoated and coated PMC fan bypass vanes from the AE 3007 regional jet gas turbine engine. Moreover, the structural durability of these coatings is described in long-term high cycle fatigue tests. Overall, both coatings performed well in all tests and will be considered for applications in both commercial and defense propulsion applications.
Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.
2015-01-01
The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test predictions. This paper documents the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.
Non-technical skills: enhancing safety in operating theatres (and drilling rigs).
Flin, Rhona
2014-03-01
On April 20th 2010, a large Transocean drilling rig called the Deepwater Horizon was operating in the Gulf of Mexico to drill the Macondo well, for the oil company BP. The job was six weeks behind schedule and $58 million over budget and had not been without difficulty: it was a high pressure well, 2.5 miles below the seabed. At 5.45 am, the Halliburton cementing engineer sent an email to say: 'We have completed the job and it went well'. At 9.43 pm, 16 hours later, there was a release of hydrocarbons into the well bore and the drilling rig experienced a catastrophic blowout as the high pressure oil and gas escaped onto the rig and into the ocean. The resulting explosions and fire killed 11 of the crew of 126, injured many more and created an enormous oil spill across the Gulf.
Effect of intake swirl on the performance of single cylinder direct injection diesel engine
NASA Astrophysics Data System (ADS)
Sharma, Vinod Kumar; Mohan, Man; Mouli, Chandra
2017-11-01
In the present work, the effect of inlet manifold geometry and swirl intensity on the direct injection (DI) diesel engine performance was investigated experimentally. Modifications in inlet manifold geometry have been suggested to achieve optimized swirl for the better mixing of fuel with air. The intake swirl intensities of modified cylinder head were measured in swirl test rig at different valve lifts. Later, the overall performance of 435 CC DI diesel engine was measured using modified cylinder head. In addition, the performance of engine was compared for both modified and old cylinder head. For same operating conditions, the brake power and brake specific fuel consumption was improved by 6% and 7% respectively with modified cylinder head compared to old cylinder head. The maximum brake power of 9 HP was achieved for modified cylinder head. The results revealed that the intake swirl has great influence on engine performance.
Internal coating of air-cooled gas turbine blades
NASA Technical Reports Server (NTRS)
Hsu, L. L.; Stetson, A. R.
1980-01-01
Four modified aluminide coatings were developed for IN-792 + Hf alloy using a powder pack method applicable to internal surfaces of air-cooled blades. The coating compositions are Ni-19Al-1Cb, Ni-19Al-3Cb, Ni-17Al-20Cr, and Ni-12Al-20Cr. Cyclic burner rig hot corrosion (900 C) and oxidation (1050 C) tests indicated that Ni-Al-Cb coatings provided better overall resistance than Ni-Al-Cr coatings. Tensile properties of Ni-19Al-1Cb and Ni-12Al-20Cr coated test bars were fully retained at room temperature and 649 C. Stress rupture results exhibited wide scatter around uncoated IN-792 baseline, especially at high stress levels. High cycle fatigue lives of Ni-19Al-1Cb and Ni-12Al-20Cr coated bars (as well as RT-22B coated IN-792) suffered approximately 30 percent decrease at 649 C. Since all test bars were fully heat treated after coating, the effects of coating/processing on IN-792 alloy were not recoverable. Internally coated Ni-19Al-1Cb, Ni-19Al-3Cb, and Ni-12Al-20Cr blades were included in 500-hour endurance engine test and the results were similar to those obtained in burner rig oxidation testing.
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.;
2015-01-01
The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Computational experience with a three-dimensional rotary engine combustion model
NASA Astrophysics Data System (ADS)
Raju, M. S.; Willis, E. A.
1990-04-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Computational experience with a three-dimensional rotary engine combustion model
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Small Hot Jet Acoustic Rig Validation
NASA Technical Reports Server (NTRS)
Brown, Cliff; Bridges, James
2006-01-01
The Small Hot Jet Acoustic Rig (SHJAR), located in the Aeroacoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center in Cleveland, Ohio, was commissioned in 2001 to test jet noise reduction concepts at low technology readiness levels (TRL 1-3) and develop advanced measurement techniques. The first series of tests on the SHJAR were designed to prove its capabilities and establish the quality of the jet noise data produced. Towards this goal, a methodology was employed dividing all noise sources into three categories: background noise, jet noise, and rig noise. Background noise was directly measured. Jet noise and rig noise were separated by using the distance and velocity scaling properties of jet noise. Effectively, any noise source that did not follow these rules of jet noise was labeled as rig noise. This method led to the identification of a high frequency noise source related to the Reynolds number. Experiments using boundary layer treatment and hot wire probes documented this noise source and its removal, allowing clean testing of low Reynolds number jets. Other tests performed characterized the amplitude and frequency of the valve noise, confirmed the location of the acoustic far field, and documented the background noise levels under several conditions. Finally, a full set of baseline data was acquired. This paper contains the methodology and test results used to verify the quality of the SHJAR rig.
Hybrid Bearing Prognostic Test Rig
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Certo, Joseph M.; Handschuh, Robert F.; Dimofte, Florin
2005-01-01
The NASA Glenn Research Center has developed a new Hybrid Bearing Prognostic Test Rig to evaluate the performance of sensors and algorithms in predicting failures of rolling element bearings for aeronautics and space applications. The failure progression of both conventional and hybrid (ceramic rolling elements, metal races) bearings can be tested from fault initiation to total failure. The effects of different lubricants on bearing life can also be evaluated. Test conditions monitored and recorded during the test include load, oil temperature, vibration, and oil debris. New diagnostic research instrumentation will also be evaluated for hybrid bearing damage detection. This paper summarizes the capabilities of this new test rig.
Glenn Extreme Environments Rig (GEER) Independent Review
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Smiles, Michael D.; George, Mark A.; Ton, Mimi C.; Le, Son K.
2015-01-01
The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.
Vibration modelling and verifications for whole aero-engine
NASA Astrophysics Data System (ADS)
Chen, G.
2015-08-01
In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.
Report on Recent Upgrades to the Curved Duct Test Rig at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.
2011-01-01
The Curved Duct Test Rig (CDTR) is an experimental facility that is designed to assess the acoustic and aerodynamic performance of aircraft engine nacelle liners in close to full scale. The test section is between 25% and 100% of the scale of aft bypass ducts of aircraft engines ranging in size from business jet to large commercial passenger jet. The CDTR has been relocated and now shares space with the Grazing Flow Impedance Tube in the Liner Technology Facility at NASA Langley Research Center. As a result of the relocation, research air is supplied to the CDTR from a 50,000 cfm centrifugal fan. This new air supply enables testing of acoustic liner samples at up to Mach 0.500. This paper documents experiments and analysis on a baseline liner sample, which the authors had analyzed and reported on prior to the move to the new facility. In the present paper, the experimental results are compared to those obtained previously in order to ensure continuity of the experimental capability. Experiments that take advantage of the facility s expanded capabilities are also reported. Data analysis features that enhance understanding of the physical properties of liner performance are introduced. The liner attenuation is shown to depend on the mode that is incident on the liner test section. The relevant parameter is the mode cut-on ratio, which determines the angle at which the sound wave is incident on the liner surface. The scattering of energy from the incident mode into higher order, less attenuated modes is demonstrated. The configuration of the acoustic treatment, in this case lined on one surface and hard wall on the opposite surface, is shown to affect the mode energy redistribution.
Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments
NASA Technical Reports Server (NTRS)
Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.
2016-01-01
This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Kinzie, K.; Vu, D. D.; Langenbrunner, L. E.; Szczepkowski, G. T.
2006-01-01
The development process of liner design methodology is described in several reports. The results of the initial effort of concept development, screening, laboratory testing of various liner concepts, and preliminary correlation (generic data) are presented in a report Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program. The second phase of laboratory test results of more practical concepts and their data correlations are presented in this report (product specific). In particular, this report contains normal incidence impedance measurements of several liner types in both a static rig and in a high temperature flow duct rig. The flow duct rig allows for temperatures up to 400 F with a grazing flow up to Mach 0.8. Measurements of impedance, DC flow resistance, and in the flow rig cases, impact of the liner on boundary layer profiles are documented. In addition to liner rig tests, a limited number of tests were made on liners installed in a mixer-Ejector nozzle to confirm the performance of the liner prediction in an installed configuration.
Novel Engineering and Fabrication Techniques Tested in Low-Noise- Research Fan Blades
NASA Technical Reports Server (NTRS)
Cunningham, Cameron C.
2003-01-01
A major source of fan noise in commercial turbofan engines is the interaction of the wake from the fan blades with the stationary vanes (stators) directly behind them. The Trailing Edge Blowing (TEB) project team at the NASA Glenn Research Center designed and fabricated new fan blades to study the effects of fan trailing edge blowing as a potential noise-reduction concept. The intent is to fill the rotor wake by supplying air to the rotor blade trailing edge at the proper conditions to minimize the wake deficit, and thus generate less noise. The TEB hardware is designed for the Active Noise Control Fan (ANCF) test rig in Glenn's Aeroacoustic Propulsion Laboratory. For this test, the air is fed from an external supply through the shaft of the rig. It is distributed to the base of each blade through an impeller, where it is forced into a plenum at the core of each blade. In actual engine configuration, air would most likely be bled from the compressor, but only at times when noise is an issue, such as takeoffs and landings. Glenn researchers designed and manufactured the blades in-house, using new techniques and concepts. The skins, which were designed for maximum strength in the directions of highest stress, were molded from multiple layers of carbon fiber. Considerable use was made of rapid prototyping techniques, such as laser sintering. The core was sintered from a lightweight polymer, and the retainer was CNC-machined (computer numerical control machined) from aluminum. All the components were joined with a cold-cure aerospace adhesive. These techniques and processes reduced the overall cost and allowed the new concept to be studied much sooner than would be possible using traditional fabrication methods. Since this test rig did not support the use of blade-monitoring techniques such as strain gauges, extensive bench testing was required to qualify the design. The blades were examined using a variety of methods including holography, pull tests (cyclic and failure), shake tests, rap tests, and nondestructive inspection. Acoustic testing of the ANCF fan using TEB has been ongoing since January of 2001. The fan has completed about 100 hr of testing with no structural, vibrational, or fatigue problems. Far-field acoustic measurements, in-duct mode measurements, precise hot wire surveys, and detailed performance measurements are providing data for evaluating the concept. The far-field noise data show that tone noise was reduced significantly with the initial ANCF TEB fan design. In addition, a significant reduction in unsteady stator loading has been measured, indicating the potential for stator broadband noise reduction. The acoustic benefits will be assessed and important design parameters identified to improve the ability to fully exploit any benefit provided by this technique. On the basis of the success of trailing edge blowing, Glenn plans to continue this research with a higher speed, higher pressure ratio fan operating in an acoustic wind tunnel to simulate flight conditions.
iLIDS Simulations and Videos for Docking TIM
NASA Technical Reports Server (NTRS)
Lewis, James L.
2010-01-01
The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.
NASA Technical Reports Server (NTRS)
Holdeman, James D. (Technical Monitor); Chiappetta, Louis, Jr.; Hautman, Donald J.; Ols, John T.; Padget, Frederick C., IV; Peschke, William O. T.; Shirley, John A.; Siskind, Kenneth S.
2004-01-01
The low emissions potential of a Rich-Quench-Lean (RQL) combustor for use in the High Speed Civil Transport (HSCT) application was evaluated as part of Work Breakdown Structure (WBS) 1.0.2.7 of the NASA Critical Propulsion Components (CPC) Program under Contract NAS3-27235. Combustion testing was conducted in cell 1E of the Jet Burner Test Stand at United Technologies Research Center. Specifically, a Rich-Quench-Lean combustor, utilizing reduced scale quench technology implemented in a quench vane concept in a product-like configuration (Product Module Rig), demonstrated the capability of achieving an emissions index of nitrogen oxides (NOx EI) of 8.5 gm/Kg fuel at the supersonic flight condition (relative to the program goal of 5 gm/Kg fuel). Developmental parametric testing of various quench vane configurations in the more fundamental flametube, Single Module Rig Configuration, demonstrated NOx EI as low as 5.2. All configurations in both the Product Module Rig configuration and the Single Module Rig configuration demonstrated exceptional efficiencies, greater than 99.95 percent, relative to the program goal of 99.9 percent efficiency at supersonic cruise conditions. Sensitivity of emissions to quench orifice design parameters were determined during the parametric quench vane test series in support of the design of the Product Module Rig configuration. For the rectangular quench orifices investigated, an aspect ratio (length/width) of approximately 2 was found to be near optimum. An optimum for orifice spacing was found to exist at approximately 0.167 inches, resulting in 24 orifices per side of a quench vane, for the 0.435 inch quench zone channel height investigated in the Single Module Rig. Smaller quench zone channel heights appeared to be beneficial in reducing emissions. Measurements were also obtained in the Single Module Rig configuration on the sensitivity of emissions to the critical combustor parameters of fuel/air ratio, pressure drop, and residence time. Minimal sensitivity was observed for all of these parameters.
PBF Reactor Building (PER620). Camera on main floor faces south ...
PBF Reactor Building (PER-620). Camera on main floor faces south (open) doorway. In foreground is canal gate, lined with stainless steel and painted with protective coatings. Reactor pit is round with protective coatings. Reactor put is round form discernible beyond. Lifting beams and rigging are in place for a load test before reactor vessel arrives. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-347 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
1997-01-01
A new technique for rotating stall precursor identification in high-speed compressors has been developed at the NASA Lewis Research Center. This pseudo correlation integral method uses a mathematical algorithm based on chaos theory to identify nonlinear dynamic changes in the compressor. Through a study of four various configurations of a high-speed compressor stage, a multistage compressor rig, and an axi-centrifugal engine test, this algorithm, using only a single pressure sensor, has consistently predicted the onset of rotating stall.
Investigation of Tapered Roller Bearing Damage Detection Using Oil Debris Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Krieder, Gary; Fichter, Thomas
2006-01-01
A diagnostic tool was developed for detecting fatigue damage to tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests performed by The Timken Company in their Tapered Roller Bearing Health Monitoring Test Rig. Failure progression tests were performed under simulated engine load conditions. Tests were performed on one healthy bearing and three predamaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of debris generated during failure of the bearing. The bearing was removed periodically for inspection throughout the failure progression tests. Results indicate the accumulated oil debris mass is a good predictor of damage on tapered roller bearings. The use of a fuzzy logic model to enable an easily interpreted diagnostic metric was proposed and demonstrated.
Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1985-01-01
A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs.
Time-Dependent Simulations of Incompressible Flow in a Turbopump Using Overset Grid Approach
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan
2001-01-01
This viewgraph presentation provides information on mathematical modelling of the SSME (space shuttle main engine). The unsteady SSME-rig1 start-up procedure from the pump at rest has been initiated by using 34.3 million grid points. The computational model for the SSME-rig1 has been completed. Moving boundary capability is obtained by using DCF module in OVERFLOW-D. MPI (Message Passing Interface)/OpenMP hybrid parallel code has been benchmarked.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T.; James P. Meagher; Prasad Apte
2002-12-31
This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less
ERIC Educational Resources Information Center
Hilley, Robert
This curriculum guide contains teacher and student materials for a course on outboard-engine boat systems for power product equipment technician occupations. The course contains the following three units of instruction: (1) Orientation to Outboard-Engine Boat Systems and Rigging; (2) Trailers and Safe Towing and Boat Operation; and (3) Seasonal…
Aircraft engine sump-fire studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1976-01-01
Results of ongoing experimental studies are reported in which a 125-millimeter-diameter-advanced-bearing test rig simulating an engine sump is being used to find the critical range of conditions for fires to occur. Design, material, and operating concepts and techniques are being studied with the objective of minimizing the problem. It has been found that the vapor temperature near a spark ignitor is most important in determining ignition potential. At temperatures producing oil vapor pressures below or much above the calculated flammability limits, fires have not been ignited. But fires have been routinely started within the theoretical flammability range. This indicates that generalizing the sump-fire problem may make it amenable to analysis, with the potential for realistic solutions.
Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases
NASA Technical Reports Server (NTRS)
Morin, Bruce L.
2010-01-01
Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.
Vacuum application of thermal barrier plasma coatings
NASA Technical Reports Server (NTRS)
Holmes, R. R.; Mckechnie, T. N.
1988-01-01
Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.
Swales, Henry; Banko, Richard; Coakley, David
2015-06-03
Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Test Rig Drawings and Bill of Materials. This submission contains information on the equipment for the scaled model tow tank testing. The information includes hardware, test protocols, and plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazowski, W.S.
1976-05-01
The proposed conversion of predominant Air Force fuel usage from JP-4 to JP-8 has created the need to examine the dependence of engine pollutant emission on fuel type. Available data concerning the effect of fuel type on emissions has been reviewed. T56 single combustor testing has been undertaken to determine JP-4/JP-8 emission variations over a wide range of simulated engine cycle operating conditions at idle. In addition, a J85-5 engine was tested using JP-4 and JP-8. Results of the previous and new data collectively led to the following conclusions regarding conversion to JP-8: (a) HC and CO emission changes willmore » depend upon individual combustor design features, (b) no change to NOx emission will occur, and (c) an increase in smoke/particulate emissions will result. It is recommended that these findings be incorporated into air quality analytical models to define the overall impact of the proposed conversion. Further, it is recommended that combustor analytical models be employed to attempt prediction of the results described herein. Should these models be successful, analytical prediction of JP-8 emissions from other Air Force engine models may be substituted for more combustor rig or engine testing. (auth)« less
Turbine blade and vane heat flux sensor development, phase 1
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1984-01-01
Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.
Turbine blade and vane heat flux sensor development, phase 1
NASA Astrophysics Data System (ADS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1984-08-01
Heat flux sensors available for installation in the hot section airfoils of advanced aircraft gas turbine engines were developed. Two heat flux sensors were designed, fabricated, calibrated, and tested. Measurement techniques are compared in an atmospheric pressure combustor rig test. Sensors, embedded thermocouple and the Gordon gauge, were fabricated that met the geometric and fabricability requirements and could withstand the hot section environmental conditions. Calibration data indicate that these sensors yielded repeatable results and have the potential to meet the accuracy goal of measuring local heat flux to within 5%. Thermal cycle tests and thermal soak tests indicated that the sensors are capable of surviving extended periods of exposure to the environment conditions in the turbine. Problems in calibration of the sensors caused by severe non-one dimensional heat flow were encountered. Modifications to the calibration techniques are needed to minimize this problem and proof testing of the sensors in an engine is needed to verify the designs.
Rotating rake design for unique measurement of fan-generated spinning acoustic modes
NASA Technical Reports Server (NTRS)
Konno, Kevin E.; Hausmann, Clifford R.
1993-01-01
In light of the current emphasis on noise reduction in subsonic aircraft design, NASA has been actively studying the source of and propagation of noise generated by subsonic fan engines. NASA/LeRC has developed and tested a unique method of accurately measuring these spinning acoustic modes generated by an experimental fan. This mode measuring method is based on the use of a rotating microphone rake. Testing was conducted in the 9 x 15 Low-speed Wind Tunnel. The rotating rake was tested with the Advanced Ducted Propeller (ADP) model. This memorandum discusses the design and performance of the motor/drive system for the fan-synchronized rotating acoustic rake. This novel motor/drive design approach is now being adapted for additional acoustic mode studies in new test rigs as baseline data for the future design of active noise control for subsonic fan engines. Included in this memorandum are the research requirements, motor/drive specifications, test performance results, and a description of the controls and software involved.
NASA Technical Reports Server (NTRS)
Opila, Elizabeth
2005-01-01
The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.
NASA Lewis Research Center lean-, rich-burn materials test burner rig
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Robinson, R. C.
1994-01-01
The lean-, rich-burn materials test burner rig at NASA LeRC is used to evaluate the high temperature environmental durability of aerospace materials. The rig burns jet fuel and pressurized air, and sample materials can be subjected to both lean-burn and rich-burn environments. As part of NASA's Enabling Propulsion Materials (EPM) program, an existing rig was adapted to simulate the rich-burn quick-quench lean-burn (RQL) combustor concept which is being considered for the HSCT (high speed civil transport) aircraft. RQL materials requirements exceed that of current superalloys, thus ceramic matrix composites (CMC's) emerged as the leading candidate materials. The performance of these materials in the quasi reducing environment of the rich-burn section of the RQL is of fundamental importance to materials development. This rig was developed to conduct such studies, and its operation and capabilities are described.
A dental vision system for accurate 3D tooth modeling.
Zhang, Li; Alemzadeh, K
2006-01-01
This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2014-01-01
This report documents the results of spiral bevel gear rig tests performed under a NASA Space Act Agreement with the Federal Aviation Administration (FAA) to support validation and demonstration of rotorcraft Health and Usage Monitoring Systems (HUMS) for maintenance credits via FAA Advisory Circular (AC) 29-2C, Section MG-15, Airworthiness Approval of Rotorcraft (HUMS) (Ref. 1). The overarching goal of this work was to determine a method to validate condition indicators in the lab that better represent their response to faults in the field. Using existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a "Case Study," to better understand the differences between both systems, and the availability of the NASA Glenn Spiral Bevel Gear Fatigue Rig, a plan was put in place to design, fabricate and test comparable gear sets with comparable failure modes within the constraints of the test rig. The research objectives of the rig tests were to evaluate the capability of detecting gear surface pitting fatigue and other generated failure modes on spiral bevel gear teeth using gear condition indicators currently used in fielded HUMS. Nineteen final design gear sets were tested. Tables were generated for each test, summarizing the failure modes observed on the gear teeth for each test during each inspection interval and color coded based on damage mode per inspection photos. Gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS), +/- 1 Sideband Index (SI1) and +/- 3 Sideband Index (SI3) were plotted along with rig operational parameters. Statistical tables of the means and standard deviations were calculated within inspection intervals for each CI. As testing progressed, it became clear that certain condition indicators were more sensitive to a specific component and failure mode. These tests were clustered together for further analysis. Maintenance actions during testing were also documented. Correlation coefficients were calculated between each CI, component, damage state and torque. Results found test rig and gear design, type of fault and data acquisition can affect CI performance. Results found FM4, SI1 and SI3 can be used to detect macro pitting on two more gear or pinion teeth as long as it is detected prior to progressing to other components or transitioning to another failure mode. The sensitivity of RMS to system and operational conditions limit its reliability for systems that are not maintained at steady state. Failure modes that occurred due to scuffing or fretting were challenging to detect with current gear diagnostic tools, since the damage is distributed across all the gear and pinion teeth, smearing the impacting signatures typically used to differentiate between a healthy and damaged tooth contact. This is one of three final reports published on the results of this project. In the second report, damage modes experienced in the field will be mapped to the failure modes created in the test rig. The helicopter CI data will then be re-processed with the same analysis techniques applied to spiral bevel rig test data. In the third report, results from the rig and helicopter data analysis will be correlated. Observations, findings and lessons learned using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented.
Design and development of a high-speed bearing test rig
NASA Technical Reports Server (NTRS)
Cockburn, J. A.
1995-01-01
The development of a high-speed test rig, to be used for compiling an experimental data base of bearing signatures for bearings with known faults, is described. This bearing test rig can be adapted to test oil-film bearings as well as rolling element bearings. This is achieved by mounting the test bearing in one of two special test housings, either of which can be mounted onto a common test shaft which can be driven up to 30,000 rpm. The test bearing housing for rolling element bearings can accommodate proximity displacement transducers, accelerometers, thermocouples, and acoustic emission sensors. The test bearing housing for the fluid-film bearings can accommodate the same instrumentation as well as Bourdon tube-type transducers for measuring oil film pressures around the bearing circumference.
Joint US/Russia TU-144 Engine Ground Tests
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Balser, Jeffrey S.; McCartney, Timothy P.; Richter, Charles A.; Woike, Mark R.
1997-01-01
Two engine research experiments were recently completed in Moscow, Russia using an engine from the Tu-144 supersonic transport airplane. This was a joint project between the United States and Russia. Personnel from the NASA Lewis Research Center, General Electric Aircraft Engines, Pratt & Whitney, the Tupolev Design Bureau, and EBP Aircraft LTD worked together as a team to overcome the many technical and cultural challenges. The objective was to obtain large scale inlet data that could be used in the development of a supersonic inlet system for a future High Speed Civil Transport (HSCT). The-first experiment studied the impact of typical inlet structures that have trailing edges in close proximity to the inlet/engine interface plane on the flow characteristics at that plane. The inlet structure simulated the subsonic diffuser of a supersonic inlet using a bifurcated splitter design. The centerbody maximum diameter was designed to permit choking and slightly supercritical operation. The second experiment measured the reflective characteristics of the engine face to incoming perturbations of pressure amplitude. The basic test rig from the first experiment was used with a longer spacer equipped with fast actuated doors. All the objectives set forth at the beginning of the project were met.
Characterization of the Tribological Behavior of Oxide-Based NanoMaterials: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenske, George
2017-01-04
Under the Argonne/Pixelligent cooperative research and development agreement (CRADA – C1200801), Argonne performed labscale tribological tests on proprietary nano-sized ZrO 2 material developed by Pixelligent. Pixelligent utilized their proprietary process to prepare variants with different surfactants at different loadings in different carrier fluids for testing and evaluation at Argonne. Argonne applied a range of benchtop tribological test rigs to evaluate friction and wear under a range of conditions (contact geometry, loads, speeds, and temperature) that simulated a broad range of conditions experienced in engines and driveline components. Post-test analysis of worn surfaces provided information on the structure and chemistry ofmore » the tribofilms produced during the tests.« less
Testing for voter rigging in small polling stations
Jimenez, Raúl; Hidalgo, Manuel; Klimek, Peter
2017-01-01
Nowadays, a large number of countries combine formal democratic institutions with authoritarian practices. Although in these countries the ruling elites may receive considerable voter support, they often use several manipulation tools to control election outcomes. A common practice of these regimes is the coercion and mobilization of large numbers of voters. This electoral irregularity is known as voter rigging, distinguishing it from vote rigging, which involves ballot stuffing or stealing. We develop a statistical test to quantify the extent to which the results of a particular election display traces of voter rigging. Our key hypothesis is that small polling stations are more susceptible to voter rigging because it is easier to identify opposing individuals, there are fewer eyewitnesses, and interested parties might reasonably expect fewer visits from election observers. We devise a general statistical method for testing whether voting behavior in small polling stations is significantly different from the behavior in their neighbor stations in a way that is consistent with the widespread occurrence of voter rigging. On the basis of a comparative analysis, the method enables third parties to conclude that an explanation other than simple variability is needed to explain geographic heterogeneities in vote preferences. We analyze 21 elections in 10 countries and find significant statistical anomalies compatible with voter rigging in Russia from 2007 to 2011, in Venezuela from 2006 to 2013, and in Uganda in 2011. Particularly disturbing is the case of Venezuela, where the smallest polling stations were decisive to the outcome of the 2013 presidential elections. PMID:28695193
Testing for voter rigging in small polling stations.
Jimenez, Raúl; Hidalgo, Manuel; Klimek, Peter
2017-06-01
Nowadays, a large number of countries combine formal democratic institutions with authoritarian practices. Although in these countries the ruling elites may receive considerable voter support, they often use several manipulation tools to control election outcomes. A common practice of these regimes is the coercion and mobilization of large numbers of voters. This electoral irregularity is known as voter rigging, distinguishing it from vote rigging, which involves ballot stuffing or stealing. We develop a statistical test to quantify the extent to which the results of a particular election display traces of voter rigging. Our key hypothesis is that small polling stations are more susceptible to voter rigging because it is easier to identify opposing individuals, there are fewer eyewitnesses, and interested parties might reasonably expect fewer visits from election observers. We devise a general statistical method for testing whether voting behavior in small polling stations is significantly different from the behavior in their neighbor stations in a way that is consistent with the widespread occurrence of voter rigging. On the basis of a comparative analysis, the method enables third parties to conclude that an explanation other than simple variability is needed to explain geographic heterogeneities in vote preferences. We analyze 21 elections in 10 countries and find significant statistical anomalies compatible with voter rigging in Russia from 2007 to 2011, in Venezuela from 2006 to 2013, and in Uganda in 2011. Particularly disturbing is the case of Venezuela, where the smallest polling stations were decisive to the outcome of the 2013 presidential elections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. L. Davis; D. L. Knudson; J. L. Rempe
New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Mehmed, Oral
2003-01-01
The NASA Glenn Research Center Dynamic Spin Rig is used for experimental evaluation of vibration analysis methods and dynamic characteristics for rotating systems. Measurements are made while rotors are spun and vibrated in a vacuum chamber. The rig has been upgraded with a new active magnetic bearing rotor support and excitation system. This design is expected to provide operational improvements over the existing rig. The rig will be able to be operated in either the old or new configuration. In the old configuration, two ball bearings support the vertical shaft of the rig, with the test article located between the bearings. Because the bearings operate in a vacuum, lubrication is limited to grease. This limits bearing life and speed. In addition, the old configuration employs two voice-coil electromagnetic shakers to apply oscillatory axial forces or transverse moments to the rotor shaft through a thrust bearing. The excitation amplitudes that can be imparted to the test article with this system are not adequate for components that are highly damped. It is expected that the new design will overcome these limitations.
Test rig and particulate deposit and cleaning evaluation processes using the same
Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank
2002-01-01
A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2015-01-01
This is the final of three reports published on the results of this project. In the first report, results were presented on nineteen tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig on spiral bevel gear sets designed to simulate helicopter fielded failures. In the second report, fielded helicopter HUMS data from forty helicopters were processed with the same techniques that were applied to spiral bevel rig test data. Twenty of the forty helicopters experienced damage to the spiral bevel gears, while the other twenty helicopters had no known anomalies within the time frame of the datasets. In this report, results from the rig and helicopter data analysis will be compared for differences and similarities in condition indicator (CI) response. Observations and findings using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented. In the helicopter, gear health monitoring data was measured when damage occurred and after the gear sets were replaced at two helicopter regimes. For the helicopters or tails, data was taken in the flat pitch ground 101 rotor speed (FPG101) regime. For nine tails, data was also taken at 120 knots true airspeed (120KTA) regime. In the test rig, gear sets were tested until damage initiated and progressed while gear health monitoring data and operational parameters were measured and tooth damage progression documented. For the rig tests, the gear speed was maintained at 3500RPM, a one hour run-in was performed at 4000 in-lb gear torque, than the torque was increased to 8000 in-lbs. The HUMS gear condition indicator data evaluated included Figure of Merit 4 (FM4), Root Mean Square (RMS) or Diagnostic Algorithm 1(DA1), + 3 Sideband Index (SI3) and + 1 Sideband Index (SI1). These were selected based on their sensitivity in detecting contact fatigue damage modes from analytical, experimental and historical helicopter data. For this report, the helicopter dataset was reduced to fourteen tails and the test rig data set was reduced to eight tested gear sets. The damage modes compared were separated into three cases. For case one, both the gear and pinion showed signs of contact fatigue or scuffing damage. For case two, only the pinion showed signs of contact fatigue damage or scuffing. Case three was limited to the gear tests when scuffing occurred immediately after the gear run-in. Results of this investigation highlighted the importance of understanding the complete monitored systems, for both the helicopter and test rig, before interpreting health monitoring data. Further work is required to better define these two systems that include better state awareness of the fielded systems, new sensing technologies, new experimental methods or models that quantify the effect of system design on CI response and new methods for setting thresholds that take into consideration the variance of each system.
Testing and Comparative Evaluation of Space Shuttle Main Engine Flowmeter Bearings
NASA Technical Reports Server (NTRS)
Hissam, Andy; Leberman, Mike; McLeroy, Rick
2005-01-01
This paper provides a summary of testing of Space Shuttle Main Engine (SSME) flowmeter bearings and cage material. These tests were con&cM over a several month period in 2004 at the Marshall Space Flight Center. The test program's primary objective was to compare the performance of bearings using the existing cage material and bearings using a proposed replacement cage material. In order to meet the test objectives for this program, a flowmeter test rig was designed and fabricated to measure both breakaway and running torque for a flowmeter assembly. Other test parameters,,such as motor current and shaft speed, were also recorded and provide a means of comparing bearing performance. The flowmeter and bearings were tested in liquid hydrogen to simulate the flowmeter's operating environment as closely as possible. Based on the results from this testing, the bearings with the existing cage material are equivalent to the bearings with the proposed replacement cage material. No major differences exist between the old and new cage materials. Therefore, the new cage material is a suitable replacement for the existing cage material.
Wave Energy Prize -- Carderock Test Design and Rigging to Accommodate Diversity of Device Types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R
Wave Energy Prize Carderock Test Design and Rigging to Accommodate Diversity of Device Types presentation from the Water Power Technologies Office Peer Review, FY14-FY16. The challenge was to determine testing conditions, develop processing algorithms, and execute tests for equitable and consistent evaluation of different wave energy converter (WEC) technologies.
Active identification and control of aerodynamic instabilities in axial and centrifugal compressors
NASA Astrophysics Data System (ADS)
Krichene, Assad
In this thesis, it is experimentally shown that dynamic cursors to stall and surge exist in both axial and centrifugal compressors using the experimental axial and centrifugal compressor rigs located in the School of Aerospace Engineering at the Georgia Institute of Technology. Further, it is shown that the dynamic cursors to stall and surge can be identified in real-time and they can be used in a simple control scheme to avoid the occurrence of stall and surge instabilities altogether. For the centrifugal compressor, a previously developed real-time observer is used in order to detect dynamic cursors to surge in real-time. An off-line analysis using the Fast Fourier Transform (FFT) of the open loop experimental data from the centrifugal compressor rig is carried out to establish the influence of compressor speed on the dynamic cursor frequency. The variation of the amplitude of dynamic cursors with compressor operating condition from experimental data is qualitatively compared with simulation results obtained using a generic compression system model subjected to white noise excitation. Using off-line analysis results, a simple control scheme based on fuzzy logic is synthesized for surge avoidance and recovery. The control scheme is implemented in the centrifugal compressor rig using compressor bleed as well as fuel flow to the combustor. Closed loop experimental results are obtained to demonstrate the effectiveness of the controller for both surge avoidance and surge recovery. The existence of stall cursors in an axial compression system is established using the observer scheme from off-line analysis of an existing database of a commercial gas turbine engine. However, the observer scheme is found to be ineffective in detecting stall cursors in the experimental axial compressor rig in the School of Aerospace Engineering at the Georgia Institute of Technology. An alternate scheme based on the amplitude of pressure data content at the blade passage frequency obtained using a pressure sensor located (in the casing) over the blade row is developed and used in the axial compressor rig for stall and surge avoidance and recovery. (Abstract shortened by UMI.)
SiC Recession Due to SiO2 Scale Volatility Under Combustor Conditions
NASA Technical Reports Server (NTRS)
Robinson, Raymond Craig
1997-01-01
One of today's most important and challenging technological problems is the development of advanced materials and processes required to design and build a fleet of supersonic High Speed Civil Transport (HSCT) airliners, a follow-up to the Concorde SST. The innovative combustor designs required for HSCT engines will need high-temperature materials with long-term environmental stability. Higher combustor liner temperatures than today's engines and the need for lightweight materials will require the use of advanced ceramic-matrix composites (CMC's) in hot-section components. The HSCT is just one example being used to demonstrate the need for such materials. This thesis evaluates silicon carbide (SiC) as a potential base material for HSCT and other similar applications. Key issues are the environmental durability for the materials of interest. One of the leading combustor design schemes leads to an environment which will contain both oxidizing and reducing gas mixtures. The concern is that these environments may affect the stability of the silica (SiO2) scale on which SiC depends for environmental protection. A unique High Pressure Burner Rig (HPBR) was developed to simulate the combustor conditions of future gas turbine engines, and a series of tests were conducted on commercially available SiC material. These tests are intended as a feasibility study for the use of these materials in applications such as the HSCT. Linear weight loss and surface recession of the SiC is observed as a result of SiO2 volatility for both fuel-lean and fuel-rich gas mixtures. These observations are compared and agree well with thermogravimetric analysis (TGA) experiments. A strong Arrhenius-type temperature dependence exists. In addition, the secondary dependencies of pressure and gas velocity are defined. As a result, a model is developed to enable extrapolation to points outside the experimental space of the burner rig, and in particular, to potential gas turbine engine conditions.
High temperature lubricant screening and systems studies
NASA Technical Reports Server (NTRS)
Jones, D. A.
1973-01-01
Four candidate lubricants for next generation aircraft gas turbine application were tested under open atmosphere conditions in a rig simulating an advanced engine 125 mm bore mainshaft thrust bearing position. Testing was conducted at speeds to 24,000 rpm (3,000,000 bearing DN), bearing ring temperature of 500 F, and with 1200 F air and 100 psi differential pressure across the seals installed in a dual tandem arrangement. Test bearing was a 125 mm bore split inner ring, outer race riding angular contact ball bearing under a 3280 lb. thrust load. One lubricant, a type 2 ester, performed extremely well. The mainshaft seal limited the performance. Numerous design improvements for this seal were indicated.
Oscillating-flow regenerator test rig
NASA Technical Reports Server (NTRS)
Wood, J. G.; Gedeon, D. R.
1994-01-01
This report summarizes work performed in setting up and performing tests on a regenerator test rig. An earlier status report presented test results, together with heat transfer correlations, for four regenerator samples (two woven screen samples and two felt metal samples). Lessons learned from this testing led to improvements to the experimental setup, mainly instrumentation as well as to the test procedure. Given funding and time constraints for this project it was decided to complete as much testing as possible while the rig was set up and operational, and to forego final data reduction and analysis until later. Additional testing was performed on several of the previously tested samples as well an on five newly fabricated samples. The following report is a summary of the work performed at OU, with many of the final test results included in raw data form.
Sensor for performance monitoring of advanced gas turbines
NASA Astrophysics Data System (ADS)
Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.
1999-01-01
Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.
Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Robinson, Craig
2017-01-01
This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.
DOT National Transportation Integrated Search
1994-10-01
A shake test was performed on the Large Scale Dynamic Rig in the 40- by 80-Foot Wind Tunnel in support of the McDonnell Douglas Advanced Rotor Technology (MDART) Test Program. The shake test identifies the hub modes and the dynamic calibration matrix...
Small-scale rotor test rig capabilities for testing vibration alleviation algorithms
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Leyland, Jane Anne
1987-01-01
A test was conducted to assess the capabilities of a small scale rotor test rig for implementing higher harmonic control and stability augmentation algorithms. The test rig uses three high speed actuators to excite the swashplate over a range of frequencies. The actuator position signals were monitored to measure the response amplitudes at several frequencies. The ratio of response amplitude to excitation amplitude was plotted as a function of frequency. In addition to actuator performance, acceleration from six accelerometers placed on the test rig was monitored to determine whether a linear relationship exists between the harmonics of N/Rev control input and the least square error (LSE) identification technique was used to identify local and global transfer matrices for two rotor speeds at two batch sizes each. It was determined that the multicyclic control computer system interfaced very well with the rotor system and kept track of the input accelerometer signals and their phase angles. However, the current high speed actuators were found to be incapable of providing sufficient control authority at the higher excitation frequencies.
Emissions and performance of catalysts for gas turbine catalytic combustors. [automobile engines
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1977-01-01
Three noble-metal monolithic catalysts were tested in a 12-cm-dia. combustion test rig to obtain emissions and performance data at conditions simulating the operation of a catalytic combustor for an automotive gas turbine engine. Tests with one of the catalysts at 800 K inlet mixture temperature, 3 x 10 to the 5th Pa pressure, and a reference velocity (catalyst bed inlet velocity) of 10 m/sec demonstrated greater than 99 percent combustion efficiency for reaction temperatures higher than 1300 K. With a reference velocity of 25 m/sec the reaction temperature required to achieve the same combustion-efficiency increased to 1380 K. The exit temperature pattern factors for all three catalysts were below 0.1 when adiabatic reaction temperatures were higher than 1400 K. The highest pressure drop was 4.5 percent at 25 m/sec reference velocity. Nitrogen oxides emissions were less than 0.1 g NO2/kg fuel for all test conditions.
Ceramics Technology Project database: September 1991 summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, B.L.P.
1992-06-01
The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project`s semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.
2002-01-01
The development of the pulse detonation engine (PDE) requires robust design of the engine components that are capable of enduring harsh detonation environments. In this study, a high cycle thermal fatigue test rig was developed for evaluating candidate PDE combustor materials using a CO2 laser. The high cycle thermal fatigue behavior of Haynes 188 alloy was investigated under an enhanced pulsed laser test condition of 30 Hz cycle frequency (33 ms pulse period, and 10 ms pulse width including 0.2 ms pulse spike). The temperature swings generated by the laser pulses near the specimen surface were characterized by using one-dimensional finite difference modeling combined with experimental measurements. The temperature swings resulted in significant thermal cyclic stresses in the oxide scale/alloy system, and induced extensive surface cracking. Striations of various sizes were observed at the cracked surfaces and oxide/alloy interfaces under the cyclic stresses. The test results indicated that oxidation and creep-enhanced fatigue at the oxide scale/alloy interface was an important mechanism for the surface crack initiation and propagation under the simulated PDE condition.
Development of a Free-to-Roll Transonic Test Capability (Invited)
NASA Technical Reports Server (NTRS)
Capone, F. J.; Owens, D. B.; Hall, R. M.
2003-01-01
As part of the NASA/Navy Abrupt Wing Stall Program, a relatively low-cost, rapid-access wind-tunnel free-to-roll rig was developed. This rig combines the use of conventional models and test apparatuses to evaluate both transonic performance and wing-drop/rock tendencies in a single tunnel entry. A description of the test hardware as well as a description of the experimental procedures is given. The free-to-roll test rig has been used successfully to assess the static and dynamic characteristics of three different configurations--two configurations that exhibit uncommanded lateral motions, (pre-production F/A-18E and AV-8B), and one that did not (F/A-18C).
Preliminary Investigation of Curved Liner Sample in the NASA LaRC Curved Duct Test Rig
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.
2007-01-01
This viewgraph presentation reviews the preliminary investigation of the curved liner sample in the NASA LaRC Curved Duct Test Rig (CDTR). It reviews the purpose of the Curved Duct Test Rig. Its purpose is to develop capability to investigate acoustic and aerodynamic properties in ducts. It has several features to accomplish that purpose: (1) Large scale (2) Flow rate to M = 0.275 (3) Higher order mode control (4) Curved flow path (5) Adaptable test section (6) Flexible test configurations. The liner has minimal effect on turbulence or boundary layer growth in duct. The curved duct sample attenuation is affected by mode scattering. In conclusion, the CDTR is valid tool for aerodynamic and acoustic evaluation of duct treatment
Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.
2003-01-01
A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.
Liquid Methane/Liquid Oxygen Propellant Conditioning Feed System (PCFS) Test Rigs
NASA Technical Reports Server (NTRS)
Skaff, A.; Grasl, S.; Nguyen, C.; Hockenberry S.; Schubert, J.; Arrington, L.; Vasek, T.
2008-01-01
As part of their Propulsion and Cryogenic Advanced Development (PCAD) program, NASA has embarked upon an effort to develop chemical rocket engines which utilize non-toxic, cryogenic propellants such as liquid oxygen (LO2) and liquid methane (LCH4). This effort includes the development and testing of a 100 lbf Reaction Control Engine (RCE) that will be used to evaluate the performance of a LO2/LCH4 rocket engine over a broad range of propellant temperatures and pressures. This testing will take place at NASA-Glenn Research Center's (GRC) Research Combustion Laboratory (RCL) test facility in Cleveland, OH, and is currently scheduled to begin in late 2008. While the initial tests will be performed at sea level, follow-on testing will be performed at NASA-GRC's Altitude Combustion Stand (ACS) for altitude testing. In support of these tests, Sierra Lobo, Inc. (SLI) has designed, developed, and fabricated two separate portable propellant feed systems under the Propellant Conditioning and Feed System (PCFS) task: one system for LCH4, and one for LO2. These systems will be capable of supplying propellants over a large range of conditions from highly densified to several hundred pounds per square inch (psi) saturated. This paper presents the details of the PCFS design and explores the full capability of these propellant feed systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubb, M.
1981-02-01
Friede and Goldman Ltd. of New Orleans, Louisiana has a successful drilling rig, the L-780 jack-up series. The triangular-shaped drilling vessel measures 180 x 176 ft. and is equipped with three 352 ft legs including spud cans. It is designed to work in up to 250 ft waters and drill to 20,000 ft depths. The unit is scheduled to begin initial drilling operations in the Gulf of Mexico for Arco. Design features are included for the unit. Davie Shipbuilding Ltd. has entered the Mexican offshore market with the signing of a $40,000,000 Canadian contract for a jack-up to work inmore » 300 ft water depths. Baker Marine Corporation has contracted with the People's Republic of China for construction of two self-elevating jack-ups. The units will be built for Magnum Marine, headquartered in Houston. Details for the two rigs are given. Santa Fe International Corporation has ordered a new jack-up rig to work initially in the Gulf of Suez. The newly ordered unit, Rig 136, will be the company's fourth offshore drilling rig now being built in the Far East. Temple Drilling Company has signed a construction contract with Bethlehem Steel for a jack-up to work in 200 ft water depths. Penrod Drilling Company has ordered two additional cantilever type jack-ups for Hitachi Shipbuilding and Engineering Co. Ltd. of Japan. Two semi-submersibles, capable of working in up to 2000 ft water depths, have been ordered by two Liberian companies. Details for these rigs are included. (DP)« less
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Abdul-Aziz, Ali
2010-01-01
The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.
Object-oriented approach for gas turbine engine simulation
NASA Technical Reports Server (NTRS)
Curlett, Brian P.; Felder, James L.
1995-01-01
An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.
Evaluation of a staged fuel combustor for turboprop engines
NASA Technical Reports Server (NTRS)
Verdouw, A. J.
1976-01-01
Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.
NASA Astrophysics Data System (ADS)
Datsenko, V. V.; Zeigarnik, Yu. A.; Kosoi, A. S.
2014-04-01
Practical experience gained from using water and steam admission into the combustion chambers of aircraft- and marine-derivative gas turbines for bringing their operation in compliance with the requirements of environmental standards is described. The design and schematic modifications of combustion chambers and fuel system through which this goal is achieved are considered. The results obtained from industrial and rig tests of combustion chambers fitted with water or steam admission systems are presented.
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
NASA Astrophysics Data System (ADS)
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
Magnetic Suspension for Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Johnson, Dexter
1998-01-01
NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.
Innovative workover/drilling rigs to utilize hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noran, D.
1975-09-29
While Western Gear Corp., Everett, Wash., is currently building 2 models of a hydraulic workover/drilling rig (one offshore and the other a trailer-mounted land rig), Bender Co., Bakersfield, Calif., already has an all-hydraulic servicing/drilling rig undergoing tests. The rigs are similar in that they eliminate the traveling block, crown block, draw works, chains, and sprockets found on the conventional rig. The major design innovation on the Western Gear model is the 260,000-lb-capacity hoisting system in which 2 hydraulic rams are anchored to the rig floor and carry all the pipe weight, thus eliminating the danger of the derrick's being pulledmore » in. Other changes involve the tripping system, a power swivel/elevator, and the control valves. Maintenance and labor cost reductions are expected to be substantial. The Bender Co. rig has a single-section mast that is a lever-lift-type derrick which serves as a guide for the rams and a support for the pipe-racking platform. Hoisting capacity depends on the number and size of the lifting rods (which support the crown sheaves) and the hydraulic pressure applied. Manufacturing and operating costs are expected to be less than for conventional rigs.« less
Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig
NASA Astrophysics Data System (ADS)
Steward, Jason Reid
Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.
NASA Technical Reports Server (NTRS)
Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)
2000-01-01
As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2002-01-01
Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.
Rolling contact fatigue of surface modified 440C using a 'Ge-Polymet' type disc rod test rig
NASA Technical Reports Server (NTRS)
Thom, Robert L.
1989-01-01
Through hardened 440 C martensitic stainless steel test specimens were surface modified and tested for changes in rolling contact fatigue using a disc on rod test rig. The surface modifications consisted of nitrogen, boron, titanium, chromium, tantalum, carbon, or molybdenum ion implantation at various ion fluences and energies. Tests were also performed on specimens reactively sputtered with titanium nitride.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Li, Zhuang; Cheng, Yue; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-06-01
Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (V H ) and light (V L ) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides V H -JUN-HIS and V L -FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of V H and V L . The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency. Copyright © 2017. Published by Elsevier B.V.
Diesel and Truck Certification Needs Assessment: Two Surveys.
ERIC Educational Resources Information Center
Broadbent, William A.
Recommendations for the improvement of the diesel engine and truck components of the Hawaii state certification examination for automobile and truck mechanics were solicited from 14 major private businesses repairing heavy tractor rigs and/or diesel engines on Oahu and a statewide sample of 21 trucking firms and other companies making extensive…
Experimental clean combustor program: Noise study
NASA Technical Reports Server (NTRS)
Sofrin, T. G.; Riloff, N., Jr.
1976-01-01
Under a Noise Addendum to the NASA Experimental Clean Combustor Program (ECCP) internal pressure fluctuations were measured during tests of JT9D combustor designs conducted in a burner test rig. Measurements were correlated with burner operating parameters using an expression relating farfield noise to these parameters. For a given combustor, variation of internal noise with operating parameters was reasonably well predicted by this expression but the levels were higher than farfield predictions and differed significantly among several combustors. For two burners, discharge stream temperature fluctuations were obtained with fast-response thermocouples to allow calculation of indirect combustion noise which would be generated by passage of the temperature inhomogeneities through the high pressure turbine stages of a JT9D turbofan engine. Using a previously developed analysis, the computed indirect combustion noise was significantly lower than total low frequency core noise observed on this and several other engines.
The isentropic light piston annular cascade facil ity at RAE Pyestock
NASA Astrophysics Data System (ADS)
Brooks, A. J.; Colbourne, D. E.; Wedlake, E. T.; Jones, T. V.; Oldfield, M. L. G.; Schultz, D. L.; Loftus, P. J.
1985-09-01
An accurate assessment of heat transfer rates to turbine vanes and blades is an important aspect of efficient cooling system design and component life prediction in gas turbines. Techniques have been developed at Oxford University which permit such measurements to be obtained in test rigs which provide short duration steady flow through a turbine cascade. The temperature ratio between the gas stream and the turbine correctly models that found in an engine environment. Reynolds number and Mach numaber can be varied over a wide range to match engine conditions. The design, construction and operation of a new facility at Royal Aircraft Establishment (RAE) Pyestock, incorporating these techniques, is described. Heat transfer and aerodynamic measurements have been made on airfoil surfaces and endwalls of a fully annular cascade of nozzle guide vanes. These results are discussed and compared with those obtained from the same profile in 2-D cascade tests, and with computed 3-D flow predictions.
NASA Technical Reports Server (NTRS)
Rashid, J. M.; Freling, M.; Friedrich, L. A.
1987-01-01
The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.
Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.
Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L
2017-09-28
Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.
Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions
Ramachandran, Rahul; Menezes, Pradeep L.
2017-01-01
Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819
Water droplet erosion of stainless steel steam turbine blades
NASA Astrophysics Data System (ADS)
Kirols, H. S.; Kevorkov, D.; Uihlein, A.; Medraj, M.
2017-08-01
Steam turbine blades are highly subjected to water droplet erosion (WDE) caused by high energy impingement of liquid water droplets. However, most of the published research on this wear phenomenon is performed on laboratory test rigs, instead of addressing WDE of actual steam turbine blades. In this work, the progression of erosion on the surface of ex-service low pressure steam turbine blades was investigated using scanning electron microscopy. The erosion appearance and mechanisms are compared with laboratory test rig results that are carried out using a rotating disk rig according to ASTM G73 standard. Initial and advanced erosion stages could be observed on the steam turbine blades. Similar to the WDE rig coupons, initial pits and cracks were preceded by blade surface roughening through the formation of asperities and depressions. In addition, it was also observed that the twist angle of the turbine blade around its diagonal, is an important parameter that influences its WDE. Twist angle has an effect on: impact angle, erosion appearance, impact speed, and the affected area. Furthermore, according to the current experimental results, multi-ray rig erosion test results are considered the closest simulation to the actual ex-service blade in terms of damage appearance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Corman; Krishan Luthra
This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. Themore » materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.« less
Advanced Low NO Sub X Combustors for Supersonic High-Altitude Aircraft Gas Turbines
NASA Technical Reports Server (NTRS)
Roberts, P. B.; White, D. J.; Shekleton, J. R.
1975-01-01
A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO sub x, of three advanced aircraft combustor concepts at a simulated, high altitude cruise condition. The three combustor designs, all members of the lean reaction, premixed family, are the Jet Induced Circulation (JIC) combustor, the Vortex Air Blast (VAB) combustor, and a catalytic combustor. They were rig tested in the form of reverse flow can combustors in the 0.127 m. (5.0 in.) size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO sub x level of 1.1 gm NO2/kg fuel with essentially 100% combustion efficiency at the simulated cruise combustor condition of 50.7 N/sq cm (5 atm), 833 K (1500 R) inlet pressure and temperature respectively and 1778 K (3200 R) outlet temperature on Jet-A1 fuel. Early tests on the catalytic combustor were unsuccessful due to a catalyst deposition problem and were discontinued in favor of the JIC and VAB tests. In addition emissions data were obtained on the JIC and VAB combustors at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.
Demonstration of laser speckle system on burner liner cyclic rig
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1986-01-01
A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.
Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data
NASA Technical Reports Server (NTRS)
Brown, Clifford; Dippold, Vance
2015-01-01
The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.
Wear of Steel and Ti6Al4V Rollers in Vacuum
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Shareef, Iqbal
2012-01-01
This investigation was prompted by results of a qualification test of a mechanism to be used for the James Webb Space Telescope. Post-test inspections of the qualification test article revealed some loose wear debris and wear of the steel rollers and the mating Ti6Al4V surfaces. An engineering assessment of the design and observations from the tested qualification unit suggested that roller misalignment was a controlling factor. The wear phenomena were investigated using dedicated laboratory experiments. Tests were done using a vacuum roller rig for a range of roller misalignment angles. The wear in these tests was mainly adhesive wear. The measured wear rates were highly correlated to the misalignment angle. For all tests with some roller misalignment, the steel rollers lost mass while the titanium rollers gained mass indicating strong adhesion of the steel with the titanium alloy. Inspection of the rollers revealed that the adhesive wear was a two-way process as titanium alloy was found on the steel rollers and vice versa. The qualification test unit made use of 440F steel rollers in the annealed condition. Both annealed 440F steel rollers and hardened 440C rollers were tested in the vacuum roller rig to investigate possibility to reduce wear rates and the risk of loose debris formation. The 440F and 440C rollers had differing wear behaviors with significantly lesser wear rates for the 440C. For the test condition of zero roller misalignment, the adhesive wear rates were very low, but still some loose debris was formed
Cryogenic Feedthrough Test Rig
NASA Technical Reports Server (NTRS)
Skaff, Antony
2009-01-01
The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.
NASA Astrophysics Data System (ADS)
Conti, Roberto; Meli, Enrico; Pugi, Luca; Malvezzi, Monica; Bartolini, Fabio; Allotta, Benedetto; Rindi, Andrea; Toni, Paolo
2012-05-01
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel-roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel-rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel-roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.
Technical product bulletin: this surface washing agent is for oil spill cleanups on beaches, rocks, piers, bilges, decks, waterline scum, rigs, platforms, tanks, barges engine rooms, machinery, and grease traps. Pre-treatment/soaking may be needed.
NASA Technical Reports Server (NTRS)
Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.
1992-01-01
The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.
NASA Technical Reports Server (NTRS)
Hanschuh, R. F.
1984-01-01
A series of rig calibration and high temperature tests simulating gas path seal erosion in turbine engines were performed at three impingement angles and at three downstream locations. Plasma sprayed, yttria stablized zirconia specimens were tested. Steady state erosion curves presented for 19 test specimens indicate a brittle type of material erosion despite scanning electron microscopy evidence of plastic deformation. Steady state erosion results were not sensitive to downstream location but were sensitive to impingement angle. At difference downstream locations specimen surface temperature varied from 1250 to 1600 C (2280 to 2900 F) and particle velocity varied from 260 to 320 m/s (850 to 1050 ft/s). The mass ratio of combustion products to erosive grit material was typically 240.
Pollution reduction technology program for small jet aircraft engines, phase 1
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1977-01-01
A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine.
Evaluation of candidate Stirling engine heater tube alloys for 1000 hours at 760 C
NASA Technical Reports Server (NTRS)
Misencik, J. A.
1980-01-01
Six tubing alloys were endurance tested in a diesel fired, Stirling engine simulator materials test rig for 1000 hours of 760 C while pressurized at 17 to 21 MPa with either hydrogen or helium. The alloys tested were N 155, A 286, Incoloy 800, 19 9DL, Nitronic 40 and 316 stainless steel. The alloys were in the form of thin wall tubing. Hydrogen permeated rapidly through the tube walls of all six alloys when they were heated to 760 C. Helium was readily contained. Creep rupture failures occurred in four of the six alloys pressurized with hydrogen. Only two alloys survived the 1000 hour endurance test with no failures. Simultaneous exposure to either hydrogen or helium and the combustion environment did not seriously degrade the tensile strength of the six alloys in room temperature or 760 C tests after exposure. Decreases in room temperature ductility were observed and are attributed to aging rather than to hydrogen embrittlement in three of the alloys. However, there may be a hydrogen embrittlement effect in the N 155, 19 9DL, and Nitronic 40 alloys.
SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)
2017-06-11
SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.
An alternate lining scheme for solar ponds - Results of a liner test rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, P.; Kishore, V.V.N.
1990-01-01
Solar pond lining schemes consisting of combinations of clays and Low Density Polyethylene (LDPE) films have been experimentally evaluated by means of a Solar Pond Liner Test Rig. Results indicate that LDPE film sandwiched between two layers of clay can be effectively used for lining solar ponds.
BURNER RIG TESTING OF A500 C/SiC
2018-03-17
test program characterized the durability behavior of A500® C/SiC ceramic matrix composite material at room and elevated temperature . Specimens were...7 Figure 6. Typical Room- Temperature Tensile Stress-Versus-Strain Trace for As-Manufactured A500...Operation ......................................... 18 Figure 17. Example of the Burner Rig Temperature Profiles Used
High-Speed, High-Temperature Finger Seal Test Results
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.
2002-01-01
Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.
Modernization of the Transonic Axial Compressor Test Rig
2017-12-01
13. ABSTRACT (maximum 200 words) This work presents the design and simulation process of modernizing the Naval Postgraduate School’s transonic...fabricate the materials. Stiffness tests and modal analysis were conducted via Finite Element Analysis (FEA) software. This analysis was used to design ...work presents the design and simulation process of modernizing the Naval Postgraduate School’s transonic compressor test rig (TCR). The TCR, which
New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P.
2004-01-01
A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and install the new compact arena in fiscal year 2002 has paid dividends in fiscal year 2003 and will for many years to come. It has provided a dedicated, high-quality acoustic arena to support low-speed fan testing for ANCF while minimizing scheduling impacts and improving operational productivity in the AAPL facility.
NASA Technical Reports Server (NTRS)
Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
NASA Technical Reports Server (NTRS)
Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
Flowrate testing of the bag filter LANCS-BOP 6CPVC-1.5-2SPVC (LANCS Industries) at 1 psig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Currie, Karissa Lyn; Berg, Charlotte Katherine
2016-09-13
The air flowrate through a flexible HEPA grade filter (Part LANCS-BOP 6CPVC-1.5-2SPVC www.lancsindustries.com) was measured at 48 ALPM for a differential pressure drop of 1.0 psig (28 inWC, 7.0 kPa). These filters are rated by the manufacturer to have a flowrate of 3 ALPM at a differential pressure drop of 1 inWC (0.25 kPa). The Los Alamos National Laboratory Aerosol Engineering Facility used one of their test rigs (originally developed to measure the pressure drop in capsule HEPA filters) to measure the airflow through the LANCS bag filter.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.
2011-01-01
Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.
Investigations of thermal barrier coatings of turbine parts using gas flame heating
NASA Astrophysics Data System (ADS)
Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.
2017-09-01
The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.
Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1975-01-01
Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.
Design and Testing of Suit Regulator Test Rigs
NASA Technical Reports Server (NTRS)
Campbell, Colin
2010-01-01
The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Next generation suit pressures will range from slight pressure, for astronaut prebreathe comfort, to hyperbaric pressure levels for emergency medical treatment of decompression sickness. In order to test these regulators through-out their development life cycle, novel automated test rigs are being developed. This paper addresses the design philosophy, performance requirements, physical implementation, and test results with various units under test.
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Rogers, D. W.; Bahr, D. W.
1976-01-01
The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.
Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.
2016-01-01
The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. LS-DYNA® was used to predict the thickness of the composite shield required to prevent blade penetration. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test LS-DYNA predictions. This paper documents the analysis conducted to predict the required thickness of a composite shield, the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.
Development of a novel passive top-down uniflow scavenged two-stroke GDI engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarelli, G.; Reynolds, Steve; Oliver, Phillip
2010-02-15
The design and performance characteristics of a novel top-down uniflow scavenged gasoline direct-injection two-stroke engine are presented. The novelty of the engine lies in the cylinder head that contains multiple check valves that control scavenging airflow into the cylinder from a supercharged air plenum. When the cylinder pressure drops below the intake plenum pressure during the expansion stroke, air flows into the cylinder through the check valves. During compression the cylinder pressure increases to a level above the intake plenum pressure and the check valves close preventing back-flow into the intake plenum. The engine head design provides asymmetrical intake valvemore » timing without the use of poppet valves and the associated valve-train. In combination with an external Roots-type supercharger that supplies the plenum and exhaust ports at the bottom of the cylinder wall, the novel head provides top-down uniflow air scavenging. Motoring tests indicated that the check valves seal and the peak pressure is governed by the compression ratio. The only drawback observed is that valve closing is delayed as the engine speed increases. In order to investigate the valve dynamics, additional tests were performed in an optically-accessible cold flow test rig that enabled the direct measurement of valve opening and closing time under various conditions. (author)« less
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1993-01-01
The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.
A New Tribological Test for Candidate Brush Seal Materials Evaluation
NASA Technical Reports Server (NTRS)
Fellenstein, James A.; Dellacorte, Christopher
1994-01-01
A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.
A Study of the Fluid-Dynamic Pressure Fields on Compressor Reed Valves.
1985-12-01
AIR FORCE INSTITUTE OF TECHNOLOGY ": Wright-Patterson Air Force Base, Ohio . . .. " . _ .01 1...mixture containing white pigment, the test rig was painted black to insure better contrast for photography. The oil was dotted on the base plate of...test rig black roughened the Eurtace and slightly reduced the sharpness ox the shock line. For con.iiuration ., three test pressures were chosen. Fhe
Terrain Characterization for Trafficability
1993-06-01
pensive and less time-consuming. Although carefully raphy, on vehicle operation. This report focuses on the controlled laboratory tests may be more...relating indentation to soil strength. on a portable test rig or on an off-road vehicle where it A series of controlled experiments to determine the is... Controls and setting values for hydraulic pressures and flow Figure 10. Wheel are test rig (after Wasterhund 1990). 7 Vertical Proximity L ock-Oit~u
NASA Technical Reports Server (NTRS)
Pampreen, R. C.
1977-01-01
Mechanical design and fabrication of two splitter-bladed centrifugal compressor impellers were completed for rig testing at NASA Lewis Research Center. These impellers were designed for automotive gas turbine application. The mechanical design was based on NASA specifications for blade-shape and flowpath configurations. The contractor made engineering drawings and performed calculations for mass and center-of-gravity, for stress and vibration analyses, and for shaft critical speed analysis. One impeller was machined to print; the other had a blade height and exit radius of 2.54 mm larger than print dimensions.
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.
2004-01-01
A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.
Aircraft Fuel Cell Power Systems
NASA Technical Reports Server (NTRS)
Needham, Robert
2004-01-01
In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results when it is finally ready for testing. Another of my goals is to test new membranes for use in proton-exchange membrane fuel cells, in the hope that these membranes can increase the electricity that is produced by he1 cells. Producing more electricity means that fewer fuel cells are needed, thus reducing the weight and volume of an APU based on fuel cells, making such an APU much more viable.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.
2011-01-01
In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported
Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1982-01-01
The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.
Evaluation of EXPLOSAFE. Explosion Suppression System for Aircraft Fuel Tank Protection
1980-07-01
between the Baffles,4 after Test 142 66 Test 2: Batt at Mouth of Tail Cone Rotated 3 Degrees 143 67 Test 2: No Rotation of Sealant Anchored Batts in Nose...Data 85 16 One "G" Drop Test Data 87 17 Vent Icing Test Data 911 18 Slosh Rig Transducer Calibration 103 19 Slosh Rig Test Data - Dry Run without Test...airborne applications. xxix Even though the dry weight of the material is somewhat greater d than that of other e,.:plosion suppressant materials
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
Preliminary design of a supercritical CO2 wind tunnel
NASA Astrophysics Data System (ADS)
Re, B.; Rurale, A.; Spinelli, A.; Guardone, A.
2017-03-01
The preliminary design of a test-rig for non-ideal compressible-fluid flows of carbon dioxide is presented. The test-rig is conceived to investigate supersonic flows that are relevant to the study of non-ideal compressible-fluid flows in the close proximity of the critical point and of the liquid-vapor saturation curve, to the investigation of drop nucleation in compressors operating with supercritical carbon dioxide and and to the study of flow conditions similar to those encountered in turbines for Organic Rankine Cycle applications. Three different configurations are presented and examined: a batch-operating test-rig, a closed-loop Brayton cycle and a closed-loop Rankine cycle. The latter is preferred for its versatility and for economic reasons. A preliminary design of the main components is reported, including the heat exchangers, the chiller, the pumps and the test section.
Burner rig corrosion of SiC at 1000 deg C
NASA Technical Reports Server (NTRS)
Jacobson, N. S.; Stearns, C. A.; Smialek, J. L.
1985-01-01
Sintered alpha-SiC was examined in both oxidation and hot corrosion with a burner rig at 400 kPa (4 atm) and 1000 C with a flow velocity of 310 ft/sec. Oxidation tests for times to 46 hr produced virtually no attack, whereas tests with 4 ppm Na produced extensive corrosion in 13-1/2 hr. Thick glassy layers composed primarily of sodium silicate formed in the salt corrosion tests. This corrosion attack caused severe pitting of the silicon carbide substrate which led to a 32 percent strength decrease below the as-received material. Parallel furnace tests of Na2SO4/air induced attacked yielded basically similar results with some slight product composition differences. The differences are explained in terms of the continuous sulfate deposition which occurs in a burner rig.
Advanced Seal Development for Large Industrial Gas Turbines
NASA Technical Reports Server (NTRS)
Chupp, Raymond E.
2006-01-01
Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.
Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F
2010-05-15
Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.
Evaluation of the flame propagation within an SI engine using flame imaging and LES
NASA Astrophysics Data System (ADS)
He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes
2017-11-01
This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.
Rajsbaum, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.
2012-01-01
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. PMID:23209422
Rajsbaum, Ricardo; Albrecht, Randy A; Wang, May K; Maharaj, Natalya P; Versteeg, Gijs A; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U
2012-01-01
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; VANrOODE, mARK
2006-01-01
The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.
Advanced Subsonic Combustion Rig
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming
1998-01-01
Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.
Coatings for directional eutectics. [for corrosion and oxidation resistance
NASA Technical Reports Server (NTRS)
Felten, E. J.; Strangman, T. E.; Ulion, N. E.
1974-01-01
Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.
Development of a test rig for a helium twin-screw compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B. M.; Hu, Z. J.; Zhang, P.
2014-01-29
A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the testmore » performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved.« less
NASA Astrophysics Data System (ADS)
Mántaras, Daniel A.; Luque, Pablo
2012-10-01
A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.
Cryogenic Magnetic Bearing Test Facility (CMBTF)
NASA Technical Reports Server (NTRS)
1992-01-01
The Cryogenic Magnetic Bearing Test Facility (CMBTF) was designed and built to evaluate compact, lightweight magnetic bearings for use in the SSME's (space shuttle main engine) liquid oxygen and liquid hydrogen turbopumps. State of the art and tradeoff studies were conducted which indicated that a hybrid permanent magnet bias homopolar magnetic bearing design would be smaller, lighter, and much more efficient than conventional industrial bearings. A test bearing of this type was designed for the test rig for use at both room temperature and cryogenic temperature (-320 F). The bearing was fabricated from state-of-the-art materials and incorporated into the CMBTF. Testing at room temperature was accomplished at Avcon's facility. These preliminary tests indicated that this magnetic bearing is a feasible alternative to older bearing technologies. Analyses showed that the hybrid magnetic bearing is one-third the weight, considerably smaller, and uses less power than previous generations of magnetic bearings.
Performance Evaluation of Pressure Transducers for Water Impacts
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean
2012-01-01
The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.
Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Jarmon, David C.; Ojard, Greg; Brewer, David N.
2013-01-01
As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.
Evaluation of wheel/rail contact mechanics : roller rig concept design review.
DOT National Transportation Integrated Search
2014-07-01
A need exists for a new test rig design with advanced sensing technologies that will allow the railroad industry and regulatory : agencies to better understand the wheel-rail contact dynamics and mechanics, especially as it pertains to high-speed rai...
Magnetic Excitation for Spin Vibration Testing
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Mehmed, Oral; Brown, Gerald V.
1997-01-01
The Dynamic Spin Rig Laboratory (DSRL) at the NASA Lewis Research Center is a facility used for vibration testing of structures under spinning conditions. The current actuators used for excitation are electromagnetic shakers which are configured to apply torque to the rig's vertical rotor. The rotor is supported radially and axially by conventional bearings. Current operation is limited in rotational speed, excitation capability, and test duration. In an effort to enhance its capabilities, the rig has been initially equipped with a radial magnetic bearing which provides complementary excitation and shaft support. The new magnetic feature has been used in actual blade vibration tests and its performance has been favorable. Due to the success of this initial modification further enhancements are planned which include making the system fully magnetically supported. This paper reports on this comprehensive effort to upgrade the DSRL with an emphasis on the new magnetic excitation capability.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
...OSHA solicits public comments concerning its proposal to extend the OMB approval of the information collection requirements contained in paragraphs (b)(1), (b)(6)(i), (b)(6)(ii), (c)(15)(ii), (e)(1)(i), (ii), and (iii) and (f)(2) of the Standard on Rigging Equipment for Material Handling (29 CFR 1926.251). These paragraphs require affixing identification tags or markings on rigging equipment, developing and maintaining inspection records, and retaining proof- testing certificates.
Rotating Rake Turbofan Duct Mode Measurement System
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.
2005-01-01
An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.
Composite Matrix Cooling Scheme for Small Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.
1990-01-01
The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.
Augmentor emissions reduction technology program. [for turbofan engines
NASA Technical Reports Server (NTRS)
Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.
1977-01-01
Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.
SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)
2017-06-11
SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam InsulationSHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.
SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)
2017-06-11
SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam Insulation
Advanced Gas Turbine (AGT) technology development
NASA Technical Reports Server (NTRS)
1983-01-01
A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.
Experience with high performance V/STOL fighter projects at MBB
NASA Technical Reports Server (NTRS)
Aulehla, F.; Kissel, G. K.
1981-01-01
Flight control systems and aerodynamic aspects of experimental V/STOL aircraft are discussed. The VJ 101 C featured tilting engines for increased thrust, reheat for takeoff, simple translation, triangular decentralization of the engines for thrust modulation, and moderate ground effects. Two experimental aircraft were built, with and without reheat, capable of Mach 2 and Mach 1.04, respectively. The mechanical flight control system and tests are outlined, both for hover rig and flight configurations. Ground suction, acoustic and thermal loading, sodium silicate coatings to avoid ground corrosion, and recirculation are considered. Results of the follow-on project to the VJ 101 C, the AVS, which was developed by NASA, are reviewed, and it is noted that trends toward thrust-to-weight ratios exceeding one, in concert with low wing loading, favor the development of V/STOL aircraft.
Studies on pressure-gain combustion engines
NASA Astrophysics Data System (ADS)
Matsutomi, Yu
Various aspects of the pressure-gain combustion engine are investigated analytically and experimentally in the current study. A lumped parameter model is developed to characterize the operation of a valveless pulse detonation engine. The model identified the function of flame quenching process through gas dynamic process. By adjusting fuel manifold pressure and geometries, the duration of the air buffer can be effectively varied. The parametric study with the lumped parameter model has shown that engine frequency of up to approximately 15 Hz is attainable. However, requirements for upstream air pressure increases significantly with higher engine frequency. The higher pressure requirement indicates pressure loss in the system and lower overall engine performance. The loss of performance due to the pressure loss is a critical issue for the integrated pressure-gain combustors. Two types of transitional methods are examined using entropy-based models. An accumulator based transition has obvious loss due to sudden area expansion, but it can be minimized by utilizing the gas dynamics in the combustion tube. An ejector type transition has potential to achieve performance beyond the limit specified by a single flow path Humphrey cycle. The performance of an ejector was discussed in terms of apparent entropy and mixed flow entropy. Through an ideal ejector, the apparent part of entropy increases due to the reduction in flow unsteadiness, but entropy of the mixed flow remains constant. The method is applied to a CFD simulation with a simple manifold for qualitative evaluation. The operation of the wave rotor constant volume combustion rig is experimentally examined. The rig has shown versatility of operation for wide range of conditions. Large pressure rise in the rotor channel and in a section of the exhaust duct are observed even with relatively large leakage gaps on the rotor. The simplified analysis indicated that inconsistent combustion is likely due to insufficient fuel near the ignition source. However, it is difficult to conclude its fuel distribution with the current setup. Additional measurement near the rotor interfaces and better fuel control are required for the future test.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.
2014-01-01
In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.
Gori Savellini, Gianni; Gandolfo, Claudia; Cusi, Maria Grazia
2015-12-01
Toscana Virus (TOSV) is a Phlebovirus responsible for central nervous system (CNS) injury in humans. The TOSV non-structural protein (NSs), which interacting with RIG-I leads to its degradation, was analysed in the C terminus fragment in order to identify its functional domains. To this aim, two C-terminal truncated NSs proteins, Δ1C-NSs (aa 1-284) and Δ2C-NSs (aa 1-287) were tested. Only Δ1C-NSs did not present any inhibitory effect on RIG-I and it showed a greater stability than the whole NSs protein. Moreover, the deletion of the TLQ aa sequence interposed between the two ΔC constructs caused a greater accumulation of the protein with a weak inhibitory effect on RIG-I, indicating some involvement of these amino acids in the NSs activity. Nevertheless, all the truncated proteins were still able to interact with RIG-I, suggesting that the domains responsible for RIG-I signaling and RIG-I interaction are mapped on different regions of the protein. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Huff, Edward M.; Barszcz, Eric; Turner, Irem Y.; Lewicki, David; Decker, Harry; Norvig, Peter (Technical Monitor)
1999-01-01
As part of a cooperative research program between NASA Ames Research Center, NASA Glenn Research Center, and the U.S. Army Laboratories, a series of experiments are being performed on the 500 HP OH-58a Transmission Test Rig at NASA Glenn Research Center. The findings reported in this paper were drawn from Phase 1 of a two-phase experiment, and are focused on the vibration response of an undamaged pinion gear and planetary system operating in situ in the transmission test rig. Phase 2 of the experiment, which is reported elsewhere, introduced a seeded fault into the pinion gear and tracked its progress in real-time. Based on methods presented here, further experimental research will be conducted to examine planetary system faults.
Parallel 3D Multi-Stage Simulation of a Turbofan Engine
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Topp, David A.
1998-01-01
A 3D multistage simulation of each component of a modern GE Turbofan engine has been made. An axisymmetric view of this engine is presented in the document. This includes a fan, booster rig, high pressure compressor rig, high pressure turbine rig and a low pressure turbine rig. In the near future, all components will be run in a single calculation for a solution of 49 blade rows. The simulation exploits the use of parallel computations by using two levels of parallelism. Each blade row is run in parallel and each blade row grid is decomposed into several domains and run in parallel. 20 processors are used for the 4 blade row analysis. The average passage approach developed by John Adamczyk at NASA Lewis Research Center has been further developed and parallelized. This is APNASA Version A. It is a Navier-Stokes solver using a 4-stage explicit Runge-Kutta time marching scheme with variable time steps and residual smoothing for convergence acceleration. It has an implicit K-E turbulence model which uses an ADI solver to factor the matrix. Between 50 and 100 explicit time steps are solved before a blade row body force is calculated and exchanged with the other blade rows. This outer iteration has been coined a "flip." Efforts have been made to make the solver linearly scaleable with the number of blade rows. Enough flips are run (between 50 and 200) so the solution in the entire machine is not changing. The K-E equations are generally solved every other explicit time step. One of the key requirements in the development of the parallel code was to make the parallel solution exactly (bit for bit) match the serial solution. This has helped isolate many small parallel bugs and guarantee the parallelization was done correctly. The domain decomposition is done only in the axial direction since the number of points axially is much larger than the other two directions. This code uses MPI for message passing. The parallel speed up of the solver portion (no 1/0 or body force calculation) for a grid which has 227 points axially.
Bharti, Omesh Kumar; Madhusudana, Shampur Narayan; Gaunta, Pyare Lal; Belludi, Ashwin Yajaman
2016-01-01
ABSTRACT Presently the dose of rabies immunoglobulin (RIG) which is an integral part of rabies post exposure prophylaxis (PEP) is calculated based on body weight though the recommendation is to infiltrate the wound(s). This practice demands large quantities of RIG which may be unaffordable to many patients. In this background, we conducted this study to know if the quantity and cost of RIG can be reduced by restricting passive immunization to local infiltration alone and avoiding systemic intramuscular administration based on the available scientific evidence. Two hundred and sixty nine category III patients bitten by suspect or confirmed rabid dogs/animals were infiltrated with equine rabies immunoglobulin (ERIGs) in and around the wound. The quantity of ERIG used was proportionate to the size and number of wounds irrespective of their body weight. They were followed with a regular course of rabies vaccination by intra-dermal route. As against 363 vials of RIGs required for all these cases as per current recommendation based on body weight, they required only 42 vials of 5ml RIG. Minimum dose of RIGs given was 0.25 ml and maximum dose given was 8 ml. On an average 1.26 ml of RIGs was required per patient that costs Rs. 150 ($3). All the patients were followed for 9 months and they were healthy and normal at the end of observation period. With local infiltration, that required small quantities of RIG, the RIGs could be made available to all patients in times of short supply in the market. A total of 30 (11%) serum samples of patients were tested for rabies virus neutralizing antibodies by the rapid fluorescent focus inhibition test (RFFIT) and all showed antibody titers >0.5 IU/mL by day 14. In no case the dose was higher than that required based on body weight and no immunosuppression resulted. To conclude, this pilot study shows that local infiltration of RIG need to be considered in times of non-availability in the market or unaffordability by poor patients. This preliminary study needs to be done on larger scale in other centers with long term follow up to substantiate the results of our study. PMID:26317441
Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.
2004-01-01
Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing replaces the ball bearing in front of the compressor, and the second replaces the roller bearing behind the burner. The rig was made operational to 10,000 rpm under Smart Efficient Components funding, and both position and current adaptive vibration control have been demonstrated. Upon program completion, recommendations will be made as to the efficacy of the conical magnetic bearing for active stall control.
Gene expression profile after activation of RIG-I in 5'ppp-dsRNA challenged DF1.
Chen, Yang; Xu, Qi; Li, Yang; Liu, Ran; Huang, Zhengyang; Wang, Bin; Chen, Guohong
2016-12-01
Retinoic acid inducible gene I (RIG-I) can recognize influenza viruses and evoke the innate immune response. RIG-I is absent in the chicken genome, but is conserved in the genome of ducks. Lack of RIG-I renders chickens more susceptible to avian influenza infection, and the clinical symptoms are more prominent than in other poultry. It is unknown whether introduction of duck RIG-I into chicken cells can establish the immunity as is seen in ducks and the role of RIG-I in established immunity is unknown. In this study, a chicken cell strain with stable expression of duRIG-I was established by lentiviral infection, giving DF1/LV5-RIG-I, and a control strain DF1/LV5 was established in parallel. To verify stable, high level expression of duRIG-I in DF1 cells, the levels of duRIG-I mRNA and protein were determined by real-time RT-PCR and Western blot, respectively. Further, 5'triphosphate double stranded RNA (5'ppp-dsRNA) was used to mimic an RNA virus infection and the infected DF1/LV5-RIG-I and DF1/LV5 cells were subjected to high-throughput RNA-sequencing, which yielded 193.46 M reads and 39.07 G bases. A total of 278 differentially expressed genes (DEGs), i.e., duRIG-I-mediated responsive genes, were identified by RNA-seq. Among the 278 genes, 120 DEGs are annotated in the KEGG database, and the most reliable KEGG pathways are likely to be the signaling pathways of RIG-I like receptors. Functional analysis by Gene ontology (GO) indicates that the functions of these DEGs are primarily related to Type I interferon (IFN) signaling, IFN-β-mediated cellular responses and up-regulation of the RIG-I signaling pathway. Based on the shared genes among different pathways, a network representing crosstalk between RIG-I and other signaling pathways was constructed using Cytoscape software. The network suggests that RIG-mediated pathway may crosstalk with the Jak-STAT signaling pathway, Toll-like receptor signaling pathway, Wnt signaling pathway, ubiquitin-mediated proteolysis and MAPK signaling pathway during the transduction of antiviral signals. After screening, a group of key responsive genes in RIG-I-mediated signaling pathways, such as ISG12-2, Mx1, IFIT5, TRIM25, USP18, STAT1, STAT2, IRF1, IRF7 and IRF8, were tested for differential expression by real-time RT-PCR. In summary, by combining our results and the current literature, we propose a RIG-I-mediated signaling network in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aspirating Seal Development: Analytical Modeling and Seal Test Rig
NASA Technical Reports Server (NTRS)
Bagepalli, Bharat
1996-01-01
This effort is to develop large diameter (22 - 36 inch) Aspirating Seals for application in aircraft engines. Stein Seal Co. will be fabricating the 36-inch seal(s) for testing. GE's task is to establish a thorough understanding of the operation of Aspirating Seals through analytical modeling and full-scale testing. The two primary objectives of this project are to develop the analytical models of the aspirating seal system, to upgrade using GE's funds, GE's 50-inch seal test rig for testing the Aspirating Seal (back-to-back with a corresponding brush seal), test the aspirating seal(s) for seal closure, tracking and maneuver transients (tilt) at operating pressures and temperatures, and validate the analytical model. The objective of the analytical model development is to evaluate the transient and steady-state dynamic performance characteristics of the seal designed by Stein. The transient dynamic model uses a multi-body system approach: the Stator, Seal face and the rotor are treated as individual bodies with relative degrees of freedom. Initially, the thirty-six springs are represented as a single one trying to keep open the aspirating face. Stops (Contact elements) are provided between the stator and the seal (to compensate the preload in the fully-open position) and between the rotor face and Seal face (to detect rub). The secondary seal is considered as part of the stator. The film's load, damping and stiffness characteristics as functions of pressure and clearance are evaluated using a separate (NASA) code GFACE. Initially, a laminar flow theory is used. Special two-dimensional interpolation routines are written to establish exact film load and damping values at each integration time step. Additionally, other user-routines are written to read-in actual pressure, rpm, stator-growth and rotor growth data and, later, to transfer these as appropriate loads/motions in the system-dynamic model. The transient dynamic model evaluates the various motions, clearances and forces as the seals are subjected to different aircraft maneuvers: Windmilling restart; start-ground idle; ground idle-takeoff; takeoff-burst chop, etc. Results of this model show that the seal closes appropriately and does not ram into the rotor for all of the conditions analyzed. The rig upgrade design for testing Aspirating Seals has been completed. Long lead-time items (forgings, etc.) have been ordered.
FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer
NASA Astrophysics Data System (ADS)
Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica
2015-11-01
The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.
Noise reduction experience at Hughes Helicopter, Inc.
NASA Astrophysics Data System (ADS)
Janakiram, D. S.
1982-07-01
Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).
Noise reduction experience at Hughes Helicopter, Inc.
NASA Technical Reports Server (NTRS)
Janakiram, D. S.
1982-01-01
Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).
A novel pendulum test for measuring roller chain efficiency
NASA Astrophysics Data System (ADS)
Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.
2018-07-01
This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.
Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batheja, P.; Meier, W.J.; Rau, P.J.
A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less
Behavior of ceramics at 1200 C in a simulated gas turbine environment
NASA Technical Reports Server (NTRS)
Sanders, W. A.; Probst, H. B.
1974-01-01
This report summarizes programs at the NASA Lewis Research Center evaluating several classes of commercial ceramics, in a high gas velocity burner rig simulating a gas turbine engine environment. Testing of 23 ceramics in rod geometry identified SiC and Si3N4 as outstanding in resistance to oxidation and thermal stress and identified the failure modes of other ceramics. Further testing of a group of 15 types of SiC and Si3N4 in simulated vane shape geometry has identified a hot pressed SiC, a reaction sintered SiC, and hot pressed Si3N4 as the best of that group. SiC and Si3N4 test specimens were compared on the basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, and failure mode.
Solid lubrication design methodology
NASA Technical Reports Server (NTRS)
Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.
1984-01-01
A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo; Brown, Gerald V.
1990-01-01
Experiments were performed on a passive tuned electromagnetic damper that could be used for damping rotor vibrations in cryogenic turbopumps for rocket engines. The tests were performed in a rig that used liquid nitrogen to produce cryogenic turbopump temperatures. This damper is most effective at cryogenic temperatures and is not a viable damper at room temperature. The unbalanced amplitude response of the rotor shaft was measured for undamped (baseline) and damped conditions at the critical speeds of the rotor (approx. 5900 to 6400 rpm) and the data were compared. The tests were performed for a speed range between 900 and 10 000 rpm. The tests revealed that the damper is very effective for damping single-mode narrow bandwidth amplitude response but is less effective in damping broadband response or multimode amplitude response.
Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Gazzaniga, John A.
1989-01-01
The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.
Stress-life relation of the rolling-contact fatigue spin rig
NASA Technical Reports Server (NTRS)
Butler, Robert H; Carter, Thomas L
1957-01-01
The rolling-contact fatigue spin rig was used to test groups of SAE 52100 9.16-inch-diameter balls lubricated with a mineral oil at 600,000-, 675,000-, and 750,000-psi maximum Hertz stress. Cylinders of AISI M-1 vacuum and commercial melts and MV-1 (AISI M-50) were used as race specimens. Stress-life exponents produced agree closely with values accepted in industry. The type of failure obtained in the spin rig was similar to the subsurface fatigue spells found in bearings.
Results of the NASP Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test Program
NASA Technical Reports Server (NTRS)
Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George S.
1995-01-01
This paper describes the test techniques and results from the National Aerospace Plane Government Work Package 53, the Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test program conducted in the NASA Ames 16-Inch Combustion Driven Shock Tunnel. This was a series of near full-scale scramjet combustor tests with the objective to obtain high speed combustor and nozzle data from an engine with injector configurations similar to the NASP E21 and E22a designs. The experimental test approach was to use a large combustor model (80-100% throat height) designed and fabricated for testing in the semi-free jet mode. The conditions tested were similar to the "blue book" conditions at Mach 12, 14, and 16. GWP 53 validated use of large, long test time impulse facilities, specifically the Ames 16-Inch Shock Tunnel, for high Mach number scramjet propulsion testing an integrated test rig (inlet, combustor, and nozzle). Discussion of key features of the test program will include: effects of the 2-D combustor inlet pressure profile; performance of large injectors' fueling system that included nozzlettes, base injection, and film cooling; and heat transfer measurements to the combustor. Significant instrumentation development and application efforts include the following: combustor force balance application for measurement of combustor drag for comparison with integrated point measurements of skin friction; nozzle metric strip for measuring thrust with comparison to integrated pressure measurements; and nonintrusive optical fiber-based diode laser absorption measurements of combustion products for determination of combustor performance. Direct measurements will be reported for specific test article configurations and compared with CFD solutions.
Development of spiral-groove self-acting seals for helicopter engines
NASA Technical Reports Server (NTRS)
Obrien, M.
1979-01-01
A spiral-groove, self-acting face seal was rig tested at advanced gas turbine operating conditions to determine wear and leakage rates. The spiral-groove, self-acting geometry was located in the rotating seal seat. Seal component wear induced by start-stop operation was measured after subjecting the test seal to 176 start-stop cycles. Wear occurring during normal operation was documented throughout a 75-hour endurance test. Seal air leakage was also measured. During endurance operation, the seal was subjected to operating conditions bounded by the values surface speed - 244 m/s (800 ft/sec), air pressure - 148 N/sq cm abs (215 psia), and air temperature - 622 K (660 F). The post-test condition of the seal components was documented. Wear data is presented in tabular form, while seal air leakage is presented graphically, as a function of pressure and speed.
German Jumo 004 Engine at the Lewis Flight Propulsion Laboratory
1946-03-21
Researcher Robert Miller led an investigation into the combustor performance of a German Jumo 004 engine at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Jumo 004 powered the world's first operational jet fighter, the Messerschmitt Me 262, beginning in 1942. The Me 262 was the only jet aircraft used in combat during World War II. The eight-stage axial-flow compressor Jumo 004 produced 2000 pounds of thrust. The US Army Air Forces provided the NACA with a Jumo 004 engine in 1945 to study the compressor’s design and performance. Conveniently the engine’s designer Anselm Franz had recently arrived at Wright-Patterson Air Force Base in nearby Dayton, Ohio as part of Project Paperclip. The Lewis researchers used a test rig in the Engine Research Building to analyze one of the six combustion chambers. It was difficult to isolate a single combustor’s performance when testing an entire engine. The combustion efficiency, outlet-temperature distribution, and total pressure drop were measured. The researchers determined the Jumo 004’s maximum performance was 5000 revolutions per minute at a 27,000 foot altitude and 11,000 revolutions per minute at a 45,000 foot altitude. The setup in this photograph was created for a tour of NACA Lewis by members of the Institute of Aeronautical Science on March 22, 1945.
Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades
NASA Technical Reports Server (NTRS)
Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas
2012-01-01
Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.
Modelling and validation of magnetorheological brake responses using parametric approach
NASA Astrophysics Data System (ADS)
Z, Zainordin A.; A, Abdullah M.; K, Hudha
2013-12-01
Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.
Application of active magnetic bearings in flexible rotordynamic systems - A state-of-the-art review
NASA Astrophysics Data System (ADS)
Siva Srinivas, R.; Tiwari, R.; Kannababu, Ch.
2018-06-01
In this paper a critical review of literature on applications of Active Magnetic Bearings (AMBs) systems in flexible rotordynamic systems have been presented. AMBs find various applications in rotating machinery; however, this paper mainly focuses on works in vibration suppression and associated with the condition monitoring using AMBs. It briefly introduces reader to the AMB working principle, provides details of various hardware components of a typical rotor-AMB test rig, and presents a background of traditional methods of vibration suppression in flexible rotors and the condition monitoring. It then moves on to summarize the basic features of AMB integrated flexible rotor test rigs available in literature with necessary instrumentation and its main objectives. A couple of lookup tables provide summary of important information of test rigs in papers within the scope of this article. Finally, future directions in AMB research within the paper's scope have been suggested.
NASA Astrophysics Data System (ADS)
Neelakantan, Lakshman; Schönberger, Bernd; Eggeler, Gunther; Hassel, Achim Walter
2010-03-01
An in situ tensile rig is proposed, which allows performing electrochemical (repassivation) experiments during dynamic mechanical testing of wires. Utilizing the basic components of a conventional tensile tester, a custom-made minitensile rig was designed and fabricated. The maximal force that can be measured by the force sensor is 80 N, with a sensitivity of 0.5 mV/V. The maximum travel range of the crosshead induced by the motor is 10 mm with a minimum step size of 0.5 nm. The functionality of the tensile test rig was validated by investigating Cu and shape memory NiTi wires. Wires of lengths between 40 and 50 mm with varying gauge lengths can be tested. An interface between wire and electrochemical setup (noncontact) with a smart arrangement of electrodes facilitated the electrochemical measurements during tensile loading. Preliminary results on the repassivation behavior of Al wire are reported.
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Mckechnie, Timothy N.
1989-01-01
Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.
Burner Rig in the Material and Stresses Building
1969-11-21
A burner rig heats up a material sample in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Materials technology is an important element in the successful development of advanced airbreathing and rocket propulsion systems. Different types of engines operate in different environments so an array of dependable materials is needed. NASA Lewis began investigating the characteristics of different materials shortly after World War II. In 1949 the materials group was expanded into its own division. The Lewis researchers sought to study and test materials in environments that simulate the environment in which they would operate. The Materials and Stresses Building, built in 1949, contained a number of laboratories to analyze the materials. They are subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The Metallographic Laboratory possessed six x-ray diffraction machines, two metalloscopes, and other equipment. The Furnace Room had two large induction machines, a 4500⁰ F graphite furnace, and heat treating equipment. The Powder Laboratory included 60-ton and 3000-ton presses. The Stresses Laboratory included stress rupture machines, fatigue machines, and tensile strength machines.
Multi-Axis Test Facility Orientation
1960-03-01
Seven Astronauts and William North undergo Multi Axis Space Test Inertia Facility (MASTIF) orientation: This film contains footage Gus Grissom leaving "Astro-Penthouse" and beginning tests, pilot Joe Algranti explaining the MASTIF to Scott Carpenter, Walter Schirra testing the controls and being strapped in, Deke Slayton climbing into the rig, and John Glenn preparing for test and being briefed by Algranti. Also seen are Alan Shepherd talking with Algranti and James Useller prior to climbing into rig and beginning test, Gordon Cooper being strapped in and beginning his test, Cooper and Algranti briefing to William North prior to his test. North was a test pilot on the NASA committee which selected the Mercury 7 astronauts.
Development and Initial Testing of the Tiltrotor Test Rig
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Sheikman, A. L.
2018-01-01
The NASA Tiltrotor Test Rig (TTR) is a new, large-scale proprotor test system, developed jointly with the U.S. Army and Air Force, to develop a new, large-scale proprotor test system for the National Full-Scale Aerodynamics Complex (NFAC). The TTR is designed to test advanced proprotors up to 26 feet in diameter at speeds up to 300 knots, and even larger rotors at lower airspeeds. This combination of size and speed is unprecedented and is necessary for research into 21st-century tiltrotors and other advanced rotorcraft concepts. The TTR will provide critical data for validation of state-of-the-art design and analysis tools.
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Roberts, R.; Peduzzi, A.; Vitti, G. E.
1976-01-01
Combustor pollution reduction technology for commercial CTOL engines was generated and this technology was demonstrated in a full-scale JT9D engine in 1976. Component rig refinement of the two best combustor concepts were tested. These concepts are the vorbix combustor, and a hybrid combustor which combines the pilot zone of the staged premix combustor and the main zone of the swirl-can combustor. Both concepts significantly reduced all pollutant emissions relative to the JT9D-7 engine combustor. However, neither concept met all program goals. The hybrid combustor met pollution goals for unburned hydrocarbons and carbon monoxide but did not achieve the oxides of nitrogen goal. This combustor had significant performance deficiencies. The Vorbix combustor met goals for unburned hydrocarbons and oxides of nitrogen but did not achieve the carbon monoxide goal. Performance of the vorbix combustor approached the engine requirements. On the basis of these results, the vorbix combustor was selected for the engine demonstration program. A control study was conducted to establish fuel control requirements imposed by the low-emission combustor concepts and to identify conceptual control system designs. Concurrent efforts were also completed on two addendums: an alternate fuels addendum and a combustion noise addendum.
Scaled centrifugal compressor, collector and running gear program
NASA Technical Reports Server (NTRS)
Kenehan, J. G.
1983-01-01
The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.
Review of Full-Scale Docking Seal Testing Capabilities
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.; Steinetz, Bruce M.
2008-01-01
NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. To evaluate the performance of the seals under simulated operating conditions, NASA GRC is developing two new test rigs: a non-actuated version that will be used to measure seal leak rates and an actuated test rig that will be able to measure both seal leak rates and loads. Both test rigs will be able to evaluate the seals under seal-on-seal or seal-on-plate configurations at temperatures from -50 to 50 C (-58 to 122 F) under operational and pre-flight checkout pressure gradients in both aligned and misaligned conditions.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.
Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Santoro, G. J.
1986-01-01
The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.
Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Santoro, Gilbert J.
1986-01-01
The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory and the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Model-Based Self-Tuning Multiscale Method for Combustion Control
NASA Technical Reports Server (NTRS)
Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2006-01-01
A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.
NASA Astrophysics Data System (ADS)
Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Hitzenberger, R.; Petzold, A.; Wilson, C. W.
2004-09-01
Size distributions (d > 15 nm) and volatile properties of combustion particles were measured during test-rig experiments on a jet engine, consisting of a combustor and three simulated turbine stages (HES). The combustor was operated to simulate legacy (inlet temperature 300°C) and contemporary (500°C) cruise conditions, using kerosene with three different fuel sulfur contents (FSC; 50, 400 and 1300 μg g-1). Measurements found that contemporary cruise conditions resulted in lower number emission indices (EIN15) and higher geometric mean particle diameter (dG) than for legacy conditions. Increasing FSC resulted in an overall increase in EIN15 and decrease in dG. The HES stages or fuel additive (APA101) had little influence on EIN15 or dG, however, this is uncertain due to the measurement variability. EIN15 for non-volatile particles was largely independent of all examined conditions.
NASA Technical Reports Server (NTRS)
Stecura, S.
1978-01-01
Currently proposed thermal barrier systems for aircraft gas turbine engines consist of NiCrAlY bond coating covered with an insulating oxide layer of yttria-stabilized zirconia. The effect of yttrium concentration (from 0.15 to 1.08 w/o) in the bond coating and the yttria concentration (4 to 24.4 w/o) in the oxide layer were evaluated. Furnace, natural gas-oxygen torch, and Mach 1.0 burner rig cyclic tests on solid specimens and air-cooled blades were used to identify trends in coating behavior. Results indicate that the combinations of yttrium levels between 0.15 - 0.35 w/o in the bond coating and the yttria concentration between 6 - 8 w/o in the zirconium oxide layer were the most adherent and resistant to high temperature cyclic exposure.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
NASA Technical Reports Server (NTRS)
Gedwill, M. A.
1978-01-01
Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).
Nondestructive evaluation of ceramic matrix composite combustor components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J. G.; Verrilli, M. J.; Stephan, R.
Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.
NASA Technical Reports Server (NTRS)
Arnon, N.; Trela, W.
1983-01-01
The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.
Vibration Test of a SNAP-8 Sodium-Potassium Alloy Pump
1970-01-21
Aeronautics and Space Administration (NASA) Lewis Research Center. Aerojet General was contracted to design the SNAP-8 generator which employed a mercury Rankine system to convert the reactor’s heat into electrical power. The hermetically-sealed pump was designed to generate from 35 to 90 kilowatts of electrical power. In 1964 a SNAP-8 test rig with a mercury boiler and condenser was set up in cell W-1 of Lewis’ Engine Research Building to study the transients in the system’s three loops. In 1967 a complete Rankine system was operated for 60 days in W-1 to verify the integrity of the Lewis-developed mercury boiler. Further tests in 1969 verified the shutdown and startup of the system under normal and emergency conditions. Aerojet operated the first full-Rankine system in June 1966 and completed a 2500-hour endurance test in early 1969. Lewis and Aerojet’s success on the Rankine system was acknowledged with NASA Group Achievement Award in November 1970. The 1970 vibration tests, seen here, were conducted in Lewis’ Engine Research Building’s environmental laboratory. The testing replicated the shock and vibration expected to occur during the launch into space and subsequent maneuvering. The pump was analyzed on each of its major axes.
An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation
NASA Technical Reports Server (NTRS)
Bauman, Steve
2005-01-01
New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.
Analysis and modification of a single-mesh gear fatigue rig for use in diagnostic studies
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Townsend, Dennis P.; Oswald, Fred B.; Decker, Harry J.
1992-01-01
A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal, making it difficult to perform diagnostic studies. Several possible sources and factors contributing to the unwanted components of the vibration signal were investigated. Sensor mounting location was found to have a major effect on the content of the vibration signal. In the presence of unwanted vibration sources, modal amplification made unwanted components strong. A sensor location was found that provided a flatter frequency response. This resulted in a more useful vibration signal. A major network was performed on the fatigue rig to reduce the influence of the most probable sources of the noise in the vibration signal. The slave gears were machined to reduce weight and increase tooth loading. The housing and the shafts were modified to reduce imbalance, looseness, and misalignment in the rotating components. These changes resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor mounting location giving the most robust representation of the test-gear meshing energy was found to be at a point close to the test gears in the load zone of the bearings.
Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph
2004-01-01
The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.
Heavy Equipment Mechanic. Instructor Edition.
ERIC Educational Resources Information Center
Hendrix, Laborn J.; And Others
This manual is intended to assist heavy equipment instructors in teaching the latest concepts and functions of heavy equipment. It includes 7 sections and 27 instructional units. Sections (and units) are: orientation (shop safety and first aid, hand tools and miscellaneous tools, measuring, basic rigging and hoisting), engines (basic engine…
Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC
NASA Astrophysics Data System (ADS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
PS300 Tribomaterials Evaluated at 6500C by Bushing Test Rig
NASA Technical Reports Server (NTRS)
Striebing, Donald R.; DellaCorte, Christopher
2004-01-01
A new facility has been developed to test the tribological behavior (friction and wear) of PS300 solid lubricant bushings at high temperatures. PS300 is a commercially available solid lubricant invented at the NASA Glenn Research Center. It can be prepared as a plasma spray coating or as a free-standing powder metallurgy component, designated PM300. PS300 and PM300 composites are designed to lubricate sliding components at temperatures above the capability of today's best oils, greases, and solid lubricants. One of the primary applications being pursued for PM300 is the development of bushings for use in high-temperature machinery. Examples include inlet guide vane bushings for gas turbines and conveyors, and bearings for industrial furnaces and ovens. Encouraging preliminary field trials indicate that PS300 and PM300 lubricant materials have been commercialized successfully in several industrial applications. However, the lack of laboratory performance data has hindered further commercialization especially for new applications that differ significantly from the established experience base. The purpose of the newly developed bushing test rig will be to determine the performance characteristics of PM300, and other materials, under conditions closely matching intended applications. The data will be used to determine engineering friction and wear rates and to estimate the life expectancy of bushings for new applications. In the new rig, the bushing is loaded against a rotating shaft inside a furnace enclosure (see the preceding photograph). Loads can vary from 5 to 200 N, speeds from 1 to 400 rpm, and temperatures from 25 to 800 C. Furnace temperature, bushing temperature, shaft speed, and torque are monitored during the test, and wear of both the bushing and the shaft is measured after testing is completed. Initially, PM300 bushings will be evaluated and compared with lower temperature, traditional bushing materials like graphite and porous bronze. The baseline PM304 composition is 60 wt% NiCr (a binder), 20 wt% Cr2O3 (a hardener), 10 wt% BaF2/CaF2 (a high-temperature lubricant), and 10 wt% Ag (a low-temperature lubricant). Future research efforts will include determining the effects of load, sliding speed, and temperature on tribological performance and, possibly, tailoring composition for specific applications. We expect that the availability of measured performance data will enhance the market penetration of PM300 technology.
Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions
NASA Technical Reports Server (NTRS)
Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.
2013-01-01
The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.
NASA Technical Reports Server (NTRS)
Verrilli, Michael; Calomino, Anthony; Thomas, David J.; Robinson, R. Craig
2004-01-01
Vane subelements were fabricated from a silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite. A cross-sectional slice of an aircraft engine metal vane was the basis of the vane subelement geometry. To fabricate the small radius of the vane's trailing edge using stiff Sylramic SiC fibers, a unique SiC fiber architecture was developed. A test configuration for the vanes in a high pressure gas turbine environment was designed and fabricated. Testing was conducted using a pressure of 6 atm and combustion flow rate of 0.5 kg/sec, and consisted of fifty hours of steady state operation followed by 102 2-minute thermal cycles. A surface temperature of 1320 C was obtained for the EBC-coated SiC/SiC vane subelement. This paper will briefly discuss the vane fabrication, test configuration, and results of the vane testing. The emphasis of the paper is on characterization of the post-test condition of the vanes.
Flight Tests of the Wilford XOZ-1 Sea Gyroplane
NASA Technical Reports Server (NTRS)
Gustafson, Frederic B.
1941-01-01
During August 1939 a series of flight tests was made at Langley Field on the Wilford sea gyroplane, designated by the Navy as the XOZ-1. These tests were intended to permit rough evaluation of the stability and control characteristics of the machine, with particular reference to possible improvements in rigging which might be made in future machines with fixed wing and nonarticulated feathering control rotor, and to provide data on the bending and feathering motions of the rotor blades. The tests made in 1939 proved inadequate, chiefly because the machine as flown did not have sufficient propeller thrust to give it an appreciable speed range in steady flight. Further tests were therefore made in August 1940 after overhauling the engine and substituting a metal propeller for the wooded one first used. The range of speeds covered in steady flight was markedly extended. Steady-flight runs only were made in this series, since it was felt that takeoffs and landings had been covered sufficiently in the previous tests.
Probabilistic Assessment of a CMC Turbine Vane
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Brewer, Dave; Mital, Subodh K.
2004-01-01
In order to demonstrate the advanced CMC technology under development within the Ultra Efficient Engine Technology (UEET) program, it has been planned to fabricate, test and analyze an all CMC turbine vane made of a SiC/SiC composite material. The objective was to utilize a 5-II Satin Weave SiC/CVI SiC/ and MI SiC matrix material that was developed in-house under the Enabling Propulsion Materials (EPM) program, to design and fabricate a stator vane that can endure successfully 1000 hours of engine service conditions operation. The design requirements for the vane are to be able to withstand a maximum of 2400 F within the substrate and the hot surface temperature of 2700 F with the aid of an in-house developed Environmental/Thermal Barrier Coating (EBC/TBC) system. The vane will be tested in a High Pressure Burner Rig at NASA Glenn Research Center facility. This rig is capable of simulating the engine service environment. The present paper focuses on a probabilistic assessment of the vane. The material stress/strain relationship shows a bilinear behavior with a distinct knee corresponding to what is often termed as first matrix cracking strength. This is a critical life limiting consideration for these materials. The vane is therefore designed such that the maximum stresses are within this limit so that the structure is never subjected to loads beyond the first matrix cracking strength. Any violation of this design requirement is considered as failure. Probabilistic analysis is performed in order to determine the probability of failure based on this assumption. In the analysis, material properties, strength, and pressures are considered random variables. The variations in properties and strength are based on the actual experimental data generated in house. The mean values for the pressures on the upper surface and the lower surface are known but their distributions are unknown. In the present analysis the pressures are considered normally distributed with a nominal variation. Temperature profile on the vane is obtained by performing a CFD analysis and is assumed to be deterministic.
Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications
NASA Astrophysics Data System (ADS)
Pesaresi, L.; Salles, L.; Jones, A.; Green, J. S.; Schwingshackl, C. W.
2017-02-01
Underplatform dampers (UPD) are commonly used in aircraft engines to mitigate the risk of high-cycle fatigue failure of turbine blades. The energy dissipated at the friction contact interface of the damper reduces the vibration amplitude significantly, and the couplings of the blades can also lead to significant shifts of the resonance frequencies of the bladed disk. The highly nonlinear behaviour of bladed discs constrained by UPDs requires an advanced modelling approach to ensure that the correct damper geometry is selected during the design of the turbine, and that no unexpected resonance frequencies and amplitudes will occur in operation. Approaches based on an explicit model of the damper in combination with multi-harmonic balance solvers have emerged as a promising way to predict the nonlinear behaviour of UPDs correctly, however rigorous experimental validations are required before approaches of this type can be used with confidence. In this study, a nonlinear analysis based on an updated explicit damper model having different levels of detail is performed, and the results are evaluated against a newly-developed UPD test rig. Detailed linear finite element models are used as input for the nonlinear analysis, allowing the inclusion of damper flexibility and inertia effects. The nonlinear friction interface between the blades and the damper is described with a dense grid of 3D friction contact elements which allow accurate capturing of the underlying nonlinear mechanism that drives the global nonlinear behaviour. The introduced explicit damper model showed a great dependence on the correct contact pressure distribution. The use of an accurate, measurement based, distribution, better matched the nonlinear dynamic behaviour of the test rig. Good agreement with the measured frequency response data could only be reached when the zero harmonic term (constant term) was included in the multi-harmonic expansion of the nonlinear problem, highlighting its importance when the contact interface experiences large normal load variation. The resulting numerical damper kinematics with strong translational and rotational motion, and the global blades frequency response were fully validated experimentally, showing the accuracy of the suggested high detailed explicit UPD modelling approach.
Visualization of Air Particle Dynamics in an Engine Inertial Particle Separator
NASA Astrophysics Data System (ADS)
Wolf, Jason; Zhang, Wei
2015-11-01
Unmanned Aerial Vehicles (UAVs) are regularly deployed around the world in support of military, civilian and humanitarian efforts. Due to their unique mission profiles, these advanced UAVs utilize various internal combustion engines, which consume large quantities of air. Operating these UAVs in areas with high concentrations of sand and dust can be hazardous to the engines, especially during takeoff and landing. In such events, engine intake filters quickly become saturated and clogged with dust particles, causing a substantial decrease in the UAVs' engine performance and service life. Development of an Engine Air Particle Separator (EAPS) with high particle separation efficiency is necessary for maintaining satisfactory performance of the UAVs. Inertial Particle Separators (IPS) have been one common effective method but they experience complex internal particle-laden flows that are challenging to understand and model. This research employs an IPS test rig to simulate dust particle separation under different flow conditions. Soda lime glass spheres with a mean diameter of 35-45 microns are used in experiments as a surrogate for airborne particulates encountered during flight. We will present measurements of turbulent flow and particle dynamics using flow visualization techniques to understand the multiphase fluid dynamics in the IPS device. This knowledge can contribute to design better performing IPS systems for UAVs. Cleveland State University, Cleveland, Ohio, 44115.
Experimental evaluation of combustor concepts for burning broad property fuels
NASA Technical Reports Server (NTRS)
Kasper, J. M.; Ekstedt, E. E.; Dodds, W. J.; Shayeson, M. W.
1980-01-01
A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied.
Additive Manufacturing of Ultem Polymers and Composites
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.
2015-01-01
The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.
Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory
NASA Technical Reports Server (NTRS)
Robinson, Raymond C.; Cuy, Michael D.
1994-01-01
The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.
Bursch practices CPR in the U.S. Laboratory during Expedition Four
2002-03-11
ISS004-E-8505 (11 March 2002) --- Astronaut Daniel W. Bursch, Expedition Four flight engineer, performs cardio-pulmonary resuscitation (CPR) on a jerry-rigged human chest dummy in the Destiny laboratory on the International Space Station (ISS). The image was taken with a digital still camera.
Walz practices CPR in the U.S. Laboratory during Expedition Four
2002-03-11
ISS004-E-8510 (11 March 2002) --- Astronaut Carl E. Walz, Expedition Four flight engineer, performs cardio-pulmonary resuscitation (CPR) on a jerry-rigged human chest dummy in the Destiny laboratory on the International Space Station (ISS). The image was taken with a digital still camera.